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Abstract

Computational models of preferences are indispensable in today’s era of information overload.

They help facilitate access to all types of resources such as videos, songs, images etc. via sev-

eral means such as content recommendation, site personalization and customization, and pro-

motional targeting and marketing. They further serve as important business intelligence tools

providing content providers insights to improving their practices. Vanilla models of preferences

such as the static and time decay models commonly used today, albeit powerful, are limited in

their abilities to cater to the volatile and shifting tastes and needs of the users. On the other

hand, researchers in the domain of behavioral psychology have studied various aspects of the

formation and evolution of individual preferences over several decades.

Despite several advances, findings from behavioral research have had little or no impact

on the design of computational models for dynamic preferences on the web. This is because,

most of these studies have been qualitative and/or have relied on carefully constructed user ex-

periments and surveys for testing their methods. The recent proliferation of online interfaces,

however, allows the accumulation and analysis of large quantities of user preference logs, open-

ing new avenues for understanding user dynamic behavior via data driven means. In this thesis,

we therefore focus on developing a repertoire of tools and techniques for analyzing, modeling

and predicting temporal and history dependent dynamics in preferences of online users.

For this purpose, we adapt techniques from survival analysis, a branch of statistics used for

analyzing duration data, to empirically measure changes in user preferences from their activity

streams. We specifically use hazard functions which allow us to relate user dynamic preferences

to user’s dynamic choice probabilities for items, a quantity that can be conveniently measured

from temporal logs of user consumption behavior. The dynamics in user preferences is further

studied by analyzing their consumption behavior separately with respect to their (a) consump-

tion of known (familiar) items; and (b) consumption of new items.

We show that user consumption of a familiar item over time is driven by boredom. That

is, we find that users move on to a new item when they get bored and return to the same item

when their interest is restored. To model this behavior, we propose a Hidden Semi-Markov

Model (HSMM) which includes two latent psychological preference states of the user for items

- sensitization and boredom. In the sensitization state the user is highly engaged with the item,
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while in the boredom state the user is disinterested. We find that the gaps between consumption

activities characterize these two states in the most natural way. We further find that our two state

model for item consumption not only better predicts the revisit time of the user for items, but

also, improves how items are recommended to the users, compared to existing state-of-the-art.

This is because our model has two advantages over other methods. First, by modeling boredom

it can avoid devalued items in the user recommendation list and second, by identifying items

which the user would want to consume again, it can re-introduce items which have not been

consumed for some time.

We further focus on a user’s incorporation of new items in their consumption list (novelty

seeking). We find that a user’s preferences for novelty vary with time and such dynamics can

be related to their boredom with familiar items. We then introduce for the first time, a novel

approach to selectively incorporate novelty in a user’s recommendation list using our prediction

of their novelty seeking behavior. We further show that our approach is robust in terms of a new

metric for accuracy more suitable to the problem of selective novelty recommendation based on

user’s novelty seeking preference.

Finally, in the last section of this thesis we use hazard models to estimating the dynamic

interest of the user in the content provider. This is achieved by using a Cox Proportional Hazard

model to estimate the dynamic rate of a users’ return to the service as a function of time since

the user’s last visit. We use our model to address the problem of retention for web services and

show that our model allows better user segmentation based on predicted return time. The model

further incorporates several behavioral and temporal features of the users interaction with the

service which provides valuable insights to the service’s practices.

Based on the experimental findings on various real world datasets, from different sections of

the thesis, the benefits of well-grounded dynamics preference models is apparent for improving

user experience on the web in several important ways. We hope that the rigorous treatment of

the problem of dynamics in user preferences provided in this work, assists and motivates future

research in this area.
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Chapter 1

Introduction

Decision theory has classically associated a single numerical measure with an item, called its

utility, to quantify a subject’s preferences towards it. This allows one to readily specify the

probability P ua with which a user u chooses an item a in her choice set O, through formulas

like:

P ua =
U(a)∑
o∈O U(o)

(1.1)

where, U(o) is the utility associated with item o ∈ O. Such preference models have been

extensively used in various applications such as in modeling individual decision making in

economics [1], for predicting consumer purchase behavior [2] and in designing personalized

assistive agents and recommender systems [3]. However, static utilities fail to explain many

kinds of human behaviors observed in practice. Psychological studies have shown that prefer-

ences are dynamic, and are affected by the frequency of exposure to a commodity. Moderate

exposure is needed to acquire preferences. However, existing preferences spontaneously de-

value after repetitive exposure and is associated with the psychological state of boredom or

stimulus satiation [4]. At the same time, less frequent repetition can reinstate one’s preferences

for a commodity, also identified as the mere-exposure effect [5] and is referred to as reinforc-

ing, inertial or sticky behavior [6]. The inherent drive for exploration further constitutes an

important element of human behavior which leads individuals towards desiring new and novel

content. User’s preferences for novelty are known to result from their curiosity for new in-

formation [7, 8] or are linked to stimulus satiation responses to familiarity [7]. Such dynamic

interactions between user past experiences and their future choices form an important element

1
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of their temporal content consumption process. (Figure 1.1).

Figure 1.1: The dynamic interaction between user preferences and their choice of content consumed.

Dynamics in preferences have only recently come under the purview of the computer sci-

ence community due to the increasing need for designing automated agents that can assist hu-

mans in their day to day decision making. Choosing the next movie to watch, the next song

to listen, the next article to read etc. are ubiquitous daily choices. The recommendation com-

munity has been instrumental in advancing research in representations, models and methods

for extracting and applying knowledge of user preferences to help users find preferred con-

tent. Several early recommendation methods use similarity to past content of choice for finding

other content relevant to the user. For example, a user who likes a particular movie A is rec-

ommended other movies from the same genre as A (Content-based). Alternatively, the user is

recommended other movies liked by a user who also liked A (Collaborative). While methods

have been perfected to exploit such similarity structures between users and their preferences

for items for making recommendations, these models have accrued criticism for concentrating

extensively or entirely on past behavior, resulting in recommendations which are ‘too similar’

and are often disliked by the users. Furthermore, researches have shown that this problem is

further exacerbated when recommendations are made over time [9]. As a result, a major ini-

tiative in the recommendation community is to move beyond similarity to produce diverse and

novel recommendations [10, 11]. Furthermore, temporal models have been proposed to accom-

modate changes in user preferences [12, 13]. These methods have however lacked a model of

the psychology of preference dynamics of users for predicting changes in their interests ahead

of time.
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User choices for viewing a movie, for example, depends not only on the types of movies

she likes generally, but also, the movie she saw recently allowing psychological factors such

as boredom and the need for variety to emerge. The incorporation of such behavioral insights

into recommendations allows designs of the next generation of assistive agents that understand

user need state better. Models of dynamics user preferences further allows content providers

to direct efforts for customer retention. There is tremendous competition among the rapidly

increasing number of web services for survival making it vital for them to invest in growth and

retention solutions. This directly results in a great deal of emphasis being placed by services

on retaining and further engaging their current user base. The highly dynamic nature of user

visitation behavior calls for a novel retention metric to track the dynamic user return rate and

identify correlates associated with user return behavior.

The subsequent chapters of this thesis describe novel computational approaches and algo-

rithms to model user dynamic preferences. The proposed techniques are applied for making

better temporal recommendations of content to online users. The dynamic models developed

in this work, are further used to provide improved solutions for retention for web services the

findings are discussed. However, before getting into the technical details, in this chapter we

provide a brief overview of psychological underpinnings of our work. We also discuss compu-

tational models from consumer research and recommendation and identify their shortcomings.

Finally, we provide the layout of this thesis discussing the subsequent chapters and their key

contributions.

1.1 Background

1.1.1 Dynamics in Preferences

Predicting changes in preferences, based on the past behavior and experiences of the users is a

non-trivial problem with no proposed solutions. Although, little studied in the user modeling

community, evolution in human preferences has been a subject of much psychological research.

Some key insights and findings from the state-of-the-art in behavioral psychology are discussed

in this section.

Studies in psychology of preferences have been devoted towards understanding the role of

familiarity and novelty in driving an individual’s future interests. A correlation between fa-

miliarity and preference has been identified as the mere-exposure effect, first formalized by
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Zajonc [14], according to which repeated exposure to a stimuli is sufficient for an enhancement

in liking. Further, Martindale has shown that prototypicality and mere-exposure are impor-

tant factors for predicting aesthetic preferences [15]. Alternatively, human behavior has been

described to be exploratory or sensation seeking. The inherent drive for exploration leads indi-

viduals towards desiring new and novel content. Berylne in numerous of his works has found

collative aspects of the stimulus such as novelty, incongruity and complexity to contribute to its

arousal potential. Such a preference is hypothesized to result from curiosity for new informa-

tion [8]. He further proposed that preferences show an inverted-U relationship expressed by the

wundt curve with the arousal potential of the stimulus 1.2. Exploratory behavior is also linked

to stimulus satiation responses arising on repeated exposure [7].

Laboratory experiments have shown mice to show spontaneous alternation behavior, which

describes their tendency for alternating among stimuli without any external incentives. This

behavior, is explained to arise due to a decrease in preference for a stimulus from exposure.

The preferences are suggested to reinstate on removal of the stimulus due to forgetting. Several

modulating effects of memory on the spontaneous alternation phenomenon further support this

hypothesis.

Figure 1.2: The Wundt curve proposed by Berlne for explaining the relationship between the arousal
potential of a stimulus and its hedonic value [16].

A crucial question that appears is; what determines future behavior of the organism - the

desire for familiarity or a desire for exploration? Several studies have found exploration and
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exploitation tendencies to occur in moderation, with an excess in one leading to the other. For

example, detailed experiments on the mere-exposure effect have shown that the favorable ef-

fects of exposure on preference are limited by boredom [17]. Alternatively, high uncertainty in

the environment is found to result in anxiety and displeasure. Hebb [18] and Leuba [19] inde-

pendently postulated this idea by suggesting that organisms are driven towards maintaining an

optimal level of stimulation in their environment. However, most of the presented work deals

with preferences of individuals in forced-exposure situations. Experimental research on indi-

viduals who are allowed to freely choose stimuli they wish to expose themselves to, have been

limited. For example, a study of free choices for music listening have shown that subjects tend

to alternate among their preferred alternatives once they have exploited their choice set [20].

However, subject choices in potentially infinite choice spaces have never been explored. Finally,

the theory of information foraging provides some information theoretic answers for balancing

exploration and exploitation policies in an uncertain environment for maximum reward [21].

1.1.2 Computational Models

The psychological research in preferences discussed so far has primarily been theoretical in

nature. There have been efforts in the areas of consumer research and recommendations towards

developing computational models for dynamic preferences in real world scenarios. Some of

these models are reviewed next.

Consumer Choice Models

Variety seeking behavior has received a lot of attention from the consumer research community.

McAlister compiled a taxonomy of factors responsible for varied behavior in consumers [22]. In

his work, he segregated true variety seeking behavior resulting from internal motivations from

that produced by external factors such as unavailability of a product, launch of new products

etc. True variety seeing behavior was further proposed to manifest in two forms; a desire for

unfamiliar alternatives and a desire to alternate among familiar alternatives. The former exem-

plified the desire for novelty while, the latter was seen as a weak form of exploratory behavior

where the desire for familiarity coupled with devaluation effects due to satiation produced an

alternating behavior. Lancaster [23] proposed that the preference for items can be composed

from the preference for its attributes. McAlister further modeled variety seeking behavior in
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soft drink preferences using a dynamic attribute satiation model [24]. The model assumed an

ideal level of inventory at the attribute level and penalized departures from the ideal level. The

inventory was designed to dwindle over time to incorporate the effects of forgetting.

Subsequent efforts in consumer research have advanced towards developing a general con-

sumer choice model which allows consumers to either exhibit a short term loyalty for their last

purchased brand (inertia) or devaluation for the last purchased brand (variety seeking) [6, 25].

Bawa et al [26] used a single peaked function, to model the conditional probability of repeat

purchase given the number of times the brand was re-purchased since user’s last switch (run

length). Recent efforts have expanded these models to incorporate heterogeneities between

consumers and external environment variables affecting user choices [27].

However, most of the existing efforts in consumer research have not accounted for long

term changes in consumer interests. A recent work by Garcia-Torres [28] uses a utility based

model of consumer choice making which incorporates the process of preference formation by

allowing for integration between old habits and the acquisition of new preferences.

Models for Recommendation

Recommendations is a relatively new field with only a few decades of history. The rise in pop-

ularity of the web has significantly pushed this research area forward by producing an unprece-

dented need for assistive agents. The online environment also allowing the collection of large

scale and detailed user data which fuel many of the sophisticated machine learning and data

mining models at the heart of some of the most popular recommendation methods. Most of the

early models for recommendation assumed a static view of preferences. Such models include

the popular nearest neighbors [29] and matrix factorization methods [30] for recommendation

and their subsequent probabilistic renditions. However, the lack of temporal awareness in these

models was obvious. Ding et al. [12] showed that it was important to include temporal changes

in preferences while making recommendations. He proposed using a decay function to empha-

size recency of past behavior while predicting future recommendation needs. Koren offered a

better solution by modifying the matrix factorization model to incorporate changes in prefer-

ences over time [13]. However, Koren’s and other similar approaches can be described as a

corrective scheme for preferences changes rather than as dynamic model for preferences.

A dynamic model for preferences was proposed recently by Sahoo et.al [31] for predicting

blog reading behavior in employees. They used a hidden markov model for modeling dynamic
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participation of users in different latent classes based on their changing preferences over time.

Sahoo et. al’s approach however, assumes that global preferences of a user to remain stable over

time.

1.2 Contributions and Organization

The subsequent chapters of this thesis are organized as follows:

1. In Chapter 2, we develop the mathematical tools needed for measuring changes in prefer-

ences for items using user activity data. The hazard function, commonly used in statistics

for survival analysis, is adapted for this purpose. We further use our proposed hazard

functions for item consumption to provide the first evidence of spontaneous devaluation

in preferences of online users.

2. Chapter 3 presents a Hidden Semi-Markov Model (HSMM) for a user consumption of

familiar items. The HSMM model incorporates two latent psychological states of pref-

erence for an item - sensitization and boredom. Each preference state is associated with

a state specific hazard function for item consumption estimated from user past activity

streams. We show that our model performs much better than the state-of-the-art temporal

recommendation models at making temporal recommendation of familiar items.

3. Chapter 4 focuses on user novelty seeking behavior i.e. their consumption of novel,

unknwon or new items. A predictive model for user novelty seeking is developed using

user history of recent item consumptions including the diversity of their familiar set and

their boredom with the familiar set. User novelty seeking predictions are further used to

modulate the introduction of novel items to the user. The proposed recommender, called

adaNov-R, is shown to be robust in term of the accuracy of its recommendation and its

ability to adapt to user’s specific desire for novelty compared to existing non-adaptive

approaches.

4. Chapter 5 defines the problem of return time prediction for free web services. Our solu-

tion is based on the Cox’s proportional hazard model from survival analysis. The hazard

based approach offers several benefits including the ability to work with censored data,

to model the dynamics in user return rates, and to easily incorporate different types of
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covariates in the model. We compare the performance of our hazard based model in

predicting the user return time and in categorizing users into buckets based on their pre-

dicted return time, against several baseline regression and classification methods and find

the hazard based approach to be superior.

5. Finally, Chapter 6 summarizes the conclusions of the research presented in this thesis and

some future research directions.



Chapter 2

Measuring Spontaneous Devaluations
in User Preferences

2.1 Introduction

Recommendation systems have become a popular means of suggesting relevant content to the

user. Methods in recommendations have focused on constructing estimates of user preferences

based on their history of choices. These preference estimates are then used to suggest new

content to the user using content-based or collaborative methods. Content-based methods use

a user’s preference estimates to find similar content, while collaborative methods use a user’s

preference estimates to identify similar users (neighborhood) and recommend content popular

in the identified neighborhood. But, it’s not sufficient for a recommender agent to only estimate

a user’s past preferences; it’s also important to predict their future preferences given past expe-

riences. This makes the task of a recommender even more challenging by requiring it to predict

when and how a user’s preferences will change in the future. The recommendations commu-

nity, however, lacks models which can predict changing preferences of users and doing so is

generally accepted as a hard problem. On the other hand, user’s recent choices have been found

to be a good predictor of their future behavior. Efforts in modeling temporal recommendations

have exploited this aspect of user choices by designing recommendation systems which system-

atically emphasize recency with good results. The critical shortcoming of this formulation is

that such a system merely reacts to preference changes rather than trying to predict them.

9
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While little work has been done on predicting changes in user preferences in the recommen-

dation literature, psychologists and behaviorists have long studied the dynamics of individual

preferences. Several theories have been proposed to explain why individuals seek out new con-

tent (novelty seeking, exploratory and information seeking behavior) [32]. Other studies talk

about individuals making choices to actively seek an optimal level of stimulation in their envi-

ronment [33]. The theory of flow [34] suggests that an environment which provides an optimal

level of challenge for a given level of skill leads to a desirable state of flow. Despite such the-

oretical developments, it has been difficult to operationalize these aspects of individual choices

to solve real world problems. However, modeling properties of individual behavior is critical

for advancing designs of automated agents which interact with individuals on a daily basis.

In this work, we study one aspect of dynamic individual preferences. Individuals are often

found to develop disinterest and even dislike for their dearly preferred content both temporarily

and lastingly. It’s common to find that one’s clothes, food, entertainment, jobs etc. have grown

boring despite being enjoyable in the past. We call this phenomenon a spontaneous devaluation

of one’s preferences or boredom for a stimulus. Spontaneous devaluation is seen to arise when

repeated exposure to a stimulus creates a feeling of satiation towards it leading to a loss in

interest [4]. Alternatively, spontaneous devaluation has been linked to lost opportunity for novel

experiences when similar experiences are repeated too often [22]. Both theories concur in

suggesting that, in contrast to recency-based expectations, repeated exposure to familiar choices

spontaneously devalues one’s preference for them.

Human behavior driven by these dynamics could be modeled as systematically alternating

between one’s set of choices, assuming that the time spent in experiencing other stimuli is suf-

ficient to mitigate the effects of boredom for a particular stimulus. Several studies on user pur-

chase behavior have found buyers to alternate among their preferred alternatives [35, 22, 6] etc.

However, in practice users have a non-uniform liking for different alternatives in their choice

space. Furthermore, users have a pronounced tendency to stick to their recent choices [35]

which has been responsible for the success of the previously proposed recommender models.

We call this behavior the ‘sticky’ behavior in users. This phenomenon has also been called rein-

forcement or inertial behavior. Such behavior can be explained to arise due to an actual increase

in liking on exposure [6] or a tendency to avoid switching costs.

The presence of both stickiness and devaluation effects in user preferences make predicting
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the temporal choices of a user non-trivial. In this paper, we analyze user music listening behav-

ior to extract signals of stickiness and boredom. Our analysis is limited to the music domain due

to availability of public datasets, nevertheless, we expect our results to generalize to other items

like movies, videos, books, vacation packages, shopping etc. which are fairly susceptible to

boredom effects. We demonstrate the use of hazard functions for measuring these phenomena.

Our work provides the first proof of spontaneous devaluation in music listening preferences of

users and its impact on user choices. This work can inform design of future methods that in-

corporate these dynamics, producing agents that can cater to new needs of users suffering from

boredom.

The rest of the paper is organized as follows: Section 2 provides a summary of the related

work. Section 3 gives an overview of the dataset and pre-processing details. Section 4 lays out

terminology relevant to our analysis. Section 5 provides details of our methodology. Our results

are summarized in Section 6. We end with a discussion of the contributions of this work and

possible future extensions in Section 7.

2.2 Related Work

2.2.1 Dynamic Preferences

Stimulus satiation was initially used by researchers to explain spontaneous alternation in rats [4].

Rats were placed in a T-shaped maze and provided an unlimited supply of food at the left and

the right corners of the maze at equal distances. The experiment was set up such that that the rat

had to return to the starting point before each trial. It was seen that rats chose to alternate be-

tween the left and the right ends on repeated trials. Glanzer [36] suggested that such a behavior

arose due to stimulus satiation such that each time the organism was exposed to the stimulus,

satiation for the stimulus increased causing the rat to switch directions. Further, satiation for

the stimulus diminished when the organism could no longer perceive the stimulus and the rat

returned back to the same direction.

Researchers have found individuals to engage in more complex forms of variety seeking be-

havior while making choices. McAlister proposed a taxonomy of factors responsible for varied

behavior in individuals [22]. These were classified into two categories based on whether they

arose due to external factors (such as unavailability of a product, launch of new products etc.)

or due to internal motivations. When arising out of internal motivations, variety seeing behavior
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was suggested to manifest in two forms; a desire for unfamiliar alternatives or a desire to alter-

nate among familiar alternatives. The former was linked to individuals seeking an optimal level

of stimulation [32, 33], while, the latter was seen as a weak form of exploratory behavior. It

was also linked to devaluation in preferences due to satiation. A single peaked preference func-

tion was proposed to characterize the attractiveness of a stimulus on repeated exposure [37].

McAlister also proposed a dynamic attribute satiation model [24] which assumed an ideal level

of inventory for different attributes of the items. The inventory was designed to dwindle over

time to incorporate the effects of forgetting.

Researchers have subsequently focused on modeling the choice probabilities of consumers di-

rectly given their past choices. Consumers were found to exhibit either a short term loyalty for

their last purchased brand (inertia) or devaluation for the last purchased brand (variety seek-

ing) [35, 6]. Kahn [25] compared seven models for user choice behavior with similar results.

Bawa et al [26] used a single peaked function, to model the conditional probability of repeat

purchase given the number of times the brand was re-purchased since user’s last switch (run

length). Chintagunta [38] used hazard rates to model the level of inertia and variety seeking

as a function of time between purchases. Recent efforts have expanded these models to in-

corporate heterogeneities between consumers and external environment variables affecting user

choices [27].

Most of the research in this area, however, has been limited to panel datasets and analysis of

user surveys and questionnaires. In this work we have adopted a data driven approach to elicit

changes in user preferences towards a stimulus as a function of their past exposure to it. Our

efforts do not look at variety seeking or inertial behavior in users in general, but at changes in

choice probabilities with respect to particular stimulus, grounding ourselves in psychological

theories of boredom and novelty seeking, which provides a causal explanation for the existence

of these patterns.

2.2.2 Recommender Systems

State-of-the-art methods in recommender systems have assumed a static view of human pref-

erences. Ding et al. [12] showed that the static view of user preferences used while generating

recommendations was flawed as it did not take changing user interests into account. They used a

decay function to gradually devalue the impact of a user’s past history while making prediction

of his future likings. Recently, a temporal model of recommendation was developed [13, 39]
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which was an important part of the solution to the KDD Cup on Yahoo Music dataset and the

Netflix challenge. The model incorporated several time-sensitive user and item biases in the

standard factor model. Gradual changes in user preferences over time were captured using a

linear function. Their model showed that modeling temporal dynamics in user choices was es-

sential for improving the performance of the recommender. Sahoo [31] has proposed a dynamic

model of blog reading behavior in employees. He used a Hidden Markov Model to predict

future interests of employees based on their previous choices. However, user transitions are

assumed to be driven by a static transition matrix. At present, the recommendation community

lacks models that predict changes in user preferences.

Also related to our work are methods to introduce diversity and novelty in recommenda-

tions. Lathia et al. [9] showed that popular recommendations methods such as kNN and SVD

produced recommendations which were very similar (low in temporal diversity) on iterated

train-test experiments on temporally ordered data. Many methods that systematically introduce

diversity in the recommendations have been proposed [40, 10, 41, 42]. However, these methods

focus on jointly optimizing both similarity and diversity indices described on the space of items

being recommended rather than predicting changes in user preferences.

2.3 Data

Our analysis is based on complete temporal music listening histories of users provided by

Last.fm. Last.fm is a popular music website with millions of active users. It allows users to

purchase tracks, listen to online radios and playlists etc. and has additional social network-

ing features as well. Recently, Last.fm made available a dataset of complete music listening

histories of around 1000 users as recorded till May 2009 [43]. This is the only publicly avail-

able dataset, to our knowledge, to provide complete temporal records of user choices. Because

Last.fm hosts several online radios, it is quite probable that parts of the user histories capture

radios, and playlists rather than active user choices. We filtered these effects by using the time

gap between two consecutive tracks played by the user. Last.fm has a generous list of API’s

available to developers. The API, track.getInfo, was used to retrieve the duration of most of the

songs in our dataset. We compared the time gap between song 1 and song 2 in that temporal

order in the user history with the length of song 1. If the time gap was found to be more than

the length of song 1 by less than 5 seconds, song 2 was identified to belong to an automated
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play list. All tracks ‘not on auto-play’ were assumed to be active user choices. We could not

remove auto-play effects for the songs whose lengths were unavailable through the API. This

corresponded to 0.05% of the songs. We only considered the first 1 year of each user history in

our analysis. All the users which had less than 30 records of activity were eliminated from the

dataset. Also, we only kept those artists in the user history which the user had listened to 15 or

more times in that period of 1 year. We summarize some important statistics about the dataset

in Table 1.

Property Value
# unique tracks 1,084,872
# unique artists 174,091
# Users 957
Mean history length - # songs heard 6716
Mean history length - # active days 177
Mean # unique artists heard 37

Table 2.1: Statistics from the Last.fm dataset

2.4 Terminology

Based on both the novelty-seeking and stimulus satiation theories of devaluation of preferences,

repeated exposure to a stimulus causes devaluation in one’s preferences towards it. Additionally,

devalued preferences can get reinstated after a period of reduced or no exposure. A music piece

can stimulate the listeners because of the combined effect of its multiple features (artist, genre,

tempo, strong female vocals, etc.). For simplicity and ease of access, we use the artist of the

songs as our basic stimulus. More sophisticated stimulus definitions that model the interaction

between multiple features of a song can enhance our method.

Preferences have been linked to choice probabilities in the past. It is only a logical extension

to relate changes in preferences to changes in choice probabilities, and in our case conditional

choice probabilities. We suspect that the phenomenon of devaluation produces two different

patterns in the choice probabilities of users for an artist.

Hypothesis 1: The probability that a user will listen to an artist again will decrease after

he has listened to the artist some number of times. When this happens, we say that the user’s

preferences for the artist have devalued.
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Hypothesis 2: Devalued preferences can get reinstated after a sufficient period of non/reduced

exposure to the artist.

Through our experiments, we look for signals suggestive of spontaneous devaluation in

choices probabilities of Last.fm users. By doing so, we establish a methodology for detecting

this phenomenon and analyzing its properties.

We consider the state of the user at some time t to be defined by the artist of the song the

user was listening to at that time. The temporal history of the user comprises the sequence of

states visited by him as a function of time; i.e. Hu(t) = sa if user u was listening to artist a at

time t. User u is said to enter a state a at time t if Hu(t) = sa and Hu(t− 1) 6= sa. A user u

is said to exit a state a at time t if Hu(t) 6= sa and Hu(t − 1) = sa. We can now define the

following conditional choice probabilities:

1. Conditional probability of exit: This is the conditional probability of a user u exit-

ing state a at time t given that he last entered state a at time t − r and has not ex-

ited state a yet. Formally, the probability is equal to P (Hu(t) = sa|Hu(t − 1) =

sa, . . . ,H
u(t − r) = sa, H

u(t − r − 1) 6= sa). Here, r is the time spent listening to

the artist and corresponds to the idea of a run length in Bawa’s model [26]. We make

the simplifying assumption that this probability depends only on r. Hence, we can also

represent the conditional probability of exiting state a by user u when time spent in state

is r as P ua(exit|time spent in state a = r).

2. Conditional probability of entry: This is the conditional probability of user u entering

a state a at time t given that the user last exited state a at time t− (o+ 1). Formally, this

corresponds toP (Hu(t) = sa|Hu(t−1) 6= sa, . . . ,H
u(t−o) 6= sa, H

u(t−o−1) = sa).

Here, o is the time spent not listening to the artist a. Again, for simplicity, we assume

that this probability depends only on o. We later relax this assumption with interesting

effects, described in Section 6.3. Thus, this probability can also be represented as the

conditional probability of entering state a after having exited it o units of time ago or

P ua(entry|time spent out of state a = o).

The definition of time has been kept ambiguous in the definitions above. We now define it more

formally. Time can be defined in terms of the order in which songs are heard by the user such
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that Hu(t) refers to the t-th song heard by user u. Such a definition, however, does not take

the actual time gap between consecutive listenings into account. It is important to consider the

actual time gap between user choices. This is because a user satiated with an artist can get

unsatiated both by listening to other artists or due to forgetting if he returns to the system after

a long time. To analyze the impact of actual clock time on the satiation level, we define time in

terms of days since the first historical record of the user. Accordingly, Hu(t) refers to the state

of the user on t-th day since day 1. For simplicity, the state of the user on a day is defined by

the artist listened to most frequently by him on that day.

2.5 Methodology

Survival Analysis is a statistical method commonly used for modeling time-to-event data. The

purpose of this kind of analysis is to model the probability of survival (where the occurrence of

the event corresponds to death) beyond a certain point in time. For simplicity, we use a discrete

measures of time t ∈ N. The survivor function at time t is defined as:

S(t) = P (T > t) (2.1)

Where, T is a random variable denoting the time of death. The instantaneous rate of occurrence

of the event at time t, conditioned on having survived up to time t, is captured using the hazard

function. The hazard function is also called the conditional failure rate and is defined as:

λ(t) = lim
∆t→0|

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

= −S′(t)/S(t) (2.2)

We use the hazard rate function to compute the exit and entry conditional probabilities defined

in the previous section. We set ∆t = 1. This allows us to use the terms hazard rate and

conditional probability of death interchangeably. We can construct the two different hazard

curves based on how we define our events.

1. Exit Hazard Rate: Here, we measure time from the point when a user u entered a state a.

The event corresponds to his ‘exit’ from the state. The random variable T uaexit denotes the

time of exit or death. This hazard rate captures the conditional probability of exiting the

state at time t+1 having survived in the state for time t or greater; λuaexit(t) = P ua(T uaexit =

t|T uaexit ≥ t).
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2. Entry Hazard Rate: Here, we measure time from the point when a user u exited a state

a. The event corresponds to his ‘entry’ back into the state. The random variable T uaentry

denotes the time of entry or death. This hazard rate captures the conditional probability

of entering a state at time t having survived outside the state for time t or greater;

λuaentry(t) = P ua(T uaentry = t|T uaentry ≥ t).

An exit and entry hazard rate can be defined for each artist a user listens to. For our analysis,

we pool across the different users and the artist choices to compute an average exit and entry

hazard rate for the entire dataset. We normalize the time of entry and exit variables to mitigate

the effects of differences in a user’s preferences for different artists and differences across users.

The time of event variable is log transformed as well as it becomes harder to exactly predict the

time of an event as time for which the event has not happened increases. In other words, this

means that if a user has not returned to an artist in a month, its more difficult to predict the exact

day of his return, than, when he has has not returned to the artist for a day. The log transform

accommodates this non-linearity in the predictability of return time.

TN
i =

log2(T uai )

log2( 1
Pu(a))

(2.3)

for a user u and artist a and i ∈ {‘entry′, ‘exit′}. P u(a) is the prior probability of user u being

in state a.

P u(a) =
Nu(a)

Lu
(2.4)

where, Nu(a) is the number of times user u was in state a and Lu is the length of user u’s

history. The average hazard rates for the normalized time of event variable can then be computed

across users and artists:

λi(t) = P (TN
i = t/TN

i ≥ t) (2.5)

We discretize t into intervals (0, 0.1], (0.1, 0.2] and so on. The hypothesis presented by us in

section 2.4 can now be represented using the hazard rates.

1. Hypothesis 1 The exit hazard rate for an artist should be an increasing function of time.

This indicates that a user’s preferences for an artist decrease with increased exposure to

the artist.

2. Hypothesis 2 The entry hazard rate for an artist should be an increasing function of time.

This indicates that user preferences for the artist are reinstated after sufficient time gap.
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The sticky or inertial view of user choices, on the other hand, suggest that a user’s probability

of visiting a state would increase on having visited it. Contrary to the devaluation hypothesis,

the conditional probability of visiting a state again would increase as time spent in the state

increases. This implies that the exit hazard rate for an artist is a decreasing function of time for

sticky users. The entry hazard rate, would also be a decreasing function of time as a user would

be less likely to visit a state which they has not visited for long periods of time.

A common analysis methodology is to compare the hazard rate of interest in an analysis

with that generated from a control experiment. This is done to remove the effects of covariates

not being considered in the analysis. We define four baseline models to serve as controls. We

constructed listening sequences by simulating user histories using each of the baseline models

for every user. The user histories were simulated by sampling randomly from the temporal

preference vector (Pref) generated by each of the model. In order to make the baseline models

as close to the real data as possible, the parameters of the models were fitted to the actual user

histories.

1. Random (R) The user is assumed to sample states randomly from his average preference

vector (P u).

Prefu(t) = P u

2. 1st order Markov (M1) A user’s switching probability from one state to the other is

assumed to be controlled by a 1st order Markov model. The dynamics of the Markov

model are controlled by a static transition matrix (T u) which is learnt for each user u’s

history using maximum likelihood estimation. Prefu(t) = Prefu(t− 1) ∗ T u

3. Time weighted (TW) We use a recency based model for generating user histories. Prefu(t) =

αu ∗ Prefu(t− 1) + cu(t− 1), where, cu(t− 1) is 1 ∗ |A| choice vector, which is set to

1 at index i if Hu(t− 1) = si, and is 0 otherwise. The parameter αu is a —A—*1 vector

which was fit to the user u’s history using stochastic gradient descent. We introduced a

small exploratory component to this model to prevent extremely long lengths of contin-

uous listening of the same artist. Therefore, our modified preference vector is computed

as Pref ′u(t) = 0.95 ∗ Prefu(t) + 0.05 ∗ P u

4. Linearly increasing or decreasing (L) We used the temporal model of user preference

used by Koren [39]. Prefu(t) = P u + sign(t − Lu/2) ∗ (t − L/2)β
u
. The parameter
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(a) Expected hazard rate for a sticky and boredom-prone user (b) Expected hazard rates for the baseline models

(c) Expected ∆ Hazard Rates for sticky users (d) Expected ∆ Hazard Rates for boredom-prone users

Figure 2.1: Figure (a) and (b) depicts the expected hazard rates for sticky and boredom-prone
users and the baseline models. Both the entry and exit hazard rates should decrease with time for
sticky users and increase with time for uses susceptible to boredom. Figure (c) and (d) shows the
expected ∆ hazard rates computed against each baseline model for sticky and boredom-prone
users.

βu is a —A—*1 vector and was fitted to the user u’s history using stochastic gradient

descent.

The Log-Rank test can be used to test whether the survival distributions generated by the simu-

lated models are sufficiently different from that of the real data. The hypothesis test is defined

as:
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Ho: The real data and the simulated data have different survivor function

Ha: The real data and the simulated data have the same survivor function

The Log-Rank test on the real and the simulated survival functions rejects the null hypothesis

with a p-value < 10−6. The discrepancy between the real data and the baseline model predic-

tions can be quantified using a ∆ hazard rate obtained by subtracting the simulated hazard rates

from the hazard rates computed on real data.

λ∆(t) = − S′real(t)

Sreal(t)
− − S′(simulated)(t)

S(simulated)(t)
(2.6)

We generate four ∆ hazard rates for both the entry and exit time events for our analysis,

namely real vs. random (λA−Ri ) , real vs. Markov (λA−M1
i ), real vs. time weighted (λA−TWi )

and real vs. linear (λA−Li ), where i ∈ {‘entry′, ‘exit′}.
We display the entry and exit hazard rates expected for the event times obtained from the

‘sticky’ and ‘boredom-prone’ models and those expected from the baseline models in Figure

1. The entry and the exit hazard rates for a random, markovian and linear model should be

independent of time spent in the state. A TW model on the other hand, is essentially a sticky

model. Hence, the exit and entry hazard rates for TW model would decrease with time. The

objective of this study is to understand the form of the exit and entry hazard rates for the real

data. Figure 1 displays the expected ∆ hazard rates if the real data follows the sticky and the

boredom-prone model, respectively.

2.6 Results

In this section we examine the obtained ∆ exit and ∆ entry hazard rates in close detail.

2.6.1 ∆ Exit Hazard Rates

Figure 2 displays the survivor functions for the exit time for the real data and data generated by

each simulated model. It also depicts the obtained ∆ exit hazard rates. The changes in λA−Rexit ,

λA−M1
exit and λA−Lexit , directly represent changes in the λexit for the real data. Changes in λA−TWexit

would depict changes in the exit hazard rate for real data against a decreasing baseline.
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(a) Kaplan-Meier survival functions and 95% confidence interval

(b) Nelson-Aalen ∆ exit hazard functions

Figure 2.2: The figure illustrates the survival and the hazard functions computed for the exit time
variable. The negative ∆ exit rates for low values of t are indicative of sticky behavior, while the increase
in ∆ exit hazard rate indicate a devaluation in preference.

1. Real Vs.Random, Markov and Linear models: The λA−Rexit and λA−M1
exit are negative through-

out suggesting that the exit rate for the real data is lower than that expected for the base-

line models. This supports the sticky view of user preferences suggesting that a user has

a lower rate of exiting a state after having visited it. However, contrary to what is ex-

pected for the sticky model, the ∆ exit hazard rate increases with time after a point. We

expect the ∆ hazard rate to eventually flatten out, becoming uninformative. The survival

function for R, M1 and L models drops sharply indicating a lower probability for large

sequences than those observed in the real data. The L model has the sharpest drop in
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survival probability, such that we did not enough samples of exit times greater than 0.1.

2. Real vs. Time-Weighted model: λA−TWexit is negative for low values of t, suggesting larger

stickiness in users than generated by the TW model. However, the ∆ exit rate increases

thereafter, becoming positive after some time. Since, the exit hazard rate for the TW

model is expected to decrease with time, this suggests that the exit hazard rate for real

data increases more than the decrease observed in the TW model.

From these observations we can conclude that users have high stickiness towards the state on

entering the state. However, the stickiness for a state reduces with time and the dynamics driven

by boredom start dominating as time spent in the state increases. A user is thus likely to stick

to his previous state at a higher rate initially and a decreased rate as time in the state increases.

2.6.2 ∆ Entry Hazard Rates

Figure 3 displays the survivor functions computed for the entry time variable for real and simu-

lated data and the obtained ∆ entry hazard rates. Similar to the ∆ exit hazard rates, the changes

in λA−Rentry , λA−M1
entry and λA−Lentry functions would depict changes in the entry hazard rate for the

actual data. The TW model is expected to have a declining entry hazard rate, being a sticky

model. The changes in λA−TWentry should reflect changes in the entry hazard rate for the real data

against a decreasing baseline.

1. Real Vs.Random, Markov and Linear models: The λA−Rentry , λA−M1
entry and λA−Lentry functions

are positive initially suggesting that the users have a higher rate of entry than that expected

from the baseline models. This again can be attributed to the sticky nature of user choices,

such that users have a high rate of returning to the artists they had listened to recently. The

∆ hazard rates decrease for intermediate values of t suggesting a prominent devaluation

in preferences. The ∆ hazard rates eventually increase for larger values of t. However,

they do not cross the 0-line again suggesting that a user always has a lower rate of return

than that generated by the baseline models. This can be attributed to phasing out of an

artist who is not being actively sampled.

2. Real vs. Time-Weighted model: The λA−TWentry function is slightly negative at the begin-

ning suggesting that the actual entry hazard rate is lower than that of a TW model. Our
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(a) Kaplan-Meier survival functions and 95% confidence interval

b) Nelson-Aalen ∆ exit hazard functions

Figure 2.3: This figure illustrates the survival and the hazard functions computed for the entry time
variable. The ∆ hazard rates are positive for all the model for low values of t which is indicative of
sticky behavior. A decline in the ∆ entry hazard rates corresponding to the R, M1 and L models for
intermediate values of t indicate that the preferences were temporally devalued. The increase in the ∆
entry hazard rates corresponding to all the models for larger values of t suggest that preferences were
reinstated

TW model is seen to pull back users which have just left an artist at a higher rate than ob-

served in real data. The hazard rate increases thereafter indicating the actual data seems

to have a larger rate of return than that of the TW model.

The analysis on the ∆ entry hazard rates reveals aspects of sticky behavior in users which

produces quick switches in and out of the artist. Also, we find indicators of devalued preference

for intermediate values of time spent out of the state. Preferences are reinstated after longer

periods of time spent away from the artist, however, the rate of return eventually flattens out



24

becoming uninformative.

(a) Kaplan-Meier survival functions (real data) (b) Kaplan-Meier survival functions (M1-Model)

(c) Nelson-Aalen ∆ exit hazard functions (real data) (d) Nelson-Aalen ∆ exit hazard functions (M1-Model)

Figure 2.4: This figure illustrates the survival and the hazard functions computed for the entry time
variable conditioned on the PRT. The conditioned survival function for the simulated data are coincident
but vary significantly for the real data. The positive values of the ∆ hazard function λLP−HP

entry for low
values of t indicate an increased stickiness when conditioned on lower values of PRT. The negative
values of the ∆ hazard function for larger values of t are indicative of increased boredom effects when
conditioned on lower values of PRT.

2.6.3 Previous Return Time

In our previous analyses, we found evidence suggesting that users quickly switch in and out

of an artist in a short span of time. Such a characteristic of user temporal choices suggest that

a user’s level of exposure to an artist is not completely defined by the ‘in time’. A user who

has just switched out of the artist and has switched back in almost immediately after, somewhat

continues to be in state a. Therefore, we suspect that the previous return time (PRT) TN,Pentry also

indicates how much a user has been exposed to the artist recently. A low PRT indicates higher

exposure to the artist than a larger PRT. A corollary to hypothesis 1 in terms of the TN,Pentry for

the artist follows:
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Corollary 1’ The probability that a user listens to an artist again will depend on his PRT to

the artist. We suspect that of if the user has returned to the artist quite quickly previously, he

will have a lower rate of returning quickly to the artist in the future.

In order to test this hypothesis we generate two conditional entry hazard rates.

1. λLPentry Entry Hazard Rate given a low PRT, TN,Pentry < 1

2. λHPentry Entry Hazard Rate given a high PRT, 1 < TN,Pentry < 1.5

We compute the ∆ hazard rate for the two conditional entry hazard rates.

λLP-HP
entry = λLPentry − λHPentry (2.7)

λLP-HP
entry function is computed for the real data and data simulated using a Markov model. The

simulated data serves as a comparison. Figure 4 displays the obtained λLP-HP
entry functions and the

survival functions for λLP
entry and λLP

entry for the real data and simulated data. The log rank test is

rejected with a p-value of less than 10−4 on the conditional survival functions of the simulated

and the real data. However λLP-HP
entry varies by very small amounts. On the contrary, λLP-HP

entry

on the real data varies in an interesting way. We see that λLP-HP
entry is highly positive initially,

which indicates increased stickiness when PRT is low. However, λLP-HP
entry decreases and becomes

negative eventually which indicates a lower rate of return for larger values of t when PRT is low

than when PRT is high. Hence, once a user is out of the state he has a lower rate of returning

back to the state when previous return time is low than rate of return for a user-artist pair for

whom previous return time was high.

2.7 Discussion

In this work we have outlined a methodology for analyzing music listening histories of Last.fm

users for studying the phenomenon of spontaneous devaluation in user preferences or bore-

dom. We constructed hypothesis about boredom-prone behavior in Last.fm users and tested

them through experiments on real and simulated data. Exploratory analysis of dynamic hazard

rates computed on both the real and simulated data suggest that real data has strong evidence

of spontaneous devaluation of preferences, as hypothesized. We also found strong evidence

suggesting stickiness or reinforcement nature of past choices in users. Crucially, stickiness and
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boredom effects on user choices were found to be spaced out in time suggesting that methods

can be designed to systematically appease the two driving forces effecting user temporal needs.

The results obtained from this analysis motivate the design of sophisticated dynamic models of

user choices impacting recommendation methods, product design and advertising.

Our findings suggest that methods which only focus on maximizing similarity, or focus on

maximizing both similarity and diversity at all times, accommodate only some aspects of user

behavior, leaving useful temporal information on the table. Sophisticated temporal models of

individual preferences, well grounded in cognitive and psychological analysis of the dynamics

of their choices, are required for the design of automated methods that can predict user temporal

needs well.

Being able to say when a user is likely to be bored should yield considerably more re-

sponsive and accurate product recommendations. However, the gap between this exploratory

analysis and usable applications, while bridgeable, is non-trivial. We suspect heterogeneities

to exist among users and their behavior towards different items, which this analysis has not

considered. This is principally because extricating good estimates of dynamic hazard rates for

different user-item pairs requires large amounts of historical data, while we were limited in our

analysis to the Last.fm publicly release dataset. Unavailability of datasets providing complete

temporal histories of users makes procurement of data a challenge. While gaining access to

more data would be the best solution, clustering methods can reduce the data scarcity problem

in the interim. Additionally, for simplicity, we have assumed the user behavior for an item is

independent of the other items experienced by him. However, one can expect similar/dissimilar

items to increase/decrease one’s level of satiation with an item. Extending our approach into

a full-fledged recommendation system would require us to address user and item level hetero-

geneities and similarities between items in a single framework. Potential solutions can benefit

from hierarchical approaches to cluster items using multiple features allowing estimation of the

impact of history on the hazard rates for similar items.

Our work constitutes the first study on dynamics of preferences of online music listeners,

and demonstrates that there is significant value in trying to study the temporal browsing history

of users along the lines we have suggested. We hope our work will motivate further studies on

this topic in the future. Also, larger datasets would be made accessible for studying aspects of

user choices, allowing advancement in the design of predictive agents of temporal user choices.



Chapter 3

Modeling the Dynamics of Boredom in
User Activity Streams

3.1 Introduction

“Boring is the right thought at the wrong time” - Jack Gardner, Words Are

Not Things

Recommendation systems are portals to the world of information, as they facilitate and

control users interactions with content. The success of these recommendation systems directly

depends on the quality of user engagement. The existing internet platforms (such as Last.fm,

Netflix.com) allow users to engage with two types of items in a session: new and familiar. For

instance, in the Last.fm music dataset1 , on average 23% of a user’s interactions are with the

new items and the rest are with the familiar items. However, most of the existing models [30,

44, 45, 46, 47, 48, 49, 50, 51] deal only with the recommendation of new items to the user, while

understanding user consumption choices for the familiar items remains mostly unexplored.

Changing preferences cause the user interest in familiar items to be sensitive to time. Ex-

isting temporal models [52, 53, 54, 55, 56, 39] have largely focused on predicting future rating

value for a user-item pair using time dynamics. A popular approach is to use time decaying

functions to characterize the rating behavior of the user over time [55]. Others estimate the
1 See experiments section for more details
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temporal interest of a user for a particular item by combining the user, item and time (latent)

factors [30, 45]. While these methods are time-sensitive, understanding the temporal dynamics

of user behavior is not their main focus. More specifically, they do not answer the question,

“When the user would visit, revisit or engage with an item?”, rather they answer “What is the

rating of the user-item pair in future?”. As a result, such methods do not adequately adapt to the

temporal patterns in users engagement with items.

In this work, we model the time-gap between successive consumption activities of a user in

the activity stream by specifically focusing on the psychological state of boredom. Users often

get bored with a particular item they were engaging with before and move on to a different

item of interest. This is similar to an user listening to a single song multiple times or watching

multiple movies from a single genre and then switching to a different album or movie genre

after certain period of engagement. Mostly they return to the original item of interest after a

gap period. Such temporal patterns in item consumption significantly impact recommendation

design for these systems.

The gap-behavior in activity streams is governed by two important content consumption

characteristics: (1) user is definitely not interested in an item she is bored of (despite its popu-

larity and her own past interest) and (2) user may revisit the item, if her interest is restored. This

is an important observation in consumer research in order to understand the changing consumer

preferences [24, 57]. We extend this idea further using behavioral psychology to represent these

characteristics as two important states of user behavior [58]: sensitization and boredom. In the

sensitization state the user is highly engaged with the item, while in the boredom state the user

is disinterested. The activity gap characterizes these two states in a most natural way. In the

sensitized state the activity gaps are quite small as the user actively revisits the item and in the

boredom state the gap is relatively large. The duration in each state and gap lengths may vary

depending on the user and item characteristics.

Surprisingly, most of the related work assume that the popular and well rated items by the

user are good choices for recommendation. These models completely ignore the fact that the

user may get bored of these recommendations, despite her past interactions. We perform several

experiments in this paper to confirm that sensitization and boredom states exist in user activity

streams. Moreover, we show that such behavioral models can predict the revisit time more

accurately than existing state-of-the-art techniques.
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3.1.1 Contributions and Organization

We explicitly model user latent psychological states, sensitization and boredom, using a Hidden

Semi-Markov Model (HSMM) and use the model to predict the the gap between user activities.

The model works in an online manner which is well-suited for activity streams. Furthermore,

our model is flexible enough to compute a preference score for items as a function of time.

We use this flexibility to propose a STiC recommender that ranks familiar items based on the

dynamic preference score. Our model is found to be better suited for the recommending task

than several state-of-the-art baselines [59, 60, 55, 53, 61].

There are three important results shown in this work. Existing time-sensitive recommenda-

tion models are good at predicting ratings for the future, but do not perform well in predicting

the revisit time of the user. We demonstrate through our model and experiments that activity

streams exhibit two important psychological states of user behavior: sensitization and boredom.

Moreover, to the best of our knowledge, this is the first work that talks about modeling gap

between user activities using latent psychological states to understand the dynamics of user’s

consumption behavior.

The paper is organized as follows. In the remainder of this section we discuss the related

work. In section 3.2, we discuss the temporal content consumption behavior using the semi-

markov model. We describe the the dataset and the details of the model estimation process in

section 3.3. We also validate our model by comparing our approach to several variants in this

section. Followed in section 3.4 we evaluate our approach on a recommendation task and com-

pare it against popular baselines, such as SVD++, TimeSVD++, Tensor-ALS, and Restricted

Boltzmann Machine (RBM). We present the conclusion in section 3.5.

3.1.2 Related Work

The problem of recommending interesting items to users based on their history of past ratings

and user profile has been well-studied for a few decades now. Some of these approaches take

advantage of historical ratings and are referred to as “Collaborative filtering” methods [46, 47,

48, 49]. While the other that make use of the user-profile attributes are called “Content-based

filtering” techniques [62, 51]. There are several approaches that combine these techniques and

are referred to as “Hybrid” [50, 51]. There are many survey articles [63, 64] that discuss a
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variety of these approaches. The recommendation problem can be mapped to a standard clas-

sification setting, hence latent factor models [30, 45] and dimensionality reduction techniques

are also applied. As these problems can be treated as matrix completion problems, matrix fac-

torization [30] based models are also quite widely used.

There are several recent related works that discuss the importance of understanding the

changing user interests over time [52, 53, 54, 55, 56, 39]. Most of these penalize the objective

or use a corrective scheme for accommodating the changing preferences, rather than explicitly

modeling them. Many temporal models for recommendation were designed to detect drifts in

users interests and altered their algorithms accordingly [54, 53]. Other methods, have used

seasonality and trends [65] as additional context for segmenting the user ratings. There are

also tensor factorization [61] approaches, that extend the matrix factorization [66] techniques to

include the temporal component.

There has also been some research on implicit feedback data sets [67, 65]. However, most

of these works do not explicitly model the user behavioral states which is essential, as shown in

this work, to estimate the user revisit time for an item. Understanding future preferences is not

specific to recommender systems, and have received much interest in several other fields, such

as consumer research. The relationship between repetition of a stimulus (such as food, drinks,

commodity items etc.) and its attractiveness has been modeled using an inverted-U shaped

function. This relationship was used by McAlister to propose the dynamics attribute satiation

model of consumer choice applied to soft drink consumption behavior [24]. More general

consumer choice models were later introduced which accommodated either a short term loyalty

for the last purchased brand or a devaluation of the last purchased brand [68, 57, 69]. There are

also some recent progress on dynamic content consumption analysis [70]. However, most of

these approaches do not model the explicit user behavioral states in estimating the time-sensitive

future preferences. Furthermore, several of these consumer research approaches are based on

questionnaires and surveys.

3.2 Temporal Content Consumption

We identify two types of temporal dependencies in the consumption of items:

1. Reinforcing response: Systematic exploitation of our recent choices aids our future de-

cision making. As a result, we find ourselves sticking to items such as listening to the



31

same music bands again and again, watching the same kinds of movies and frequenting

the same types of restaurant etc. Consumer research scientists have identified this effect

as inertia or a short term loyalty for the last purchased brand [25].

2. Devaluing response: Psychologists have associated repetitive exposures to stimuli with

satiation and repulsion [7]. Stimulus satiation often produce shifts in interests and other

variety and novelty seeking behavior [25]. Satiation is identified as a temporary phe-

nomenon which diminishes with time due to forgetting [7].

The reinforcing and devaluing response is closely associated to a user’s content consumption

behavior in activity streams [71]. In this work, we model these two response characteristics with

psychological preference states of sensitization and boredom. An item in the sensitization state

is consumed rapidly with small gaps between its successive consumptions. A longer time gap

characterizes temporary boredom with the item followed by forgetting. In other words, these

states characterize an overall likeness for each item. An item with high likeness score takes

longer to devalue and recur earlier than an item with relatively low likeness score.

We explicitly model these psychological states in this work. We also characterize user’s

preference for an item as a function of these psychological states using hazard functions which

we will discuss a bit later.

3.2.1 A Semi-Markov Model

The gaps between successive consumptions of an item help us characterize the psychological

preference states of the users. We propose a latent state dynamic model for item consumption to

infer user preference states. We specifically use a hidden semi-Markov model (HSMM) because

of it’s ability to model both the consumption gaps (emission distribution) and the time spend by

an item in a particular state (state duration distribution).

Let us consider an item i consumed by the user u at times tui1 , tui2 . . . tuin , where tuin is

the last consumption event for the item in the observation period. The gap observations gui1 ,

gui2 . . . guin denote the time gap between the consumption events, such that guix = tuix+1− tuix , for

x = 1. . . (n− 1) and guin = T − tuin , where T is time of the end of the observation period. The

last gap length observation is incomplete as we haven’t observed the next return for that item

yet. Such observations whose values are only known to be larger than a certain value are said to

be right censored and are handled using a special status variable (δuit ). The status variable is set



32

to 0 for censored observations and and is set to 1 otherwise. It is important to handle censored

observations while modeling duration data to prevent a bias towards smaller durations [72]. The

{g, δ}ui1...n constitute the observable output from the model. This is shown in Figure 3.1. For

simplicity, we drop the superscript ui and it is assumed, unless otherwise stated, that variables

are always defined with respect to a particular user and item.

Figure 3.1: Using observed gap sequence and censoring variable for training a latent state model for
item consumption.

We include two latent psychological states in the model to capture the states of Sensitization

(S) and Boredom (B). Each state is further associated with an emission density distribution bm
(and a cumulative distribution Bm) for the next gap length g for m ∈ {S,B}. More formally,

bm(g) = P (G = g|m), where P (.) is a state-conditioned distribution on gap-length random

variable (G). The likelihood of an observed output {g, δ} for a state m can be computed as:

P ({g, δ}|m) = (1 − δ) ∗ bm(g) + δ ∗ (1 − Bm(g)). Here, the likelihood for a data which is

not censored is the probability density function bm(g), while the likelihood of a censored data

is equal to the probability of P (G > g) = (1−Bm(g)).

The semi-markov model allows us to explicitly model state durations, which is the time

an item spends in a particular state before transitioning to another state. We denote the du-

ration density distribution by pm(D = d), where D is the duration random variable. Fig-

ure 3.2 displays the discussed parameters of our model. We model log(G) (rather than G)
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to include non-linearity in the perception of time [73]. A parametric form is assumed for

the emission and the state duration distributions: bm(log(g)) = Log-logistic(µm, σm)) and

pm(d) = Gamma(αm, βm). Our choice of parametric form allows us to capture time depen-

dence characteristics of our data discussed further in section 3.3.3. The complete set of model

parameters include λ = (A, π, bm(g), pm(d)), where π denotes the initial state probability dis-

tribution over m latent states and A denotes the transition probability matrix between those

states. For our model with two latent states A(m,n) = 1 for m 6= n and 0 otherwise.

Figure 3.2: The hidden semi-markov model for gap length sequence.

3.2.2 Prediction

Given the model parameters, and the observed gap sequence, we an use the HSMM model

to track the past preference states of the user and make predictions about her future behavior.

A good reference for the estimation and inference methodologies for HSMM can be found

here [74, 75]. In this subsection, we briefly describe the prediction procedures relevant for our

discussion.

At any point let t1 . . . tn denote the observed consumption events for an item, g1...(n−1)

denote the corresponding gap length observations. The model parameters (λ) are estimated via

maximum likelihood estimation using the forward-backward algorithm [74]. Using inference,

we can compute a distribution for the latent states variables s1...(n−1), corresponding to the gap

observations, using the entire observed gap sequence, i.e. P (si|g1...(n−1), λ) for i = 1 . . . (n−
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1) using the forward-backward algorithm. A one-step lookahead using the forward algorithm

allows us to also predict the distribution for the next latent state sn of the item. For brevity, we

denote this distribution as sn such that sn(m) = P (sn = m|g1...(n−1), λ). Since we have only

two states, sn(S) = 1− sn(B).

We compute the expected gap till the next consumption of the item (E(Gn|g1...(n−1), λ))

using the state conditioned emission distributions as follows. The expectation of the state emis-

sion distribution provides us the expected gap length conditioned on the item state and model

parameters (E(G|m,λ)). We then marginalize out the future state variable using the next state

distribution (sn) to compute the expectation for the next gap length;

E(Gn|g1...(n−1), λ) = sn(S) ∗ E(G|S, λ) + sn(B) ∗ E(G|B, λ) . (3.1)

We further obtain a dynamic measure of item consumption rate using techniques from sur-

vival analysis. Survival analysis [76, 77] is a field of statistics which deals with duration data,

such as the time of occurrence of an event, referred to as death. A hazard function is used to

compute a temporal measurement of the event rate conditioned on survival until or beyond a

certain time computed as follows:

h(t) = P (T = t|T >= t) =
f(t)

1− F (t)
, (3.2)

where, f and F are the probability density and cumulative distributions. We use the hazard func-

tion for the gap length variable to capture the instantaneous rate of an item’s consumption given

the time since it’s last consumption (t−tn); i.e. P (Gn = (t−tn)|Gn >= (t−tn)|g1...(n−1), λ).

The hazard function can be directly associated with a user’s preference for the item, which pro-

vides us a unique mechanism for quantifying user’s dynamic preference (DP).

However, here again, we have direct access to the state condition gap distribution, rather

than the gap distribution. Hence, the state conditioned dynamic preference score for some time

t > tn is computed as,

DP (t|m,λ) =
bm(t− tn)

1−Bm(t− tn)
, (3.3)

Furthermore, marginalizing over the predicted state distribution for the future state (sn) pro-

vides us the dynamic preference score for time t given model parameters and the observed gap

sequence as follows:

DP (t|g1...(n−1), λ) =

sn(S) ∗ bS(t− tn) + sn(B) ∗ bB(t− tn)

sn(S) ∗ (1−BS(t− tn)) + sn(B) ∗ (1−BB(t− tn))
.

(3.4)



35

3.3 Experiment Setup

We apply our HSMM model of item consumption to music listening data. The domain of music

is particularly well suited for our analysis, with repetition naturally occurring even at the song

level. For other types of domains (e.g. movies, books, clothes, holiday destinations), repetitive

behavior emerges at a higher level of abstraction such as by defining similarity clusters on the

attributes of the items (genre, trend, categories etc.).

3.3.1 Data

We use a public dataset from the popular music service Last.fm [43] that contains the complete

music listening histories of around 1000 users as recorded until May, 2009. This is also the only

publically available dataset, to our knowledge, that provides the comprehensive listing of users

choices during a period of time. The dataset contains the song name, the artist name and the

timestamp for the different songs the user listened to during this period.

We construct our dataset using a subset of the data comprising the first four months of

listening activities for each user. Of this dataset, the first 3 months is used for training and the

fourth month is used for testing purposes. During this period a user is seen to listen to multiple

songs over time. Her listening activity is further broken down into sessions where a session is

defined as a continuous stream of listening activity interrupted by only small pauses. Based on

visual examination and with the intention of accommodating most of the listening activity of a

day in one session, we use 6 hours as the threshold on the gap between two songs for terminating

the session. We use these sessions as the unit of time throughout our discussion. Hence, an item

consumption at time t for a user corresponds to her listening to the corresponding song in the

t-th session.

For each user a set of familiar (Iu) is identified and includes those which have been con-

sumed at least three times during the training period. The training and test data is filtered to

remove all users which have less than 10 familiar items. Table 3.1 summarizes the basic statis-

tics for the final training and testing dataset used for our experiments.

3.3.2 Clustering

In Figure 3.3, we show the cumulative distribution of the number of repeat consumptions of an

item in the training period. More than 90% of user-items have fewer than 10 repetitions making
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Training Data
No of users 687
Mean no of familiar
items per user 224

Mean number of ses-
sions per user 68

Test Data No of users 593
Mean number of ses-
sions per user 25

Mean number of
familiar items con-
sumed per session

14

Table 3.1: Last.fm dataset statistics (modeling boredom experiments).

it difficult to obtain a statistical estimate of a separate HSMM model for each user-item pair.

Instead, we cluster the user-item pairs and train a separate HSMM model for each cluster. The

average rate of consumption or likeness score f , as defined below, is used for clustering.

f =
nt

tnt − t1 + ε
, (3.5)

where, nt is the total number of item consumptions during the training period, t1 and tnt is

the time of the first and last item consumption during the training period. The constant ε is the

minimum time period over which the average consumption rate is computed.

Figure 3.3: Cumulative distribution of the number of times users repeated their items.
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We consider two approaches for clustering user-item pairs based on the likeness score -

equal interval binning and k-means clustering. We further consider different number of clusters

for partitioning the data. A large number of clusters result in noisy and sparse clusters. On

the other hand, too few clusters overgeneralize the model. We set aside a validation dataset by

removing a 30% random sample from the training data, and use this to evaluate the clustering

schemes and the number of clusters. The models are trained on the remaining training data.

The performance of a clustering scheme is measured using Root Mean Squared Error (RMSE)

between the predicted and observed log-transformed gap length sequences in the validation

dataset. The k-means clustering algorithm with 25 clusters is found to perform the best. Our

analysis going forward is based on these user-item clusters, and the corresponding estimates of

model parameters λc.

3.3.3 Model Parameters

We now analyze the model parameters trained on our dataset and discuss their relationships to

the latent psychological states. We also show the existence of sensitization and boredom states

through our analysis.

Emission probability distributions Figures 3.4 (a) and (b) show the emission probability

distributions bm(log(g)) for the two latent states S and B, respectively. The probability distri-

butions are plotted corresponding to each clusters. The log-gap lengths are marked along the

x-axis while the y-axis indicates the index for the clusters which are organized in increasing

order of likeness scores. The value of the probability distributions (log transformed to highlight

the differences between the clusters) for a particular clusters and gap length is indicated by a

color. First we note that the for the same cluster, the emission distribution is spread across

longer gap lengths for state B than state S. This justifies the nomenclature for the states as we

expected items in the sensitization states to be consumed faster than items in the boredom state.

Secondly, we find that items which have a higher likeness score have shorter return cycles than

items with lower likeness score.

The hazard functions for the two states show significant differences (Figure 3.4 (c) and (d)).

As before, the hazard functions are plotted for log-gap lengths along the x-axis for each cluster,

and the different clusters are organized along the y-axis in increasing order of likeness score. For

the state S, items have declining hazard function which indicates that the event rate decreases

with log-time. On the other hand, the hazard function for the state B gradually increases and



38

then declines. Such a uni-modal shape of the hazard function indicates a peak rate of occurrence

at a particular log-time and fits well with our boredom hypothesis. This is the main reason for

our choice of log-logistic distribution that fits well both a declining and a uni-modal hazard

function.

Figure 3.4: Emission probability and hazard function distributions. The cluster indxes are labeled in
increasing order of likeness score. (To be viewed in color)

State duration distributions Figure 3.5 shows the state duration distributions and the haz-

ard functions for the state duration for the latent states S and B. The state duration length is

marked on the x-axis, while the y-axis indicates the clusters. The color is used to denote the

magnitude of the log-transformed probability distribution and the hazard functions. First, we
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find that clusters with lower likeness scores have a shorter dwell time in the sensitization state

and longer dwell time in the boredom state than clusters with higher likeness scores. Secondly,

the hazard has an increasing shape for both the states which indicates that the rate of moving out

of the state increases with time spent in the state. This indicates that items in the sensitization

state eventually devalue while those in the boredom state eventually return to the sensitization

states when user preferences recover. The gamma distribution allows an increasing/declining

hazard function and provides an adequate fit for the temporal dynamics of the state transitions.

Figure 3.5: State duration probability and hazard function distributions. The cluster indxes are labeled
in increasing order of likeness score. (To be viewed in color)
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3.3.4 Relaxing Modeling Assumptions

We now consider several relaxations of our model (HSMM) for item consumption and evaluate

them at predicting the gap sequences for the items in the dataset. The following relaxations are

considered:

1. HMM We use a Hidden Markov Model (HMM) to model the timing of item consumption.

As before, we consider two latent states S and B and model the emission distributions for

each state using a Log-logistic distribution on the log-transformed gap length. The HMM

model assumes that the state durations are geometrically distributed and are independent

of the time spent in the state. A transition matrix captures the probability of transitioning

between states. The complete set of model parameters include λ = (A, π, bm(g)).

2. Loglogistic We do not model the temporal order in the gap sequence. Instead gap lengths

between item consumptions are assumed to follow a Log-logistic distribution. Such a

model picks up the predominant recency based dynamics in the data producing a declining

hazard function for the consumption event. The complete set of model parameters include

λ = (µ, σ).

3. Exponential Consumption events are modeled to occur at a constant rate using an expo-

nential distribution. The model parameters include λ = (µ).

All models are learnt using the training data for the same frequency-based user-item clus-

ters as described earlier, and evaluated on the test data. The performance is measured using

the prediction error on the log-transformed gap length sequences in the test data using RMSE.

The results are summarized in Table 3.2. Our HSMM model performs significantly better (p-

value¡10−5) than all the other models which illustrates the value achieved by the different com-

ponents of our model.

Model RMSE on the
Test Data

HSMM 0.9791
HMM 1.0691
Loglogistic 1.1943
Exponential 1.1860

Table 3.2: RMSE scores on the log-transformed gap length sequence.
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3.4 STiC Recommender

A temporal recommendation algorithm based on our item consumption model is proposed and

evaluated.

3.4.1 Design

Our HSMM model, as mentioned earlier, predicts the time when an item would be consumed

next based on the psychological state of the user. Further state and time based preference score

for the item can be computed using (3.4). This provides us valuable information for making

time sensitive recommendations to the users. We now propose the (STiC) recommender which

uses State and Time Conditioned preference scores for dynamically ranking items. The scores

are computed in an online manner for the next user session using her past consumption history

and the cluster level model parameters learnt from the training period (λc).

3.4.2 Evaluation

There are certain challenges in evaluating a time-sensitive recommendation based on the dy-

namic preferences of users. Firstly, a direct assessment of an user’s temporal preference is hard

to obtain. For example, even when abundant explicit feedback in terms of ratings for items

are available, a user rarely rates the same item repeatedly nor does the rating correspond to the

consumption preference at that time (as the user may rate the item after arbitrary long time). As

a result, we base our model evaluation on actual consumption choices resulting from an activity

stream, as it reflects the real-time interests of a user.

We compare our model against various popular static and temporal recommendation meth-

ods. Both the training and the test data is transformed into a per user choice matrix (Cu) such

that Cu(i, t) = 1, if the item i is consumed during the session t, 0 for all the items that are not

consumed during that session.

Metrics:

The standard RMSE metric meant for explicit rating data is not applicable to our setup. We

consider the following metrics, well suited to implicit datasets [65, 67, 78], for evaluating our

model and the comparison baselines. The metrics have been modified to make the evaluation
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sensitive to time.

1. T-Precision, T-Recall and T-F1 measures Improvements in RMSE scores provide little

information on the impact on user experience. Furthermore, since users are generally

only recommended a list of top K items, more recently evaluation based on precision,

recall and F1 have become popular [79]. We compare the top-10 recommendation list

generated by the model for a user sessions against the actual items consumed by the user

in the sessions and compute the precision, recall and F1. These scores are then averaged

across all user sessions in the test period.

2. T-AUC The AUC scores measure the likelihood of the recommender to rank preferred

items over the not-preferred items. We compute the average AUC score across user ses-

sions in the test period.

3. T-Rank The rank metric was recently proposed to evaluate recommenders in the presence

of implicit feedback [67]. The metric computes the expected percentile rank of an item

selected during the test period in the recommender’s ranking list. For a temporal setting,

session specific rank scores are computed and averaged across all users and session in the

test period:

T-Rank =

∑
u,i,tC

u(i, t) ∗ rankui(t)∑
u,i,tC

u(i, t)
, (3.6)

where rankui(t) denotes the percentile rank of item i in the ranked list of items generated

for the user u for the session t.

It should be noted that for a recommender, higher values of T-Precision, T-Recall, T-F1, and

T-AUC scores and low values of T-Rank scores are preferred.

Baselines:

We compare the STiC recommender against several state-of-the-art static and temporal rec-

ommendation approaches. Some of the approaches have been modified to work with implicit

activity data. We further use the validation dataset to obtain the optimal parameters for the

baselines.

1. Static The model computes a preference score vector by computing the average number

of time each item was consumed per user session during the training period. By definition
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this model is time-insensitive.

2. SVD++ Matrix factorization based approaches such as Singular Value Decomposition

(SVD) are known to perform well when an explicit user-item ratings matrix is known

and prediction accuracy is evaluated using RMSE on the user ratings [80]. The SVD++

model is shown to perform better at top-K recommendations than basic SVD and is used

for comparison. The implicit data is converted into an explicit rating using the comple-

mentary cumulative distribution of a user’s item consumptions [65]. Items in the top

80-100% of the distribution are given a rating of 5, those in the 60-80% are given a rating

of 4 and so on.

3. Restricted Boltzmann machines (RBM) Another time-insensitive baseline includes RBM’s,

a two-layer undirected graphical models used for collaborative filtering process [60]. In

this approach, a conditional multinomial is used to model the columns of the observed

rating matrix and a conditional Bernoulli distribution is used for hidden user features.

The rating matrix used was same as the SVD++ baseline.

4. Time-Weighted Previous research [55] have found that incorporating time by time weight-

ing user ratings (usually using an exponential decay) such that recent ratings are weighted

more than old ratings leads to performance improvements. Hence, we compare our model

against a time-weighted recommender that computes a temporal preference score vector

over the items using an exponential moving average: P u(t) = λu ∗ P u(t − 1) + (1 −
λu) ∗Cu(t− 1); P (1) = C(1) . Here λu is the decay weight vector which is learnt from

the training dataset using stochastic gradient descent.

5. TSVD++ The TSVD++ model extends matrix factorization models to incorporates tem-

poral drifts in user interests [53]. Changes in preference factors with time are captured

using a linear function. The TSVD++ model is trained using the user choice matrices.

6. Tensor Factorization (Tensor) Tensor factorization allows us to further generalize ma-

trix factorization to include time. The binary rating (or activity) matrix along with the

time dimension is considered as a three dimensional tensor. A low rank factorization is

performed on the tensor by minimizing the total squared error on the observed ratings.

Alternating least squares is used to approximate the user, item and time factors. The fac-

tors are then combined to reconstruct the complete rating matrix. The implementation
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details are described in [61].

Figure 3.6: STiC model predictions compared against that of time-weighted model. The top part of the
figure shows the STiC model’s state predictions for the item. The bottom part displays how the same
item is scored by the two models. The item is scored high by the time-weighted model even after the
user state has changed (the item has become boring). Instead, the STiC model gives a low score to the
item at those instances.

3.4.3 Results

The evaluation results are summarized in Table 3.3. Incorporating time is generally found to

improve the performance over non-temporal counterparts [30, 53, 61], as seen from the better

performance of temporal models with latent factors, such as TSVD++ and Tensor over SVD++

and RBM. Similarly the time-weighted (non-latent temporal) model, performs better compared
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to its static counterpart. Our approach STiC outperforms all the baselines, including the latent

factor temporal models, as it explicitly models the user behavioral states.

While all of our baseline latent factor models perform well in terms of low RMSE scores

(shown in brackets) on the training choice matrix (RBM (0.788227), SVD++ (1.28967), TSVD++

(0.198687), Tensor(0.176084)), they did not perform well in the temporal choice prediction

task. Instead, the static and time-weighted models which are trained per user fair much better.

Such findings can be explained on two grounds. Firstly, the latent factor model are optimized

to minimize the squared error of the predicted to the observed values rather than their ability to

rank items based on users preferences. Secondly, they are primarily intended to identify simi-

larities between users and items to discover new items for them. Instead, for our task, we are

more interested in predicting the temporal characteristics of user choices for a restricted set of

familiar items. This further demonstrates the importance of using gap measurements in pre-

dicting the next expected visit of the user to a item. Our STiC model is a hybrid approach that

combines the individual likeness scores with a cluster based model for preference dynamics,

and is superior to the rest of the models.

Model T-Precision T-Recall T-F1 T-AUC T-Rank
Static 0.108 0.1229 0.115 0.5986 0.3827
Time-Weighted 0.133 0.1842 0.1545 0.6542 0.3682
SVD++ 0.072 0.1312 0.093 0.5175 0.4766
RBM 0.0862 0.1298 0.1036 0.5436 0.4276
TSVD++ 0.0772 0.1001 0.0872 0.571 0.4212
Tensor 0.1031 0.1195 0.1107 0.545 0.3982
STiC 0.1641 0.2148 0.1861 0.692 0.3254

Table 3.3: Comparing the STiC model with popular static and temporal recommendation models
on a variety of temporal evaluation metrics. The STiC model is found superior to all baselines
on all evaluation metrics.

We investigate the differences between our STiC Model and the popular time-weighted

model (our best performing baseline) in further detail. Our other baselines (which perform

significantly worse) are not further considered due to space limitations. A major difference be-

tween the time-weighted and the STiC models stems from the fact that the time-weighted model

assumes user preferences to be predominantly recency based, while the STiC model captures

different user states of sensitization and boredom and allows for both recency and diversity

driven behaviors based on the user state. As we discussed in Section 1, this impacts quality of
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user experience in two important ways: (1) not recommending the items that are boring or user

has lost interest and (2) recommending items where the user has restored recent interest. We

illustrate below the importance of these two factors through more detailed experiments.

(A) Not recommending items which are boring: We examine the one-step lookahead state

predictions made by the STiC model (sn) for an item and corresponding observed gap lengths

(Figure 3.6) (a)). For the same item Figure 3.6 (b) displays the selection likelihood scores,

scaled to the same range, as generated by both the models. We find that the time-weighted

model continues to score the item based on recency even when the user’s preference state for

the item, as predicted by the STiC model, has changed. Hence, items which a user is bored of,

are scored high by the time-weighted model but not by the STiC model.

In order to generalize our findings across users we allot a time-sensitive boredom score to

items;

Boredom-Score(t) = Time till next consumption at time ‘t’. (3.7)

We borrow the concept of future lifetime [77] from survival analysis to compute the boredom

score using our STiC model. The future lifetime is defined for an event as the remaining time

till death given survival until a specified time. Given the cumulative distribution (F ) over the

time of the occurrence of the event and some maximum threshold for time (ts), the expected

future lifetime at t0 can be computed as:

E(T |T > t0) =
1

1− F (t0)

ts∑
t=t0

1− F (t) (3.8)

For our scenario, the boredom score directly maps to the expected future lifetime for item

consumptions. We denote the future gap as random variable Gf and the next future gap as

random variable Gfn. At some time ‘t’, the gap since the last consumption of the item is t− tn,

and the expected next future gap is defined as E(Gfn|Gn > (t − tn), g1...(n−1), λ). We first

compute the state conditioned expected future gap using the state emission distributions:

E(Gf |G > (t− tn),m, λ) =
1

1−Bm(t− tn)

ts∑
s=(t−tn)

1−Bm(s) . (3.9)

We then marginalizing over the the future state predictions (sn) to compute the boredom
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score:
Boredom-Score(t) =E(Gfn|Gn > (t− tn), g1...(n−1), λ)

=sn(S) ∗ E(Gf |G > (t− tn), S, λ)

+ sn(B) ∗ E(Gf |G > (t− tn), B, λ) .

(3.10)

We now map the cumulative distribution of the likelihood to occur in the top-10 recommen-

dation list for the two models; Time-weighted and STiC, against the boredom scores predicted

by the STiC model (Figure 3.7). The threshold ts is set to 60 (a reasonable high value) sessions.

For reference, the actual consumption likelihood of the user is also plotted in the same figure.

We find that the time-weighted model recommends more item with higher boredom scores than

the STiC model and those actually consumed by the user. The STiC model on the other hand is

found to be slightly more conservative than the actual user.

(B) Recommending restored items in addition to sensitized items: The STiC model

further allows partitioning the items consumed in a future sessions into two sets: Sensitized

and Restored items. If P (S|g1...(n−1), λ) > P (B|g1...(n−1), λ), then the item is allocated to

sensitized set. Otherwise the item is added to the restored set.

Item set Model T-Precision T-Recall T-
FMeasure T-Rank

Sensitized items Time-Weighted 0.1853 0.4752 0.2666 0.0245
STiC 0.1956 0.4785 0.2777 0.0189

Restored items Time-Weighted 0.0223 0.0634 0.033 0.4428
STiC 0.0511 0.109 0.0696 0.3847

Table 3.4: Recommendation performance of the STiC and the time-weighted recommender for
different item sets. Both the time-weighted and STiC model perform well on sensitized items
while, time-weighted is particular bad at recommending restored items compared to STiC.

We use our classification scheme to further compare the recommendation performance on

specifically the restored items. Empirically, users were found to consume sensitized items only

around 23% of the times. For the rest of the times they consumed items from the restored sets.

This suggests that the ability to recommend the restored items is crucial for improving rec-

ommendation performance. The Table 3.4 summarizes the performance scores for the models

separated based on the item set. We find that both the time-weighted and the STiC model are

extremely good at recommending sensitized items. The time-weighted model, is particular bad

at recommending restored items while the STiC model continues to work well.
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Figure 3.7: The cumulative distribution for the recommendation likelihood for the time-weighted and
the STiC model given boredom scores. Time-weighted model recommends more item with higher bore-
dom scores, while STiC is more conservative than the actual user.

3.5 Conclusions

Understanding the changing user preferences is very important in the context of recommenda-

tion. Most of the changing user interests are available in the form of activity streams, where

each activity (such as listening to a song or viewing an shopping item) represents the user’s

interest to a specific item. In this paper, we proposed a behavior-based model for understanding

changing user’s interests using a hidden semi-Markov model. We used latent psychological

states, sensitization and boredom, to represent the user’s behavior in this model. We showed

that existing state-of-the-art temporal models fails to predict the time of next expected visit of

an user to an item as compared to our model. We attribute two main causes for this: (1) not

recommending the bored items and (2) recommending the items where an user has restored her
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interests. In our experiments, we performed several analysis to justify these two reasons, in

addition to overall superior performance of our model.



Chapter 4

Adapting Novelty Recommendation
Using Predictions of User Novelty
Seeking Behavior

4.1 Introduction

Recommender systems are indispensable in today’s information age, solving the problem of

information overload by providing users easy access to relevant content. Since their inception,

the recommendation community has made major advances to the notion of user relevance and

personalization. A wide variety of sophisticated algorithms have been developed that exploit

similar items and similar users [30, 81, 82, 83], and several contextual cues such as social [84],

temporal [85, 53] and mood [86, 87] information to identify interesting content for their users.

Although standard recommendation designs focus primarily on providing accurate recommen-

dations to the user based on item preferences, experts have highlighted the shortcoming of such

formulations in meeting the diverse needs and goals of the user from the system [88]. Further-

more, familiar and accurate recommendation have been found to inhibit the range of the user

experiences and are identified to be detrimental to user satisfaction in some cases [9, 89]. This

is because such methods fail to understand the dynamics of user preferences that constantly

evolve towards new, diverse or familiar items.

50
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User’s preferences in variety and novelty per se have been identified across several do-

mains [90, 91]. Furthermore, studies in recommender systems have shown that users sometime

prefer novel recommendation even if they are less accurate [88, 92]. As a result, a prominent

direction for research in recommendation systems today is the recommendation of novel items

to the user. The existing solutions [87, 93] have addressed this problem by introducing novelty

at a constant rate to the user determined using a system level tunable parameter. However, such

methods do not consider the specific novelty needs of the users which cannot be satisfied by

static methods for novelty recommendation.

The individualized and variable preferences of uses for novelty and variety, as revealed in

several studies [94, 95, 96], require the design of new recommendation methodologies. In this

work, we therefore focus on the problem of adaptive novelty recommendation to modulate the

introduction of novel items to the user based on a model for monitoring and predicting the

novelty needs for the user.

To address this problem we first formalize the concept of item novelty to incorporate both

new and forgotten items. Based on our formulation we then quantify user novelty needs using

their novelty seeking behavior observed from their activities. We further propose a model to

predict user future novelty seeking behavior, using various behavioral features derived from the

past consumption of items. Our predictive model allows us to propose a novel Adaptive Novelty

Recommender or adaNov-R, that considers both static item preferences as well as the dynamic

novelty preferences for novel item recommendation. We show that our proposed recommender

allows us to meet both the variable novelty requirements of the users and system level design

need for making novel recommendation. Furthermore we achieve such improvements in per-

formance using only off-the-shelf techniques and with minimal effort for implementation from

existing systems.

The rest of the paper is organized as follows. We discuss the related psychology and recom-

mendation literature in the following Conceptual Background section. We then define relevant

terminologies used in our subsequent discussion in the Terminologies section. We discuss the

characteristics of our datasets and analyze user novelty seeking behavior in our datasets in

the Dataset and User Novelty Seeking Behavior sections, respectively. We then propose our

predictive model for novelty seeking the in Novelty Seeking Prediction section. We propose

our adaNov Recommender and evaluate it’s performance in the Adaptive Recommendation and

Results section. We finally conclude with the Conclusion and Future Work section.
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4.2 Conceptual Background

In this section we provide a brief overview of related research from the field of psychology and

recommender systems, relevant to our work.

4.2.1 Psychological Bases for Novelty Seeking

Although the importance of familiarity for preference formation has been documented in several

psychological studies (the mere exposure effect [97, 14], preference-for-prototypes [15] etc.),

Berlyne [16] identified the impact of new stimuli as some of the most obscure and complex

motivations for human behavior. Several common day like experiences, reveal a prominent

desire in individuals for novel, varied and complex stimuli even at physical, social and monetary

costs to oneself [8]. For example, a user’s curiosity for other songs from a preferred artist or

genre makes him explore specific new songs. On the other hand, a user may explore varied

types of new songs to identify his/her taste in music or to overcome boredom.

Studies have shown that users have individualized preferences for novelty and variety that

themselves vary over time [94, 91, 95, 96]. For example, users variety seeking behaviors have

been found to vary based on the product category level [95] and display format [96] and user

current satiation level with the product attributes [98]. However, most of these studies have

been conducted using controlled experiments and user surveys. User online multimedia con-

sumptions provides a new lens for studying user novelty and variety seeking behaviors using

unobtrusive empirical analysis and modeling methods. Furthermore, multimedia consumption

such as music listening have been identified as a key domain where static and utilitarian mod-

els of user preferences fail and the individualized variety and novelty seeking preferences are

critical to accommodate [99]. Such findings motivates the analysis of individual differences in

novelty seeking using user activity logs from the music domain.

To the best of our knowledge, the only study of this kind has been the recent work by

Zhang et al. [100] which measures novelty seeking in terms of self novelty (which is used to

exploit an individual’s desire for diversity) and crowd novelty (which is used asses a user’s

degree of anti-conformity) from user checkins and online shopping traces. Our definition of

novelty seeking is closely related to the former, however we concentrate specifically on the new

and forgotten items of the users identified using a time window. Furthermore, we specifically

focus on how user novelty seeking impacts recommendation design further discussed in the



53

subsequent sections.

4.2.2 Novelty in Recommendation Systems

The idea of novelty has found emphasis in recommendation research for evaluating the perfor-

mance of a recommender in terms of how different its recommendations are from other items

previously seen by the user. An item can be novel to a users in three ways (a) new to system:

item is new (in the system) and as a result novel (or unfamiliar) to user (b) new to user: item

is known to the system but novel to the user (c) oblivious/forgotten: item is known to the sys-

tem as well as familiar to the user but the user has become unaware of its existence due to the

length of time elapsed since its last consumption [101]. The repetition of such items in a user’s

future consumptions has been shown to produce increased diversity [101, 102], emotional ex-

citement due to nostalgia [103] etc. This differs from an alternative definition of novelty also

commonly used in recommender research, which looks at a user’s consumption of niche and

long tail items [104, 105]. In this work, we define novelty in terms of items which are either

new to user or have otherwise become oblivious. We do not specifically discuss items which

are new to the system as a discussion of the such better belongs to the sub area of recommender

research involving cold start problems [106].

Introduction of novelty and diversity in user recommendations has been shown to lead to a

better overall user satisfaction with the system [107]. It is also found imperative for preventing

user recommendations from becoming narrow and concentrated over a few set of items over

a period of time, also known as the ”filter bubble” effect [89]. Eli Pariser provides a detailed

discussion of this effect emerging in systems which rely heavily on system generated recom-

mended content. Subsequent research have found the effect to vary based on the consumption

level of the users [108].

It has been shown that standard recommendation algorithms perform poorly in terms of rec-

ommending items which are new from the one’s recommended before [9]. Instead approaches

such as topic diversification [92], use of item taxonomy [109], bubble declustering [110] etc.

have been used to improve the novelty and diversity of recommendation lists. Others have

looked at both the accuracy and the diversity of recommendations and suggested approaches

for dealing with the apparent trade-off between the two such as multi-criterion optimization [?],

item re-ranking and re-weighting [93] and heat spreading algorithms [10]. However, none of

these approaches measure their performance in terms of being able to provide the right amount
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of novelty as actually desired by the user. Different novelty requirements of users make the

existing one-size-fits-all approaches insufficient. Our exploratory analysis in a later section

corroborates these findings. Instead, we require recommendation system to adapt the novelty

provided by the system to the user’s need for novelty. In order to realize such a system we

also develop a model for predicting user novelty seeking based on behavioral features identified

to be closely related to novelty seeking in prior studies including the diversity of user’s past

experiences and his/her boredom with the environment.

4.3 Terminologies

Despite much discussion in psychological and the recommendation literature, novelty seeking

remains an abstract concept with few known quantitative measures applicable to user activity

streams. In this section we therefore propose some intuitive measures for novelty seeking to

study such behavior in online users based on activity logs.

Figure 4.1: A user timeline showing how the familiar set (famSet) is set up to predict novelty seeking
of user in the current session.
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4.3.1 Session (S)

A session is defined a continuous period of user activity where a user consumes one or more

items within a small time gap (identified using a minimum duration threshold). The history of

a user u is represented as a sequential list of sessions — Hu = {Sut1 , S
u
t2 , . . . } , where Sutx

denotes the x-th session of the user starting at time tx.

4.3.2 Familiar Set (famSet) and Novel set (novSet)

A user’s familiar set is defined as the set of items repeatedly consumed by the user in the recent

past. Items which were consumed in the past but have not been consumed since a long time are

identified as forgotten items [101] and not included in the familiar set. We use a time window T

to determine recent user sessions to constitute the familiar set. A user u’s familiar set famSetut
at some time t constitute the set of unique items consumed over concurrent sessions within the

time period [t − T, t). To eliminate noise, items which are consumed less than a threshold

number of times within the time window are eliminated from the familiar set. A user’s novel set

at time t, novSetut thus constitutes the set of items that do not belong to the user’s familiar set at

time t; novSetut = I − famSetut , where I is the set of all items in the system (see Figure 4.1).

4.3.3 Session Novelty Seeking Score (nvSeek)

Based on the definition of famSetut and novSetut for a user, we now define user novelty seeking

score in a session starting at time t as the fraction of number of novel items (from set novSetut )

consumed by the user in that session over the total number of items consumed by the user in

that session.

nvSeekut =
|Sut ∩ novSetut |+ c

|Sut |+ 2 ∗ c
(4.1)

Here, an item corresponds to the unit of resource for the system. The allows the definition to

be generic enough to accommodate both individual commodities like songs, books, movies etc.

and their categories such as artist, genre and style. For example, a music recommender may

consider items to correspond to individual songs or song categories such as artist and genre.

Similarly, a movie recommender may consider genre and director as category level items for

analyzing user novelty seeking behavior. The parameter c is Laplacian correction to avoid bias

due to small sessions.
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4.4 Dataset

We use music listening activity logs for our subsequent analysis of user novelty seeking behav-

ior. The domain of music has enjoyed considerable attention in the field of psychology [111]

as a medium for understanding various forms of human emotions and behaviors. Addition-

ally, music provides a fertile ground for novelty seeking research and system development for

reasons outlined below:

1. Low risk/cost of consumption: The cost of consuming a song is significantly lower (in

terms of time and resources used) than other multimedia entities (books, movies etc) or

online purchases. As a result, music listeners are more likely to experiment with novel

items compared to other domains such as movies and books.

2. Ease of availability: As a result of proliferation of low cost (or free) online music stream-

ing services, internet music has become ubiquitous and accompanies various user activi-

ties such as work, exercise and relaxation [111]. Hence, users spend a substantial amount

of time listening to music making them easily susceptible to boredom and subsequent

novelty seeking.

For our analysis we use two datasets which include the music consumption logs from two

popular online music streaming websites. The first is a publicly available dataset from the online

music service Last.fm1 . The other is a more recent dataset (proprietary) from another online

music service (name is withheld due to privacy reasons).

For our experiments we consider user novelty seeking behavior at both the song and the

artist level. Our findings for both song and artist listening were similar and therefore we only

report artist level results due to space constraints. The plots and results for song level results

can be found online2 . In each dataset, we filter users with less than 20 distinct item streams

in their recorded history to eliminate inactive users in our analysis. The threshold for the gap

between user activities for determining sessions is set to 6 hours based on a visual examination

of the gap distribution. We set the time window for Last.fm dataset as 1 month and that for

the proprietary data as 3 weeks. Small time window lengths are used as music listeners are

expected to change their music preferences frequently and the system require to quickly adapt
1 www.last.fm
2 http://www.cs.umn.edu/∼vikas/nseeking
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to the user needs. For both the dataset we include only those items in a user’s famSet that was

repeated atleast 2 times during the time window T . Finally, a Laplace correction c = 3 is used

throughout. Both datasets are divided into burn-in, training and test periods. An initial burn-in

period equal to the length of the time window T is maintained to accumulate enough data about

the user for identifying the familiar set and subsequent novelty seeking behavior. We summarize

the partitions and basic statistics on the datasets in the Table 4.1.

Table 4.1: Last.fm and proprietary dataset statistics (novelty seeking prediction experiments).
Name Last.fm Proprietary Data

Burn Train Test Total Burn Train Test Total

Duration 1st
month

2nd
month

3rd
month

3
months

1st-3rd
week

4th
week

5th
week

5
weeks

Number of Users 882 758 733 882 1,642 1,209 933 1,642
Avg. Session/User 21 20 20 56 7 3 3 11
Avg. Session Length
(# items) 40 39 38 39 24 23 23 24

4.5 User Novelty Seeking Behavior

We study the novelty seeking behavior of the users in our two datasets using our proposed

measures discussed earlier. Via our empirical analysis we aim to verify the following two

hypotheses about the user novelty seeking behavior:

1. H1: Users have different novelty seeking behaviors

2. H2: Users have dynamic novelty seeking behaviors

To understand how users differ in their novelty seeking behavior we compute the distri-

bution of the session novelty seeking scores of the users in the first session in training pe-

riod. The distributions are shown in Figures 4.2 (a,b). As apparent from the plot plots, users

show substantial novelty seeking behavior in both our datasets. Users consume on an average

around 43% and 46% new artists per session in the Last.fm and the proprietary data respectively

(µ(nvSeekut )Last.fm = 0.4599, µ(nvSeekut )Proprietary = 0.434). Furthermore, the standard

deviations of the session novelty seeking scores for the users of Last.fm and the proprietary

datasets is found to be 0.1718 and 0.176 respectively. Both these standard deviations are found
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to be significantly higher than 0 (p-value∼ 0 obtained using one-sided chi-squared test for vari-

ance). Hence, we find that users vary in their novelty seeking behaviors, i.e. empirical evidence
supports H1.

We then study how novelty seeking behavior varies for each user. For our analysis we

consider the session novelty scores of each user as a separate random variable and estimate

it’s standard deviation across sessions in training period. To obtain a reliable estimate of the

standard deviation of the novelty seeking score of a user, we focus on the Last.fm dataset and

those users who have more than 10 sessions during the training period. Figure 4.2(3) shows

the distribution of the standard deviations of users’ novelty seeking scores. The mean of the

distribution (0.1206) is found to be significantly greater than 0 (p-value ∼ 0 obtained using

one-sided t-test), thus signifying differences in novelty seeking behaviors of the same user, i.e.

empirical evidence supports H2.

Our empirical analysis reveals that the user requirements for novelty tend to be varied and

dynamic in nature which makes existing novelty recommendation approaches insufficient. It is

therefore critical that the novelty recommendation strategies are adaptive to the novelty needs of

the users allowing them to accommodate the dynamic user preferences along with static ratings.

4.6 Novelty Seeking Prediction

Unlike the knowledge of data we have from the users in their current session, an online rec-

ommendation system would rather prefer to predict the individualized dynamic preferences of

the users for next session. In this section we develop a model capable to predict user’s future

novelty needs based on the recent consumption behavior.

4.6.1 Features

Several behavioral measures can be employed for the purpose. These measures can be broadly

grouped as explicit or implicit indicators:

1. Explicit Indicators: These include feedback explicitly provided by the user to indicate

their need for novelty such as by answering a set of questions, clicking a button called

‘Surprise Me!’ or by having access to a tuner (similar to volume tuner on tapes) to adjust

the amount of novelty in their recommendations. Such explicit indicators can provide a
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Figure 4.2: Variations in novelty seeking, across and within users, for the datasets.

fairly accurate measurement of the user’s desired novelty but depend on user feedback

which requires extra user effort.

2. Implicit Indicators: The system may infer a user’s desire for novelty using various behav-

ioral and personality cues from the user. For example, a user who has recently queried,

browsed or liked new items [112] might be seeking novelty. Alternatively, some users

may be more novelty seeking in general than others and such users can be identified

from their past behavior. Methods which rely on implicit indicators can be completely

unobtrusive to the users and can be applied even when user interaction is limited.

In this work, we concentrate on implicit indicators of user novelty seeking behavior. We

leave the design of systems that incorporate explicit feedback of the users for future work. We
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incorporate in our model, features based on the following two aspects of their item consumption

behavior:

Diversity of their familiar set: As discussed earlier, users vary in their preferences for nov-

elty and variety in their consumptions. This distinguishes users who repeat favorites on a loop

from those who listen to top 10 radio. The individualized preferences of users for novelty and

variety are identified using a measure of diversity of their currently preferred items computed

using the time window approach used earlier. For a user, we define the diversity at time t (divt)

as the number of unique items in the familiar set at time t normalized by the volume of their

consumptions of their familiar items in the last time window as follows:

• Feature 1: Diversity of their familiar set;

divut =
|famSetut |

Number of consumptions of famSetut in [t− T, t]
(4.2)

Past works have computed user diversity via various other means such as the dissimilarity

among items consumed [92], temporal diversity[9], item unpopularity [113, 114] etc. This def-

inition can be further extended to include diversity at different granularity levels such as genres,

music directors etc. in the items consumed.

Boredom with their familiar set: Users further seek more novelty when they are bored

with their current selection of items (familiar set). However, in contrast to diversity, there are

no easy measures for user boredom with items. A recent work by Kapoor et al. [115] addresses

this problem by proposing a latent state model which estimates the boredom state of the user

for an item, in addition to another sensitization state using the frequency and gaps between the

consumptions of that item in the past. The sensitization state is identified as the one in which

the user consumes the item frequently i.e. with small gaps between consumptions whereas the

boredom state is identified as the one in which the item is consumed after longer gaps. The

model further predicts when the user state for an item transitions between the sensitization and

boredom states. Using the model, Kapoor et al. propose an approach to track and predict (a)

time gap till the item’s next consumption at time t (G(i,u)
t ) , and (b) dynamic preference for the

item at time t (dpref(i,u)
t ).

Based on the model by Kapoor et al. we define following two features related to boredom

with the familiar set:
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• Feature 2: Cumulative negative preference for items in the familiar set; negCumPrefut =∑
i∈famSetut

dpref
(i,u)
t . The lower is the dynamic preference for an item, the higher is

the user’s boredom with that item at that time. We therefore measure a user’s boredom

with an item at time t as the negative transformation of his/her dynamic preference for

that item. The overall boredom of the user with the familiar set at time t is obtained by

summing over the negative dynamic preference scores for each item in the familiar set.

• Feature 3: Cumulative gap till the next consumption of items in the familiar set; CumGaput =∑
i∈famSetut

G
(i,u)
t .

The predicted gap is the likely period of time in the future in which the user would want

to consume the item again given the boredom accumulated after the last consumption.

Hence, larger the predicted gap for an item higher is the user’s boredom with that item.

We therefore measure the user’s boredom with familiar set by summing over the predicted

gap till the next consumption of each item in the familiar set.

4.6.2 Regression & Evaluation

We now apply a logistic regression model to the three features defined above (divut , negCumPrefut
and CumGaput ) to predict nvSeekut . The logistic regression model further ensures that our esti-

mate nvSeekut falls within [0, 1].

̂nvSeekut = Logisticθ(D
u
t ,CumPrefut ,CumGaput ) (4.3)

The novelty seeking prediction model is evaluated using Root Mean Squared Error (or

RMSE) between the predicted and actual novelty seeking score for user sessions in the test

period. Since to the best of our knowledge, this is the first model for predicting user future

novelty seeking, we don’t have any baselines against which we can compare our model. We

instead, evaluate our model against a constant baseline nvSeek to show the benefits of indi-

vidualized and dynamic novelty seeking prediction. The results are summarized in Table 4.2.

The logistic models (diversity and diversity + boredom model) perform better than the constant

model for both datasets in terms of RMSE. The improvement in performance are significant

(p-value ∼ 0 computed using the deviance test chi-squared statistic).
We further analyze our model parameters. Table 4.3 shows the regression coefficient and

the significance level for each feature. Both the divut and the negCumPrefut features are found

to be significant for the prediction task with p-values less than 10−4. A positive value of the
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Table 4.2: Novelty-seeking prediction performance evaluated using the RMSE metric.

Model Last.fm
Proprietary
Dataset

Constant 0.1686 0.1809
Logistic Model(diversity
feature) 0.1574 0.1620

Logistic Model (diver-
sity+boredom feature) 0.1420 0.1549

coefficient for diversity indicates that novelty seeking increases with diversity in the familiar

set. This is in agreement with our hypothesis that users who prefer more diverse items are also

more novelty seeking. The boredom related feature negCumPrefut has a positive co-efficient

which supports our boredom hypothesis i.e. Users display higher novelty seeking behavior

when their preferences for the familiar set are low and vice-versa. However, CumGaput feature

was not found to be statistically significant for both the datasets. This is quite likely because of

the correlations between the negCumPrefut and CumGaput features due to the fact that they are

derived from the same boredom prediction model, which we haven’t explored.

Table 4.3: The feature coefficients and their significance for the logistic regression model for
novelty-seeking. Significance indicators- 0.00001 ∗ ∗, 0.0001∗

Last.fm Proprietary Dataset
Feature Coefficient Coefficient
divut 4.7886 ** 3.0963 **

negCumPrefut 0.0124 ** 0.0071 *
CumGapu

t 0.0006 -0.0034

Finally, the standard deviation computed for the predicted novelty seeking score for the test

data (σLast.fm = 0.0874, σProprietary = 0.1034) further provides evidence of the ability of

our model to identify differences in the novelty needs of the users of the system. Both these

standard deviations are found to be significantly higher than 0 (p-value∼ 0 obtained using one-

sided chi-squared test for variance).

In summary, the results imply that our model can provide a reliable estimate of user future

novelty seeking needs using how diverse the user’s preferred items were and how bored is s/he

with her/his preferred items.
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Figure 4.3: Novelty introduction error broken down by novelty-value factors for the Last.fm (top) and
the Proprietary (bottom) datasets.
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Figure 4.4: Novelty introduction error broken down by novelty seeking score and novelty value factor
for the Last.fm (top) and the Proprietary (bottom) datasets.

4.7 Adaptive Recommendation

Dynamic novelty preferences of users over time, as identified by previous analysis, make exist-

ing recommenders’ item preference based novelty approach [87, 93] insufficient. They consider

item ratings and consumption to have static preference thus recommending a set of novel items

irrespective of amount of novelty actually desired from the system by user in a session. We aim

to bridge this specific gap between static and dynamic item preferences of users by using their

dynamic novelty seeking desires.

However, the problem of novelty in recommendation poses several unique challenges for

the recommendation community. We focus on three specific aspects of the problem:

1. Skew in the recommendation performance of familiar vs. novel items: Recommendation

of novel items is inherently a different problem from the recommendation of familiar

items. The later involves a smaller subset items which a user is already aware of and

the system has a strong indication from the user that s/he has preferred those items in

the past. The former, on the other hand, involves the recommendation of unknown items

from a large multitude of items in the system’s inventory which user might like. As a
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result, recommendation of novel items is more challenging with higher uncertainties in

their accuracy than the recommendation of familiar items.

2. Incentives for novel recommendation: Despite loss in accuracy, novel recommendation

may be more valuable to the system than familiar items. Since users of certain systems

(such as music and movie streaming websites) may find novel recommendations more

useful and satisfying than familiar items. Such systems may chose to incentivize novel

recommendations over familiar recommendations in their system design.

3. User Need for Novelty: A user’s acceptance of novel recommendation varies based on

their novelty seeking behavior. A user who is seeking more novelty desires more novel

items from the recommender than a user who is familiarity seeking at the moment.

In this work, we propose a novel approach for novelty recommendation which is based on

modulating the introduction of novel items in a user’s recommendation list given his/her current

novelty seeking needs and the system’s incentives for novel recommendations. We consider a

user session sut for which the system generates a top-N recommendation list. Our adaptive

novelty recommender (adaNov-R) consists of three modules, namely: (1) Novelty Seeking

Prediction module, (2) Item Ranking module, and (3) Adaptive Recommendation module as

summarized in Figure 4.5. We discuss these components in detail in the following subsections.

4.7.1 Novelty-seeking Prediction Module

This module generates a prediction of the novelty seeking score of the user for the session in

which the recommendations have to be generated. As explained earlier, the module can either

use explicit or implicit indicators to learn the novelty seeking preference in next session. In this

case, we use the logistic regression model described in the previous section to predict user’s

session novelty seeking score ( ̂nvSeekut ).

4.7.2 Item Ranking Module

This module is responsible for producing a preference ranking list for novel and familiar items

for each user based on their history of past consumption (or rating). Several existing recommen-

dation algorithms can be adopted for this purpose. The standard recommendation techniques

such as item-based or user-based collaborative filtering or matrix factorization can be used to
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Figure 4.5: Adaptive novelty seeking recommender system design.

generate a ranking (based on predicted scores) for the preferred items of the user denoted asRut .

The ranking list Rut is then post processed to generate two new ranking lists F ut (list of familiar

items - items that exist in famSetut ) andNu
t (list of novel items - items that exist in novSetut ) such

that items in each list maintain their relative order as in the original list. Alternatively, we can

use specialized algorithms for ranking novel [93, 110] and familiar items [115] respectively to

generate Nu
t and F ut .

We use the off-the-shelf item-based collaborative filtering technique for our implementa-

tion. The item-based recommender computes preference scores for items based on their simi-

larity to the items already rated by the user. This approach is easy to train and has been shown

to achieve good performance in several real life systems [82]. Since, we do not have explicit

ratings in our dataset, we modify the item-based recommendation algorithm to include the dy-

namic preference score dpref(ti, u) (defined in last sub-section) instead of ratings for generating

preference scores for items. This allows our ranking list to be sensitive to the temporal dynamics

in a user’s preferences for past preferred items with good recommendation performance. The

modified item scoring function is then formulated as:
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dpreft(j, u) =

∑
i∈Neighbors(j) sim(i, j) ∗ dpref (i,u)

t∑
i∈Neighbors(j) sim(i, j)

(4.4)

where, j is an item for which the dynamic preference score is predicted, sim(i, j) is the similar-

ity between i and j computed using cosine similarity and Neighbors(j) are the nearest neighbors

(top 50) of item j.

We use this scoring function to generate the ranking list Rut and then extract the ranking

lists Nu
t and F ut from Rut .

4.7.3 Adaptive Recommendation Module

The Adaptive Recommendation Module uses the novelty seeking prediction score from Novelty

Seeking Prediction module and the item ranking listsNu
t and F ut generated by the Item Ranking

module to generate the final top-N recommendation list for the user session. Our approach for

generating the final ranking list involves incorporating the top novel and familiar items in the

list such that the fraction of the list occupied by novel items (and familiar items) is based on

optimizing a new metric of recommendation performance for different novelty seeking users

proposed by us.

F-measure have been used as a standard metric for evaluating recommendation performance

in top-N recommendation task. The f-measure metric (F1) determines how well a system can

recommend preferred items to the users and is defined as the harmonic mean of the precision

(p) and recall (r) scores computed as below:

put =
|Rut ∩ Sut |
|Rut |

; rut =
|Rut ∩ Sut |
|Sut |

(4.5)

p =Avgu,t put ; r =Avgu,t rut ; F1 =
2 ∗ p ∗ r

p + r
(4.6)

(4.7)

However, vanilla F1 cannot reflect the design principles for our work, which is to consider

both novel and familiar items, user novelty needs and the system’s incentives for novel recom-

mendation in the system design. We therefore propose a new metric, the weighted F-measure,

for evaluating our recommendation performance and optimize this metric for different novelty

seeking users. The weighted F1 metric is derived from multi-class cost sensitive learning lit-

erature [116] such that the novel and familiar items are considered as two different classes of
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items for measuring recommendation performance. The class specific precision and recall can

then be computed as follows:

put (Z) =
|Rut ∩ Sut ∩ ZSetut |

|Rut |
; p(Z) = Avgu,t put (Z) (4.8)

rut (Z) =
|Rut ∩ Sut ∩ ZSetut |
|Sut ∩ ZSetut |

; r(Z) = Avgu,t rut (Z) (4.9)

Here, Z = {fam, nov}.
The overall performance score metrics, weighted precision (wp) and weighted recall (wr),

are then measured as a weighted average of the class specific performance scores, weighted by

(a) fraction of the items of the two classes consumed by the users (user novelty seeking score)

and (b) class specific cost factor (novelty value factor - NVF). The weighted F-measure (wF1)

is further computed as a harmonic mean of the weighted precision and recall scores.

wput =
nvSeekut ∗NV F ∗ put (nov) + (1− nvSeekut ) ∗ put (fam)

nvSeekut ∗NV F + (1− nvSeekut )
(4.10)

wrut =
nvSeekut ∗NV F ∗ rut (nov) + (1− nvSeekut ) ∗ rut (fam)

nvSeekut ∗NV F + (1− nvSeekut )
(4.11)

wp = Avgu,t wput ; wr = Avgu,t wrut ; wF1 =
2 ∗ wp ∗ wr

wp + wr
(4.12)

Our choice of weighting scheme is further explained. Weighting by novelty seeking score

allows the recommender to weight the recommendation performance for the two classes of

items using the class wights which is the fraction of items of the two classes actually consumed

by the user. This allows us to place more emphasis on the system’s recommendation accuracy

for novel items (vs. familiar items) for sessions in which the user is more novelty seeking

and similarly place more emphasis on it’s recommendation of familiar items for sessions in

which s/he is less novelty seeking. Furthermore, we consider different values (negated costs)

associated with recommendation of novel and familiar items by adapting methods from cost

sensitive evaluation. The novelty-value factor (NVF) denotes the value (negated cost) of 1

correct novel recommendation versus the value of 1 correct familiar recommendation, and hence

denotes the value of novelty, serendipity etc. for the system. The value of the novelty-value

factor may be set for particular application using domain knowledge or via user studies and live

experiments.

Now to learn the right fraction of novel items we propose a greedy approach to optimize

the weighted f-measure of a recommender for different novelty seeking users. We segregate
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users into ten different partitions based on their novelty seeking score such that [[0 − 0.1) →
partition1, . . . , [0.9− 1]→ partition10]. We then learn a rule-based novelty introduction func-

tion partitioni → xi for partitions 1-10 on training data where xi is fraction of novel items to

include in the recommendation list that maximizes the weighted f-measure for partition i. For

example, partitioni → 0.4 suggests that inclusion of 4 novel items in the top 10 recommen-

dation list provides the best weighted f-measure for partitioni over all other fractions of novel

items. Having once trained our novelty introduction function, the Adaptive Recommendation

Module first uses the predicted novelty seeking score to identify the expected partition in which

the user falls in that session and then uses the learned fraction for that partition to incorporate

an appropriate amount of top novel and familiar items in his/her final recommendation list.

Figure 4.6: Weighted F-measure broken down by novelty value factor for Last.fm(top) and Proprietary
data (bottom).

4.8 Results

We evaluate our adaptive novelty recommender on two aspects (a) ability to meet the user’s

need for novelty; and (b) accuracy of the top-N recommendations. Both these aspects are

evaluated for users with different novelty seeking scores and different novelty-value factors;



70

NV F = {1, 2, 5, 10, 20, 30, 40, 50}. The wide range of novelty value factors allows us to test

the general robustness of the approach for different system design consideration.

We further compare our model against alternative strategies for novelty recommendation.

We first consider the two extreme models PureN - which recommends only novel items and

PureF - which recommends only familiar items. We then compare our model against a constant

novelty recommender (CN) that recommends a constant number of novel items to the users.

The constant is optimized for a given novelty value factor of the system using the training data.

The CN allows us to show the value of an approach in adapting to the user time-specific novelty

needs against a constant factor. Finally we compare ourselves against the standard item-based

recommendation approach which only considers users’ static item preferences.

4.8.1 Novelty Introduction Error(NIerror)

We evaluate various recommendation strategies on their ability to meet the novelty needs of

the user by incorporating enough novel items in the recommendation list as are needed by the

user. This achieved by computing the root mean square error (RMSE) between the fraction of

novel items recommended and the fraction of novel items actually consumed by the user for all

user sessions in the test period. We call this error the Novelty Introduction Error. The novelty

introduction metric ignores the quality of those novel recommendations which is the focus of

the next subsection.

NIerror =

√∑
u,t

(|novelurecommended,t| − |noveluconsumed,t|)2 (4.13)

We analyze the novelty introduction error for our model and the baselines for different novelty-

value factors and users with different novelty seeking scores.

Robustness to the novelty value factor: Figure 4.3 displays the novelty introduction error for

the various models for different novelty value factors. We find that the novelty value factor

impacts the NIerror for the adaNov-R and constant novelty model. For both the models, error

decreases and then increases. This is because, for low values of novelty value factor, a system

is more inclined to make accurate familiar recommendations than possibly inaccurate novel

recommendations, resulting in lower introduction of novelty than required. On the other hand,

for high novelty value factors, system provides incentives to make more novel recommendations

resulting in the introduction of more novel items than required. The PureF, item based and
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PureN are independent to the choice of novelty value factor. Furthermore, PureF and item-based

have comparable novelty introduction errors than other models, their behavior is not adaptive to

different user novelty seeking scores, in addition to different design requirements of the system,

discussed further in the next subsection.

Impact of the novelty seeking score: We further look at the number of novel items rec-

ommended for different user novelty seeking scores. We find that as expected, PureN, PureF

and constant recommend the same number of novel items for all ranges of user novelty seeking

behavior (as shown in Figure 4.4) . However, adaNov-R recommends more novel items when

a user is more novelty seeking (for NV F ¿ 2). The recommendation of novel items increases

with novelty seeking score for items based model as well but the increase is very small. Further-

more, the actual number of novel items provided to users with different novelty seeking scores

varies based on the novelty value factor.

In summary, the adaNov-R allows the system to vary the number of novel items recom-

mended based on user novelty seeking behavior. However the error metric for adaNov-R is

sensitive to the novelty value factor, as the model allows the introduction of more (or less)

novel items when the value of novel recommendation is higher (or lower).

Figure 4.7: F-measure (familiar), f-measure (novel) and weighted f-measure broken down by novelty
seeking score of the user (Last.fm(top), Proprietary data (bottom)).
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4.8.2 Recommendation Accuracy

We evaluate the ability of the recommendation strategies to make accurate recommendations to

the user using the weighted f-measure metric.

Robustness to the novelty value factor: We look at the overall weighted f-measure metric

(shown in Figure 4.6) for different models for different novelty value factors. We find that the

performance of adaNov-R is either superior to or comparable to the best performing baseline

based on the novelty value factor. As expected, PureF and item-based favor lower novelty-value

factors and PureN favors higher novelty value factors. The adaNov-R on the other hand can

adapt to the choice of novelty value factor, and has a behavior that is comparable to that of

PureF (PureN) for the lower (higher) values of novelty-value factor. It further has a superior

weighted f-measure than all the other models for values of novelty value factor = 10 and 20.

The results are significant for a p − value < 10−5 (Wilcoxon rank sum test). The f-measure

scores for adaNov-R for familiar and novel items further show that our model can balance it’s

recommendation performance on both classes of items quite well. The constant novelty model

has the second best overall performance and this is because although it is adaptive to the choice

of novelty value factor for the system, it cannot adapt to differences in user novelty needs as

further investigated in the next subsection.

Impact of the novelty seeking score: We find (Figure 4.7) that the performance of PureF

and item-based is high for users with low novelty seeking behavior but consistently declines

as user novelty seeking increases. The performance of PureN on the other hand is low for

lower values of novelty seeking but increases as novelty seeking score increases. The adaNov-

R, is found to perform reasonably well for all values of novelty seeking which suggest that our

model can modify it’s behavior to suit the accuracy needs of users with different novelty seeking

behaviors. Finally, the constant novelty model is not adaptive to user novelty seeking needs and

achieves the performance to PureF (PureN) for low (high) values of novelty value factor.

In summary, the adaNov-R has a overall better performance as it can adapt to different

novelty value factors and different user novelty seeking behaviors whereas other baselines favor

some system designs and user needs over others.

4.9 Conclusion & Future Work

Our contributions in this work are summarized as follows:
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• We defined an intuitive measure for the variable novelty seeking preference of the users.

• Using our measure we empirically verified individual and temporal variations in user

novelty seeking behavior.

• We developed a model for predicting the variable novelty seeking preferences of the users

with good predictive performance.

• We proposed an adaptive novelty recommender adaNov-R to adapt for recommendation

of novel items to the predicted novelty seeking need of the user, using off-the-shelf tech-

niques.

• We exhaustively validated our model for different system design criteria for novelty as

well as for differing novelty seeking needs of users.

Our work is the first of it’s kind to consider dynamics in user needs for novelty. Although,

we have tested our methods only on the music domain, our techniques can be easily applied to

the recommendation of other multimedia content like movies, videos and blogs. We can further

extend our work to incorporate other item categories such as genres and director for movies and

topics for blogs. Other directions for future work include:

• Extending our measures for novelty and user novelty seeking to incorporate other notions

commonly used in existing literature such as item dissimilarity [114].

• User evaluation of the adaptation scheme to meet the novelty seeking needs of the users.

• Identification of other behavioral traits, such as personality characteristics like (a) Ex-

ploratory excitability (b) Impulsiveness (c) Extravagance, and (4) Disorderliness for esti-

mating the novelty needs of the users.



Chapter 5

Predicting User return Time Using
Hazard Models

5.1 Introduction

User attention is perceived as the most important resource in the internet era [117]. The web

is described [118] as a ‘virtual theme park where most rides are free such that revenue is gen-

erated through “selling eyeballs” to advertisers’. The ad-supported economy of the web has

the web-services vying for users’ time rather than their money. Having a large loyal and ded-

icated user base has several indirect benefits as well. Many services grow with their users,

improving themselves based on their feedback and through the power of big data analytics on

their activities logs. A common example is the Google search engine, which has perfected

its query auto-correct feature primarily using user click-through data, as well as improved its

search performance regularly using user search histories. Furthermore, an active community

can be tapped to create new content that benefits the other users of the service and the service

as a whole as seen for popular social networks such as Facebook and Twitter.

There is tremendous competition among the rapidly increasing number of web services

for the finite and limited resource corresponding to user attention. Although, attracting new

customers is crucial for any business, it is generally much easier and cheaper to retain existing

customers [119, 120]. This directly results in a great deal of emphasis being placed on engaging

one’s current user base. Customer retention efforts have been heavily researched in sectors such

as telecommunication [120], financial services [121], internet services [122] and other utilities

74
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etc. which follow the subscription based model. The methods in these domains have focused on

identifying potential churners in the user population, where churners are defined as those current

subscribers who are not likely to renew their subscription in the coming months. Once detected,

the churner population is targeted with retention strategies like offers, customer solutions and

recommendations to win them back.

However, such methods cannot be directly applied to solving the user retention problem for

web services due to the following reasons:

1. Difficult to define churn for a non-contractual setting. A non-contractual business

such as a free web service, does not receive a definitive indicator of termination from

the user. To counteract this problem, some alternative definitions of churn have been

proposed. Churn is defined as a significant drop in a user activity levels [123]. Another

work addresses this problem by first providing a definition for a loyal user of a service

and then defining churners as those users who were loyal to the service but are no longer

so [124]. However, such methods remain sensitive to changes in their proposed definition

of churn.

2. Highly dynamic user visitation behavior. Web services offer none or negligible switch-

ing costs to users. With no financial commitments towards a service, users switch quite

frequently between different services. The highly dynamic nature of user visitation be-

havior makes it difficult to define typical activity volumes for a user and to segregate users

as active and inactive with respect to the service.

To adapt to the unique incentive structures and dynamic user base, in this work we propose

a novel retention metric which tracks the user return rate for addressing growth and retention

in web services. The user return rate is defined as the fraction of the existing users returning

to the service on a particular day. It is beneficial for a web service to improve its user return

rate in order to increase its revenue. Predictive analysis of user return times can direct such

improvements efforts. Return time prediction allows a service to identify indicators of earlier

(longer) return times for their users. Identifying such indicators and quantifying their impact on

user return times offers a service insights into its practices. It also enables a service to employ

corrective measures and improve the experience to its users. Secondly, a service can identify

sections of its user base that are not likely to return soon. Studies have shown that the longer

the users stay away from a service, the less likely are they to return in the future [125]. Early
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identification of users who are not likely to return soon to the service allows the deployment of

suitable marketing strategies to encourage those users to engage with the service again.

We propose a hazard model [126] from survival analysis to predict user return times. The

hazard based models are preferred over the standard regression based methods for this problem

due to their ability to model particular aspects of duration data such as censoring. More impor-

tantly, the Cox’s proportional hazard regression model is used as it can incorporate the effects

of covariates 1 . We apply the model for return time prediction on real-world datasets from two

popular online music services.

We now summarize the key contributions made by us in this paper:

(a) We formally define an approach for targeting retention solutions in free web services via

user return time prediction.

(b) We propose the Cox’s proportional hazard to model dynamic return events and incorporate

the effects of covariates for return time prediction. We develop useful return time predictors

and conclude correlations between user usage patterns and their return times.

(c) The Cox’s proportional hazard model outperforms state-of-the-art baselines in both return

time prediction and user classification based on predicted return time.

The rest of the paper is organized as follows. In Section 2 we provide a brief overview of

the related research in the area of churn prediction and the use of hazard based methods. We

then formally define our problem and lay out our contributions in Section 3. In Section 4 we

describe our hazard based predictive model and provide details of the covariates used and the

model estimation procedure. In Section 5 and Section 6 we discuss the experimentation setup

and the results. We summarize the conclusions from our experimental analysis and provide

future directions for our work in Section 7.

5.2 Related Work

In this work, we propose a new approach for directing growth and retention solutions for web

services through return time prediction. Traditionally studies have focused on the problem of
1 We use the term covariates to describe features or predictors in our model. The choice of terminol-

ogy is based on that used in the survival analysis literature from where we adopt our model.



77

churn prediction defined as a binary classification problem where users are categorized based

on several behavioral and demographic features into two categories: future churners or non-

churners. The popular data mining techniques used for building classifiers for churn prediction

include decision trees such as CART and C4.5 etc. [120], logistic regression [119], support

vector machines [127] and neural networks [128], though random forests [127, 129] are found

to be better in performance. Ensemble methods have been used to combine multiple classifiers

to construct powerful meta-classifiers and to handle the class imbalance problem typical to

churn prediction [130]. Alternatively, approaches from survival analysis have been used to

model the dynamics in the churn event rate with user tenure [131]. The churn event rate for

users is found to decline with tenure such that new users are more likely to churn than tenured

users.

A major hurdle to applying these methods to free-to-use services discussed in this paper is

to provide an appropriate definition of churn. Studies on user lifetime modeling and retention

for online environments have used different criteria for defining the loss of a customer, such as

the period of inactivity [132], decrease in activity [123] or indirectly, via a definition of loyal

users [124], discussed earlier. Yang et al. [132] have further studied how user participation

patterns affect the length of their lifetimes on online knowledge sharing communities. However,

most of these methods focus on the length of user participation rather than the volume of their

activities. Instead, online businesses are increasingly paying attention to their returning users

rather than the count of their registered users. Further, the research community has started

concentrating on analyzing and modeling users activities on different types of websites [133,

134]. A major focus of these methods have been to understand how websites memberships,

specifically measured in the number of active users, evolves with time and correlate such factors

to the success or failure of the website [135]. Also, many studies on the measurement and

improvement of intra-site [136, 137, 138] and inter-site engagement have emerged [139]. Many

of these studies identify return time as a robust metric for user engagement. All these factors

suggest that continuous tracking and improvement of user engagement, measured in terms of

their return time, is crucial for the performance goals of web services. Hence, in this work we

directly focus on the return time metric for organizing retention efforts for web services. We

use a Cox’s proportional hazard regression model [126] from survival analysis for this problem

as the model can quantify the impact of covariates on the target event rate. This unique property

results in the Cox’s Model being a popular choice for several online user behavior studies [138,
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132]. Additionally, we also define different types of return time predictors suitable for this

problem.

Several types of covariates have been used for churn prediction. RFM models [140] propose

the use of three variables, Recency, Frequency and Monetary value of their previous interaction

for identifying potential churners. Other covariates based on demographics, contractual details,

service logs, use patterns, complaints and customer service responses [141, 120] have been

found useful. We use some of these covariates in our model. In addition, we also incorporate

user behavior related covariates in order to understand how user interactions while engaging

with the service affect the rate of their return in the future. A special feature of our model is that

it can handle the recency variable implicitly by computing the expected future time of return for

the users given their length of absence from the service.

5.3 Return Time Prediction for Web Services

A user’s visitation behavior on a free web service tends to be quite flexible and arbitrary post

registration partially due to the lack of financial investments and constraints. Instead, the length

of the tenure of users of web service displays a power law distribution with most of the users

never returning back to the service [142]. In this work, we adopt a unique methodology for

analyzing the dynamic user visitation data by directly modeling the user return time.

5.3.1 Problem Statement

We define users as belonging to either of the two activity states - the in and the out states. When

users visit the service, they are said to be in the in state; while, when they do not visit the

service, they are said to be in the out state.

We focus on the problem of predicting the return time of the users which is the time the user

spends in the out state. The return time for a user can potentially extend to infinity (for users

who never return back to the service). Therefore, a threshold, td is defined on the return time

and we predict the return time for the users up to time td. The return time prediction problem

may be formally defined as follows:

Definition 1 Given that the last time the user was in the in state was at time t0, the return

time prediction problem is to predict the quantity min(tr, td), also called the truncated return
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Figure 5.1: State Space Diagram

time (Trd), where tr is the total time the user spends in the out state and ranges from 0 to∞, td
is a finite threshold on the return time and either of the following holds:

(a) the user is expected to return to the in state at time t0 + tr, if Trd = tr, or

(b) the user is expected to stay in the out state for at least td units of time, if Trd = td

Figure 5.1 provides a diagrammatic representation of the user return time prediction prob-

lem.

5.3.2 Time Dependence in User Return Time

The time duration between events has been studied extensively in queuing theory, for example

to study the waiting time between customer arrival and customer service events. Such events

are commonly modeled to generate from a Poisson process such that the waiting times follow

the exponential distribution. An attractive property of the exponential distribution is the mem-

oryless property which entails that the future rate of occurrence of the event is independent of

the elapsed time. For a random variable T denoting the time of occurrence of the event, the

following equation is said to hold if the memoryless property is satisfied:

P (T > t+ s|T > s) = P (T > t) (5.1)

However, several phenomena are seen to defy the simple memoryless property in interesting

ways. For example, the rate of adoption of new products is found to increase with the elapsed
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time [143]. Alternatively, the rate of events like responses to surveys, promotions [144] etc. is

seen to decline with the elapsed time. The decline in future event rate with the elapsed time,

has been referred to as ‘inertia’. We suspect similar type of inertia in user return behavior.

For duration data showing time dependence, it becomes meaningful to compute the expected

future time of the event given the elapsed time, E(T |T > s). We, now define the problem of

predicting the expected future time of return of the users given their length of absence (LOA)

from the service.

Definition 2 Given that the last time the user was in the in state was at time t0, and he has

already been in the out state for time ts, the future return time prediction problem is to predict

the quantity min(tfr, (td − ts)), also called the truncated future return time Tfrd, where tfr
is the additional time the user spends in the out state and ranges from 0 to ∞, td is a finite

threshold on the return time and either of the following holds:

(a) the user is expected to return to the in state at time t0 + ts + tfr, if Tfrd = tfr, or

(b) the user is expected to stay in the out state for atleast td − ts more units of time, if Tfrd =

td − ts

5.4 Method

We consider a time window over which user return time observations are collected. Each return

time observation can be associated with a set of covariates influencing its magnitude. Hence,

the data can be represented as a set of tuples: < X,T > where, T is the return time observation

and X is the vector of covariates associated with that observation. Since a user can return to

the service multiple times during the considered time window, we can have multiple tuples

corresponding to a single user.

There are two aspects of the collected data that need special attention.

1. Censoring: Duration data which is collected over a fixed time period tends to have in-

complete observations corresponding to events which were yet to happen at the end of

the study period. Such observations are said to be censored and this particular type of

censoring is called right censoring. In order to capture censored observations as well, a

special variable status is added to the representation of duration times. The status vari-

able is set to 0 when the time variable represents the actual observation of return time
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whereas it is set to 1 when the time variable represents a censored observation. In the

latter case the time duration represents the time gap between the user’s last visit and the

end of the study period. Ignoring censored observations biases one’s analysis towards

earlier returns. A major advantage of the hazard based methods is that they can handle

censored observations quite well.

2. Recurrent observations: The collected data may contain more than one return time events,

also called recurrent events, per user during the study period. The active users have many

more return time observations than inactive users. Retaining these observations can bias

our analysis towards the active users which is detrimental to our objective of targeting

losing customers. However, we lose information if we throw away these observations.

Instead, we use a simple weighting scheme for handling recurrent events. We weight

each observation corresponding to a user with the inverse of the number of observations

made for that user. Hence, each user has a unit weight in the data but we incorporate

all observations made for him/her. Later in the paper, we discuss the sensitivity of our

results to this weighting scheme. Some care needs to be taken while testing models when

working with recurrent data and we discuss that in our Experiments section.

5.4.1 Hazard Based Prediction Model

Survival analysis is a branch of statistics which deals with the time of occurrence of events,

also called duration modeling. It offers a rich set of methods which allow us to easily address

questions like what is the probability that an event is going to happen after t units of time or

what is the future rate of occurrence of the event given it has not happened in t units of time.

In this work we deal with discrete measures of time. Two functions are useful for analyzing

duration information:

The survival function at time t is defined as:

S(t) = P (T > t) (5.2)

where T is a random variable denoting the time of occurrence of the event. The hazard function

measures the instantaneous rate of occurrence of the event at time t, conditioned on the elapsed

time t.

λ(t) = P (T = t | T ≥ t) = −S′(t)/S(t− 1) (5.3)
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The Cox’s proportional hazard model is commonly used to incorporate the effect of covari-

ates on the hazard rate. The model is based on the simple assumption that the covariates affect

the magnitude of individual hazard rates but not the shape of the hazard function. Expressed

mathematically,

λ(t) = λ0(t) ∗ exp(β1 ∗X1(t) + β2 ∗X2(t) + ...) (5.4)

where, λ0 is the baseline hazard function, X1(t), X2(t), etc. are the covariates which may be

static or may vary with time and β1, β2 etc. are the regression coefficients. The ability of the

Cox’s model to handle time-varying covariates is an important feature of the model.

One can obtain the survival function from the hazard function using the following equations:

Λ(t) =

t∑
0

λ(u), (5.5)

S(t) = exp(−Λ(t)). (5.6)

where Λ is defined as the cumulative hazard function. The expected time of return can then be

computed using the equation below:

E(T ) =

∞∑
0

S(t). (5.7)

Furthermore, the expected future time of return given the time not returned for (ts) can be

computed as follows:

E(T |T > ts) =
1

ts

∞∑
ts

S(t). (5.8)

The survival function is truncated beyond a point of time or when the probability of survival

drops below a threshold in order to prevent the return time estimate from diverging. For our

prediction problem, we impose td as an upper bound on the return time estimate. Hence, the

expected return time and the expected future return time computations can be re-defined as:

E(T ) =

td∑
0

S(t), (5.9)

E(T |T > ts) =
1

ts

td∑
ts

S(t). (5.10)
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(a) Baseline Hazard Function (b) Survival Function

Figure 5.2: The baseline hazard function and the survival function computed on the Last.fm training
dataset.

5.4.2 Model Estimation

The Cox’s proportional hazard model is a semi-parametric model as it does not assume a math-

ematical form for the baseline hazard function. Instead, the model can be broken down into

two factors. The first factor represents the effect of the covariates on the hazard rate. The effect

parameters (regression coefficients) are learnt by maximizing the partial likelihood which is in-

dependent of the baseline hazard function. Once the regression coefficients have been learnt, the

non-parametric form of the baseline hazard function is estimated using the Breslow’s method.

Cox’s seminal paper [126] is a good reference for the details of the estimation procedure.

We use the standard survival package in R for estimating the Cox’s model. The survival

package can handle weighted data instances. We use days as the unit of time for our analysis as

most of the users in our datasets are found to return within the first week. A user is considered to

have visited the service on a day if he performed at least one activity on the service on that day.

One may define more stringent criteria on user activity for this purpose, such as minimum time

spent, number of interactions etc. The threshold (td) for the return time prediction problem

is set to 60 days, which is a reasonably large value and beyond which users are already the

focus of retention efforts. Return time observations larger than 60 days are hence assumed to be

censored. In our experiments, we also study the performance of the model for different choices

of the threshold.



84

5.5 Experimental Setup

We now evaluate the performance of the Cox’s proportional hazard model for solving our pro-

posed return time prediction problem. We consider both the performance of the model at pre-

dicting the return time of the user and at classifying users based on their expected return times.

Such a categorization procedure is the logical next step for a service looking to target market-

ing strategies to users not likely to return soon. For both the problems, we also evaluate how

well the Cox’s model can incorporate the LOA information by re-estimating the expected future

return time given the LOA.

5.5.1 Data Collection

For our experiments we use a small public and a larger proprietary dataset. We briefly describe

these two datasets:

• The Last.fm dataset. Last.fm, is an online music website catering to millions of active

users. Recently, the service made available the complete music listening histories of

around a 1000 of its users as recorded until May, 2009 [?, 145]. For every song the user

listened to, the dataset includes the song title, the artist name and the timestamp at which

the song was heard. We use two separate time windows for creating the training and

the testing datasets. All user visits observed during Oct, 2008 - Dec, 2008 were used to

test the model through cross-validation. We also tested our model on future user visits

observed from Jan, 2009 - Mar, 2009.

• Large-scale dataset. Our proposed approach was applied as a part of the growth and

retention efforts for a large ad-supported music service. A dataset of around 73,465 users,

collected over 3 months from May, 2012 - July, 2012, was used for training and testing

our model via cross-validation.

5.5.2 Covariates

We constructed the following covariates for the return time prediction problem.

• Covariates related to the typical visitation patterns of a user. Such covariates seek to

predict the future return behavior of the users based on how their visitation behavior has
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been historically. For example, users who have been highly frequent in the past (loyal to

the service) are likely to remain frequent in the future and similarly users who have been

infrequent in the past (casual visitors) are likely to visit infrequently in the future.

– Active Weeks: This covariate is defined as the ratio of the number of weeks since

registration when the user visited the service at least once to the total number of

weeks elapsed since registration.

– Density of Visitation: This covariate captures the volume of user activity on the

service for the weeks the user is active on the service. It is defined as the average

number of days the user visited the service during the weeks the user visited the

service at least once.

– Visit Number: This covariate is used to measure how tenured the user is with the

service.

– Previous Gap: This covariate represents the most recent return time observation

(which is the gap between the user’s last and prior to the last visit) for the user. For

first time users this covariate is set to −1.

– Time weighted average return time (TWRT): This covariate measures the average

return time for a user. The return times are further weighted by the inverse of the

length of time elapsed since they were observed under the premise that the more

recent return times are more informative about the user’s current visitation behavior.

• Covariates related to user satisfaction and engagement with the service. Satisfaction

and engagement related covariates are more difficult to construct as they attempt to cap-

ture latent user emotions about the service. Such can be extracted from any explicit (likes,

dislikes, complaints etc.) or implicit (time spend, unique activities etc.) feedback indica-

tors using user past interactions. In this work, we constructed these covariates based on

user activities recorded on the last visit to the service (last In state)

– Duration: This covariate captures the time spend at the service measured by the

number of songs heard by the user.

– % Distinct Songs: This covariate measures the fraction of the number of distinct

songs listened by the users over the total number of songs listened by them.
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– % Distinct Artists: This covariate measures the fraction of the number of distinct

artists listened by the users over the total number of songs listened by them.

– % Skips: This covariate measures the fraction of the number of songs skipped by

the users of the total number of songs listened by them. The skip information is

not directly available for the Last.fm dataset. Instead, we indirectly identified skips

by comparing the gap between two consecutive songs (s1 and s2) in the data with

the length of the song s1. If the time gap was found to be less than the length of

song s1 by more than 30 seconds, then song s1 was identified to have been skipped.

The API, track.getInfo made freely available by Last.fm was used to retrieve the

duration for the songs in the dataset.

– Explicit feedback indicators: These covariates include information obtained directly

from the users such as ratings, comments, complaints etc. Explicit feedback mea-

sures tend to be highly accurate and are an important source of information about

user’s satisfaction with the service. However, they are hard to acquire as providing

explicit feedback requires user effort. We did not have any explicit feedback indica-

tors for the Last.fm dataset. We had such ratings for our proprietary dataset which

were included in the model.

• Covariates used for abstracting the effects of external factors. External factors include

public holidays and weekends, marketing campaigns and promotions or personal factors

which impact the rate of user return. The ability to model external factors is very useful

as by modeling these covariates, we can both quantify the impact of these factors and

control for these effects to improve our analysis on the other covariates. For simplicity,

we have not considered any external covariates in our experiments. However, in our

Conclusion section, we discuss how the Cox’s model can be used to model the day of the

month covariate which allows us to incorporate weekly effects and holiday effects in our

predictions.

5.5.3 Evaluation Metrics and Baselines

Different baselines are used for evaluating the performance of the Cox’s model at the regression

and the classification tasks. All baselines are implemented using the same covariates as used

in the Cox’s model. For the regression problem we compared the Cox’s model against simple
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average (trivial baseline), linear regression, decision tree regression (RepTree), Support Vec-

tor Machine (with linear kernel) and neural networks (multilayer perceptron). Support Vector

Machine Regression took too long to run (more than a day) on our large scale dataset and was

omitted in those results. The performance of the models were evaluated using Weighted Root

Mean Square Error(WRMSE). The WRMSE is computed by weighting the error between the

true return time and predicted return time with the weight of the test instance as follows:

WRMSE =

√√√√∑N
i=0w(i) ∗ (T prd(i)− Trd(i))2∑N

i=0w(i)
(5.11)

where, N is the number of test instances, T prd(i) denotes the truncated return time predicted

for the i-th observation and Trd(i) denotes the true truncated return time the i-th observation.

We can replace T prd(i) with T pfrd(i) and Trd(i) with Tfrd(i) for computing the WRMSE for the

expected future return time predictions.

Our classification baselines included logistic regression, random forest, support vector ma-

chine (with a linear kernel) and neural networks (multilayer perceptron). We used weighted

F-measure for the minority class for measuring performance at the classification task. The

weighted f-measure is defined as the harmonic mean of the weighted precision and weighted

recall scores which are defined as follows. The set A denotes the instances actually belonging

to the minority class and set P denotes the instances which were predicted to belong to the

minority class.

Weighted Precision =
sum of weights of instances in A ∩ P

sum of weights of instances in P
(5.12)

Weighted Recall =
sum of weights of instances in A ∩ P

sum of weights of instances in A
(5.13)

The experiments for the baselines were conducted using Weka, the open source data mining

software available under the GNU General Public License. The baselines were suitably tuned

using a hold out set. Also, Weka provides support for handling weighted data instances allowing

us to easily incorporate the weight vector while training the models. Since a direct application

of cross-validation would not maintain temporal ordering between observations of the same

user, for our evaluation we took special care to ensure that all recurrent data corresponding to

a user belonged to the same fold. This was done by first randomly dividing users into different

folds and then placing all observation associated with the user in that fold. As a result, the

training and testing folds had observations from different users.
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5.6 Results

In this section we analyze the results of the experimental evaluation of the Cox’s model.

5.6.1 Model Parameters

We only discuss the parameters of model trained on the Last.fm dataset.

The importance of the covariates for the prediction problem can be assessed using different

importance indicators (Table 5.1). The regression coefficients and the significance score for the

covariates can be obtained directly from the output of the R function for fitting the Cox’s model.

The regression coefficient tells us how much a unit change in the value of the covariate impacts

the user’s rate of return. For example, with every song the users listened during their last visit,

their hazard rate was found to multiply by exp(1.315e− 03) = 1.0013, decreasing their return

times estimates. The value of the coefficient was statistically significant at a significance level of

0.01. We found most of the covariates associated with the typical patterns of visitation (Active

Weeks, Density, Previous gap) to be highly significant for predicting the return time variable.

Also, some of the engagement/satisfaction related covariates, namely duration and % artists

had significant effects on the hazard rate. We also computed the mean of the product of the

covariate and its coefficient (MEAN(X ∗β)) measured for all instances in the training set. This

provided an average score for how much the covariate impacted the magnitude of the baseline

hazard function. The density covariate impacted the rate of return the most on an average for

our dataset.

Covariates Coefficient Significance MEAN(X ∗ β)
Active Weeks 9.313e-02 2.140e-02* 4.370e-01
Density 2.366e-01 1.050e-13*** 1.244e00
Visit Number 4.941e-05 7.318e-01 2.336e-02
Previous Gap -5.175e-03 1.470e-03** -1.222e-02
TWRT -1.484e-02 2.817e-01 -2.492e-02
Duration 1.315e-03 2.538e-02 * 6.171e-02
% Distinct Songs 6.849e-02 7.653e-01 6.040e-02
% Distinct Artists -2.251e-01 8.553e-02 . -1.064e-01
% Skips 3.740e-01 2.322e-01 4.873e-02

Table 5.1: Importance indicators for model covariates for the Last.fm dataset. Signif. codes: 0
‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

Figure 5.2 displays the baseline hazard function and the survival function computed for
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the training dataset from Last.fm. The baseline hazard function has a sharply declining shape

typical of processes exhibiting inertia. Hence, the longer users stay away from the service the

lesser likely they are of returning within sometime in the future. As a result, it is all the more

important for a web service to ensure that its user are motivated to return to the service soon.

The survival function has a value of 0.0009 at 60 days. This suggests that 0.09% of users for

this dataset did not return within 60 days.

5.6.2 Return Time Prediction

Table 5.2 and Table 5.3 display the weighted root mean square error scores obtained using

the hazard based approach and the standard regression based approaches for the large-scale

proprietary and the Last.fm datasets, respectively. We find that the hazard based approach is

superior in predictive performance than the other baselines and the improvements are highly

significant (p-value< 10−10, using two-tailed paired t-test). The hazard based approach also

fares well in terms of run time. On a Intel(R) Xeon(R) CPU X5650 @ 2.67GHz 24GHz, the

hazard based approach takes ∼ 8 minutes as compared to neural networks which take ∼ 16

minutes to finish one run of cross-validation. Decision tree regression (∼ 4 minutes), linear

regression (∼ 26 seconds) and average (∼ 20 seconds) are faster however, the lower run times

come at the cost of performance.

As discussed earlier, the hazard based approach allows us to compute the expected future

return time for a user given their length of absence (LOA) by incorporating the dynamics in the

hazard function. We evaluate the performance of the hazard-based approach in updating its pre-

diction given the LOA values. Since the standard regression approaches do not provide similar

functionality, we re-learn those models by incorporating the LOA values as a separate feature.

The values for this feature is generated by replicating each return time observation T, T times

for all values of LOA ranging from (0) − (T −1). The future return time is appropriately reas-

signed to range from (T ) − (1). Doing so can significantly increase the size of the dataset. The

data instances are re-weighted to ensure that each user still holds a unit weight in the test and

the training sets. Due to space limitations we only show the comparisons between two of our

baselines: decision tree regression (best performing baseline) and linear regression (because of

its ease of use), with the hazard based approach for the large-scale proprietary dataset. We find

that the hazard based approach is superior than both these models in estimating the expected

future return time (Fig.5.3).
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Training Data (10-fold Cross Validation)
Average 19.41
Linear Regression 18.54
Decision Tree Regression 18.14
Neural Networks 18.26
Hazard Based Approach 16.58

Table 5.2: WRMSE for user return time prediction using the proprietary dataset.

Training Data (10-fold Cross Validation) Test Data
Average 10.55 10.40
Linear Regression 9.61 9.37
Decision Tree Regression 9.45 9.15
Support Vector Machine 10.76 10.33
Neural Networks 9.58 9.36
Hazard Based Approach 8.76 8.45

Table 5.3: WRMSE for user return time prediction using the Last.fm dataset.

Figure 5.3: WRMSE for different values of LOA for the proprietary dataset. The units on the X-axis
have been omitted.



91

5.6.3 Classification into User Buckets

The users are classified into different categories based on their predicted return times. For the

Last.fm dataset we bucketed users based on their predicted return times being larger or within 7

days, while for the larger proprietary dataset we classified them based on their predicted return

times being larger or within 30 days. The shorter time period was used for the Last.fm dataset

due to scarcity of users in the test set that returned after 7 days. Table 5.4 and Table 5.5 provide

the performance scores for the hazard based approach and the other baselines for classifying

instances into the minority class for the proprietary and the Last.fm datasets. The proprietary

dataset had 15.4% samples and the last.fm dataset had 12.2% samples belonging to the minority

class. A naive classifier would have a precision of 0.154 and 0.122, respectively for these

datasets. All the models perform better than a naive classifier. Although, the hazard based model

is not learnt as a classification model, it still performs superior to the state-of-the-art baselines

for our proprietary dataset (p-value< 10−8, using two-tailed paired t-test) and is comparable

in performance to the best performing baselines for our Last.fm dataset. The hazard based

approach has the highest recall of all the models which seems to be at the cost of precision.

However, for a rare class problem like ours, recall at identifying most of the at-risk users is far

more important to a business and the overheads from the lower precision are low. In terms of

run time, on a Intel(R) Xeon(R) CPU X5650 @ 2.67GHz 24GHz, the hazard based approach

takes ∼ 8 minutes to finish one run of cross-validation, which is lower as compared to the

other baselines: neural network classifier (∼ 15 minutes), logistic regression (∼ 11 minutes)

and support vector machine (∼ 24 minutes). Random forest has the lowest run time of all the

models (∼ 6 minutes).

Training Data (10-fold Cross Validation)
Precision Recall F-Measure

Random Forest 0.47 0.10 0.18
Logistic Regression 0.52 0.08 0.15
Support Vector Machine 0 0 0
Neural Networks 0.48 0.17 0.25
Hazard Based Approach 0.41 0.23 0.29

Table 5.4: Weighted precision, recall and f-measure scores for the minority class (expected
return time > 30) for the large-scale proprietary dataset.

We also evaluate the performance of the hazard based approach in classifying users into
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buckets given the LOA values. Again, the classification baselines do not offer similar capa-

bilities for updating their prediction scores given LOA values. Hence, we incorporate LOA

values as an additional feature for classification and replicate instances to populate the values

for the feature as done for the standard regression methods earlier. We provide comparison

results against the best performing baseline classification approaches - logistic regression and

neural networks. We find that the hazard-based approach can incorporate the LOA information

and update its prediction much effectively as compared to both logistic regression and neural

networks (Fig. 5.4).

Training Data Test Data
Precision Recall F-Measure Precision Recall F-Measure

Random Forest 0.64 0.24 0.35 0.72 0.29 0.41
Logistic Regression 0.68 0.44 0.53 0.66 0.40 0.50
Support Vector Ma-
chine

0.61 0.11 0.18 0.82 0.15 0.25

Neural Networks 0.77 0.39 0.52 0.71 0.36 0.48
Hazard Based Ap-
proach

0.39 0.79 0.52 0.37 0.81 0.51

Table 5.5: Weighted precision, recall and f-measure scores for the minority class (expected
return time > 7) for the Last.fm dataset.

5.6.4 Sensitivity to the Threshold

The threshold (td) was set to 60 days in our experiments, which was a reasonably large value

and beyond which users are already the focus of retention efforts. For completeness, we also

evaluate our model for some smaller values of the threshold. Table 5.6 lists the performance

of the models at predicting the return time for threshold values of 15, 30 and 45 days. We find

that the Cox’s model still performs better than the other baselines at the prediction task in these

experiments (p-value< 10−8, using two-tailed paired t-test).

5.6.5 Alternative Approaches for Handling Recurrent Observations

We use a re-weighting scheme for handling recurrent observations which allows us to retain

all data instances for a user in the dataset without biasing the models towards active users.

However, we now evaluate the sensitivity of our results to our weighting schemes by considering
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(a)

(b)

(c)

Figure 5.4: Figures (a), (b) and (c) are the plots of the weighted precision, recall and f-measure scores
respectively, for different values of LOA for the large-scale proprietary dataset. The units on the X-axis
have been omitted.

alternative approaches for handling recurrent observations. Four such approaches are defined:

unweighted, using only the first observation per user, using only the last observation per user and

considering only users active on a particular date chosen randomly. The last three approaches

eliminate recurrent observations by data selection. We use Root Mean Square Error (RMSE) for

evaluation. Due to space constraints we only report RMSE results on our proprietary dataset.
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Training Data (10-fold Cross Validation)

td = 15 td = 30 td = 45
Average 6.45 11.77 16.07
Linear Regression 6.11 11.16 15.29
Decision Tree Regression 5.14 10.11 14.61
Neural Networks 5.29 10.36 15.28
Hazard Based Approach 5.04 9.54 13.41

Table 5.6: WRMSE for user return time prediction with different values of td using the proprietary
dataset.

Training Data (10-fold Cross Validation)
Un-weighted First Event Last Event Single day

Average 7.62 17.35 26.17 7.44
Linear Regression 7.33 16.80 24.96 7.08
Decision Tree Regression 7.37 16.52 24.56 6.99
Neural Networks 7.31 17.42 24.52 7.01
Hazard Based Approach 7.31 15.955 17.76 6.87

Table 5.7: RMSE for user return time prediction with alternative schemes for handling recurrent obser-
vations using the proprietary dataset.

We find that the Cox’s model outperforms the other baselines when we use only the first or

the last observation per user for training and testing the models (p-value< 10−10, using two-

tailed paired t-test). All the models have comparable performance when we use the un-weighted

scheme or work with user observations recorded on a particular day. Both these scheme also

record the lowest errors compared to the other schemes for all the models. We suspect this to

happen because both these schemes are dominated by the active users and predicting the return

time for such users is much easier. In order to investigate this further, we perform a pilot study

in which we hold out a small sample of 1000 return time observations selectively chosen to

be longer than 30 days from the proprietary dataset. The performance of different versions of

the Cox model trained using the various schemes for handling recurrent observations discussed

earlier is then tested at predicting these longer return time observations. The RMSE results are

reported in table 5.8

Test data of long return times
Weighted Un-weighted First Event Last Event Single day

RMSE 32.25 40.70 32.34 32.14 41.81

Table 5.8: RMSE for long return time prediction for different versions of the Cox model on the propri-
etary dataset.
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These results further show that both the un-weighted scheme and choosing observations

from a single day, perform poorly at predicting longer return times. Since the focus of our

methods is to find users which are not likely to return soon, these approaches may not be suitable

for our application. Furthermore, the weighted scheme offers a good trade-off between using

just the first events or just the last events per user in our model making it more suitable for our

problem.

5.7 Conclusion

Figure 5.5: The regression coefficient for time-varying covariates corresponding to the different days
of the month. The absolute values are omitted here.

In this work, we have focused on the return time performance metric for free web services.

We suggest that retention solutions driven by the projected return time of users can directly

address the heart of the problem for web services, which is to encourage their users to frequently

engage with their service. To facilitate such efforts, we formulate the problem of user return time

prediction and define several covariates relevant to the problem. The Cox’s proportional hazard

model is proposed as the model of choice for this prediction problem due to several reasons

including the ability to handle dynamics in user return rate with time and to incorporate the

LOA information. A plot of the prediction performance scores against the LOA values allows

a service to identify the right amount of gap since the user’s last visit needed to start retention

efforts. The performance of the hazard based model is found to surpass all the state-of-the-art

baselines considered by us. Finally, we find that the ability of the Cox model to quantify the

impact of several important covariates, including those related to user usage patterns, on user
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return rates to provide important insights that can guide future decision making for the service.

The Cox’s model can further accommodate several complexities of the real-world quite

well. For example, our analysis till now has been limited to static covariates. However, time-

varying covariates including those pertaining to external factors such as holiday and weekend

effects can be important for return time prediction and can be easily incorporated in the Cox

Model [146]. In our final model for the large scale music service, we incorporated the effect

of the day of the month covariate (Fig. 5.5) on the user return rates. Another direction for

future research is to account for heterogeneities among users. Several solutions exist for either

controlling for such differences between users [147] or for extracting different users segments

through clustering [148] can also be applied to the return time prediction problem.



Chapter 6

Conclusion and Discussion

Dynamic preferences of users pose a significant challenge to existing recommendation algo-

rithms. With their growing popularity, recommender systems are used on a daily basis today

necessitating the development of systems to address the constantly changing needs of their

users with relevant and high quality recommendations. The field of behavioral psychology, on

the other hand, has accumulated a huge body of literature on the psychology of preferences

dynamics. However, many of the available insights and techniques have remained limited to

controlled and restricted settings (laboratory experiments) and hence are not readily applicable

to the chaotic environment of the web. This thesis is the first of its kind to combine insights

from behavioral psychology with empirical models of user behavior using user online activity

logs. While doing so, we bring to the table unique tools, adapted from field of survival analysis

traditionally applied to biological and mechanical systems, that allow us to analyze and quantify

changes in user preferences using only their past activities. We further develop dynamic user

models to model satiation (boredom) and novelty seeking in users with good predictive perfor-

mance. Finally, we use our dynamic techniques to provide novel solutions for user retention on

the web with good results.

We view our study as a first step towards data driven development of psychological models

of preference dynamics. Like any first work in an area, this thesis leave more open question

than it answers. Here, we summarize some key directions to assist future work in this area.

1. Our work assumes that a user’s consumption of an item is independent of the other items.

However, items are seldom consumed in isolation. For example, users generally have

97
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multiple playlists of songs each of which fulfills the need for a different genre and style

of music, such as pop, rock or country. Similarly, users watch videos and movies from

different categories like comedy, drama or suspense. Such categories may again comprise

multiple sub-categories forming a natural hierarchy of item sets, which we call consump-

tion bundles, with each increasing level of the hierarchy representing smaller and more

specialized sets of items. We hypothesize that a user has multiple preference states for

an item bundle and changes its preference state for those items with time. For example, a

user may be increasingly addicted to a certain set of songs, genre of movies or topics, but

having completely saturated those categories, may later seek something new and differ-

ent. As a result, future preferences models need to be hierarchical in nature to incorporate

such dependencies between the items they recommend.

2. Our work has been limited to analyzing and modeling music preferences of users. Ex-

tending our work to other types of items introduces new challenges which we discuss

briefly. Modeling the hierarchical organization of items becomes all the more important

for extending our work to domains such as movies and books. Although users seldom

repeat the same movie, users tend to watch movies from the same genre, director, time

period etc. Such attributes of items constitute a similarity space which further facilitates

the extraction of consumption bundles showing similar dynamics in preferences. Other

domains such as clothing introduces cost of an item as another important factor in the

process of decision making not addressed in our work.

3. Classical model of recommendation largely utilize similarity to preferred items as a guid-

ing principle for their methods. In this work, we have proposed for the first time a model

of item satiation which allows us to identify items a user is bored of at the moment in

addition to the items he/she prefers in general. This provides us an unprecedented op-

portunity to explore user behavior when driven by the need to alleviate boredom. The

computational tools developed in this work can be used to address questions like - Which

artist would a user transition to when he/she is bored with Lady Gaga?

4. Recommendation and retention have classically been two disjoint areas of research. How-

ever, recommenders play an important role today in facilitating, directing and controlling

user interaction with a content provider, directly impacting their engagement and subse-

quent loyalty to the system. Furthermore, the ability to now extract user latent preference
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states of user, provided by this work, allows future analyzes to study how recommender

performance in various preference states of the user impacts user churn. We envisage

such analyzes of user retention as an extremely promising area of research with impor-

tant consequences to future recommender design.
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