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Abstract 

 The physical movement of soil materials plays a globally important role in soil 

genesis, but knowledge of the rates and patterns of these processes and their relationship 

to soil morphology has lagged behind an understanding of soil chemical processes. In this 

study, I analyze two separate problems related to physical movement in soil genesis - that 

of eroded phase soils and cryoturbated soils. In each of these cases, I circumscribe these 

genetic problems and subsequently apply meteoric Beryllium-10 (10Be) as a critical 

component of multi-tracer suites at specific study sites. 

Eroded phase soils: I first re-evaluate the general conceptual framework of soil 

production and connect it to problems of eroded soil genesis in agricultural landscapes 

underlain by unconsolidated parent materials (Chapter 1). Then, I explore factors related 

to the identification and description of eroded phase soils by analyzing the distribution of 

eroded phase soils in the SSURGO database for the Conterminous U.S (Chapter 2). 

Lastly, at a field site near the town of Cyrus in west-central Minnesota, I utilize meteoric 

10Be to derive rates and depths of total post-settlement erosion by developing numerical 

conversion models (Chapter 3).  

Cryoturbated soils: I describe the distribution of cryoturbated soils and gelic 

materials across a landscape in the central Brooks Range Alaska, a study that prompted 

the application of 10Be in a multi-tracer suite to understand physical movement processes 

in Arctic patterened ground (Chapter 4). Through the application of this tracer suite, I 

constrain rates of material movement in a non-sorted circle (NSC) near Abisko, Sweden. 

In addition to estimating movement rates throughout the NSC with other tracers, meteoric 
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10Be allows - for the first time - an estimate of the surficial residence time of cryoturbated 

parcels now in the subsurface (Chapter 5).  

The results of this work show that the application of meteoric 10Be and other 

isotopic, elemental and morphological tracers in studies of soil genesis holds significant 

promise for elucidating long-standing problems related to the physical movement of soil 

materials.  
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CHAPTER 1 

A generalized concept of soil production for agricultural lands in the Anthropocene  
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1.1. Introduction 

The development of concepts of soil loss tolerance in the 1970s-1980s was accompanied 

by the realization that little was known about rates of soil formation, in contrast to the 

extensive model development and large body of data that had been collected on soil 

erosion (McCormack et al., 1979). At the time, several types of “soil formation” 

processes were considered in the development of soil loss tolerance recommendations, 

most prominently those related to A horizon formation, particularly in the United States 

(Hall et al., 1982, Bui et al., 2011). The rate of soil formation from consolidated igneous, 

metamorphic, or sedimentary bedrock was, until the mid-late 1980s, an anecdotal enigma 

to which little data was attached. In the past 3 decades, several conceptual and technical 

breakthroughs have allowed the quantification of rates of soil formation from 

consolidated rock materials or saprolite, most notably first with the work of E.B. 

Alexander, who utilized catchment-scale weathering fluxes in outflow waters to estimate 

rates of rock weathering and soil formation (Alexander 1985, Alexander, 1988). 

Approximately 10 years later, the cosmogenic radionuclides (CRN) 10Be and 26Al were 

first applied to quantitatively estimate rates of soil formation from saprolite (termed “soil 

production”) on soil-mantled hillslopes (Heimsath et al., 1997, Heimsath et al., 2000). 

Since these landmark studies, an explosion in the quantification of CRN-derived soil 

production rates has taken place (Dixon et al., 2012, Heimsath et al., 2012, Larsen et al., 

2014).  

 This newly acquired abundance of soil production rates has led to direct 

comparisons of CRN-derived rates of soil production to the sustainability of agricultural 
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soils as balanced against measures of soil erosion (Montgomery, 2007, Verheijen et al., 

2009, Bui et al., 2011) and, thus, the central thesis that rates of soil production derived 

from CRN studies can be used to understand the sustainability of agricultural soils at 

large scales across diverse agricultural systems. This central thesis is based on implicit 

but critical assumptions: 1) that the terminology surrounding soil production is well 

defined and generalizable; 2) that a generalizable theoretical framework for the process 

and context of soil production across earth systems has been developed; and 3) that the 

surficial geology is not relevant in generalizing the concept of soil production and soil 

production function to agricultural landscapes. These three assumptions have been only 

anecdotally explored (Montgomery, 2007, Verheijen et al., 2009, Bui et al., 2011, 

Heimsath, 2014). In the following analysis we explore each of these assumptions more 

carefully, attempt to define them more explicitly, and consider the contextual meaning of 

soil production in the face of agricultural management and the consequences that this 

holds for the long-term sustainability of soils.  

 

1.2. Assumption 1: A well-defined terminology? 

Although the term “soil production” seems generally innocuous, accessible, and 

generalizable, its use can lead to confusion when applied outside of the strictly defined 

system states and framework in which empirical CRN soil production rates are derived.  

 

1.2.1 The three-tiered, three-boundary regolith-bedrock framework  

We adopt the regolith-bedrock framework of Yoo and Mudd (2008) to place other 
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definitions in context (Fig 1.1). In this idealized 3-tiered framework (3TF), regolith-

bedrock systems are represented as a three-tiered, three-boundary system, where regolith 

is defined as “the blanket of unconsolidated rock-material of whatever origin, residual or 

transported, that mantles solid rock” (Chesworth, 2008). 

 These represent a Physically Disturbed Zone (PDZ), a physically undisturbed but 

Chemically Altered Zone (CAZ), and unweathered bedrock (Yoo and Mudd, 2008, Fig 

1.1). For simplification and generalization purposes here, the CAZ is also taken to 

include any mantle of originally transported but subsequently non-physically disturbed 

regolith (i.e. thick deposits of alluvium, colluvium, eolian or glacial materials extending 

beyond the PDZ). In reality, regolith-bedrock systems may exhibit highly variable depths 

of each tier, and tiers may be missing in other cases, but the formal definition of the 

three-tiered system is flexible enough to accommodate the totality of all regolith-bedrock 

systems.  

 In its strictest definition, the PDZ/CAZ boundary (η) is characterized by the deepest 

depth of physical disturbance of regolith materials, disturbances which are caused by 

both biotic and abiotic mechanisms. Yoo and Mudd (2008) provide a definition for the 

PDZ where: 

 

!qPDZ ≠ 0

   

where qPDZ is the volume of materials crossing a unit contour line per unit time [L2 T-1], 

in this case referring only to gross movements, which is equivalent to a more general 

statement: 

 
!rm,PDZ ≠ 0    (2) 

(1) 



   

5 

 

where rm,PDZ is the displacement magnitude [L] (relative to the baseline datum so 

excluding tectonics) of an individual particle or aggregate m. 

 Using this same framework, the CAZ is defined physically and chemically: 

 
!rm,CAZ = 0    (3a) 

and 

δw,CAZ ≠ 0    (3b) 

where rm,CAZ is the displacement magnitude [L] (relative to the baseline datum so 

excluding tectonics) of an individual particle or aggregate m, and δw,CAZ is the mass loss 

of element w (the boundary is placed at the deepest depth where no detectable mass loss 

of any element can be detected, Yoo and Mudd, 2008) 

 

1.2.2 Geomorphic and pedologic uses of the term “soil” within the three-tiered 

framework  

In the literature on soil production, the definition of “soil” is most closely associated with 

the “colluvial soil mantle” or PDZ from the 3TF (Yoo and Mudd, 2008). This can cause 

confusion across general readership as this definition differs widely (in many systems) 

from the genetic-agronomic definition of soil, which is generally defined as the portion of 

the regolith that: “shows evidence of horizonation and is capable of supporting rooted 

plants in natural environments. The depths of these substrates considered soil are often 

limited to 2m in terrestrial systems for the practical purposes of survey and mapping” 

(Johnson and Johnson, 2010, including definitions from Soil Survey Staff, 1993 and Soil 
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Survey Staff, 1999). 

 With respect to genetic horizons, the geomorphic definition of “soil” (the colluvial 

soil mantle or PDZ) typically includes at least A horizons and may or may not include 

portions of genetic Bt or Bw horizons (Yoo and Mudd, 2008). Other examples include 

spodosols in Upper Michigan and the Czech Republic where the PDZ is generated by 

return cycles of tree throw and include the Bhs or Bsm horizons (Samonil et al., 2013). In 

old, well-mixed tropical soils with large termite populations, the PDZ may extend well 

into C horizons or past traditional definitions of soil depth (Morras et al., 2009). The 

examples above have included only biotic mechanisms of soil disturbance, but is also true 

for abiotic mechanisms, particularly those due to differential frost heave and 

cryotrubation in permafrost-affected soils, where mixing includes material from O, A and 

Bg horizons (Jelinski, 2013).  

 

1.2.3 Formal definition of the term “soil production” with reference to 3TF 

Thus if we adopt an idealized 3TF such as that at Tennessee Valley, CA, where the soil 

production rates were first empirically quantified with CRN (Heimsath et al., 1997, Yoo 

and Mudd, 2008), then “soil” in the term “soil production” is equivalent to the PDZ and 

includes the well-mixed (bioturbated) genetic A horizon overlying saprolite. “Soil” 

thickness in this case is equivalent to PDZ thickness, and the soil production function 

being quantified is the downward migration (with reference to the arbitrary datum z=0) of 

the lower PDZ boundary (η):  

p = − ∂η
∂t    (4) 
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where p is the soil production rate [L T-1], (downward migration of the boundary results 

in a positive soil production rate) with the additional constraints of steady-state PDZ 

thickness:  

∂hPDZ
∂t

= 0
, so that 

∂η
∂t

= ∂ζ
∂t     (5) 

 

therefore, most frameworks imply that the migration of the PDZ is uni-directionally 

downward:  

∂η
∂t

< 0
   (6) 

which, under steady-state assumptions, also implies no upbuilding processes (relative to 

the arbitrary datum, so excluding tectonics) such as volumetric expansion or the 

deposition of eolian, colluvial, alluvial or glacially derived materials: 

∂ζ
∂t

< 0
   (7) 

 The final constraint is that the CAZ is composed of non-transported (saprolitic/residual) 

material. 

 This specialized and highly technical definition is inadvertently but unfortunately 

attached to the seemingly accessible term “soil production”, and thus is the cause of 

confusion when extrapolated without regard to the underlying conceptual framework. 

Unresolved questions arise from this realization, such as: what is the meaning of soil 

production for regolith-bedrock systems characterized by deep unconsolidated sediment 
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materials?  

 

1.3. Assumption 2: A generalizable conceptual framework? 

As described above, the process of soil production, in its central concept, is ultimately 

defined by the physical incorporation of regolith materials into the colluvial soil layer or 

Physically Disturbed Zone (Fig 1.1). Thus, the PDZ-CAZ boundary definition (η) 

becomes a critical factor in the generalization of the central concept of soil production. 

Here, we develop a generalizable mechanism describing how the PDZ-CAZ boundary is 

set by the combination of material strengths and disturbance stresses that independently 

vary with depth. This mechanistic view highlights the notion that consideration of 

surficial geology is critical in constraining the applicability of CRN-based soil production 

rates and soil production function in agricultural landscapes.  

 

1.3.1 Initial assumptions 

According to mechanical concepts of material strength, applied stresses, and failure 

theories (Holtz, 2010), we provide four initial assumptions about the regolith system in 

order to proceed with the definition: 

1. The regolith fabric (solid material component) is idealized as a highly complex but 

rigid, unified body composed of planes of weakness between individual particles or 

aggregates. These particles are tortuously connected, and variously cemented or non-

cemented.  

2. The regolith fabric is idealized as failing in a brittle manner across planes of weakness 
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between individual particles or aggregates. 

3. Only linear displacement is considered. Angular displacement (rotation) is not 

considered as disturbance.  

4. For transported regolith materials, the initial movement in transport is not considered a 

disturbance. Disturbances considered must be cyclical or have at least a theoretically 

definable return frequency (below). 

 Under these assumptions, we define failure of the soil fabric along a plane of 

weakness (and hence linear displacement) as occurring when one of the three major 

applied stress components (σC – normal compressive stress, σT – normal tensile stress, or 

τ – shear stress) from a disturbance mechanism exceeds the material strength (here 

defined as the ultimate compressive, tensile or shear test strength, due to assumption of 

brittle failure mechanism), so that failure and linear displacement occurs whenever: 

τmax > SUSS
OR
σ C ,max > SUCS
OR
σ T ,max > SUTS                 

where τmax is the maximum applied shear stress, σC,max is the maximum applied normal 

compressive stress, σT,max is the maximum applied normal tensile stress, and SUSS, SUCS, 

and SUTS are the ultimate shear, compressive and tensile strengths, equivalent to failure 

stresses for brittle failure mechanisms (Holtz, 2010). Maximum applied stresses are 

necessary here because only a single event which satisfies eqns 8a-8c is necessary for 

failure under the assumptions above, and other metrics (such as average applied stresses 

over a certain time period) would not adequately capture failure-producing stresses in 

(8a) 

(8b) 

(8c) 
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some cases.   

 

1.3.2 Definition 1 - Disturbance-threshold definition 

In the following formalized definition of the PDZ, we focus on soil disturbance 

mechanisms, without implying any specific form or direction of material movement (i.e. -

turbation, lateral flux), actors (bio-turbation), or material type (pedo-).  

 We begin with the case of a 1-dimensional profile discretized into I depth 

increments [L] of length Δz, which we observe over J discretized time increments [T]. At 

each time increment, we assign a binary score to a matrix U: 

Uij =
1 if τmax > SUSS  OR σ C ,max > SUCS  OR σ T ,max > SUTS
0 if τmax < SUSS  OR σ C ,max < SUCS  OR σ T ,max < SUTS

⎧
⎨
⎩     (9) 

for depth increment i and time increment j. We then populate a binary matrix: 

 

U11 … U1 j

! " !
Ui1 # Uij

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

and define a disturbance frequency-depth distribution: 

fi =
Uij

j=1

J

∑
J     (10) 

where ƒi is the disturbance frequency [T-1] for depth increment i.  

Then, in the strict interpretation, the PDZ/CAZ boundary η is defined: 

η = minz , fi  where fi > 0       (11a) 

where η, then represents the lowest depth (minz) where fi meets the defined criteria. In 
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practice, however, it may be necessary to define a low frequency threshold (α), instead of 

0 for fi, below which disturbance can be considered negligible compared to overlying 

layers so that the PDZ/CAZ boundary (η) is the lowest depth where: 

η = minz , fi  where fi >α    (11b) 

where minz, fi represents the lowest depth (minz) where fi meets the defined criteria. 

Over a 2-dimensional area of study, then, we have a population of 1-dimensional profiles 

(χtot), the average of which is the average PDZ depth (by definition 1) across 2-

dimensional space.  

η =
ηχ

χ=1

χtot

∑
χ tot     (12) 

where ηχ is η evaluated at profile χ and χtot is the total number of profiles evaluated in 2-

dimensional space. 

 The process of disturbance of the regolith to incorporate it into the PDZ (the central 

concept of soil production) is therefore the result of three factors: 1) the depth profile of 

the material strength of the soil body (or individual components – aggregate, etc.), 2) the 

depth profile of applied stress (by disturbance mechanisms) and 3) the timescale of 

observation. Because this binary definition depends only on frequency, however, high-

magnitude low-frequency disturbance events are not separated from low-magnitude, low-

frequency events and may be missed if α is set too high. Nonetheless, these types of 

events (i.e. tree throw) can be critical for determining PDZ depth, soil genesis and 

sediment production (Walther et al., 2009). Thus, we develop a second operational 

definition of the PDZ, where we consider net particle movement, below.  
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1.3.3 Definition 2 – Mixing-threshold definition 

We present a second definition of the PDZ/CAZ boundary (η) based on displacement or 

mixing velocities, starting from the net linear displacement of idealized individual 

particles, to particle populations and depth-distributions of mixing velocities.  

By our initial assumptions and definitions above, a disturbance must be associated with a 

linear displacement. For an individual particle or aggregate m, the net displacement 

magnitude in any timestep is:  

rm,ij = (x f − xi )
2 + (yf − yi )

2 + (z f − zi )
2

   (13) 

where rm,j is the displacement magnitude [L] (representing net displacement because time 

is discretized) for particle m originating in depth increment i and time increment j and xf, 

xi are the final and initial positions of particle m (same for y and z dimensions).  

We make an additional assumption that soil properties are perfectly homogenous in a 

direction parallel to the ground surface (i.e. the soil properties are controlled by horizon). 

In that case, mixing in properties is accomplished only by the component of the 

displacement vector that is normal to the ground surface rn, which in the simplest case of 

a flat surface is rz.  

 For a population of individual particles or aggregates (Mtot) originating in depth 

increment i, a mean displacement magnitude normal to horizon planes over time period j, 

termed the “average mixing magnitude” [L] can be determined where: 

rn,ij =
rn

m=1

Mtot

∑
Mtot     (14) 
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where rn,ij is the average mixing magnitude [L] for the population of particles originating 

in depth increment i over time increment j. 

 Then, the average mixing velocity [L T-1] for particles originating in depth 

increment i over the total time of observation J can be determined: 

νn,i =
rn,ij

j=1

J

∑
J      (15) 

Plotting vn,i on a 1-dimensional depth distribution as with fi, above, will separate high-

magnitude/low-frequency events from low-magnitude/low frequency events, and α can 

be set with more confidence as low frequency events with low mixing displacements will 

be negligible.  

 

1.3.4 Predictions and system types  

Matshushi et al. (2008) developed a conceptual framework for the description and 

prediction of temporal-mechanical relationships for central-concept three-tiered systems 

based on the propagation of a weathering front and subsequent shear strength reduction. 

In the Matsushi model, the initial strength value of the surficial material is constant and is 

considered the failure (termed “erosion”) threshold, which is a set value.  

 Here, we extend this and define at any depth (z) or depth increment (i) the threshold 

for mechanical failure as a function of both the applied stress profile of the disturbance 

mechanisms at work in the soil (Fig 1.2). This can be used to understand predictive 

models of PDZ thickness. Based on the definitions above, we can define a theoretical 
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maximum applied stress envelope over time period t=0 to t=J (below shown just for the 

case of shear, but valid for normal stresses (compressive and tensile) as well which are 

characteristic of the disturbance mechanism at work over the period of observation: 

τmax,i = max j ,τmax,ij     (16) 

where maxj, τmax,ij is the maximum value of τmax across all time periods j at depth 

increment i. 

 Next, we define theoretical material strength curves, which, for a predictive model 

can be represented by the material strength curve at time J: 

 SUSS ,i = SUSS ,iJ     (17) 

 The lower depth of the PDZ (η) defined as in section 3.2, above, is determined by 

the intersection of the material strength profile and the maximum applied stress profile 

for each type of stress/strength relationship (i.e. tensile/shear/compressive - Fig 1.2). This 

mechanism, regardless of material context, determines the depth of the colluvial soil 

mantle or PDZ. The result of this conceptual framework is that material strength and 

disturbance mechanisms interact in all systems, regardless of material context, to 

determine the depth of the colluvial soil mantle or PDZ.  

 For the purposes of predictive models, we define systems as strength-limited and 

mechanism-limited. The maximum applied stress and materials strength (for the case of 

shear) at the lower PDZ boundary (η) are τmax,η and SUSS,η, respectively. In a strength-

limited system the downward migration of the PDZ boundary (z=η) is limited by the 

strength of the material below (z=η+Δz) and requires strength reduction to proceed (Fig 

1.2C): 



   

15 

τmax,η < SUSS ,η+Δz  and  τmax,η+Δz < SUSS,η+Δz    (18) 

 

In contrast, in a mechanism-limited system, the downward migration of the PDZ 

boundary is limited only by the depth that the applied stress reaches (Fig 1.2A) even 

though the stress at the depth of η may exceed the material strength at the depth of η+Δz: 

τmax,η > SUSS ,η+Δz  and τmax,η+Δz < SUSS,η+Δz    (19) 

 Based on our definitions - in contrast to “central-concept” strength-limited systems 

- in mechanism-limited systems PDZ depth is constrained solely by depth of stress 

propagation by disturbance mechanisms at work in the soil. In this case, PDZ thickness 

will keep pace with high magnitude surficial removals as long as the disturbance 

mechanism continues to propagate downward with the same maximum applied stress 

envelope. Alternatively, the PDZ can be thickened with a change in mechanism that 

extends deeper into the regolith. The major advantage of this generalized approach is that 

we are not restricted to evolving, steady-state hillslopes, but can apply this definition 

across soil and regolith-bedrock systems. 

 

1.4. Assumption 3: Materials context of agricultural lands 

Placing CRN-derived soil production rates into context and utilizing them to determine 

the sustainability of soils has resulted in a number of statements where authors clearly 

recognize the limitations in the systems that these may apply to: 

 

 “In evaluating the long-term effects of agricultural soil erosion, 
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there is a fundamental difference between floodplain agriculture, where 

annual flooding refreshes mineral soils, and upland agriculture, where 

soils gradually thin and lose productivity as soil erosion outpaces soil 

production.” 

- Montgomery (2007, p. 13268-13269) 

 

This statement implicitly ignores upland agriculture in deep unconsolidated materials, 

where the entrainment of material from below as the PDZ migrates downward also 

refreshes soils.  

 

 “[The]…assumption is that “natural” soil erosion rates equate to 

soil formation rates. This implies a meta-stable situation where all soils 

are in dynamic equilibrium in terms of quantity (mass/volume). Clearly, 

young soils or any soil that could accumulate under current conditions, 

and thereby improve the soil regulation, production, and habitat 

functions, would not be in dynamic equilibrium. Nevertheless, soil 

formation rates form the best basis upon which to establish tolerable 

rates of soil erosion.” 

- Verheijen et al. (2009, p. 26) 

 

“In-theory, at equilibrium or when a steady-state balance exists in a 

landscape, the net rate of erosion is equal to the rate of soil 
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formation…although steady-state assumptions do not hold over all 

landscape settings, deviations have limited influence on results…”  

    - Bui et al. (2011, p. 140) 

 

This statement mixes the imprecise term “soil formation” with central concepts of soil 

production, and discusses only whether or not steady-state assumptions hold – which 

does not address materials context issues. 

 Nonetheless, in all of the above studies, CRN-derived soil production estimates 

were applied to a wide range of agricultural lands balanced against soil erosion to 

understand the sustainability of agricultural soils. The intense interest in applying CRN-

derived soil production rates to agricultural soils, begs the question of understanding the 

materials context of agricultural lands in particular. Below, we evaluate the materials 

context of agricultural lands at three spatial scales: regional, continental and global. 

  

1.4.1 Regional context example: Depth to bedrock of cultivated lands in Minnesota and 

Iowa 

Together, Minnesota and Iowa contain > 13% of cultivated area in the continental U.S. 

(USDA-NASS, 2013) and, except for the Paleozoic Plateau or Driftless Area (Prior, 

1991) of southeastern Minnesota and northwestern Iowa, are broadly characterized by 

landscapes on deep deposits of transported eolian, alluvial and glacial drift (Sollins et al., 

2009). We estimated the distribution of cultivated lands in the region across differing 

depths of unconsolidated deposits by utilizing the 2012 National Cultivated Layer 
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(USDA-NASS, 2013) and depth to bedrock layers from the Minnesota and Iowa 

Geological Surveys (Fig 1.3, Table 1.1). Assuming that any residual saprolite was 

stripped from the landscape during repeated cycles of glaciation and glacial erosion, the 

depth to bedrock indicates the depth of unconsolidated materials from the land surface. 

This analysis revealed that > 90% of the cultivated lands in this region are underlain by 

transported, unconsolidated sediments > 10m thick (Fig 1.3, Table 1.1). 

 

1.4.2 Continental context example: Surficial material type in the conterminous U.S. 

To evaluate the relationship between croplands and surficial materials continental US, we 

utilized the Map Database for Surficial Materials in the Conterminous United States 

(Soller et al., 2009) and classified individual materials categories into those that were 

most likely to be characterized by consolidated and unconsolidated parent materials. All 

surficial materials mapped as “residual”, “patchy”, or “exposed rock” were classified as 

landscapes characterized by consolidated materials, while all other material categories 

(including “colluvial”, “alluvial”, “glacial” and “eolian” materials) were classified as 

landscapes characterized by unconsolidated materials (Fig 1.4, Table 1.1).  

 We then utilized the 2013 national cultivated layer dataset (USDA-NASS, 2013), to 

analyze the materials context of cultivated lands. Spatial patterns of agricultural lands in 

the United States generally follow the distribution of unconsolidated parent materials 

(glacial materials, alluvium or colluvium in valleys) with a smaller proportion of 

agricultural lands on consolidated parent materials (Fig 1.4). When pixels mapped as 

potentially consolidated materials at the national scale were matched to those at the 
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regional scale, above we found that our estimate of large-scale estimate of consolidated 

materials accounted for regional croplands with depth to bedrock ~ 5m (Fig 1.4, Table 

1.1), so it is likely that even this analysis is conservative.  

 

1.4.3 Global Context: Croplands and Topographic Ruggedness Index (TRI) 

Due to the paucity of spatial data on the distribution of surficial materials or depth to 

bedrock at a global scale, we evaluated the distribution of global croplands with respect 

to the topographic roughness index (TRI). In doing so, we made a reasonable assumption 

that highly rugged regions are likely to be characterized by consolidated materials, while 

low-gradient landscapes are most likely to be characterized by unconsolidated materials. 

We utilized global TRI spatial data from Gruber (2012), where after Gaussian 

convolution, TRI was derived from a global DEM as: 

TRI = ln(max(z)−min(z)
A

*100)
   (20) 

where z is surface elevation and A is the total area of a 5x5 pixel neighborhood (Gruber, 

2012). 

 We followed Gruber (2012) and utilized 5 categories of TRI corresponding to Flat 

(TRI 0-1.5: e.g. Central California Valley, Southeastern U.S. Coastal Plain), Undulating 

(TRI 1.5-2.5: i.e. Eastern U.S. Piedmont, Palouse Hills), Hilly (TRI 2.5-3.5: i.e. Ozarks), 

Mountainous (TRI 3.5-4.5: i.e. Central Appalachians, Sierra Nevada) and Rugged (TRI > 

4.5: i.e. Central Rockies, Olympic Mountains) landscapes. Categorizing familiar example 

landscapes to TRI class confirms our assumption that landscapes in the two lowest TRI 

classes are highly likely to be characterized by unconsolidated materials, while those 
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landscapes falling into the Hilly, Mountainous and Rugged classes are highly likely to be 

characterized by consolidated materials.  

 We then reclassified a probabilistic global croplands data layer (Ramankutty et al., 

2008) into a binary layer by reclassifying all pixels in the original data with > 50% 

probability of being cropland as cropland and all pixels with < 50% probability as non-

cropland. The results of our analysis show that over 84% of global croplands fall into the 

lowest two TRI categories (Fig 1.5, Table 1.1), meaning they are highly likely to be 

characterized by unconsolidated materials. The remaining 16% of global croplands are in 

the upper three TRI classes and likely to be characterized by consolidated materials (Fig 

1.5, Table 1.1). Broad trends in continental distributions of croplands by TRI class are 

generally consistent except for Australia/Oceania, which have a high proportion of 

croplands in TRI class 4 due to mountain agriculture in Indonesia. Other global regions 

of mountain agriculture lie across the Mediterranean and North Africa, as well as the 

Ethiopian and Mexican highlands (Fig 1.5). Nonetheless, on a global scale, these are of 

minor importance in spatial extent relative to the intensively cultivated but flat or 

undulating landscapes of the North American Great Plains, the European and Asian 

Steppes, the Indus and Ganges floodplains, the Argentinian Pampas, and other similar 

landscapes (Fig 1.5). 

 Taken together, the results of our analysis at multiple spatial scales suggests, at the 

very least, that the majority of global agricultural lands are characterized in landscapes 

underlain by unconsolidated materials (sometimes extremely deep) that do not fit well 

into the central concept of soil production, as defined. The PDZ depth in most of these 
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landscapes, is most likely mechanism and not strength limited, based on our previous 

definitions. At the very least, these results suggest caution in the sweeping, widespread 

application of CRN-derived soil production rates, or at least the restriction of the 

application of these rates to problems of soil sustainability to appropriate geographic 

areas. 

 

1.5. Discussion and conclusions 

The geomorphic central concept of soil production and the ability to quantify it with CRN 

relies heavily upon specific assumptions in systems underlain by consolidated bedrock. 

Nonetheless, the desire to extend the results of CRN-derived soil production to 

understand the sustainability of soils across global agricultural systems has resulted in the 

application of these concepts well outside of the realm of systems for which they were 

initially intended.  

 There is considerable room to consolidate existing research on all aspects of PDZ 

thickness processes in agricultural settings and cast them in a unified, coherent 

geomorphic context such as that presented in this work. It is likely that most agricultural 

systems are mechanism limited, and that weathering is relatively unimportant for PDZ 

thickness maintaining processes, which may deepen through tillage disturbance at the 

same rate as removals (Fig 1.6A). In systems approaching strength limitation, however, 

changes in weathering rate may be extremely important in understanding long-term 

sustainability (Fig 1.6B). 

 Agricultural systems are geomorphically unique because they are characterized by 
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strong erosive forcing, large-magnitude short-scale volumetric change due to tillage, 

enhanced rates of chemical weathering and nearly instantaneous mixing. Physical 

denudation through surficial erosion rates in conventional agricultural systems tends to be 

orders of magnitude greater than in natural systems (Montgomery, 2007), Due to tillage 

management and machinery considerations, agricultural management has a significant 

effect on soil bulk density and volumetric change. These seasonal effects are dependent 

upon tillage management, but can account for changes in bulk density of 16-25% in the 

upper soil (Aikins and Afuakwa, 2012). There is significant evidence that agricultural 

management, with intense physical management and fertility maintenance through 

nutrient additions has an effect on weathering rates at a mineral scale (McGahan et al., 

2003). In agricultural systems approaching strength limitation, changes in weathering rate 

may be extremely important in understanding the long-term sustainability of the colluvial 

soil mantle (Fig 1.6B).  

 Nonetheless, we suggest that based on our analyses future studies must be very 

explicit about defining soil production and decide whether or not it applies to the systems 

under consideration. We caution against using blanket meta-analyses which balance 

erosion and production data to make conclusions about soil sustainability on large scales. 

Instead, measurements of sustainability need to be more broad and inclusive (and models 

more nuanced) if we are to accurately predict the future outcomes of soil sustainability in 

conventional agricultural systems. Recently, advances have been made in deconfounding 

concepts of singular values for tolerable erosion rates to multiple values that each focus 

on a separate goal (maintenance of colluvial soil mantle thickness, maintenance of crop 
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productivity, and reduction of off-site impacts) (Li et al., 2009). Work on tolerable 

erosion rates has not progressed significantly over the last 3 decades (Li et al., 2009, Bui 

et al., 2011), but it is time that more focus is given to defining these rates more 

quantitatively so that spatial information on the sustainability of agricultural systems can 

be harnessed and evaluated at large scales. This will begin with clarifying and properly 

utilizing the fantastic advances in the measurement of soil production and soil thickness 

processes from the geomorphic community and critically evaluating its meaning and 

magnitude in a range of agricultural systems. 
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Regional: Cultivated Lands in Minnesota and Iowa 
Depth to Bedrock Total (km2) Percent (%) References 

0 - 1 m 6,305 3.5 Minnesota Depth to Bedrock: Olsen, 
B.M. and J.M. Mossler (1982); 
Iowa Depth to Bedrock: Witzke et al. 
(2010); 
Cultivated Lands: USDA-NASS 
(2013) 

1 - 2 m 2,028 1.1 
2 - 5 m 8,814 5.0 
5 – 10 m 18,576 10.4 
10-50 m 36,750 20.7 
50-100 m 51,841 29.1 
> 100 m 53,610 30.1 
Total 177,923 100.0  
    

Continental: Cultivated Lands in the Continental U.S. 
Surficial Materials Total (km2) Percent (%) References 

Unconsolidated 1,084,589 81 Surficial Geology: Soller et al. 
(2009) 
Cultivated Lands: USDA-NASS 
(2013) 

Consolidated 254,409 19 

Total 1,338,999 100  
    

Global: Cultivated Lands 
TRI Class Total (km2) Percent (%) References 

0 - 1.5 – Flat 6,333,390 54.7 Topographic Ruggedness Index: 
Gruber (2012) 
Croplands: Ramankutty et al. (2008) 

1.5 – 2.5 – Undulating 3,484,442 30.1 
2.5 – 3.5 – Hilly 1,298,732 11.2 
3.5 – 4.5 – Mountainous 44,569 3.8 
> 4.5 – Rugged 19,689 0.2 
Total 11,581,941 100  

Table 1.1. Materials and geomorphic context of agricultural lands at multiple scales. 
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Figure 1.1. Representation of the three-tiered regolith-bedrock system (adapted from Yoo and Mudd, 
2008). Following conventions, d is defined as positive up, while p and Φ are positive down. In the 
generalized form, both d and p are bi-directional, while Φ is uni-directional. 
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Figure 1.2. Hypothetical interactions between material strength and applied stresses for predictive models 
of PDZ depth and limitations to PDZ thickness. 
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Figure 1.3. Regional distribution of croplands and depth to bedrock (thickness of unconsolidated materials) 
in Minnesota and Iowa, U.S.A. Inset: cropland distributions with depth to bedrock, black dotted lines = 
95% inclusion. Data from Olsen et al. (1982) and USDA-NASS (2013).
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Figure 1.4. Distribution of croplands in relation to consolidated and unconsolidated surficial materials in 
the conterminous U.S. Inset: Histograms of material type for total land area (L) and croplands (R), UC = 
unconsolidated, C = consolidated. Data from Soller et al. (2009) and USDA-NASS (2013).



   

29 

 
 

 
 
Figure 1.5. Global distributions of topographic ruggedness index (TRI) classes (grayscale) and TRI classes for croplands (color). Index histograms show 
normalized class distributions by continent. Data from Gruber (2012) and Ramankutty et al. (2008).
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Figure 1.6. Examples of geomorphic and materials context of global agricultural lands. (A) Annually tilled uplands of central Iowa, U.S.A. – depth of 
unconsolidated material > 50m, topographic ruggedness index (TRI) < 1. (B) Bi-annually tilled uplands of the West Usambara mountains, Tanzania – depth of 
unconsolidated material < 1m, TRI ~ 4.
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CHAPTER 2 

The Distribution and Genesis of Eroded Phase Soils in the Continental United States 
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2.1. Introduction 

The study and mapping of eroded soils as a unique pedological entity is a complex but 

important task in understanding the connections between land-use, erosion severity and 

crop productivity across a wide range of scales (Larson et al., 1985). Information on the 

distribution and severity of eroded soils has been used to predict the response of crop 

yields to soil erosion (Bakker et al., 2004), sediment yields (Trimble, 1975) and past 

land-use histories (Richter and Markewitz, 2001). However, the description, 

identification, classification and mapping of eroded soils is a complex activity requiring 

multiple levels of abstraction (Soil Survey Division Staff, 1993). Mapping erosion 

prevalence and severity has been a major focus of the United States soil survey, which 

was uniquely poised to do so because survey activities took place within a reasonable 

timeframe after the conversion of largely natural landscapes to intensive agricultural 

land-use in the Continental U.S. following European Settlement (Miller et al., 1985). The 

description and classification of eroded phase soils require an impressive, broad-scale 

understanding and integration of soil-landscape relationships and pedon morphologies 

(Olson, 1987) and thus represents a significant effort of lasting value.  

 

2.1.1 Terminology and classification of eroded phases in soil survey  

Critical terminology for interpreting the distribution of eroded phase soils is the 

distinction between erosion types, erosion classes, and erosion phases. Only erosion 

phases are ultimately identified and delineated as discrete map units, but erosion types 

and classes are closely related to phase and are integral to phase development and 
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identification in most cases.  

 Erosion types or kinds refer to recognizable features that indicate ongoing erosive 

processes. These types are grouped into water-generated types (sheet, rill, gully, and 

tunnel), wind-generated, and colluvial (landslips, i.e. mass movement). The erosion types 

represented in the U.S. soil survey (Soil Survey Division Staff, 1993) are a subset of the 

globally recognized types of erosion (Zachar, 1982), and represent those which have the 

greatest effect on soil properties and management over human timescales in the 

continental U.S. Tillage is an important mechanism of erosion that can cause extensive 

soil loss in some landscapes (Li et al., 2007) but was not emphasized in the U.S. soil 

survey because the effects include both material removal and extensive mixing, which in 

the short-term results in less dramatic morphological modification than water, wind or 

gravity-driven erosion. Nonetheless, in some landscapes, tillage erosion can account for 

soil loss on the same order of magnitude as that from water or wind erosion (Papiernik et 

al., 2005). 

 Erosion classes are an estimate of the degree to which surficial accelerated 

erosion (i.e. excluding landslip and tunnel types) has removed material from the upper 

horizons of the soil profile. Class 1 is defined as having lost < 25% of original A and E 

horizons (or of the upper 20cm if the original A/E were < 20cm), Class 2 has lost 25-75% 

of the same increments, Class 3 has lost > 75% and Class 4 has lost 100% or more of the 

original (Soil Survey Division Staff, 1993). Erosion classes are generally related to 

erosion types. For example, typical evidence of class 1 may be a few rills, an 

accumulation of sediment at the base of slopes, small areas where the plow layer contains 
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subsurface material, some widely spaced rills or gullies without a measurable reduction 

in thickness between the features. Erosion classes 3 and 4 may be extensively 

characterized by gullying (Soil Survey Division Staff, 1993). 

 Erosion phases (as with other phase designations in soil survey) are recognized on 

the basis of differences in potential use, management or performance. Therefore, an 

eroded phase is recognized only if the properties of the soil material that remains changes 

one of these interpretations for the purposes of the survey at hand (Soil Survey Division 

Staff, 1993). Under these definitions, therefore, there is no prescribed erosion type or 

class that is required to delineate a particular erosion phase. However, erosion classes and 

phases are generally closely linked because most soils have a large number of physical 

and chemical properties affected by erosion (Larson et al., 1985). There are 3 recognized 

water erosion phases (slightly eroded, moderately eroded and severely eroded) and 2 

erosion phases specific to wind (eroded (blown) and severely eroded (blown)). 

Additionally, gullied phases are named only when gullies occupy < 10% of the map unit. 

When gullies occupy > 10% of the map unit, no phases of existing soil series are utilized 

and the map unit is instead named as a complex or association of soil and gullied land 

(Soil Survey Staff, 1993).   

 Slightly eroded phases are not distinguished from uneroded areas in most surveys, 

but represent a situation where the soil properties have changed to require a slight 

modification of management. Slightly eroded phases are generally associated with Class 

1 erosion. Moderately eroded phases (or just eroded phases in most surveys) have 

undergone changes in soil properties that result in major differences in management or 



   

35 

management response and are generally associated with Class 2 erosion. Severely eroded 

phases require a change in land use intensity, extensive reclamation or property 

restoration efforts, significantly reduced productivity or major engineering limitations. 

Severely eroded phases are generally associated with some gullying and class 3 erosion. 

Eroded (blown), or moderately wind eroded phases are those map units where 

management but not suitability differs from that of the uneroded soil. Severely wind 

eroded (severely blown) phases are characterized by both accumulations, removal and the 

shifting of soil materials around the area, which have caused differences in suitability in 

the absence of extensive reworking or extensive management (Soil Survey Division Staff, 

1993). 

 The purposes of this study were to (i) determine the extent and spatial distribution 

of eroded phase soils in the continental U.S., (ii) examine the relationship between the 

mapping of eroded phase soils by political boundaries, physiographic boundaries, and 

currently cultivated lands, (iii) redefine and clarify the terminology used to describe, 

classify and map eroded phases of soils with reference to the Soil Survey Manual, (iv) 

discuss the factors related to the genesis of eroded phase soils as defined and (v) to revisit 

the implications of eroded phase soils and the importance of mapping efforts. 

 

2.2. Methods and Data Sources 

 The SSURGO database (Soil Survey Staff, 2014) was utilized in state tiles to map 

the distribution of eroded phase soils in the continental United States. State databases 

were mined for SSURGO polygons containing the word "eroded" (case insensitive), 
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indicative of eroded phase map units and “gullied” (case insensitive), indicative of 

gullied phases or complexes using standard SQL queries in ArcGIS 10.2. Severely eroded 

polygons were extracted from the database by querying the subset of map units 

containing the word “eroded” with the word “severe*” (wild card, case insensitive).  

 The intersection of eroded polygons and cultivated/uncultivated pixels in the 2013 

National Cultivated Layer (USDA-NASS, 2013, 30m resolution) was used to determine 

the extent of eroded soils on currently cultivated and uncultivated lands. The 2013 

National Cultivated Layer is a binary (cultivated or uncultivated) spatial raster dataset 

generated by combining the previous five years (2009-2013) of the USDA-NASS 

Cropland Data Layer (CDL). If a pixel was cultivated in at least two of the previous five 

years it was assigned to the cultivated class (USDA-NASS, 2013). Checks on land area 

and land area standards utilized data from the U.S. Census Bureau (U.S. Census Bureau, 

2010).  

 In addition to state boundaries, the boundaries of Level 3 Ecoregions (USEPA, 

2013) were utilized to understand broad geographical patterns in eroded phase soils, and 

the relationship of these soils to currently cultivated lands in various physiographic 

settings. Eighty-five EPA Level 3 Ecoregions are delinated in the continental United 

States based on consistent patterns in biotic and abiotic phenomena, and are of an 

appropriate scale for regional analysis (Omernik, 1995). EPA Level I, II and IV 

Ecoregions were determined to be too coarsely or finely delineated to yield scale-

appropriate regional results in this analysis.  

 A global 30-arc second resolution raster of terrain ruggedness (Gruber, 2012) was 
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utilized to determine the average Terrain Ruggedness Index (TRI) for each region as a 

measure of topographic heterogeneity. Topographic ruggedness index is a scaled version 

of a neighborhood area normalized elevation difference (Melton, 1965, Gruber, 2012) 

and can be used to broadly classify global landscapes into flat (TRI = 0 – 1.5), undulating 

(TRI = 1.5 – 2.5), hilly (TRI = 2.5 – 3.5), mountainous (TRI = 3.5 – 4.5) and rugged (TRI  

> 4.5). In relation to well known global landforms, the flat class encompasses regions 

such as the Ganges-Indus Plains and the Hudson Bay Lowlands, the undulating class to 

the Piedmont and non-glaciated Northern Plains of the U.S., the hilly class to portions of 

the U.S. Midwestern Driftless Area, the mountainous class to most of the Appalachian 

and Rocky mountains, and the rugged class to the most extreme core of the Canadian 

Rockies, Brooks Range, Alps, and Himalayas.  

 Polygon map unit names in each state (Table 2.1) were combined to determine the 

total number of unique eroded map units (inclusive of slope class and additional phase 

names (i.e. stony/rock/etc) for each named series). The series names for each map unit 

(and the first named occurring series in a complex) were extracted and queried against the 

Official Series Description Database (Soil Survey Staff, 2014). These series names were 

compiled and analyzed for family textural classifications and taxonomy. To determine 

examples of mapping criteria for eroded soils at the county level, published and archived 

soil surveys (ranging in age from 1958 - 2005) were mined for representative series in 

which an uneroded and eroded profile were described in the same county.  

 The distribution of erosion classes in the Dust Bowl county surveys of Joel (1937) 

was analyzed in relationship to eroded phase soils in the SSURGO database, using 
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digitized maps created from the original hand-drawn products by the Historical GIS Lab 

at the University of Saskatchewan (Cunfer, 2011). The 85 erosion class combinations in 

the Dust Bowl survey (Joel, 1937) were generalized into the following classes (Removal: 

Water only, Removal: Wind only, Removal: Wind and Water, Removal and 

Accumulation: Predominantly removal, Removal and Accumulation: Predominantly 

accumulation, Accumulation only) by projecting an average A horizon depth from the 

average of official series descriptions from the study region in the current SSURGO data 

(7 cm) to the proportions of topsoil removed in the original survey classes. For those 

classes which had both removal and accumulation co-occuring, the removal depth range 

was subtracted from the accumulation depth range: 

 

T = A – R    (21) 

 

Where T is the total erosion or removal (cm), A is the accumulated depth range (cm), and 

R is the removal depth range (cm). Classes which had a T value of < 0 (negative) were 

considered to have predominantly removal, whereas classes with a T value of ≥ 0 

(positive) were considered to have predominantly accumulation. All statistical analyses 

were performed in R (R Core Development Team, 2014). 

 

2.3. Results 

2.3.1 Distribution of eroded phase soils by state 

In the continental U.S., 462,979 km2 of eroded phase soils have been mapped (Fig 2.1) of 
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which Iowa (40,200 km2 – 28% of total land area), Missouri (39,000 km2 – 22% of total 

land area), Nebraska (30,800 km2 – 16% of total land area), Illinois (30,100 km2 – 21% 

of total land area) and Georgia (28,500 km2 – 19% of total land area) are the top five 

states in terms of total mapped area, accounting for 36% of the U.S. total (Table 2.1). The 

states with the highest proportion of total mapped area as eroded phases are Iowa (28%), 

Indiana (26%), Tennessee (24%), Kentucky (23%), Mississippi (21%), Missouri (21%) 

and Illinois (21%) (Table 2.1). Eroded phase soils account for 6.3% of the total mapped 

area in the continental United States (Table 2.1). 

 In total, 125,769 km2 (27.2%) of eroded phase soils are currently under 

cultivation, and of the 1,338,999 km2 of lands under cultivation in the continental U.S., 

9.4% lie on mapped eroded soils (Table 2.2). Iowa (24,565 km2 – 61% of cultivated land 

mapped as eroded), Nebraska (17,312 km2 – 56% of cultivated land mapped as eroded), 

Illinois (14,637 km2 – 50% of cultivated land mapped as eroded), Missouri (10,541 km2 – 

27% of cultivated land mapped as eroded), Wisconsin (9,932 km2 – 41% of cultivated 

land mapped as eroded) and Indiana (9,413 km2 – 39% of cultivated land mapped as 

eroded) are the top states in terms of total eroded area mapped on currently cultivated 

soils (Table 2.2).The states with the highest proportion of eroded soils currently under 

cultivation are South Dakota (63%), Iowa (61%), Minnesota (61%), Nebraska (56%) and 

Michigan (54%). The states with the highest proportions of cultivated soils on eroded 

lands are Tennessee (37%), Missouri (27%), Wisconsin (27%), Iowa (25%) and 

Kentucky (23%) (Table 2.2).  

 The number of unique, eroded map units (including complexes with series names 
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in different orders, unique slope classes and other phases) totaled 15,202 (Table 2.1). By 

state boundaries, the number of unique eroded phase map units is significantly related to 

the amount of currently cultivated land on eroded phase soils (R2 = 0.84, p < 0.001) and 

the total eroded phase mapped (R2 = 0.61, p < 0.001), but not the total mapped area or 

total cultivated area in each state (p > 0.4) (Fig 2.2). Extracting series names and the first 

named series in the case of complexes resulted in 2265 unique, named series with 

recognized, mapped eroded phases. Of these named series, 42% (943) are Alfisols, 24% 

(541) are Mollisols, and 14% (305) are Ultisols. Andisols (< 1%), Aridisols (4%), 

Entisols (6%), Inceptisols (8%), Vertisols (2%) and Spodosols (1%) make up the 

remaining 20% (Table 2.3). Together, the clayey (fine), fine-loamy, fine-silty and coarse-

silty textural classes make up over 85% of the eroded series with assigned textural classes 

(Table 2.3).  

 Soils mapped as severely eroded are most prevalent in Kentucky (9,135 km2), 

Mississippi (6,316 km2), West Virginia (6,138 km2), Illinois (6,081 km2) and Indiana 

(6,025 km2) (Fig 2.3). States vary widely in the total proportion of eroded soils mapped 

as severely eroded. For example, 100% of West Virginia's eroded phase soils are 

classified as severely eroded (Table 2.1). In contrast, < 1% of Wisconsin's eroded phase 

soils are classified as severely eroded. The top 5 states in percentage of total eroded soils 

classified as severely eroded are West Virginia (100%), North Dakota (47%), Kentucky 

(39%), Tennessee (32%) and Louisiana (31%). In sum, 72,690 km2 (16%) of eroded 

phase soils are mapped as severely eroded (Table 2.1). The total area of severely eroded 

soils mapped in each state is significantly related to the total area of eroded soils mapped 
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(R2 = 0.47, p < 0.001). 

 Gullied lands occupy 12,846 km2 in the continental U.S. (0.2% of total land 

area/mapped area, Fig 2.3, Table 2.1). Over 68% of the mapped gullied lands (8,716 km2) 

in the continental U.S. are in Mississippi (3,107 km2), Wyoming (2,149 km2), Oklahoma 

(1,393 km2), Tennessee (1,207 km2) and California (860 km2) (Table 2.1). Twenty-five 

other states have mapped gullied lands, which make up the remaining 32%. States which 

have gullied lands as the greatest proportions of the sum of their gullied and eroded lands 

are Wyoming (95%), North Dakota (91%), Montana (52%), Colorado (20%) and Nevada 

(20%) (Table 2.2).   

 

2.3.2 Distribution of eroded phase soils by ecoregion: cultivation and terrain ruggedness 

 Level III ecoregions are defined with reference to both biotic and abiotic 

properties (USEPA, 2013), and as such represent natural physiographic boundaries 

instead of the county and state political boundaries of SSURGO data. Level III 

Ecoregions with the largest area of mapped eroded phase land area are the Piedmont 

(portions of: AL, GA, SC, NC, VA) 57,448 km2, the Western Corn Belt Plains (portions 

of: IA, MN, MO, NE) 55,876 km2, the Interior Plateau (portions of: AL, TN, KY, IL, IN, 

OH) 37,481 km2, the Southeastern Plains (portions of: TN, MS, AL, FL, GA, SC, NC, 

VA, MD) 36,446 km2 and the Central Irregular Plains (portions of: IA, MO, KS, OK) 

32,692 km2 (Table 2.4). Ecoregions with the highest proportion of eroded soils are the 

Driftless Area of the Upper Midwest (45.1%), the Mississippi Valley Loess Plains 

(37.7%), Piedmont (34.6%), Interior Plateau (30.3%) and the Central Irregular Plains 
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(28.6%) (Fig 2.4).  

 The relationships between the proportion of cultivated land area by ecoregion and 

the proportion of eroded phase area by ecoregion (Fig 2.5), reveals important breaks at 

the 85th percentile of each metric. These can be used to divide the plot into 4 quadrants, 

pertaining to different combinations of proportions of cultivated lands and eroded phase 

soils which are related to current land-use and land-use histories (Fig 2.5). Type I 

ecoregions have a low proportion of cultivated land and a low proportion of mapped 

eroded phase soils. Ecoregions included here are those that do not (and have never) had 

extensive areas of land in agriculture, such as the North Central Hardwood Forests and 

the Arkansas Valley ecoregions. Type II ecoregions include those ecoregions that are 

under intensive cultivation but have had or continue to have a low proportion of eroded 

phase soils. These ecoregions include the Lake Agassiz Plain, the Central Great Plains, 

the Mississippi Alluvial Plains, and the Central California Valley. Type III ecoregions are 

intensively used for agriculture and have a large proportion of mapped eroded phase 

soils. These 5 ecoregions lie predominantly in the Corn Belt and include the Western, 

Central, and Eastern Corn Belt Plains, the Southeastern Wisconsin till plains, and the 

Interior Valleys and Hills of Tennessee and Kentucky. Lastly, Type IV ecoregions are 

areas with extensive areas of land mapped as eroded, but with a low proportion of land 

area currently under cultivation, including well known cases such as the Midwestern 

Driftless Area (Trimble, 2013) and Piedmont of the Eastern U.S. (Trimble, 2008).  

 Generalized statistics by type further underline the relationship of these groupings 

to land-use histories. Type IV Ecoregions have an average of 33% of their total area 
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mapped as eroded, with only 15% of their total area cultivated, 16% of the eroded phase 

soils cultivated, and 36% of cultivated lands on eroded phase soils. Type III Ecoregions 

have an average of 23% of their total area mapped as eroded, with 62% of their total area 

cultivated, 55% of the eroded phase soils cultivated, and 20% of cultivated lands on 

eroded phase soils. Type II Ecoregions have an average of 5% of their total area mapped 

as eroded, with only 53% of their total area cultivated, 46% of the eroded phase soils 

cultivated, and 4% of cultivated lands on eroded phase soils. Lastly Type I Ecoregions 

have an average of 2% of their total area mapped as eroded, with 10% of their total area 

cultivated, 11% of the eroded phase soils cultivated, and 3% of cultivated lands on eroded 

phase soils (Table 2.4 and Table 2.5). 

 Maximum average TRI for ecoregions was 4.51 (North Cascades) and the 

minimum was < 0.001 (Southern Florida Coastal Plain), with a continental average of 

2.14 +/- 1.18 (Table 2.4). Trends in average TRI values and % of ecoregion cultivated 

show that the majority of extensively cultivated ecoregions lie below an average TRI of 

2.5 (with two major exceptions: the Columbia Plateau (containing the Palouse Hills) and 

the Willamette Valley ecoregions, both in Washington state), with a steady decline from 

the lowest gradient ecoregions (Fig 2.6). In contrast, ecoregions with the highest 

percentage of mapped eroded phase soils in terms of total area show a peak at an average 

TRI between 1 and 2.  

 

2.4. Discussion and Conclusions  

2.4.1 Historical aspects of erosion-affected land related to the distribution and extent of 
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SSURGO eroded phase soils in the continental U.S.  

 Various estimates of erosion-affected soils in the continental United States have 

been produced, however differences in methodology, terminology and extent preclude 

direct comparisons (Larson et al., 1983). For example, Bennett (1939) estimated that 428 

million ha (4.28 x 106 km2) of land was affected by erosion in the continental United 

States, 120 million ha of which (1.20 x 106 km2) was on cultivated lands. The total area 

of eroded phase soils mapped in the SSURGO database (0.46 x 106 km2, Table 2.1) is an 

order of magnitude lower than Bennett’s estimates. The discrepancies between these 

estimates are likely due to several factors: (1) Bennett’s 1939 estimates are coarse and are 

derived from extremely broad generalizations of regional landscapes (Miller et al., 1985), 

which may have led to an overestimation of erosion-affected land area relative to the 

SSURGO data, which is of much finer scale; (2) the Bennett (1939) estimate includes 

wind-eroded soils in close temporal time to the peak of the Dust Bowl era (a minor 

component of SSURGO eroded phase soils for morphological reasons); (3) many of the 

surveys made in the SSURGO database were finalized decades after the extremely 

intensive land-use that occurred in the late 19th century and early 20th century, which may 

have been captured in Bennett’s estimates; (4) the designation of eroded phases 

ultimately is dependent on interpretation and perceived impact of erosion on soil 

properties, which makes the delineation of eroded phase soils much more conservative 

than erosion-affected soils in general (Soil Survey Division Staff, 1993). Thus, eroded 

phase soils may be viewed as a subset of erosion-affected soils. 

 The importance of the third point above (time of survey relative to time of most 
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intensive land-use, is perhaps best reflected in the differences between the distributions of 

eroded phase soils in the Piedmont ecoregion in contrast to the Corn Belt regions of 

southern Minnesota, Iowa, Illinois, Missouri and Indiana (Type III Ecoregions: Fig 2.1, 

Fig 2.4). County-level surveys in the Northern Piedmont (Type 1 Ecoregion: Maryland 

and Virginia, Fig 2.4 and Fig 2.5), and Piedmont (Type IV Ecoregion, Fig 2.4 and Fig 

2.5) were finalized 100-200 years (Northern Piedmont, Craven, 2006) or 60-100 years 

(Piedmont, Trimble 1975, Trimble, 2008b) after the most intensive peak in land-use and 

subsequent large-scale land abandonment. In stark contrast, county-level surveys in the 

Corn Belt states were finalized during a period of continuing intensification of 

agricultural land-use on the landscape. These differences are manifested in the patchy 

distribution of eroded soils driven by county political boundaries in the Piedmont region 

and relatively seamless mapping of eroded phase soils in the Corn Belt states (Fig 2.1). 

Nonetheless, the fact that eroded phase soils could be extensively mapped in the 

Piedmont when surveys were finalized testifies to the extensive losses that occurred on 

that landscape (Trimble, 1975) up to a century before and the suitability of Ultisol 

morphology in particular to the identification and delineation of eroded phases (see 

below). 

 In addition to the Piedmont, other type IV ecoregions (Fig 2.5, Table 2.4) have 

well documented histories of intensive land-use and erosive forcings followed by land 

abandonment and recovery such as the Upper Mississippi Valley Hill Country (Trimble, 

2013) and Mississippi Valley Loess Hills (Hilgard, 1860). Additionally, these ecoregions 

lie in TRI categories where both agricultural land-use and erosive forcings remain at 
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moderate levels, resulting in high erosion risk and the identification of many eroded 

phase map units. All of these Type IV ecoregions have in common tremendous 

agricultural expansion and intensification of land-use at the time of European settlement 

followed by de-intensification by the 20th century as the soils could not support 

continued intensive agricultural land-use (typically due to fragipans, highly erodable 

loess, or low depth to bedrock, i.e. Craven, 2006, Trimble, 2008).  

 

2.4.2 Morphological identification of eroded soils 

An eroded phase soil is a morphological state of a soil profile that has changed over time 

relative to a previous reference state. In this context, accurately defining eroded soils 

depends on the ability to choose an appropriate reference state (Olson, 1994). Thus, the 

question of defining a reference state becomes critical in the mapping and delineation of 

eroded phase soils (Soil Survey Division Staff, 1993). The two major issues involved in 

choosing reference states are related to space-for-time substitutions and landscape 

heterogeneity (Olson, 1994, Ellert and Betany, 1995, Jelinski and Kucharik, 2009). 

Space-for-time substitutions assume that differences between two sites are due solely to 

time since management change and not spatial variability, which may or may not be an 

appropriate assumption in some landscapes (Jelinski and Kucharik, 2009). For the 

purposes of soil survey, the soil survey manual differentiates between natural erosion and 

accelerated erosion (Soil Survey Division Staff, 1993). Natural erosion is considered to 

be that occuring under natural climatic, topographic and biotic forcings. Natural erosion 

is a process affecting (and involved in) soil formation, and may occur on timescales 
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consistent with, or highly incongruent with other soil forming processes (Johnson et al., 

1990), however, properties related to natural erosion are part of the definition of soil taxa, 

not a basis for the identification of erosion phases (Soil Survey Division Staff, 1993). In 

contrast, accelerated erosion is defined as erosional forcing over and above natural 

erosion, predominantly due to anthropogenic factors such as intensive agronomic 

practices, grazing or logging (Soil Survey Division Staff, 1993).  

 In the soil survey manual (Soil Survey Division Staff, 1993) the "uneroded" 

profile is referred to as a reference in most cases, but this terminology can be highly 

confusing (Olson and Beavers, 1987) and, as discussed above, the distinction made 

between natural and accelerated erosion is implicit in the term. The reference state of a 

soil profile (at a previous timepoint) has also been variously termed a "virgin", or 

"uncultivated" profile in the United States (Rhoton and Tyler, 1992, Graveel et al., 2002, 

Papiernik et al., 2007) and the "Etalon" (French - standard) in Eastern Europe (Zachar, 

1982). Here, the use of the term Etalon is applied to specifically identify a particular 

reference state relative to which a putative eroded soil profile will be compared.  This 

term is preferred as it is free from biases and hidden meanings (the soil to which an 

eroded profile is compared may not always be uneroded, virgin, or uncultivated (Olson 

and Beavers, 1987)), and stands simply for an object or standard of comparison. Its non-

English origins also allow the term to be used in a precise manner when speaking 

specifically of a comparative unit soil profile. 

 Developing an appropriate conceptual model for the etalon can prove difficult, 

particularly in intensively utilized landscapes, where undisturbed soils do not exist 
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extensively and those that are left may have biased properties (Mokma et al., 1996). In 

intensively cultivated landscapes, for example, uncultivated soils or even uneroded soils 

may not be available as etalon profiles (Olson et al., 2013), but the etalons selected must 

still contain key morphological indicators that are below the plow layer in order to be 

useful in the field. Etalon selection must be done with care, particularly in intensively 

cultivated landscapes, because reference pedons are often biased towards a particular 

difference (too wet, dry, or rocky). For similar reasons, fence-rows and cemeteries can 

also be biased, but sometimes these may be the only options (Kreznor et al., 1989). The 

appropriateness of space-for-time substitution depends heavily on the heterogeneity of 

soil bodies across the landscape as well as the variation in depth of key morphologies or 

material layers (Wilson et al., 2010).  

 Because changes in morphology that relate to the identification of eroded phase 

soils must rely on key morphological indicators in the etalon profile, the term Key Etalon 

Morphologies (KEMs) is proposed, which refer to those indicators that are robust enough 

to apply across the landscape and recognize in individual profiles. Any of the five soil 

forming factors may cause an etalon/eroded relationship that is reliant on space-for-time 

substitutions to be unrepresentative when applied across a landscape. For this reason, 

adjustments to KEM properties must be accounted for when estimating depth of erosion 

by morphology alone. Key etalon field morphologies can be illustrated by using the 

Relative Horizon Distinctness (RHD) Index of Bilzi and Ciolkosz (1977a and Ciolkosz, 

1977b). The RHD combines comparative field descriptions of soil texture, color, 

structure and other morphologies (effervescence, etc) to determine a single number index 
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for the difference between adjacent horizons or between all horizons and a parent 

material (Bilzi and Ciolkosz, 1977a). Inter-horizon differences in morphology are 

assigned unit changes and the total of these changes is summed to determine the single-

number RHD for two horizons (Bilzi and Ciolkosz, 1977b). A reasonable marker used in 

an etalon/eroded comparison should have an RHD of at least 6, which based on RHD 

scoring can only result from multiple changes in soil texture, color, and structure and is 

fairly robust. Although this number remains an arbitrary criteria, it is useful for 

identifying KEM number and strength in the following discussion.  

 Soil with KEMs that are driven by surficial horizons (i.e. Mollisols and the Mollic 

epipedon, particularly Hapludolls) may have weak or no subsurface KEMs that can be 

used as morphological metrics for identifying erosion depth (Fig 2.7). Soils with no 

KEMs will be difficult to map as eroded phases due to problems of etalon definition, and 

these typically include weakly developed Hapludolls (Fig 2.7A, 2.7B), Entisols (Fig 

2.8E), some Inceptisols and Oxisols (Fig 2.8F).  In the case of the Hapludolls, this can 

make them difficult to identify as eroded phases and also highly susceptible to 

classification change (typically to Inceptisols or Entisols) (Mokma et al., 1996, Veenstra 

and Burras, 2011). In some cases, organic carbon concentrations have been used to 

identify eroded phases, however this may be unadvisable because without quantification 

of the proportion of SOC lost to decomposition, quantification of erosion class can be 

difficult (Kimble et al., 2001, Jankauskas et al., 2007). 

 Besides truncation, the mixing of subsurface materials with surface materials in 

the plow layer of cultivated soils has been used as another common indicator. This, of 
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course, requires that the subsurface materials be of sufficiently different physical and or 

chemical composition than the surficial materials to be a reliable indicator, such as the 

case with Bk horizons in Calciudolls (Fig 2.7C, Papiernik et al., 2007) or argillic horizons 

in Argiudolls (Fig 2.7D). However, mixing of subsoil materials alone is not sufficient 

criteria to define an eroded phase soil (or erosion class) unless those materials lie below a 

KEM boundary in the etalon that is below plow depth (Olson, 1994). For example, Figure 

2.7A shows a Hapludoll (Clarion) with a single KEM that is at the boundary between a 

cambic and parent material, whereas the single KEM in Figure 2.7C in a Calciudoll lies 

at the Ap/Bk boundary. If the plow layer is exactly at the original A/Bk boundary in the 

etalon, then the mixing of subsurface Bk material into the plow layer is an indication of 

erosion, however if the plow layer reaches deeper than the original A horizon, mixing of 

material could occur even if no accelerated erosion was occurring.  

 Alfisols and Ultisols have argillic, kandic, or natric horizons and therefore 

typically have at least 2 KEMs (Fig 2.8A), with Fragi- great groups perhaps 

demonstrating the most robust KEMs and morphological distinctness of all soil taxa, 

often with 3 KEMs (Fig 2.8B and 2.8D). In contrast Pale- great groups which do not 

exhibit significant clay decreases at the bottom of the argillic horizon may only have a 

single KEM (Fig 2.8C). Other important examples of strong KEMs include lithologic 

discontinuities, paralithic and lithic contacts. The selection of etalons, KEMs and 

morphological criteria for the delineation of eroded phases varies strongly by survey 

region and soil type (Table 2.6). However, common themes in a selection of eroded 

criteria from county-level surveys in the U.S. shows that many KEMs that have been 
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developed into eroded criteria are dependent upon changing depths to a subsurface 

diagnostic (and subsequent morphologic property change), thinning of A horizon 

materials, mixing of subsurface materials and depth to lithic or paralithic contacts (Table 

2.6). 

 

2.4.3 Genesis of eroded phase soils.  

Aspects of the canonical soil forming factors (Jenny, 1941) relevant to the genesis of 

eroded phase soils are by definition those that cause accelerated erosion over and above 

natural erosion rates encompassed in etalon morphology.   

 Climate. The major climatic variables in the two most important equations for 

predicting water (RUSLE) and wind erosion (RWEQ) are rainfall energy and wind speed, 

however unless abrupt climatic change influences the erosive forcing of these factors, 

changes in other factors (predominantly the biotic factor) through management are 

necessary to allow these climatic forces to cause accelerated erosion above and beyond 

natural erosion rates which are contained in the Etalon concept (Zachar, 1982, Soil 

Survey Division Staff, 1993). Of all climatic factors, rainfall energy and intensity is 

perhaps the most important climatic variable related to the physical removal of soil 

material by water, a relationship emphasized in the revised Universal Soil Loss (RUSLE) 

equation (Renard et al., 1997). The relative importance of water and wind erosion (and 

thus the erodibility of entire landscapes) is driven by climate and at large scales climate 

averages have been utilized to compute iso-erodent maps (Renard et al., 1997).  

 Organisms. When anthropogenic forcings are included in the biotic factor, 
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humans have the greatest effect on accelerated soil erosion through both direct soil 

movement (Wilkinson, 2005) and also indirectly through the management and extensive 

change of flora and fauna relative to natural systems (Foster et al., 1985). Tillage is the 

major extensive, direct soil disturbance that takes place on a global scale and is more 

energy intensive and efficient at moving soil material than any natural pedoturbative 

processes (Lindstrom et al., 2000, Yoo et al, 2005). Tillage erosion is a distinctly 

anthropogenic component of the genesis of eroded phase soils and is the "hidden" erosion 

in many agricultural landscapes, an unavoidable consequence of intensive agricultural 

land use (Li et al., 2011). Therefore, the genesis of eroded phase soils almost always 

requires the complete removal or reduction of surface vegetative cover or destruction of 

the litter layer. In some systems tillage erosion has been estimated to be responsible for 

almost quadruple the amount of soil movement from some points on the landscape than 

wind and water erosion combined (Li et al., 2007). Tillage erosion is critical for the 

genesis of eroded phase soils because it includes both mixing and downslope mass 

movement (not just surface movement) away from a point, which has dramatic effects on 

soil morphology (DeAlba et al., 2004). Conventional agricultural management is 

typically characterized by extensive changes in the type of vegetative cover, leaving soils 

exposed to other accelerated erosive forcings. In contrast, management systems that 

emphasize maintaining vegetative cover can result in erosion rates within the range of 

natural systems, which would not allow an eroded soil to develop (Montgomery, 2007). 

 Topography. Even at very large scales, the topographic signal on the distribution 

of eroded phase soils is strong (Fig 2.6). While cultivated area shows a continuous 
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decline from the lowest gradient ecoregions, the proportion of eroded soils has a peak 

between a TRI of 1-2 (Fig 2.6). This demonstrates that physiographic regions with TRIs 

~ 1-2 carry a significant risk of widespread erosion at a landscape scale because slope 

gradients are low enough to encourage cultivation but high enough to exert a 

considerable erosive forcing on the landscape under intensive use.  

 Topographic position on the landscape is also central to the concept of eroded 

soils. Because (by definition), eroded phase soils are those that have undergone 

accelerated erosion and are truncated, eroded phase soils can only exist where soil loss 

exceeds accumulation. Therefore, at a hillslope scale, eroded phase soils will only be 

mapped on convex or linear hillslope positions (summit to backslope). Sediment 

receiving (concave) accumulation positions (backslope to toeslope) by definition cannot 

be delineated eroded phase soils, even though they may be erosion-affected (Pennock, 

1997). The exception to this is wind eroded phases (severely blown), which typically 

occur on low gradient landscapes due to high wind speeds, but can be characterized by 

both removals and accumulations of shifting dunes and blowing material (Joel, 1937, Soil 

Survey Division Staff, 1993). Topography also plays a central role in all mechanistic 

equations for the three major erosive forcings (water, wind and tillage), and therefore is 

critical to the location, mapping and identification of eroded soils (Renard et al., 1997, 

Lindstrom et al., 2000, Blanco and Lal, 2008).  

 Although topography exerts an influence on erosion magnitude at multiple scales, 

changes in topography must be more extreme than typically observed changes alone to 

cause accelerated erosion. Excluding intensive construction sites, even extensive changes 
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in topography due to tillage erosion tend to flatten rather than steepen the landscape (Li et 

al., 2008). Therefore topography, like climate, plays a secondary role in causing 

accelerated erosion after changes in biotic factors.  

 Parent material. The particle size distribution and mineralogy of soil parent 

materials play a large role in determining the erodibility of soil materials (Renard et al., 

1997). Particle size distribution are included in all of the erosion prediction equations as 

it drives important physical factors such as soil texture, aggregation and cohesiveness, all 

of which play a role in erosion severity. Family particle size may be least influential in 

the case of tillage erosion, but can still play a strong role, as cloddiness (large clods 

rolling downhill), particularly in hand-tilled agricultural systems (Zhang et al., 2004). 

The observation that 73% of eroded phase soils have etalon family particle size classes of 

fine, fine-loamy and fine-silty (Table 2.3) is not surprising as these 3 family classes all 

have the majority of their particle size distributions lying between geometric mean 

diameters of 0.009 and 0.07 µm (Shirazi and Boersma, 1984) (the logarithms of which 

are -2.1 to -1.2), which is the peak in the RUSLE erodibility factor (K) in relationship to 

particle size (Renard et al., 1997).   

 Time. The timing of surveys relative to major changes in erosive forcings 

resulting in accelerated erosion can play a significant role in the identification and 

delineation of eroded phase soils. This timing interacts with soil type and morphology as 

well. For example, a soil with no KEMs that may be identified as eroded at one time 

period may (under the influence of different land-use) recover A horizon thickness or 

SOC and be unidentifiable as an eroded phase at a later period. This would result in two 
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different distributions of eroded phase soils. Conversely, soils with many or distinct 

KEMs related to fragic soil properties or fragipans (Fig 2.8) may be irreversibly truncated 

for practical purposes and be identifiable as eroded phase soils (assuming there is etalon 

representation) for millennia. Additionally, with temporal changes in land-use patterns, 

time may also be associated with a drift in etalon availability or morphology, which can 

influence erosion estimates and the delineation of eroded phases by morphology alone. 

 

2.4.4 SSURGO eroded phase case studies   

Figure 2.9 details 4 case studies at a sub-national level that demonstrate some of these 

important issues related to the identification and mapping of eroded phase soils. 

 Case Study 1: West Feliciana Parish, Louisiana and Wilkinson County, 

Mississippi. Figure 2.9A shows a major difference in the mapping of eroded phase soil 

across political boundaries. One contributing factor here may be that Mississippi as a 

state survey area has extensive areas of eroded lands (largely in the Mississippi Valley 

Loess Plains Ecoregion), so mapping of eroded phase soils was a priority. In contrast, 

Louisiana is comprised largely of low gradient landscapes and has relatively small extent 

of mapped eroded phase area (Table 2.1); consequently, mapping eroded soils was not a 

priority, even in West Feliciana Parish, which contains part of the Mississippi Valley 

Loess Plains ecoregion. 

 Case Study 2: Yellow Medicine, Renville and Chippewa Counties, MN: Figure 

2.9B shows part of three counties (Yellow Medicine, Chippewa and Renville) in 

southwestern Minnesota which demonstrate the importance of soils which are sensitive to 
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classification changes (Hapludolls) in their eroded phase. Eroded soils are mapped on 

very similar landscape positions in all three counties (Fig 2.9B), but in Yellow Medicine 

and Renville, the eroded series are mapped as Ves-Storden, classified as Eutrudepts, 

whereas in Chippewa county soils on similar landscape positions are mapped as Doland-

Swanlake, Hapludolls. Three of the series in these complexes (Ves, Doland and 

Swanlake) are highly sensitive to classification changes from Mollisols to Inceptisols or 

Entisols (Hapludolls and Calciudolls) (Mokma et al., 1996, Veenstra and Burras, 2011). 

The difference along the county boundary therefore reflects whether priority was placed 

on viewing the soils as "eroded Mollisols" or "eroded, but Inceptisols", with very few 

morphological differences, in reality. 

 Case Study 3: Hardin County Iowa and Central Iowa. Iowa has perhaps the most 

consistently mapped eroded phase soils in the continental U.S., at multiple scales, which 

seamlessly overlay county boundaries (Fig 2.9C and 2.9D). The attention to consistency 

and landscape scale factors can be seen (eroded phase soils are mapped on the same 

landscape units across political boundaries) so that geomorphic features can be discerned 

from eroded phase distributions alone (Fig 2.9C and 2.9D). This is due mainly to the very 

high importance of specific soils information for land values and agricultural production 

in the state of Iowa in general, and central Iowa in particular. 

 Case Study 4: The Dust Bowl Counties. Wind erosion presents a difficult problem 

in the mapping of eroded phase soils, highlighted by the case of the 20 Dust Bowl 

Counties (Fig 2.9E). In 1936, the USDA conducted an extensive, detailed survey of the 

20 county heart of the dust bowl in Texas, Oklahoma, Kansas and Colorado (Fig 2.9E). 



   

57 

The original 1937 publication of the survey results (Joel, 1937) revealed that a significant 

proportion of the land was affected by both erosion and accumulation (expected in the 

largely flat landscapes of the high plains ecoregion (Ave TRI  = 1.18). Wind erosion is 

unique in that flat landscapes are conducive to high wind velocities, wind erosion and 

sediment reworking. The combined effects of removal and accumulation make the 

mapping of eroded soils more difficult as the etalon becomes more difficult to define. In 

the original survey, ~ 74% of the lands surveyed were affected by both removal and 

accumulation, while only 20% were affected by removal only (Table 2.7). SSURGO 

eroded phase soils are not particularly well aligned with any classification from the 1936 

Dust Bowl surveys (Table 2.7). None of the Texas counties have eroded map units, 

demonstrating a strong difference in mapping philosophy between political boundaries 

(Fig 2.9E). The reason for these discrepancies in an area that is historically extensively 

eroded (such as the heart of the Dust Bowl counties) is due to these multiple factors. 

Additional factors include the fact that the surveys for many of these counties were 

finalized in the 1970s and 1980s, 30-40 years after the major events of the Dust Bowl. 

This time period, particularly in a Mollisol dominated landscape with few to no robust 

KEMs may have minimized the ability to map eroded phases. In contrast, eroded soils in 

the Piedmont (primarily driven by water erosion and with stronger KEMs (Ultisols and 

Alfisols) have been consistently mapped well after a century of the most intensive land 

use (Trimble, 1975).  

 

2.4.5 Erosion severity and crop yield effects. The effects of erosion on crop yields are 
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generally negative and have been summarized mechanistically as 1) decreases in water 

storage or available water capacity, 2) decreases in nutrient availability and 3) physical 

limitations to root growth (Foster et al., 1985). Changes in organic matter due to erosion 

are linked to both loss of water storage capacity and nutrient availability (Hudson, 1994, 

Woomer et al., 1994). Changes due to the loss of organic matter are perhaps the most 

easily replaceable with improved management, whereas changes in depth to a root-

restricting layer may be considered relatively irreversible in the timescales under 

consideration (Wolman, 1985).  

 Experimental designs for studying the effects of erosion on crop yields have 

traditionally relied upon topsoil removals or additions, topographic transects, or 

comparative plots (Bakker et al., 2004). Each of these methods present challenges that 

make studies unrepresentative of real conditions because soil property change is either 

too abrupt (as in topsoil removal or addition experiments – no mixing) or utilize space-

for-time substitutions and are susceptible to variation in soil properties across the 

landscape (transect and comparative plot) (Meyer et al., 1985, Bakker et al., 2004). 

Recent meta-analyses of yield-normalized and erosion adjusted as depth of soil loss (in 

cm) have shown that the apparent effects of erosion on crop yields are highly dependent 

on experimental design (Fig 2.10, Bakker et al., 2004). On average addition and 

desurfacing experimental designs show yield normalized losses of 27% per 10cm of soil 

loss, whereas transect and comparative plot experimental designs show yield normalized 

losses of 11% and 5%, respectively (Fig 2.10). When the genesis of eroded soils is 

understood, the reasons for these strong experimental differences become apparent. Soil 
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desurfacing experiments provide an example of very sudden truncation, exposing subsoil 

properties with no mixing of topsoil materials. On the other hand, the comparative plot 

method uses space-for time substitution and results in much greater incorporation of 

surficial materials as erosion proceeds (Bakker et al., 2004). Additionally, in some cases 

(because the comparative plot method depends on a wide spatial distribution), differences 

in management due to land ownership may affect or even ameliorate some effects of the 

most highly eroded plots. For example, in Graveel et al., (2002) the severely eroded plots 

had twice the amount of N and P fertilizer applied as the slightly or moderately eroded 

plots. The transect method lies somewhere in between these two extremes, as it is 

effectively a space-for-time substitution, but also is heavily influenced by landscape 

heterogeneity which may increase the apparent effect of erosion severity (Bakker et al., 

2004). 

 Although general trends can be revealed from meta-analyses, it is well known that 

the relationship between erosion and yield change is highly complex and dependent on 

soil type (Hall et al., 1985). Linking diagnostic horizons and soil classification to more 

specific relationships between erosion and yield has been an object of study at the 

intersection of pedology and agronomy. It is generally recognized that only three 

diagnostic horizons tend to enhance crop growth (2 surface – mollic and histic and 1 

subsurface – cambic) (Hall et al., 1985). In contrast to the cambic horizon, most 

subsurface diagnostic horizons are restrictive to root growth or detrimental to crop yields 

(Pennock, 1997), thus as these key morphologies and horizons move upward in the 

profile due to truncation from accelerated forcing, a depression in crop yields occurs 
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(Graveel et al., 2002, Bakker et al., 2004).  

   

2.4.6 Conclusions 

The distribution of eroded phase soils in the SSURGO database represents an important 

characterization of erosion-affected lands in the United States that can be highly useful 

when caveats are understood. It is important to avoid the temptation to see these maps as 

permanent, as they are static (Veenstra and Burras, 2011) and spatial and temporal trends 

in accelerated erosion remain highly dynamic (USDA, 2013). The U.S. soil survey was 

uniquely poised to take advantage of the timeframe of its inception to map eroded phase 

soils, and the distribution of these map units have proven valuable for studies of the 

effects of erosion on crop yields, sediment losses, and land-use histories. The structure 

and execution of the U.S. soil survey at a county level provided the extensive local field 

experience and high-level, integrative activities that are required to map eroded phases in 

high detail over large spatial extents and is unlikely to be replicated in the future.  

 However, novel tools that integrate remote sensing spectral data with soil 

properties and erosion metrics may provide new ways to integrate dynamic information 

on eroded soils (Vagen et al., 2013). Additionally, novel markers such as meteoric 10Be 

(Harden et al., 2002) and fly-ash (Olson et al., 2013) may provide independent estimates 

of total truncation or erosion depth, which can be subsequently matched up with 

morphology, providing quantitative assessments at large scale in fine detail. Mapping 

eroded phase soils remains important as soil information is compiled, digitized and 

improved in food insecure developing countries (Lal and Stewart, 2011), and lessons 
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learned from the U.S. experience will be critical to produce efficient strategies for 

mapping eroded soils for use in research and land management far into the future. 
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Land Area1 Non-Water Mapped2

Eroded Phase 
Mapped (km2)2

% of Total 
Land Area1,2

% of Total 
Mapped 

Area2

# Unique 
Eroded Map 

Units2

Eroded - 
Severe (km2)2 % Severe

Alabama 131,426         130,908                    19,944              15.2          14.7         1,011        2,820        14.1          
Arizona 294,311         287,789                    1,512                0.5            0.5           33             126           8.3            
Arkansas 134,856         134,368                    2,310                1.7            1.7           122           50             2.1            
California 403,932         379,282                    14,554              3.6            3.8           860           1,367        9.4            
Colorado 268,626         241,108                    2,285                0.9            0.9           65             120           5.3            
Connecticut 12,548           12,496                      -                   -            -           -            -            -            
Delaware 5,061             5,034                        -                   -            -           -            -            -            
Florida 139,670         133,445                    184                   0.1            0.1           12             30             16.2          
Georgia 149,976         149,339                    28,531              19.0          18.7         654           5,535        19.4          
Idaho 214,314         162,094                    354                   0.2            0.2           38             8               2.3            
Illinois 143,959         143,413                    30,080              20.9          20.6         1,078        6,081        20.2          
Indiana 92,895           92,481                      24,323              26.2          26.0         961           6,025        24.8          
Iowa 144,700         144,164                    40,246              27.8          27.6         976           3,955        9.8            
Kansas 211,900         211,793                    12,540              5.9            5.9           179           85             0.7            
Kentucky 102,895         102,833                    23,720              23.1          22.6         717           9,135        38.5          
Louisiana 112,825         110,147                    112                   0.1            0.1           8               35             31.0          
Maine 79,930           79,590                      757                   0.9            0.8           28             6               0.8            
Maryland 25,315           25,177                      1,624                6.4            5.1           133           200           12.3          
Massachusetts 20,306           20,220                      -                   -            -           -            -            -            
Michigan 147,122         146,739                    2,724                1.9            1.8           502           232           8.5            
Minnesota 206,189         207,987                    10,010              4.9            4.6           302           30             0.3            
Mississippi 121,489         120,685                    26,467              21.8          21.1         555           6,316        23.9          
Missouri 178,414         178,094                    38,697              21.7          21.4         411           2,485        6.4            
Montana 376,978         360,853                    400                   0.1            0.1           20             -            -            
Nebraska 199,098         198,641                    30,782              15.5          15.4         298           976           3.2            
Nevada 284,445         270,502                    872                   0.3            0.3           28             -            -            
New Hampshire 23,227           20,263                      -                   -            -           -            -            -            
New Jersey 19,210           19,074                      341                   1.8            1.6           65             12             3.4            
New Mexico 314,308         295,278                    3,506                1.1            1.2           71             668           19.1          
New York 122,284         114,503                    836                   0.7            0.7           173           139           16.6          
North Carolina 126,161         125,542                    15,392              12.2          11.2          470           365           2.4            
North Dakota 178,647         179,205                    22                     0.0            0.0           6               10             46.9          
Ohio 106,055         105,760                    14,358              13.5          13.4         957           669           4.7            
Oklahoma 177,847         177,215                    14,419              8.1            8.0           315           3,806        26.4          
Oregon 248,628         162,102                    75                     0.0            0.0           11             -            -            
Pennsylvania 116,073         115,733                    4,202                3.6            3.6           294           123           2.9            
Rhode Island 2,707             2,744                        -                   -            -           -            -            -            
South Carolina 77,982           77,942                      9,324                12.0          11.5          356           1,467        15.7          
South Dakota 196,539         196,227                    742                   0.4            0.4           19             -            -            
Tennessee 106,752         107,710                    26,127              24.5          23.7         1,410        8,436        32.3          
Texas 678,049         682,294                    13,445              2.0            1.9           353           1,497        11.1          
Utah 212,749         151,013                    2,672                1.3            1.7           194           71             2.7            
Vermont 23,957           23,872                      30                     0.1            0.1           5               -            -            
Virginia 102,548         102,131                    12,672              12.4          11.9          801           3,228        25.5          
Washington 172,348         154,003                    1,342                0.8            0.9           165           251           18.7          
West Virgina 62,362           62,202                      6,138                9.8            9.8           133           6,138        100.0        
Wisconsin 140,662         140,144                    24,199              17.2          16.6         1,063        195           0.8            
Wyoming 251,488         235,389                    110                   0.0            0.0           6               -            -            
Continental U.S. 7,663,759      7,299,525                 462,979            6.0            6.3           15,202 72,690 15.7
Table 2.1. Area, distribution and proportions of eroded phase soils by state and in the conterminous U.S.
1 US Census Bureau
2 SSURGO Database (USDA-NRCS, 2014)
3 2013 National Cultivated Layer (USDA-NASS, 2014)

_________Total__________ _____________________Eroded Soils_____________________

 

Table 2.1. Area, distribution and proportions of eroded phase soils by state and in the conterminous U.S.  
1U.S. Census Bureau;  
2SSURGO Database (USDA-NRCS, 2014).  
 

 



   

63 

Area (km2)3

% of Total 
Land Area1,3

On Eroded Phase 
(km2)2,3

% of Total 
Eroded 

Cultivated2,3 

% on 
Eroded 
Phase1,2 Area (km2)3

%Gullied 
Eroded + 
Gullied2,3 

Alabama 7,790            5.9             1,391              7.0                17.9          170            0.8             
Arizona 7,614            2.6             25                   1.6                0.3            192            11.2            
Arkansas 28,246          20.9           175                 7.6                0.6            84              3.5             
California 40,489          10.0           433                 3.0                1.1            860            5.6             
Colorado 33,915          12.6           854                 37.4              2.5            585            20.4           
Connecticut 690               5.5             -                  -                -           -             -             
Delaware 2,073            41.0           -                  -                -           -             -             
Florida 11,457          8.2             21                   11.3              0.2            3                1.8             
Georgia 19,161          12.8           1,608              5.6                8.4            154            0.5             
Idaho 21,572          10.1           104                 29.4              0.5            15              4.2             
Illinois 89,733          62.3           14,637            50.2              16.3          -             -             
Indiana 47,789          51.4           9,413              38.7              19.7          63              0.3             
Iowa 97,823          67.6           24,565            61.0              25.1          323            0.8             
Kansas 98,314          46.4           6,077              48.5              6.2            5                0.0             
Kentucky 12,316          12.0           2,866              12.1              23.3          93              0.4             
Louisiana 19,562          17.3           6                     5.4                0.0            -             -             
Maine 1,247            1.6             24                   3.2                1.9            -             -             
Maryland 5,538            21.9           346                 21.3              6.2            -             -             
Massachusetts 532               2.6             -                  -                -           -             -             
Michigan 34,443          23.4           1,477              54.2              4.3            2                0.1             
Minnesota 80,100          38.8           6,111              61.0              7.6            -             -             
Mississippi 18,138          14.9           1,108              4.2                6.1            3,107         10.5           
Missouri 38,759          21.7           10,541            27.2              27.2          57              0.1             
Montana 50,720          13.5           7                     1.7                0.0            428            51.7           
Nebraska 75,540          37.9           17,312            56.2              22.9          54              0.2             
Nevada 1,709            0.6             2                     0.2                0.1            213            19.7           
New Hampshire 120               0.5             -                  -                -           -             -             
New Jersey 2,008            10.5           45                   13.3              2.3            -             -             
New Mexico 7,924            2.5             199                 5.7                2.5            431            11.0            
New York 13,517          11.1           200                 23.9              1.5            -             -             
North Carolina 21,646          17.2           2,511              16.3              11.6          116             0.7             
North Dakota 89,924          50.3           7                     32.4              0.0            228            91.2           
Ohio 38,185          36.0           3,024              21.1              7.9            1                0.0             
Oklahoma 34,033          19.1           2,207              15.3              6.5            1,393         8.8             
Oregon 12,461          5.0             30                   40.2              0.2            -             -             
Pennsylvania 14,387          12.4           907                 21.6              6.3            1                0.0             
Rhode Island 55                 2.0             -                  -                -           -             -             
South Carolina 8,226            10.5           156                 1.7                1.9            210            2.2             
South Dakota 64,275          32.7           471                 63.4              0.7            22              2.9             
Tennessee 11,633          10.9           4,321              16.5              37.1          1,207         4.4             
Texas 94,171          13.9           1,074              8.0                1.1            495            3.5             
Utah 6,257            2.9             175                 6.6                2.8            170            6.0             
Vermont 913               3.8             0                     1.3                0.0            -             -             
Virginia 6,613            6.4             735                 5.8                11.1          14              0.1             
Washington 24,398          14.2           659                 49.1              2.7            -             -             
West Virgina 406               0.7             5                     0.1                1.2            -             -             
Wisconsin 36,985          26.3           9,932              41.0              26.9          -             -             
Wyoming 5,593            2.2             6                     5.7                0.1            2,149         95.1           
Continental U.S. 1,338,999     17.5           125,769          27.2              9.4            12,846.4    2.7             
Table 2.2. Area, distribution and proportions ofgullied lands and eroded phase soils on cultivated lands by state and 
in#the#conterminous#U.S.
1 US Census Bureau
2 SSURGO Database (USDA-NRCS, 2014)
3 2013 National Cultivated Layer (USDA-NASS, 2014)

___________________Cultivated Lands___________________ ____Gullied Lands____

 

Table 2.2. Area, distribution and proportion of gullied lands and eroded phase soils on cultivated lands by 
state and in the conterminous U.S. 1U.S. Census Bureau; 2SSURGO Database (USDA-NRCS, 2014); 32013 
National Cultivated Layer (USDA-NASS 2014)  
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Class

# Named 

Soil Series1,2 Frequency (%)
Alfisols 943 41.6
Mollisols 541 23.9
Ultisols 305 13.5
Inceptisols 170 7.5
Entisols 130 5.7
Aridisols 92 4.1
Vertisols 42 1.9
Spodosols 31 1.4
Andisols 11 0.5
Very Fine 22 1.0
Fine 644 28.4
Clayey - Total 697 30.8
Fine-loamy 592 26.1
Coarse-loamy 200 8.8
Loamy - Total 792 35.0
Fine-silty 418 18.5
Coarse-silty 63 2.8
Silty - Total 481 21.2
Sandy 84 3.7
Skeletal Classes 119 5.3
Ashy,Pumiceous or 
Medial 11 0.5

All Mapped Eroded 
Phase Soils Total 2265 100
Table 2.3. Distribution of officially named series with eroded phases by 
order%and%family%particle%size%class.
1USDA-NRCS Official Series Descriptions
2USDA-NRCS SSURGO

Order

Family Particle Size 
Classes

 

Table 2.3. Distribution of officially named series with eroded phases by order and family particle size 
class. 1USDA-NRCS Official Series Descriptions; 2SSURGO Database (USDA-NRCS, 2014).
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__Total__

Type Ecoregion Total Area1

Eroded Phase 
Mapped (km2)2

% of Total 
Area1,2 TRI (Mean)

Driftless Area 47,386                21,390           45.1 2.11            
Mississippi Valley Loess Plains 51,810                19,551           37.7 1.16           
Piedmont 166,117              57,448           34.6 1.67           
Interior Plateau 123,527              37,481           30.3 1.84           
Central Irregular Plains 114,323              32,692           28.6 1.21           
Southern CA/N Baja Coast 20,955                3,842             18.3 3.03           
Type IV Total 524,119              172,404         32.9 1.84           
Interior River Valleys and Hills 120,448              30,049           24.9 1.13           
Western Corn Belt Plains 228,143              55,876           24.5 1.13           
Southeastern WI Till Plains 31,350                7,095             22.6 1.22           
Eastern Corn Belt Plains 86,858                18,961           21.8 0.85           
Central Corn Belt Plains 76,510                11,309            14.8 0.59           
Type III Total 543,309              123,290         22.7 0.98           
Central Great Plains 274,963              28,352           10.3 1.21           
S MI/N IN Drift Plains 53,035                2,153             4.1 0.89           
Huron/Erie Lake Plains 31,595                917                2.9 0.26           
Lake Agassiz Plain 45,060                516                1.1 0.22           
Central California Valley 46,490                446                1.0 0.79           
Northern Glaciated Plains 134,806              983                0.7 0.74           
Mississippi Alluvial Plain 116,119              415                0.4 0.17           
Type II Total 702,068              33,783           4.8 0.61           
Western Allegheny Plateau 81,440                11,126            13.7 2.23           
Texas Blackland Prairies 43,382                5,771             13.3 1.12           
Southeastern Plains 328,885              36,446           11.1 1.14           
Erie Drift Plain 30,960                3,372             10.9 1.87           
Ridge and Valley 116,716              12,671           10.9 2.85           
Southwestern Appalachians 37,995                3,982             10.5 2.43           
Central CA Fthills & Cstal Mtns 76,679                7,231             9.4 3.25           
Cross Timbers 88,188                8,304             9.4 1.58           
Southern California Mountains 15,838                1,240             7.8 4.02           
North Central Hardwood Forests 88,910                5,978             6.7 1.11            
Flint Hills 27,932                1,647             5.9 1.48           
Northern Piedmont 31,365                1,791             5.7 2.09           
Arkansas Valley 28,422                1,474             5.2 2.14           
East Central Texas Plains 55,753                2,866             5.1 1.05           
Blue Ridge 46,595                1,768             3.8 3.43           
Northern Allegheny Plateau 46,510                1,412             3.0 2.94           
Ozark Highlands 106,391              2,898             2.7 1.93           
Boston Mountains 14,178                332                2.3 2.90           
Wasatch and Uinta Mountains 45,693                842                1.8 3.82           
Columbia Plateau 83,131                1,369             1.6 2.78           
Acadian Plains and Hills 45,250                633                1.4 2.15           
High Plains 288,320              3,964             1.4 1.19           
Southwestern Tablelands 198,829              2,521             1.3 1.94           
Sierra Nevada 53,103                656                1.2 4.07           
South Central Plains 152,132              1,738             1.1 1.03           
Chihuahuan Deserts 164,060              1,797             1.1 2.16           
Eastern Great Lakes Lowlands 40,302                434                1.1 1.77           

Table 2.4. Area, distribution and proportions of eroded phase soils by ecoregion and ecoregion type
1 U.S. EPA
2 SSURGO Database (USDA-NRCS, 2014)

Type I Ecoregions:       
< 85th %tile Eroded,      

< 85th %tile Cultivated

___Eroded Soils___

Type IV Ecoregions:      
> 85th %tile Eroded,      

< 85th %tile Cultivated

Type III Ecoregions:      
> 85th %tile Eroded,      

> 85th %tile Cultivated

Type II Ecoregions:       
< 85th %tile Eroded,      

> 85th %tile Cultivated

 
 
Table 2.4. Area, distribution and proportions of eroded phase soils by ecoregion and ecoregion type. 1U.S. 
EPA; 2SSURGO Database (USDA-NRCS, 2014). 
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__Total__

Type Ecoregion Total Area1

Eroded Phase 
Mapped (km2)2

% of Total 
Area1,2 TRI (Mean)

___Eroded Soils___

Madrean Archipelago 39,650                375                0.9 3.03           
Coast Range 54,250                393                0.7 3.46           
Central Appalachians 62,050                418                0.7 3.02           
Central Basin and Range 308,790              2,052             0.7 3.10           
Arizona/New Mexico Mountains 110,910              674                0.6 3.25           
Atlantic Coastal Pine Barrens 14,308                81                  0.6 0.69           
Klamath Mtns/CA Coast Range 48,358                255                0.5 4.11            
Nebraska Sand Hills 59,123                268                0.5 1.42           
Middle Atlantic Coastal Plain 78,476                302                0.4 0.20           
Snake River Plain 53,627                199                0.4 2.17           
Northeastern Coastal Zone 42,067                130                0.3 2.01           
Ouachita Mountains 26,895                75                  0.3 2.46           
Arizona/New Mexico Plateau 146,859              363                0.2 2.53           
Mojave Basin and Range 127,690              312                0.2 3.28           
Northern Lakes and Forests 191,883              443                0.2 1.36           
Northern Basin and Range 140,198              321                0.2 2.97           
Eastern Cascades Slopes & Fthills 53,257                122                0.2 3.15           
Colorado Plateaus 136,575              300                0.2 3.23           
Sonoran Basin and Range 118,370              217                0.2 2.46           
Northwestern Glaciated Plains 174,882              320                0.2 1.74           
Western Gulf Coastal Plain 75,406                136                0.2 0.07           
North Cascades 30,395                47                  0.2 4.52           
Northwestern Great Plains 357,584              507                0.1 2.15           
Southern Rockies 145,702              197                0.1 3.70           
Southern Texas Plains 53,423                69                  0.1 1.07           
Northern Rockies 81,961                106                0.1 3.91           
North Central Appalachians 26,727                32                  0.1 2.89           
Edwards Plateau 74,964                89                  0.1 1.86           
Middle Rockies 164,462              171                0.1 3.72           
Southern Coastal Plain 141,414              112                 0.1 0.25           
Northeastern Highlands 124,197              75                  0.1 3.06           
Cascades 58,854                32                  0.1 3.92           
Blue Mountains 70,911                26                  0.0 3.61           
Willamette Valley 14,885                3                    0.0 2.62           
Wyoming Basin 132,682              16                  0.0 2.64           
Idaho Batholith 60,283                0                    0.0 4.16           
Southern Florida Coastal Plain 22,533                -                 0.0 0.00           
Northern Minnesota Wetlands 22,829                -                 0.0 0.32           
Puget Lowland 16,970                -                 0.0 2.75           
Canadian Rockies 18,880                -                 0.0 4.26           
Type I Total 6,020,239           133,500         2.2 2.41           
Continental U.S. 7,789,735           462,976         5.9 2.14           

Table 2.4 (Cont). Area, distribution and proportions of eroded phase soils by ecoregion and ecoregion type
1 U.S. EPA
2 SSURGO Database (USDA-NRCS, 2014)

Type I Ecoregions:       
< 85th %tile Eroded,      

< 85th %tile Cultivated

 
 
Table 2.4 (Cont). Area, distribution and proportions of eroded phase soils by ecoregion and ecoregion 
type. 1U.S. EPA; 2SSURGO Database (USDA-NRCS, 2014). 
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Type Ecoregion Area (km2)3

% of Total 
Area1,3

On Eroded 
Phase (km2)2,3

% of Total 
Eroded 

Cultivated2,3 
% on Eroded 

Phase1,2

Driftless Area 16,590       35.0 8,707.7      40.7           52.5           
Mississippi Valley Loess Plains 10,057       19.4 4,260.1      21.8           42.4           
Piedmont 7,939         4.8 3,022.4      5.3             38.1           
Interior Plateau 12,450       10.1 3,274.8      8.7             26.3           
Central Irregular Plains 31,254       27.3 8,693.8      26.6           27.8           
Southern CA/N Baja Coast 370            1.8 108.9         2.8             29.4           
Type IV Total 78,660       15.0 28,067.8    16.3           35.7           
Interior River Valleys and Hills 54,265       45.1 10,910.8    36.3           20.1           
Western Corn Belt Plains 161,361     70.7 37,306.8    66.8           23.1           
Southeastern WI Till Plains 14,241       45.4 3,455.8      48.7           24.3           
Eastern Corn Belt Plains 50,732       58.4 8,296.2      43.8           16.4           
Central Corn Belt Plains 55,945       73.1 7,239.7      64.0           12.9           
Type III Total 336,544     61.9 67,209.3    54.5           20.0           
Central Great Plains 124,216     45.2 12,616.7    44.5           10.2           
S MI/N IN Drift Plains 23,362       44.0 1,030.6      47.9           4.4             
Huron/Erie Lake Plains 18,492       58.5 566.1         61.7           3.1             
Lake Agassiz Plain 32,589       72.3 371.4         72.0           1.1             
Central California Valley 32,386       69.7 111.9          25.1           0.3             
Northern Glaciated Plains 83,982       62.3 633.3         64.4           0.8             
Mississippi Alluvial Plain 61,909       53.3 216.6         52.2           0.3             
Type II Total 376,937     53.7 15,546.6    46.0           4.1             
Western Allegheny Plateau 3,817         4.7 148.6         1.3             3.9             
Texas Blackland Prairies 8,589         19.8 621.5         10.8           7.2             
Southeastern Plains 45,182       13.7 3,510.8      9.6             7.8             
Erie Drift Plain 6,382         20.6 849.0         25.2           13.3           
Ridge and Valley 8,637         7.4 1,001.4      7.9             11.6            
Southwestern Appalachians 727            1.9 280.4         7.0             38.6           
Central CA Fthills & Cstal Mtns 3,520         4.6 197.1         2.7             5.6             
Cross Timbers 5,040         5.7 340.0         4.1             6.7             
Southern California Mountains 32              0.2 8.5             0.7             26.5           
North Central Hardwood Forests 28,924       32.5 2,939.8      49.2           10.2           
Flint Hills 4,503         16.1 439.9         26.7           9.8             
Northern Piedmont 5,307         16.9 287.9         16.1           5.4             
Arkansas Valley 770            2.7 4.4             0.3             0.6             
East Central Texas Plains 2,129         3.8 41.3           1.4             1.9             
Blue Ridge 561            1.2 47.7           2.7             8.5             
Northern Allegheny Plateau 4,679         10.1 99.1           7.0             2.1             
Ozark Highlands 1,958         1.8 275.0         9.5             14.0           
Boston Mountains 8                0.1 0.1             -             0.8             
Wasatch and Uinta Mountains 631            1.4 31.8           3.8             5.0             
Columbia Plateau 31,914       38.4 741.5         54.1           2.3             
Acadian Plains and Hills 1,197         2.6 23.7           3.7             2.0             
High Plains 117,293      40.7 1,826.0      46.1           1.6             
Southwestern Tablelands 13,143       6.6 236.3         9.4             1.8             
Sierra Nevada 11               0.0 0.8             0.1             6.6             
South Central Plains 3,120         2.1 8.6             0.5             0.3             
Chihuahuan Deserts 3,835         2.3 20.2           1.1             0.5             
Eastern Great Lakes Lowlands 8,190         20.3 131.3         30.2           1.6             

Table 2.5. Area, distribution and proportions of eroded phase soils on cultivated lands by ecoregion and ecoregion type
1 U.S. EPA
2 SSURGO Database (USDA-NRCS, 2014)

Type I Ecoregions:       
< 85th %tile Eroded,      

< 85th %tile Cultivated

_______________Cultivated Lands_______________

Type IV Ecoregions:      
> 85th %tile Eroded,      

< 85th %tile Cultivated

Type III Ecoregions:      
> 85th %tile Eroded,      

> 85th %tile Cultivated

Type II Ecoregions:       
< 85th %tile Eroded,      

> 85th %tile Cultivated

 
 
Table 2.5. Area, distribution and proportions of eroded phase soils on cultivated lands by ecoregion and 
ecoregion type. 1U.S. EPA; 2SSURGO Database (USDA-NRCS, 2014). 
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Type Ecoregion Area (km2)3

% of Total 
Area1,3

On Eroded 
Phase (km2)2,3

% of Total 
Eroded 

Cultivated2,3 
% on Eroded 

Phase1,2

_______________Cultivated Lands_______________

Madrean Archipelago 1,625         4.1 15.1           4.0             0.9             
Coast Range 75              0.1 1.8             0.5             2.4             
Central Appalachians 615            1.0 11.2            2.7             1.8             
Central Basin and Range 6,768         2.2 116.5          5.7             1.7             
Arizona/New Mexico Mountains 28              0.0 -             -             -             
Atlantic Coastal Pine Barrens 1,463         10.2 14.8           18.2           1.0             
Klamath Mtns/CA Coast Range 150            0.3 -             -             -             
Nebraska Sand Hills 3,367         5.7 118.6          44.2           3.5             
Middle Atlantic Coastal Plain 17,477       22.3 128.0         42.4           0.7             
Snake River Plain 14,688       27.4 27.6           13.9           0.2             
Northeastern Coastal Zone 1,617         3.8 1.3             1.0             0.1             
Ouachita Mountains 13              0.0 0.1             0.1             0.8             
Arizona/New Mexico Plateau 2,163         1.5 0.1             -             -             
Mojave Basin and Range 230            0.2 3.5             1.1             1.5             
Northern Lakes and Forests 8,352         4.4 178.2         40.2           2.1             
Northern Basin and Range 3,596         2.6 1.1             0.3             -             
Eastern Cascades Slopes & Fthills 2,013         3.8 1.0             0.8             0.1             
Colorado Plateaus 3,166         2.3 29.2           9.7             0.9             
Sonoran Basin and Range 8,255         7.0 6.1             2.8             0.1             
Northwestern Glaciated Plains 67,836       38.8 67.3           21.0           0.1             
Western Gulf Coastal Plain 20,359       27.0 14.0           10.3           0.1             
North Cascades 58              0.2 0.8             1.6             1.3             
Northwestern Great Plains 42,501       11.9 30.3           6.0             0.1             
Southern Rockies 345            0.2 -             -             -             
Southern Texas Plains 3,045         5.7 1.2             1.8             -             
Northern Rockies 2,328         2.8 24.2           22.8           1.0             
North Central Appalachians 233            0.9 1.0             3.0             0.4             
Edwards Plateau 778            1.0 4.0             4.5             0.5             
Middle Rockies 3,386         2.1 6.3             3.7             0.2             
Southern Coastal Plain 7,944         5.6 20.2           18.0           0.3             
Northeastern Highlands 1,643         1.3 3.6             4.8             0.2             
Cascades 54              0.1 -             -             -             
Blue Mountains 1,540         2.2 4.2             16.3           0.3             
Willamette Valley 2,230         15.0 0.5             16.2           -             
Wyoming Basin 2,284         1.7 0.3             2.1             -             
Idaho Batholith 73              0.1  -   -   -  
Southern Florida Coastal Plain 2,819         12.5  -   -   -  
Northern Minnesota Wetlands 1,092         4.8  -   -   -  
Puget Lowland 553            3.3  -   -   -  
Canadian Rockies 2                0.0  -   -   -  
Type I Total 546,865     9.1 14,944.8    11.2            2.7             
Continental U.S. 1,339,006  17.2 125,769     27.2           9.4             

Table 2.5 (Cont). Area, distribution and proportions of eroded phase soils on cultivated lands by ecoregion and ecoregion type
1 U.S. EPA
2 SSURGO Database (USDA-NRCS, 2014)

Type I Ecoregions:       
< 85th %tile Eroded,      

< 85th %tile Cultivated

 
 
Table 2.5 (Cont). Area, distribution and proportions of eroded phase soils on cultivated lands by ecoregion 
and ecoregion type. 1U.S. EPA; 2SSURGO Database (USDA-NRCS, 2014). 
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Soil Series County/State Selected Etalon Morphology Eroded Morphology Survey Edition Eroded Phase Key Morphological designators

Zanesville Vanderburgh (IN) 26-34in - Bx 20 - 24 in - Bx 1976 Severely Eroded
Depth to fragipan  6-10 inches 
shallower

Pawnee (3-7% slopes) Nemaha (KS)

0-7 in - A: CL                                                       
7-12 in - AB: CL                                                
12-41in - Bt: C   

0-6 in - A: C                                                          
6-39 in - Bt: C  2005 Eroded

A horizon is C, eroded into 
original Bt/BC

Palouse (25-40% slopes) Whitman (WA) 0-(10-12) in - A 0-(3-6) in - A 1980 Eroded A horizon 6-9 inches thinner

Renshaw (6-12% slopes) Pope (MN) 0-(6-12) in - A (10YR 2/1)
0-(2-8) in - A (10YR 2/1 mixed w/ 10YR 
3/3) 1972 Eroded

A 4-10 inches shallower, 
recognizable B material mixed

Marlton (10-15% slopes) Gloucester (NJ)
0-10 in - Ap/A: (2.5Y 4/2, 10YR 5/6), SL        
10 + in - Bt: (5Y 4/4), C 0-7 in - Ap: (5Y 4/4), C 1962 Severely Eroded

A horizon is C, eroded into 
original Bt

Grina Lander (NV)
0-5 in A: GRL 0-5% CB/ST, 30-45% 
pebbles

0-3 in A: VGRL, 0-5% CB/ST, 55-70% 
pebbles 1992 Eroded

Significantly higher proportion of 
coarse fragments in top horizon

Clarion (2-5% slopes) Hamilton (IA)

0-7 in - Ap: (10YR 2/1)                                        
7-18 in - A: (10YR 2/2, 10YR 3/3)                  
18-36 in - Bw: (10YR 4/4)                                  
36-60 in - Ck: (10YR 5/6)

0-8 - Ap: (10YR 3/2, mixed streaks and 
pockets of 10YR 4/3, 10YR 5/3)                      
8-28 in - Bw                                                       
28-60 in - Ck 1986 Moderately Eroded

A horizon lighter, mixed with B 
horizon, depth to Ck 8in 
shallower

Mexico (1-3% slopes) Boone (MO)

0-7 in - Ap: SiL                                                      
7-10 in - E: SiL                                                      
10-13 in - BE: SiCL                                               
13-27 in - Btg: SiC                                               
27-60 in - 2Btg: SiCL     

0-7 in - Ap: SiL                                                    
7-22 in - Btg1: SiC                                                
22-41 in - Btg2: SiCL                                            
41-60 in - 2BC                                                       
41-60, SiL 2001 Eroded

No E or BE Upper Bt directly 
below surface horizon

Blanchard (12-35% slopes)
Upper Flathead 
Valley Area (MT)

0-7 in - Ap: non-calcareous                               
7-18 in - C1: slightly calcareous                        
18-30 - C2: calcareous, strong effervescence 0-7 in - Ap: calcareous 1960 Wind Eroded

Calcareous material (normally 7-
18 inches deep is exposed at 
surface

Mapleton (8-15% slopes) Aroostook (ME)
0-7 in - Ap: (10YR 4/3), SiL                                 
24-30 - R

0-7 in - Ap: (mixed 10YR 4/3 and 10YR 5/6 
18-24 - R 1958 Eroded

Ap mixed with original B 
horizon, DTB 6-12 inches 
shallower

Tama (5-9% slopes) Tama (IL)

0-6 in - Ap                                                             
6-14 in - A: (10YR 2/2), SiCL                               
14-18in - BA (10YR 3/2, 4/3)                             
18-32 - Bt: (10YR 4/3), SiCL                               
32-45 in- BC (10YR 4/4), SiCL

0-6 in - Ap (10YR 4/3 mixed w streaks of 
10YR 2/2)                                                             
6-33 in - Bt/BC 1995 Severely Eroded

No A below Ap, directly to 
Bt/BC, bottom of BC 12 in 
shallower

Downs (2-6% slopes) Buffalo (WI) 0-(8-12)in - Ap/A 0-(4-8) in Ap/A 1962 Moderately Eroded Ap/A 4-8 inches shallower

Pentz (9-16% slopes) Amador Area (CA)

0-10 in - A                                                             
10-19 in - Bw                                                        
19+ in Cr 

0-(0-8) in - A                                                         
14+ in - Cr 1965 Eroded

A horizon shallower, depth to 
rhyolite Cr 5-10 inches shallower.  

Table 2.6. Selected examples of key morphologies differentiating etalon and eroded phase soils in published county-level soil surveys across the U.S.



   

70 

Classification (Joel, 1937) TX OK CO KS Total Proportion
None -                 2,318              569                 -                 2,887                0.9                 
Removal - Wind Only -                 1,390              6,897              254                 8,542                2.7                 
Removal - Water -                 -                 1,021              -                 1,021                0.3                 
Removal - Wind and Water -                 17,306            4,794              109                 22,209              7.1                 
Removal Only Total -                 18,696            12,713            363                 31,771              10.2               
Both - Predominantly Removal -                 317                 3,603              52                   3,972                1.3                 
Both - Predominantly Accumulation -                 174,774          51,786            40,181            266,742            85.8               
Accumulation Only -                 -                 5,073              456                 5,529                1.8                 
Total -                 196,105          73,743            41,052            310,900            100.0             

Proportion (%) -                 63.1                23.7                13.2                100.0                
None 219,014          82,216            180,806          29,680            511,716            3.1                 
Removal - Wind Only 590,520          44,008            502,846          40,596            1,177,969         7.2                 
Removal - Water 756,316          16,375            276,326          -                 1,049,017         6.4                 
Removal - Wind and Water 136,457          456,450          436,664          79,828            1,109,399         6.8                 
Removal Only 1,483,293       516,833          1,215,836       120,424          3,336,385         20.5               
Both - Predominantly Removal 95,861            13,646            111,554          8,870              229,931            1.4                 
Both - Predominantly Accumulation 4,079,396       3,040,273       2,118,844       2,611,796       11,850,309       72.8               
Accumulation Only 289,972          -                 46,737            13,305            350,013            2.2                 
Total 6,167,537       3,652,967       3,673,776       2,784,074       16,278,354       100.0             
Proportion (%) 37.9 22.4 22.6 17.1 100.0

Table 2.7. Area and proportions of erosion categories in the 20 county Dust Bowl region surveyed by Joel (1937), and with respect to the distribution 
of eroded phase soils from the SSURGO database, grouped as described in methods. 

__________________State__________________ ________All________

SSURGO 
ERODED 
PHASE

1936-1937 
SURVEY 

(Joel, 1937)

 

Table 2.7. Area and proportions of erosion categories in the 20 county Dust Bowl region surveyed by Joel (1937), and with respect to the distribution of eroded 
phase soils from the SSURGO database, grouped as described in methods. Digitized spatial data for Joel (1937) from Cunfer et al. (2011).
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Figure 2.1. Distribution of eroded phase soils in the continental U.S.
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Figure 2.2. Relationship of total unique eroded phase map units with total area mapped as eroded phase, 
area of cultivated lands on eroded phase soils, and cultivated area by state.
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Figure 2.3. Distribution of severely eroded soils, gullied complexes, and eroded soils in the continental U.S. 
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Figure 2.4. Distribution of cultivated lands and eroded phase soils in the continental U.S. Example Highlighted Type I Ecoregions: Northern Basin and Range; 
Arkansas Valley. Type II: Lake Agassiz Plain, Centreal CA Valley. Type III: Western and Eastern Corn Belt Plains. Type IV: Driftless Area; Piedmont. 
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Figure 2.5. Proportion of cultivated land vs. proportion of land mapped as eroded phase by EPA Level III Ecoregion, showing division into ecoregion types by 
quadrant.
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Figure 2.6. Proportion of total ecoregion land area cultivated and mapped as eroded phase by ecoregion 
average Terrain Ruggedness Index (TRI). TRI data from Gruber (2012). Trend lines and shaded confidence 
intervals are Locally Weighted Least Squares Regression (LOESS) fits; Span = 0.75, C.I. = 95%, fitted in R 
using the “loess” function. 
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Figure 2.7. Example RHD depth profiles and horizons for selected Mollisol Official Series Descriptions 
(OSDs) descriptions. Data from Soil Survey Staff (2014b).
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Figure 8. Example RHD depth profiles for selected Alfisol, Ultisol, Entisol and Oxisol profiles. Data from Survey Staff (2014b).
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Figure 2.9. Case studies of eroded phase soil distribution and classification. 
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Figure 2.10. Meta-analysis of normalized yield-erosion depth relationships by experimental type. Figure 
adapted from Bakker et al., 2004 – with the addition of Papiernik et al., 2009, Graveel et al., 2002; 
Jagadamma, 2009 and Andraski and Lowery, 1992.
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CHAPTER 3 

Meteoric Beryllium-10 as a tracer of cumulative erosion due to post-settlement land 

use in west-central Minnesota, USA. 
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Abstract 

Soil sustainability in agricultural landscapes is highly dependent upon the pattern and 

intensity of wind, water, and tillage erosion, and is closely related to carbon cycling, 

nutrient status, and crop productivity. Radioisotope tracers such as 137Cs have long been 

used to study soil erosion due to land-use on timescales from days to decades. In contrast, 

meteoric Beryllium-10 (10Be) has been under-utilized in anthropogenic landscapes as a 

tracer of erosion and soil truncation despite its ability to provide insights into erosion and 

landscape change on timescales of centuries to millennia. In this study, we present 

meteoric 10Be data from paired uncultivated and cultivated sites in west-central 

Minnesota, USA, and determine the relationship of 10Be to soil organic carbon (SOC), 

soil inorganic carbon (SIC) and 137Cs data across land-uses. Meteoric 10Be concentrations 

were highly correlated to SIC but not 137Cs activities. We apply conversion models to 

10Be data in order to estimate pre- and post-European settlement erosion rates across the 

cultivated transect. Results suggest that pre-settlement erosion rates on the cultivated 

transect averaged 0.38 ± 0.16 Mg ha-1 y-1, whereas total post-settlement erosion rates 

average 31 ± 20 Mg ha-1 y-1. The rates derived from 10Be are comparable to those derived 

from 137Cs and previously simulated water and tillage erosion rates based on topography 

driven models (WATEM). Meteoric Beryllium-10 is an important tool for anthropogenic 

systems, which, when used in conjunction with shorter-lived isotopes, models, and 

geospatial data, can provide novel insights into the evolution and long-term sustainability 

of agricultural landscapes. 
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3.1. Introduction 

Understanding landscape change in regions dominated by agricultural land-use is a 

critical component in predicting the future sustainability of soils for agronomic and 

environmental benefits (Lal, 2012). The tools for estimating cumulative soil profile 

truncation and landscape change under anthropogenic forcings were initially based on 

descriptive data (depth to diagnostic subsurface horizons) and expert opinion (Trimble, 

1974; Daniels, 1987), but more quantitative estimates through the development of 

radionuclide tracers (Ritchie and McHenry, 1990; Matisoff and Whiting, 2011; Kaste and 

Baskaran, 2011) and spatially explicit erosion models (Li et al., 2007; Li et al., 2008) 

have now become indispensible for studying landscape change due to agricultural land-

use. 

 Cesium-137 (137Cs), with a half-life of 30 years, has commonly been used as a 

tracer in studies of agricultural erosion over decadal timescales (Ritchie and McHenry, 

1990; Matisoff and Whiting, 2011). Through conversion models, 137Cs inventories can 

provide erosion rate and soil loss estimates by comparing a reference site to sites under a 

particular land-use or erosion regime of interest (Walling and He, 1999). Because these 

estimates are on decadal scales, land-use histories are often well constrained and changes 

in reference site activities due to natural, long-term soil movement are minimal. 

 In contrast, Beryllium-10 (10Be) is a cosmogenic radionuclide with a half-life of 

1.39 million years (Niishizumi et al., 2007; Chmeleff et al., 2009; Korschinek et al., 

2009) that is produced in the atmosphere and in solid matrices when high-energy solar 

particles strike oxygen (and other) atoms, resulting in spallation reactions (Dunai, 2010). 
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Beryllium-10 produced through spallation reactions in solid substances at the earth’s 

surface, commonly referred to as in-situ 10Be (10Bein-situ), occupies sites in mineral 

matrices in soil and rocks which must be weathered to released this 10Be into adsorbed 

phase or soil solution. Conversely, the 10Be produced through spallation reactions in the 

atmosphere, commonly referred to as meteoric Beryllium-10 (10Bemet) is rapidly adsorbed 

onto aerosols following production and falls out to the earth’s surface in wet and dry 

deposition (Niishizumi et al., 2007; Willenbring and von Blanckenburg, 2010).  

10Bemet, due to its widespread distribution and long half-life, has been used to quantify 

long-term erosion and soil production rates under natural vegetation on steady-state 

landscapes (Pavich et al., 1986; Monaghan et al., 1992), global rates of mineral 

weathering (Willenbring and von Blanckenburg, 2010), loess accumulation rates (Harden 

et al., 2002) and the fate of regolith and saprolite under the influence of glacial processes 

(Balco, 2004; Ebert et al., 2012). Although the use of both forms of 10Be as tracers of 

erosion and landscape change due to agricultural land-use has been suggested (Lal et al, 

1991; Harden et al., 2002), the utility of 10Bemet in these contexts has only been cursorily 

explored (Harden et al., 2002, Graly et al., 2010). 

 Due to its long half-life, 10Bemet can record histories of long-term soil movement 

and material deposition in addition to changes in erosive mechanisms from land-use 

change. In the U.S. Corn Belt, where the conversion of natural vegetation to agricultural 

lands occurred largely 100-140 years ago, estimating these differences is a critical 

component of applying this isotope as a tracer of total post-settlement erosion. Selecting 

and applying conversion models for 10Bemet data thus requires the additional steps of 
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modeling expected distributions of 10Bemet due to natural processes alone, and 

subsequently due to anthropogenic forcing. We therefore discuss two rates of physical 

denudation, and clarify our use of terms here. We estimate natural erosion rates since de-

glaciation and term these “pre-settlement” erosion rates (Epre) – erosion rates that 

represent the long-term (millennial-scale) average Holocene physical denudation rates 

across the landscape under native vegetation and climate forcings, prior to conversion of 

the landscape to agriculture at the time of European settlement. Second, we derive post-

settlement erosion rate estimates (Epost), which represent estimated erosion rates since the 

time of agricultural conversion of the landscape (~ 110 years at the time of sampling).   

 A significant amount of foundational work is available to inform our use of 

various conversion models for 10Bemet distributions. 10Bemet distributions in soil profiles 

have typically been described by empirical relationships that decline exponentially with 

depth (Willenbring and von Blanckenburg, 2010). Process based models for near-surface 

10Bemet depth distributions have seldom been implemented, but with knowledge of cation 

behavior and adsorption characteristics in soils, numerical models for short-lived isotopes 

(e.g. Olsen et al., 1981; Kaste et al. 2007) can be adapted for 10Bemet.  Linking these 

models of profile-scale 10Bemet depth distributions with geomorphic and landscape 

evolution models will provide a foundation for utilizing 10Bemet as a quantitative tracer of 

erosion due to land-use change. 

 We apply three different conversion models that utilize observations of 10Bemet to 

derive Epre and Epost. We compare the results of these models to results from 137Cs 

observations and the WATEM model (Van Oost et al., 2000), derived for these same 
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locations, and investigate the relationships between 10Bemet, 137Cs, soil organic carbon 

(SOC), and soil inorganic carbon (SIC). Lastly, we discuss other consequences and 

challenges facing the use of 10Be in agricultural settings and at our study site in west-

central Minnesota, USA. 

 

3.2. Background and Methods 

3.2.1. Study Area 

 The study site has been described extensively in previous publications (DeAlba et 

al., 2004; Papiernik et al., 2005; Papiernik et al., 2007; Li et al., 2007; Li et al., 2008). 

Briefly, the site lies on the margins of the Alexandria moraine complex of central 

Minnesota, approximately 3km north of the town of Cyrus (-95.74W, 45.67N, Fig 3.1A, 

inset), a landscape which was initially formed by the Wadena Lobe and eventually 

overridden (at least in part) by the Des Moines Lobe during its southeasterly advance in 

the later stages of the Wisconsinan glaciation (Wright, 1962). Surficial sediments in the 

study area are comprised of glacial till of the Goose River formation on the uplands, with 

Quaternary and Holocene alluvial sediments in the river valleys (Harris, 2003). Goose 

River group sediments are loamy textured carbonate-rich Wisconsinan-age glacial tills of 

the Des Moines lobe (Harris, 2003), with pH values ranging from 6.9-7.9 (Papiernik et 

al., 2005). Original estimates for Goose Lake till suggested that it was deposited 11800 – 

13000 y.b.p. (Harris, 2003). More detailed analyses of buried organic sediments and OSL 

on quartz grains has confirmed these initial age estimates on a series of recessional ages 

in the area to ~ 11,800 – 13,900 y.B.P. (Lepper et al., 2007). We therefore consider an 
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average age of 13,000 y.B.P. as the age of deposition of the glacial till associated with the 

study site. 

 The site consists of paired sampling areas along an uncultivated, grassed hillslope 

and a cultivated field of ~ 2.7 ha, both on Goose Lake till (Fig 3.1A; Harris, 2003). The 

uncultivated hillslope used in this study is too steep to have been plowed but was likely 

grazed for at least 50 years. These assumptions are confirmed by local historical 

knowledge and are consistent with the earliest available aerial photography of the study 

site. In June, 2007, samples were taken with a hydraulic corer as part of a larger gridded 

sampling scheme, described, air-dried, hand-pulverized and homogenized by genetic 

horizon. A subset of five profiles along the uncultivated hillslope (Fig 3.1D), 

encompassing all hillslope positions, and five profiles on the cultivated hillslope (Fig 

3.1B) was selected for 10Bemet extraction and analysis.  

 The uncultivated hillslope is characterized by significantly steeper slopes (10.3 ± 

3.0°, slope tangents of 0.18 ± 0.05) than the cultivated field (1.9 ± 1.3°, slope tangents of 

0.03 ± 0.02) and does not have a stable summit position, but does have an intermediate 

summit/shoulder, which has been previously used as the most stable point on the hillslope 

(De Alba et al., 2004). The uppermost summit position of the hillslope is currently 

located in a cultivated field at the top of an interfluve (Fig 3.1A,D; Harris, 2003). The 

situation presented by these paired study sites is common throughout the Corn Belt, 

where uncultivated sites are rare and, if they do exist, often have remained uncultivated 

because they were too steep, too dry, or too wet to be easily cultivated (Corbett and 

Anderson, 2006). Although this presents several challenges in interpretation, sampling 
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across the uncultivated hillslope provides valuable information for deriving both pre- and 

post-settlement erosion rates in cultivated systems with 10Bemet  data. 

 Sample names used in this manuscript follow conventions from previous 

publications (De Alba et al., 2004; Papiernik et al., 2005), with the uncultivated hillslope 

termed the “2H” transect (with sample point 1 at the top and sample point 5 at the bottom 

of the hillslope (Fig. 3.1D). Cultivated transect samples form a portion of a previously 

investigated East -West transect across a hillslope, termed transect “5”. The profiles 

chosen for 10Bemet analysis along the transect are on summit (5-7, 5-8), shoulder (5-9, 5-

10), backslope (5-12) and footslope positions (5-14) (Fig 3.1B and 3.1C). In 2007, at the 

time of sampling, the field had been under cultivation for ~ 110 years and under a 

conventional tillage management regime (annual moldboard plow and secondary tillage) 

for at least 40 years (Papiernik et al., 2005; Papiernik et al., 2007). Cultivated transect 

positions and eroding positions on the uncultivated hillslope have pH values from 6.0-7.9 

for all depth increments, while depositional positions on the uncultivated hillslope have 

pH values to 5.5 in upper horizons due to increased leaching of carbonates and higher 

concentrations of organic matter (Papiernik et al., 2007). Previous research at this site has 

utilized the uncultivated hillslope as a reference for organic carbon, 137Cs, and the 

expected distribution of inorganic carbon across the landscape with topography (De Alba 

et al., 2004; Papiernik et al., 2007).  

  

3.2.2 Soil Characterization – SOC, SIC, 137Cs and Clay 

Gridded samples have been extensively characterized for bulk density, organic carbon, 
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inorganic carbon and 137Cs, following methods described in Papiernik et al. (2005, 2007) 

and Li et al. (2007). 137Cs activities were determined on germanium detectors in the 

University of Manitoba’s Environmental Radiochemistry Laboratory, following 

previously described calibration and determination procedures (Li et al., 2008). Clay % 

was determined on samples shaken and dispersed in sodium hexa-metaphosphate for 12 

hours and run in duplicate on a laser particle size analyzer (Horiba, by laser particle size 

diffraction with a silt-clay size class cutoff of 8um for comparison with particle size 

classes by sedimentation (Konert and Vandenberghe, 1997).  

 

3.2.3 Meteoric 10Be extraction and measurement 

10Be adsorbed to mineral grains and bound to organic materials was removed through a 

series of acidification steps and ion exchange chromatography prior to being oxidized and 

analyzed by accelerator mass spectrometry (AMS). The methodology used here is 

modified from Ebert et al. (2012). 0.5 g of air-dried, homogenized, and sieved (2mm) soil 

was digested in Teflon vessels with 0.5 M HCl and 250 ug of spiked 9Be carrier at 110° C 

for 3 hours, after which time the sediment was removed via centrifugation. 4ml of HF 

was added to the cation solution in two steps to bind excess Ca and Mg. After each HF 

addition step, 2ml of ultrapure H2O2 was added to remove organics. The ultrapure water 

containing Be and other cations was removed from the fluoride cake via centrifugation 

and pipetting. Ion exchange chromatography (both anion and cation removal steps) was 

used to purify Be cations from the bulk cation solution. Be-hydroxides were precipitated 

from the purified cation solution by titration to pH 9 through the addition of ammonia. 



   

92 

The supernatant was decanted and the precipitate was washed several times with 

ultrapure water and dried overnight at 100 deg C in low-boron quartz vials. The dry 

precipitate was flame-oxidized at > 850° C to form BeO powder and pressed into 

cathodes with niobium powder for AMS analysis at PRIME Lab, Purdue University, 

USA.  A process blank was run with each batch of 9 samples.   

 

3.2.4 Calculation of Meteoric 10Be concentrations  

We calculated total 10Bemet concentrations (atoms g soil-1) through the application of 

equation (22) to measured 10Be/9Be ratios from AMS (Table 3.1): 

 

                         

9Becarrier (g)
10Be
9Be

(sample)−
10Be
9Be

(blankave )
⎛
⎝⎜

⎞
⎠⎟
NA

M (10Be)gsample  

(22) 

 

Where 9Becarrier(g) is the total amount of Be carrier added to the sample, 10Be/9Be(sample) 

and 10Be/9Be(blankave) are the 10Be/9Be ratios of the sample and of all blanks (averaged), 

NA is Avogadro’s number, M(10Be) is the molar mass of 10Be, and gsample is the amount of 

sample added. 

 Although our protocol was designed to extract only 10Bemet from our soil samples 

(that 10Be which was deposited from the atmosphere and adsorbed to mineral grain 

surfaces or bound to organic materials), there is the potential that our HF treatment could 

have etched some mineral grains and released the in-situ 10Be present in those grains. We 

ignore this source of error as in-situ 10Be concentrations are typically 2 orders of 
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magnitude lower than 10Bemet concentrations, particularly in deposited materials that have 

already accumulated significant concentrations (~ 1 x 107 atoms g-1) of meteoric 10Be 

(Jungers et al., 2009). 

 Second, we consider the effect of native 9Be present in the parent material that has 

been weathered out of minerals and remains adsorbed to mineral surfaces or bound to 

organic materials. Significant amounts of native adsorbed 9Be can result in calculated 

apparent 10Bemet concentrations that are less than actual concentrations (Eqn 22). Native 

9Be concentrations in mineral soils and tills near the study area are in the 0.5 – 1.5 ppm 

range (Lively and Thorleifson, 2009). Because these soils are young and relatively 

unweathered, it is likely that only a small percentage of this Be is in the adsorbed phase, 

as a highly weathered Ultisol on a stable landscape position in South Carolina which has 

undergone 1-3 My of soil development and weathering had a maximum of ~ 50% of its 

total 9Be in the adsorbed phase (Bacon et al., 2012). However, as an upper bound on 

error, if we assume that all of this Be is in the adsorbed phase, 1.5 ppm of native 9Be 

adsorbed results in 5 x 1015 atoms of native 9Be present in the sample during processing. 

Adding 250 mg of 9Be carrier with a concentration of 1000mg L-1 results in the addition 

of 1.67x1019 atoms 9Be. Therefore, even if all of the native 9Be contained in these soils is 

in the adsorbed phase and released to solution during sample processing, it results in a 

negligible addition to total 9Be that would affect the apparent 10Bemet concentration by < 

0.1%, well within AMS measurement errors (Table 3.1). 

 

3.2.5 Calculation of 10Be Inventories and Landscape Age 
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Measurements of total meteoric 10Be concentrations (10Bemet,T  atoms g-1) include the 

inherited meteoric 10Be present in the soil parent material (till) when it was deposited 

(10Bemet, I atoms g-1) and the 10Be accumulated during the period of soil formation since 

the land surface was ice free (10Bemet,A atoms g-1). Values of 10Bemet, I are important for 

comparisons of soil parent materials, material age, and provenance (Balco, 2004; 

Willenbring and von Blanckenburg, 2010), but do not contain information relevant to 

erosion due to post-settlement land-use change. When 10Bemet, T, 10Bemet, I  or 10Bemet, A are 

discussed, they are explicitly identified in text and with the corresponding abbreviations.  

Criteria used to determine the average concentration of inherited 10Be (10Bemet, I, ave) from 

parent material are as follows. The average 10Bemet,T concentration from the bottom depth 

increment of all profiles (ranging from 87cm – 150cm), was subtracted from all observed 

10Bemet,T concentrations. Any resulting depth increment concentrations that were negative 

or less than the average were considered to contain only 10Bemet, I.  

 For each measured depth increment (i), the inventory of 10Bemet, A is the excess of 

10Bemet, T over 10Bemet, I (Eqn 23), where  is the average inherited 10Bemet 

concentration across all samples, from above: 

 

                                 
10Bemet ,A,i =

10Bemet ,T ,i −
10Bemet ,Iave  

(23) 

 

If, by equation 23, 10Bemet A,i < 0, then 10Bemet,T,i is assumed = 10Bemet,I,i, and 10Bemet,A,i is 

set to 0. 

 The total accumulated, non-inherited 10Be inventory  (IA atoms m-2) for each 
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profile is then: 

 

                                     
IA =

10Bemet ,A,iρs (zbot ,i − ztop,i )
i=1

n

∑
 

(24) 

 

where ρs is the increment bulk density (kg m-3) and zbot,i, ztop,i are the bottom and top 

depths (m) of the sampled increment, respectively, and i=1 is the top (surficial) depth 

increment, and i=n is the bottom depth increment. Inventories of 10Bemet,T, 10Bemet,I, 

10Bemet,A, SOC, SIC, and 137Cs were calculated to 1.5 m (depth of deepest observation in 

dataset) for all profiles by extending observed values of the lowest depth increment to 1.5 

m if it did not extend that far. This resulted in a maximum of 28cm of gap-filling for 

profile 2H3, but in all cases the contribution of the gap-filled portion was < 5% of the 

inventory.  All inventories for other soil constituents discussed in this study were 

calculated as in equation 24, above.  

 Because the non-inherited 10Be inventory (IA) is related to the development time 

of the soil, the total inventory of a stable landform provides a measure of landscape age 

or time since soil development began on a deposited parent material [Pavich et al., 1984; 

Graly et al., 2010]. An estimate of this age is provided by the total inventory (IA) of a 

stable landform, excluding the radioactive decay of 10Be (which is reasonable on 

timescales of < 100,000 years due to the long half-life (~ 1.4 My) of 10Be: 
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t = IA

PBe  

(25) 

 

where t is time since parent material deposition (y) or exposure at the surface (related to 

time since the beginning of soil development), and PBe is the long-term average wet and 

dry deposition of 10Bemet  (atoms cm-2 y-1). We utilize 1.3 x 106 atoms cm-2 y-1 , which is 

similar to the long-term global average reported in other studies and the value used for 

published studies of 10Be distributions in soils for other parts of Minnesota and Iowa 

(Harden et al., 2002; Balco, 2004). This value is highly congruent with that for the study 

site based on a modern precipitation-normalized sigmoidal fit to measured global 

latitudinal trends in meteoric 10Be flux (Graly et al., 2011).  

 

3.2.6. 137Cs conversion models for calculating 47-year average erosion rates 

Two different models were used to convert observed 137Cs inventories to 47-year average 

erosion rates for each profile and both require a reference inventory of 137Cs from an 

undisturbed site. The first is the linear model of de Jong et al. (1983), applied by Lobb et 

al. (1999): 

 

                                
E47,ave =

ρsD(
137Cs0 − 137Cs j )
t(137Cs0 )

⎛
⎝⎜

⎞
⎠⎟  

(26) 

 

Where  is the 47-year average erosion rate assuming all 137Cs inventory was 

deposited to the study site as a pulse event in the year 1960, ρs is the average soil bulk 
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density, and D is the depth of soil through which 137Cs is distributed, 137Cs0 is the 

reference inventory (atoms m-2), 137Csj is the profile inventory (atoms m-2) at sampling 

point j, and t is the time period from 1960 to the time of sampling (47 years).   

 The second conversion model is the power method, developed by Kachanoski 

(1987), applied by Lobb et al. (1999): 

 

                                     

E47,ave =
ρsD 1−

137Cs j
137Cs0

⎛
⎝⎜

⎞
⎠⎟

1
t

η

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

(27) 

 

Where variables are as described above and  is an enrichment ratio, generally assumed 

to be 1.0. 

 The reference 137Cs inventory used for model input was 2099 Bq m-2, which is the 

average of three estimates of reference inventories at the study site (2224 Bq m-2 (Li et 

al., 2008), 2093 Bq m-2 (Li et al., 2007), and 1893 Bq m-2 (Li and Lobb, unpublished)).   

 

3.2.7. 10Bemet conversion models for estimating Epost and Epre 

We utilize three different conversion algorithms to estimate post-settlement (Epost) 

erosion rates, two of which allow us to derive natural (Epre) erosion rates at the cultivated 

sampling points (Models 2 and 3).  

 Conversion Model 1. Conversion Model 1 is a proportional, linear conversion 

model equivalent to the linear model for 137Cs (de Jong et al., 1983; Walling and He, 
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1999) which assumes the independence of sampling points and calculates apparent 

erosion rates based solely on the normalized difference in 10Be inventories at each 

sampling point. For short-lived radioisotopes such as 137Cs, a reference is a single 

reference inventory, however in our analysis of 10Bemet, we utilize the uncultivated 

hillslope average inventory as the reference considering the entire hillslope as a box 

which contains all 10Bemet,A deposited since the landscape has been ice-free : 

 

                                        
Epost =

ρsD(IA
0 − IA

j

tIA
0

⎛
⎝⎜

⎞
⎠⎟  

(28) 

 

where Epost is the post-settlement erosion rate (Mg ha-1 y-1), ρs is the average soil bulk 

density, and D is the depth of soil through which 10Be is distributed, is the reference 

inventory (atoms m-2),  is the profile inventory (atoms m-2) at sampling point j, and t is 

the time period since the start of cultivation (y). Key assumptions in this model are 1) the 

independence of sampling points from eachother and from the landscape and 2) the 

uncultivated hillslope average inventory provides a reasonable reference value. 

 Conversion Model 2. Conversion Model 2 consists of two parts - a numerical 

model of the long-term diffusion of radionuclides into soils following Olsen et al. (1981) 

to estimate pre-settlement 10Bemet distribution and inventory, followed by a simplified 

version of models applied by Kachanoski and DeJong (1984) and Li et al (2010) to 

estimate erosion rates under annual tillage while taking into account the  

vertical mixing and dispersion of 137Cs poor subsoil into the plow layer (Kachanoski and 
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De Jong, 1984).  Unlike short-lived radioisotopes, which have been deposited under 

conditions of cultivation, 10Bemet,A inventories were established under natural conditions 

and thus necessitate additional modeling to estimate pre-settlement inventories.  

For the pre-settlement portion, briefly, the soil profile is subdivided into layers of equal 

thickness. A mixing coefficient is determined for the boundary between each layer at 

depth z (cm) that is based off of an exponential curve which is dependent on the surficial 

diffusion parameter (Db, cm2 y-1) and characterized by a half-thickness depth - the depth 

at which Di is one-half the surface value (H, cm): 

 

                                         
Di = Db exp

−0.693
H / z

⎛
⎝⎜

⎞
⎠⎟  

(29) 

 

These diffusion coefficients are then applied to a soil profile divided into 1 cm 

increments which has 10Bemet deposited at the surface during each timestep according to 

the long-term average (1.3 x 106 atoms cm-2 y-1) as derived above. The profile is 

diffusively mixed (Eqn 30) to establish a new profile distribution of 10Bemet and is 

subsequently eroded by a specified increment (Epre) value completing each timestep: 

 

                                             

∂C
∂t

= ∂
∂z

Di
∂C
∂z

⎛
⎝⎜

⎞
⎠⎟  

(30) 

 

 We differ from the approach of Olsen et al. (1981) because we exclude 

radioactive decay (negligible due to the long half-life of 10Be and short-timespan under 
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consideration). We also exclude an advection term because the high pH of these soils, 

lack of clay illuviation and precipitation range of the study site means that the majority of 

the 10Bemet deposited on the soil surface is not likely to be mobilized by leaching 

(Willenbring and von Blanckenburg, 2010). This numerical model is run for the length of 

landscape development in 1 year timesteps to 13,000 years.  

 We iteratively solve the model for a best fit solution for Db, H and Epre and choose 

the model that minimizes root mean square error (RMSE) for the soil loss positions on 

the uncultivated hillslope, 2H1 and 2H2. The parameters are then applied in an additional 

model run to estimate the pre-settlement 10Bemet profile distribution at each eroding 

cultivated transect position (5-7, 5-8, 5-9, 5-10, 5-12) with the magnitude of gross soil 

loss (Epre for this model) scaled relative to the slope of the uncultivated hillslope positions 

(Eqn 31): 

 

                                              
Epre, j = Epre,uncult

Sj
Suncult  

(31) 

 

This model is reasonable because even though the uncultivated site has steeper slopes 

than the cultivated site (Fig 3.1C,E), all of these slopes are still well within the range 

where colluvial soil transport scales linearly with curvature (Roering et al., 1999), and 

hence with slope where only colluvial mass flux away from the point of interest is 

considered.  

 This estimated pre-settlement 10Be profile is then run through a series of 

agricultural erosion scenarios where the plow layer is completely homogenized and 
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eroded on 1 year timesteps in a simplified version of models applied by Kachanoski and 

DeJong (1984) and Li et al (2010). When time since initial cultivation and plow layer 

10Bemet concentrations are constrained, a single solution for Epost is possible based on a 

log-linear regression of the numerical modeling results for a range of erosion rates, with 

parametrical uncertainty evaluated by 1000 Monte Carlo simulations. 

 Therefore, Conversion Model 2 requires the following steps: 

1. Iteratively solve numerical diffusion model for best-fit values of Db, H and 

Epre (natural erosion rate) at soil-loss positions on the uncultivated hillslope 

(2H1 and 2H2). 

2. Apply these parameters to model the expected pre-settlement depth 

distribution of 10Bemet at soil-loss positions at the cultivated site (5-7, 5-8, 5-9, 

5-10, 5-12), with Epre  (natural erosion rate) linearly scaled to slope. 

3. Fully mix the plow layer (0-25 cm), erode and mix again on annual 

timesteps for 110 years. Evaluate at multiple values of Epost to obtain 

regression equation, solve regression equation with plow layer input for 

unique value of Epost (average post-settlement erosion rate). 

Key assumptions in this model: 1) This model considers only soil loss (gross mass flux 

out) and not net soil loss and 2) the derived diffusion parameters from uncultivated 

profiles 2H1 and 2H2 are representative across the landscape. 

 Conversion Model 3. Conversion Model 3 utilizes the same numerical modeling 

approach as conversion model 2, but instead of first solving for a best-fit solution and 

scaling according to slope, we solve for the landscape diffusivity parameter k (cm3 cm-1 
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y-1) based on uncultivated hillslope 10Bemet inventories and the assumption of linear 

dependence of soil volume creep on slope gradient and in downslope plug flow from a 

summit position (McKean et al., 1993): 

 

                                           
k(x) = PBex

ρsCBe(x)S(x)  

(32) 

 

Where  is the average annual deposition of 10Bemet (atoms cm-2 y-1), x is the distance 

from the summit (cm),  is the average surface soil bulk density (g cm-3),  is the 

average soil 10Bemet concentration (atoms g-1), and  is the tangent of the slope at 

distance x cm from the summit.   

 We make a steady-state assumption as in McKean et al (1993) to estimate Epre 

under uncultivated conditions for each sampling point, where we use the slope 10m 

above and 10m below each point perpendicular to the contour line to calculate long-term 

erosion rates: 

 

                                           
Epre =

∂(ρskaveS(x))
∂x

⎛
⎝⎜

⎞
⎠⎟  

(33) 

 

Where Epre (Mg ha-1 y-1) is the long-term erosion rate at point x,  is the average bulk 

density of the soil (Mg m-3), and kave is the average landscape diffusivity (m2 y-1) derived 

from the uncultivated hillslope, above. Epost is solved by applying logarithmic regressions 

to unique numerical solutions of plow layer 10Bemet observations for 1000 Monte Carlo 
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runs as in conversion Model 2.   

 Key assumptions: Although this model considers net soil mass flux, it assumes 

that 10Bemet flux in is equal to 10Bemet flux away from the sample point under 

consideration. It also makes a steady-state assumption in order to derive the landscape 

diffusivity parameter (k) from observed uncultivated hillslope inventories [McKean et al., 

1993]. 

 The assumption of independence in Models 1 and 2 and assuming only soil loss 

(Model 2) or steady-state 10Be (Model 3) have the advantage of simplifying conversion 

algorithms, but the disadvantage of ignoring landscape setting and soil accumulation as 

well as loss. Therefore, except for the proportional method (Model 1) we restrict our 

analyses to cultivated sampling points on eroding (convex or nearly linear – positive 

curvature). Depositional settings are inappropriate settings in which to apply these 

models (except for the completely independent Model 1) and require more extensive 

algorithms that are beyond the scope of this analysis.  

 Conversion Model Error Analysis. Three sources of uncertainty (measurement, 

structural and parametrical) in our model analysis were evaluated. Measurement 

uncertainty due to 10Be AMS errors and bulk density variability was included in all 

erosion rate estimates. Where unmeasured parameters were critical for erosion estimates 

(models 2 and 3), model parametrical uncertainty was evaluated through Monte Carlo 

simulations in which models were run 1000 times over a range of randomized input 

variables. For Models 2 and 3, all parameters for the Monte Carlo simulations were run 

over a range of  ± 20% of the best estimated parameter. This range encompassed all 
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reasonable values of input parameters as determined from the literature and previous 

studies. Model structural uncertainty (systemic error due to model structure) was 

evaluated by inter-comparison with results obtained from the models suite as well as 

results from the same sampling points using the WAter and Tillage Erosion Model 

(WATEM - Van Oost et al. (2000)), as reported in Papiernik et al. (2005).  

 

3.3. Results 

3.3.1. Meteoric Beryllium-10 Concentrations and Relationships  

10Bemet,T concentrations were significantly affected by depth (p < 0.001), land-use (p = 

0.02) and hillslope position (p = 0.02). Concentrations of 10Bemet,T across the study area 

ranged from 0.63 x 107 atoms g-1 in subsoils to 26.8 x 107 atoms g-1 in topsoils at 

depositional sites (Table 3.1). Concentrations of 10Bemet,T in the lowest sampling 

increment of each profile averaged 1.85 x 107 atoms g-1. Only one soil profile (2H4) had 

no 10Bemet,T concentrations that met the criteria for inheritance and thus that entire profile 

was excluded from the calculation of 10Bemet,I ave. The resulting 10Bemet,I average for the 

study site per our algorithm (Eqns 22-24) was 1.07 x 107 ± 0.29 x 107 (SD) atoms g-1. 

When this average value was applied to all cultivated increments to determine 10Bemet,A 

inventories, only the depositional position of the cultivated transect had 10Bemet,A below 

the plow layer (Table 3.1). All other cultivated profiles had 10Bemet,A remaining only in 

the plow layer. Uncultivated upper hillslope positions 2H1 and 2H2 had 10Bemet,A from to 

24-32 cm depth, while the uncultivated backslope, and footslope positions had 10Bemet,A 

to 67-144 cm (Table 3.1).  
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In accordance with expectations of largely unsorted, loamy-textured glacial tills, clay 

percentage was not affected by land-use, depth or hillslope position (p > 0.5 in all cases). 

We conclude that grain size effects on 10Bemet concentrations can be safely ignored in the 

studied soil profiles and that observed concentration differences are not due to differential 

sorting of materials during erosive processes. 

 The surficial 10Bemet,T concentrations of sampled profiles ranged from a minimum 

of 3.16 x 107 atoms g-1 on the highly eroded cultivated backslope position (5-12) to a 

maximum of 26.8 x 107 atoms g-1 in a depositional position (2H4) on the uncultivated 

hillslope (Table 3.1). Importantly, surficial concentrations of 10Bemet,T across the 

uncultivated hillslope were not always greater than surficial concentrations of 10Bemet,T at 

the cultivated site. Surficial concentrations at uncultivated summit and shoulder positions 

2H1 and 2H2 (12.4 x 107 atoms g-1 and 11.0 x 107 atoms g-1, respectively) were less than 

surficial 10Bemet concentrations at profile 5-8 on the relatively flat summit of the 

cultivated site (15.8 x 107 atoms g-1, Table 3.1).  

 SOC concentrations were significantly affected by depth and land-use (p < 0.001 

in both cases). SOC concentrations ranged from 0.1 – 5.0% across all samples, with 

averages of 0.6 ± 0.5 and 1.5 ± 1.5 % for cultivated and uncultivated samples, 

respectively. Surficial concentrations of SOC ranged from 0.96 – 4.96% across all 

samples, with averages of 1.2 ± 0.2 and 4.2 ± 0.5 % for cultivated and uncultivated 

samples, respectively (Table 3.1).  

 Across all samples, SIC concentrations were significantly affected by land-use 

and hillslope position (p < 0.001 in both cases). Surficial concentrations of SIC ranged 
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from 0.0 – 2.5% across all samples, with averages of 1.7 ± 0.9 and 0.3 ± 0.4 % for 

cultivated and uncultivated samples, respectively (Table 3.1).  

 137Cs activities (including subsoil increments) were significantly affected by depth 

(p < 0.001) and marginally affected by land-use (p = 0.04). 137Cs activities ranged from 

0.0 – 12.5 Bq kg-1 across all samples, with averages of 0.7 ± 1.3 and 2.3 ± 3.9 Bq kg-1 for 

cultivated and uncultivated samples, respectively. Surficial activities of 137Cs ranged from 

1.3 – 12.5 Bq kg-1 across all samples, with averages of 2.8 ± 0.9 and 9.2 ± 2.4 Bq kg-1 for 

cultivated and uncultivated samples, respectively (Table 3.1). 

 When all samples are considered, 10Bemet,T concentrations are correlated with SIC, 

and SOC concentrations, but not 137Cs activities (Fig 3.2A-D). SIC concentrations were 

negatively correlated to 10Bemet,T concentrations, while SOC concentrations were 

positively correlated to 10Bemet,T concentrations (Fig 3.2A-D). Clay percentages were not 

significantly correlated to 10Bemet,T concentrations across all samples (p > 0.7). When 

only the surficial values of these samples are considered, SIC is an excellent predictor of 

surficial increment 10Bemet,T concentrations, while 137Cs and SOC are not significantly 

correlated with 10Bemet,T concentrations (Fig 3.2). Specifically, SIC has the highest R2 for 

all predictors of surficial 10Bemet,T (R2=0.81, p < 0.001). In contrast to the poor correlation 

between 10Bemet,T and SOC, 137Cs activities were highly correlated to SOC concentrations 

when all samples and surficial samples were considered (R2=0.89, p <  0.001 and 

R2=0.87, p < 0.001, respectively).  

 

3.3.2. Meteoric Beryllium-10 Depth Distributions, Inventories, and Relationships 
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The shape of 10Bemet concentration depth profiles is highly dependent upon landscape 

position. Summit and shoulder positions for complete profiles of both the uncultivated 

(2H1, 2H2) and cultivated (5-8, 5-9, 5-10) sites as well as a backslope position at the 

cultivated site (5-12) exhibit exponential decreases in 10Bemet,T concentrations with 

depth,(Fig 3.3 and 3.4), typical of stable or eroding landscape positions in young 

landscapes where diffusion and not advection is the dominant process of the downward 

movement of 10Bemet in the soil profile  (Willenbring and von Blanckenburg, 2010; Graly 

et al., 2010). In contrast, the uncultivated backslope (2H3) and all footslope positions (5-

14, 2H4, 2H5) were cumulative in profile (Fig 3.3 and 3.4), and look similar to plug flow 

accumulation or other sedimentary or depositional environments of 10Bemet (McKean et 

al., 1993; Harden et al., 2002). 

 Inventories of 10Bemet,T varied according to hillslope position and land-use. On 

average, 10Bemet,T inventories on the cultivated transect were significantly less than those 

on the uncultivated hillslope (7.04 x 1013 ± 0.70 x 1013 atoms m-2, n=6 and 14.0 x 1013 ± 

1.17 x 1013 atoms m2, n=5, respectively), however important differences within land-uses 

existed as well (Table 3.2). Along the cultivated transect, 10Bemet,T inventories varied 

systematically with landscape position, with the exception of profile 2H5, which, 

although at the lowest elevation along the hillslope, had a lower inventory (14.8 x 1013 ± 

1.5 x 1013 atoms m-2) than 2H4, the profile above it (30.9 x 1013 atoms m-2 ± 2.3 x 1013 

atoms m-2) (Table 3.2). We assume, based on all other observations of cultivated profiles 

on summit, shoulder or backslope positions, that the plow layer inventory of 10Bemet,T at 

profile 5-7 also represents the total profile inventory (4.6 x 1013 ± 0.5 x 1013 atoms m-2).  
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Maximum concentrations of 10Bemet,T (which occurred in the surficial increment except 

for profiles 2H4 and 5-14) were log-linearly correlated to total inventories (R2 = 0.86, p < 

1 x 10-4, Fig 3.5A), with a tighter relationship between the two variables at lower values 

of maximum concentrations (< 20 x 107 atoms g-1) than at higher maximum 

concentrations (> 20 x 107 atoms g-1) (Fig 3.5).  

 Calculated inventories of 10Bemet,I to 1.5m averaged 2.1 x 1013 ± 0.16 x 1013 atoms 

m-2 and did not differ between hillslope positions or land-use. Because 10Bemet,I does not 

differ between sampled profiles, 10Bemet,A inventories are highly correlated to 10Bemet,T 

inventories and were significantly less on the cultivated transect than uncultivated 

hillslope (8.14 x 1013 ± 0.83 x 1013 atoms m-2, n=6 and 11.8 x 1013 ± 1.08 x 1013 atoms 

m2, n=5, respectively). The resulting average uncultivated 10Bemet,A inventory (11.8 ± 1.1 

x 1013 atoms m-2, Fig 3.5), results in landscape age estimates of 8,300 -  9,900 years (Eqn 

25), assuming long-term average 10Bemet  deposition of 1.3 x 1010 atoms m-2 y-1.  

On the uncultivated hillslope, total inventories of SOC and 137Cs did not vary by more 

than 30% from the hillslope average, while 10Bemet,T inventories varied as much as 100% 

from the average (Fig 3.3). In contrast, SOC, 137Cs and 10Bemet,T varied by greater than 

150%, 200% and 400%, respectively on the cultivated transect (Fig 3.4), with most of the 

variability occurring at the footslope position (5-14).   

 SOC inventories were significantly different between land-uses (19.2 ± 1.8 kg m-2 

and 9.4 ± 2.5 kg m-2, p < 0.01, uncultivated and cultivated profiles, respectively). 10Bemet,I 

and SIC inventories were not significantly different between cultivated and uncultivated 

profiles (p > 0.05, Welch’s two-sample t-test). 10Bemet,T inventories and SIC inventories 
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were highly correlated (R2 = 0.85, p < 0.001). 137Cs inventories also differed significantly 

between land-uses (2186 ± 395 and 876 ± 519 Bq m-2, uncultivated and cultivated, 

respectively). Surficial 137Cs activities (maximum 137Cs activities, in all cases) were 

correlated to total 137Cs inventories (Fig 3.5B) but the shape of the relationship contrasted 

strongly with that of the maximum 10Bemet,T concentration to inventory relationship (Fig 

3.5), with inventories saturating but activities increasing. The relationship between 

maximum 10Bemet,T concentration and total 10Bemet,T inventory contrasts sharply with the 

relationship between surficial (or maximum, in all cases) 137Cs activity and total 137Cs 

inventory. Maximum concentrations of 10Bemet,T appear to saturate ~ 2.5 x 108 atoms g-1, 

while profiles continue to collect inventory, while (because of the finite deposition of 

137Cs) 137Cs inventories asymptote at ~ 2000-2500 Bq kg-1 but surficial activities can 

continue to increase with less disturbance to the surface layer (Fig 3.5). 

 

3.3.3. 47-year average erosion rate estimates: 137Cs Conversion Models 

 The linear conversion model using observed 137Cs inventories as inputs resulted in 

soil loss estimates of 31 - 42 Mg ha-1 y-1 at summit, shoulder and backslope positions and 

a deposition rate of +3 Mg ha-1 y-1 at the cultivated toeslope position (5-14) for the linear 

model. The power model resulted in lower erosion estimates (p = 0.03) than the linear 

model, with soil loss estimates ranging from 22 - 30 Mg ha-1 y-1 at summit, shoulder and 

backslope positions and a deposition rate of +110 Mg ha-1 y-1 at the toeslope position. 

 

3.3.4. Total post-settlement erosion rate estimates: 10Be Conversion Model 1 
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We utilized the uncultivated hillslope average 10Bemet,A inventory (11.8 x 1013 atoms m-2) 

as the reference inventory for erosion rate calculations based on linear methods through 

equation (8). This linear, slope independent model resulted in post-settlement erosion 

rates ranging from 16-24 Mg ha-1 y-1 on eroding landscape positions (5-7, 5-8, 5-9, 5-10, 

5-12) of the cultivated site (Table 3.3). Accordingly, cultivated point 5-12 (backslope), 

which has the lowest measured 10Bemet,A inventory also had the largest erosion rate 

estimate (-24 Mg ha-1 y-1). In contrast, the footslope position on the cultivated transect 

had the largest 10Bemet inventory, resulting in a deposition rate estimate of +79 Mg ha-1 y-

1 (Table 3.3).  

 

3.3.5. Pre-settlement (Epre) and total post-settlement (Epost) erosion rate estimates: 10Be 

Conversion Model 2 

  The best iterative fit solution of the parameters to the observed 10Bemet,A profile at 

uncultivated position 2H1 was H=5, Db=0.08, and Epre = 0.1 mm y-1 (Fig 3.3B, Table 

3.3), and the best iterative fit solution to the observed 10Bemet profile at uncultivated 

position 2H2 was H=5, Db=0.06, and Epre = 0.1 mm y-1 (Fig 3.3C, Table 3.3). Therefore, 

best fit parameters used for modeling pre-settlement distributions on the cultivated 

transect were H=5, Db=0.07 (average of Db=0.06 and Db=0.08) and Epre scaled to slope 

based on an Epre of 0.1 mm y-1 for slope tangents of 0.21 – 0.22 (Eqn 31).  

 Epre derived from our numerical model with input parameters from 2H1 and 

scaled by slope (Eqn 31) for points 5-7 to 5-12 ranged from 0.35 – 0.61 Mg ha-1 y-1 

(0.028 – 0.049 mm y-1, (Table 3.3)). This resulted in expected pre-settlement 10Bemet,T 
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inventories of 5.2– 8.6 x 1013 atoms m-2, while observed inventories ranged from 2.3 - 6.7 

x 1013 atoms m-2 (Table 3.2). Regression equations from 1000 Monte Carlo runs of our 

numerical loss-only model were utilized to determine Epost estimates from observed 

plow layer 10Bemet inventories (Fig 3.6). Estimated Epost at profiles 5-7, 5-8, 5-9, 5-10 and 

5-12 resulted in erosion estimates ranging from 15 – 50 Mg ha-1 y-1 (1.17 – 4.09 mm y-1, 

(Table 3.3)), with an average Epost of 33 ± 17 Mg ha-1 y-1. Epost at shoulder and backslope 

positions (5-9, 5-10, 5-12) is more than twice those at the summit positions (5-7 and 5-8, 

Table 3.3). Similar to conversion Model 1, the backslope position (5-12) has the highest 

estimate of Epost. 

 

3.3.6. Pre-settlement (Epre) and total post-settlement (Epost) erosion rate estimates: 10Be 

Conversion Model 3 

 The average landscape diffusivity value (k, cm2 y-1) was estimated from observed 

inventories across a linear portion of the uncultivated hillslope (profiles 2H2, 2H3, and 

2H4) which comes closest to representing linear, plug-flow like accumulation necessary 

to apply steady-state models and derive estimates of long-term average erosion rates 

(McKean et al., 1993).  The average value of k estimated from these 10Bemet inventories 

(Eqn 32) is ~ 93 cm2 y-1 (Table 3.4). Applying this average diffusivity value under 

steady-state assumptions and slope-dependent transport for the cultivated site, we arrive 

at independently derived estimates of natural erosion for the uncultivated site at points 5-

7, 5-8, 5-9, 5-10, and 5-12 (Table 3.3).   

 The values of Epre derived independently from uncultivated hillslope k and 
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curvature are 0.0009 – 0.44 Mg ha-1 y-1 (0.001 – 0.035 mm y-1, Table 3.3). Corresponding 

estimated pre-settlement 10Bemet inventories are 9.6 – 16.2 x 1014 atoms m-2. Epost 

estimates, determined by applying regression equations over a range of unique solutions 

for Epost and plow layer 10Bemet inventories resulted in Epost estimates ranging from 31-68 

Mg ha-1 y-1 (0.235 – 0.526 mm y-1, (Table 3.3)), with an average of 46 ± 17 Mg ha-1 y-1. 

Similar to conversion other models, the highest erosion rate estimate for conversion 

Model 3 is at the backslope position (5-12).  

 

3.3.7. Model suite inter-comparison 

 To facilitate the evaluation of structural errors in models, we also utilized 

previous published WATEM estimates for these sampling points in our model inter-

comparison (Papiernik et al., 2005; Table 3.3). We tested for systematic differences 

between model estimates through paired t-tests of result sets (Table 3.5). Although 

important differences existed between summit (5-7, 5-8) and shoulder/backslope 

positions (5-9, 5-10, 5-12) for 10Be conversion Models 1,2 and 3 (Table 3.3), there was 

no significant difference between all paired 10Be conversion Model estimates of Epost 

(Table 3.5). 10Be conversion model 1 resulted in the lowest average Epost estimates and 

smallest differences (20 ± 4 Mg ha-1 y-1) for all 10Be models and other models considered 

(including WATEM and 137Cs), while 10Be conversion model 3 resulted in the highest 

average Epost estimates and largest differences (41 ± 29 Mg ha-1 y-1) for all 10Be models 

(Table 3.3). Paired results from 10Be conversion model 3 were not significantly different 

from WATEM or 137Cs estimates of Epost (Table 3.5). Epost estimates at the sampling 
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points from WATEM (Papiernik et al., 2005) were greater than all other paired estimates 

except 10Be conversion model 3 (Table 3.5). 

 

3.4. Discussion 

3.4.1. Relationship of 10Bemet observations to previous studies of 10Bemet and erosion in 

U.S. Midwestern and agricultural landscapes 

 Topsoil 10Bemet,T concentrations at upper hillslope positions of both the 

uncultivated and cultivated portions of this study site are well below the range of 

previously reported values for surficial soils in the region, suggesting that the landscape 

at the margins of the Alexandria moraine is geomorphically dynamic under 

anthropogenic agricultural regimes, relative to the lower-relief areas surrounding the 

Minnesota River Valley investigated in previous studies (Balco, 2004, Belmont et al., 

2011). The average of surficial depth increment concentrations of 10Bemet,T in these 

previous studies in Minnesota and Iowa (n=11) is 24.6 x 107 atoms g-1, with an average 

of 20.7 x 107 atoms g-1 in agricultural systems (n=8) and 21.2 x 107 atoms g-1 in natural 

(n=3, forest and prairie) systems. In contrast, the surficial values of 10BemetT at this study 

site are 10.1 x 107 atoms g-1 (SD = 6.8 x 107) for cultivated points (n=6) and 19.1 x 107 

(SD = 7.0 x 107) for uncultivated points (n=5).  

 Values of 10Bemet,I at our study site, which ranged from 0.88 x 107 atoms g-1 to 

1.97 x 107 atoms g-1 are very similar to meteoric 10Be concentrations from the banks of 

the Minnesota River (0.8 x 107 atoms g-1), which represent deep deposits of unweathered 

Des Moines lobe till (Belmont et al., 2011), and inherited values from below 1m (1.9 x 
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107
 atoms g-1 in Des Moines lobe till on a roadcut near Henderson, Minnesota (Balco, 

2004). 

 Our average measured topsoil concentrations at the cultivated site were generally 

50% of those measured in the grassland site despite the large differences in slope, 

demonstrating that the erosive forcing of ~ 100 years of tillage-intensive annual cropping 

systems is greater than that of 13,000 years of landscape evolution under natural regimes. 

This further supports meta-analyses that have shown that human-driven soil disturbance 

now accounts for the majority of global soil movement and sedimentation, even in 

relatively low-relief landscapes (Wilkinson and McElroy, 2007; Montgomery, 2007).  

 Because topsoil 10Bemet concentrations are related to hillslope position, surficial 

concentrations of 10Bemet are significantly correlated with whole-profile 10Bemet 

inventories, as has been identified on a global scale in previous meta-analyses (Graly et 

al., 2010). The existence of high (> 20 x 107 atoms g-1) 10Bemet concentrations to 1m 

depth on the uncultivated hillslope demonstrates the ability of 10Bemet to provide 

information on geomorphic change across long timescales.  SOC inventories vary by 

25% or less across the uncultivated hillslope and are not related to hillslope position, 

suggesting that the soil movement characterized by 10Bemet is related to long-term 

diffusive soil movement and not recent or episodic deposition events. If agricultural 

activities post-settlement had significantly altered soil movement along the uncultivated 

hillslope, we would expect to see a significant increase in the variability of SOC 

inventories across the hillslope associated with post-settlement soil erosion and 

deposition (Papiernik et al., 2005; Quine and Van Oost, 2007). This is in strong contrast 
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to 10Bemet and SIC inventories, which exceed 150 and 200% variation around the average 

across the uncultivated hillslope.  

 

3.4.2. Soil profile truncation and depth of erosion 

The strong relationship between surficial 10Bemet concentrations and inventories to 

surficial SIC concentrations and inventories demonstrates a critical link between soil 

morphology, classification and changes in dynamic soil properties over timescales of 

centuries and beyond, which has been conceptually explored in previous studies (De Alba 

et al., 2004). The exposure or incorporation of subsoil carbonate-rich horizons with high 

concentrations of inorganic carbon has been shown to provide a reliable proxy for total 

post-settlement erosion and depth of soil profile truncation (Papiernik et al., 2007). Our 

use of direct observations of a tracer that provides evidence of total post-settlement soil 

truncation provides a critical link between morphologic and modeling studies (De Alba et 

al., 2004, Papiernik et al., 2005, Papiernik et al., 2007) and quantifiable long-term erosion 

rates. This link holds promise, if explored at multiple scales, to provide a quantitative 

basis for long-term erosion rate estimates from SIC concentrations and profile 

morphology alone. In contrast, SOC and 137Cs activities were weak or non-significant 

predictors of surficial 10Bemet concentrations due to the difference in timescales over 

which they operate. While SOC can reach steady-state over timescales of decades to 

centuries and 137Cs was deposited and decays over decadal scales, the accumulation of 

10Bemet and the time it takes to reach steady-state is on the order of tens of thousands to 

millions of years (Willenbring and von Blanckenburg, 2010). 
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 When erosion rates are converted into total post-settlement profile truncation 

depths (assuming 110 years of cultivation), the upper hillslope positions of the cultivated 

site have been truncated to an average depth of 26 ± 17 cm, which is into the original 

subsurface carbonate –rich subsoil horizons at many of the landscape positions, 

evidenced by high SIC concentrations in the cultivated Ap horizons. These estimates are 

consistent with results from soil properties alone (Papiernik et al., 2007). 

   

3.4.3. Erosion estimates, conversion model and tracer comparisons  

Our estimates of Epre on the uncultivated hillslope for slope tangents of 0.21 and 0.22 

(2H1 and 2H2, respectively) from Model 2 converged at 1 Mg ha-1 y-1 (0.1 mm y-1). This 

erosion rate is well within the global mean of natural erosion rates for soil-mantled 

landscapes (Montgomery, 2007) and so represents a reasonable estimate based solely on 

model fit alone. Estimates of Epre on the cultivated transect from Models 2 and 3 had a 

mean of 0.38 ± 0.16 Mg ha-1 y-1, also well within the global mean of natural erosion rates 

for soil-mantled landscapes (Montgomery, 2007). Average estimates of Epost for 10Be (31 

± 20 Mg ha-1 y-1) suggest that erosion rates have increased 2 orders of magnitude across 

the hillslope since the time of European settlement.  

 The derived surficial diffusion parameter (Db = 0.07 cm2 y-1) is lower than 

previous estimates across a range of natural ecosystems (0.2 – 2.4 cm2 y-1, Kaste et al, 

(2007), however these previous estimates were derived on stable landscape positions with 

short-lived radioisotopes and were heavily bioturbated. Under these parameters, 

assuming constant diffusion values across the landscape, 10Bemet would have been largely 
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absent below 30cm on stable landscape positions or landscape positions experiencing soil 

loss. This is reasonable at our study site because 10Bemet is likely to be largely immobile 

(due to high pH) and therefore largely transported downward through bioturbation by 

fossorial mammals. No 10Bemet,A was observed below 30cm in soil loss profiles (5-7,5-8, 

5-9, 5-10, 5-12, 2H1, 2H2), regardless of land-use. In other related landscapes where 

advective or sedimentation-like processes such as clay illuviation or loess accumulation 

become more important, 10Bemet,A can be found below 50cm even on stable or eroding 

landscape positions (Harden et al., 2002; Balco, 2004). 

 Choice of conversion model (an evaluation of structural error) has a strong effect 

on 10Bemet erosion rate estimates. The application of three different conversion models for 

the estimation of Epost using 10Bemet observations resulted in differing point estimates. 

10Be conversion Models 1, 2 and 3 resulted in very similar estimates at summit positions 

(5-7, 5-8), but diverged at the shoulder (5-9, 5-10) and backslope (5-12). The erosion 

rates derived from conversion model 3 were higher than all model 1 and 2 estimates 

(Table 3.4). The erosion rates near the summit from 10Bemet models are all significantly 

lower than estimates from other models (Table 3.3). These point estimates of erosion 

rates, when combined with 137Cs inventories and erosion rates from conversion models as 

well as previous work at the study site (Li et al., 2007; Li et al 2008) provide an 

important context for observations of near-term (<50 year) erosion rates by extending the 

timeframe of agricultural erosion rate estimation to century timescales.  

 Differences between 10Be, 137Cs and WATEM models at the cultivated sampling 

points may be due to actual differences in tracers or due to structural differences in 
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models. It is clear from our paired comparisons (Table 3.5) that 10Be conversion Model 1 

presents a lower boundary of Epost across all cultivated profiles as the estimates it 

produced are significantly less than those from WATEM and 137Cs (Table 3.5). It also 

produced the most narrow range of estimates (16-24 Mg ha-1 y-1) demonstrating the 

insensitivity of the model to landscape parameters as it assumes complete independence. 

In contrast, 10Be conversion model 3 resulted in Epost estimates that were not significantly 

different from those derived from 137Cs or WATEM. Because 10Be conversion Model 3 is 

the most detailed 10Be model presented in this study (taking into account soil mass 

balance through hillslope evolution), it is likely that these estimates are the best Epost 

estimates derived from our 10Bemet data. The similarities in these estimates and 137Cs and 

WATEM estimates support the hypothesis that current erosion rates at the cultivated site 

have not changed significantly since the time of settlement. In this case, Epost estimates 

from 10Be Models 1 & 2, which are independent of geomorphic setting (Model 1) or take 

into account only soil loss (Model 2) should be viewed as conservative boundaries on 

Epost, particularly on shoulder and backslope positions (5-9, 5-10, 5-12).  

 However, we cannot rule out that these model estimates reflect a real difference in 

century vs. decadal scale erosion rates, particularly at summit positions (5-7, 5-8).  This 

could result even under similar tillage regimes if implement velocities were less frequent 

and slower at the time of settlement (due to use of animal power), both of which would 

result in lower rates of tillage erosion pre-mechanization. In this scenario, we would 

expect (if tillage regime has been fairly consistent) that long-term estimates from 10Be 

would be less than estimates from 137Cs but similar to those from models driven by 
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topography alone (WATEM). Conversely, if conservation practices have improved, we 

may expect decadal-scale erosion rates to be less than long-term rates. We find no 

evidence in our model estimates to suggest this third scenario.  

 Interestingly, 137Cs derived erosion estimates at the cultivated footslope profile (5-

14) resulted in a net soil accumulation estimate of 3 Mg ha-1 y-1 (linear model). The 

results of a linear model applied to 10Bemet data at the same location resulted in estimates 

of soil accumulation of almost 80 Mg ha-1 y-1. Therefore, although 137Cs and 10Be erosion 

estimates are convergent on soil loss positions, the results at 5-14 demonstrate that there 

may be a strong dependency of landscape position on the convergence of these tracers.      

 All models have erred on the side of conservative estimation at every step of 

parameter estimation and application. Even the basis of our erosion rate estimates (the 

uncultivated 10Bemet observations) are conservatively applied due to the nature of slope 

differences on our paired cultivated and uncultivated study sites. Because the 

uncultivated study site acts as a reference through the application of our conversion 

models, steeper reference sites (which have higher rates of Epre) should lead to more 

conservative estimates of Epost. It is best, then, to view the 10Bemet erosion rate estimates 

as minimum total post-settlement erosion rates. It is likely that under some scenarios total 

post-settlement erosion rates greatly exceed those estimated here.  

 One other study has attempted to utilize observations of 10Bemet on paired 

cultivated and uncultivated hillslopes and found similar convergence between values of 

long-term erosion estimated from 10Bemet and 137Cs at a single sampling point (27 Mg ha-1 

y-1 and 20-60 Mg ha-1 y-1, respectively, (Harden et al., 2002)). Harden et al. (2002) and a 
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revisit of the 10Be data contained therein (Graly et al., 2010) utilized space-for-time direct 

comparisons of hillslope positions to derive erosion rates and total post-settlement soil 

truncation. Our study is the first to apply numerical models of depth profile evolution of 

10Bemet through accumulation during landscape evolution and subsequent erosive losses 

from agricultural land-use. The convergence of these results from independent numerical 

models with those of traditional approaches is encouraging and suggests that 10Bemet is 

useful in other settings for constraining agricultural erosion beyond the timeframe of 

other tracers. 

 These numerical methods likely work best in a study site such as the one 

presented here, where the landscape is relatively young (< 20,000 years), with only 

moderate precipitation and neutral natural pH. This allows simplifying assumptions 

regarding the relative importance of diffusive and advective movement, however these 

limitations have not been fully explored and could be overcome with further development 

of the numerical modeling approach presented here and integration with complex 

landscape evolution models.  

 

3.5. Conclusions and Implications 

 The results of this study show that 10Bemet can be used as a powerful tracer of 

erosion rates (both pre-and post- settlement) in agricultural systems that cannot be 

replicated by other direct lines evidence apart from morphology. 10Bemet therefore 

provides the first supporting observations of long-term average erosion point estimates 

from WATEM models (Papiernik et al., 2005) and suggests that erosion rates have 
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increased by at least 2 orders of magnitude over pre-settlement rates. Post-settlement 

erosion rate estimates derived from some 10Be conversion models at this site in west-

central Minnesota are similar but lower, on average, to those derived from 137Cs and 

topography-driven models. This suggests the need for further research on the 

development of 10Bemet as a tracer of erosion due to land-use change in settings where 

these models would be expected to yield highly diverging estimates. In this study: 

 

-  Meteoric 10Be revealed millennial scale soil movement across an uncultivated 

hillslope that was not revealed in carbon or 137Cs inventories.   

- 10Bemet-derived estimates of pre-settlement erosion across the cultivated sampling 

points ranged from 0.009 – 0.61 Mg ha-1 y-1. 

- 10Bemet-derived 110-year average post-settlement erosion rates across a cultivated 

transect at our study site ranged from 10 - 85 Mg ha-1 y-1. 

- Meteoric 10Be inventories are negatively correlated to SIC inventories and erosion 

rates scaled to total post-settlement truncation (9-77 cm) closely match morphological 

data and observed depths to calcic horizons. 

- Integrated models of long-term landscape evolution and diffusive/advective 

models of 10Bemet in soil profiles should be built and tested under various geomorphic and 

land-use scenarios.
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Sample 
Location 

Depth 
Increment 

(cm) 
Genetic 
Horizona 

Bulk 
Density 
(g cm-3) 

10Bemet concentration, 107 
atoms g-1, Totalb 

10Bemet 
concentration, 107 

atoms g-1, 
Accumulatedc 

Soil Organic 
Carbon (g 
100g-1)d 

Soil Inorganic 
Carbon (g 
100g-1)d 

137Cs activity 
(Bq kg-1) 

Cultivated 
5-7e 0-18 Ap 1.27 12.6 ± 0.7 11.5 ± 0.8 1.4 ± 0.2 1.4 ± 0.4 3.4 ± 0.4 
5-8 0 – 23 Ap 1.31 15.8 ± 0.3 14.7 ± 0.3 1.4 ± 0.2 0.9 ± 0.2 3.0 ± 0.2 
5-8 23 – 47 Bk1 1.53 1.18 ± 0.03f* - 0.7 ± 0.1 2.1 ± 0.6 - 
5-8 47 – 67 Bk2 1.31 0.97 ± 0.06* - 0.3 ± 0.1 2.2 ± 0.6 - 
5-8 67 – 92 BC 1.60 0.99 ± 0.04* - 0.2 ± 0.1 2.2 ± 0.6 - 
5-8 92 – 145 C 1.33 1.09 ± 0.02* - 0.1 ± 0.1 2.2 ± 0.6 - 
5-9 0 – 19 Ap 1.50 5.18 ± 0.08 4.11 ±0.09 1.0 ± 0.2 2.5 ± 0.7 2.8 ± 0.3 
5-9 19 – 48 Bk 1.40 0.82 ± 0.02* - 0.4 ± 0.1 3.0 ± 0.8 - 
5-9 48 – 92 C1 1.43 0.63 ± 0.03* - 0.3 ± 0.1 2.7 ± 0.7 - 
5-9 92 – 130 C2 1.40 0.63 ± 0.02* - 0.2 ± 0.1 2.2 ± 0.6 - 

5-10 0 – 21 Ap 1.38 4.16 ± 0.08 3.08 ± 0.09 1.0 ± 0.2 2.2 ± 0.6 2.4 ± 0.2 
5-10 21-75 Bk 1.19 1.20 ± 0.03* - 0.2 ± 0.1 2.2 ± 0.6 - 
5-10 75 – 115 C1 1.48 0.846 ± 0.04* - 0.2 ± 0.1 2.4 ± 0.7 - 
5-10 115 -147 C2 1.47 0.904 ± 0.03* - 0.3 ± 0.1 2.4 ± 0.7 - 
5-12 0 – 18 Ap 1.22 3.16 ± 0.06 2.09 ± 0.08 1.2 ± 0.2 2.4 ± 0.7 1.3 ± 0.2 
5-12 18-60 Bk 0.68 1.48 ± 0.04* - 0.6 ± 0.1 4.7 ± 1.3 - 
5-12 60-100 BC 1.09 1.31 ± 0.06* - 0.8 ± 0.1 3.8 ± 1.0 - 
5-12 100- 130 C 1.29 0.873 ± 0.04* - 0.6 ± 0.1 2.8 ± 0.8 - 
5-14 0 – 22 Ap 1.48 19.2 ± 0.3 18.1 ± 0.3 1.4 ± 0.2 0.5 ± 0.1 3.9 ± 0.3 
5-14 22 – 55 AB 1.38 24.8 ± 0.3 23.8 ± 0.4 1.2 ± 0.2 0.1 ± 0.1 1.3 ± 0.2 
5-14 55 – 82 Bw1 1.35 12.0 ± 0.2 10.9 ± 0.2 0.5 ± 0.1 - - 
5-14 82 – 122 2Bw2 1.34 1.26 ± 0.03* - 0.2 ± 0.1 - - 
5-14 122- 146 2Bk 1.37 0.782 ± 0.02* - 0.1 ± 0.1 0.9 ± 0.2 - 

         
Uncultivated 

2H1 0 – 16 A 1.00 12.4 ± 0.4 11.3 ± 0.4 5.0 ± 0.8 1.0 ± 0.3  12.5 ± 0.4 
2H1 16 - 24 AB 1.51 5.20 ± 0.04 4.12 ± 0.1 2.3 ± 0.3 2.5 ± 0.7 3.1 ± 0.3 
2H1 24 – 48 Bk1 1.47 1.49 ± 0.04* - 1.2 ± 0.2 3.0 ± 0.8 - 
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2H1 48 – 84 Bk2 1.35 1.30 ± 0.05* - 0.5 ± 0.1 2.7 ± 0.7 - 
2H1 84 – 135 C 1.39 1.07 ± 0.04* - 0.3 ± 0.1 2.3 ± 0.6 - 
2H2 0 -16 A 1.09 11.0 ± 0.1 9.98 ± 0.1 3.9 ± 0.6 0.3 ± 0.1 8.4 ± 0.3 
2H2 16-32 AB 1.30 3.38 ± 0.07 2.31 ± 0.08 2.4 ± 0.3 2.3 ± 0.6 5.4 ± 0.7 
2H2 32 – 60 Bk1 1.15 1.09 ± 0.03* - 1.0 ± 0.2 3.4 ± 0.9 - 
2H2 60 – 87 Bk2 1.51 0.986 ± 0.05* - 0.4 ± 0.1 2.5 ± 0.7 - 
2H2 87 – 131 C 1.41 0.947 ± 0.04* - 0.4 ± 0.1 2.1 ± 0.6 - 
2H3 0 – 22 A 0.91 23.1 ± 0.5 18.1 ± 0.5 4.4 ± 0.7 - 9.4 ± 0.4 
2H3 22 – 40 AB 1.10 21.6 ± 0.6 20.5 ± 0.6 1.5 ± 0.2 - 0.8 ± 0.2 
2H3 40 – 70 Bw1 1.24 13.6 ± 0.2 12.6 ± 0.2 0.7 ± 0.1 - - 
2H3 70 – 122 Bw2 1.11 1.97 ± 0.06* - 0.3 ± 0.1 0.2 ± 0.1 - 
2H4 0 – 24 A1 1.00 22.1 ± 0.2 21.0 ± 0.2 3.9 ± 0.6 - 9.7 ± 0.6 
2H4 24 – 58 A2 1.19 16.7 ± 0.2 15.6 ± 0.2 1.2 ± 0.2 - 0.2 ± 0.1 
2H4 58 – 86 AB 1.53 19.0 ± 0.3 17.9 ± 0.3 0.8 ± 0.1 - - 
2H4 86 – 107 Bw1 1.30 23.1 ± 0.3 22.0 ± 0.3 0.7 ± 0.1 - - 
2H4 107- 144 Bw2 1.34 8.74 ± 0.1 7.66 ± 0.1 0.3 ± 0.1 - - 
2H5 0 – 23 A 1.16 26.8 ± 0.3 25.8 ± 0.3 4.0 ± 0.6 - 5.9 ± 0.2 
2H5 23-47 AB 1.36 17.0 ± 0.6 16.0 ± 0.2 1.2 ± 0.2 - - 
2H5 47 – 67 Bw1 1.38 3.53 ± 0.08 2.46 ± 0.09 0.4 ± 0.1 0.5 ± 0.1 - 
2H5 67 – 98 Bk1 1.25 1.18 ± 0.08* - 0.4 ± 0.1 2.0 ± 0.5 - 
2H5 98-125 Bk2 1.31 0.881 ± 0.03* - 0.5 ± 0.1 2.2 ± 0.6 - 
2H5 125-150 C 1.63 0.866 ± 0.03* - 0.1 ± 0.1 2.2 ± 0.6 - 

Table 3.1. Meteoric 10Be, soil organic carbon (SOC), soil inorganic carbon (SIC) concentrations and 137Cs distributions. 
aGenetic soil horizon designations from Schoeneberger et al. 2012. 
bTotal 10Bemet concentration (10Bemet,T - 07KNSTD standard used for normalization (10Be/9Be ratio of 2.85 x 10-12), uncertainty reported represents 1 standard 
deviation from the mean AMS measurement. 
cAccumulated 10Bemet concentration (10Bemet, A) = 10Bemet,T – 10Bemet,Iave (10Bemet,Iave = average inherited 10Bemet: 1.07 ± 0.04 x 107 atoms g-1) 
dUncertainty reported represents the analytical uncertainty (1σ) evaluated from 21 duplicate samples. 
eDue to sampling limitations, 5-7 is characterized solely by the surficial (plow layer) increment, which, based on all other observations across the cultivated site 
is assumed to contain all profile accumulated 10Be (10Bemet,A). 
fMeasurements with an asterisk (*) meet the criteria for inclusion in calculation of average parent material values and 10Be inheritance. 
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Profile 
Hillslope 
Position Slopea Curvatureb 

10Bemet 1013 
atoms m-2, 

Totalc 

10Bemet 1013 
atoms m-2, 
Accum.d  

SOCe 
kg m-2 

SICf  
kg m-2 

137Csg 
Bq m-2 

Cultivated 
5-7 Summit 0.06 +0.04 4.6 ± 0.5 2.6 ± 0.5 8.9 ± 1.7 44 ± 10 771 ± 153 
5-8 Summit 0.06 +0.04 6.7 ± 0.8 4.4 ± 0.7 8.9 ± 1.7 41 ± 10 894 ± 161 
5-9 Shoulder 0.07 +0.04 2.8 ± 0.3 1.2 ± 0.2 7.8 ± 1.5 55 ± 13 792 ± 158 

5-10 Shoulder 0.10 +0.04 2.9 ± 0.3 0.9 ± 0.2 6.6 ± 1.3 47 ± 11 680 ± 129 
5-12 Backslope 0.11 0.0 2.3 ± 0.2 0.5 ± 0.1 10.6 ± 2.0 53 ± 12 280 ± 65 
5-14 Footslope 0.08 -0.01 22.9 ± 2.2 20.7 ± 2.1 13.8 ± 2.6 5.5 ± 1.3 1843 ± 353 

         
Uncultivated 

2H1 Sum./Shld. 0.21 +0.06 4.7 ± 0.4 2.3 ± 0.3 19.8 ± 3.9 49 ± 12 2359 ± 420 
2H2 Shoulder 0.22 +0.05 4.2 ± 0.4 2.2 ± 0.3 19.4 ± 3.7 45 ± 11 2584 ± 484 
2H3 U. Backslope 0.17 0.0 15.5 ± 1.3 13.1 ± 1.2 16.2 ± 3.1 1.5 ± 0.3 2035 ± 360 
2H4 L. Backslope 0.16 -0.01 30.9 ± 2.3 28.8 ± 2.1 21.2 ± 4.0 0.01 ± 0.01 2380 ± 434 
2H5 Footslope 0.15 -0.02 14.8 ± 1.5 12.8 ± 1.4 19.5 ± 3.7 26 ± 6 1571 ± 260 

Table 3.2. Land use, geomorphic parameters and inventories at cultivated and uncultivated sampling points. 
aSlope tangent from USGS 10m DEM. 
bCurvature from USGS 10m DEM. 
cTotal 10Bemet inventory, uncertainty reported represents the standard combined uncertainty (1σ). Inventories calculated to 150cm extending lowest increment 
observations to 150cm if shallower. 
dAccumulated 10Bemet inventory (10Bemet, A) = 10Bemet,T – 10Bemet,Iave, uncertainty reported represents the standard combined uncertainty (1σ).  
eSoil Organic Carbon inventory, uncertainty reported represents the standard combined uncertainty (1σ).  
fSoil Inorganic Carbon inventory, uncertainty reported represents the standard combined uncertainty (1σ).  
g137Cs inventory, uncertainty reported represents the standard combined uncertainty (1σ). 
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Table 3.3. Erosion estimates at cultivated sampling points for suite of conversion models.!
aMinimum RMSE solution for average pre-settlement erosion rate (Epre) from numerical model. All estimates presented in both Mg ha-1 yr-1 and mm yr-1 to 
facilitate model comparison. Unit conversions utilize observed bulk density values. 
bEstimated pre-settlement erosion rate (Epre) estimated from derived landscape diffusivity value (K = 93 cm2 yr-1) and elevation differences along normal to 
contour lines across sampling point from USGS 10m DEM. 
cEstimated post-settlement erosion rate (Epost), reported uncertainty represents standard combined uncertainty (1σ). 
dEstimated post-settlement erosion rate (Epost), reported uncertainty represents lower and upper boundaries of 10th and 90th percentiles of 1000 Monte Carlo 
simulations. 
eEstimated post-settlement erosion rate (Epost) from WATEM model in Papiernik et al. (2005) 
fPositive values (+) represent accumulation rate estimates at footslope position (5-14). Numerical models are invalid at accumulation positions. 

Profile 
Hillslope 
Position 

Epre (Model 2) 
Mg ha-1 yr-1 

(mm yr-1)a 

Epre (Model 3) 
Mg ha-1 yr-1 

(mm yr-1)b 

Epost (10Be 
Model 1) 

Mg ha-1 yr-1 

(mm yr-1)c 

Epost (10Be 
Model 2) 

Mg ha-1 yr-1 

(mm yr-1)d 

Epost (10Be 
Model 3) 

Mg ha-1 yr-1 

(mm yr-1)d 

Epost (137Cs 
Linear 
Model) 

Mg ha-1 yr-1 

(mm yr-1)c 

Epost (137Cs 
Power 
Model) 

Mg ha-1 yr-1 

(mm yr-1)c 

Epost 
(WATEM, 
Papiernik et 

al., 2005)  
Mg ha-1 yr-1 

(mm yr-1)e 

5-7 Summit 0.35 
(0.028) 

0.28 
(0.022) 

16 ± 4 
(1.26 ± 0.31) 

15 ± 6 
(1.21 ± 0.51) 

19 ± 8 
(1.57 ± 0.66) 

31 ± 10 
(2.44 ± 0.79) 

23 ± 4 
(1.81 ± 0.31) 

43 
(3.46) 

5-8 Summit 0.35 
(0.028) 

0.39 
(0.031) 

17 ± 5 
(1.30 ± 0.38) 

15 ± 6 
(1.17 ± 0.49) 

10 ± 4 
(0.79 ± 0.33) 

36 ± 12 
(2.75 ± 0.92) 

30 ± 5 
(2.29 ± 0.38) 

37 
(2.98) 

5-9 Shoulder 0.40 
(0.032) 

0.44 
(0.035) 

23 ± 5 
(1.53 ± 0.33) 

43 ± 9 
(2.89 ± 0.57) 

42 ± 8 
(2.79 ± 0.55) 

38 ± 12 
(3.53 ± 0.80) 

28 ± 5 
(1.87 ± 0.33) 

50 
(4.03) 

5-10 Shoulder 0.55 
(0.044) 

0.43 
(0.034) 

24 ± 6 
(1.74 ± 0.43) 

44 ± 9 
(3.21 ± 0.62) 

50 ± 10 
(3.64 ± 0.70) 

42 ± 13 
(3.04 ± 0.94) 

29 ± 5 
(2.10 ± 0.36) 

63 
(5.08) 

5-12 Backslope 0.61 
(0.049) 

0.009 
(0.001) 

19 ± 4 
(1.56 ± 0.33) 

50 ± 8 
(4.09 ± 0.67) 

85 ± 14 
(7.01 ± 1.15) 

41 ± 12 
(3.36 ± 0.98) 

22 ± 4 
(1.80 ± 0.33) 

50 
(4.03) 

5-14 Footslope - - +79f ± 26 
(+5 ± 2) 

- - +3 ± 45 
(+0.2 ± 3) 

+110 ± 17 
(+7 ± 1) 

+20 
(+1.35) 
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Uncultivated 
Sampling Point 

Distance from crest 
(cm) 

Depth averaged 10Bemet 
Concentrationa (107 atoms 

g-1) 

Depth averaged soil 
bulk densityb (g cm-

3) 
Slope 

tangentc 
Diffusivity 

K (cm2 yr-1)d 
2H1 0 8.91  1.30 0.21 - 
2H2 1100 6.15  1.15 0.22 91.9 
2H3 2400 17.6  1.31 0.17 79.6 
2H4 3300 15.9  1.47 0.17 108 
2H5 4400 15.3  1.32 0.15 - 

    Average 93 
Table 3.4. Estimation of average landscape diffusivity (K cm2 yr-1) from uncultivated 10Bemet observations 
aWeighted depth-average of total 10Bemet (10Bemet,T)concentrations for all profile depth increments containing accumulated (non-inherited) 10Bemet (10Bemet,A). 
bWeighted depth-average bulk density for all profile depth increments containing accumulated (non-inherited) 10Bemet (10Bemet,A). 
cSlope tangent from USGS 10m DEM. 
dDiffusivity estimates utilize 1.3 x 106 atoms cm-2 yr-1 as the estimated long-term average 10Bemet deposition rate. 



   

127 

Model 10Be –Model 1a 
10Be –

Model 2 10Be –Model 3 WATEMb  
137Cs – 
Linear  

137Cs – 
Power  

10Be – Model 1 -      
10Be – Model 2 NSc -     
10Be – Model 3 > , p=0.02d >, p=0.02 -    
WATEM  >, p<0.001 >, p=0.04 NS -   
137Cs – Linear  >, p<0.001 NS NS <, p=0.03 -  
137Cs – Power  >, p=0.02 NS NS <, p<0.01 <, p<0.01 - 

Table 3.5. Comparison of modeled post-settlement (Epost) erosion rates. 
aModel names refer to text descriptions for 10Be and 137Cs conversion models.  
bResults from Water and Tillage Erosion (WATEM) model (Van Oost et al., 2000), reported for sampling points in Papiernik et al., 2005). 
cResults of paired t-tests (with Bonferroni correction) for all cultivated sampling position estimates, NS = not significant at α = 0.05. 
dResults of paired t-tests (with Bonferroni correction) for all cultivated sampling position estimates, >/< refer to the row – column comparison (i.e. >, p = 0.02 
means that the post-settlement erosion estimates (Epost) from the row model were greater than the Epost from the column model with p = 0.02). 
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Figure 3.1. Study site landscape setting and hillslope transects. (a) Regional setting (inset), orthophoto and hillshade of study site showing location of cultivated 
and uncultivated sampling areas. (b) 1-m DEM (LIDAR) showing sampling points and elevation contours (m) for cultivated transect. (c) Landscape photo of 
cultivated transect with eroded summit, shoulder and backslopes (light-colored, exposed sub-surface material), Photo Credit: S. K. Papiernik. (d) 1-m DEM 
(LIDAR) showing sampling points and elevation contours (m) for uncultivated hillslope. (e) Landscape photo of uncultivated hillslope, Photo Credit: T.E. 
Schumacher.
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Figure 3.2. Relationship of (a) 10Bemet concentrations and soil inorganic carbon, (b) Soil organic carbon 
and 137Cs activities and soil organic carbon, (c) 10Bemet concentrations and soil organic carbon, and (d) 
10Bemet concentrations and 137Cs activities.
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Figure 3.3. (a) Variation in 10Bemet,T, soil organic carbon (SOC) and 137Cs across uncultivated hillslope and 10Bemet,T profile inventories at (b) 2H1, (c) 2H2, (d) 
2H3, (e) 2H4, (f) 2H5. Dotted lines in panels b and c are the best-fit (minimum RMSE) profiles of 10Bemet,T from numerical model 2 (Eqn 29 and 30), where H = 
depth of half maximum (cm), Db = surficial diffusion parameter (cm2 y-1), Epre = long-term average erosion rate. Note logarithmic scale and units (g cm-3) for 
10Bemet,T inventories in panels b-f. Error bars on 10Bemet,T increment inventories (g cm-3) represent the standard combined uncertainty (1σ), including 10Bemet and 
bulk density measurement error. Abbreviations next to increments are genetic horizon nomenclature following (Schoeneberger et al. 2012).



   

131 

 
 
Figure 3.3 (Cont). (a) Variation in 10Bemet,T, soil organic carbon (SOC) and 137Cs across uncultivated hillslope and 10Bemet,T profile inventories at (b) 2H1, (c) 
2H2, (d) 2H3, (e) 2H4, (f) 2H5. Dotted lines in panels b and c are the best-fit (minimum RMSE) profiles of 10Bemet,T from numerical model 2 (Eqn 29 and 30), 
where H = depth of half maximum (cm), Db = surficial diffusion parameter (cm2 y-1), Epre = long-term average erosion rate. Note logarithmic scale and units (g 
cm-3) for 10Bemet,T inventories in panels b-f. Error bars on 10Bemet,T increment inventories (g cm-3) represent the standard combined uncertainty (1σ), including 
10Bemet and bulk density measurement error. Abbreviations next to increments are genetic horizon nomenclature following (Schoeneberger et al. 2012).
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Figure 3.4. Variation in (a) 10Bemet,T, soil organic carbon (SOC) and 137Cs across cultivated transect and 10Bemet,T profile inventories at (b) 5-7, (c) 5-8, (d) 5-9, (e) 
5-10, (f) 5-12 and (g) 5-14. Black dotted lines in panels b-g are the best estimate pre-settlement profiles of 10Bemet,T from numerical model 2, where Epre = average 
pre-settlement erosion rate and Epost = average post-settlement erosion rate. Grey dotted lines in panels b-g are increment-averaged values of best estimate pre-
settlement inventories (black dotted lines). Note logarithmic scale and units (g cm-3) for 10Bemet,T inventories in panels b-g. Error bars on 10Bemet,T increment 
inventories (g cm-3) represent the standard combined uncertainty (1σ), including 10Bemet and bulk density measurement error. Abbreviations next to increments 
are genetic horizon nomenclature following (Schoeneberger et al. 2012).
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Figure 3.4 (Cont). Variation in (a) 10Bemet,T, soil organic carbon (SOC) and 137Cs across cultivated transect and 10Bemet,T profile inventories at (b) 5-7, (c) 5-8, (d) 
5-9, (e) 5-10, (f) 5-12 and (g) 5-14. Black dotted lines in panels b-g are the best estimate pre-settlement profiles of 10Bemet,T from numerical model 2, where Epre = 
average pre-settlement erosion rate and Epost = average post-settlement erosion rate. Grey dotted lines in panels b-g are increment-averaged values of best 
estimate pre-settlement inventories (black dotted lines). Note logarithmic scale and units (g cm-3) for 10Bemet,T inventories in panels b-g. Error bars on 10Bemet,T 
increment inventories (g cm-3) represent the standard combined uncertainty (1σ), including 10Bemet and bulk density measurement error. Abbreviations next to 
increments are genetic horizon nomenclature following (Schoeneberger et al. 2012).
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Figure 3.5. Relationship of (a) maximum profile 10Bemet concentrations to total 10Bemet inventories (150cm) 
– regression line is a log-linear transformation plotted on standard scale: ln(10Bemet,T atoms m-2) = 9.934 x 
10-9*(10Bemet,T,max atoms g-1) + 30.41. (b) 137Cs surficial activities to total 137Cs profile inventories – 
trendline is best-fit non-linear least squares for logarithmic relationship: 137Cs Inventory (Bq m-2) = 1062 * 
ln(137Cs, surficial, Bq kg-1) – 142.8.
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Figure 3.6. Example results of Monte Carlo simulations (n=1000) and regression equations for erosion 
estimates at cultivated transect point 5-7 to estimate parametrical uncertainty for 10Be conversion model 2. 
Red line is the best-estimate regression for Epost from the natural logarithm of plow layer 10Be inventories. 
Green lines are regressions for the 10% and 90% quantiles from Monte Carlo simulations. 
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Abstract 

Cryoturbation in permafrost-affected soils is important to many Arctic biogeochemical 

processes and critical to the appropriate classification of Gelisols. Standardized 

methodologies for describing the soils formed from these processes and knowledge 

regarding the timescales at which they operate continue to evolve. Twenty-six profiles 

were described across a transect in the Midas Lake region of the Central Brooks Range of 

Alaska using a modified version of the standard USDA and Turbel description protocol 

that is appropriate for work in wilderness areas. Profile descriptions and associated field 

data were aggregated and generalized to reveal major trends and relationships in 

horizonation between cryoturbated and non-cryoturbated soils on the transect. A 

conceptual model for the geomorphic relationships of cryoturbated and non-cryoturbated 

soils on this landscape was developed. In addition to a landscape-scale perspective, 

individual profiles were described on patterned ground features at a location where 

cryoturbated horizons were strongly expressed. Samples from these profiles were 

analyzed for Cesium-137 (137Cs) activity, and it was found that the surficial activity of 

this fallout radioisotope varied strongly by position on the patterned ground 

microtopography and material type. These differences suggest that the use of fallout 

isotopes such as 137Cs, when combined with quantitative profile descriptions and a 

standardized description protocol, may significantly improve our understanding of the 

spatial distribution and mechanisms of cryoturbation.  
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4.1. Introduction 

Cryoturbation plays a critical role in the formation of Arctic soils through ground 

patterning, the sequestration of organic matter below the soil surface, and alterations to 

the physical structure of soil materials (Bockheim and Hinkel, 2007; Kaiser et al., 2007; 

Ping, 2013). Additionally, the Turbel suborder and Turbic subgroups of other suborders 

are defined by the presence of cryoturbated horizons and gelic materials, which “are 

manifested by involuted, irregular, or broken horizons, organic matter near or within the 

permafrost table, oriented rock fragments and silt enriched layers” (Bockheim et al., 

1997; Soil Survey Staff, 2010). Thus the accurate mapping of Arctic soils and 

quantification of carbon in Arctic landscapes is dependent upon our understanding of 

cryoturbation and related permafrost processes (Ping et al., 2013). 

 Large-scale latitudinal gradients and regional to local scale patterns of 

cryoturbation have been well characterized by U.S., Canadian, and Russian scientists 

(Zoltai et al., 1981; Kokelj et al., 2007; Walker et al., 2008). Conceptual and quantitative 

models have been constructed that can adequately represent cryoturbation in some 

environments (Vandenberghe, 1992; Swanson et al., 1999; Peterson et al., 2003; Nicolsky 

et al., 2008), but best practices for the description of these soils and knowledge regarding 

the rates at which these processes operate remain an evolving area of research 

(Bockheim, 2007; Ping et al., 2013). Cryoturbation can produce highly complex soil 

profiles and therefore standardizing the description of these soils warrants supplemental 

procedures and methodologies (Ping et al., 2013). These methodologies require an 

inherent understanding of the multi-scale variations in surficial patterns produced by 
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cryoturbative processes as well as the landscape settings under which these processes 

should be expected to occur (Ping, 2013).      

 Additionally, quantifying the magnitude and timescales over which cryoturbation 

operates are critical to questions of Arctic soil genesis and predictions of future response 

to climate change (Bockheim, 2007). Although radiocarbon (14C) and the fallout 

radioisotope Lead-210 (210Pb) have been used to constrain the age of individual buried 

organic horizons (Kaiser et al., 2007; Becher et al., 2013), radioisotope tools remain 

underutilized in studies of cryoturbation. Cesium-137 (137Cs), has long been used to infer 

the movement and mixing of soil materials at a landscape and profile scale  (Ritchie and 

McHenry, 1989; Kaste et al., 2007). Both wet and dry 137Cs deposition occurred 

following atmospheric testing of thermonuclear weapons in the 1950’s and 1960's 

(Aoyama et al., 2006). Under most environmental conditions, this fallout 137Cs adsorbs 

strongly to soil minerals and organic matter, and can be used to track soil movement over 

decadal timescales through spatial differences in measured activities (Matisoff and 

Whiting, 2011).  

 The objectives of this study were to utilize pedon descriptions across a transect in 

the Central Brooks Range of Alaska to demonstrate how this information can be used to 

produce a generalized view of the differences between cryoturbated and non-cryoturbated 

soils and their relationships to landscape parameters. Additionally, I explore the 

qualitative use of 137Cs as a potential tracer of soil movement due to cryoturbation across 

patterned ground and advocate for the future use of quantitative, spatially-explicit 

sampling schemes for utilizing a suite of radioisotope tracers to further improve our 
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knowledge of cryoturbation processes in Arctic soils.  

 

4.2. Materials and Methods 

Data and samples were collected in late July, 2012 as part of long-term monitoring work 

across the Arctic National Park network.  The Midas Lake region of the Noatak River 

valley (67° 48’ N, 156° 15’ W) is located north of the Schwatka Mountains and 

approximately 40 km downstream of the headwaters of the Noatak River, in the western 

portion of Gates of the Arctic National Park, central Brooks Range, Alaska (Fig. 4.1). 

Although no direct temperature or precipitation observations are available for this area, 

modeling results predict mean annual air temperatures (MAAT) of -8° C and 450-500 

mm of precipitation (PRISM Climate Group, 2012). Because mean annual soil 

temperatures (MAST) are typically 2° C higher than MAAT in Arctic and Subarctic 

regions (Smith et al., 1998), this site likely has an average MAST of ~ -6° C, which 

places the location within the gelic soil temperature regime. Modern alluvium and 

alluvial terrace deposits of Holocene age dominate the parent materials of the Noatak 

floodplain (elevation 500m, 0-2% slopes), while glacial drift of Itkillik II Age (Late 

Pleistocene) and colluvium occupy the low moraines (2-5% slopes) and bedrock 

controlled foothills (10-20% slopes) of the surrounding mountains (Hamilton and Labay, 

2011). At elevations to 1200m, depth to schist bedrock is shallow (< 20 cm) and most 

unconsolidated material is colluvial in nature.   

 Twenty-six soil profiles were described across a 4-km transect from the valley floor 

(500 m elevation) to an elevation of 700 m (Fig. 4.1). Vegetation ecotypes across the 
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transect were characterized by Lowland Sedge-Dryas Meadow and Riverine Birch, Alder 

and Low Willow Shrub tundra in the floodplain of the Noatak River; Upland Dwarf 

Birch-Tussock Shrub and Lowland Alder Tall Shrub tundra at mid elevations and south- 

and west-facing slopes; and Alpine Dryas Dwarf Shrub and Upland Birch-Ericaceous-

Willow Low Shrub tundra at high elevations and north- and east-facing slopes (National 

Park Service, 2009).  

 Standard USDA description techniques (Soil Survey Staff, 2002) and the 

supplementary Turbel description protocol of Ping et al. (2013) were adapted to meet 

critical time, equipment, and sampling constraints in place due to work in a remote, 

National Park wilderness area. The organic and mineral components of gelic materials in 

cryoturbated horizons were described independently, with percentages of each material 

estimated over the entire horizon interval. Pit excavation was limited to the depth of hand 

tool refusal by frozen or lithic material or maximum depth of the implement (typically 40 

- 135 cm), because power tools were not permitted in the wilderness area.  Excavated pit 

size was limited to 40cm x 40cm in order to accommodate archeological considerations. 

Evidence of irregular or broken boundaries, the presence of gelic materials, and surficial 

microtopography were used to identify cryoturbated horizons, in instances where pit 

dimensions prohibited the observation of involutions. A pH testing kit (La Motte Model 

ST-M) was used to record approximate pHs of individual horizon components on soil 

slurries in the field. To demonstrate broad soil-landscape relationships, soils were 

classified into subgroups from field descriptions (Soil Survey Staff, 2010) and 

generalized across the transect. The R-based package Algorithms for Quantitative 
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Pedology (AQP, Beaudette et al., 2013) was used to visualize horizon information and 

properties from field descriptions as well as to conduct data aggregation and 

generalization. Statistical analyses were conducted using native algorithms in R 3.0 (R 

Development Core Team, 2011). 

 Restrictions on pit size did not allow the sampling of full cycles of patterned ground 

as recommended by Ping et al. (2013), so three individual profiles were excavated across 

a single cycle at one location with strong patterned ground expression (Fig. 4.3, #2) to 

provide a complete “snapshot” of variability. Five to six samples were taken from each 

profile at average depths of 5, 10, 20, 30 and 40 cm (Fig. 4.4). These samples were sieved 

to remove coarse fragments and roots > 2mm, and analyzed for 137Cs activity by gamma 

spectrometry. Samples for gamma spectrometry were packed into glass vials and counted 

for 24hrs on a high-purity Germanium crystal well detector (Canberra, Inc.). Final 

activities and uncertainties were calculated by applying energy and efficiency calibrations 

to the gamma spectrum with reference to the 137Cs characteristic 661.5 keV peak. 

Uncertainties in 137Cs activities were generally around 10% of measured values.   

 Although the Fukushima Daiichi nuclear incident occurred prior to the sampling of 

these soils, the estimated deposition of 137Cs due to the Fukushima incident in this region 

of the Brooks Range is 10 - 100 Bq/m2 (Christoudias and Lelieveld, 2012; Stohl et al., 

2012). This is still about an order of magnitude lower than the 137-Cs activity expected to 

remain on the land surface in the Central Brooks Range from atmospheric weapons 

testing in the mid 1960s (3,000-4,000 Bq m2 by Jan. 1970 (Aoyama et al., 2006), and 

1100 - 1900 Bq m2 at time of sampling in late Jul. 2012), so likely has had minimal 
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impact on these results.  Furthermore, it is likely that 137Cs fallout from Fukushima 

Daiichi would be uniformly distributed across landscape elements; potentially 

influencing total activity but not changing the qualitative interpretation of the relative 

activities of surficial materials. 

 

4.3. Results 

4.3.1. General Soil Characteristics and Horizonation  

Generalizing profile descriptions and field pH measurements by groups based on the 

presence of cryoturbated soil horizons and landscape positions revealed important trends 

in the data (Fig. 4.2). The average depth of observation for non-cryoturbated soils along 

the transect was 44cm. Observation depth was restricted by consolidated (non-

cryoturbated upland soils) or frozen materials (non-cryoturbated lowland soils) (Fig. 4.2B 

and 4.2C). All non-cryoturbated profiles had organic materials at the surface (Fig. 4.2B 

and 4.2C). Non-cryoturbated profiles in lowland landscape positions were characterized 

by the thickest surficial organic layers (an average of 26 cm), while non-cryoturbated 

soils on uplands had an average depth of organic layer to 9 cm and shallow depth to 

schist bedrock (33cm).  

 In contrast, less than half of all cryoturbated profiles had a continuous organic layer 

at the surface. Instead, cryoturbated horizons containing gleyed subsoil were exposed in 

almost half of all observed profiles (Fig. 4.2A). Horizon generalization across 

cryoturbated profile descriptions revealed a peak probability of cyroturbated horizon 

identification ~ 30cm, consistent with evidence of organic material being subducted to 
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the top of the permafrost table (Nicolsky et al., 2008). For those cryoturbated soils which 

had frozen layers that were encountered in excavation, the frozen layer was present at an 

average of 47 cm and represents a reasonable assumption of permafrost depth in these 

soils given that they were sampled in late July. Importantly, five of the sixteen 

cryoturbated profiles were unfrozen to a depth of at least 135cm (maximum depth of 

implement penetration).  

 The presence of subsoil material and patchy or broken organic horizons at the 

surface in many of the cryoturbated soils was reflected in the observed field pH 

differences between cryoturbated (n=16) and non cryoturbated (n=11) profiles (Fig. 

4.2D). These differences were highly significant both when pH observations were 

aggregated throughout the entire profile depth (6.85 and 6.01 , p<0.001 for cryoturbated 

and non-cryoturbated soils, respectively, Welch’s two sample T-Test) and when only the 

top 44 cm (the average depth of observation for non-cryoturbated profiles) was 

considered (6.69 and 6.01, p < 0.001 for cryoturbated and non-cryoturbated soils, 

respectively, , Welch’s two sample T-Test).  

 

4.3.2. Soil-Landscape Relationships 

Across the lowest portions of the landscape, on the floodplain of the Noatak River (Fig. 

4.3, #1), weakly expressed low-center polygons dominated the ground pattern. Extended 

periods of saturation have led to the development of Typic Fibristels, with thick organic 

mats composed of fibric materials that provide efficient insulation for the underlying 

frozen layer, further promoting epi-saturation due to strong limitations on infiltration. 
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Because only the surficial organic materials in these soils thaw during the growing 

season, they are relatively static under current climate regimes. The exception to this was 

on the high polygon boundaries (making up < 1% of this portion of the landscape), where 

the combination of surface heave due to the presence of ice wedges and elevation above 

the water table produced cryoturbated organic materials (Ping et al., 2013). Although no 

formal description was completed on these polygon boundaries, informal observations 

matched those described in similar conditions by Ping et al., 2013.  

 Across the low moraine composed of glacial drift (Fig. 4.3, #2), soils were high 

enough above the water table to permit aquic conditions without permanent saturation, 

and ground pattern was dominated by non-sorted circles, one of the most typical surficial 

patterns indicative of cryoturbative processes (Nicolsky et al., 2008). These non-sorted 

circles were only slightly vegetated (< 20% cover) and profiles were well mixed. In 

addition to non-sorted circles on this landform, inter-circle areas and earth hummocks 

were part of the full cycle of patterned ground (Fig. 4.4D). Because non-sorted circles 

were highly expressed at this location, profiles representative of all patterned ground 

features were described (Fig. 4.3, Fig. 4.4). The two profile descriptions below illustrate 

the variability between individual profiles on separate microforms at this location (Fig. 

4.4A and 4.4C): 

 Moraine Profile A (Fig. 4.4A) 

Oi: 0-8 cm (14% of profile to 53 cm depth): black (7.5YR 2/1) and brown (7.5YR 

4/4) peat; many very fine, fine and common medium roots; abrupt boundary. 
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Oajj: 7-32 cm (28% of profile to 53 cm depth): black (7.5YR 2/1) muck, common 

very fine, fine and medium roots; abrupt broken boundary. 

 

Bg/Oajj: 7-42 cm: (33% of profile to 53 cm depth): grey (5Y 5/1) and greyish olive 

(5Y 4/2) gravelly fine sandy loam; 20% brownish black (10YR 3/2) medium blocks 

of highly decomposed muck; weak fine to moderate subangular blocky structure 

and weak thin platy structure; friable; non-sticky and non-plastic; few very fine to 

fine roots; abrupt broken boundary. 

 

Oa/Bgjj: 30-42 cm (22% of profile to 53 cm depth): black (7.5YR 2/1) muck; 15% 

grey (5Y 5/1) coarse blocks of firm very gravelly fine sandy loam; common very 

fine, fine and medium roots; abrupt broken boundary. 

 

Oaf: 42-44 cm (3% of profile to 53 cm depth): black (7.5YR 2/1) muck; extremely 

firm. 

 

 Moraine Profile C (Fig. 4.4C) 

Oejj: 0-12 cm (1% of profile to 140 cm depth): black (7.5YR 2.5/1) mucky peat; 

many very fine, fine, and few medium roots; abrupt broken boundary. 

 

Oajj: 8-54 cm (3% of profile to 140 cm depth): black (7.5YR 2/1) muck; common 

very fine, fine, and medium roots; abrupt broken boundary. 
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Bg1jj: 0-82 cm (37% of profile to 140 cm depth): gray (5Y 4/1) and grayish olive 

(5Y 4/2) very gravelly fine sandy loam; moderate fine to coarse subangular blocky 

structure and moderate thin platy structure; friable; non-sticky and non-plastic; few 

very fine and medium roots; clear broken boundary. 

 

Bg2jj: 12-95 cm (28% of profile to 140 cm depth): gray (5Y 5/1) very gravelly fine 

sandy loam; Fe concentrations (2.5Y 4/4) as distinct coarse masses; moderate 

medium subangular blocky structure and weak thin platy structure; friable, non-

sticky and non-plastic; clear broken boundary. 

 

Bg3jj: 52-140 cm (31% of profile to 140 cm depth): grayish olive (5Y 4/2) very 

gravelly fine sandy loam; 10% brownish black (10YR 3/2) coarse blocks of highly 

decomposed muck; moderate fine to coarse medium subangular blocky structure; 

friable; non-sticky and non-plastic. 

 

 To the east of Midas Lake, a low-relief plain underlain by glacial drift with highly 

saturated soils was dominated by Carex tussocks (Fig. 4.3,#3). Much like the Noatak 

River floodplain with thick, insulating organic materials at the surface, cryoturbated 

horizons were not observed at this location. Instead, soils were classified as Typic 

Historthels, with a thick, saturated mat of fibric material over mineral soil. Only on the 

upper toeslopes and lower backslopes of the adjacent, drift mantled hill (Fig. 4.3, #4) 
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were drainage conditions appropriate for cryoturbation to be manifested in soil profiles. 

Here, again, ground pattern was dominated by non-sorted circles. Although strong 

evidence of cryoturbation was apparent, soils also showed evidence of colluvial influence 

due to hillslope position. This was apparent from the presence of an A/Bgjj surficial 

horizon, which contained much more homogeneous and mixed organic material than the 

O/Bgjj horizons on the moraine.  

 Above these landscape positions, with increasing slopes, colluvial processes 

(solifluction lobes and colluvial deposits) overwhelmed any signal from cryoturbation; 

therefore, on the upper backslope, shoulder and summit positions (Fig. 4.3, #5), soils 

were shallow and poorly developed Lithic Dystrogelepts. The classification of these soils 

as Inceptisols in a gelic soil temperature regime may seem surprising, but the 

classification is based on the best available evidence from the field and is not an 

uncommon phenomenon (Ping, 2013). First, these soils are shallow to schist bedrock and 

have relatively thin insulating organic layers. This means that the thawing front likely 

advances at least a meter into the bedrock on most years, as has been observed in other 

sites at similar latitudes (Smith et al., 2010). Further, some cryoturbated soils just 100-

150m in elevation below these soils were not frozen to depths of at least 135 cm, 

suggesting that if the thawing front penetrated deeply into unconsolidated materials at 

this site it would penetrate at least as deep into consolidated materials due to higher 

thermal conductivities (Guglielmin et al., 2011). 

 At the small basin saddle position (Fig. 4.3, #6) weak non-sorted circle patterns 

were observed and were indicative of the underlying cryoturbated soils, which were 
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classified as Ruptic-Histic Aquiturbels. At the highest elevations (Fig. 4.3, #7, #8), Lithic 

Dystrogelepts dominated where depths to underlying consolidated materials were deeper 

than 20cm and Lithic Udifolists where depths to bedrock were very shallow and organic 

materials overlie weathered bedrock. Paralithic materials were present as partially 

weathered (frost-shattered) and weakly cemented schist - these materials are described as 

Cr horizons at transect locations 5, 7 and 8 (Fig. 4.3). As elevation increased beyond 

point B, little to no unconsolidated materials were present and exposed, frost-shattered 

bedrock and tors dominated the landscape.  

 

4.3.3. Quantifying patterned ground movement using 137Cs as a tracer 

 The results of the small-scale sampling at location #2 (Fig. 4.4) along the transect 

showed that surficial 137Cs activities can be highly heterogeneous across very short 

spatial scales on patterned ground features (Fig. 4.4A-C). Most strikingly, samples 

collected from non-vegetated Bgjj material at the surface and small, isolated patches of 

Oe material in the circle center show significant differences in activities (Fig. 4.4C). 

While no 137Cs could be detected in the Bgjj material, 17 Bq/kg was detected in the 

adjacent Oe. It is not surprising that no 137Cs was detected in subsurface horizons, 

because the profiles were sampled in the center and edge of the non-sorted circle to 

characterize maximum variability. The most recently subducted material should be 

expected to lie somewhere just in from the circle edge, which would only be captured 

with extensive grid sampling.  Nevertheless, these results demonstrate the potential of 

137Cs to track the movement of soil materials at small scales on cryoturbated landforms.  
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 Ceisum-137 was not detected below 15 cm in these samples, so it is likely that 

these soils adsorb and retain most of the 137Cs fallout inventory without leaching to 

underlying horizons. Material with measurable 137Cs was therefore likely present at at or 

near the soil surface when the majority of atmospheric fallout occurred between 1958 and 

1971 (Aoyama et al., 2006) while the absence of 137Cs indicates the material was buried 

around the same time period and subsequently exhumed. This independently confirms the 

upward movement of subsoil materials in the non-sorted circle center on at least decadal 

timescales. This is not surprising as these non-sorted circles remain largely vegetation 

free (or at least sparsely vegetated, even at lower latitudes sites such as this study area). 

Additionally, the lower activities in the inter-circle areas relative to the organic rich earth 

hummock (Fig. 4.4A-C) could suggest that there has been a mechanism of loss of 137Cs 

from the surface of the inter-circle areas. One potential mechanism for this reduced 

activity is the subduction of surficial organic matter below the surface on time scales of 

40 years or less.   

 Alternative explanations for the lack of 137Cs activity in the surficial Bgjj  material 

at the circle center may include the differential deposition of 137Cs across 

microtopography or small-scale wind erosion from the exposed circle center. 

Additionally, the mineral soil may have lower infiltration rates compared to surrounding 

organic materials when accumulated snow is melting in the spring and early summer. 

This may lead to runoff away from the higher elevation circle centers. If any of these 

were true, however, we would expect the highest 137Cs activities in the low elevation 

inter-circle areas. Instead, the highest activities were present in the organic materials of 
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the earth hummock, the highest elevation microtopographic element of the ground pattern 

(Fig. 4.4D).  

 

4.4. Discussion and Conclusions 

This work shows that in remote areas with significant sampling constraints, modifications 

of existing protocols can still produce relevant information that can be utilized to 

characterized cryoturbated and non-cryoturbated soils at the profile and landscape scale. 

The aggregation of field data through the use of quantitative analysis such as the 

algorithms provided in the AQP package holds significant promise for generalizing 

profile descriptions from highly complex cryoturbated soils. Analysis of field pH 

measurements demonstrated that cryoturbation not only influences profile physical 

properties and horizonation, but also master environmental variables such as pH through 

the movement of surficial materials. 

 The identification of areas dominated by cryoturbated soils from surficial 

characteristics and the quantitative description of these soils through standardized 

methodologies is critical for advancing our knowledge of the distribution and global 

importance of these soils (Ping et al., 2013). Through this case-study and the use of a 

modified version of a new standardized Turbel description protocol (Ping et al., 2013), 

the descriptions show that cryoturbated soils can be expected to occur in distinct 

positions on high-relief landscapes, where moisture regime is appropriate, unconsolidated 

materials are available, and disturbance from other processes such as colluvial transport 

do not overwhelm any signal from cryoturbative movement. This is in agreement with a 
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qualitative soil description and classification previously undertaken by the National Park 

Service in Arctic Parklands (National Park Service, 2009) and with research on the 

spatial distribution of cryoturbated soils in other regions (Luoto and Hjort, 2004; Feuillet, 

2011).  

 The application of 137Cs and other radionuclides to track soil movement in 

landscapes such as this is a promising approach to quantify processes that have occurred 

over the past 50 years. Understanding the rates at which cryoturbative processes operate 

is critical for understanding how these soils will respond to future changes in climate. 

The results presented show that naturally-occurring fallout radionuclides (in this case 

137Cs) have the potential to constrain rates and processes of movement in cryoturbated 

soils. Further work which characterizes a suite of radionuclides (i.e. 137Cs,  210Pb and 14C) 

using a horizontally and vertically gridded sampling scheme across multiple cycles of 

patterned ground would have an opportunity to demonstrate the power of this approach. 

 Significant progress has now been made in standardizing these descriptions and 

linking them explicitly to sampling protocols. It is anticipated that future investigations 

will be able to utilize these approaches to improve upon and advance our knowledge of 

how cryoturbation is distributed across diverse Arctic landscapes as well as how it 

functions to produce these dynamic and unique soils.
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Figure 4.1. Geographic location and landscape setting of Midas Lake transect, central Brooks Range, Alaska. Soil profiles were described across the transect 
within the grey bar. Inset topographic map: USGS Ambler River Quadrangle, 1990 (elevations in feet).
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Figure 4.2. Aggregated and generalized horizonation for soils across the Midas Lake transect. Probability distributions with depth as a fraction of total profiles 
for cryoturbated soils (A), non-cryoturbated lowland soils (B), and non-cryoturbated upland soils (C). Frozen and rock layers noted in the field were assumed to 
extend with depth for visualization purposes only. Field pH values with depth for cryoturbated and non-cryoturbated soils (D); group means are represented by 
the solid lines, shaded range represents 25th and 75th percentiles. Percentages on right (D) are percent of total profiles contributing values with depth. All analyses 
conducted in AQP (Beaudette et al., 2013).
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Figure 4.3. Generalized soil-landscape relationships across the Midas Lake transect. Points A and B at bottom of bar refer to the same points in Figure 1. 
Vertical elevations are exaggerated.



   

158 

 
 
Figure 4.4. Overview of patterned ground microtopography, cryoturbated soil profiles and observed 
activities of 137Cs on transect location #2 (moraine). Letters above soil profile pictures refer to letters of 
surficial features in overview photograph. Numbers inside shaded circles denoting 137Cs activity range 
indicate measured values.
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CHAPTER 5 

Utilizing suites of isotopic and elemental tracers to constrain cryoturbation rates 

and patterns in a non-sorted circle (Abisko, SE) 

 

 

 

 

 

 

 

 

 

With Jonatan Klaminder (Umea University – Contribution: Field site, sampling, 210Pb, 

Hg, and background data) and Kyungsoo Yoo (University of Minnesota). 



   

160 

5.1. Introduction 

Cryoturbation is a globally important process of pedoturbation that takes place in 

permafrost-affected regions and plays a central role in the distribution of carbon and 

nutrients, water movement, and surface ground patterning in Arctic ecosystems 

(Bockheim, 2007, Walker et al., 2004, Kaiser et al., 2007). Although significant progress 

has been made in the characterization, distribution and ecological effects of cryoturbation 

in the past two decades (Walker et al., 2008), the quantification of rates and patterns of 

material movement in soils affected by cryoturbative processes has lagged far behind 

(Bockheim, 2007, Jelinski et al., 2013).  

 

5.1.1 Physical soil movement and Arctic soil carbon   

Many studies have investigated the quality and temperature sensitivity of soil organic 

carbon (SOC) contained in Arctic soils, relating these to quantitative biochemical factors 

(i.e. Davidson and Janssens, 2006, Biasi et al., 2005, Waldrop et al., 2010). However, 

these strictly biochemical models do not address the differential depth distributions of 

soil organic matter brought about by cryoturbation (Bockheim, 2007 Kaiser et al., 2007, 

Koven et al., 2009) and the effects that these physical processes have on the stabilization 

of SOC (much more so than other forms of mixing in temperate and tropical areas) due to 

the strong temperature gradients in permafrost soils and extreme inhibition of microbial 

activity at depth (Washburn, 1980, Waldrop et al., 2010). Recently, global and regional 

scale models of soil carbon accumulation in permafrost-affected soils have been 

constructed that explicitly represent cryoturbation and the insulation of the mineral soil 
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surface by organic materials (Koven et al., 2009). These models have suggested that the 

effects of these two processes alone can result in 30% higher stocks of SOC in the top 

meter, with additional increases down to three meters (Koven et al., 2009). Additional 

evidence suggests that the rapid freezing and burial of some cryoturbated organic matter 

in some permafrost-affected soils may result in different long-term behavior with regard 

to decomposition and lability (Ping et al., 2014). Lastly, the most recent estimates of 

permafrost SOC stocks to 3m depth places SOC in cryoturbated soils at close to 37% of 

the total circumpolar permafrost SOC pool (Tarnocai et al., 2009). These new revelations 

make understanding the rates of the physical movement of soil materials due to 

cryoturbation a critical new frontier in Arctic soil science.  

 

5.1.2 Equilibrium cell model of cryoturbation in non-sorted circles (NSCs) 

The three currently accepted models of cryoturbative processes include the cryostatic, 

diapiric, and differential frost-heave/equilibrium cell (henceforth ‘equilibrium cell’) 

models (Vandenberghe, 1992, Swanson et al., 1999, Peterson et al., 2003, Nicolsky et al., 

2008). The cryostatic and diapiric models of cryoturbation are stochastic processes that 

may not be expressed in surface patterns (Swanson, 1996). In contrast, the equilibrium 

cell model mechanistically describes the movement of organic materials and minerals in 

non-sorted circles (NSCs) or ‘frost-boil’ microforms, so called because they give the 

appearance of subsurface material “boiling” up in the centers of repeating circular 

patterns of mineral material surrounded by inter-circle areas with thick surficial organic 

layers (Walker et al., 2004). NSCs dominate high-latitude tundra environments (Ping et 
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al., 2008) across Arctic ecosystems, and in contrast to the unreliable surface evidence for 

cryostatic and diapiric processes, NSC landscapes are characterized by regular, spatially 

repeatable microforms which can be identified by aerial photography and satellite 

imagery (Walker et al., 2008), making them amenable to scaling. The equilibrium cell 

model of NSCs therefore provides a critical starting point for constraining rates of 

cryoturbation processes because frost-boils 1) are active features, 2) dominate tundra 

environments, 3) occur in spatially regular patterns, and 4) exhibit well defined 

morphologies and patterning with regard to vertical and horizontal distributions of SOC, 

depth to permafrost table, and temperature gradients (Nicolsky et al., 2008).  

 The equilibrium cell model of NSC material cycling has developed from field 

descriptions of frost-boil cross sections, which, regardless of variations due to climate, 

exhibit strikingly similar general morphologies (Nicolsky et al., 2008, Fig 5.1). Typically, 

frost-boil cross-sections have a bowl-shaped depression in the permafrost table directly 

below the raised circle microform, which is non-vegetated (or lightly vegetated) and has 

no overlying organic material (Fig 5.1). The NSC center is characterized by well-mixed 

mineral materials and the inter-circle areas are characterized by a thick organic mat and a 

relatively shallow permafrost table (Fig 5.1). Lastly, organic-rich material overlies the 

permafrost table in nearly all cases - an observation which has provided the major 

impetus for the development of the equilibrium cell model (Nicolsky et al., 2008, 

Bockheim, 2007). For ease of reference, the non-vegetated or slightly vegetated circular 

area with exposed mineral soil materials that participates in equilibrium cell circulation is 

termed the “Inner Domain” (Fig 5.1), while the inter-circle areas characterized by thick, 
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well developed mats of surficial organic materials and a shallower permafrost table are 

termed the “Outer Domain” (Harris, 1998, Makoto and Klaminder, 2012, Fig 5.1).  

 Three major mechanisms occur to create cell-like circulation of materials in the 

equilibrium cell model (Fig 5.1): 1) differential frost heave due to accelerated movement 

of the freezing front through the non-vegetated center leads to the formation of ice lenses 

and further reinforcement of micro-high topography; 2) colluvial movement of material 

from the NSC center towards the edges, and 3) the subduction of large, intact parcels of 

surface organic material downward towards (and eventually along) the permafrost table. 

The net movement of materials in the NSC microform is therefore a pseudo-circular 

pattern (depending on actual geometry of the ground surface) (Fig 5.1, Nicolsky et al., 

2008). The most critical factor in the development of circulatory movement in these 

features is differential frost-heave, which creates and maintains micro-topographic 

gradients (Peterson et al., 2003). Briefly, the mineral surface material in the non-

vegetated center conducts heat an order of magnitude faster (1.0 - 2.0 W m-1 K-1) than the 

vegetated boil-edges with thick mats of organic material (0.15 - 0.20 W m-1 K-1) 

(Washburn, 1980, Rinke et al., 2008). This leads to the accelerated formation of 

segregation ice and ice lens growth in frost-boil centers through unfrozen water migration 

from adjacent areas during freeze-back (Walker et al., 2008). 

 

5.1.3 Previous approaches to rates of material movement/cell circulation in NSCs 

Significant work has been done in estimating the rates of short and long-term material 

movement by tracking positioning changes in physical markers in NSCs and other related 
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patterned ground in periglacial environments around the world (Egginton and Shilts, 

1978, Selkirk, 1998, Smith, 1986, Ballantyne, 1996, Sawyer, 2007). Rates of lateral 

movement have also been quantified through repeated micro-scale laser altimetry of 

NSCs (Kaab et al., 2013), and more recently, through the use and application of the short-

lived radioisotope 210Pb (Hagedorn et al., 2008, Klaminder et al., 2014). Most of these 

studies have focused on quantifying rates of surficial movement across the NSC inner 

domain (Fig 5.1, arrow #2), with only a few estimates of the patterns or rates of 

subduction (Becher et al., 2013, Harris, 1998) and subsurface movement (Dyke and 

Zoltai, 1980) in NSCs, which remains poorly constrained.  

 

5.1.4 Geochemical tracer suites for constraining material movement in NSCs 

In our work, we explore a novel suite of elemental (C, N, Na, Mg, K, Ca, S, P, Pb, Cl) 

stable isotope (13C) and radioisotope (137Cs, 210Pb, 14C, 10Be) tracers to constrain the rates 

and patterns of soil material movements in NSCs over a range of timescales. Elemental 

tracers have addition and loss rates that are dependent on the environmental conditions 

they are currently experiencing, however in some well constrained cases (notably Pb and 

Hg), may be amenable to rate quantification. In contrast, radioisotopes decay at a 

constant, well-characterized rate independent of environment, an important factor in their 

use as rate estimators. Therefore, elemental tracers are amenable to understanding 

cryoturbation patterns by providing qualitative information on material provenance 

(surface or subsurface) and other environmental processes and conditions affected by the 

physical movement of soil materials in NSCs, while radioisotope tracers can be used to 
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both understand both patterns and quantify rates. 

 

5.1.5. Elemental and stable isotope tracers (C, N, Na, Mg, K, Ca, S, P, Pb, Cl, Hg, 13C) 

The elemental tracers differ in their modes of accumulation and loss in soils, as well as 

their environmental behavior (Table 5.1).  Although many of these elements have 

multiple sources of origin, three distinct groups of elemental tracers can be defined from 

their predominant modes of deposition in the Arctic environment: 1) those that are 

predominantly controlled by parent material composition and/or mineral weathering, 2) 

those predominantly controlled by primary production processes, and 3) those primarily 

controlled by atmospheric deposition.  

 Elements controlled by parent material composition and/or weathering processes: 

Na, Ca, Mg, K, P and Pb. The base cations Na, Mg, K and Ca all share similar origins 

and fates in the environment. On a global scale, the major source of these elements to 

terrestrial soils is mineral weathering, with minor sources from dust deposition and sea 

spray aerosols. Sites located within ~ 100 km from estuarine and marine environments 

are within the range of influence of sea spray aerosols on deposition chemistry 

(Gustafsson and Franzen, 2000, Benassai et al., 2005), but this process would be expected 

to have a minor influence on concentrations relative to weathering because background 

levels of the base cations in most soils ~ 8000 – 16,000 ppm, are ~ 2 orders of magnitude 

higher than what we would expect from sea spray deposition (Gustaffsson and Janzen, 

2000)  

 The primary source of P to soils on a global basis is geogenic, through the 
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weathering of minerals (primarily apatite) in soil parent materials (Fillipelli, 2002). In 

many soil environments, P bound to Fe and Al oxides is unavailable for plant uptake 

(Cross and Schlesinger, 1995). This P is then accumulated in soil organic matter through 

aggressive scavenging and uptake by plants and micorrhizae (Weintraub, 2011). In 

environments where significant organic matter accumulation occurs such as Arctic tundra 

environments, a significant proportion of the total P pool may be in organic form and 

controlled primarily by decomposition processes, which also tend to be slow in 

permafrost-affected soils, leading to P limitation (Weintraub , 2011). 

Geogenic sources of Pb to soils through the weathering of Pb-containing primary 

minerals are highly significant for establishing background levels of Pb in soils (Bindler 

et al., 2008), however anthropogenic influences on atmospheric Pb deposition drive the 

regional distribution of Pb (Klaminder et al., 2011). These sources can be highly 

significant and orders of magnitude greater than natural sources in localized areas close 

large anthropogenic point sources such as smelters, but even in remote Arctic 

environments, the accumulation of Pb in surface organic horizons can be 3-5 times 

greater than the geogenic background (Bindler et al., 2008). This has been attributed 

primarily to deposition from anthropogenic processes, not bioaccumulation or mixing, 

although those may also play roles (Klaminder et al., 2011).  

 Elements controlled by primary production: C and N. Carbon and nitrogen are 

accumulated in organic matter through primary production and fixation of atmospheric 

CO2 and N2 (Shaver and Jonasson, 2001; Christensen et al., 2007), as well as atmospheric 

pollutant deposition in the form of NO3
- for N (Lee and Malmer, 1988, Malmer, 1988). 
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Even in remote Arctic environments, increasing nitrogen concentrations in vegetation due 

to elevated nitrate deposition have been observed (Barsdate and Alexander, 1975, 

Malmer, 1990) but in most Arctic environments, the vast majority of the total nitrogen 

pool is from atmospheric nitrogen fixation by legumes and mosses (Bordeleau and 

Prevost, 1994).  

 Elements controlled by atmospheric deposition: Hg, S and Cl. Hg has a very strong 

affinity for reduced sulfur (thiol) groups in soil organic matter (Skyllberg et al., 2000), 

resulting in strong correlations between the distributions of SOC, S and Hg in soils and 

the tight coupling of dissolved organic carbon to the hydrologic export of Hg from 

terrestrial soils (Kolka et al., 2001). Both Hg and S have similar natural and 

anthropogenic sources leading to atmospheric deposition (Zdanowicz et al., 2014). 

Geogenic sources of mercury can be significant in some areas, and vary strongly even on 

regional scales (Nater and Grigal, 1992). Cl is predominantly controlled by atmospheric 

deposition of sea spray aerosols, and these can reach far inland (Gustaffsson and Franzen, 

2000, Oberg, 2002).   

 Depth-dependent depletion and enrichment of 13C. The depth dependent variation 

of 13C/12C ratios in soils is a well-documented phenomenon conditioned by multiple 

drivers (Wynn et al., 2006; Alewell et al., 2011). In most well drained soils that have not 

been severely affected by erosion, bulk SOC becomes increasing enriched in 13C (δ13C 

less negative) with depth, which can be due to the mixing of different sources of SOC, 

the preferential decomposition of different components of SOC, or fractionation during 

decomposition processes (Wynn et al., 2006). In anoxic systems where anaerobic 
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decomposition is the dominant process, the depth trends of these processes can result in 

the opposite phenomena – that is a trend of increasing depletion (δ13C more negative) 

with depth (Alewell et al., 2011). In either case, if the soil materials under consideration 

have formed under similar sets of environmental processes, δ13C can provide information 

on material provenance and isotopic changes of bulk SOC through maturation processes 

in soil environments. 

 

5.1.6. Radioisotope Tracers (137Cs, 210Pb, 14C, 10Be). 

 Cesium-137. 137Cs is a radioactive isotope of Cesium (atomic mass 133) with a 

half-life of 30.08 years, which undergoes beta-decay (100%) to its daughter isotope 

Barium-137 (National Nuclear Data Center, 2011). 137Cs is the best known and most 

frequently applied radioisotope tracer in studies of soil erosion and deposition (Matisoff 

and Whiting, 2011), is a reactive cation which is readily adsorbed to mineral grains and 

exchange sites on organic macromolecules once it reaches the soil surface. 137Cs 

distribution in the Arctic is primarily derived of fallout from atmospheric nuclear 

weapons testing between 1955 and 1965 (Wright et al., 1999), with additional small 

amounts of fall-out from the nuclear accidents of Chernobyl (Strandberg, 1997) and 

Fukushima (Thakur et al., 2012). Close to 57% of the total 137Cs fallout in the Northern 

Hemisphere was due to concentrated atmospheric nuclear weapons testing in the years 

1961 and 1962 alone, and in general, except for small local effects of the incidents 

mentioned above has generally ceased completely (Wright et al., 1999). Therefore, 137Cs 

can generally be considered a “pulse” radionuclide tracer, which fell out and was 



   

169 

conservatively adsorbed by soil minerals and organic matter, effectively labeling soil 

materials that were at or near the surface during the fallout period (Table 5.1).  

 Lead-210. 210Pb is a radioisotope of Lead (atomic mass 207) with a half-life of 22.2 

years, which undergoes beta-decay (~ 100%) and alpha decay (< 0.001%) to its daughter 

isotopes 206Hg and 210Bi, respectively (National Nuclear Data Center, 2011). 210Pb is a 

product of the decay chain of 238U that occurs naturally in geologic materials. During this 

decay process, a daughter nuclide - 226Ra - decays to 222Rn (a gas with a half-life of 3.8 

days), which can diffuse out of the soil and proceed through a series of brief decays to the 

210Pb daughter isotope (Faure and Mensing, 2005). 210Pb, like 137Cs, is a cation that is 

preferentially adsorbed to aerosols and falls out to the earth’s surface through both 

precipitation and dry deposition (Appleby and Oldfield, 1992). 210Pb activity resulting 

from fallout is termed excess 210Pb (210Pbex), in contrast to 210Pb remaining in the soil 

from 222Rn that was unable to diffuse completely from the soil, resulting in a in-situ soil 

pool (supported 210Pb). Excess 210Pb (210Pbex) falls-out to the soil surface similar to 137Cs, 

effectively labelling surface materials as it is also preferentially sorbed to soil minerals 

and organic matter (Matisoff and Whiting, 2011). Unlike 137Cs however, the long-term 

production and deposition rates of 210Pb are largely constant because the strength of its 

production depends solely on local variations of geologic materials. This difference in 

production source and long-term production patterns between 210Pb and 137Cs can be 

leveraged to provide further constraints on the movement of soil materials (Matisoff et 

al., 2002) (Table 5.1).  

 Beryllium-10. 10Be is a long-lived radioisotope of Beryllium (atomic mass 9) with a 
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half-life of 1.39 x 106 years (Dunai, 2009), which undergoes beta decay (100%) to its 

daughter isotope 10B (National Nuclear Data Center, 2011). 10Be is produced in the 

atmosphere when high-energy neutrons from cosmogenic radiation collide with 

molecular nitrogen and oxygen (Dunai, 2009). The spallation reactions that result from 

this collision break up the target nucleus, producing 10Be and a number of other lighter 

particles (Willenbring and von Blanckenburg, 2010). The production of 10Be in the 

atmosphere depends primarily on 1) the strength of cosmic ray production, which varies 

in conjunction with metrics of solar activity and 2) the intensity of the earth’s 

geomagnetic field, which selectively blocks lower energy cosmic radiation (Lal and 

Peters, 1967, Willenbring and von Blankenburg, 2010). Because these factors vary 

predictably, global models of atmospheric 10Be production have successfully reproduced 

these patterns (Field et al., 2006, Masarik and Beer, 2009). Like 137Cs and 210Pb, 

atmospheric 10Be is sorbed strongly onto aerosols in the atmosphere and eventually falls 

out as both wet and dry deposition (Graham et al., 2003, Lal, 2007). The delivery rate of 

10Be to the Earth’s surface is therefore also a function of precipitation and dust deposition 

patterns (Heikkila et al., 2008). The 10Be that falls out from the atmosphere (termed 

"meteoric" 10Be) is preferentially sorbed onto the exchange sites of soil minerals (as Be2+ 

for low pH values < 6 or as Beryllium hydroxide at higher pH values) or organic 

materials (as a Be-humate complex in a large pH range between 3 - 10) (Takahashi et al., 

1999). Meteoric 10Be can be leached from soils under conditions of high acidity, however 

understanding of the environmental boundaries characterizing these conditions has 

improved significantly (Willenbring and von Blanckenburg, 2010). 10Be retention by soil 
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materials under most environmental conditions is high, and therefore due to its long half-

life (~ 1.4 Ma), meteoric 10Be accumulates in soils with increasing soil age (Graly, 2010, 

Willenbring and von Blanckenburg, 2010) (Table 5.1).  

 Carbon-14. 14C is a radioisotope of Carbon (atomic mass 12) with a half-life of 

5,730 years, which undergoes beta decay (100%) to its daughter isotope 14N (National 

Nuclear Data Center, 2011). 14C is produced cosmogenically in the atmosphere through 

spallation reactions similar to those of 10Be as discussed above (Dunai, 2009), however it 

has also been produced anthropogenically through atmospheric nuclear weapons testing, 

similar to 137Cs (Trumbore, 2000). 14C differs fundamentally from the three fallout 

radionuclides discussed above because it is not deposited directly on the Earth’s surface. 

Instead, 14C is incorporated into plant materials during photosynthesis as atmospheric 

CO2 is converted to organic carbon compounds, with ratios of 14C:12C in the resulting 

organic material related to atmospheric 14C:12C ratios at the time of photosynthesis 

(Trumbore, 2009). Hence, for organic materials that have been closed to exchange with 

external carbon pools, the carbon-dating technique uses decay calculations to relate the 

observed ratio of 14C:12C to date the time since the material last exchanged carbon with 

the atmosphere (Torn et al., 2009). The situation for soil organic matter is considerably 

more complex, as SOC is an open pool, exchanging carbon with external pools through 

decomposition and humification processes (Wang et al., 1996, Trumbore, 2009). 

However, the mean residence time of bulk soil organic matter (or its fractionated 

components) can be determined from 14C concentrations, providing a primary constraint 

on SOC dynamics. If organic matter pools have been largely separated from surface 
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inputs and decomposition has been negligible (such as in deposits of organic matter in 

permafrost- affected soils or deeply buried materials), the apparent 14C age can be used as 

an indicator of burial date - with applicable caveats as described above (Kaiser et al., 

2007, Bockheim, 2007) (Table 5.1).  

 

5.1.7. Objectives 

The objectives of this study were to utilize our elemental and isotopic suite for soil 

profiles on a radial transect across an NSC near Abisko, Sweden to (i) determine what 

elemental or isotopic tracers show promise for elucidating rates and patterns of 

cryoturbation in NSCs, (ii) quantify the rates and patterns of both surficial and sub-

surficial movement rates in NSCs using radioisotopes (137Cs, 210Pb, 14C, 10Be), and (iii) 

use space for time substitutions to examine the temporal changes (physical and chemical) 

that occur in subducted surficial materials (14C, 13C and elemental tracers). 

 

5.2. Materials and Methods 

5.2.1 Site Description and Soil Sampling 

Our study site is located in a non-sorted circle (frost-boil) field, 20km south of the village 

of Abisko, Sweden (68° 18’N, 19° 10’E) located on the north slope of Mt. Suorooaivi at 

an altitude of approximately 700 m a.s.l. This site has been utilized for investigations into 

NSC dynamics previously and has been intensively described in those works (Makoto 

and Klaminder, 2012; Klaus et al., 2013, Becher et al., 2013). Briefly, the site lies in the 

zone of discontinuous permafrost, the active layer can be up to 2m thick and data 
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suggests that rapid degradation of the permafrost table has taken place over the past 4 

decades (Becher et al., 2013). Despite this, active soil movement in NSC mircoforms 

continues to be documented at this site (Klaminder et al., 2014) and seasonal elevation 

differences indicative of differential frost-heave processes that initiate and maintain 

NSCs continue to be observed (Klaus et al., 2013, Klaminder et al., 2014).  

 Soil profiles were sampled in 5 locations (at 0, 83, 145, 180, and 260 cm) along a 

2.6m radial transect in the hypothesized direction of surficial soil movement, from the 

NSC circle center to inter-circle areas, using an 8cm diameter auger and spade 

excavation. Sampling location 1 (at 0 cm) was termed the mineral center and abbreviated 

CM. Location 2 (at 83 cm) is termed the inner profile and abbreviated IN. Location 3 (at 

145 cm) is termed the Mixing Transition and abbreviated MT. Together, locations CM, 

IN, and MT constitute the Inner Domain, that is, the part of the transect that is actually 

included in the NSC morphology (Fig 5.2). Location 4 (180 cm) is termed outer domain 1 

and abbreviated OD1, and location 5 (260 cm) is termed outer domain 2 and abbreviated 

OD2. Together, OD1 and OD2 make up the outer domain, that is, the inter-circle areas 

that do not participate in material movement in the equilibrium cell (Fig 5.2). Profiles 

were sampled until bedrock was reached (Fig 5.2).  

 

5.2.2 Soil property and elemental characterization 

Soil pH was determined on a 1:1 soil – water slurry. Soil organic carbon and total 

nitrogen were determined on a Elementar varioMax CN analyzer, with combustion at 

1000° C. Texture was determined by the micropipette method (Miller and Miller, 1987), 
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with quality control samples determined by the hydrometer method (Gee and Or, 2002).  

The concentration of major elements (Na, Mg, K, Ca, P) was determined by Lithium 

Borate Fusion and ICP-AES, and S was determined by Leco furnace combustion, Cl by 

KOH fusion and ion chromatography, Pb by four-acid digestion and ICP-AES, and Hg by 

Aqua Regia digestion and ICP-MS. Hgex, or atmospherically-derived Hg was calculated 

by subtracting average Hg concentrations of soils and sediments overlying bedrock 

across the Abisko study site (“inherited Hg”) from total Hg concentrations.  

 

5.2.3 Measurements of Stable (13C) and Radioiostopes (14C, 137Cs, 210Pb, 10Be) 

13C:12C ratios of bulk soil samples were determined at the UC Davis Stable Iotope 

Facility (SIF, Davis, CA). Briefly, samples were combusted at 1000° C using an 

Elementar EL or Micro Cube elemental analyzer (Elementar, Hanau, Germany) 

interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., 

Cheshire, UK). The final δ values (per mil, ‰), are expressed relative to international 

standards V-PDB (Vienna PeeDee Belemnite) carbon. 

 12C:14C ratios of bulk soil samples was determined by AMS analysis on graphite 

from converted CO2 produced upon complete sample combustion on acid washed pre-

treatments of soil samples at Beta Analytic (Miami, FL), using NIST Oxalic Acid I as the 

modern reference standard.  

 137Cs was determined by gamma spectrometry on a high-purity Germanium (HPGe) 

crystal well detector (Canberra, Inc.) at the University of Minnesota-Twin Cities. 

Samples were counted for 48 hours to an uncertainty of 5% of the predicted value. 210Pb 
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activities were determined using alpha spectrometer that measured the activities of its 

granddaughter 210Po in equilibrium. 210Po analyses were carried out by the complete 

dissolution of the aliquot samples (between 150 and 250 mg) by microwave digestion and 

its deposition on silver discs using 209Po as an internal tracer to determine yield. Po 

sources were measured using an EG & G Ortec ULTRA-AS Ion-Implanted-Silicon 

Charged-Particle Detector (model U-020-450-AS) at Umea University, Abisko, SE. 

10Be adsorbed to mineral grains and bound to organic materials was removed through a 

series of acidification steps and ion exchange chromatography prior to being oxidized and 

analyzed by accelerator mass spectrometry (AMS). The methodology used here is 

modified from Ebert et al. (2012). Briefly, 0.5 g of air-dried, homogenized, and sieved 

(2mm) soil was digested in Teflon vessels with 0.5 M HCl and 250 ug of spiked 9Be 

carrier at 110° C for 3 hours, after which time the sediment was removed via 

centrifugation. 4ml of HF was added to the cation solution in two steps to bind excess Ca 

and Mg. After each HF addition step, 2ml of ultrapure H2O2 was added to remove 

organics. The ultrapure water containing Be and other cations was removed from the 

fluoride cake via centrifugation and pipetting. Ion exchange chromatography (both anion 

and cation removal steps) was used to purify Be cations from the bulk cation solution. 

Be-hydroxides were precipitated from the purified cation solution by titration to pH 9 

through the addition of ammonia. The supernatant was decanted and the precipitate was 

washed several times with ultrapure water and dried overnight at 100 deg C in low-boron 

quartz vials. The dry precipitate was flame-oxidized at > 850 deg C to form BeO powder 

and pressed into cathodes with niobium powder for AMS analysis at PRIME Lab, Purdue 
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University, USA.  A process blank was run with each batch of 9 samples.   

 

5.2.4 Calculation of Inventories and Inventory Ratios 

Inventories were calculated by cumulative mass, utilizing the mass of each sampling 

increment to determine the total increment inventory and, by sum, the total profile 

inventory. For radioisotopes (137Cs, 210Pb, 10Be): 

 

Iα , j = α nBDnln
n=1

N

∑
   (34) 

 

where Iα,j is the inventory of radionuclide α at sampling location j (atoms m-2), N is the 

total number of samples layers in the profile, αn is the radionuclide concentration (atoms 

kg-1), BDn is the bulk density of increment n (kg m-3), and l is the increment length (m). 

 For elemental analytes (SOC, TN, Na, Mg, K, Ca, S, P, Cl, Pb, Hg): 

 

Iβ , j = βnBDnln
n=1

N

∑
   (35) 

 

where Iβ,j is the inventory of element β at sampling location j (kg m-2), N is the total 

number of samples layers in the profile, βn is the radionuclide concentration (kg kg-1), 

BDn is the bulk density of increment n (kg m-3), and l is the increment length (m). 

 In a system where depth to bedrock limits sampling depth, total profile depth 

affects the absolute inventory of all constituents that are present below the depth of the 
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shallowest profile (in this case the depth of CM – 56cm). Therefore, we calculate profile 

mass ratios (and 1-sigma mass ratio uncertainties) normalized by the cumulative mass of 

profile CM for profiles IN and MT and normalized by MT for profiles OD1 and OD2: 

 

ΩM , j =
M j

Mref    (36) 

where ΩM,j is the ratio of cumulative profile mass at profile j to the profile mass at the 

reference profile, and cumulative profile mass was calculated as: 

 

M j = BDnln
n=1

N

∑
   (37) 

 

where Mj is the cumulative profile mass at profile j (kg m-2), BDn is the bulk density of 

increment n (kg m-3), and l is the increment length (m). 

 We then calculated similar ratios for the inventories of isotopic tracers, normalized 

by the cumulative mass of profile CM for profiles IN and MT and normalized by MT for 

profiles OD1 and OD2: 

 

Ω Iα , j =
Iα , j
Iα ,ref    (38a) 

 

where ΩIα,j is the normalized inventory of radionuclide α at profile j (atoms m-2). 

 And in the case of elemental tracers: 
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Ω Iβ , j =
Iβ , j
Iβ ,ref    (38b) 

 

 

where ΩIβ,j is the normalized inventory of element β at profile j (kg m-2). 

 Finally, to detect differences in profile inventories of isotopic and elemental 

analytes that were not due to cumulative mass changes along the radial transect alone, we 

compared increases or decreases in inventories between sampling points to the 1-sigma 

range of increases or decreases in cumulative profile mass ratios (Eqn 36). Changes in 

inventory ratios (Eqns 38a and 38b) outside of the 1-sigma uncertainty in the mass ratio 

(Eqn 36) were considered to be significant differences that warrant further consideration. 

Changes in inventory ratios lying within the 1-sigma uncertainty of this profile mass ratio 

were considered to be predominantly due to differences in depth to bedrock or total 

profile mass.  

 

5.2.5 Material Movement Models: Surficial movement from short-lived radionuclide 

tracers - Analytical model 

Klaminder et al (2014) developed an analytical solution for estimating the rate of surficial 

movement from radial transect points along the surface of a frost boil using 210Pbex 

inventories.  This model assumes piston-type flow of the soil matrix across the frost-boil 

surface, where 210Pbex is continuously deposited at the surface.  Therefore, gains of 

210Pbex to the soil matrix are atmospherically derived and losses are through radioactive 
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decay. This mass balance can be described as: 

 

dI
dx

= D
Vsurf

− λ
Vsurf

I
   (39) 

 

where I is the total profile inventory 210Pbex (atoms m-2), x is the distance from the center 

of the frost-boil (m),  D is the atmospheric deposition rate of 210Pbex (atoms m-2  yr-1), 

Vsurf is the apparent piston flow velocity (m yr-1) and λ is the radionuclide decay constant 

(equal to ln(2)/t1/2, with units of yr-1), where t1/2 is the radionuclide half-life (yr). 

 The atmospheric deposition rate of 210Pbex can be estimated by assuming steady-

state inventories. Where significant material movement occurs relative to the half-life of 

210Pbex such as in systems like NSCs, one of two strategies must be taken to derive 

estimates of D (atoms m-2) from observed inventories (because a single profile in the 

inner domain cannot be assumed to represent steady-state conditions). Either the entire 

NSC inventory can be calculated (along with NSC area) to estimate the steady state 

inventory, or the outer domain inventories, which do not theoretically participate in 

material movement, can be taken as steady state inventories. In either case, once the 

steady-state inventory reference is chosen, (atoms m-2), then, assuming steady-state, D 

(atoms m-2 yr-1) is equal to the annual amount of inventory loss by decay. Therefore at 

steady state: 

 

D = Iss − Isse
−λt

t    (40) 
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where D is the atmospheric deposition rate of 210Pbex (atoms m-2 yr-1), Iss is the chosen 

steady-state reference inventory of 210Pbex (atoms m-2), and t is the time period under 

consideration (yr), generally evaluated at t=1. 

 Rearranging equation 39 we can derive an apparent surficial flow velocity: 

 

Vsurf =
(D − λI )
dI / dx    (41) 

 

5.2.6. Material Movement Models: Surficial movement from short-lived radionuclide 

tracers - Numerical model 

Analytical solutions only exist when the assumption of steady state is reasonable. This is 

reasonable for 210Pbex because given fallout and radioactive decay (occurring over 

decadal timescales), steady-state inventories can be reached within centuries. For tracers 

that can be considered pulse tracers (non-continuous fallout, such as 137Cs) a steady state 

condition does not exist, so no analytical mass balance model can be derived. Therefore, 

numerical modeling is required to yield apparent movement rates. In our numerical 

model, the NSC is assumed to be a circle of radius r and is discretized into K increments 

of radial length ι. The area of each increment is therefore: 

 

Ak = πrk (o)
2 −πrk (i )

2

   (42) 
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where Ak is the area of increment k (m), rk(o) is the outer radius (m) and rk(i) is the inner 

radius (m) of increment k. The numerical model is run for yearly timesteps where 

material is assumed to move radially outward as plug flow so that: 

 

Ik (t+1) = (Ik−v
l
ts (t )

+ Dts )e
−λts

   (43) 

 

where Ik(t+1) is the inventory of increment k at the next timestep (atoms m-2), v is the 

velocity of plug flow (m yr-1), D and λ are as defined above, l is the increment radial 

length rk(o) – rk(i), (m) and ts is the timestep length (yr; equal to 1 yr in these model runs).  

 Boundary conditions are set so that: 

 

Ik = 0 for k < 0 and t ≥ 0    (44) 

 

and: 

 

IK (t+1) = Ik + Dts
k=K−v

l
ts (t )

K

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
e−λts

   (45) 

 

where IK is the inventory of the outermost increment and other variables are defined as in 

equations 42 and 43 above. 

 Models are then run until steady-state is achieved (for 210Pbex ~ 300 years-1000 
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years, depending on D) or the time since assumed pule deposition is reached (137Cs). For 

137Cs, we assume pulse deposition in 1963. This does not account for any deposition from 

the Chernobyl incient, which did have a minimal influence on radionuclide inventories in 

Arctic Sweden (Barrie et al., 1992). Therefore, this should be considered a minimum 

velocity estimate for 137Cs tracer. The inventories at t=0 are: 

 

Ik (t=0) = 0 for 210 Pbex    (46a) 

 

which assumes that we develop steady state inventories across the NSC with time on 

transported till materials which have been ice-shielded prior to deglaciation with no 

210Pbex concentration – this assumes instantaneous NSC development, but over the 

timescales considered, the assumption is negligible, as steady state inventories are 

achieved within centuries depending on D (Eqn 40). For 137Cs, the t=0 inventories are: 

 

Ik (t=0) =
IOD,ave

e−λ (tsamp−1963)  for 137 Cs
   (46b) 

 

where IOD,ave is the average 137Cs (atoms m-2) inventory of the outer domain profiles 

(OD1 and OD2), and tsamp is the year (A.D.) of sampling.  

 Once the model was run through all of the required timesteps, 10cm segments of 

the NSC (starting with the outermost portion) were summed to generate total expected 

radionuclide inventories (and subsequently activity inventories per unit ground area) for 
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specific values of v (m yr-1). The predictions for the model (apparent rates) were taken as 

the best estimate and range of results from numerical runs that lay inside of the reported 

1-sigma uncertainty in the observed inventories at each point. 

 

5.2.7 Material Movement Models: Subsurface movement from 14C - Numerical model 

To estimate subsurface rates of material movement, 2-sigma uncertainties (Y.B.P.) from 

14C in parcels of soils were taken to represent the time since subduction. Then, a straight-

line path was drawn from the previous marker of material movement (minimum path 

length) and along the sides of a right triangle (maximum path length) between the two 

points. The apparent subsurface movement rate is then: 

 

Vsub =
p

Y2 −Y1    (47) 

 

where Vsub is the movement velocity (cm yr-1), Y1 is the apparent radiocarbon age of bulk 

SOC at the point of origin, Y2 is the apparent radiocarbon age of bulk SOC at the end 

point, and p is the path length (cm). 14C age of surficial bulk SOC between MT and OD1 

(the hypothesized origin of subducted organic material in the equilibrium cell model) is 

assumed to be 0 (or 100% modern C). 

 

5.2.8 Material Movement Models: Former surficial residence time of cryoturbated 

materials 

Meteoric 10Be and Hgex can provide a measure of the surface exposure time when 
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atmospheric deposition rates are constrained.  We utilize three different long-term 

atmospheric deposition rates for 10Be in this study: 0.8 x 1010 atoms m-2 yr-1 (Willenbring 

and von Blanckenburg, 2010), 0.35 x 1010 atoms m-2 yr-1 (Finkel et al., 1997), and the 

Datm derived from the equation below, when t is constrained by deglaciation chronologies 

of 9,000 years (Lundqvist, 2004): 

 

Datm =
I 10Be,ave
tglac    (48) 

 

where Datm is the long-term average deposition rate of meteoric 10Be (atoms m-2 yr-1), 

I10Be,ave is the average 10Be inventory across all profiles (atoms m-2), and tglac is the time 

since deglaciation (yr). 

 In this model, the exposure time of a subducted parcel is equal to the inventory of 

excess 10Be in a soil parcel or profile section divided by the atmospheric deposition rate: 

 

tres =
Iexcess,n
Datm    (49) 

 

where tres is the surficial residence time (the cumulative time of atmospheric exposure 

(yr)), Iexcess,n is the excess 10Be inventory - defined below - (atoms m-2) of cyroturbated 

parcel n, and Datm is the atmospheric deposition rate (atoms m-2 yr-1). For the purposes of 

this model, the excess 10Be inventory of cryoturbated parcels was calculated as: 
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Iexcess,n = (α nBDn −α n−1BDn−1)ln    (50) 

 

where Iexcess,n is the excess 10Be inventory of cryoturbated parcel n (atoms m-2), αn is the 

radionuclide concentration (atoms kg-1) of increment n, αn-1 is the radionuclide 

concentration (atoms kg-1) of increment n-1, BDn is the bulk density of increment n (kg 

m-3), BDn-1 is the bulk density of increment n-1 (kg m-3)and l is the increment length of 

increment n (m).  

 Hgex is estimated as the difference between the total Hg concentration and the 

geogenic Hg estimated as the average Hg concentration (kg m-3) of the lowest sampling 

increments for each profile, a strategy used in other studies of Hg that estimate geogenic 

sources (Nater and Grigal, 1992): 

 

Hgex,n, j = Hgtot ,n, j −
Hgtot ,N

j=1

J

∑
J    (51) 

 

where Hgex,n is the Hgex concentration (mg kg-1) of increment n in profile j, Hgtot,n is the 

total Hg concentration (mg kg-1) of increment n in profile j, Hgtot,N is the total Hg 

concentration (mg kg-1) of the lowest depth increment (N) in profile j, and J is the total 

number of profiles. 

  Surficial exposure times of the same cryoturbated parcels were estimated with Hgex 

observations as: 
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tres =
Iexcess,n
Datm    (52) 

 

where tres is the surficial residence time (the cumulative time of atmospheric exposure 

(yr)), Iexcess,n is the excess Hgex inventory - defined below - (mg m-2) of cyroturbated 

parcel n, and Datm is the atmospheric deposition rate (mg m-2 yr-1). For Hgex Datm, we use 

three different long-term atmospheric deposition rates for Hgex of 0.5 x 10-3, 1.0 x 10-3 

and 2.0 x 10-3 mg m-2 yr-1 (Bindler, 2003)), except Iexcess,n represents the excess Hgex 

inventory, calculated as: 

 

Iexcess,n = (βnBDn − βn−1BDn−1)ln    (53) 

 

where Iexcess,n is the excess Hgex inventory of cryoturbated parcel n (mg m-2), βn is the 

Hgex concentration (mg kg-1) of increment n, βn-1 is the Hgex concentration (mg kg-1) of 

increment n-1, BDn is the bulk density of increment n (kg m-3), BDn-1 is the bulk density 

of increment n-1 (kg m-3)and l is the increment length of increment n (m).  

 

5.3. Results 

5.3.1. Morphological aspects of sampled profiles 

Sampling locations in the mineral center (CM, 0cm), Inner Domain (IN, 83cm), Mixing 

Transition (MT, 145cm) and Outer Domains (OD1 and OD2, 180 and 260cm, 

respectively) had distinct profile morphologies (Fig 5.2). Profiles at sampling locations 
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CM and IN had no surficial organic horizon (0 cm depth), while Profiles at MT, OD1 and 

OD2 had surficial organic horizons with thicknesses of 4cm, 6cm and 8cm, respectively 

(Fig 5.2). Additionally, profile IN had a morphologically distinct organic-rich layer at a 

depth of 36-42 cm (Fig 5.2). Depth to bedrock also co-varied with distance from the 

mineral center, with observed bedrock depths at 56, 59, 71, 76 and 81cm, respectively, 

for sampling locations CM, IN, MT, OD1 and OD2. Although this trend does not reflect 

typical NSC observations (Fig 5.1), we note that the morphology and functionality (Klaus 

et al., 2013) of these NSCs are highly congruent with observations at other sites.  Total 

variation in bedrock depth from the center to the outer domain was 25 cm, 45% of the 

center profile depth. Measurements of surficial elevation differences between sampling 

location MT and OD1 were 5cm, while the elevation gradient between CM and OD2 was 

measured at 14 cm in the summer and 21 cm in the winter (a seasonal difference of 7cm) 

(Fig 5.2). 

 

5.3.2 Sample characterization, elemental concentrations and radioisotope activities 

Trends in surficial pH across the frost-boil transect closely follow those of O horizon 

morphology and hypothesized material movement. A trend of decreasing surficial pH 

from 5.4-3.6 occurs (Fig 5.2) from CM to OD2. Deep mineral soil increments have a 

maximal pHs of 5.2-5.4, while organic materials have an average pH of 3.6 (Table 5.2). 

 Clay concentrations ranged between 5-25% across all sampling increments with no 

observable trends (except for the extremely low clay contents of surficial organic 

horizons and organic-rich subsurface materials) with depth or location on the NSC (Table 
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5.2). SOC concentrations ranged from 0.2-41.8% across all samples, and exhibited a 

numerically increasing trend across the outward radial transect associated with the 

change from surficial mineral materials to surficial organic materials from IN to MT. The 

average SOC concentrations for mineral depth increments (n=35) were 1.6 ± 2.6 g 100g-1, 

while average SOC concentrations for surficial organic materials (from MT, OD1 and 

OD2; n=3) were 39.0 ± 3.4 g 100g-1 soil. Bulk soil total nitrogen concentrations varied 

from 0.1 – 1.4 g 100g-1  and closely followed trends in SOC concentrations for mineral 

depth increments (0.1 ± 0.2 g 100g-1) and surficial organic materials (0.9 ± 0.7 g 100g-1). 

C:N ratios are wider for surficial organic samples (32.8 ± 3.5) than mineral sampling 

increments (21.2 ± 8.3).  

 S and Hg concentrations also closely followed SOC, with average S concentrations 

across all sampling increments of 387 ± 549 ppm, and averages of 1966 ± 680 ppm and 

255 ± 263 ppm for organic and mineral materials, respectively. Total Hg spanned four 

orders of magnitude across all sampling increments (0.1 – 358 ng g-1), and showed 

pronounced differences in surficial concentrations across the radial outward transect, 

consistent with observed trends of organic layer thickness and SOC content. Geogenic 

concentrations of Hg, calculated as the average of the Hg concentration of the bottom 

depth increment for each profile were estimated at 4.4 ± 0.8 ng g-1. Averages of Hgex for 

organic and mineral sampling increments, respectively, were 257 ± 90 ng g-1 and 10 ± 22 

ng g-1, respectively (Table 5.3).   

 Concentrations (µg g-1) of the base cations Na, Mg, K and Ca were all significantly 

lower in organic materials (2596 ± 1874, 3482 ± 1656, 5718 ± 2515 and 8671 788 µg g-1, 
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respectively) than in mineral soil materials (7925 ± 954, 12295 ± 2017, 11635 ± 1082, 

and 14409 ± 2524 µg g-1 respectively). Conversely, concentrations of P, Pb and Cl were 

greater in organic materials than mineral soil materials. P concentrations averaged 729 ± 

239 µg g-1 across all sampling increments, with averages of 1259 ± 218 µg g-1 in organic 

materials and 684 ± 183 µg g-1 in mineral materials (Table 5.3). Concentrations of Pb 

averaged 12.6 ± 8.2 µg g-1 across all samples, with averages of 38.3 ± 10.3 µg g-1 in 

organic materials and 10.4 ± 2.3 µg g-1 in mineral materials (Table 5.3). Concentrations 

of Cl averaged 162 ± 51 µg g-1 across all samples with averages of 297 ± 80 µg g-1 in 

organic samples and 151 ± 29 µg g-1 in mineral samples (Table 5.3). 

 Elements in addition to Hg which have significant background concentrations 

include Na, Mg, Ca , K, P, Pb, Cl, and meteoric 10Be (inherited 10Be). Similar to Hg, we 

estimate background concentrations through the averages of the bottom depth increments. 

Base cation background concentrations were 8498 ± 291, 11999 ± 477, 13397 ± 984 and 

16336 ± 371 µg g-1 for Na, K, Mg, and Ca, respectively. Background concentrations for 

P, Pb and Cl were 663 ± 37, 10.7 ± 1.0, and 144 ± 16 µg g-1, respectively.  

δ13C values averaged -25.9 ± 0.7 per mil across all sampling increments, -27.2 ± 0.5 per 

mil for organic materials and -25.7 ± 0.6 per mil for mineral sampling increments. There 

were no apparent radial outward trends in profile-averaged 13C maximum, minimum or 

mean values.  

 Activities of 210Pbex across all depth increments ranged from 0 (below detection 

limit) to 311 Bq kg-1, and except for a decline within analytical error from CM to IN, 

showed increasing trends from 38 Bq kg-1 to 311 Bq kg-1 for surficial sampling 
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increments across the NSC radial transect. In all cases, the surficial depth increment had 

the highest activity of 210Pbex (Table 5.2). 137Cs activities ranged from 0 to 108 Bq kg-1 

across all sampling increments and in contrast to 210Pbex did not always have the highest 

activities in the surficial depth increment of each profile (Table 5.2). For profiles MT and 

OD2, the highest 137Cs activities were measured in the 4-7 cm and 8-15 cm depth 

increments, respectively. Despite this, the maximum profile 137Cs activity increased in an 

outward direction along the radial transect. Therefore, 210Pbex was consistently detected in 

the top 15-20cm of all profiles (Table 5.2), while the depth of 137Cs detection varied 

significantly. No 137Cs was detected at location CM, while 137Cs was detected to depths 

of 2, 12, 10 and 50 cm at locations IN, MT, OD1 and OD2, respectively (Table 5.2).  

10Be concentrations were generally much more similar in whole material averages 4.12 ± 

2.45 x 107 atoms g-1 across all sampling increments (n = 38) and 3.98 ± 2.52 x 107 atoms 

g-1 and  5.13 ± 1.98 x 107 atoms g-1 for mineral and organic materials, respectively) with 

a total range from 0.7 – 13.6 x 107 atoms g-1 and were more normally distributed  than the 

other radioisotope tracers (Fig 5.4). Meteoric 10Be background concentrations calculated 

from the average of the bottom depth increments for each sampling point resulted in 2.85 

± 0.20 x 107 atoms g-1. 

 Two sampling increments were analyzed for 14C:12C and estimated radiocarbon 

dates for bulk soil organic carbon. The 37-42 cm depth increment at sampling location IN 

(indentified as potentially cryoturbated, organic-rich material in morphological sampling) 

has an SOC content of 8.4 ± 0.9 g 100g-1, a 14C pmC (% modern) of 80.4 ± 0.4%, and a 

2-sigma uncertainty of radiocarbon age of 1860-1990 Y.B.P. The 22-32 cm depth 
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increment at sampling location CM has an SOC content of 1.4 ± 0.2 g 100g-1, a 14C pmC 

(% modern) of 74.2 ± 0.4%, and 2-sigma uncertainty in radiocarbon age of 2350-2680 

Y.B.P.    

 

5.3.3. Relationships between tracers  

Elemental concentrations closely related in origin and deposition mode were significantly 

correlated (Table 5.4). In particular, SOC was significantly and positively correlated with 

TN, S, Cl and Hg (Kendall’s tau-b, with Bonferonni correction, α = 0.05, Table 5.4), 

which were all significantly correlated with eachother. The base cations Na, K, Ca and 

Mg were generally negatively correlated with the SOC and atmospheric-associated 

tracers. Na and Ca were negatively correlated with SOC, TN, S, Cl and Hg, while Mg 

and K were not significantly negatively correlated with those tracers, but were 

significantly correlated with eachother. 13C:12C ratios were significantly correlated with 

SOC (log transformation) on linear regression (R2 = 0.44, p < 0.0001, Fig 5.8).  

 The highest correlation coefficients across all relationships for the non base cations 

(Kendall’s tau-b, with Bonferonni correction, α = 0.05, Table 5.4) were S and Hgex 

(0.81), S and Cl (0.78), SOC and S (0.76), SOC and TN (0.75), S and TN (0.70), and 

SOC and Hgex (0.67). As a three element group, SOC, S and Hgex were the most closely 

related (average of 0.75). These 3 tracers showed highly skewed distributions due to a 

few large values for organic sampling increments (and just below) at MT, OD1 and OD2 

that were significantly greater than the bulk of the measurements (Fig 5.3). Log-log 

transformation of the variables resulted in significant improvement in normality of 
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distributions (Fig 5.3). Linear regressions of log-log transformations of these 3 variables 

were highly significant (R2 = 0.73, 0.81 and 0.80, respectively, for SOC-Hgex, SOC-S, 

and Hgex-S, respectively, p < 0.0001, Fig. 5.3).  

 In contrast. relationships between the radioisotope markers (137Cs, 210Pbex and 10Be, 

not including 14C) and SOC were non-significant, with the exception of SOC-210Pbex, 

which showed weak correlations (R2 = 0.37, p = 0.004, Fig 5.4). Similar to the elemental 

tracers associated with surface materials and atmospheric deposition, 210Pbex and 137Cs 

have highly skewed distributions due to both the large numbers of sample increments in 

which they could not be detected and surficial increments which had high activities. In 

contrast, meteoric 10Be distributions were fairly normally distributed.  

  

5.3.4 Within and between profile trends in elemental and isotopic tracers 

 Single tracer profiles. Depth profiles of elemental and isotopic tracers exhibited 

distinct morphologies across sampling locations and tracer type. We distinguish between 

5 different depth profile morphologies: spiked, inverse-spiked, decreasing, increasing and 

irregular. Spiked-type profile are defined as depth profiles which have a single, definite 

subsurface increase with decreases on either side, while inverse-spiked profiles have a 

single, definite decrease with increases on either side. Irregular profiles have more than 

one increase or decreases with depth, while decreasing or increasing profiles show 

continuous increases or decreases with depth (within analytical error). For profiles that 

did not fit these criteria exactly, we utilize two terms to describe them, with the primary 

shape first. 
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 At sampling point CM, spiked or inverse-spiked profiles were apparent for all 

tracers except P, Mg, K, 210Pbex, 137Cs and Pb (Fig 5.5-5.7). At sampling point IN, spiked 

or inverse-spiked profiles were apparent for all tracers except 210Pbex, 137Cs, and Pb (Fig 

5.5-5.7). At sampling point MT, tracers exhibited either decreasing (SOC, 210Pbex, 10Be, 

Pb, Hg, S, Cl), spiked-decreasing (with a spike in the depth increment just under the 

surface (TN, 137Cs), irregular-decreasing (P), or irregular-increasing distributions (Na, 

Ca, Mg, K, 13C). For outer domain profiles, the base cations and 13C exhibited increasing 

or irregular-increasing profiles, while TN, P, SOC, 210Pbex, Pb, Hg, S and Cl exhibited 

decreasing or irregular-decreasing profiles. OD1 and OD2 tracer profiles differed most 

significantly for 137Cs and 10Be, which were decreasing in OD1 and irregular-decreasing 

(137Cs) or irregular-increasing (10Be) at OD2. 

 13C SOC down-profile trends. Down-profile trends of δ13C and SOC (log 

transformed) were different between inner domain profiles CM and IN containing 

cryoturbated materials and those not containing cryoturbated materials. Figure 5.8B 

shows down-profiles trends of δ13C and SOC (log transformed) for MT, OD1 and OD2, 

which do not contain cryoturbated materials. These profiles show a consistent trend of 

lower SOC concentrations and more positive δ13C values as one moves downward in the 

profile (Fig 5.8B). In contrast, profiles containing cryoturbated materials (CM and IN) 

show much more irregular down-profile patterns (Fig 5.8C), as δ13C values for 

subsurface materials change due to the presence of cryoturbated materials.  

 Coincidence of tracer peaks. The tracers most closely associated with the surficial 

exposure of soil materials are SOC, Hg, 13C, 137Cs and 210Pbex and 10Be. However, if a 
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material parcel has been buried for longer than ~ 100 years, 137Cs and 210Pbex will likely 

be below detectable limits, leaving SOC, Hg, 13C and 10Be as the most conservative long-

term tracers of surficial origin. Therefore, in the evaluation of sampling increments which 

have been buried for some time but show evidence of a surficial origin, these 4 tracers 

should show convergent peaks in the subsurface (Fig 5.9A and 5.9B). Although the 

increment from 22-32 cm in profile CM was not identified in morphological sampling, 

these tracers share convergent peaks at that depth increment for CM, suggesting strong 

evidence of previous surficial origin.  

 

5.3.5 Inventories 

Constituent inventories can be grouped into two categories – those that show a substantial 

variation across the radial transect (range to mean ratio > 0.5), and those that showed 

little variation in inventory across the transect (range to mean ratio < 0.5). This first 

category includes SOC, TN, S, Hg, 137Cs and 210Pbex. The second category contains Na, 

Mg, K, Ca, P, Cl, Pb, and 10Be.  

 Large inventory variation. SOC, TN, S, Hg, 137Cs, 210Pbex. Inventories of SOC had 

a range-mean ratio (range of observed inventory values for each tracer across all 

sampling points divided by the mean inventory across all sampling points) of 1.2 and 

varied from 2.6 kg m-2 to 13.4 kg m-2 (Table 5.5) across the radial transect, with an 

average of 9.0 ± 4.7 kg m-2 over all profiles (Table 5.5) and averages of 7 kg m-2 in the 

inner domain and 12 kg m-2 in the outer domain (Table 5.5). A weighted-average SOC 

inventory across the radial transect can be derived by extending each observed profile 
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inventory to in between observed sampling points. Calculating a total SOC transect 

inventory average in this way results in a value of 8.7 kg m-2.  

 TN inventories had a range-mean ratio of 1.5 and ranged from 0.11 kg m-2 to 0.83 

kg m-2 (Table 5.5), with an average of 0.49 ± 0.25 kg m-2 across all profiles, 0.46 kg m-2 

in the inner domain and 0.52 kg m-2 in the outer domain. S inventories varied from 69 g 

m-2 to 153 g m-2 (Table 5.5), with an overall average of 115 g m-2, an inner domain 

average of 111 g m-2, an outer domain average of 123 g m-2, and a range to mean ratio of 

0.72. Hgex inventories varied from 0.9 to 12.6 mg m-2, with an overall average of 5.3 mg 

m-2, an inner domain average of 3.8 mg m-2, and outer domain average of 7.5 mg m-2, and 

a range to mean ratio of 1.8. 137Cs inventories varied from 0 to 1625 Bq m-2, with an 

overall average of 987 Bq m-2, an inner domain average of 714 Bq m-2, an outer domain 

average of 1397 Bq m-2, and a range to mean ratio of 1.8. Lastly, 210Pbex varied from 

1840 to 4939 Bq m-2, with an overall average of 2964 Bq m-2, an inner domain average of 

2533 Bq m-2, an outer domain average of 3611 Bq m-2, and a range to mean ratio of 1.0. 

 Little to no inventory variation. Na, Mg, K, Ca, P, Cl, Pb, 10Be. For the tracers that 

did not show high variability across the radial transect, only 10Be, Pb and Cl are 

predominantly atmospherically derived. Overall profile inventory averages for Na, Mg, 

K, Ca were 4.0, 6.2, 5.8, 7.3 kg m-2, respectively. Overall averages for P, Cl and Pb were 

332, 73.2, and 5.3 g m-2, respectively. The transect inventory average for 10Be was 1.78 x 

1013 atoms m-2 (Table 5.5). 

 Normalized trends in inventories along the radial transect. Depth to bedrock co-

varies with distance along the radial transect (Fig 5.2), so a true comparison of 
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inventories must take into account inventory ratios normalized for cumulative profile 

mass (Eqns 36-38). Therefore, for comparative purposes, changes in cumulative profile 

mass were normalized to the center (CM) profile for inner domain profiles IN and MT, 

and to MT for the outer domain profiles OD1 and OD2 (Fig 5.10). This provides a 

comparative picture of normalized stocks relative to the center along the direction of soil 

movement in the inner domain (Fig 5.10A), and also relative to the mixing transition for 

the outer domain profiles (Fig 5.10B). The reason for this is that the mixing transition 

represents a cumulative location (receiving material) and normalization of outer domain 

to this sampling point allows us to assess the stability of the outer domain profiles. At 

sampling point IN, the range of 1 sigma normalized ratios were 0.88 – 1.04. The range of 

1 sigma normalized ratios for MT (relative to CM) was 0.84 – 1.22. For the outer domain 

sampling points, the 1 sigma normalized ratios (relative to MT) were 0.84 – 1.13 and 

0.87 – 1.02 for OD1 and OD2, respectively. 

 For the inner domain, (CM, IN, MT), normalized inventories of Hg (IN-CM: 3.66; 

MT-CM: 7.59), TN (IN-CM: 3.67, MT-CM: 6.92), OC (IN-CM: 2.09; MT-CM: 5.25), 

and 210Pbex (IN-CM: 1.36; MT-CM: 1.77) all lay outside of the 1 sigma expected space if 

inventory increases were due solely to changes in profile depth alone. 137Cs would also 

fall into this group but normalized inventories cannot be calculated because the inventory 

at CM is 0 Bq m-2, so 137Cs is omitted from these results but understood to show 

exceedingly strong variation in the inner domain. Cl inventories were outside of the 

expected 1 sigma space for MT only (MT-CM: 1.33) and not IN (IN-CM: 1.16). All other 

tracers did not exhibit inventory increases in excess of that expected from increases in 
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profile depth alone.  

 In the outer domain comparisons (MT, OD1, OD2), inventories of TN (OD1-MT: 

0.60; OD2-MT: 0.65) showed significant decreases relative to MT, while inventories of 

137Cs (OD1-MT: 0.67; OD2-MT: 0.93), SOC (OD1-MT: 0.82; OD2-MT: 0.94) and S 

(OD1-MT: 0.67; OD2-MT: 1.08) showed significant decreases relative to MT at OD1, 

but no significant change relative to MT at OD2 (Fig 5.10B). 210Pbex (OD1-MT: 0.70; 

OD2-MT: 1.51) and Hg (OD1-MT: 0.64; OD2-MT: 1.50) showed significant decreases 

relative to MT at OD1 and significant increases relative to MT at OD2 (Fig 5.10B). 

Lastly, Ca (OD1-MT: 1.19, OD2-MT: 1.17) showed a significant increase relative to MT 

at OD1 and no significant change relative to MT at OD2. All other tracers did not exhibit 

inventory increases in excess of that expected from increases in profile depth alone. 

 

5.3.6 Material movement rate estimates 

Apparent rates were strongly convergent among model and movement types considered 

but differed between domain sections and surficial/subsurficial movement rates. Apparent 

rates of surficial movement were 2.6 and 0 cm yr-1 for the analytical solution 210Pbex 

model between CM-IN and IN-MT, respectively, for an inner domain numerical rate 

average of 1.3 cm yr-1 (Eqn 41, Table 5.6). Numerical models for 210Pbex (Eqns 42-46) 

resulted in apparent rates of 0-1.0 for the CM-IN and 0-0.1 for the IN-MT increments, 

resulting in an average of 0.22 cm yr-1. Calculating averages for both analytical and 

numerical models results in an apparent average rate across the inner domain of 0.76 cm 

yr-1. Averages of numerical models (Eqns 42-46) applied to observed 137Cs inventories 
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were 1.2 and 0.1 cm yr-1 for CM-IN and IN-MT increments, respectively, for a entire 

inner domain average of 0.65 cm yr-1. Overall apparent rate averages for both 137Cs and 

210Pbex across all models were 1.4 cm yr-1 for CM-IN, 0.05 cm yr-1 for IN-MT and 0.7 cm 

yr-1 across the whole inner domain. 

 Apparent rates for subsurface movement from observations of 14C in subsurface 

cryoturbated parcels were calculated based on assumptions of (i) ongoing movement and 

(ii) linear minimum and maximum path lengths (with the assumed starting spatial 

location in between MT and OD1 (Fig 5.2). These resulted in apparent rate averages of 

0.05 cm yr-1 for the MT-IN increment and 0.18 cm yr-1 for the IN-CM increment (Eqn 47, 

Table 5.6). Overall averages for all increments and path lengths were 0.11 cm yr-1 for 

subsurface movement. 

 Average of maximum exposure years for the cryoturbated parcels based on excess 

10Be inventory (Eqns 48-50) are 1032 and 759 years for IN 37-42 cm and CM 22-32 cm, 

respectively. Average maximum exposure years based on Hgex inventory (Eqns 51-53) 

are 2298 and 555 years for IN 37-42 cm and CM 22-32 cm, respectively (Table 5.6). 

 

5.4. Discussion 

 In our interpretations, we focus on the context of the tracer depth distributions and 

inventories, identify the tracers in our suite that show the most promise for future studies, 

set our derived rates in context to previous work in NSCs, and pose a set of unresolved 

questions related to cryoturbation rates and suggest the methodologies that may solve 

them. 



   

199 

 

5.4.1. Inventories and utility of elemental tracers 

 Inventories of C in the studied profiles are on the low end of SOC and TN 

inventories measured in permafrost-affected soils and Arctic patterned ground. For 

example, the most current database for pedon information in Arctic Alaska calculated an 

average of 47 kg SOC m-2 and 2.7 kg TN m-2 to 100cm for Arctic soils (Michaelson et 

al., 2013). Hugelius et al. (2010) reported C inventories for cryoturbated soils in central 

Canada of 28 – 37 kg m-2, while Bockheim (2007) reported inventories ranging from 17-

120 kg m-2 for cryoturbated soils in Arctic Alaska. This is likely due to the shallow 

depths (56-81 cm) to lithic contact across the NSC, as our estimated transect SOC 

inventory of 8.7 kg m-2 and TN inventory of 0.5 kg m-2 is more closely aligned to high 

Arctic (76° N) SOC inventories in cryoturbated soils (9.4 kg m-2; Horwath et al., 2008).   

 Our reported concentrations and depth distributions of Pb and Hg are similar to 

those previously reported at sites near Abisko, Sweden. Background concentrations of Pb 

in our NSC profiles (8-12 mg kg-1) were similar to those reported in previous studies near 

Abisko, Sweden; 2-20 mg kg-1 (Klaminder et al., 2011), and we observed higher 

concentrations of Pb in organic surface horizons (27-47 mg kg-1) than those reported 

previously in the area (8-27 mg kg-1, Klaminder et al., 2011). However, even these 

concentrations are still orders of magnitude below soils close to localized pollution 

sources in other parts of Sweden (Klaminder et al., 2008). Weighted average whole-

transect inventory of Hgex was 5.1 mg Hg m-2, which close to the range (5.6-7.8 mg Hg 

m-2) of previously observed inventories in regional soils on a tundra peat hummock 
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landscape (Klaminder et al., 2008).  

 An important difference in Pb and Hg is that Hg is a conservative tracer of 

cryoturbated materials that were exposed to the surface 1000-2000 Y.B.P., while Pb is 

not. No subsurface spikes were observed in Pb concentrations associated with 

cryoturbated parcels (Fig 5.7). Pb deposition reconstructed for the Boreal and Sub-Arctic 

zones of Sweden shows a pronounced large increase in deposition rates around the first 

half of the 20th century, before which levels were 1-2 orders of magnitude below peak 

deposition rates (Jaworski et al., 1987, Klaminder et al., 2006). This is consistent with our 

observation of no elevated Pb levels in cryoturbated parcels (22-32cm in CM and 37-42 

cm in IN), with carbon dates suggesting subduction of these materials occurred some 

time between the 7th century B.C. and the 2nd century A.D. Because natural deposition 

rates of Pb are much lower relative to soil inventories derived from geogenic sources 

(Klaminder et al., 2011) compared to natural Hg deposition rates and inventories 

(Bindler, 2003), the pre-industrial atmospheric signal is not apparent for Pb. Similar to 

other global observations, recent depositional histories for Hg in southern Sweden exhibit 

a peak at least 1-2 orders of magnitude higher than background rates in the 1950s-1970s 

followed by a decline over the following 3 decades (Bindler, 2003).  

 Cl shows significant retention in cryoturbated parcels and decreasing depth profiles 

(Fig 5.7), in strong contrast to the base cations, which are not retained in organic 

materials and show increasing depth profile indicative of leaching (Fig 5.5). Although 

classical interpretations of Cl maintained that it is a non-conservative element in soils, 

more recent work has collected many lines of evidence that suggest in organic rich soils, 
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particularly those in arctic environments, Cl can form stable complexes with organic 

matter and be relatively conservative (Leri and Myneni, 2010). Our estimates of Cl 

inventories across the NSC transect of 73 ± 8 g m-2  are much higher than those 

previously estimated for a site in southern Sweden (~ 13 g m-2, Oberg, 2002). Several 

reasons could account for this; first, our Abisko study site lies closer (70-100 km) to the 

oceanic sources of aerosols than the catchment in that study (120-140 km), and there is a 

non-linear relationship between distance from the coast and marine aerosol deposition in 

Sweden (Gustafsson and Franzen, 2000). Additionally, the difference in leaching regime 

and decomposition rates of organic matter (a key release of organic-bound Cl in organic –

rich systems (Oberg et al., 2002)) is likely much slower in Arctic Sweden than in Boreal 

systems near the coast. Lastly, the leaching regime is much more intense in the forested, 

boreal vegetation of the Ober (2002) study, so Cl is much more likely to be lost through 

leaching. Although Cl inventories did not vary significantly across the transect, depth 

distributions of Cl demonstrated that a significant amount of organic-bound Cl was 

retained in cryoturbated parcels, even after 1500-2000 years of subsurface movement 

(Table 5.3, Fig 5.7). In any event, the higher concentrations of Cl observed at the surface 

of all profiles is indicative of ongoing atmospheric deposition and soil retention. 

Na, Mg, K, Ca. Unlike Cl, depth distributions of these elements in the low pH outer 

domain all exhibited leached profiles with generally increasing concentrations with 

depth. Inner domain depth distributions of these elements were highly irregular in form, 

exhibiting no consistent patterns except for an inverse-spiked distribution in Ca at CM 

and N1 associated with cryoturbated surficial materials. For these reasons, the base 
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cations are the least useful of all the tracers we explored for quantifying the rates and 

patterns of cryoturbation in NSCs. 

   

5.4.2 Distribution and inventories of isotopic tracers 

 137Cs and 210Pbex. The fact that no 137Cs or 210Pbex was detected below 15 cm in the 

inner domain and that all profiles showed decreasing (210Pbex) or shallow subsurface 

peaks (137Cs) provides a primary constraint on cryoturbated soil movement in this NSC. 

That is, the subduction and movement of soil materials at the mixing transition and 

mineral center cannot be occurring at rates faster than it takes for 137Cs and 210Pbex to 

decay (half lives 20-30 years).  Therefore, given the material movement rates occurring 

in this particular NSC, these isotopes are decayed beyond detection limits by the time the 

surficial material originally containing them is subducted at the NSC edge and moved 

along the base of the permafrost table. These patterns agree with previous studies in both 

the Swedish and Alaskan Arctic (Klaminder et al., 2014, Jelinski, 2013) which found no 

detectable 137Cs in the mineral materials at NSC centers and no deep subsurface 137Cs or 

210Pbex activities, but significant inventories at the far edges of the inner domain and in 

the outer domain. 

 Two other studies have examined 210Pb distributions and inventories with the intent 

to quantify the rates and patterns of material movement in NSCs. Hagedorn et al., (2008) 

observed the spatial pattern of 210Pb activities across an NSC cross-section, which are 

consistent with the qualitative direction of material movement reported here. Klaminder 

et al. (2014) used 210Pbex to quantify rates of lateral soil creep along the NSC inner 
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domain surface. In all of these studies, 210Pb activities and inventories increased with 

increasing distance from the NSC center to the mixing transition (MT). 

 14C. The radiocarbon dates reported for subducted organic material in this study 

(1860-1990 and 2350-2680 Y.B.P.) are highly convergent with radiocarbon dates from 

other subducted materials in NSCs on a global basis. In another study at Abisko, Becher 

et al. (2013) measured radiocarbon contents of 12 buried organic horizons in NSCs and 

found a range of radiocarbon dates from 0 – 1960 Y.B.P. Bockheim (2007) compiled 

radiocarbon dates from organic inclusions beneath patterned ground and found a range 

from 240 – 10,000 Y.B.P. However, both of those studies concluded that the radiocarbon 

dates of buried organic materials at least loosely coincided with periods of climatic 

warming, and hypothesized that under some scenarios some warming may actually 

increase cryoturbative activity. The radiocarbon date of our cryoturbated parcel at CM 

(22-32 cm) does roughly coincide with an inferred warming period near Abisko based on 

reconstructions of glacial advances (Becher et al., 2013). 

 13C:12C. Using space-for-time substitutions from the inferred subsurface movement 

of organic materials allows us to infer the timing and direction of 13C enrichment and 

depletion as material moves around the equilibrium cell (Fig 5.8D). Material begins at the 

surface (between MT and OD1) as organic material (~ 37% SOC) which is depleted in 

13C (~ -27‰). Over the course of the 1925 years (the difference in best estimate bulk 

SOC radiocarbon dates from an assumed radiocarbon age of 0 years to a radiocarbon age 

of 1960    for the cryoturbated parcel at IN) that it takes to move from the surface to IN, 

the material undergoes an enrichment of 13C to ~ 26.75 ‰ or 1.3x10-4 ‰ enrichment per 
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year. Bulk carbon, however, is reduced to 8% a decrease in concentration of ~ 1.5% per 

100 years, likely due to decomposition, physical compression, mixing and diapirism with 

surrounding depth increments (this is may be evidenced by elevated inventories and 

activities of tracers above and below the cryoturbated parcel (Tables 5.2 and 5.3)). Over a 

period of ~ 540 years (the difference in best estimate bulk SOC radiocarbon dates from a 

radiocarbon age of 1960 years for the cyroturbated parcel at IN to a radiocarbon age of 

2400 Y.B.P. for the cryoturbated parcel at CM), the material undergoes further change 

with enrichment of bulk SOC to ~ -26.4‰, a 5.9 x 10-4‰ enrichment per year. Bulk 

carbon is reduced to 1.4%, a decrease in concentration of 1% per 100 years. In surficial 

transit, bulk SOC does not change significantly from that at the surface at CM, however 

once organic materials begin accumulating at the surface due to stabilization of the 

surface, rapid 13C enrichment and carbon accumulation occurs.  

 Our study is the first to examine the distribution and inventories of meteoric 10Be 

across small-scale patterned ground features such as NSCs. No other study has reported 

on densely investigated 10Be profiles within a 3m horizontal distance, and the variation 

revealed due to physical and chemical processes is striking. Two other studies have 

reported single profile 10Be concentrations in permafrost-affected soils – one in a non-

glaciated region of northern Alaska (Bierman et al., 2014), which exhibited a hump-like 

depth distribution due to leaching and observed 10Be concentrations 1-2 orders of 

magnitude higher than those reported here. A second study (Ebert et al., 2012) 

investigated 10Be profiles in saprolite underlying glacial deposits in northern Sweden, and 

also found much higher concentrations of 10Be. However, we expect our 10Be 



   

205 

concentrations to be relatively low compared to these other studies because the NSC has 

developed in relatively recent (~ 9,000 year-old) glacial deposits. 

 Methodologies for the calculation of 10Be inheritance are complicated in NSC 

systems due to the diversity in 10Be profile shapes over short distances. However, total 

inventories can give an estimate of the long-term atmospheric deposition of 10Be at the 

site. Deglaciation chronologies suggest that glacial retreat occurred ~ 9,000 YBP at 

Abisko (Lundqvist, 2004). This value results in an apparent long-term deposition rate 

(using the average profile integrated meteoric 10Be inventory of 1.8 ± 0.2 x 109 atoms cm-

2) of 0.2 ± 0.02 x 106 atoms cm-2 yr-1 with no inheritance. Long-term average 10Be 

deposition is poorly constrained in high-latitude regions, however this value is lower than 

those reported or predicted previously (0.8 x 1010 atoms m-2 yr-1 (Willenbring and von 

Blanckenburg, 2010), 0.35 x 1010 atoms m-2 yr-1 (Finkel et al., 1997)), but of similar 

magnitude, and likely reflects differences in precipitation patterns or other environmental 

variables. This should therefore be viewed as the maximal long-term deposition rate 

based on the measured inventories at this study site. With previous inheritance, the long-

term deposition rate would be lower.  

 

5.4.3 Convergent markers for determining material provenance and surface history  

SOC, Hg, 13C, and 10Be are strong indicators of the surficial origin of samples, and 

together can be used to confirm the surficial origin of cryoturbated parcels, despite 

extensive physical changes. For example, our original morphological sampling did not 

identify the parcel from 22-32 cm at CM as a cryoturbated parcel, and SOC is only 
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slightly elevated (1.4%) and similar to surficial values at CM. The convergence of peaks 

in SOC, δ13C, Hg and 10Be, however, clearly establish the original surficial origin of this 

sample (Fig 5.9) and allowed the prioritization of 14C analysis of the sample to estimate 

subsurface movement rates from IN to CM. In contrast, apparent peaks in any single one 

or two of these tracers in outer domain profiles are not convergent, and can be attributed 

to leaching or differential retention processes.  

 

5.4.4 Derived rates and patterns of material movement – relationship to previous work 

We compare the rates derived from radionuclide and elemental tracers in this study to 

those derived in previous work with reference to movement types described in Fig 5.1.  

Center upward movement due to ice lens formation and heave (Fig 5.1 #1) is not directly 

quantified in the scope of our work, but previously studies have estimated upward 

movement in the NSC center from 0 – 1.5 cm yr-1 (Table 5.7). Because the extent and 

magnitude of differential frost heave (Peterson et al., 2003) drives the net upward motion 

in individual NSCs, and is highly dependent on many environmental factors such as 

vegetation, hydrologic conditions and material, it is expected that these rates would vary 

significantly between sites. Nonetheless, rates derived from physical and short-lived 

radioisotope tracers and across NSCs from Canada and Sweden are convergent in 

magnitude (Table 5.7). 

 Lateral surficial creep (Fig 5.1 #2) has been the most extensively studied and 

quantified form of material movement in NSCs, due to the relative ease of measuring 

rates of surface movement, which make quantifying this movement type amenable to 
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multiple approaches, compared to subsurface movement which is much more difficult to 

directly observe or measure. Temporal changes in micro-scale digital elevation models 

(Kaab et al., 2013), physical tags (Egginton and Shilts, 1978, Sawyer, 2007) and 210Pbex 

have resulted in similar magnitudes of lateral creep rate estimates, again, across NSC in 

different environments (Canada, Norway and Sweden) of 0 – 4.5 cm yr-1 (Table 5.7). If 

rates are quantified for multiple sections of the NSC inner domain, lateral creep rates 

nearest to the center of the NSC are typically 2-5x greater than those rates estimated in 

the outer portions of the inner domain. The use of analytical and numerical models 

resulted in similar estimated magnitudes and patterns of lateral creep rates. Rates in our 

NSC derived from 210Pbex and 137Cs for the proximal part of the inner domain ranged 

from 0 – 2.6 cm yr-1, while rates for the distal portion of the inner domain ranged from 0 

– 0.2 cm yr-1 (Table 5.6).  

 Subduction and subsurface creep rates (Fig 5.1, #3) have previously been estimated 

primarily by 210Pbex, 14C and in a single study using telescoping probes (Harris, 1998, 

Table 5.7). These previously derived rates of subduction and subsurface movement are 

typically an order of magnitude lower than rates of lateral creep (Table 5.7). In this study, 

we provide two time points with evidence of previous surficial subduction (CM 22-32 cm 

and IN 36-42 cm). The difference in 14C age between these timepoints allows us to place 

first order constraints on the movement rate of subducted materials in the subsurface 

along the path of hypothesized movement, which appears to be an order of magnitude 

lower than apparent rates of surficial movement (Table 5.6), in consensus with previous 

studies (Table 5.7). It also appears that the rate of movement is faster nearer to the center 
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of the frost boil, as subsurface movements from the MT/OD1 surface to 37-42 cm at IN 

are 0.04 – 0.06 cm yr-1, while subsurface movements from IN/CM are 0.10-0.27 cm yr-1. 

Physical markers in the center of a newly developing NSC in Canada showed evidence of 

0.4 – 1.2 cm yr-1 of upward displacement in the area where ice lens growth is strongest 

(Harris, 1998). These two estimates show a trend of increasing rates of material 

movement as the parcels get closer to the NSC center, where they will presumably be 

transported upward in response to ice lens formation and frost-heave processes (Nicolsky 

et al., 2008). Therefore, under standard rates of movement, the surficial movement at the 

center of the NSC should be the fastest rates of subsurface movement, whereas the 

subduction process at the frost-boil edge may be the slowest movement in the process 

(Table 5.7).  

 No other studies have estimated the surface residence time of cryoturbated 

materials, but our analysis of 10Be and Hg accumulation allowed us to provide primary, 

independent constraints on these time periods. The time periods estimated from these 

independent tracers are highly convergent for the parcel at CM 22-32 cm (313-1250 years 

(10Be) and 238-952 years (Hgex)), but the Hgex tracer results in ~ 2x longer estimates of 

residence time at IN 37-42 cm (425-1700 (10Be) and 986 – 3940 (Hgex)). The large 

difference in excess 10Be and Hg inventory in CM and IN parcels suggests a non-

continuous or stochastic mechanism of subduction that is congruent with previous 

hypotheses related to cryoturbative mechanisms in frost-boils and climatic triggers 

(Bockheim, 2007, Becher et al., 2013). 
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5.4.5. Unresolved questions. 

Although our elemental and isotope tracer suite was able to produce primary, 

comprehensive constraints on the rates and patterns of cryoturbation in this particular 

NSC, many questions remain unresolved. Two specific questions of interest to the larger 

implications of the response of Arctic carbon to climate change are: 

1. Is material subduction at the inner domain edge a continuous or stochastic process? 

Clear indications of stochasticity would include wide variations in 10Be 

inventories along the direction of subducted material movement, but a more 

continuous sampling of subducted material such as that which could be achieved 

in gridded sampling would be necessary to fully evaluate this mechanism.  

2. If material movement rates are different by an order of magnitude between the 

surface and subsurface, but upward movement rates near the top of the profile in 

the NSC center are similar to lateral creep rates, where is the additional volume of 

material coming? Our approach may be able to address this by clearly defining 

material provenance by the convergence of tracer distributions. 

3. Do cryoturbation rates in NSCs vary consistently with climate? This could be 

evaluated by conducting similar analyses across climatic gradients and comparing 

the derived rates. NSCs end themselves particularly well for this type of study 

because they can be found throughout the Arctic in a wide variety of temperature 

and moisture regimes. 

We suggest that detailed, gridded sampling of NSC cross-sections combined with 

detailed morphologies and application of a subset of this tracer suite could resolve many 
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of these questions in the future. 

 

5.4.6. Conclusions 

This study is the first to utilize a large, powerful suite of geochemical tracers to analyze 

patterns and rates of material movement in NSCs. Our results show that a subset of 

tracers in this suite (SOC, Hg, 13C, 137Cs, 210Pb, 14C and 10Be) provide most of the 

inferred information and should be considered for use moving forward. By applying 

analytical and numerical models to our observed tracer distributions and inventories, we 

provide the first complete report of primary constraints on long-term NSC dynamics at a 

single site. We expect that this approach, when combined with detailed morphological 

and gridded sampling to better define small scale changes in distributions will be able to 

answer many of the remaining unresolved questions related to material movement and the 

climate sensitivity of equilibrium cell circulation in Arctic patterned ground.  
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Tracer 
Primary Mechanism of 

Accumulation 
Secondary Mechanisms of 

Accumulation Mechanisms of loss or change 

Significant Direct 
Anthropogenic 

Influence 
Ca Primary Minerals Atmospheric - Seaspray Leaching/Erosion No 
Mg Primary Minerals Atmospheric - Seaspray Leaching/Erosion No 
K Primary Minerals Atmospheric - Seaspray Leaching/Erosion No 
P Primary Minerals - Leaching/Erosion No 
Na Primary Minerals Atmospheric - Seaspray Leaching No 
C Primary Production - Decomposition/Erosion No 
N Primary Production Atmospheric Deposition – 

Anthropogenic Nitrates 
Denitrification/Leaching Yes 

S Atmospheric Deposition –  
Natural and Anthro. 

- Leaching, Volatilization Yes 

Hg Atmospheric Deposition –  
Natural and Anthro. 

Primary Minerals Volatilization Yes 

Cl Atmospheric Deposition - 
Seaspray 

- Leaching Yes 

Pb Atmospheric Deposition –  
Natural and Anthro 

Primary Minerals Leaching/Erosion Yes 

Isotope Half-life (yrs) 
Current Estimated Annual 

Accumulation Rate Accumulation Type Constraint type 
10Be 1.39 x 106  0.1 – 0.8 x 106 atoms m-2 yr-1 Continuous Surface Residence Time 
14C 5,730 Dependent on Primary 

Production 
Continuous/Pulse Subsurface (Fig 5.1 #3) 

137Cs 30.08 0 Bq m-2 yr-1 Pulse Lateral Creep (Fig 5.1 
#2) 

210Pb 22.20 40-100 Bq m-2 yr-1 Continuous Lateral Creep (Fig 5.1 
#2) 

Table 5.1. Isotope and elemental suite and tracer properties. 
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Location 
Material 

Type 
Depth 
(cm) pH Clay (%) SOC (%) δ13C (‰) 

14C 
(f. Modern) 

137Cs 
(Bq kg-1) 

210Pbex 
(Bq kg-1) 

10Be 
(107 atoms g-1) 

 Mineral 0-2 5.4 14 ± 5 1.7 ± 0.19 -26.4 ± 0.20 - 0 38 ± 5.7 2.65 ± 0.09 
 Mineral 2-7 5.4 - 0.6 ± 0.06 -25.2 ± 0.19 - 0 12 ± 1.7 - 
 Mineral 7-15 5.2 20 ± 8 0.6 ± 0.06 -25.2 ± 0.19 - 0 12 ± 1.7 3.36 ± 0.11 
Center (CM) Mineral 15-22 5.1 16 ± 7 0.2 ± 0.02 -25.1 ± 0.19 - 0 0 - 
 Mineral 22-32 5.2 16 ± 7 1.4 ± 0.15 -26.4 ± 0.20 0.7417 

(2400) 
0 0 7.01 ± 0.21 

 Mineral 32-42 5.0 17 ± 8 0.6 ± 0.07 -25.7 ± 0.20 - 0 0 - 
 Mineral 42-56 5.3 15 ± 7 0.2 ± 0.02 -25.0 ± 0.19 - 0 0 2.64 ± 0.08 
 Mineral 0-2 5.0 12 ± 6 1.9 ± 0.21 -25.8 ± 0.20 - 19 ± 1.1 33 ± 4.9 - 
 Mineral 2-7 5.0 11 ± 5 0.6 ± 0.07  -24.9 ± 0.19 - 0 10 ± 1.4  2.07 ± 0.05 
 Mineral 7-15 5.2 14 ± 6 0.6 ± 0.07 -24.3 ± 0.19 - 0 10 ± 1.4 - 
Inner (IN) Mineral 15-22 5.2 15 ± 7 0.5 ± 0.06 -25.8 ± 0.20 - 0 14 ± 2.1 3.51 ± 0.08 
 Mineral 22-32 5.0 13 ± 6 0.5 ± 0.06 -26.0 ± 0.20 - 0 0 - 
 Mineral 32-37 4.8 5 ± 2 0.7 ± 0.08 -27.1 ± 0.20 - 0 0 4.01 ± 0.14 
 Organic 37-42 4.0 - 8.4 ± 0.93 -26.7 ± 0.21 0.8040 

(1960) 
0 0 13.6 ± 0.17 

 Mineral 42-59 4.9 13 ± 6 0.4 ± 0.04 -25.6 ± 0.20 - 0 0 3.04 ± 0.09 
 Organic 0-4 3.8 - 35.2 ± 

3.91 
-27.6 ± 0.21 - 26 ± 1.5 94 ± 14 5.80 ± 0.18 

 Mineral 4-7 4.0 - 2.7 ± 0.30 -26.4 ± 0.20 - 48 ± 3.1 9 ± 1.4 4.69 ± 0.14 
 Mineral 7-12 3.9 11 ± 5 2.7 ± 0.30 -26.0 ± 0.20 - 1.5 ± 1.0 9 ± 1.4 - 
Mixing Transition  Mineral 12-20 4.2 21 ± 9 2.3 ± 0.26 -26.5 ± 0.20 - 0 8 ± 1.3 5.07 ± 0.16 
(MT) Mineral 20-29 4.6 20 ± 9 1.1 ± 0.12 -26.1 ± 0.20 - 0 0 - 
 Mineral 29-39 5.0 20 ± 9 0.6 ± 0.07 -26.7 ± 0.21 - 0 0 - 
 Mineral 39-60 5.1 19 ± 9 0.6 ± 0.07 -25.6 ± 0.20 - 0 0 2.65 ± 0.08 
 Mineral 60-71 5.2 19 ± 9 0.3 ± 0.03 -25.6 ± 0.20 - 0 0 - 
Table 5.2. pH, texture and concentrations of isotopic markers by depth and location.  
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Location 
Material 

Type 
Depth 
(cm) pH Clay (%) SOC (%) δ13C (‰) 

14C 
(f. Modern) 

137Cs 
(Bq kg-1) 

210Pbex 
(Bq kg-1) 

10Be 
(107 atoms g-1) 

 Organic 0-6 3.6 - 40.1 ± 
4.44 

-26.7 ± 0.21 - 105 ± 4.8 128 ± 19 6.69 ± 0.16 

 Mineral 6-10 4.0 12 ± 5 5.1 ± 0.57 -25.9 ± 0.20 - 2 ± 0.7 14 ± 2 4.62 ± 0.13 
 Mineral 10-20 4.0 13 ± 6 5.0 ± 0.56 -25.9 ± 0.20 - 0 7 ± 1 3.88 ± 0.08 
Outer Domain 1 
(OD1) 

Mineral 20-30 4.4 15 ± 6 0.5 ± 0.06 -25.9 ± 0.20 - 0 0 - 

 Mineral 30-40 4.7 13 ± 6 0.3 ± 0.04 -25.2 ± 0.19 - 0 0 2.98 ± 0.11 
 Mineral 40-50 5.1 15 ± 7 0.3 ± 0.04 -25.5 ± 0.20 - 0 0 - 
 Mineral 50-71 5.2 14 ± 6 0.3 ± 0.03 -25.8 ± 0.20 - 0 0 2.86 ± 0.07 
 Organic 0-8 3.6 - 41.8 ± 

4.63 
-27.4 ± 0.21 - 16 ± 4.5 311 ± 47 2.90 ± 0.09 

 Mineral 8-15 3.5 12 ± 5 13.2 ± 
1.46 

-26.1 ± 0.20 - 108 ± 6.3 6 ± 1 0.70 ± 0.02 

 Mineral 15-30 4.3 25 ± 11 0.7 ± 0.07 -26.5 ± 0.20 - 69 ± 5.0 0 4.56 ± 0.09 
Outer Domain 2 
(OD2) 

Mineral 30-40 5.3 - 0.4 ± 0.05 -25.7 ± 0.20 - 74 ± 2.5 0 2.10 ± 0.05 

 Mineral 40-50 5.0 11 ± 5 0.2 ± 0.02 -25.8 ± 0.20 - 4 ± 1 0 - 
 Mineral 50-60 5.1 13 ± 6 0.2 ± 0.02 -25.6 ± 0.20 - 0 0 4.39 ± 0.11 
 Mineral 60-70 5.1 14 ± 6 0.8 ± 0.08 -25.6 ± 0.20 - 0 0 4.39 ± 0.11 
 Mineral 70-81 5.1 14 ± 6 0.3 ± 0.03 -25.6 ± 0.20 - 0 0 - 

Table 5.2 (Cont). pH, texture and concentrations of isotopic markers by depth and location.  
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Location 
Depth 
(cm) Na (ppm) Mg (ppm) K (ppm) Ca (ppm) P (ppm) S (ppm) Cl (ppm) Pb (ppm) 

Hgex  
(ng g-1) 

 0-2 7100 ± 120 13722 ± 247 12850 ± 160 11448 ± 250 646 ± 39 400 ± 120 238 ± 12 11 ± 1 24 ± 0.9 
 2-15 8900 ± 150 11723 ± 211 11269 ± 141 16538 ± 361 671 ± 41 100 ± 30 125 ± 6 16 ± 2 0 ± 0 
Center 
(CM) 

15-22 8600 ± 140 13570 ± 244 12119 ± 152 15485 ± 338 597 ± 36 100 ± 30 132 ± 7 14 ± 1 0.94 ± 0.03 

 22-32 7600 ± 120 13377 ± 240 12111 ± 151 11763 ± 257 555 ± 34 300 ± 90 160 ± 8 9 ± 1 6.8 ± 0.3 
 32-42 7800 ± 130 14001 ± 252 13077 ± 164 13548 ± 296 547 ± 33 200 ± 60 143 ± 7 9 ± 1 0 ± 0 
 42-56 8700 ± 140 13281 ± 239 12140 ± 152 16480 ± 360 682 ± 41 100 ± 90 128 ± 6 12 ± 1 0.03 ± 0.01 
 0-2 7287 ± 119 12265 ± 221 11366 ± 142 13443 ± 293 735 ± 45  400 ± 120 210 ± 10 9 ± 1 15 ± 0.6 
 2-15 8018 ± 131 13640 ± 242 12289 ± 154 15473 ± 338 666 ± 40 200 ± 60 133 ± 7 11 ± 1 1.37 ± 0.05 
 15-22 8292 ± 135 12362 ± 223 12117 ± 152 15077 ± 329 626 ± 38 100 ± 30 135 ± 7 10 ± 1 0 ± 0 
Inner (IN) 22-32 7607 ± 124 13630 ± 245 12396 ± 155 12738 ± 278 535 ± 33 200 ± 60 146 ± 7 11 ± 1 4.9 ± 0.2 
 32-37 7526 ± 123 12110 ± 218 11831 ± 148 12066 ± 263 679 ± 41 300 ± 90 170 ± 9 10 ± 1 12.6 ± 0.5 
 37-42 5309 ± 87 6014 ± 108 8615 ± 108 8336 ± 182 1566 ± 95 1100 ± 340 203 ± 10 11 ± 1 56 ± 2 
 42-59 8771 ± 143 12022 ± 216 11231 ± 140 16038 ± 350 650 ± 40 200 ± 60 169 ± 8 10 ± 1 2 ± 0.08 
 0-4 4759 ± 78 5386 ± 97 8623 ± 108 9204 ± 201 1153 ± 70 1200 ± 370 206 ± 10 27 ± 3 176 ± 7 
 4-12 6836 ± 111 13519 ± 243 12309 ± 154 11537 ± 252 658 ± 40 400 ± 120 185 ± 9 9 ± 1 20.4 ± 0.8 
Mixing  12-20 8227 ± 134 11535 ± 207 11303 ± 141 14199 ± 310 593 ± 36 300 ± 90 152 ± 8 8 ± 1 6.9 ± 0.3 
Trans. 
(MT) 

20-29 8130 ± 132 13139 ± 236 12288 ± 154 14404 ± 314 589 ± 36 200 ± 60 137 ± 7 11 ± 1 3.1 ± 0.1 

 29-60 7612 ± 124 12770 ± 230 12756 ± 160 12578 ± 274 544 ± 33 200 ± 60 146 ± 7 9 ± 1 5.3 ± 0.2 
 60-71 8485 ± 138 13155 ± 237 11970 ± 150 16629 ± 363 712 ± 43 100 ± 30 138 ± 7 10 ± 1 0.70 ± 0.03 
 0-6 1588 ± 26 2686 ± 48 4267 ± 53 7766 ± 169 1115 ± 68 2200 ± 670 325 ± 16 41 ± 4 240 ± 9 
 6-10 6265 ± 102 8713 ± 157 9639 ± 121 10209 ± 223 940 ± 57 800 ± 240 178 ± 9 11 ± 1 54 ± 2 
 10-20 8771 ± 143 12080 ± 217 11034 ± 138 16667 ± 364 622 ± 38 100 ± 30 132 ± 7 9 ± 1 3.1 ± 0.1 
Outer 
Dom. 1 

20-30 8631 ± 141 12363 ± 223 11228 ± 140 16659 ± 364 623 ± 38 100 ± 30 127 ± 6 11 ± 1 1.67 ± 0.06 

(OD1) 30-40 8890 ± 139 12119 ± 218 11696 ± 146 16360 ± 357 647 ± 39 100 ± 30 131 ± 7 8 ± 1 0.13 ± 0.01 
 40-50 8497 ± 139 13128 ± 236 12003 ± 150 16258 ± 355 623 ± 38 100 ± 30 132 ± 7 9 ± 1 0.33 ± 0.01 
 50-71 8442 ± 138 13815 ± 249 12121 ± 152 16682 ± 364 662 ± 40 100 ± 30 136 ± 7 10 ± 1 0.04 ± 0.01 
Table 5.3. Elemental concentrations by depth and location. 
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Location 
Depth 
(cm) Na (ppm) Mg (ppm) K (ppm) Ca (ppm) P (ppm) S (ppm) Cl (ppm) Pb (ppm) 

Hgex  
(ng g-1) 

 0-8 1443 ± 24 2373 ± 43 4266 ± 53 9043 ± 197 1511 ± 92 2500 ± 770 359 ± 18 47 ± 5 355 ± 14 
 8-15 4991 ± 81 4668 ± 84 7881 ± 99 7928 ± 173 1100 ± 67 1200 ± 370 219 ± 11 18 ± 2 112 ± 4 
Outer 
Dom. 2 

15-30 7649 ± 125 11287 ± 203 11340 ± 142 14414 ± 315 644 ± 39 300 ± 90 144 ± 7 10 ± 1 11.2 ± 0.4 

(OD2) 30-40 9023 ± 147 12052 ± 217 11113 ± 139 17295 ± 377 671 ± 41 100 ± 30 125 ± 6 8 ± 1 2.7 ± 0.1 
 40-60 8530 ± 139 12072 ± 217 10960 ± 137 16783 ± 366 705 ± 43 100 ± 30 129 ± 6 8 ± 1 0 ± 0 
 60-70 8341 ± 136 12604 ± 227 11579 ± 145 16247 ± 355 651 ± 40 100 ± 30 130 ± 6 10 ± 1 0.67 ± 0.02  
 70 - 81 8050 ± 131 14716 ± 265 12534 ± 157 15851 ± 345 612 ± 37 100 ± 30 148 ± 7 12 ± 1 0.33 ± 0.01 

Table 5.3 (Cont). Elemental concentrations by depth and location. 



   

216 

 SOC TN Na K Ca Mg S Cl Hgex 
SOC  1         
TN  0.75 1        
Na  -0.57 -0.54 1       
K -0.22 -0.21 -0.05 1      
Ca -0.62 -0.58 0.76 -0.06 1     
Mg -0.33 -0.32 0.06 0.71 0.13 1    
S 0.76 0.70 -0.79 -0.11 -0.80 -0.27 1   
Cl 0.51 0.49 -0.75 -0.01 -0.71 -0.08 0.78 1  
Hgex 0.67 0.63 -0.64 -0.16 -0.68 -0.27 0.81 0.67 1 

Table 5.4. Tracer correlation matrix – Kendall’s tau-b w/ Bonferroni correction for multiple comparisons. Numbers in bold are significant to an alpha < 0.05. 
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Location 
SOC 

kg m-2 
TN    

kg m-2 
Na    

kg m-2 
Mg    

kg m-2 
K      

kg m-2 
Ca    

kg m-2 
S        

g m-2 
P        

g m-2 
Cl       

g m-2 
Pb      

g m-2 
Hgex 

mg m-2 
137Cs 

Bq m-2 
210Pbex 
Bq m-2 

10Bemet 
(1013 

atoms g-1) 
CM 2.6 ± 

0.5 
0.11 ± 
0.02 

3.6 ± 
0.6 

5.7 ± 
0.9 

5.3 ± 
0.8 

6.5 ± 
1.0 

69 ± 
11 

271 ± 
93 

61 ± 
10 

5 ± 1 0.9 ± 
0.1 

0 ± 0 1840 ± 
331 

1.71 ± 
0.26 

IN 5.3 ±  
1.0 

0.44 ± 
0.08 

3.6 ± 
0.5 

5.5 ± 
0.8 

5.3 ± 
0.8 

6.5 ± 
1.0 

122 ± 
42 

321 ± 
52 

71 ± 
11 

5 ± 1 3.4 ± 
0.5 

405 ± 
65 

2499 ± 
450 

1.76 ± 
0.27 

MT 13.4 ± 
2.5 

0.83 ± 
0.15 

4.1 ± 
0.6 

6.6 ± 
1.0 

6.5 ± 
1.0 

7.1 ± 
1.1 

141 ± 
48 

329 ± 
53 

81 ± 
13 

5 ± 1 7.0 ± 
1.1 

1739 ± 
322 

3262 ± 
588 

2.06 ± 
0.31 

OD1 10.9 ± 
2.0 

0.51 ± 
0.10 

4.4 ± 
0.7 

6.6 ± 
1.0 

6.1 ± 
0.9 

8.5 ± 
1.3 

94 ± 
32 

352 ± 
57 

74 ± 
11 

5 ± 1 4.5 ± 
0.7 

1169 ± 
189 

2284 ± 
411 

1.81 ± 
0.28 

OD2 12.6 ± 
2.4 

0.54 ± 
0.10 

4.3 ± 
0.6 

6.3 ± 
1.0 

6.0 ± 
0.9 

8.3 ± 
1.3 

153 ± 
52 

388 ± 
63 

80 ± 
13 

6 ± 1 11 ± 
1.6 

1625 ± 
270 

4064 ± 
798 

1.79 ± 
0.27 

Table 5.5. Profile integrated inventories by location. 
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Marker 
Movement 

Type Model Location 
Fallout Rate  
(Bq cm-2 yr) 

Inventory 
Difference (Bq m-

2) 
Apparent Rate  

(cm yr-1) 

210Pbex Surficial 

Analytical CM – IN 101 ± 14 659 ± 559 2.55 ± 0.4 
(Klaminder et al., 

2014) 
IN – MT  763 ± 740 0 ± 2.6 

Numerical CM – IN 101 ± 14 659 ± 559 0 – 1.0 
(This study) IN – MT  763 ± 740 0 – 0.1 

Marker 
Movement 

Type Model Location 

Original 
Inventory 
(Bq m-2) 

Inventory 
Difference (Bq m-

2) 
Apparent Rate  

(cm yr-1) 
137Cs Surficial Numerical CM – IN 4306 ± 508 405 ± 65 1.1 – 1.3 

IN – MT  1334 ± 328 0 – 0.2 

Marker Movement Type Model Location 
Path Length 

(cm) 
Difference 95% 2 

sigma age (yr) 
Apparent Rate  

(cm yr-1) 

14C Subsurface 

Linear Minimum 
Path 

MT – IN 88 1860 – 1990 0.04 – 0.05 
IN – CM 84 360 – 820 0.10 – 0.23 

Linear 
Maximum Path 

MT – IN 117 1860 – 1990 0.06 – 0.06 
IN – CM 96 360 – 820 0.12 – 0.27 

Marker Movement Type Model Location 
Fallout Rates  

(106 atms cm-2 yr-1) 

Parcel Inventory 
(excess atoms cm-

2) 
Maximum 

Exposure Years 

10Bemet 
Parcel Surface 

Residence Time 
Atmospheric 

Accumulation 

IN 
38 – 42 cm 

0.8  (Ebert et al. 2012) 
0.35 (Finkel et al. 
1997) 
0.2  (This study) 

3.4  ± 0.7 x 108 425 ± 87  
971 ± 200  
1700 ± 350  

CM 
22 – 32cm 

0.8  (Ebert et al. 2012) 
0.35 (Finkel et al. 
1997) 
0.2  (This study) 

2.5 ± 0.8 x 108 313 ± 100  
714 ± 229  
1250 ± 400  

Table 5.6. Material movement rates and types inferred for various models and locations. 
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Marker Movement Type Model Location 
Deposition Rate 

(mg m-2 yr-1) 
Parcel Inventory 

(Hgex mg m-2) 
Maximum 

Exposure Years 

Hgex 
Parcel Surface 

Residence Time 
Atmospheric 

Accumulation 

IN 
38 – 42 cm 

0.002 (Munthe et al, 2007) 
0.001 (Bindler, 2003) 
0.0005 (Bindler, 2003) 

1.97 ± 0.30 986 ± 148  
1970 ± 296  
3940 ± 591  

CM 
22 – 32cm 

0.002 (Munthe et al, 2007) 
0.001 (Bindler, 2003) 
0.0005 (Bindler, 2003) 

0.48 ± 0.07 238 ± 35  
476 ± 71  
952 ± 143  

Table 5.6 (Cont). Material movement rates and types inferred for various models and locations. 
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Movement Type Method Apparent Rates Reference 

Center Upward (Fig 1, #1) 

210Pb 0.2 – 0.7 cm yr-1 Klaminder et al., 2014 
Telescoping Probes 0.4 – 1.2 cm yr-1 Harris, 1998 
Tube Intrusion 0 – 1.5 cm yr-1 Egginton and Shilts, 1978 

Surficial Lateral Creep 
(Fig 1, #2) 

Laser Altimetry 0.3 – 2.0 cm yr-1 Kaab et al., 2013 
Physical Tags < 1.0 – 3.0 cm yr-1 Sawyer, 2007 
Physical Tags 0 – 3.8 cm yr-1 Egginton and Shilts, 1978 
210Pb 3.1 – 4.5 cm yr-1 Klaminder et al., 2014 
137Cs 0 – 1.3 cm yr-1 This study 
210Pb 0 – 2.55 cm yr-1 This study 

Subduction and Subsurface  
(Fig 1, #3) 

210Pb – 14C 0.01 – 0.012 cm yr-1 Becher et al., 2013 
14C 0.03 – 0.1 cm yr-1 Dyke and Zoltai, 1980 
210Pb 0.3 – 1.2 cm yr-1 Klaminder et al., 2014 
Telescoping Probes 0.8 – 1.2 cm yr-1 Harris, 1998 
14C 0.04 – 0.27 cm yr-1 This study 

Parcel Surface Residence Time 
(Fig 1, Inner/Outer Transition) 

10Bemet 313 – 1700 yr This study 
Hgex 238 – 3940 yr This study 

Table 5.7. Compilation of rate estimates in non-sorted circles for 4 movement types across studies using different tracers.  
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Figure 5.1. Idealized depiction of frost-boil (non-sorted circle), showing spatial relationship of organic (grey) and mineral (white) materials, permafrost table, 
domain terminology, physical movement processes, and hypothesized directions of soil movement. Adapted from Nicolsky et al. (2008).
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Figure 5.2. Morphology, environmental characteristics, and hypothesized direction of subsurface inner domain material movement (dashed arrows), Abisko, SE 
non-sorted circle. O = organic layer thickness, R = depth to bedrock.
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Figure 5.3. Relationships between soil organic carbon (SOC), Hg, and S for all samples, Abisko, SE non-
sorted circle. Boxes below diagonal show log-log relationships, boxes above diagonal show untransformed 
relationships. Diagonal boxes show untransformed variable distributions (inset) and transformed variable 
distributions.
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Figure 5.4. Relationships between soil organic carbon (SOC), 210Pbex, 137Cs, and 10Be for all samples, 
Abisko, SE non-sorted circle. Boxes below diagonal show log-log relationships, boxes above diagonal 
show untransformed relationships. Diagonal boxes show untransformed variable distributions (inset) and 
transformed variable distributions.
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Figure 5.5. Profile depth distributions for total nitrogen (TN), phosphorous (P), sodium (Na), calcium (Ca), 
magnesium (Mg) and potassium (K).
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Figure 5.6. Profile depth distributions for pH, soil organic carbon (SOC), δ13C, lead-210 (210Pb), cesium-
137 (137Cs), and meteoric beryllium-10 (10Be).
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Figure 5.7. Profile depth distributions for lead (Pb), mercury (Hg), sulfur (S) and chlorine (Cl).
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Figure 5.8. (A) Relationship between δ13C and soil organic carbon (SOC, log normalized) for all samples. 
(B) Down-profile trajectories of δ13C and SOC for non-cryoturbated sampling locations (MT, OD1 and 
OD2). (C) Down-profile trajectories of δ13C and SOC for cryoturbated sampling locations (CM and IN). 
(D) Trajectories of δ13C and SOC for hypothesized direction of subsurface movement and surficial return.
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Figure 5.9. Normalized (to profile maximum) soil organic carbon (SOC), Hgex, δ13C and 10Be 
concentrations for selected sampling points across Abisko, SE non-sorted circle. Center (CM) and Inner 
Domain (IN) sampling points (panels A and B, respectively) show convergence of tracer peaks indicating 
subducted material, while Outer Domain 2 (OD2 – panel D), shows no subsurface peak convergence and 
apparent leaching of 10Be. Picture in panel C is adapted from Kalminder et al. (2012).
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Figure 5.10. Inventory ratios of soil constituents normalized to the respective inventory of profile CM 
(panel A) and MT (panel B). Shaded regions represent 1-sigma variation in cumulative profile mass, so that 
constituents with variability outside of the shaded region are interpreted as having inventories that are 
significantly different due to concentrations of constituents and not due to differences in cumulative profile 
mass alone. Labelled constiuents with open circles have at least one sampling point that is outside of the 
expected range due to cumulative mass alone, while those with closed circles (unlabeled) have no sampling 
points that lie outside of the 1-sigma expected range
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APPENDIX A 

Protocol: Extraction of Meteoric 10Be from Soils and Sediments 

A.1.  Introduction 
The procedure described herein is a description of standard operating procedures 

that were utilized to test and validate a meteoric Beryllium-10 (10Be) extraction procedure 
in the Department of Soil, Water and Climate at the University of Minnesota. This 
procedure is adapted from the University of Pennsylvania Cosmogenic Isotope 
Laboratory (CIL) Procedures (J. K. Willenbring, UPenn, written and personal 
communications 2013-2014), in turn developed from procedures from GFZ Helmholtz-
Potsdam (F. von Blanckenburg, BeCook 11 (9-2009), von Blanckenburg et al., 1996). 
The preliminary draft of this protocol was co-written by N. Jelinski and M. Roser (3-
2013). Subsequent and final drafts of this protocol were written solely by N. Jelinski (11-
2014).  
 
A.1.1 Relationship to other extraction protocols 

This procedure was selected for its simplicity and ease of adaptation. Other 
procedures for isolating 10Be include the potassium bifuoride fusion method (Stone, 
1998, Balco, 2004), and yet other protocols that include a pre- chromatography 
precipitation step (von Blanckenburg et al., 1996) or single-step column (Chmiel, 2013).  

In-situ 10Be extractions from quartz require more extensive sample preparation 
including the isolation of quartz from samples and the full dissolution of the quartz in 
HF/HNO3, along with a certified, dedicated clean room (Bookhagen, 2013). This protocol 
does not describe those procedures and focuses solely on the extraction of adsorbed 
meteoric 10Be from soil and sediment samples. 
 
A.1.2 Laboratory space and approximate time requirements 
 Due to the sensitivity to contamination of 10Be measurements and the long period 
of time that samples must remain open to the laboratory atmosphere in this protocol, this 
procedure is best accomplished in a dedicated laboratory space to minimize dust and 
external contamination. If no dedicated space is available, this can be accomplished in a 
space with no other ongoing procedures as long as the space is thoroughly cleaned prior 
to use. Entry and exit from this laboratory space should include dust control mats (Table 
A.1), and all personnel working in the space should be required to wear disposable Tyvek 
labcoats (Table A.1) which do not leave the space and are exchanged on a regular basis to 
reduce import of external contaminants. In addition to these controls, Tyvek booties 
(Table A.1) over shoes can help eliminate external dust contamination. As a general rule, 
lab space should be cleaned before and after each 10Be run.  
 If all steps run smoothly, this procedure takes 6 full, dedicated laboratory days (8-
10 hours each) to process 8 samples, not including pre-processing and preparation time 
(often 1 day). If some samples need extra time, this timeframe may be extended to 7 or 8 
days. However, this procedure is written under a best-case assumption and a typical 
timeline of 6 days (plus an extra pre-preparation day) is described here. The protocol is 
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divided into 6 “process groups”, each of which represents a typical day spent in the 
laboratory. 
 
A.1.3 Be production and environmental chemistry overview 

Beryllium is a monoisotopic (only a single stable nuclide) and mononuclidic (one 
significantly abundant natural radionuclide) element with z (atomic number) = 4, and A 
(mass number) = 9 with 5 neutrons. 9Be is the only stable isotope, and of its 
radioisotopes, only 7Be (t1/2 53 days) and 10Be (t1/2 = 1.36 x106 yrs) have half-lives 
greater than 1 minute. The expected stable nuclide 8Be has a half-life of only 7 x 10-17 s is 
highly unstable due to it’s extreme disposition towards alpha decay (National Nuclear 
Data Center, 2011). 

Beryllium-10 is a long-lived radioisotope of Beryllium (atomic mass 9) with a 
half-life of 1.39 x 106 years (Dunai, 2009), which undergoes beta decay (100%) to its 
daughter isotope 10B (National Nuclear Data Center, 2011). 10Be is produced primarily in 
the atmosphere (meteoric 10Be) when high-energy neutrons from cosmogenic radiation 
collide with molecular nitrogen and oxygen (Dunai, 2009), and secondarily in the lattices 
of crystalline minerals (in-situ 10Be) via the same process. The spallation reactions that 
result from this collision break up the target nucleus, producing 10Be and a number of 
other lighter particles (Willenbring and von Blanckenburg, 2010).  

The production of 10Be in the atmosphere depends primarily on 1) the strength of 
cosmic ray production, which varies in concert with metrics of solar activity and 2) the 
intensity of the earth’s geomagnetic field, which selectively blocks lower energy cosmic 
radiation (Lal and Peters, 1967, Willenbring and von Blankenburg, 2010). Because these 
factors vary predictably, global models of atmospheric 10Be production have successfully 
reproduced these patterns (Field et al., 2006, Masarik and Beer, 2009). Atmospheric 10Be 
is sorbed strongly onto aerosols and eventually falls out as both wet and dry deposition 
(Graham et al., 2003, Lal, 2007). The delivery rate of 10Be to the Earth’s surface is 
therefore also a function of precipitation and dust deposition patterns (Heikkila et al., 
2008). The 10Be that falls out from the atmosphere (termed "meteoric" 10Be) is 
preferentially sorbed onto the exchange sites of soil minerals (as Be2+ for pH values < 6 
or as Beryllium hydroxide complexes at higher pH values) or organic materials (as a Be-
humate complex in a large pH range between 3 - 10) (Takahashi et al., 1999). Meteoric 
10Be can be leached from soils under conditions of high acidity, however understanding 
of the environmental boundaries characterizing these conditions has improved 
significantly (Willenbring and von Blanckenburg, 2010). 10Be retention by soil materials 
under most environmental conditions is high, and therefore due to its long half-life (~ 1.4 
Ma), meteoric 10Be accumulates in soils with increasing soil age (Graly, 2010, 
Willenbring and von Blanckenburg, 2010). 

The divalent Be cation (Be2+) in aqueous solution is principally in tetrahedral 
coordination with its waters of hydration and it can complex easily with a diverse range 
of ligands (Alderighi et al., 2000). 1H and 17O NMR studies have shown that below pH 3 
Be is in tetrahedral coordination with four water molecules as [Be(H2O)4]2+. This 
solvated cation, however, is only prominent in acidic conditions (pH 5.5 or less). 
Beryllium has a very high charge density (charge to atomic radius ratio) so hydrolyzes 
above a pH of 3. Beryllium hydroxides are therefore formed at higher pH values 
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(Be(OH)+, Be(OH)2, Be(OH)3
-, Be(OH)4

2-, (Willenbring and von Blanckenburg, 2010). 
Complexing ligands (specifically organic acids) can significantly change the speciation 
across a wide range of pHs (Willenbring and von Blanckenburg, 2010). These Be-humate 
complexes are important for retention of 10Be molecules and therefore organic phases 
must be destroyed for quantitative Be extractions from soil and sediment materials. 
 
A.1.4 Process overview 
 The extraction and preparation process described here is comprised of 6 process 
groups (in addition to preparation of reagents and samples), which involve the (1) 
extraction of ions from the sample adsorbed phase and organic phases to solution, (2,3,4) 
selective removal of non-Be cations and purification of Be2+, (5) precipitation of 
Be(OH)2, and (6) flame oxidation to BeO and cathode packing for accelerator mass 
spectrometry (AMS) analysis. The theory and detailed procedures for each of these 
process groups are described in each section, below. Due to the complex nature of the 
process and a series of selective precipitation, sorption and elution steps, it is critical to 
understand where the Be is (what phase, or what solution fraction) at all times. Notes are 
added to procedural steps to facilitate this understanding and eliminate major mistakes.  
 Boron (10B) is the major isobar of 10Be in mass spectrometric analyses, therefore, 
B must be practically eliminated from every step of this procedure. The major pathway of 
B contamination in this protocol is through laboratory water as up to 5L of water may be 
used as a reagent and in the preparation of acids (Table A.2). For this reason, lowering B 
in laboratory water below analytically detectable limits is a critical component of success. 
This has been accomplished in the Department of Soil, Water and Climate through the 
use of a MilliQ Gradient with a Q-GARD Boron cartridge and water input from a MilliQ 
Elix 5 (water input from facility distilled lines). The resulting high quality water has been 
proven for use in 10Be extraction procedures through resulting process blanks (Section 
10, Table A.4). Validated low-Boron or Boron-free water sources are specifically referred 
to as BfddH2O and should not be mixed or substituted with unvalidated water sources 
(regardless of perceived purity) under any circumstances. Reagent containers that have 
held unvalidated water sources should not be used for BfddH2O unless they have been 
acid-washed. 
 
A.2. Process group 0 – sample and reagent preparation (Day 0)   

General concepts. This protocol is designed to run samples in batches of 8 (7 
samples + 1 blank). The main reasons for this are: 1) there are 8 spots for columns on 
each carousel for the ion chromatography step and 2) given existing hotplate capacity, 8-
sample runs are about the maximum possible without compromising space which may 
lead to higher potential for cross-sample contamination. 

A large number of acids (and a few other reagents) of differing concentrations 
must be prepared to execute the entire procedure. Preparing them prior to beginning the 
extraction protocol allows full concentration to be given to reagent preparation or 
protocol execution, and is highly recommended. Two of these acids 1.000 M HNO3 and 
0.500 M HNO3 must be titrated to within 3 decimal places.  

A well homogenized subsample of at least 50 g of the original material should be 
mixed and dried overnight at 105° C. Homogenization is critical because component 
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phases of soil and sediment (as well as varying grain sizes – Wittman et al., 2012) can 
contain different concentrations of 10Be (Balco, 2004). 
 Notes.  Table A.2 details standard amounts of reagents necessary for a single run 
of 8. This is expanded to 10 samples in order to ensure that enough reagent is available if 
necessary. Suggested total amounts of mixed acids to be prepared (usually 1L) are also 
detailed in Table A.2. Adjust volumes according to final desired end volume. Each 
reagent should have a PFA stock container and a PFA working container in order to keep 
the stock clean. PFA containers should be color coded with lab tape according to reagent 
and clearly labeled with concentration/date/preparer’s initials: RED = HF, YELLOW = 
HNO3, ORANGE = HCl, GREEN = Oxalic, PINK = H2O2, BLUE = BfddH2O, PURPLE 
= 1:1 NH4OH:H2O. 
 Titration procedure: Titrations should use phenolphthalein as an indicator. If 
standardized 1.000 M NaOH is available, then nominal 1M HNO3 should be titrated to 
standardized NaOH. If standardized NaOH is not available, a standardized solution of 
1.000 M Oxalic acid should be prepared using oxalic acid dihydrate pellets (cannot 
prepare a standardized NaOH solution using NaOH pellets because of strong adsorption 
of moisture from the air), which should be used as a titrant to prepare and adjust a 
1.000M NaOH solution as a standard to use for subsequent HNO3 titration. Titration 
procedures are detailed in Section 11.   
 Soil and sediment samples should be oven dried (95° C) after field collection to 
facilitate preparation for grinding. These samples, depending upon the material, should be 
hand pulverized and ground to pass a 2mm (#10 U.S. sieve), or ground to analytical 
fineness (500 um, #35 U.S. sieve). However, grinding to analytical fineness may: 1) 
influence the measurement of in-situ 10Be along with meteoric 10Be (remember for 
meteoric, we just want the adsorbed 10Be on the surface, not the 10Be contained in the 
mineral lattices, although in-situ concentrations are generally 2-3 orders of magnitude 
lower) and 2) increase the difficulties encountered with initial sample loading into PFA 
vials due to static and sediment removal centrifugation steps. For these reasons, hand 
pulverization of oven-dried samples and sieving to pass a 2mm sieve is the appropriate 
sample pre-preparation used for this protocol. 
 
A.2.1 Materials and time requirements 

Materials. PFA Containers for stock and working solutions for each reagent (acid 
washed), graduated cylinders (acid washed), volumetric flasks (acid washed), 
concentrated analytical grade reagents (Table A.1), titration burettes, ring stand, clamps, 
phenolphthalein, 50ml beakers, pipettors.  

Time requirements. 5-6 hours. 
 
A.2.2 Procedural Steps 

1. Prepare reagents according to Table A.1. Titrating instructions in Section 11. 
2. Dry 50g of well homogenized sample material (hand pulverized to pass a 2mm 

sieve) overnight at 105° C. Place in dessicator until ready to weigh. 
  
A.3. Process group 1 – extraction of adsorbed ions/ amorphous iron by HCl leach 
and removal of organics (Day 1). 
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 General Concepts. In this process group, adsorbed ions are removed from mineral 
surfaces and organic matter via a strong acid leach (6M HCl) followed by destruction of 
organic phases by H2O2. The 6M HCl leach also dissolves iron oxyhydroxide coatings, 
bringing significant amounts of Fe into solution (Wagai and Mayer et al., 2007; 
Deshpande et al., 1968). The predominant exchange phase ions that are likely to be 
contained in this leach (and thus the major ions of concern in the Be extraction and 
purification procedure) are Ca, Mg, Na, K, Fe, Al, and Si (Table A.3). Beryllium, while 
normally at very low levels on the exchange phase and as a elemental constituent of soils 
(Lively and Thorleifson, 2009, Table A.3), is boosted by 2-3 orders of magnitude with 
the addition of a Be “spike” or carrier during this process group. The purpose of the 
carrier is to bring Be to concentrations of similar magnitude as the other major ions as 
well as the ability to visualize the Be(OH)2 precipitate and achieve mg final yields of 
BeO powder. Without the carrier, low amounts of native Be would make extraction by 
the chemical method, quality assurance through visualization, and AMS cathode packing 
impossible. 

Notes. An important assumption in this process is that there is minimal native 9Be 
adsorbed to mineral grains (Table A.3). This assumption can be checked by an HCl leach 
where the 9Be carrier is not added and native exchange phase 9Be is measured via 
inductively coupled plasma-mass spectrometry (ICP-MS). The second major assumption 
is that sorbed meteoric 10Be is fully and completely desorbed and mixed with the 9Be 
carrier in the extraction solution (AMS measures ratios of 10Be/9Be, not absolute 
amounts). The advantage of measuring ratios is that if assumptions are met, final yield 
should have little effect on the measured ratio (although it can have an effect on 
analytical uncertainties). 

Due to the difficulty in completely destroying the organic phase from samples 
high in organic matter (> 8% organic carbon) with H2O2 at normal temperatures and 
pressures, a microwave digest (modified Miller Digest) is recommended for these 
samples. A modified Miller Digest used by the University of Minnesota Research 
Analytical Labortatory (Ref. No. 59) has been successfully utilized. In this case, samples 
should be weighed and spiked with 9Be carrier as described below, but instead of an HCl 
leach, samples are pre-digested for 60 min with 2ml H2O2 and 0.5 ml trace conc HNO3, 
then digested in the microwave at 100° C for 8 min followed by 195° C for 12 min. Start 
at step 14 (below) with these samples. 
 
A.3.1 Materials and time requirements 

Materials.10ml PFA containers, Steadler Lumocolor PFA pen, analytical balance, 
pipettors, SPEX Be standard, 3M HCl, H2O2, 6M HCl, hotplate, 15ml Falcon tubes, soil 
spatula, BfddH2O, centrifuge, Kim Wipes. 

 Time requirements. 8-10 hours. 
 
A.3.2 Procedural Steps 
Weighing and spiking samples: 

1. Label 10 ml Teflon containers with sample names using Steadler Lumocolor 
permanent markers (Special – Art. Nr. 319 F-9 – these are the only markers that 
will reliably write on PFA and withstand the entire process).  
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2. Tare Teflon container (Note: don’t use gloves, gloves will build up static in the 
Teflon containers 

3. Using analytical balance, add 0.5g of soil (weigh to 4 significant digits). Make 
sure that it is a representative sample. Between 0.4800 - 0.5200 g is acceptable. If 
soil sticks to container sides or top (outside of container), wipe the sides off with a 
Kim wipe & Boron-free deionized water and re-weigh. 

4.  Put container back on balance and record weight of sample to 4 decimal places. 
5. Tare sample and container. 
6. Set pipette to 250µL and pipette in beryllium standard (SPEX Certiprep 

Beryllium 2% HNO3, 1000 mg L-1) into the container with sample. DO NOT 
pipette directly out of bottle, pour some standard into an acid washed PFA 
container and pipette out of that container. (Parafilm SPEX Be standard 
immediately after use and refrigerate) 

7. Record weight of SPEX Be standard to 4 decimal places. 
8. Repeat steps 1 – 6 for each sample. 
9. For blanks, only follow steps 5-6 (do not add soil). 

 
Acid leach to remove adsorbed ions, iron oxyhydroxides and destruction of organic 
phase: 

10. Add 3 mL of 3M HCl and 1ml of H2O2 to each sample.  
11. Heat on hot plate with caps off at 100° C for 2 hrs or until < 1ml of HCl/H2O2 

remains. (Beware of violent reactions with carbonates or organic matter at this 
step – you may need to babysit samples for 30 min – 1 hr, taking them on and off 
the heat. Avoid reactions which leave significant amounts of material on the sides 
or cause material to be ejected from PFA container. Samples which contain > 8% 
organic matter should be considered for Microwave Digestion (see “Notes” 
section, above) – in this case, follow directions in “Notes” section above and 
start at step 14, below. Caps can be left on if necessary for violent reactions but 
enough evaporation/drying must occur so that HCl volume is not significant (> 
1ml) when proceeding to step 12.   

12. Add 5mL of 6M HCl to each sample. Heat at 105° C on hot plate for no more 
than 4 hours with the caps on. The containers should still have liquid in them. 

13. Turn off hot plate, and transfer solutions and sediment from Teflon containers 
into 15mL Falcon centrifuge tubes. It is important to get everything out, so use an 
acid-washed wash bottle with BfddH2O to rinse out samples. If there is sediment 
stuck in the container, use a clean pipette tip to remove into the Falcon tube. Make 
sure not to use more than 10mL deionized water to rinse PFA container or the 
sample will not fit in the centrifuge tube.  

14. Centrifuge tubes for 5 minutes at 3200 rpm. 
15. Completely wipe out each Teflon container using BfddH2O and a Kim wipe. 
16. Pour supernatant from centrifuge tube back into Teflon containers. Get as much 

liquid as you can out, but make sure that no sediment comes out. (Be and all other 
adsorbed ions are in the supernatant). 

17. OVERNIGHT: Place containers on hot plate and turn hot plate to setting 105° C 
for 7 hours to overnight. Leave the caps off of the containers. Samples should be 
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completely dry, with an ion crust at the bottom. (Note: In this step – and the many 
other drying steps like it – a balance must be achieved between speed of drying 
(which influences total process time) and the ability to redissolve the ion crust in 
the subsequent step. Therefore, as a general rule, drying temperatures should be 
no greater and drying times no longer than necessary to remove all visual 
moisture while avoiding “baking” the ion pellet to the PFA container).  

 
A.4. Process group 2 – removal of Ca and Mg via precipitation as bifluorides (Day 
2). 

General Concepts. In this process group, large amounts of Ca (Table A.3) and Mg 
are removed by reaction with HF and precipitated as bifluorides. This process selectively 
precipitates Ca and Mg as fluorides because they are orders of magnitude less soluble in 
water (which is used to equilibrate the cake post-treatment) than the alkali metal fluorides 
(Na, K), Fe and Al fluorides, and Be bifluoride (Sharma, 2014, ILO-ICSC, Oxtoby, 2012, 
Haynes, 2014). This typically leaves a large white fluoride cake (when soils are 
calcareous), or a clear to white solid precipitate when the soils are non-calcareous. Cakes 
can be extensive in calcareous soils and may warrant two HF treatments. Residual 
organics become apparent in this step due to the strong contrast with the white fluoride 
cake and are removed with another round of H2O2 treatment. Finally, samples are 
equilibrated with BfddH2O, releasing to solution any Fe, Al, Be, K, or Na fluorides that 
have formed. 

Notes. HF is a highly dangerous reagent and should only be handled with proper 
training and personal protective equipment (PPE).  
 
A.4.1 Materials and time requirements 
 Materials. Sodium bicarbonate, pipettors, HF PPE, calcium gluconate (HF 
antidote), hotplate, Analytical grade HF, H2O2, BfddH2O, Kim wipes. 
 
 Time requirements. 8-10 hours. 
 
A.4.2 Procedural Steps 
Precipitating Ca/Mg and Residual Organics: part 1  

1. Prepare a solution of ~ 25g sodium bicarbonate in 250mL water. This will be used 
to neutralize the pipettes used to transfer the hydrofluoric acid (HF).  

2. Before starting to handle HF, read the SOP, put on the required PPE (Table A.1), 
and alert everyone in the room. Follow proper procedures for safely using HF 
under a hood. 

3. CAREFULLY pour a small amount of HF into a labeled working container, and 
put original HF container back into storage cabinet. ALWAYS use secondary 
containment! 

4. Pipette 1mL HF from working container into each Teflon container. Dispose of 
pipette tips into the solution of sodium bicarbonate, and change tips between each 
sample. 
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5. Gently swirl the containers to mix together HF and sample. To guard against 
spillage, swirl with container on a flat surface. If not mixing together, use a clean 
pipette tip to break up solids. 

6. Turn on hot plate to setting 100° C. Samples should be allowed to dry down 
completely, but not “bake” to the PFA. 

 
Removing residual organics 
This step is necessary for samples which have darkened fluoride cakes (or dark rings in 
the cakes) resulting from residual organics. 

7. Pour hydrogen peroxide (H2O2) into a labeled working container, and then 
parafilm and refrigerate H2O2 original container. 

8. Turn on hot plate to setting < 80° C. Add 1mL H2O2 to each PFA container, and 
swirl containers to mix. If sample is high in organics, watch the sample very 
closely after adding the H2O2 as it could foam over. If needed, turn down heat. 
Use a pipette tip to mix if solids sticking together. 

9. Heat containers with caps on until reaction stops.   
 
Precipitating Ca/Mg and Residual Organics: part 2  
This step is necessary for calcareous soils, due to the amount of Ca present in the soil 
sample. 

10. Turn on hot plate to setting < 80° C. 
11. Ensure that sodium bicarbonate is still on-hand to dispose of pipette tips. Before 

starting to handle HF, read the SOP, put on the required PPE (Section 12, Table 
A.1), and alert everyone in the room. Follow proper procedures for safely using 
HF under a hood. 

12. Pipette 2mL of HF from working container into each Teflon container. Dispose of 
pipette tips into the solution of sodium bicarbonate, and change pipettes between 
each sample. 

13. Gently swirl the containers to mix together HF and sample. To guard against 
spillage, swirl with container on a flat surface. If not mixing together, use a clean 
pipette tip to break up solids. 

14. Turn hot plate up to setting 100° C. Samples should be allowed to dry down 
completely, but not “bake” to the PFA. 

15. Check the color of the precipitate. If any are still dark, run them through the 
“Removing residual organics” again before moving on. 

 
Equilibrating fluoride precipitates with water 

16. Add 10mL BfddH2O to all samples. 
17. Let sit for 1 hour with gentle < 70° C heat 
18. Transfer contents (solution and precipitates) of the Teflon containers into new 

15mL Falcon centrifuge tubes. 
19. Centrifuge tubes for 5 minutes at 3200 rpm. 
20. Completely wipe out each PFA container using BfddH2O and a Kim wipe.  
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21. Transfer supernatant from centrifuge tube back into PFA containers. Get as much 
liquid as you can out, but make sure that no precipitated material comes out (Be 
and all other adsorbed ions are in the supernatant). 

22. OVERNIGHT: Place containers on hot plate and turn hot plate to setting 105° C 
for 7 hours to overnight. Leave the caps off of the containers. Samples should be 
dry, with an ion pellet at the bottom. 

 
A.5. Process group 3 – removal of Fe via anion exchange (Day 3) 
 General Concepts. In this process group, the leachate with significantly reduced 
quantities of Ca/Mg is redissolved in 6M HCl and run through an anion exchange resin. 
In concentrated HCl, Fe forms tetrahedrally coordinated anionic complexes with chloride, 
which are readily sorbed to quaternary ammonium-type anion exchange resins (Nicholls, 
1975, Dutra et al., 2005, Lee et al., 2003, Moore and Kraus, 1950, Brady et al., 1964). No 
other ions of concern exhibit this behavior; therefore, in this step the selective removal of 
Fe is accomplished by preferentially binding FeCl-4 complexes to the anion exchange 
resin through several volumes of 6M HCl while all other cations are leached through. The 
resin is then cleaned and recharged by flushing with 0.3M HCl, which releases the Fe 
into a waste collection tube as neutral or positively charged chloride and hydroxide 
complexes.  
 Notes. Ion exchange resins must be loaded into columns (Table A.1) prior to 
procedure. The anion exchange resin used for this procedure is BIORAD AG 1-X8 
(Quaternary Ammonium), 100-200 mesh, chloride form. This resin is lighter-colored 
(yellowish) compared to the cation resin (orangish) used in process group 4. Mix a resin 
slurry with several scoops of resin and BfddH2O in a sterile or acid-washed container. 
Pipette ~ 3ml of the slurry into the column and let the water drain out and the resin settle. 
Continue to add resin slurry until final resin volume is at the 2 ml mark (above column 
filter) when drained of gravitational water. To store the columns for future use, fill with 
BfddH2O and cap. Store in the refrigerator in an acid-washed Nalgene container.   
 In a clean lab, ion chromatography steps should be completed in a laminar flow 
hood. Because columns need to remain open for long periods of time in order to facilitate 
acid addition, a laminar flow hood provides an environment where no residual dust lands 
in the columns during the process. In this environment, resins can be regenerated and 
cleaned (and columns reused) with little concern for contamination. In the absence of a 
clean lab and laminar flow hood, this process can be completed on a lab bench or fume 
hood, provided only working solutions of acids are opened and columns/resins are 
disposed of following the procedure (one-time use).  
 
A.5.1 Materials and time requirements 
 Materials. BIORAD AG 1-X8 (Quaternary Ammonium), 100-200 mesh, chloride 
form anion exchange resin, polymer columns with caps, 6M HCl, pipettors, hot plate, 
centrifuge, lazy susan column holders, 0.3M HCl, BfddH2O, 15 ml Falcon centrifuge 
tubes, 50 ml plastic tubes (waste). 
 Time requirements. 4-6 hours. 
 
A.5.2 Procedural steps 
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Removal of Fe via anion exchange columns 
1. Add 2mL of 6M HCl to the samples in the PFA containers. Samples will look 

pale to dark yellow, depending on the iron content (dark = high content of iron). 
2. Turn the hot plate to < 70° C and let the containers sit for an hour - overnight. 
3. Transfer the dissolved portion to a centrifuge tube. When transferring the liquid 

from the Teflon containers to the centrifuge tubes, first roll liquid around sides 
(being careful not to spill the liquid) to ensure all material is captured. If some 
material sticks to the bottom of the Teflon containers, add 1mL 6M HCl and use a 
pipette tip to score the surface. Add this to the centrifuge tube. Heating the 
samples slightly also helps dissolve any remaining precipitate and facilitates 
transfer into centrifuge tube. 

4. Centrifuge tubes for ~2 minutes at 3500 rpm. Wipe out PFA containers with fresh 
Kim wipe. 

5. Use prepared anion exchange columns and set them up in the 2-tiered Lazy Susan 
with waste centrifuge tubes (50 ml) underneath. A box of Finntip 5mL pipette tips 
should be placed under the top tier of the Lazy Susan to raise the columns up (this 
height will be needed starting in step 7). Uncap anion columns and let water drop 
out into waste tubes. 
 

6. Add 5 ml 0.3 M HCl clean resin – discard this acid 
7. Add 5 ml 0.3 M HCl clean resin – discard this acid 
8. Add 1 ml 6 M HCl condition resin – discard this acid 
9. Add 5 ml 6 M HCl condition resin – discard this acid 
10. Pour the contents of the 50 ml waste tubes into a waste container. Set back under 

the columns and add a new 15mL Falcon centrifuge tube (labeled with sample 
numbers) to catch the sample containing Be.  

11. Add sample (3 ml)  collect Be into labeled tube (sol’n should be clear) 
12. Add 1 ml 6 M HCl collect Be into labeled tube (sol’n should be clear) 
13. Add 5 ml 6 M HCl collect Be into labeled tube (sol’n should be clear) 
14. Remove centrifuge tubes from beneath the anion columns, cap, and place in rack. 

These tubes contain the Be and other cations (Na, K, Al). Place 50ml waste 
containers back underneath columns. 

15. Add 2 ml 0.3 M HCl clean resin – discard this acid (yellow) 
16. Add 5 ml 0.3 M HCl clean resin – discard this acid (yellow) 
17. Add 5 ml 0.3 M HCl clean resin – discard this acid (yellow) 
18. Add 1-3 ml BfddH2O cap and store column as before 

 
19. Transfer solution in 15mL Falcon centrifuge tubes containing Be back to the PFA 

containers. 
20. OVERNIGHT: Place containers on hot plate and turn hot plate to setting 105 C 

for 7 hours to overnight. Leave the caps off of the containers. Samples should be 
completely dry, with an ion crust at the bottom. Beware of baking the sample too 
hard at this step because the initial part of the next process involves dissolving the 
sample in 0.4M oxalic acid, which is weak and will not do a good job if the 
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sample is firmly pelletized. It is important to dry down completely here, but not at 
high temperatures for long periods. 

 
A.6. Process group 4 - removal of Al/Na/K and final elution of Be via ion 
chromatography with a cation exchange resin (Day 4) 

General Concepts. In this process group, the ion pellet is initially redissolved in 
0.4M  oxalic acid. At low pH  (< 4.0) in oxalic acid, stable anionic oxalate complexes of 
Al form and pass through sulfionic cation exchange resins (Korkisch, 1989, Milacic, 
2005, Zhu, 1998), while other cations remain in ionic form and are sorbed to the resin. 
This allows Al to be selectively removed from other cations with several volumes of 
oxalic acid through a cation exchange resin. Subsequently, Na and K are selectively 
eluted with 0.5 M HNO3, while Be is selectively eluted with 1M HNO3, relying on 
principles of ion chromatography and empirically determined equilibrium distribution 
coefficients and selectivity scales for cations on sulfonated cation exchange resins in 
HNO3 (Strelow, 1960, Strelow et al., 1965). The final elution of high-purity Be is 
captured. 

Note. Because the last portion of this process group relies upon ion 
chromatographic principles to separate Na and K from Be, it is absolutely critical that the 
acids used (0.500M HNO3 and 1.00M HNO3) are accurately titrated as described in 
preparation procedures (Section 11). Untitrated HNO3 in this step risks complete loss or 
incomplete elution of Be. Because of the complexity involved in the chromatographic 
separation of these elements in this process group, all eluents are labeled and saved. In 
the event that a precipitate is not observed in the next process group, it is possible to 
analyze the eluents via ICP-MS and recover Be by re-running this procedure on the 
fraction containing Be. 

Ion exchange resins must be loaded into columns prior to procedure. The cation 
exchange resin used for this procedure is BIORAD 50W-X8 (Sulfonic Acid), 200-400 
mesh, hydrogen form. This resin is darker-colored (orangeish) compared to the anion 
resin (yellowish) used in process group 3. Mix a resin slurry with several scoops of resin 
and BfddH2O in a sterile or acid-washed container. Pipette ~ 2ml of the slurry into the 
column and let the water drain out and the resin settle. Continue to add resin slurry until 
final resin volume is at the 1 ml mark (above column filter) when drained of gravitational 
water. To store the columns for future use, fill with BfddH2O and cap. Store in the 
refrigerator in an acid-washed Nalgene container.  
 Selective ion chromatography with exchange resins is dependent upon numerous 
factors, including solvent concentrations, resin mesh size, ion/exchange site ratio, and 
volumes passed (Helfferich, 1962). The size of cation exchange resin optimized for this 
process is 2x smaller than the anion exchange resin utilized in process group 3, 
significantly increasing the time for solvent filtration through the columns. Therefore, 
each sample is split into 2 columns, each containing 1ml of resin.     
 
A.6.1 Materials and time requirements 
 Materials. 0.4M Oxalic acid, 15ml Falcon centrifuge tubes, 50ml tubes (waste), 
columns with 1ml cation exchange resin (2 per sample), hotplate, centrifuge, pipettors, 
BfddH2O, 5M HNO3, 1M HNO3, 0.5MHNO3. 
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 Time requirements. 8-10 hours. 
 
A.6.2 Procedural steps 
Removal of Al, Na and K and selective elution of Be via Cation Columns  

1. Add 2mL 0.4M oxalic acid to each sample in PFA containers.  
2. Turn on hot plate and set to 70° C for 1-2 hours to overnight to dissolve the crust 

in the oxalic acid. Note – the longer you can afford to let this dissolve, the higher 
your yields will be. 

3. For each sample, label (A) 1 clean 15ml Falcon centrifuge tube “Sample xx”, (B) 
2 clean tubes “Sample xx – Ox”, (C) 2 clean tubes “Sample xx – Nit”, (D) 2 clean 
tubes “Sample xx – Be sample”, and (E) 1 clean tube “Sample xx – Be ICP”. This 
gives you a total of 8 tubes per sample. Store in racks that are close at hand. 

4. Once the ion pellet is dissolved (note – there may be some recalcitrant oxalates 
(white-clear) that form, particularly in Ca-rich samples. That is okay…press on), 
transfer each sample from the Teflon containers into a clean Falcon centrifuge 
tube labeled with sample name (A). When transferring the liquid from the Teflon 
containers to the centrifuge tubes, first roll liquid around sides (being careful not 
to spill the liquid) to ensure all material is captured. Use a pipette tip and 1mL 
0.4M oxalic acid to capture any material stuck to container. It helps to have 
samples over gentle heat (70° C) to facilitate full dissolution and removal. There 
are now 3 ml of 0.4M oxalic acid containing the dissolved ion pellet in tube A. 

5. Centrifuge tubes for 5min at 3000 rpm. Wipe out PFA containers with fresh Kim 
wipe and BfddH2O. 

6. Set up prepared cation columns in the 2-tiered Lazy Susan with waste centrifuge 
tubes underneath. A box of Finntip 5mL pipette tips should be placed under the 
top tier of the Lazy Susan to raise the columns up (this height will be needed 
later). Note – you will be splitting each sample into 2 columns, so a run of 8 
samples requires 16 columns.  

7. Uncap cation columns and let water drain out into 50 ml waste centrifuge tubes.  
 

8. Add 1 ml 5M HNO3 clean resin-discard this acid 
9. Add 5 ml 5M HNO3 clean resin-discard this acid 
10. Add 1 ml BfddH2O remove HNO3 from resin – discard 
11. Add 4 ml BfddH2O remove HNO3 from resin – discard 
12. Add 1 ml 0.4M Oxalic condition resin – discard this acid 
13. Add 4 ml 0.4M Oxalic condition resin – discard this acid 
14. Pour contents of waste tubes into a waste container. Set back under columns and 

place 15mL Falcon tubes labeled “Sample xx – Ox” (B).  
15. Each centrifuged sample should have ~3mL of supernatant. Pipette 3mL of each 

sample’s supernatant into 2 columns, 1.5mL into each, which are above its 
“Sample xx – Ox” (B) 15 ml centrifuge tube (remember, each sample should have 
2 of these). Let drain. 

16. Add 1mL  0.4M Oxalic collect in Ox. Tube (B) (contains the Al from the 
sample) 
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17. Add 5mL  0.4M Oxalic collect in Ox. Tube (B) (contains the Al from the 
sample) 

18. Add 6mL  0.4M Oxalic collect in Ox. Tube (B) (contains the Al from the 
sample) 

19. Remove and cap the “Sample xx – Ox” (B) tubes and set in rack. These should 
contain the Al from the samples.  

20. Put the “Sample xx – Nit” (C) tubes into the waste tubes under the corresponding 
columns. 

21. Add 1ml BfddH2O remove oxalic acid from column into Nit tube (C) 
22. Add 2ml BfddH2O remove oxalic acid from column into Nit tube (C) 
23. Add 6ml 0.5M HNO3 elute Na/K into Nit tube (C) 
24. Remove and cap the “Sample xx – Nit” (C) tubes and set in rack. These should 

contain the Na and K from the samples.  
25. Put the “Sample xx –Be sample” (D) tubes into the waste tubes under the 

corresponding columns. 
26. Add 1ml 1M HNO3 collect Be in ‘Be sample’ tube (D) 
27. Add 6 ml 1M HNO3 collect Be in ‘Be sample’ tube (D) 
28. Add 4 ml 1M HNO3 collect Be in ‘Be sample’ tube (D) 
29. Cap the “Sample xx – Be sample” (D) tubes and set in rack. These should contain 

the beryllium from the samples.  
30. For each sample, pipette 110µL from each “Sample xx – Be sample” (D) tube into 

the corresponding one “Sample xx – Be ICP” (E); bring up to 10ml with 0.3 M 
HNO3 for possible OES measurement to check sample’s final purity. 

31. Set aside all centrifuge tubes and place 50ml waste tube under each column. 
32. Add 4 ml  5M HNO3 clean resin – discard this acid 
33. Add 6 ml 5M HNO3 clean resin – discard this acid 
34. Add 6 ml BfddH2O clean resin – discard 

 
35. OVERNIGHT: Transfer liquid from one of the “Sample xx – Be sample” (D) 

tubes for each sample into corresponding PFA containers. Evaporate at setting 
100° C for 8 hours – overnight. Check frequently to ensure you don’t dry down or 
“bake” the remaining cation pellet – ideally, there should be a very small drop of 
liquid left when you proceed to step 36. 

36. Pour second “Sample xx – Be sample” (D) tube into the PFA container and 
redissolve Be ion pellet (or just add to remaining drop of liquid). Let it sit for ~ 1-
2 hours at  > 70° C with the cap on. Transfer back into “Sample xx – Be sample” 
(D) centrifuge tube. 

 
A.7. Process group 5 – precipitation of Be(OH)2 (Day 5)  
 General Concepts. In this process group, Be is precipitated from solution as 
Be(OH)2 by raising the pH to ~ 10 with 1:1 Superpure NH4OH/BfddH2O. The current 
solution pH is ~ 1M HNO3 with pH < 1 – and almost all of the Be in solution exists as a 
hydrated ion (Be2+). Raising the pH to ~ 9 results in precipitation of the insoluble 
hydroxide, Be(OH)2. NH4OH is used as the base in this titration because the cation 
impurity can be evaporated from the sample during drying (NH4+ (aq) – NH3 (g)). 
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 Notes. This titration is accomplished most rapidly by smell and visualization. 
Titration can be accomplished with pH strips, but this requires inserting foreign materials 
into the sample and/or removing sample volume. In this author’s opinion, single pH 
measurements should be reserved only for samples that are not precipitating in order to 
judge whether there has been a process error (i.e. no Be precipitate) or whether the 
titration endpoint has not yet been reached. The blank is done first to gauge the 
approximate number of drops (at ~ 0.5ml/drop) that are needed to achieve the titration 
endpoint. Typically a total of 40-80 drops is required, but this can vary depending on the 
specific conditions of the sample batch.  

When titrating the blank, shaking and centrifuging after every 5-10 drops (once 
30 drops is reached) will allow the most accurate results and purest yield (extremely high 
pH values result in the precipitation of remaining impurities with Be, so this is avoided if 
possible). Essentially, one is looking for the exact point when the smell changes from 
dull/sweet – predominance of HNO3 to ammoniac/sour – predominance of NH4OH. 
Visually, this coincides with the formation of fizz or bubbles upon shaking. Note: after 
adding NH4OH and shaking, uncap and wait ~ 3 seconds before wafting to smell as 
ammonia offgassing can be very strong. The blank usually requires fewer drops than the 
samples, so if a precipitate is formed on the blank but not on the samples, continue 
titrating. 
 The Be(OH)2 precipitate looks almost “ghosty” or translucent. Impurities manifest 
themselves as a whiter appearance (Al) or a yellower appearance (Fe). Unless precipitate 
is extremely dirty, continue processing the sample, as at meteoric concentrations, small 
amounts of impurities will not affect the final uncertainty. 
 The importance of using Superpure NH4OH is that any additions to the sample at 
this process stage contribute directly to the end impurities; therefore, it is critical that 
only the highest purity NH4OH and BfddH2O is utilized.  
 Beryllium is dried in either B-free quartz vials, or acid washed/etched quartz 
vials. B-free quartz is currently extremely expensive, so this process utilizes low-B quartz 
vials (Table A.1) that have been acid washed/etched. For meteoric concentrations, there 
is no apparent B isobar signal from the vials. To wash vials, boil them for 24 hours at 
110° C in trace grade concentrated HNO3 in an acid washed PFA jar, followed by boiling 
at 110° C in BfddH2O for 24 hours and 3x rinse in BfddH2O prior to drying. Place on 
Kim wipes covered by Kim wipes to dry and transfer to a clean plastic bag or acid-
washed PFA jar. 
 
A.7.1 Materials and time requirements 
 Materials. 1:1 ddH2O/Superpure NH4OH, eyedropper, BfddH2O, centrifuge, low-
Boron quartz vials w/ caps (etched/acid washed), dry block, hotplate. 
 Time requirements. 3-4 hours.  
 
A.7.2 Procedural Steps 
Be(OH)2 precipitation 

1. Add 1:1 ddH2O/Superpure NH4OH drop by drop until ~ 30 drops (looking for 
smell to go from “sweet” to “sour”). Shake vigorously. 
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2. Do the blank first and then use the blank as a general base for how many to add to 
the samples. 

3. After 30-40 drops, add 5-10 drops, shake, then centrifuge for 1 min at 3600 rpm 
to see if you get a precipitate. Keep repeating until get a precipitate or if sample 
continues to smell sweet. Once a good precipitate is formed, move on.  

4. Shake vigorously. 
5. Centrifuge at 5 min, 3600 rpm. 
6. Decant supernate – pour until bead sticks to precip in centrifuge tube. 
7. Add 3 ml of BfddH2O and 1-2 drops of 1:1 NH4OH 
8. Shake vigorously. 
9. Repeat Centrifugation. 
10. Decant. 
11. Add 4 ml BfddH2O and 1-2 drops of 1:1 NH4OH. 
12. Shake Vigorously 
13. Repeat centrifugation. 
14. Decant and leave small drop at bottom of tube with precipitate. Precipitate should 

look “ghosty”. Whiter = Al contamination and Yellower = Fe contamination.  
15. Pipette precipitate (fully mix precipitate with remaining liquid) and liquid into 

quartz vial (already cleaned and acid washed – to acid wash, boil overnight in 6M 
HNO3, then 3x wash with ddH2O). 

16. OVERNIGHT: Dry down in dry block overnight to 3 days at 80° C. 
 
A.8. Process group 6 - flame oxidation/dehydroxylation and sample packing (Day 6) 
 General concepts. Beryllium oxide (BeO) is the target material for AMS 
measurement of Be, so the Be(OH)2 precipitate must be flame oxidized (1000° C) to BeO 
before packing into cathode holders for AMS analysis. Packing for AMS analysis at 
Purdue’s PRIME Lab utilizes high-purity Niobium (Nb) powder as a binding agent (Nb 
also increases the current during AMS analysis for PRIME Lab in particular – other labs 
use different metals).  
 Notes: The Nb powder used as a binding agent and AMS current booster must 
also be super-pure analytical grade (Table A.1). 
 DANGER: The BeO powder produced by the flame oxidation process is toxic and 
proper PPE and exposure controls must be followed. Although the ~ 1mg amounts of 
BeO generated in this process are below OSHA exposure limits if released into the 
laboratory atmosphere, all potential routes of exposure and laboratory contamination 
should be eliminated. Therefore, a HEPA respirator (Table A.1) should be worn during 
this process group, and samples should only be uncapped when: 1) flame oxidizing in the 
fume hood or 2) packing in the glove box. This eliminates the potential for the release of 
BeO powder into the lab atmosphere. All solid waste from packing in the glove box (Kim 
Wipes, etc.) should be separately bagged as potential BeO contaminated waste inside the 
glove box. The glove box should be thoroughly cleaned after each use in the fume hood 
with 0.1 M HNO3 and BfddH2O, which will react with any small amounts of residual 
BeO powder and convert to aqueous Be2+ or Be(OH)2.  
 
A.8.1. Materials and time requirements 
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 Materials. MSR Campstove, Pt-tipped tongs, EtOH, tweezers, microspatula, 
Niobium powder, hammer, packing rods, target press, empty cathode holders, glove box, 
Kim wipes. 
 Time requirements. 4-5 hours. 
 
A.8.2 Procedural steps 
Flame oxidation 

1. Remove everything from hood except for the hot plate and dry block with 
samples in it. 

2. Turn the hot plate off. Let the block cool so it is safe to touch, and take it off the 
hot plate. Cover samples with their caps. Remove the hot plate from the hood. 

3. Set up MSR WhisperLite camp stove in the hood. 
4. Light stove. Hold platinum tongs in the flame to burn off any impurities. Clean Pt 

tongs with EtOH.  
5. Using the platinum tongs, carefully hold one sample outside blue flame for 1 min. 

This allows the sample to heat up and drive off moisture so it doesn’t “pop” and 
jump out of the vial. 

6. Hold sample inside blue flame until parts of the sample are glowing red (these are 
the impurities, so different samples will have more or less). 

7. Let sample slightly cool, and set back in block and cap. 
8. Repeat steps 5-7 for all samples. 

 
Cathode holder packing 

9. Set up portable glove box. Make sure that it is clean and that it can be sealed shut.  
10. Place the following items in the glove box 

• Kim wipes 
• Ethanol (in drop bottle) 
• Tweezers* 
• 2 micro spatulas*, labeled with different colored tapes (1 for samples, 1 

for Niobium powder) 
• Hammer* 
• Target press* 
• Dry block with sample vials, with caps on 
• Niobium powder – working aliquot 
• Rods for packing cathodes* 
• Cathode holders from PRIME 
• Plastic bags for solid waste contaminated with BeO. 

*if these items are not new, rinse them 3x with Boron-free   
deionized water and then once with ethanol before placing 
in box 

11. Record the number of the cathode with the corresponding sample that will go in it 
in the Meteoric 10Be Template (see spreadsheet 1). Label the outside of the 
plastic cathode sleeves with the corresponding cathode number. 

12. Place desired cathode in the target press. 
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13. With designated micro spatula, scrape quartz vials in an effort to consolidate all of 
the BeO. It might be helpful to first scrape the ring of BeO down to the bottom of 
the vial, and then scrape bottom. 

14. After all BeO is scraped down, add a ratio of 1:1 to 2:1 Niobium powder to BeO. 
This will be an estimate from the amount of BeO visible in the vial. When adding 
the Niobium powder, make sure to use the micro spatula designated for Niobium 
powder. 

15. Scrape together the Niobium powder and BeO in the vial using the micro spatula 
designated for samples. 

16. CAREFULLY tap contents of quartz vial into cathode, making sure not to overfill 
the conical depression. 

17. Using a rod, push down the Niobium/BeO dust into the cathode opening. Then, 
with the rod centered over the opening, give the rod taps with a hammer to pack 
the dust into the cathode. Repeat these steps until the cathode is filled. 

18. Put cathode in designated plastic tube with the opening FACING DOWN. Pack a 
Kim Wipe in the top to avoid shaking and loss of material during shipment. 

19. Repeat steps 13-19 for each sample. 
20. Samples can be shipped for AMS analysis. 

 
A.9. Calculating 10Be concentrations of samples from AMS results 
 10Be concentrations (atoms g-1) are calculated using observed 10Be/9Be ratios from 
AMS, 9Be carrier mass, and sample mass: 
 

10Be (atoms g-1) =

9Becarrier (g)
10Be
9Be

(sample)−
10Be
9Be

(blankave )
⎛
⎝⎜

⎞
⎠⎟
NA(atoms mol−1)

M 10Be
(g mol−1)*msample(g)

 (1) 

 
Where 9Becarrier(g) is the total amount of Be carrier added to the sample, 10Be/9Be(sample) 
and 10Be/9Be(blankave) are the 10Be/9Be ratios of the sample and of all blanks (averaged), 
NA is Avogadro’s number, M10Be is the molar mass of 10Be, and msample is the amount of 
sample added. 
 Key assumption: This calculation assumes that native adsorbed exchange phase 
9Be is negligible. In many soils systems, this is a reasonable assumption. Assumptions 
can be checked by doing a 6M HCl acid leach with no 9Be carrier spike (Process Group 
1) and analyzing for total Be via ICP-MS. 
 
A.10. Process validation – cross-laboratory comparisons and blank ratios 
 AMS results for 11 process blanks and 2 cross-laboratory comparisons are 
presented in Table A.4. Due to the expensive and time-consuming nature of 10Be 
extraction and analysis, extensive cross-laboratory testing is not feasible, however 2 soil 
samples from Cyrus, MN (subsoil and topsoil) were run both at UMN and at the 
University of Pennsylvania’s CIL. 
 Results from process blanks show consistently low 10Be/9Be ratios (Range: 8 – 
332), with a single outlier blank with a ratio of 332. This high blank is likely due to 
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contamination from high 10Be organic samples that were run concurrently (with violent 
H2O2 reactions, resulting in the ejection of material), however meteoric 10Be 
concentrations in the sample run were high enough that even this process blank was 1-2 
orders of magnitude below measured concentrations. Including this outlier, UMN process 
blanks have an average ratio of 49 ± 95, while excluding this outlier, UMN blanks have 
an average ratio of 22 ± 16; consistently low enough for meteoric 10Be but not in-situ. In-
situ blanks should have ratios < 10. The reasonably low values of process blanks provide 
assurance that B levels in H2O are low enough that analytical precision is not affected. 
 Cross-laboratory comparisons are within the 1-sigma analytical uncertainty range 
for the low level (~1 x 107 atoms g-1) Cyrus, MN subsoil and within the 2-sigma 
analytical uncertainty range for the higher level (~ 2 x 108 atoms g-1) Cyrus, MN topsoil. 
These are excellent cross-laboratory results however it appears that analytical 
uncertainties are ~ 1-3% higher in the UMN samples (4-5%) than the UPenn samples (1-
3%). This is likely due to the fact that sample processing at UPenn takes place in a 
dedicated clean-laboratory, whereas sample processing at UMN takes place in a 
dedicated laboratory space, but not a certified clean lab. 
 Conclusions. Results of process blanks and cross-laboratory comparisons show 
excellent control of contamination and isobars at UMN. Typical blank ratios at PRIME 
and UPenn are 5-20 (infrequently to 400 with sample contamination), so UMN blanks are 
in an expected range for 10Be processing laboratories. Cross-laboratory comparisons 
show agreement within 1 or 2 sigma analytical uncertainty, with slightly higher 
uncertainties from UMN process. Although these differences would preclude processing 
for in-situ 10Be (~ 1 x 105 atoms g-1), they are negligible for the typical meteoric 10Be 
concentrations measured here (~ 1 x 107 – 1 x 109 atoms g-1).  
 
A.11. Detailed procedural notes – titration 
 General concepts. Titration involves the determination of the molarity of an 
unknown acid (or base) solution (the analyte) by using a known base (or acid) solution 
(the titrant). Briefly, for the purposes of this protocol, precise volumes of base (accurate 
to 0.005 ml) are added to a precise volume of acid containing 0.2% phenolphthalein 
indicator (which changes from colorless to pink at pH ~ 8.3) to the titration endpoint 
(indicator color change). The precise molarity of the analyte is determined and adjusted 
to the desired molarity. Titration is typically accomplished on a 1:10 dilution of stock 
solutions (25 ml of stock solution to 250ml total volume w/ ddH2O in a 250ml 
volumetric flask. 
 Notes. The end point should be reached as accurately as possible. Prior to 
reaching the endpoint, color flashes will be apparent, but can be “swirled” away. The 
endpoint is reached when the faintest color that cannot be swirled away is detected (often 
facilitated by using a white paper background).     
 For this procedure, a stock solution of 1.000M NaOH is utilized to determine the 
molarity of nominal 1M and 0.5M HNO3. These acids are then adjusted to 1.000M and 
0.500M. If 1.000M NaOH stock solution is not available, a nominal 1M NaOH solution 
must be titrated and adjusted to 1.000M using a 1.000M oxalic acid (made by dissolving 
oxalic acid dihydrate (H2C2O4 ●2H2O) pellets in ddH2O, using an analytical balance). A 
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1.000M NaOH stock solution cannot be made from pellets due to the strong absorption of 
atmospheric moisture by NaOH solids. 
 
A.11.1 General procedural steps 

1. Quantitatively dilute (10x) titrant and analyte aliquots using ddH2O and 
volumetric flasks (i.e. 25 ml of stock solution to 250ml total volume). 

2. Clean two 10-mL titrating burets by first washing them with deionized water. 
Then, set up burets on stands with clamps and run deionized water completely 
through both burets three times, capturing waste water in beakers below the 
burets. 

3. Prepare phenolphthalein indicator. If phenolphthalein is in solution, pour 
some into a drop bottle and move on to next step. If phenolphthalein is in 
powdered form, prepared a solution of 0.2% (0.2g/100mL), pour it into a drop 
bottle, and move on to next step. 

4. Rinse one buret three times with the titrant solution.  Drain the titrant solution 
through the tip of the buret each time, capturing the waste in a beaker. Making 
sure the stopcock is shut, fill the buret again with titrant solution.  

5. Rinse the other buret three times with the analyte solution made. Drain 
analyte solution through the tip of the buret each time, capturing waste in a 
beaker. Making sure the stopcock is shut, fill the buret again with analyte 
solution. 

6. On both burets, drain out solutions until meniscus is at least at 0mL mark. 
Record initial readings to 0.001 ml. 

7. Remove waste beakers from beneath the burets and pour into designated 
waste container. Place a clean beaker under the acid buret and run about 4mL 
out of the buret. Make sure that liquid is not splashing out of beaker. Read the 
buret and record. 

8. Put two to three drops on phenolphthalein indicator into the acid solution. 
There should be no color change at this point. 

9. Move the beaker with acid solution and phenolphthalein under the buret with 
base solution. You will be looking for a color change in the liquid, so it might 
help to put a white sheet of paper under the beaker. Add base solution at a 
moderate rate until you see a flask of pink color in the beaker. At this point, 
slow the flow of sodium hydroxide solution to a flow of drop by drop. Swirl 
the beaker between drops; if the pink color dissipates with swirling then keep 
the stopcock open. Once the pink color persists with swirling, quickly shut off 
the stopcock. Keep swirling the beaker for 15 seconds; if the pink color 
dissipates, continuing adding base solution drop by drop. If the pink color 
persists after 15 seconds, this indicates that the acid and base are at equal 
molar amounts in the solution. 

10. Record the final base solution level in the buret. 
11. Calculate the mL used of the acid solution and base solution by subtracting 

the final reading from the initial reading. Using these volumes, calculate the 
actual molarity of titrant solution (taking into account molar conversions for 
di-protic acids if necessary). 
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12. Repeat 3 times and calculate the average molarity of the analyte stock 
solution. 

13. Adjust analyte stock solution to desired molarity. Utilize titration calculation 
and stock solution spreadsheet (attached as an electronic .xls file to this 
dissertation document) to adjust correctly. 
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Item Vendor Catalog # Notes 
PPE 

Nitrile gloves Many - - 
Tyvek laboratory coat Fisher 0136110C Size: Large, 30/case 
Tyvek coveralls Fisher 013614C Size: Large, 25/case, elasticized wrist and ankles 
Tyvek booties Fisher 19813211 Height: 18”, 100/case 
Splash Apron Fisher 01353A Resin-coated, 36 x 27 in 
Face shield Fisher S66730 - 
Laboratory-grade eye protection Many - - 
Tyvek sleeves Fisher 17988108 100/case 

Expendable Reagents and Materials 
HCl: Analytical Grade, Trace Fisher A508500 Trace metal grade 
2.5% Calcium Gluconate DEHS - HF antidote 
HF: Analytical Grade, Trace Sigma-Aldrich 339261-100ML Trace metal grade 
HNO3: Analytical Grade, Trace Fisher A509500 Trace metal grade 
Oxalic acid dihydrate solid: 
Analytical Grade, Trace 

Sigma-Aldrich 658537-25G Trace metal grade 

SPEX Beryllium Standard Fisher PLBE22Y SPEX Certiprep Beryllium 2% HNO3, 1000 mg/L, 
#CLBE2-2Y 

Ethanol Many - 190 Proof 
Superpure NH4OH, Analytical grade, 
Trace 

EMD Millipore EM-AX1308-7 OmniTrace Ultra 

Hydrogen Peroxide, Analytical grade, 
Trace 

Sigma-Aldrich 95321-100ML 30%, Trace SELECT 

1.000M NaOH Standard - - - 
BIORAD AG 1X8 100-200 mesh, 
chloride form (Anion) 

Bio-Rad 140-1441 - 

BIORAD 50W-X8 200-400 mesh, H 
form (Cation) 

Bio-Rad 142-1451 - 

Boron-free ddH2O - - - 
Pipette tips (1ml) - - - 
Pipette tips (5ml) - - - 
Kim wipes - - - 
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Ion exchange columns Evergreen 208-3384-060 Medium filter (45-90um), 5” Polypropylene 
Chromatography Columns 

Low-Boron quartz vials United Silica 
Products 

USP-11-0032 - 

Low-Boron quartz caps United Silica 
Products 

? - 

Niobium powder, high purity 
analytical grade 

Fisher AA4051009 ? 

50 ml plastic centrifuge tubes (waste) Fisher S99412 (x2) Self-standing, conical bottom 
15 ml plastic centrifuge tubes Falcon/Fisher 1495970C BD falcon, in Styrofoam racks 
Lab tape (multiple colors for acid 
labeling) 

- - - 

pH test strips Fisher 14850111 pHydrion 
Q-GARD Boron Carttridge Fisher QGARD00B1  

Durable Items and Equipment 
Hot Plate - - Picotrace? 
PFA Containers Savillex Many sizes needed  
Acid neutralization carboy - - - 
Titrating burettes - - - 
Double burette clamp - - - 
Ring Stand - - - 
Pipettor (0.5-5ml) - - - 
Pipettor (100-1000ul) - - - 
Fume Hood - -- - 
Laminar Flow Hood - -- - 
Column Carousel (Spice Rack) - - - 
Glove Box - - - 
Target Press - - - 
Propane Stove - - MSR-type 
HEPA mask + Filter Fisher 19999206 - 
Pt-tipped tongs - - - 
Dry bath or dry block Benchmark 

Scientific 
Custom 11MM x 15MM height 

Dropper bottles Fisher 03402B - 
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Microspatulas - - - 
Containment Trays - - - 

Table A.1. Necessary PPE, expendable reagents and materials and durable items and equipment for meteoric 10Be extraction protocol. Specific vendor and item 
suggestions are provided as a source reference and not as an endorsement. 
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Reagent 

Amount needed 
for 10 samples 

(ml) 

Amount of highest 
concentration needed 

to prepare (ml) 

Total amount of 
highest concentration 

needed (ml) Stock solution 

Amount of 
stock (ml) 

 
Amount of 
H2O (ml) 

Total 
Amount 

(ml) 
6M HCl 200 200 213.5 32% trace HCl 

(10.2 M) 
588 412 1000 

3M HCl 5 2.5 - 6M 100 100 200 
0.3M HCl 220 11 - 6M 50 950 1000 
H2O2 30 30 30 30% 50 0 50 
HF 30 30 30 Trace conc 50 0 50 
0.4M Oxalic 
Acid 

370 370 370 Crystalline 
dehydrate 
(126.07g/M) or 
anhydrous 
(90.03 g/mol) 

Dihydrate 
(50.43 g) 
 
Anhydrous 
(36.012 g) 

1000 1000 

5M HNO3 320 320 376 70% trace 
HNO3 (15.8 M) 

316 684 1000 

1M HNO3 220 44 - 5M 200 800 1000 
0.5M HNO3 120 12 - 5M 100 900 1000 
1:1 NH4OH 
BfddH2O 

50 50 50 Superpure 
NH4OH  

100 100 200 

Boron-free 
ddH2O 

480 480 480 Boron-free di - - ~ 5L 

Table A.2. Reagent preparation guide.
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Ion Valence ppm References 
Ca 2 14,500 (0 – 41,000) Essington, 2003, Batjes, 

1995 
Mg 2 3500 (0 – 11,000) Essington, 2003, Batjes, 

1995 
Na 1 800 (0 – 6,000) Essington, 2003, Batjes, 

1995 
K 1 900 (0 – 2,700) Essington, 2003, Batjes, 

1995 
Fe 2/3 10,000 (10,000 – 100,000)* Chao and Zhpu, 1983; 

Deshpande et al., 1968; 
Wagai and Mayer, 2007 

Al 3 2000 (0 – 8900) Essington, 2003, Batjes, 
1995 

Si 4 20 (10 – 40) Sadzawka and Aomine, 
1997 

Be (environmental) 2 < 1.5 Lively and Thorleifson, 
2009 

Be (spiked) 2 500 Calculations in this study. 
Table A.3. Typical concentrations of exchange-phase ions in global soils. 
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Sample Date 
PRIME Lab 

AMS # 10Be/9Be 

1-σ 
Uncertainty 

10Be/9Be 10Be atoms g-1 
1-σ Uncertainty 

10Be atoms g-1 
Process Blanks: UMN 

BLNK 1 01-May-13 201301270 9.6 1.8 - - 
BLNK 3 01-May-13 201301271 21 4 - - 
BLNK 1 05-Nov-13  20 2 - - 
BLNK 2 05-Nov-13  21 5 - - 
124620 11-May-14 201401407 9 1 - - 
124621 11-May-14 201401408 8 1 - - 
BLNK 1 26-Jan-14  332 71 - - 
BLNK 2 26-Jan-14  23 4 - - 
BLANK 03-Sep-14 201402528 20 2 - - 
124628 03-Oct-14 201402730 20 3 - - 
124634 03-Oct-14 201402731 65 7 - - 
Average - - 50 (22) 95 (16) - - 

Cross-Laboratory Comparison UMN:UPenn CIL 
2H1024 – Cyrus, MN Subsoil: UMN 02-May-13 201301272 373 19 1.04 x 107 4.67 x 105 
2H1024 – Cyrus, MN Subsoil: UPenn 21-Sep-12 201202822 361 12 1.07 x 107 3.15 x 105 
2H3030 – Cyrus, MN Topsoil: UMN 01-May-13 201301273 7170 280 2.06 x 108 7.98 x 106 
2H3030 – Cyrus, MN Topsoil: UPenn 21-Sep-12 201202819 6550 70 2.20 x 108 2.29 x 106 

Table A.4.  Process Blanks and Cross-Laboratory comparisons. 
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