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Abstract 

This study investigates the relationships between hydrologic regime and riparian 

vegetation establishment; specifically the impact of changes in hydrologic regime on the 

establishment of riparian vegetation in addition to exploration of associated sediment 

transport patterns. Recent flow increases within the Minnesota River basin have been 

associated with reductions in woody riparian vegetation establishment as a result of 

decreased point bar exposure time and increased scour at high flow. Reductions in 

riparian vegetation establishment may contribute to reduced sediment deposition; further 

promoting river widening and sediment loading. Field, geo-spatial, and stream flow data 

collection were completed within the Elm Creek and lower Minnesota River watersheds 

to further demonstrate and characterize the eco-hydrologic relationships between stream 

flow, vegetation establishment, and sediment transport within the Minnesota River basin.  
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Part 1. Introduction and Research Overview 

Over the past few decades, increases in stream flow have been observed within many 

upper Midwestern watersheds, including the Minnesota River basin (Lenhart et al., 

2011a; Novotny and Stefan, 2007; Schilling and Libra, 2003). These increases can be 

attributed to changes in both climate and land-use, including increased precipitation and 

the expansion of subsurface tile drainage and annual row crop coverage (Zandlo, 2008; 

Zhang and Schilling, 2006). Channel adjustment has occurred within the Minnesota River 

basin in response to these changes in the form of channel widening and excess sediment 

transport (Lenhart et al., 2013; Schottler et al., 2014). Over 330 streams within the 

Minnesota River basin exceed turbidity standards and are listed as impaired by the 

Minnesota Pollution Control Agency (MPCA, 2008).  

 

High levels of suspended sediment contribute to degradation of aquatic eco-systems 

including habitat destruction and sediment loading in downstream rivers (Waters, 1995). 

Inter-relationships exist between sediment transport and riparian vegetation including 

sediment scour and deposition on point bars (Corenblit et al., 2009; Bertoli et al. 2011; 

Gurnell et al., 2012; Lenhart et al; 2013). Additionally, alterations in stream-flow regime 

influence the establishment and survival patterns of riparian vegetation (Dixon et al., 

2002; Johnson 1997). Component of a region’s hydrologic regime are closely related to 

the establishment and survival patterns of riparian vegetation. These components include 

the timing, magnitude, and duration of base and peak flow events, as well as the rate of 

decline of the recession limb (Shafroth et al., 1998).  
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Recent studies have shown that changes in hydrologic regime within the region have 

contributed to reductions in woody riparian vegetation establishment (Lenhart at al., 

2013). Prolonged summer flow duration and increased scour at high flow can contribute 

to vegetation mortality (Novotny and Stefan, 2007). High flows also lead to physical 

damage and removal of vegetation by ice and debris (Sigafoos, 1964; Yanosky, 1982). 

Additionally, excess sediment deposition occurring during large flood events serves to 

further inhibit vegetation survival (Hupp, 1988). Extended inundation can also lead to 

depletion of oxygen in the root zone and exhaustion of energy reserves necessary for 

vegetation survival (Gill, 1970; Whitlow and Harris, 1979; Stevens and Waring, 1985).  

 

Exposed point bar sites following flood recession not only provide germination sites for 

woody vegetation, but also promote root elongation (Mahoney and Rood, 1991, 1992; 

Segelquist et al., 1993). More extreme flood peaks and recession rates may lead to 

extreme changes in soil moisture supply necessary for plant survival. Rood (1998), found 

that for survival of tree seedlings, the rate of water recession following a spring flood 

should not exceed the rate of root growth. For cottonwood (Populus deltoides), one of the 

fastest growing species in North America, the rate of root growth is approximately 2.5 

cm/day (Rood and Mahoney, 2000). 

 

Differing flow regimes and geomorphological characteristics within floodplain and point 

bar features lead to differing plant community compositions. Floodplains are generally 

flat surfaces located adjacent to the channel. The bank full stage, or point at which water 

begins to overflow the channel, is the elevation of the active floodplain. Most river 
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systems experience overbank flow onto the floodplain every one to two years on average 

(Leopold et al., 1964). As a stream meanders down gradient over time, sediment is 

eroded or cut from one bank and deposited on the opposite side of the channel eventually 

causing lowering of the base elevation within a floodplain and the development of 

terraces, or abandoned floodplains (Brooks et al., 2013; Fitzpatrick et al., 1999).  

 

Point bars occur at an elevation above base flow, but below bank full elevation and are 

characterized by annual spring flooding and heavy repeated erosion and deposition of 

materials. As deposited sediment, generally coarse sand and gravels, builds up on point 

bars during stream migration, point bar vegetation communities develop eventually 

leading to floodplain development and community succession. (Brooks et al., 2013; 

MNDNR, 2005; Wolman and Leopold, 1957) (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Floodplain, point bar, and terrace features within a river valley system. 
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Point bar vegetation communities are characterized by plants adapted to annual cycles of 

major natural disturbance. Species typically include perennial forbs and graminoids that 

are tolerant of erosion and inundation or annual herbaceous species that germinate rapidly 

on exposed sediments. Perennial species are generally limited to those that have well 

developed root systems or that are capable of adventitious rooting, such as sandbar 

willow (Salix interior) and black willow (Salix nigra). Many species, including 

beggartick (Bidens sp.) and smartweed (Polygonum sp.), both annuals forbs, produce 

seeds that remain viable buried in sediment until conditions are suitable for germination. 

Other annual grasses such as Creeping Lovegrass (Eragrostis hypnoides) or awned 

umbrella sedge (Cyperus squarrosus) are often abundant along river shores. Disturbance 

patterns within riparian plant communities also allow for rapid establishment of invasive 

species, such as reed canary grass (Phalaris arundinacea) (MNDNR, 2005). 

 

Floodplain forest communities are present on occasionally or annual inundated sites and 

are dominated by deciduous trees tolerant of saturated soils, inundation, and frequent 

erosion and deposition of sediment. Characteristic species often are extremely mobile 

during some part of their life, using flowing water to disperse seed or producing seeds or 

propagules that remain dormant for extended periods of time. Some floodplain species 

also have physiological adaptations allowing for oxygen supply to submerged tissues, in 

addition to the ability to sprout new stems from the base of damaged ones. Actively 

flooded habitats are frequently dominated by silver maple (Acer saccharinum), with 

occasional green ash (Fraxinus pennsylvanica), American elm (Ulmus americana) or 



 

 5 

cottonwood (Populus deltoides). Less frequently flooded habitats support mixed stands of 

silver maple, box elder (Acer negundo), American elm, green ash, and cottonwood 

(MNDNR 2005; Smith, 2008). 

 

Common woody species occurring on point bars and in floodplains present in this study 

include silver maple, American elm, cottonwood, black willow, sandbar willow, green 

ash, and box elder. Of these species, black willow and sandbar willow most frequently 

appear on point bar sites as saplings or shrubs, with occasional young pioneers of 

cottonwood or silver maple, while other species are generally observed within floodplain 

or terrace communities as adult trees (MNDNR, 2005; Smith, 2008). 

 

Sandbar willow is especially adept at colonizing areas where the water table is near the 

surface and is a dominant riparian pioneer. This is especially true on exposed point bars 

created by receding floodwaters; seasonal flooding and sedimentation also strongly favor 

sandbar willow establishment. Sandbar willow, capable of developing roots from 

adventitious buds, can grow into dense thickets. Individual stems may grow and flower in 

just two or three years, but rarely live more than 12 years on average (MNDNR, 2005; 

Ottenbreit and Staniforth, 1992; Smith, 2008).  

 

Black willow, although similar to sandbar willow, is better able to withstand inundation 

and sedimentation than other species (Gill, 1970; Pezeshki, 1998). This species transports 

seeds by both wind and water and is capable of developing roots from adventitious buds 

(Smith, 2008).  Black willow has a dense root system excellent for stabilizing stream 
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banks (Pitcher and McKnight, 1990). Black willow however, is brittle and easily subject 

to breakage (Fowells, 1965). 

 

Silver maple, often dominant within floodplains, is of the earliest species to disperse 

seeds and to establish or to develop transplants. It is also a rapidly growing species, 

growing from ten to twenty-five cm per year. Where mature trees are present, seedlings 

are often abundant during the late spring, especially along the waterline (Geyer et al., 

2010). On active floodplains, recruitment of silver maple saplings in the tree canopy 

seems to occur most often when it establishes within thickets of sandbar willow and 

cottonwood (MNDNR, 2005; Smith, 2008). 

 

Cottonwood is among the fastest growing species in North America, growing as much as 

80cm by autumn of the 1
st
 year with a rate of root growth of about 2.5 cm/day (Rood and 

Mahoney, 2000). Cottonwoods produce massive amounts of seeds, transported by both 

wind and water, which reach numbers of up to 48 million seeds per tree (Cooper and Van 

Haverbeke, 1990).  It is a relatively short-lived tree, seldom surviving more than 80 

years. It has also been found to be relatively tolerant of drier sites (USDANRCS, 2002).  

 

American elm, although producing fewer seeds as compared to silver maple or 

cottonwood, is more shaded tolerant and grows quickly when a canopy gap opens, 

developing a strong root system (Smith, 2008). American elm is tolerant of infrequent, 

short duration flooding during the growing season and is often more abundant on terraces 

or on less frequently flooded sites where replacement of silver maple by more shade 
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tolerant trees, such as American elm, green ash or box elder is occurring (MNDNR, 

2005). 

 

Green ash is tolerant of moderate levels of spring flooding and sedimentation, but does 

not grow in permanently saturated soils and is intolerant of shade from surrounding trees. 

Although green ash is not considered to be a strong pioneer species within point bar or 

floodplain zones, it is a fairly early successional tree within upland habitats. Green ash is 

thought to be a tough, durable tree that rapidly colonized abandoned agricultural and 

urban land (Dickerson, 2002; MNDNR, 2005; Smith, 2008).  

 

Within alluvial systems, box elder usually follows establishment of pioneer species 

including willow and cottonwood. Box elder can withstand moderate seasonal flooding of 

up to 30 days during the growing season, and is known to be an aggressive colonizer of 

degraded or abandoned land. Seeds will germinate in shade or full sunlight, but will begin 

to die off after one or two years if openings are not formed. Box elder seeds are light, 

large-winged, and widely wind-dispersed, and remain viable throughout the winter after 

ripening in the autumn and fall continuously until spring (Overton, 1990; Smith, 2008). 

 

Woody riparian species commonly disperse seeds between April and August as 

determined from seed dispersal dates provided by Dixon (2002), Lenhart (2013), and 

Smith (2008). Peak seed dispersal windows for each of these species were compared to 

vegetation survey results and annual flow condition analysis. For purposes of analysis 

within this study, the growing season was considered to be April 15 through September 



 

 8 

20 as determined by the earliest and latest seed dispersal dates provided in literature 

(Table 1).  

 

Table 1 

  Seed Dispersal Windows of Common Woody Riparian Species 

Species Seed Release Date 

Silver Maple April 15 - June 15 

Black Willow April 15 - July 15 

American Elm May 15 - June 15 

Cottonwood May 15 - July 15 

Sandbar Willow May 15 - August 15 

Green Ash July 1 - September 10 

Box Elder August 1 - September 20 

 

1.1 Background 

The Minnesota River basin drains over 43,000 km2, 80% of which is agricultural land, 

consisting mainly of corn and soybean. Due to its recent geologic history, the Minnesota 

River basin is primed to be a source of sediment with flat rolling glacial till plains and 

steep valley walls created by the rapid draining of glacial Lake Agassiz. The Minnesota 

River runs through a deep, wide alluvial valley comprised of fine textured silty to sandy 

loam. Tributaries of the Minnesota River, down-cut through upstream knickpoint 

propogation, consist mostly of finer-textured glacial till and glaciolacustrine soils (Gran 

et al., 2009; Lenhart et al., 2013; Matsch, 1983; Wilcock, 2009). 

 

Today, the Minnesota River is the largest source of sediment to the Mississippi River in 

Minnesota (Engstrom et al., 2009). Large sediment loads to the Minnesota River and its 

larger tributaries have been found to come mainly from bluffs, which are defined as 
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valley walls, as well as from terrace bluffs which are features that occur higher than the 

modern floodplain. Much of this sediment is thought to come from bluffs in steep knick 

zones of the Blue Earth River (Gran et al., 2009; Wilcock, 2009). Elm Creek, located in 

Martin and Jackson counties is a head-waters tributary of the Blue Earth River within the 

Minnesota River basin. Elm Creek, which drains about 700 km2 is covered by 86% corn 

and soybean agriculture and is one of the greatest contributors of total suspended solids to 

the Blue Earth River as compared to other sub-basins of the Blue Earth River (Quade, 

2000).  

 

Land-use and climate changes over the last century within the Minnesota River basin 

have significantly altered the regions hydrology. These changes include the conversion of 

perennial prairie vegetation to annual row-crop agriculture, the expansion of subsurface 

tile drainage, and the loss of hydrologic storage (Leach and Magner, 1992) Conversion to 

annual row-crop agriculture reduces plant water use during the critical runoff period of 

April-June (Brooks et al., 2006). Over 90% of wetlands in the region have been drained, 

resulting in greater amounts of water being delivered to rivers (Miller et al. 1999). In 

addition, Lenhart et al. (2011a) found an approximate 10% increase in precipitation for 

the region between the periods of 1950-1979 and 1980-2008 and a 75% increase in mean 

annual flow. 

 

Although the interactions between vegetation and fluvial geomorphology have been well 

established and accepted (Gurnell et al., 2012), the role of hydrology-vegetation 

interactions is not well understood within the Minnesota River basin specifically (Lenhart 
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et al., 2013). Developing a better understanding of the patterns and characteristics of 

vegetation establishment, hydrologic regime, and sediment deposition within the 

Minnesota River basin would aid in development of management actions necessary to 

meet water quality standards (Baskfiled et al., 2012).  

 

1.2 Related Research and Research Needs 

Research has shown that altered vegetation-point bar interactions are associated with 

reductions in riparian vegetation establishment leading through decreased deposition on 

point bars and river widening (Dixon et al. 2002; Rood and Mahoney, 1995). Lenhart 

(2013), also demonstrated how altered hydrologic regimes influence the colonization of 

woody riparian species along the lower Minnesota River through the measurement of 

sandbar slope and elevation of riparian vegetation establishment where previous research 

has been done by Noble (1979). Plant elevation establishment was found to be about 

2.5m higher on average than in 1979. With an average sandbar slope of 10% at sites 

surveyed within the study, this translated to about 25m of un-vegetated sandbar length 

that may have been vegetated prior to flow increases observed after 1979 (Lenhart et al., 

2011a).  

 

Similar studies have been completed within different watersheds dating back to 1984. 

Hickin (1984) published a paper documenting the influence of vegetation on river 

behavior and fluvial geomorphology. Since that time, research has found that the 

interactions among vegetation, flow, and sediment are key for the development of 

vegetated surfaces and for floodplain sediment deposition (Bertoldi et al., 2011). 
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Corenblit et al. (2009) showed that relationships between vegetation establishment and 

sediment transport are directly related to channel evolution.  

 

Extensive research within completed within various Midwestern watersheds has shown 

how altered hydrologic regime influences the establishment of riparian vegetation, 

including work done by Dixon and Turner (2006) who demonstrated the effects of post-

colonization flows on the recruitment success of riparian shrubs and trees through use of 

the recruitment box model. The recruitment box model, developed by Rood (1995), 

correlates appropriate flow conditions with peak seed dispersal times of woody 

vegetation. Additional studies completed by Rood et al. (2000, 2010), among several 

others have served to further demonstrate the relationships between hydrologic regime 

and riparian vegetation establishment (Alldredge and Moore, 2014; Gurnell et al., 2012; 

Shafroth et al., 2010). 

 

Further research related to sediment transport and channel evolution has been completed 

within the lower Minnesota River basin. This includes work done by Lenhart et al. (2013) 

and Schottler et al. (2014), where the lower Minnesota River was found to have widened 

by 52% over the past 70 years. Lenhart et al. (2011b) also found stream cross-sectional 

area enlargement and loss of river length within the Elm Creek watershed, in addition to 

high levels of turbidity in a 2008 study. Additionally, Magner (2004) found channel 

enlargement throughout the greater Blue Earth River basin. 

 

Sediment sources and delivery rates within the Minnesota River basin were identified by 

Wilcock (2009). Tributaries of the Blue Earth River, such as Elm Creek, were found to 
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deliver more sediment to the Minnesota River than is transported out. This indicates that 

sediment storage is occurring within the Minnesota River valley. Lenhart et al. (2013) 

found high rates of deposition within the floodplain and backchannel cut-offs; little is 

known however about point bar deposition specifically within the study area. Although 

floodplain deposition has increased since 1850, it is thought that the basin may be less of 

a sediment sink than historically thought, due to decreased point bar deposition and 

reduced floodplain connectivity. Point bars within the lower Minnesota River basin may 

be trapping less sediment than historically thought, due to increased base and peak flows 

that more readily mobilize un-vegetated sediment (Corenblit et al., 2009; Magner et al., 

2004).  

 
1.3 Research Overview 

This study investigates the relationships between hydrologic timing and riparian 

vegetation establishment; specifically the impact of changes in hydrology on the 

colonization of riparian vegetation. How do changes in hydrology, such as the timing and 

duration of base and peak flow events, affect the germination, recruitment and 

establishment of vegetation on point bars? Additionally, how are vegetation 

establishment and hydrologic regime patterns associated with sediment deposition 

patterns on point bars across time and space?  

 

Field data collection, stream-flow analysis, and geo-spatial analysis were completed 

within the Minnesota River basin along the lower Minnesota River and Elm Creek 

watersheds. Field data collection included vegetation and soil surveys, which were then 

related to annual stream-flow patterns. Within the lower Minnesota River basin, available 
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aerial photography was used to document change in point bar and riparian vegetation 

establishment over recent years which was then correlated to years of high or low flow. 

Woody age structure data was also collected and related to historical flow patterns within 

the lower Minnesota River basin.  

 

Results from this study will help to provide an understanding of the eco-hydrologic 

relationships between flow, vegetation establishment, and sediment transport. This 

understanding will aid in meeting the goals of projects such as the Minnesota Department 

of Agriculture Priority Setting for Restoration in Sentinel Watersheds, aimed at reducing 

sediment related impairments within the Minnesota River Basin.  

 

Part 2. Methods 

The relationships between vegetation, flow, and sediment were explored through the 

collection of both field and geospatial data. Within this study, vegetation and soils data 

were related to available stream-flow and geomorphic data collected within the 

Minnesota River basin along the lower main stem Minnesota River and along a 

headwater tributary, Elm Creek. Seven field sites were sampled within the lower 

Minnesota River Basin (07020012) and eight field sites where sampled within the Elm 

Creek watershed (0702000909), as displayed in Figures 2 and 3. Field survey locations 

within each watershed were numbered starting from the furthest upstream site to the 

furthest downstream site; the coordinates of which are provided in Table 2. 
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Figure 2. Field survey sites within the lower Minnesota River basin. N=7. 

USGS Stream Gauge: 05330000  

USGS Stream Gauge: 05325000  
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Figure 3. Field survey sites within the Elm Creek watershed. N=8. 
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Table 2 

 

    Minnesota River Basin Field Survey Site Locations 

Watershed Site Northing Easting 

Lower Minnesota River 1 425507 4910799 

 
2 426756 4923392 

 

3 428305 4932128 

 

4 442950 4945740 

 

5 457708 4960897 

 
6 468683 4960548 

 

7 469991 4959234 

Elm Creek 1 348956 4848514 

 

2 353869 4845909 

 
3 354009 4845771 

 

4 366616 4842729 

 

5 391827 4845997 

 

6 391945 4845691 

 
7 396485 4845718 

  8 397822 4845525 

Note. Coordinates are in NAD83 UTM 15. 

 

2.1 Patterns of Vegetation Establishment 

Vegetation surveys were completed within the study area during low flow conditions 

between late July and September of 2013. Surveys consisted of transects placed from the 

water’s edge to the bank top documenting plant community establishment patterns on 

point bars. Age structure of woody vegetation was documented through the collection 

and analysis of tree core samples taken within the riparian zone. Vegetation 

establishment patterns were also analyzed using available aerial photography and Lidar 

data obtained from the Minnesota Department of Natural Resources MNTopo online 

Lidar application (MNDNR, 2014).  
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2.1.1 Transect Surveys 

Along each meter of transect surveys, density of woody seedlings and saplings was 

documented within a distance of one half meter along either side of the transect. Within 

this study, a seedling was defined as a non-woody tree species approximately one to two 

years in age and a sapling was defined as a woody tree species less than three inches in 

diameter, often older than two or three years (USACE,  2009). Additionally, percent 

coverage of all species was recorded to the nearest percent within a half square meter 

quadrat every two meters along transects within the lower Minnesota River basin and 

along every meter within the Elm Creek watershed.  

 

In order to document patterns of vegetation occurrence and dominance across each 

watershed, quadrat data was used to calculate relative frequency and relative coverage of 

species at each site across all quadrats, following methodology outlined by Curtis and 

McIntosh (1950). Formulas used for determination of relative frequency and coverage are 

displayed in Equations 1 and 2. Relative frequency of all woody seedlings and saplings 

was calculated, in addition to relative coverage and frequency of all forb, graminoid, and 

woody species. Relative coverage of annual versus perennial species, differing plant 

physiognomy groups, as well as adventitious rooting verse non adventitious rooting 

species was also calculated to further characterize point bar vegetation communities 

within the study area (MNDNR, 2005; Yadava and Supriya, 2006).  
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = (
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑂𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎𝑙𝑙 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑂𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎𝑙𝑙 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑠
) × 100 

 

(1) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = (
𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑜𝑣𝑒𝑟 𝑜𝑓 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑂𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎𝑙𝑙 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑜𝑣𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑂𝑐𝑐𝑢𝑟𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎𝑙𝑙 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑠
) × 100 

(2) 

 

In order to document significant differences in occurrence of vegetation groups across all 

quadrats and sites within lower Minnesota River and Elm Creek transect surveys, an 

analysis of variance (ANOVA) test was used. This test, based on the null-hypothesis that 

species occurrence within each vegetation group is equal, was used to tests for significant 

differences between occurrences of varying species within vegetation groups including 

seedlings vs. saplings, late versus early seeding species, and species with adventitious 

rooting capability versus those without (Lock et al., 2005). The p-value, or strength of 

evidence against the null-hypothesis was set to the 0.10 confidence level within this study 

for determination of significance difference in species occurrence.  

 

2.1.2 Elevation Establishment Patterns 

Patterns of plant establishment were documented through comparison of average 

elevation of vegetation establishment above channel elevation at each study site within 

the lower Minnesota River basin and average vegetation elevation relative to water 

surface within the Elm Creek watershed. Average elevation of plant establishment at each 

site within both study areas was determined using 2010 and 2011 Lidar data and aerial 

photography. Although vegetation elevation values obtained using aerial photography 
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and Lidar may have been altered by depositional events occurring since the time of actual 

vegetation establishment, these values still provide a picture of varying vegetation 

establishment patterns across the study area.  

 

Channel elevations for each site within the lower Minnesota River basin were obtained 

from the nearest of N=19 2013 cross-sectional survey data provided by the United States 

Army Corp of Engineers (USACE) from St. Peter to Bloomington, MN (Figure 4). 

Although 2013 channel elevation data does not correspond exactly with 2010 and 2011 

estimates of vegetation elevation, this still provides a representation of plant elevation 

establishment patterns at each site based on the best available data.  

 

Cross-sectional data was only available within the Elm Creek watersheds at select 

locations prior to 2008. For this reason, 2010 and 2011 Lidar data was instead used to 

obtain estimates of water surface elevations at each site. As Lidar elevation data is 

limited by its un-ability to penetrate the water surface, water surface elevations were used 

to compare vegetation establishment patterns at each site, rather than actual channel 

elevations. This data still provides however, the best available evidence for varying 

vegetation establishment patterns across the Elm Creek watershed. 

 

An analysis of variance test was again applied to test for significant differences in 

average elevation of vegetation establishment across sites with similar plant community 

structure or hydrologic regime, particularly sites dominated by sandbar willow verses 

those without. A 0.10 confidence level was used based on the null-hypothesis that 
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significant differences in elevation of vegetation establishment do not occur between sites 

with varying characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3 Historic Elevation Establishment Patterns 

Within the lower Minnesota River basin, modern vegetation elevation establishment data 

were compared to available historical elevation establishment data at three sites surveyed 

by Noble (1979), to document changes in plant elevation establishment between 1979 

and now (Figure 5). Current vegetation elevation and slope data at each of these three 

sites was again obtained using available aerial photography and Lidar data (MNDNR, 

2014). An estimate of change in length of un-vegetated sandbar was then calculated 

Figure 4. 2013 cross-sectional survey locations within the lower Minnesota River basin.  

    N=19.  

# 2013 USACE Cross-sections 

Field Survey Sites 
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through the multiplication of modern sandbar slope to length of change in vegetation 

establishment elevation (Lenhart et al., 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4 Woody Vegetation Age Structure Analysis  

Tree core samples were taken during August of 2014 at six locations along the main 

steam lower Minnesota River basin from Saint Peter to LeSueur Minnesota using a 

Haglöf tree core sampler (Figure 6). Approximately five cores were taken within the 

riparian corridor at each site across a range of low to high diameter of representative 

Figure 5. Noble (1979) sampling locations. 
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species in order to document the range of age classes and species at each site. Three 

sampling locations were point bar sites, dominated by sandbar willow with some 

cottonwood and silver maple; whereas the other three sites were representative of 

floodplain forests dominated by silver maple with occasional box elder or American elm. 

Cores where collected at breast height along with associated diameter at breast height 

(DBH) measurements. Diameter measurements were then related to counting of tree core 

rings completed under a dissecting microscope in order to determine an age class for each 

sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 2014 tree core sampling locations. 
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2.2 Patterns of Hydrologic Regime 

2.2.1 Timing, Duration, and Magnitude of Base and Peak Flow Events within the Lower 

Minnesota River Basin 

 

Timing, magnitude and duration of annual base and peak flow events were determined 

within the Minnesota River basin using annual stream discharge data from 2004-2013. 

Mean, maximum and minimum flow were determined during the growing season of April 

15
th

 
 
to September 20

th
 for each year, in addition to timing and duration of maximum 

flood peaks. The rate of recession of the flood peaks during each growing season was 

also calculated using a rating curve developed from available stage-discharge data within 

each study watershed. Hydrologic data was then compared to vegetation establishment 

data to document patterns of establishment during years of high or low flow.  

 

Stream discharge data within the lower Minnesota River basin was obtained from the 

United States Geologic Survey (USGS) Current Water Data for Minnesota website at the 

Jordan, MN (05330000) and Mankato, MN (05325000) stream gauges (USGS, 2014). 

2004-2008 stream discharge data within the Elm Creek watershed was obtained from a 

Minnesota Pollution Control Agency (MPCA) maintained gauge located just west of field 

survey site number 7 (Figure 3) and 2009-2013 data was obtained using a synthetic 

hydrograph based on available stream gauge data in adjacent watersheds (Lenhart, 2008).  

Historical stream flow data was also analyzed at the Mankato gauge during the years of 

1940 and 2013 (Table 3). Average annual flows during each decade from 1940 to 2010 

and from 2011 to 2013 were calculated, in addition to average magnitude and timing of 

maximum and minimum flows during each of those time periods.  
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Table 3 

     Lower Minnesota River Basin Stream Gauge Data Analysis Summary 

Gauge 

Number Location 

Length of Data 

Record 

Modern Data 

Analysis 

Historic Data 

Analysis 

05325000 Mankato 1903-2014 2004-2013 1940-2013 

05330000 Jordan 1934-2013 2004-2013 N/A 

 

2.2.2 Determination of Point Bar Submerging Flows and Growing Season Submergence 

Point bar submerging discharge was determined at each field survey site in order to 

document timing and duration of point bar submergence and exposure during peak seed 

dispersal windows of riparian vegetation. These values were determined using available 

geomorphic cross-sectional data along the lower Minnesota River and Elm Creek 

watersheds. As previously shown in Figure 4, the closest of N=19 cross-sections were 

related to each site within the lower Minnesota river basin in order to determine 

submergence discharge and N=8 cross-sections taken during various years prior to 2008 

provided by Lenhart (2008) were used within the Elm Creek watershed (Figure 7). 
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Historical cross-sectional data within the lower Minnesota River basin was obtained from 

the USACE. Although known to be taken prior to 1979, specific dates of these cross-

sections were unavailable. Accurate coordinates of cross-sections were also unknown, but 

were geo-referenced to each other and known to occur within the lower Minnesota River 

basin. N=10 cross-sections taken from Mankato to LeSueur, MN, were analyzed to obtain 

an estimate of point bar submerging flows prior to 1979. Point bar submergence for the 

period of 1980-2013 was determined using the average of N=5 2013 cross-sections 

between Mankato and LeSueur as displayed in Figure 4. Decades of high or low flow 

Figure 7. Cross-sectional survey locations within the Elm Creek watershed. N=8.  

# Cross-Section Locations 

Field Survey Sites 
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were then related to tree core sample age class structure and historical elevation 

establishment data 

 

Cross-sectional data were entered into the Spreadsheet Tool for River Evaluation, 

Assessment and Monitoring (STREAM) developed by the Ohio Department of Natural 

Resources (Ward, 2011). This tool, based on the Manning’s equation (Equation 3), 

calculates a value for velocity (V) based on hydraulic radius (R) and channel slope (S), 

which is then multiplied by cross-sectional area to obtain an estimate of point bar 

submerging discharge. Total cross-sectional area was calculated with bank-full elevation 

set to match the elevation of the top of the point bar.   

 

𝑉 =
1.00

𝑛
 𝑅ℎ

2/3
𝑆1/2 

(3) 

 

 

The value of the roughness coefficient, n, was calculated within the lower Minnesota 

River basin using available velocity and geomorphic field data obtained from the USGS 

Current Water Data for Minnesota website at both the Jordan and Mankato stream gauges 

and the value of the slope was obtained using Lidar data and aerial photography 

(MNDNR, 2014; USGS, 2014). From these calculated submergence discharges, percent 

of complete point bar submergence during the growing season of April 15
th

 to September 

20
th

 was determined at each field survey site. Discharge data at Mankato, MN was used 

to determine submergence at sites 1-4 and data at Jordan, MN was used to determine 

submergence at sites 5-8 (Figure 2).  Within Elm Creek, values for slope and Manning’s 

coefficient were provided by Lenhart (2008).  
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2.3 Patterns of Sediment Deposition 

2.3.1 Willow Age and Deposition Rate Estimation  

Annual rates of sediment deposition were estimated through the measurement of depth of 

sediment to root collar divided by age of sandbar willow sapling collections at each site. 

Locations of the root collar, or primary stem having developed since the time of 

establishment allows for accurate measurement of deposited sediment depth across a 

particular time frame. Approximately three to four measurements were taken in field at 

various distances along vegetation transects at each site. Associated willow saplings were 

collected and aged through the counting of rings under a dissecting microscope (Hupp, 

1991). Due to its adventitious rooting capabilities, it is likely that sandbar willow saplings 

established at each site from both seed and advantageous reproduction, for this reason 

samples were collected on the largest present willow sapling or on individually growing 

species in order to accurately obtain depth to root collar measurements for each sample. 

An ANOVA test was used, set at the 0.10 confidence level, to test for significant 

differences in deposition rate estimates and willow age structure between sites located in 

the lower verses upper regions of both watersheds.  

 

2.3.2 Proportion of Vegetation Establishment to Point bar Area within the Lower 

Minnesota River Basin 

 

Within the lower Minnesota River basin, the proportion of riparian vegetation 

establishment area to total point bar area was measured using GoogleEarth software. 

Measurements were taken at five locations from Mankato to LeSueur Minnesota using 

available aerial photography flown during low flow conditions in the years of 2003, 
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2006, 2009 and 2011 and averaged across each of the five sites. Change in average 

proportion of vegetation area across all sites was then related to varying flow patterns 

during the time periods of 2003-2006, 2006-2009, and 2009-2011. The scale of point bar 

area within the Elm Creek watershed and low resolution of available aerial photography 

made this analysis un-reliable within the Elm Creek watershed and was only completed 

within the lower Minnesota River basin.  

 

A t-test was used within this data set in or order to analyze the significance of average 

change in proportion of vegetation to point bar area over the last decade, based on the 

null hypothesis that proportion of vegetation to point bar area is not significantly different 

across years of varying flow. The p-value or the strength of the evidence in favor of the 

alternative hypothesis was set to the 0.10 confidence level within this study for 

determination of significance change in proportion between 2003-2006, 2006-2009 and 

2009-2011 (Lock et al. 2005). 

 

2.3.3 Particle Size Characteristics within the Lower Minnesota River Basin 

2012 particle size data available at field survey sites one, two, five, and six within the 

lower Minnesota River basin were obtained to document varying sedimentation patterns 

in associated with plant community and submergence characteristics at each field site. At 

all four sites, approximately N=10 samples were collected from the waterline to the bank 

top from 0-25cm and 25-50cm at sites one, five and six and from 0-25cm at site two. 

Within all sampling locations, at each site, total percent of vegetative cover and total 

cover of woody seedlings was recorded within a half square meter quadrat. 
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2.3.4 Sediment Trap Deposition Rate Estimation  

Artificial turf mats squares, each 1400 square cm, were deployed during low flow 

conditions in late August and early September of 2013 at each field survey site. Turf mat 

squares, used by Steiger (2003), are designed to trap deposited sediment left by receding 

flood waters, allowing for estimation of total volume of deposited sediment. Four to six 

turf mat squares were installed with galvanized nails at each site from the water line to 

the top of the point bar. High flow conditions during 2014 left mats submerged at the 

time of re-survey at lower Minnesota River basin sites four, five and six and remain un-

surveyed. Turf mat squares within the Elm Creek watershed also require re-survey.  

 

Part 3. Results 

3.1 Patterns of Vegetation Establishment 

3.1.1a Seedling and Sapling Densities within the Lower Minnesota River Basin 

Across all quadrats within lower Minnesota River basin transect surveys, higher relative 

frequency of saplings over seedlings was observed (Figure 8). This is particularly true at 

sites within the lower region of the watershed, such as sites two and three located near 

LeSueur and Henderson Minnesota (Table 4). The higher relative frequency of saplings 

over seedlings is due mainly to the dominance of sandbar willow, a species capable of 

adventitious rooting. In Figure 9, we see high relative frequencies of saplings of species 

capable of adventitious rooting including black willow and sandbar willow, while higher 

relative frequencies of seedlings of species without adventitious rooting are observed. 
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At sites two, three and five higher frequencies of cottonwood seedlings and saplings 

observed in association with high relative frequencies of sandbar willow. Sites two and 

five also had the only occurrence of silver maple saplings, in addition to high frequency 

of silver maple seedlings at site five. American elm and green ash were observed only at 

sites one, four and six which contained no sandbar willow. Silver maple seedlings were 

observed across all sites, aside from site six at Bloomington Minnesota. Site seven, also 

located at Bloomington Minnesota was the only site containing seedlings and saplings of 

black willow (Table 4). 
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Figure 8. Relative frequency of seedlings and saplings within lower Minnesota River 

basin transect surveys. N=82. 
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Figure 9. Relative frequency of seedlings and saplings with normal verses  

    adventitious growth habits within lower Minnesota River basin transect  

                surveys. N=82. 
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Table 4 

        Stem Density Across Lower Minnesota River Basin Transect Surveys 

Species 

Silver 

Maple 

American 

Elm 

Cotton-

wood 

Sandbar 

Willow 

Black 

Willow 

Green 

Ash 

Box 

Elder 

Site 1 

       Seedling Density 2 

      Sapling Density 2         1   

Site 2   

      Seedling Density 1 

 

2 

    Sapling Density 2   4 102       

Site 3   

      Seedling Density 1 

 

15 

   

1 

Sapling Density       67       

Site 4   

      Seedling Density 4 

      Sapling Density   3       1   

Site 5   

      Seedling Density 20 

 

2 14 

   Sapling Density 1   4 22       

Site 6   

      Seedling Density   10 

     Sapling Density   4       2   

Site 7   

      Seedling Density 2 

  

12 8 

  Sapling Density       44 9     
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3.1.1b Relative Species Coverage within the Lower Minnesota River Basin 

Within the lower Minnesota River basin, we see an overall dominance of perennial 

species, mainly sandbar willow sapling and reed canary grass. High relative frequency 

and coverage of annual species including smartweed, Creeping Lovegrass, and cocklebur 

(Xanthium strumarium) are also observed, but to a lesser extent than sandbar willow and 

reed canary grass (Figure 10). As displayed in Table 5, all field survey sites are 

dominated by perennial cover aside from site four with sites one and six having the 

highest percent of perennial cover. Higher percent of bare ground was observed within 

the upper region of the watershed at sites one, two, and three as compared to sites in the 

lower region from Jordan to Bloomington, MN. Also displayed in Table 5, sites two, 

three and six are dominated by woody vegetation whereas other sites are dominated 

mainly by forbs and grasses. 
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Figure 10 . Relative coverage and frequency of all species within lower Minnesota 

River basin transect surveys. N=82. 
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3.1.1c Lower Minnesota River Basin Transect Data Analysis 

 

Analysis of variance tests between differing vegetation groups were completed on all 

species occurring within N=82 quadrats across the lower Minnesota River basin. As 

observed in Table 6, a significant difference was found between saplings of species with 

adventitious rooting capabilities including sandbar and black willow, and saplings 

without adventitious rooting capabilities at the 0.10 significance level. The same is true 

of seedlings of species with adventitious rooting capabilities versus seedlings without. 

 

Table 6 

  Minnesota River Basin Transect Vegetation ANOVA 

Group P-Value 

Seedling vs. Sapling Frequency 0.19 

Early vs. Late Dispersing Seedlings 0.38 

Early vs. Late Dispersing Saplings 0.29 

Annual vs. Perennial Cover 0.74 

Adventitious Rooting Seedlings vs. Without 0.07 

Adventitious Rooting Saplings vs. Without 0 

 

 

Table 5 

       Percent Species Coverage within the Lower Minnesota  River Basin 

Site Bare Annual Perennial Herbaceous Woody Graminoid 

1 33 11 89 68 11 21 

2 22 40 60 6 55 39 

3 20 41 59 14 64 22 

4 7 64 36 22 35 42 

5 11 43 57 16 43 41 

6 5 14 86 11 74 16 

7 3 26 74 60 26 14 
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3.1.1d Seedling and Sapling Densities within the Elm Creek Watershed 

 

 As previously observed within lower Minnesota River basin transect data, vegetation 

data within the Elm Creek watershed saw higher relative frequency of saplings over 

seedlings, again dominated by sandbar willow (Figure 11). Higher relative frequencies of 

seedlings and sapling of species with adventitious rooting capabilities are observed as 

compared to those without (Figure 12). As displayed in Table 7, silver maple and 

American elm were observed only within the lower region of the watershed at sites six 

and seven, in addition to cottonwood seedlings present only at site 8. The occurrence of 

silver maple, American elm and cottonwood was associated with higher relative 

frequencies of sandbar willow at sites six, seven, and eight. Seedlings and saplings of 

black willow, green ash, and box elder were, in general, only observed at sites located 

within the upper region of the watershed where sandbar willow was absent such as at 

sites two, three, and four. 
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Figure 11. Relative frequency of seedlings and saplings within Elm Creek  

                 Watershed transect surveys. N=97. 
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Figure 12. Relative frequency of seedlings and saplings with normal verses adventitious  

      growth habits within Elm Creek watershed transect surveys. N=97. 

 

0

10

20

30

40

50

60

70

80

90

100

Other Species Adventitious Rooting

Seedlings

Saplings

R
el

at
iv

e 
F

re
q
u
en

c
y
 %

 



 

 40 

Table 7 

        Stem Density Across Elm Creek Watershed Transect Surveys 

Species 

Silver 

Maple 

American 

Elm 

Cotton-

wood 

Sandbar 

Willow 

Black 

Willow 

Green 

Ash 

Box 

Elder 

Site 1   

      Seedling Density   

  

12 

 

2 

 Sapling Density       49       

Site 2   

      Seedling Density   

     

2 

Sapling Density               

Site 3   

      Seedling Density   

    

3 2 

Sapling Density             2 

Site 4   

      Seedling Density   

   

4 

  Sapling Density         8     

Site 5   

      Seedling Density   

     

1 

Sapling Density               

Site 6   

      Seedling Density   

  

1 

   Sapling Density   4   13       

Site 7   

      Seedling Density 2 

  

20 

 

17 

 Sapling Density 6     57   2   

Site 8   

      Seedling Density   

 

1 7 

   Sapling Density       19       
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3.1.1e Relative Species Coverage within the Elm Creek Watershed 

Within the Elm Creek watershed, point bar vegetation surveys found higher relative 

frequency and cover of perennial species as compared to annual species across all field 

survey sites. This perennial cover is dominated mainly by reed canary grass as shown in 

Figure 13. This is particularly true at sites one, three, and seven where we see almost 

complete cover of perennial species (Table 8). In general, sites across the Elm Creek 

watershed were dominated by herbaceous species including forbs and graminoids. At 

sites one, three and seven, higher percent cover of woody species was observed as 

compared to other sites. 
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Figure 13. Relative coverage and frequency of all species within Elm Creek watershed 

transect surveys. N=97. 
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3.1.1e Elm Creek Watershed Transect Data Analysis 

 

Analysis of variance tests were completed on occurrence of all species within N=97 

quadrats across study sites within the Elm Creek watershed. Within this analysis, 

statistically significant differences were found between saplings of species with 

adventitious rooting verses saplings of species without adventitious rooting capability at 

the 0.01 significance level. In addition, a significant difference was found between cover 

of annual verses perennial species at the 0.05 significance level. No other vegetation 

groups were found to have significant differences in cover, aside from saplings of early 

verse late dispersing species which was just over the 0.10 significance level with a p-

value of .11 (Table 9). 

 

 

Table 8 

       Percent Species Cover within the Elm Creek Watershed 

Site Bare Annual Perennial Forb Woody Graminoid 

1 13 0 100 2 43 55 

2 43 59 41 18 0 82 

3 34 8 92 61 33 5 

4 29 30 70 22 1 77 

5 88 31 69 20 0 80 

6 28 15 85 4 6 90 

7 26 1 99 20 29 51 

8 55 34 66 69 10 22 

Note: N=97. 
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Table 9 

  Elm Creek Watershed Transect Vegetation Data ANOVA  

Group P-Value 

Seedling vs. Sapling Frequency 0.19 

Early vs. Late Dispersing Seedlings 0.4 

Early vs. Late Dispersing Saplings 0.11 

Annual vs. Perennial Cover 0.04 

Adventitious Rooting Seedlings vs. Without 0.43 

Adventitious Rooting Saplings vs. Without 0.01 

 

 

 

 

 

3.1.2a Vegetation Elevation Establishment Patterns within the Lower Minnesota River 

Basin 

 

As determined using available aerial photography and Lidar data at each field survey site, 

average distance of vegetation establishment relative to channel elevation is displayed in 

Table 10. Site five, at Shakopee Minnesota was found to have the greatest elevation of 

vegetation establishment relative to channel elevation followed by sites three and two at 

Henderson and LeSueur Minnesota. As previously displayed in Table 4, field survey sites 

two, three, five and seven had similar plant community composition as compared to sites 

one, four, and six. Sites two, three, five and seven, dominated by sandbar willow were 

found to have significantly higher elevation of plant establishment relative to channel 

elevation as compared to sites one, four, and six (Table 11). 
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Table 10 

    Vegetation Elevation Patterns within the Lower Minnesota River  Basin 

Site 

Channel Elevation 

(m) 

Ave. Vegetation Elevation 

(m) 

Ave. Difference 

(m) 

1 226 227(+/-.23) 2(+/-.23) 

2 216 223(+/-.01) 7(+/-.01) 

3 213 221(+/-.01) 8(+/-.01) 

4 209 216(+/-.23) 6(+/-.23) 

5 204 214(+/-.27) 10(+/-.27) 

6 205 209(+/-0) 5(+/-0) 

7 205 212(+/-.66) 7(+/-.66) 

 

 

 

Table 11 

   Lower Minnesota River Basin Vegetation Establishment Elevation  ANOVA 

Site Numbers Ave. Vegetation Elevation Difference (m) P-Value 

2, 3, 5, 7 8(+/-1.5)   

1, 4, 6 4(+/-2.1) 0.00 

 

 

 

3.1.2b Historic Vegetation Elevation Establishment Patterns within the Lower Minnesota 

River Basin 

 

Increases in elevation of vegetation establishment were found in comparison of data from 

three survey sites sampled by Noble (1979) to current elevation data obtained using 

Lidar. At each of the three study sites, elevation of vegetation establishment was found to 

have increased by approximately three to four meters. Through multiplying this 

difference to slope at each site, also obtained with Lidar data, estimates of length of 

newly un-vegetated sandbar since 1979 were obtained. Based on these estimates, 

approximately four to five meters of un-vegetated sandbar were found to have occurred 

since 1979 at each of the three study sites. 
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Table 12 

      Historic Lower Minnesota River Basin Elevation Establishment Patterns 

Site 

1979 Mean 

Elevation (m) 

2013 Mean 

Elevation (m) 

Mean Elevation 

Change(m) 

Sandbar 

Slope (%) 

Un-Vegetated 

Sandbar Length(m) 

1 227.73 231.87 4.14 1.27 5.26 

2 219.83 222.99 3.16 1.21 3.83 

3 219.12 222.20 3.08 1.78 5.48 

Note. Historical elevation data taken from Noble (1979). 

 

 

 

 

3.1.2c Vegetation Elevation Establishment Patterns within the Elm Creek Watershed 

 

As theory would suggest, we see both deceasing water surface and vegetation 

establishment elevations across study sites one through eight within the Elm Creek 

watershed. Elevation of vegetation establishment relative to water surface elevation is 

variable from site to site, with sites two and three having the greatest difference and sites 

one, four, seven, and eight having the lowest (Table 13).  

 

As previously shown in Table 7, sites one, six, seven and eight are dominated by sandbar 

willow with some silver maple, American elm and cottonwood whereas sites two, three, 

four and five contain no sandbar willow with some green ash, box elder, and black 

willow. Sites dominated by sandbar willow, mostly occurring in the lower region of the 

watershed saw on average, statistically significant lower vegetation establishment 

elevations relative to water surface as compared to sites containing no sandbar willow 

(Table 14). 
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Table 13 

       Vegetation Elevation Patterns within the Elm Creek Watershed 

Site 

Water Surface 

Elevation (m) 

Ave. Vegetation 

Elevation (m) 

Ave. 

Difference (m) 

Lidar 

Date 

Flow 

(cms) 

Submergence 

Flow (cms) 

1 393.61 393.77(+/-.17) .16(+/-.15) 4/21/10 8 6 

2 380.48 380.83(+/-.18) .35(+/-.16) 4/20/10 9 7 

3 380.56 381.16(+/-.45) .60(+/-.40) 4/20/10 9 7 

4 359.92 359.98(+/-.1) .11(+/-.07) 4/20/10 9 12 

5 330.29 330.59(+/-.31) .30(+/-.27) 4/21/10 8 17 

6 329.97 330.31(+/-.09) .34(+/-.08) 4/20/10 9 17 

7 322.54 322.63(+/-.12) .10(+/-.09) 4/20/10 9 17 

8 320.94 320.95(+/-.03) .02(+/-.01) 4/20/10 9 23 

Note. N=5 at each field survey site. 

 

Table 14 

   Elm Creek Watershed Vegetation Establishment Elevation ANOVA 

Site Numbers Ave. Vegetation Elevation Difference P-Value 

1, 6, 7, 8 .16(+/-.15)   

2, 3 ,4, 5 .34(+/-.32) 0.03 

  

 

 

3.1.3 Tree Core Age Structure Analysis within the Minnesota River Basin 

 

Based on ANOVA testing, tree core samples taken at six locations within the lower 

Minnesota River basin found significant differences in woody vegetation age structure 

between floodplains and point bars (Table 15). Within sampled floodplain habitats, tree 

ages ranged from 12-115 years with an average age of 55, whereas the average tree age 

on point bars was 17 years with a range of 10-30 years. Within both floodplain and 

sandbar sites, no species were observed to have established between the years of 1940-

1959, with no species occurring during 1960-1979 on sandbar sites also (Table 16).   
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The highest proportion of point bar samples were found to have established during 2000-

2009 with decreasing presence of species established during 1990-1999 and 1980-1989. 

Within floodplain habitats we see 29 percent of samples occurring prior to 1940 and 21 

percent of samples then having established between 1960-1969 and 1970-1979. During 

1980-1989 we see lower proportions of samples having established within floodplains at 

14 percent, followed by seven percent of samples having established during 1990-1999 

and 2000-2009 consecutively (Table 16). As displayed in Table 17, box elder and 

American elm were present only within flood plain habits and were not observed at point 

bar sites. The only occurrence of American elm was observed at site four in association 

with one of the oldest observed cottonwoods and with both silver maple and box elder. 

Table 15 

    Tree Core Age Data Summary  

Habitat Type 

Age Range 

(yr.) 

Average Age 

(yr.) 

P-

Value 

Point Bar 10-20 17(+/-7)   

Floodplain 12-115 55(+/-34) 0.00 

Note: N=9 point bar samples and N=14 floodplain samples. 

 

 

Table 16 
 

   Tree Core Age Structure Data 

Time Frame Point Bar Samples (%) Floodplain Samples (%) 

>1940 0 29 

1940-1949 0 0 

1950-1959 0 0 

1960-1969 0 21 

1970-1979 0 21 

1980-1989 20 14 

1990-1999 30 7 

2000-2009 40 7 
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Table 17 

    Tree Core Species, Age, and Habitat Data 

Site Age Species Habitat Type 

1 40 Cottonwood Floodplain 

1 50 Cottonwood Floodplain 

2 10 Cottonwood Sandbar 

2 10 Cottonwood Sandbar 

2 10 Cottonwood Sandbar 

2 10 Cottonwood Sandbar 

3 28 Box Elder Floodplain 

3 38 Silver Maple Floodplain 

3 40 Silver Maple Floodplain 

3 45 Silver Maple Floodplain 

3 50 Box Elder Floodplain 

4 12 American Elm Floodplain 

4 93 Box Elder Floodplain 

4 93 Silver Maple Floodplain 

4 110 Cottonwood Floodplain 

5 18 Cottonwood Sandbar 

5 20 Silver Maple Sandbar 

5 20 Silver Maple Sandbar 

5 25 Cottonwood Sandbar 

5 30 Cottonwood Sandbar 

6 20 Cottonwood Floodplain 

6 33 Cottonwood Floodplain 

6 115 Cottonwood Floodplain 

 

 

3.2 Patterns of Hydrologic Regime 

 

3.2.1a Timing, Duration, and Magnitude of Base and Peak Flow Events within the Lower 

Minnesota River Basin 

 

As observed in Table 18 and Figure 14, higher average mean, maximum, and minimum 

flows occurred within the lower Minnesota River during the 2010 and 2011 growing 

seasons as compared to recent years. In addition to high relative average growing season 
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flows, 2010 observed a high recession rate, 2.6 cm/day and short flood duration from its 

peak flood occurring late in the growing season. High rates of recession were also 

observed in 2012 and 2013, both approximately greater than the rate of root growth for 

most common riparian species including cottonwood, with a rate of root growth of 

approximately 2.5 cm/day (Rood and Mahoney, 2000). High flood recession may lead to 

extreme changes in soil moisture contributing to poor conditions for seedling and sapling 

survival. In general, flood peaks within the lower Minnesota River basin occurred 

between mid-March and mid-May aside from the 2010 and 2013 growing seasons when 

flood peaks occurred around late-June with relatively shorter flood duration and higher 

recession rates. 

 

Table 18 

       Stream Flow Patterns at Mankato, Minnesota: April 15
th

-September 20th 

Year 

Average 

(cms) 

Maximum 

(cms) 

Minimum 

(cms) 

Flood 

Peak 

Flood Duration 

(Days) 

Recession 

Rate (cm/day) 

2013 227 (+/-194) 937 14 6/27 86 3.1 

2012 119 (+/-130) 524 8 5/30 114 2.4 

2011 485 (+/-263) 1150 95 4/15 159 1.0 

2010 301 (+/-182) 977 80 7/1 63 2.6 

2009 95 (+/-83) 362 9 4/15 159 1.5 

2008 223 (+/-180) 612 13 5/5 139 1.8 

2007 156 (+/-118) 419 16 4/15 119 1.8 

2006 210 (+/-216) 753 16 5/4 140 1.8 

2005 221 (+/-158) 674 36 5/15 89 2.1 

2004 177 (+/-181) 663 24 6/14 87 2.5 
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Figure 15. 2004-2013 stream discharge hydrograph at Mankato, MN.  
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Figure 14. 2004-2013 growing season stream flow statistics, peak flood duration and 

recession rates (cm/day) in black at Mankato, MN.  
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3.2.1b Historic Timing, Duration, and Magnitude of Base and Peak Flows within the 

Lower Minnesota River Basin. 

 

In general, higher average annual, maximum and minimum flows were observed in the 

decades following 1979 whereas lower flows were generally observed during decades 

between 1940-1979. 1960-1969 however saw extreme maximum flows and high relative 

average annual flows compared to other decades. On average, maximum flows generally 

occurred during late April to mid-May aside from 2010-2013 where maximum flows 

occurred during late June with average minimum flows occurring at varying dates across 

decades. The highest average annual, maximum, and minimum flows were observed 

during the decades of 2010-2013 and 1990-1999 (Table 19, Figure 16, Figure 17).  

 

 

 

 

 

 



 

 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 19 

      Historic Flow Patterns at Mankato, Minnesota 

Time 

Period 

Ave. Annual 

Flow (cms) 

Ave. Max 

Flow (cms) 

Ave. Max 

Date 

Ave. Min 

Flow (cms) 

Ave. Min. 

Date 

1940-1949 84 (+/- 113) 457 4/29 251 12-Apr 

1950-1959 79 (+/-158) 667 5/12 187 18-May 

1960-1969 107 (+/- 214) 953 5/14 247 9-Jun 

1970-1979 89 (+/-119) 455 4/28 221 27-Jun 

1980-1989 126 (+/-175) 614 5/19 545 29-Apr 

1990-1999 207 (+/-244) 1006 5/12 796 12-Aug 

2000-2009 135 (+/-205) 755 5/8 383 20-Aug 

2010-2013 290 (+/-368) 1413 6/20 1082 23-Oct 
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Figure 16. Historic stream flow statistics at Mankato, MN.  
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Figure 17. Historic stream discharge hydrograph at Mankato, MN.  
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3.2.1c Timing, Duration, and Magnitude of Base and Peak Flows within the Elm Creek 

Watershed 

 

Within the Elm Creek watershed the highest mean growing season flows were observed 

in 2011 and 2010 with years of lower average flow occurring during 2009 and 2013. 

2010 and 2012 however saw the greatest flood peaks. Extreme rates of recession and 

shorter relative flood duration were observed during the 2013 growing season. Timing of 

maximum flows is variable, generally occurring during mid to late June over the last five 

years and in late September of 2012. Timing of minimum flows was also variable over 

the last decade (Table 20, Figure 18, Figure 19).  

 

 

Table 20 

       Stream Flow Patterns within the Elm Creek Watershed: April 15
th

-September 20th 

Year 
Average 

(cms) 

Maximum 

(cms) 

Minimum 

(cms) 

Flood 

Peak 

Flood Duration 

(Days) 

Recession 

Rate (cm/day) 

2013 3.4(+/- 4.3) 23.45 0 6/26 62 3.6 

2012 5.1(+/- 9.3) 46.32 0.09 5/30 93 1.1 

2011 10.1(+/- 8.8) 35.08 0.27 6/19 87 0.92 

2010 7.4(+/- 7.8) 43.68 0.44 6/30 64 1.2 

2009 1.4(+/- 1.3) 5.61 0.07 6/11 85 0.84 

2008 6.5(+/- 6.7) 21.97 0 5/8 98 1.4 

2007 2.8(+/- 3.6) 12.1 0 5/11 56 3.8 

2006 6.6(+/- 9.0) 38.74 0.09 4/15 105 0.95 

2005 7.1(+/- 8.0) 36.95 0.14 6/26 95 0.97 

2004 5.1(+/- 6.1) 31.62 0.37 5/30 55 1.3 
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Figure 18. 2004-2013 growing season stream flow statistics, peak flood duration and 

recession rates (cm/day) in black within the Elm Creek watershed.  
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3.2.2a Point Bar Submerging Flows within the Lower Minnesota River Basin 

 

Table 21 displays duration of complete point bar submergence over the last decade at 

each of the seven field survey sites within the lower Minnesota River basin. Across the 

basin, the greatest duration of point bar submergence during the growing season of April 

15
th

 to September 20
th

, was observed at all sites during the years of 2010 and 2011 with 

the lowest duration of point bar submergence occurring in 2009 and 2012. In general, 

sites 6 and 7, located at Bloomington, MN saw the greatest duration of complete point 

bar submergence followed by site one located at Saint Peter, MN. The lowest duration of 

point bar submergence was observed at sites 2 and 5 located at LeSueur and Shakopee, 

MN.  

 

At sites two and five there is also point bar exposure until late June in 2013 whereas other 

sites where already completely submerged at the start of the growing season. These sites 

also saw exposure again in early July whereas other sites were completely submerged 

until late July or early August. During the 2012 growing season all sites were partially 

exposed at the start of the growing season with sites two and five again having smaller 

windows of complete submergence relative to other sites (Table 22).  
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Table 21 

             Lower Minnesota River Basin Point Bar Submergence: April 15
th

-September 20
th

  

Site 
Discharge 

(cms) 

2013 

(%) 

2012 

(%) 

2011 

(%) 

2010 

(%) 

2009 

(%) 

2008 

(%) 

2007 

(%) 

2006 

(%) 

2005 

(%) 

2004 

(%) 
Ave. 

1 126 67 35 86 87 25 62 53 49 61 44 57 

2 501 7 2 52 13 0 8 0 13 6 11 11 

3 166 62 26 78 81 19 54 48 47 53 33 50 

4 177 62 34 80 72 21 57 48 48 59 38 52 

5 636 7 0 41 6 0 0 0 11 5 6 8 

6 70 76 53 100 100 57 71 65 59 84 6 67 

7 70 76 53 100 100 57 71 65 59 84 67 73 

Ave.   51 29 77 66 26 46 40 41 50 29   

 

 

 

 

 

 

 

 

Table 22 

      Point Bar Submergence Timing within the Lower Minnesota River Basin 

Site 2013 2012 2011 2010 2009 

1 4/15-7/30 5/6-7/3 4/15-8/30 4/15-9/20 6/38-9/20 

2 6/24-7/5 5/29-5/31 4/15-6/7 4/15-7/8 N/A 

3 4/15-7/24 5/6-6/14 4/15-8/18 4/15-9/20 5/14-9/20 

4 4/15-7/26 5/7-7/4 4/15-8/20 4/15-9/20 4/15-5/18 

5 6/28-7/8 N/A 4/15-7/10 4/15-7/11 N/A 

6 4/15-8/17 4/21-7/15 4/15-9/20 4/15-9/20 4/15-7/22 

7 4/15-8/17 4/21-7/15 4/15-9/20 4/15-9/20 4/15-7/22 
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3.2.2b Historic Point Bar Submerging Flows within the Lower Minnesota River Basin 

 

As displayed in Table 23, duration of point bar submergence is higher, on average, during 

recent decades as compared to earlier decades. A step change in point bar submerging 

discharge is observed between 1970-1979 and 1980-1989.  It is likely that this abrupt 

change is not accurate and that submerging discharge would vary across decades, but due 

to a lack of quality historical cross-section data within the lower Minnesota River basin 

changes in river cross-section and stage-discharge relationships across decades were un-

accounted for. This data however, serves to show that duration of complete point bar 

inundation is currently greater than historically and allows for general comparison of 

growing season submergence durations across decades.  

 

On average, point bars were found to be completely submerged for approximately thirty 

percent of the growing season, aside from 1990-1999 and 2010-2013 when submergence 

was observed for approximately 60 percent of the growing season. The lowest duration of 

point bar submergence was observed during the decades of 1950-1959 and 1940-1949. 

Increases in point bar submergence duration flowing 1980-1989 could be attributed to 

increases in base flow resulting from the use of tile drainage which increased 

significantly following the 1980s, in addition to significant increases in average annual 

precipitation (Fore, 2010; Lenhart et al. 2011a). 

 

 

 



 

 60 

 

Table 23 

   Historic Point Bar Submergence at Mankato, Minnesota 

Time 

Period 

Submergence Discharge 

(cms) 

Ave. Growing Season Submergence 

(%) 

1940-1949 141 28.30 

1950-1959 141 22.89 

1960-1969 141 30.13 

1970-1979 141 32.83 

1980-1989 212 31.26 

1990-1999 212 58.68 

2000-2009 212 31.70 

2010-2013 212 65.65 

 

3.2.2c Sandbar Submerging Flows within the Elm Creek watershed 

 

Within the Elm Creek watershed, we see the longest duration of complete point bar 

submergence at site one located within the upper region of the watershed with decreasing 

submergence duration going downstream to site eight where the shortest duration of 

complete point bar submergence was observed. Also observed within the lower 

Minnesota River basin, the 2011 and 2010 growing seasons saw the longest duration of 

complete point bar submergence, with the shortest submergence durations occurring 

during the 2009 and 2013 growing seasons (Table 24). 

 

During the 2013 growing season later dates of complete submergence were observed at 

sites four through eight occurring during mid to late June, and earlier dates of complete 

submergence during late April at sites one, two and three. At sites one, two and three 

complete point bar submergence occurred until early July with complete submergence 

occurring only through late June at sites four through eight. Again during the 2011 and 

2010 growing seasons we see earlier dates of complete submergence in addition to longer 
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windows of duration at sites one, two and three as compared to sites four through eight. 

The 2012 and 2009 growing seasons saw nearly no complete submergence of point bars 

aside from short windows at sites one, two and three late during the growing season of 

2012 (Table 25). 

 

Table 24 

             Elm Creek Watershed Point Bar Submergence: April 15
th

-September 20
th

  

Site 
Discharge 

(cms) 

2013 

(%) 

2012 

(%) 

2011 

(%) 

2010 

(%) 

2009 

(%) 

2008 

(%) 

2007 

(%) 

2006 

(%) 

2005 

(%) 

2004 

(%) 
Ave. 

1 6 18 37 64 50 0 47 20 35 42 30 34 

2 7 18 21 64 45 0 43 17 33 40 30 31 

3 7 18 21 64 45 0 43 17 33 40 30 31 

4 12 6 0 38 10 0 16 2 20 18 16 13 

5 17 3 0 16 18 0 23 0 13 8 5 9 

6 17 3 0 16 7 0 11 0 13 8 5 6 

7 17 3 0 16 7 0 11 0 13 8 5 6 

8 23 1 0 8 5 0 0 0 8 6 3 3 

Ave. 13 9 10 36 23 0 24 7 21 21 16   

 

 

 

Table 25 

      Point Bar Submergence Timing within the Elm Creek Watershed 

Site 2013 2012 2011 2010 2009 

1 4/23-7/3 7/23-9/20 4/15-7/26 4/15/-7/27 N/A 

2 4/25-7/4 8/17-9/20 4/15-7/26 4/15/-7/15 N/A 

3 4/25-7/4 8/17-9/20 4/15/-7/26 4/15/-7/15 N/A 

4 6/13-6/30 N/A 4/15/-7/22 6/13-7/9 N/A 

5 6/24-6/29 N/A 5/23-7/4 6/18-7/6 N/A 

6 6/24-6/29 N/A 5/23-7/4 6/18-7/6 N/A 

7 6/24-6/29 N/A 5/23-7/4 6/18-7/6 N/A 

8 6/26 N/A 6/17-6/28 6/27-7/5 N/A 
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3.3 Patterns of Sediment Deposition 

 

3.3.1a Willow Age and Deposition Rate Estimation within the Lower Minnesota River 

Basin 

 

Within the lower Minnesota River Basin we see on average, the highest rates of sediment 

deposition at site three located at Henderson, Minnesota. At this site we also see, on 

average, decreasing rates of deposition with distance from the channel in addition to 

increasing willow age. This is also true at sites two and seven located at LeSueur and 

Bloomington, MN. At site seven, we see the highest single estimate of sediment 

deposition rates occurring closest to the channel. At sites one, four and six no willow 

saplings were present for sampling. Site five, located at Shakopee, MN, saw the lowest 

observed rates of deposition (Table 26). Higher deposition rate estimates and willow ages 

were observed, on average, at sites 2 and 3 located within the upper region of the 

watershed as compared to sites 5 and 7 located within the lower region. This difference 

was not found to be significant based on ANOVA, but may prove to be significant if a 

larger number of sites were sampled (Table 27). 
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Table 26 

      Willow Age and Deposition Rate Estimation within the Lower Minnesota River Basin 

Site 

Willow 

Age (yr.) 

Depth to Root 

Collar (cm) 

Deposition Rate 

(cm/yr) 

Distance from Water Line 

(m) 

1 Absent       

2 3 21.59 7.20 80 

 

4 19.05 4.76 82 

  5 10.80 2.16 88 

3 5 67.31 13.46 65 

 

5 58.42 11.68 68 

  7 88.90 12.70 75 

4 Absent       

5 5 8.89 1.78 26 

  5 10.16 2.03 28 

6 Absent       

7 3 44.45 14.82 10 

 

4 11.43 3.81 13 

  4 14.61 4.87 21 

 

 

 

 

Table 27 
 

     Lower Minnesota River Basin Deposition Rate and Willow Age ANOVA 

Region Ave. Willow Age (yr.) P-Value Ave. Deposition Rate (cm/yr) P-Value 

Upper 4.83(+/-1.33)   8.66(+/-4.65)   

Lower 4.20(+/-.84) 0.32 5.46(+/-5.38) 0.32 
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3.3.1b Willow Age and Deposition Rate Estimation within the Elm Creek Watershed. 

 

Unlike what was observed within the lower Minnesota River basin, no clear pattern of 

sediment deposition rates was associated with distance from channel or with willow age. 

The highest rates of deposition were observed at sites seven and eight located in the 

lower region of the watershed. Site six, also located in the lower region of the watershed 

saw the third highest rates of deposition. Sites one through four, located within the upper 

region of the watershed saw, in general, lower deposition rate estimates as compared to 

sites within the lower region of the watershed. At sites two and three, no willow saplings 

were present for collection, and sites one and four saw deposition rate estimates ranging 

from approximately 1-2.5 cm/yr. compared to a range of approximately 1-15 cm/yr. at 

sites five through eight located within the lower region of the watershed (Table 28).  

 

Higher estimated rates of sediment deposition are observed on average at sites five 

through eight located within the lower region of the watershed as compared to sites one 

and four located within the upper region, the difference of however was found to be 

statistically insignificant based on an ANOVA test. On average, greater willow age was 

found at sites within the upper region of the watershed as compared to the lower, the 

difference of which was found to be statistically significant (Table 29) 

 

It is unlikely that deposition is occurring evenly across years as these data would suggest, 

but rather in events of deposition and erosion. These data do provide however, a general 

idea of the patterns of sediment deposition patterns across and within the Elm Creek and 

lower Minnesota River watersheds. 
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Table 28 

    

      Willow Age and Deposition Rate Estimation within the Elm Creek Watershed 

Site 

Willow 

Age (yr.) 

Depth to Root 

Collar (cm) 

Deposition Rate 

(cm/yr.) 

Distance from Water Line 

(m) 

1 4 9.53 2.38 2 

 

5 4.45 0.89 4 

  5 9.53 1.91 8 

2 Absent       

3 Absent       

4 4 9.53 2.38 5 

  4 8.89 2.22 6 

5 3 3.18 1.06 3 

  2 6.99 3.49 3 

6 3 24.13 8.04 5 

 

4 34.29 8.57 6 

  3 3.81 1.27 8 

7 3 3.18 1.06 1 

 

5 7.62 1.52 5 

 

4 59.69 14.92 5 

  5 38.10 7.62 7 

8 3 24.13 8.04 9 

 

3 41.28 13.76 10 

  3 12.07 4.02 13 

 

 

Table 29 

 

     Elm Creek Watershed Deposition Rate and Willow Age ANOVA 

Region 
Ave. Willow 

Age (yr) 
P-Value 

Ave. Deposition Rate 

(cm/yr) 
P-Value 

Upper 4.66(+/-.58)   1.73(+/-.76)   

Lower 3.5(+/-.85) 0.05 6.11(+/-4.85) 0.15 
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3.3.2 Sandbar Vegetation Change within the Lower Minnesota River Basin 

Based on the availability of aerial photography flown during low flow conditions, the 

proportion of vegetation area to total point bar area was measured at five point bar 

locations from Mankato to LeSueur, MN using GoogleEarth software. The average 

proportion of vegetation area was than calculated across each site during the years of 

2003, 2006, 2009, and 2011 to document overall increases or decreases in proportion of 

vegetation during years of low or high flow. The proportion of vegetation area to point 

bar area was found to have increased by approximately five percent during the years of 

2003 and 2006 and by approximately thirty percent during the years of 2006 and 2009. 

Based on t-test results, average changes in proportion of vegetation during these time 

frames, which had lower average flows as compared to 2010 and 2011 were found to be 

statistically insignificant. During the higher flow years of 2009 and 2011 an observed 

decrease by approximately forty percent of vegetation area was found to be statistically 

significant at the 0.05 level (Table 30).  

 

Table 30 

   Proportion of Vegetation Establishment Area to Point Bar Area 

Year Ave. Proportion Vegetation (%) P-Value 

2003 28   

2006 33 0.21 

2009 65 0.11 

2011 24 0.04 

Note: N=5. 
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3.3.3 Particle Size Characteristics within the Lower Minnesota River Basin 

2012 particle size data was collected at sites one and two located within the upper region 

of the watershed and at sites five and six located in the lower region of the watershed 

from the waterline to the bank top. In general, higher percent of sand was found at all 

sites in comparison to fine sediment, particularly at sites one and two which saw 

approximately 10 percent more sand on average as compared to sites five and six. At site 

one, approximately three percent more sand was found in samples taken from 0-25cm 

compared to samples at 25-50cm. At sites five and six greater proportion of fine sediment 

was found in samples taken from 0-25cm compared to those taken at 25-50cm (Table 

31). On average, greater percent of sand and gravel verses fine sediment was found at 

sites within the upper region as compared to those in the lower region, the difference of 

which were all found to be significant based on ANOVA test results (Table 32).  

 

Figure 20 displays the proportion of sand verse fine sediment in addition to associated 

percent vegetative cover and cover by woody seedling with increasing distance from the 

channel. At field survey sites one, two and five, increasing proportion of fine sediment is 

generally observed with greater distance from channel. At site one, little to no vegetative 

cover was found in quadrat surveys which was consistent with 2013 vegetation surveys 

(Table 4). At sites, five, and six increase and decreased in proportions of fine sediment 

are associated, in general, with increases in total vegetative cover. At site two, we 

observe increased in fine sediment from approximately 25m to 45m in addition to 

increasing vegetative cover along same distance from channel. The same is true at site 

five where increasing proportions of fine sediment and vegetative cover from about 10m 
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to 35m, until nearly no vegetative cover in observed at 40m when the proportion of sand 

becomes greater than that of fines. Again at the six, we see increased vegetative cover at 

approximately 2m and 7m which are associated with increases in proportion of fine 

sediment. 

 

 

 

 

Table 31 

     Particle Size Characteristics within the Lower Minnesota River Basin 

Site Depth(cm) Ave. % Gravel Ave. % Sand Ave. % Fine 

1 0 to 25 5(+/-6) 88(+/-10) 6(+/-11) 

  25 to 50 9(+/-5) 85(+/-8) 6(+/-10) 

2 0 to 25 4(+/-5) 89(+/-11) 7(+/-12) 

5 0 to 25 0 65(+/-28) 35(+/-28) 

  25 to 50 0 75(+/-21) 25(+/-21) 

6 0 to 25 0 75(+/-18) 25(+/-18) 

  25 to 50 0 81(+/-11) 19(+/-11) 

 

 

 

 

Table 32 

       Lower Minnesota River Basin Particle Size Type ANOVA 

Sites Ave. % Gravel P-Value Ave. % Sand P-Value Ave. % Fine P-Value 

1, 2 6.13(+/-.06)   87.55(+/-.10)   6.31(+/-.11)   

5, 6 0 .00 73.76(+/-.21) .00 26.24(+/-.21) .00 
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 Figure 20. Percent sand verses fine sediment and percent vegetative coverage as a function of 

distance from water line within the lower Minnesota River basin. 
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3.3.4a Sediment Trap Deposition Rate Estimates within the Lower Minnesota River Basin 

Turf mat squares placed at sites one, two, and three within the lower Minnesota River 

basin were unable to be re-located upon re-visit of point bar survey sites. Signs of heavy 

sediment deposition were evident at each of these sites in the forms of nearly buried 

sandbar willow saplings, and clear benches of fine deposited sediment. It is likely that the 

installed turf mat squares were buried too far under sediment to be recovered. This 

provides evidence that large deposition events often occur in association with large flood 

events, as observed during the 2014 growing season. Turf mat squares installed at sites 

four through seven were still submerged at the time of re-visit and need to be re-visited. 

 

3.3.4b Sediment Trap Deposition Rate Estimates within the Elm Creek Watershed 

Of the turf mat squares installed within the lower portion of the Elm Creek watershed, 

mats at sites five and eight were recovered. At site five, one turf mat located just at the 

bank top was found to be scoured and turned over with trace amount of sediment 

deposition less than .4cm deep on average, covering roughly 80 percent of the pad, which 

has an area of 1400 cm2. This translated to about .32 cubic centimeters per square 

centimeter deposited on average annually at this site near the bank top. The second mat 

recovered at site five, located closer to the channel, again had on average .40cm depth of 

sediment covering a 35cm2 area. Based on these values, it could be estimated that 

approximately .01 cubic centimeters per square centimeter were deposited on average 

annually at this site near the channel based on this mat.  
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Two mats were also recovered at site eight, again one located near the bank top and one 

located closer to the channel. Of the mat located closer to the channel, the average depth 

of sediment accumulated was approximately .77cm covering 50 percent of the 1400cm2 

mat. An average depth of approximately 3.15cm was found on 70 percent of the mat near 

the bank top. Based on these values, about .39 cm3 of deposited sediment was estimated 

to occur near the channel and approximately 2.21cm3 per square centimeter near the bank 

top. Mats at sites six and seven, located within the lower region of the watershed were 

either scoured out or too deeply buried in sediment to be recovered. Turf mats installed at 

sites one through four, located within the upper region of the watershed have not yet been 

re-visited.  

 

Part 4. Discussion 

4.1 Patterns of Vegetation Establishment, Hydrologic Regime, and Sediment 

Transport within the Minnesota River Basin 

 

Results from this study help to better understand and provide evidence for the 

relationships among vegetation establishment, hydrology, and sediment transport. 

Understanding these relationships and characteristics within the Minnesota River basin 

will aid in the development of management actions and the identification of priority 

management zones necessary to reduce sediment related impairments. Additionally, this 

work will provide baseline data and methodology for future work related to riparian 

vegetation, hydrology, and sediment within the Minnesota River basin. 
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4.1.1 Patterns of Vegetation Establishment, Hydrologic Regime, and Sediment Transport 

within the lower Minnesota River Basin 

 

4.1.1a Patterns of Vegetation Establishment and Hydrologic Regime 

 

Across field survey sites within the lower Minnesota River basin, an overall higher 

relative frequency of saplings is observed as compared to seedlings (Figure 8). This is 

however skewed by the abundance of species with adventitious growth habit, mainly 

sandbar willow but also some black willow (Figure 9). Across lower Minnesota River 

basin transect surveys, willow saplings ranged from three to seven years in age indicating 

that sandbar willow, or adventitious rooting species established and survived during years 

of high flow, particularly 2008, 2010 and 2011 (Table 26, Figure 14). 

 

Higher relative frequency of seedlings of species without adventitious growth habits were 

observed as compared to seedlings of species with adventitious growth habits (Figure 9). 

High relative frequencies of silver maple, American elm, and cottonwood were observed 

as compared to later successional species such as green ash and box elder. As shown in 

Figure 8, establishment of silver maple, American elm, and cottonwood saplings is also 

observed. It is likely that higher average flows observed during the 2010 and 2011 

growing season served to  leave behind exposed mineral substrates on point bars with 

abundant moisture and nutrients for plant regeneration (Table 18, Figure 14) (MNDNR, 

2005). These new substrates likely allowed for rapid germination of seedlings during the 

lower flow years of 2012 and 2013. Saplings of silver maple and cottonwood observed in 

field surveys were likely established in 2012, germinating rapidly and surviving through 

the 2013 growing season.  
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Silver maple and cottonwood establishment was generally observed only at sites 

containing thick stands of sandbar willow, such as at sites two, three, and five. These 

sites also generally also saw higher elevation of vegetation establishment relative to 

channel elevation as compared to other field survey sites containing green ash and 

American elm such as sites one, four and six. At site five, which saw the highest 

vegetation establishment relative to channel elevation, saplings of silver maple are also 

observed that were not present at any other field survey site (Tables 4, 10, and 11). Sites 

two and five saw the lowest duration of complete submergence during the growing 

season over the past decade in addition to at least partial exposure well into the growing 

season allowing for rapid growth of earlier dispersing species such as silver maple and 

cottonwood (Tables 1, 21, and 22). 

 

At field site one, nearly no woody seedling or sapling establishment was observed in 

addition to the smallest distance of vegetation establishment relative to channel elevation 

and relatively long duration of point bar submergence during the growing season. It is 

likely that vegetation establishing closer to the channel faces more damage from 

inundation as well as ice and debris hindering establishment vegetation establishment 

(Tables 4, Table 10, Table 21). 

 

The comparison of vegetation area relative to point bar area across different years also 

served to demonstrate the relationships between vegetation establishment and hydrologic 

regime. During the years of 2003 to 2006, a slight increase in vegetation area to point bar 

area was observed, although found to be statistically insignificant. Between 2006 and 
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2009 an increase in proportion of vegetation area by approximately 30 percent was also 

observed, although still found to be statistically insignificant. During the 2007 and 2009 

growing seasons, below average flows were observed particularly during 2009, creating 

more suitable conditions for vegetation established through decreased scour, inundation 

and sediment deposition. Between the years of 2009 and 2011, a statistically significant 

decrease in proportion of vegetation area was observed in association with above average 

flow during the 2010 and 2011 growing seasons. These data provide evidence for 

establishment of vegetation during lower flow years and inhibited vegetation 

establishment during higher flow years (Table 18, Table 30, and Figure 14). 

 

4.1.1b Patterns of Hydrologic Regime and Sediment Transport 

 

Patterns of decreased proportion of vegetation area to point bar area observed during high 

flow years also provide evidence for large depositional events occurring on point bars 

during years of high flow. In addition to increased mortality from prolonged inundation 

and increased scour, it is likely that vegetation is also being buried by large deposits of 

sediment associated with flooding further serving to inhibit riparian vegetation 

establishment (Table 18, Table 30, and Figure 14). 

 

Sites two and three located within the upper region of the watershed saw higher rates of 

deposition as compared to sites five or seven located within the lower region of the 

watershed. At site three, higher rates of deposition were observed as compared to site two 

in addition to longer durations of point bar inundation again providing evidence of heavy 

sediment deposition occurring with flooding. Site three also observed fewer established 
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saplings as compared to site two providing evidence that inundation and sediment can 

contribute to vegetation mortality. At field survey site seven, the single greatest measure 

of sediment deposition was observed in association with the longest observed complete 

point bar submergence relative to other field survey sites. Site seven also observed nearly 

no seedling or sapling of woody species aside from sandbar willow in addition to the only 

observed seedlings and saplings of black willow which is highly tolerant of heavy 

sedimentation as compared to other species (Table 4, Table 26, and Table 21). 

 

4.1.1c Patterns of Sediment Transport and Vegetation Establishment 

 

Although found to be statistically insignificant, estimated rates of sediment deposition 

were higher on average at sites within the upper region of the watershed as compared to 

those in the lower region. Higher average deposition rate estimates were generally 

associated with greater average willow age and age range providing evidence for the role 

of vegetation in sediment retention (Tables 26 and 27). Also displayed in Figure 20, 

increases in fine sediment at sites two, five and six are associated with increased 

vegetative cover further demonstrating the role of sediment in the trapping of fine 

sediment. Field survey site 1 also saw the lowest proportion of fine sediment and the 

highest proportions of sand and gravel in association with low vegetative cover as 

compared to other field survey sites. 

 

Particle size samples taken at sites one and two observed significantly higher proportions 

of sand and gravel over fine sediment as compared to sites five and six located within the 

lower region of the watershed. Higher proportion of fine sediment as sites five and six 
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were also observed in surface samples as compared to sub-surface samples providing 

evidence that deposition of coarse material is occurring within the lower region of 

watershed while fine sediment is being transported downstream. Sites four and six, 

located within the lower region of the watershed also observed green ash and American 

elm establishment with zero occurrences of sandbar willow indicating that little to no 

deposition is occurring. Site five, also located within the lower region of the watershed, 

saw lower deposition rate estimates and sandbar willow frequencies as compared to 

similar upper region sites in addition to greater proportions of fine sediment (Table 4, 

Table 31, Figure 20). 

 

4.1.2 Historic Patterns of Vegetation Establishment and Hydrologic Regime within the 

lower Minnesota River Basin 

 

Comparison of historical stream flow and vegetation establishment data within the lower 

Minnesota River basin served to further demonstrate the relationships between vegetation 

establishment and hydrologic regime across time. As displayed in Table 19, Table 23 and 

Figure 16, increases in average annual flow have occurred since 1979, in addition to 

increased duration of complete point bar submergence, particularly during the years of 

1990 to 1990 and 2010 to 2013. Comparison of 1979 vegetation establishment elevations 

to modern elevations at three sites found average increases in vegetation establishment by 

approximately three to four meters at each site. This observed increase in vegetation 

establishment elevation is likely a response to higher river stage associated with flow 

increases (Table 12). Loss in length of un-vegetated sandbar is associated with easier 

mobilization of sediment may lead to increased sediment transporting and river widening. 
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Within tree core samples taken on point bar sites, ages ranged from ten to thirty years old 

and consisted mainly of cottonwood, with some silver maple. Within point bar sites, 

younger species of cottonwood were observed with no silver maple trees whereas older 

cottonwood trees where observed with silver maple trees (Table 17). No samples on point 

bar were found to have established prior to 1980 with increasing proportion of samples 

establishing during 1990-1999 and then 2000-2009. On floodplain sites, ages ranges from 

approximately 12 years to 115 years with no samples found to have established between 

1940-1959. Decreasing proportion of floodplain samples were found to have established 

during each decade from 1960-1970. The only floodplains sample found to have 

established between 2000-2009 was an American elm species associated with the oldest 

observed samples of box elder, silver maple, and cottonwood (Table 16).  

 

These patterns provide evidence for riparian vegetation succession from point bar to 

floodplain forest, where establishment of point bar vegetation lead to the development of 

floodplains. The observed absence of floodplain species having established prior to 1960 

could be explained large flood events in the 1960s, particularly during 1965 which likely 

served to kill any establishing understory vegetation creating exposed, moisture and 

nutrient rich soil for establishment of vegetation beginning after 1965 and continuing 

until 2009 (Figure 17). It is likely that this same pattern may be observed in future years 

following large flood events during the 2010 and 2011 growing seasons in addition to 

high flood peak recession rates in 2013 (Figure 14). 
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4.1.3 Patterns of Vegetation Establishment, Hydrologic Regime, and Sediment Transport 

within the Elm Creek Watershed 

 

Within the Elm Creek watershed, we again see a dominance of saplings over seedlings, in 

particular dominated by sandbar willow saplings (Figure 11). Higher relative frequencies 

of seedlings and sapling of species with adventitious growth habits, including sandbar 

and black willow, are observed as compared to those of species without adventitious 

growth habits (Figure 12). This is opposite of what was observed within the lower 

Minnesota River basin, where higher relative frequencies of seedlings without 

adventitious growth habits were observed over seedlings of those without (Figure 9). 

Within Elm Creek vegetation surveys willow ages ranged from two to five years old, 

with an average age of approximately four years indicating the establishment of species 

with adventitious growth habits established and survived during high flow years of 2010 

and 2011. As observed within lower Minnesota River basin surveys, it is again likely that 

observed seedlings and saplings within the Elm Creek watershed established and rapidly 

germinated during the low flow years of 2012 and 2013 (Figure 18). 

 

Overall, high relative frequencies of seedling of green ash and box elder were observed 

as compared to those of silver maple, American elm or cottonwood. We do however 

observe nearly even proportions of sapling establishment between all species aside from 

cottonwood and sandbar willow (Figure 11). In general, green ash and box elder were 

observed at sites containing no sandbar willow, such as sites two three and four located 

within the upper region of the watershed and at site five (Table 7). These sites also saw 

greater duration of compete point bar submergence as compared to sites dominated by 
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sandbar willow which was also true within lower Minnesota River basin surveys (Table 

4, Table 24, and Table 25).  

 

As previously observed within lower Minnesota River basin transect surveys, the highest 

frequency of silver maple seedling and saplings was associated with the highest 

frequencies of sandbar willow. This was true at field survey site seven located within the 

lower region of the Elm Creek watershed. Also consistent with lower Minnesota River 

basin data, American elm and cottonwood establishment was also observed only in 

association with high relative frequencies of sandbar willow (Table 4 and Table 7). Sites 

six, seven, and eight located within the lower region of the watershed observed this 

pattern in addition to seeing the shortest duration of complete point bar submergence 

during the growing season (Table 24 and Table 25).  

 

At sites one, two and three point bar exposure did not occur until late in the growing 

seasons of 2010, 2011 and 2013 likely creating unsuitable conditions for earlier seeding 

species such as silver maple, American elm or cottonwood. These earlier seeding species 

were not observed within upper region sites, but rather at lower region sites such as six 

seen and eight were point bar exposure was observed until late into the growing season 

during 2010-2013 allowing seeds of earlier dispersing species to reach exposed substrates 

and germinate rapidly (Table 25). 

 

Sites dominated by sandbar willow, including site one, six, seven and eight saw 

significantly lower average vegetation establishment elevations relative to water surface 

elevation as compared to sites containing no sandbar willow. Sites dominated by sandbar 
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willow with lower elevation of vegetation establishment, generally observed within the 

lower region of the watershed, saw shorter windows of complete point bar submergence 

as compared to those without sandbar willow establishing at higher elevations (Table 13, 

Table 14, and Table 25). Sites dominated by sandbar willow within the lower Minnesota 

River basin, also saw shorter durations of complete point bar submergence as compared 

to those without but were generally observed within the upper region of the watershed 

and saw significantly higher vegetation elevation established as compared to sites without 

sandbar willow (Table 4, Table 11 and Table 22). 

 

Sites located within the lower region of the watershed saw higher average rates of 

sediment deposition as compared to sites within the upper region. As previously observed 

at sites within the upper region of the lower Minnesota River basin, these higher average 

rates of sediment deposition were associated with higher relative frequencies of sandbar 

willow. This again provides evidence for the role of vegetation in retention of sediment. 

These deposition patterns, in addition to the presence of pioneer silver maple and 

cottonwood species also may serve to demonstrate aggradation and development of point 

into floodplains occurring within the lower region of the Elm Creek watershed and within 

the upper region of the lower Minnesota River basin. 

 

4.2 Research Limitations and Future Research Needs 

 

Data within this will serve as a baseline for continued research to better document 

continued patterns of vegetation establishment, hydrologic regime and sediment transport 

across greater time frames and flow conditions. As field data within the study was 
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collected during only one growing season, continued vegetation surveys completed 

across several growing seasons would serve to better illustrate the interactions between 

vegetation establishment and annual hydrologic regime and to strengthen study results. 

The same is true of associated sediment deposition rate estimate data. Additionally, 

sediment traps installed at sampling locations within both the lower Minnesota River and 

Elm Creek watersheds were not fully re-surveyed and could be monitored in future years 

to further document sediment deposition patterns across the study area. 

 

Although data within this study serves to characterize and demonstrate the relationships 

between hydrologic regime, vegetation establishment and sediment transport within the 

Minnesota River basin, further or more refined data collection could have served to 

strengthen study results. Although available Lidar data and limited cross-sectional data 

provided some data on vegetation elevation establishment and stage-discharge 

relationships, geomorphic cross-section data taken along vegetation transect surveys at 

the time of surveys would have served to better illustrate the relationship between stream 

flow and vegetation establishment, including more exact vegetation establishment 

elevations and channel dimensions. Exact elevations of vegetation establishment at field 

sites could also have been related river stage elevations at each site. 

 

Limited availability of cross-sectional data across various years also limited the strength 

of study results. Although providing an estimate of complete point bar submergence 

variability across field survey sites, cross-sectional data was only available within the 

lower Minnesota River basin during 2013 so did not account for any changes in stage-
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discharge relationships used to determine percent of growing submergence during each 

year of the last decade. The same is true of historical cross-sectional data used to 

document historical changes in submergence duration from 1940-2013, which was 

known only to have been taken prior to 1979. Within this study, durations of partial 

submergence were also not taken into account which may have further served to more 

fully represent the vegetation establishment patterns in association with hydrologic 

regime.  

 

The methodology used within this study may serve as a baseline for future related work, 

although the methodology for exploring sediment transport patterns could be further 

refined. This is particularly true within the Elm Creek watershed, where aerial 

photography resolution was too low measure proportion of sandbar area to vegetation 

area with confidence and accuracy. As remote sensing technology continues to improve, 

higher aerial photography resolution and associated Lidar data may make this analysis 

possible within the Elm Creek watershed in future years.  

 

The results of this study have provided evidence that sediment deposition is occurring 

within the Minnesota River basin, although the volume and extent of which is unknown 

or not well understood. Understanding the volume of sediment deposition occurring 

within the lower Minnesota River basin and the role of vegetation within that deposition 

would aid in development of sediment load reductions and associated management 

actions in tributaries of the Minnesota River as required by the Minnesota River 

Turbidity Total Maximum Daily Load (Baskfiled, 2012; Wilcock, 2009). Methodology 
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such as estimating volume of deposited sediment per area using sediment traps, 

measuring changes in proportion of vegetation area to sandbar area, and determining 

depth of sediment to root collar could be further explored and applied across greater 

ranges of space and time to better characterize volumes and zones of sediment deposition. 

 

4.3 Management Implications 

Results from this study provide evidence for the relationships between vegetation 

establishment, hydrologic regime and sediment transport.  As previously demonstrated by 

Lenhart et al. (2013) and as seen in result of this study, increases in flow observed after 

1979 have been associated with decreased woody riparian vegetation establishment and 

increases in vegetation establishment elevation (Lenhart et al., 2011a). Within this study, 

large flood events have also been have also been associated with heavy sediment 

deposition events on point bars and associated decreased vegetation establishment. The 

role of vegetation in the trapping of deposited sediment has also been demonstrated 

within this study.  

 

Management actions aimed at reductions in stream flow would lead to more suitable 

conditions for vegetation establishment which in turn would contribute to increased 

sediment retention, reduced river widening and increased floodplain connectivity and 

development. Reductions in stream flow could be accomplished through management 

actions including targeted restoration of riparian corridors or wetlands as well as 

increased cover of perennial vegetation (Brooks et al., 2013; Leach and Magner, 1992; 

Lenhart et al., 2011a, Lenhart et al., 2011b, Zedler, 2003). 
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Targeted riparian corridor restoration may prove to be a plausible option for stream flow 

reduction within agricultural watersheds. Construction of drainage ditches and culverts 

often accompany land-use changes within agricultural watersheds, further contributing to 

increased storm flow and sediment transport. Some hydrologic and ecological features or 

ditches may be improved through the use of alternative designs where ditches have 

previously been made. The two-stage ditch in particular serves to create a small 

floodplain within the overall geometry of a ditch which aids in buffering flow and 

sediment in addition to creating habitat for aquatic life (Brooks et al., 2013; Kramer, 

2011).  

 

Planting vegetated riparian buffers would also contribute to stream flow reduction 

through increased infiltration, transpiration and soil water storage, as well as through 

decreased surface run-off (Anderson et al., 2005; Schultz et al., 1995). Vegetated buffers 

also provide for stream-bank stabilization and are generally constructed with fast-

growing species such as sandbar willow. Wetland restoration where previous wetlands 

have been drained for agriculture would also provide for increased hydrologic storage 

within the watershed, and it is often by law to replace wetlands that have been drained. 

Additionally, economic incentives exist for land owners interested in restoring their crop-

lands to vegetative cover under the Conservation Reserve Program which compensates 

farmers for retiring land for ten years (Brooks et al., 2013).  
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Although these actions may be the most sustainable methods for stream flow 

managements, they may prove difficult within the Minnesota River basin as the 

watershed is predominately privately owned farmland. This farmland consists mainly of 

corn and soybean at a time when prices for these crops are at an all-time high. 

Additionally, private parcelization of land within the watershed makes large scale 

restoration more difficult. Such, further research and development into management 

actions aimed at stream flow control within agricultural watersheds would aid in 

improvement of water quality within the Minnesota River basin. (Coiner et al., 2001; 

Brooks et al., 2013; Lenhart et al., 2013; Nassauer et al., 2011; Santelmann et al., 2004).   
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Appendix: Vegetation Transect Data and Species List 

 

Table 1 

       Lower Minnesota River Basin Transect Survey Seedling and Sapling Densities 

Site 
Transect 

Length (m) 

Distance 

(m) 
Species Seedlings Sapling 

Tree DBH 

(cm) 

1 90 82-83 Silver Maple 2 

  

  

83-84 Silver Maple 

 

1 23, 44 

   

Green Ash 

 

1 

 

  

84-85 Silver Maple 

  

41 

  

85-86 Silver Maple 

 

1 

     87-88 Silver Maple     38, 86 

2 94 76-78 Sandbar Willow 

 

13 

 

  

78-80 Sandbar Willow 

 

16 

 

  

80-82 Sandbar Willow 

 

19 

 

  

82-84 Sandbar Willow 

 

17 

 

  

84-86 Sandbar Willow 

 

11 

 

   

Silver Maple 1 

  

   

Cottonwood 

 

2 

 

   

Sandbar Willow 

 

1 

 

  

86-88 Cottonwood 

 

2 

 

   

Cottonwood 2 

  

   

Sandbar Willow 

 

6 

 

  

88-90 Sandbar Willow 

 

8 

 

   

Sandbar Willow 

 

1 

 

  

90-92 Sandbar Willow 

 

1 

 

   

Sandbar Willow 

 

4 

 

  

92-94 Sandbar Willow 

 

5 

       Silver Maple   2 11, 12 

3 80 61-62 Cottonwood 2 

  

  

62-63 Cottonwood 5 

  

  

63-64 Cottonwood 5 

  

  

64-65 Cottonwood 3 

  

   

Sandbar Willow 

 

2 

 

  

65-66 Sandbar Willow 

 

8 

 

  

66-67 Sandbar Willow 

 

10 

 

  

67-68 Sandbar Willow 

 

14 

 

  

68-69 Silver Maple 1 

  



 

 95 

   

Sandbar Willow 

 

8 

 

  

69-70 Sandbar Willow 

 

9 

 

   

Box Elder 1 

  

  

70-71 Sandbar Willow 

 

3 

 

  

71-72 Sandbar Willow 

 

6 

 

  

72-73 Sandbar Willow 

 

1 

 

  

73-74 Sandbar Willow 

 

1 11 

  

75-76 Sandbar Willow 

 

1 

 

  

76-77 Sandbar Willow 

 

1 11 

  

77-78 Sandbar Willow 

 

1 

 

  

78-79 Sandbar Willow 

 

1 

     79-80 Sandbar Willow   1   

4 42 29-30 Silver Maple 2 

  

  

30-31 Silver Maple 

  

73 

  

31-32 Silver Maple 

  

15, 36 

  

33-34 Silver Maple 

  

38 

  

34-35 Silver Maple 2 

  

  

35-36 American Elm 

  

15, 20 

  

36-37 Green Ash 

 

1 

 

  

38-39 American Elm 

 

1 

 

  

39-40 American Elm 

 

1 

     41-42 American Elm   1   

5 42 24-25 Sandbar Willow 6 

  

  

25-26 Sandbar Willow 3 

  

  

26-27 Sandbar Willow 1 

  

  

27-28 Sandbar Willow 

 

1 

 

  

28-29 Sandbar Willow 

 

8 

 

  

29-30 Sandbar Willow 

 

5 

 

  

30-31 Sandbar Willow 

 

4 

 

   

Cottonwood 2 3 

 

  

31-32 Silver Maple 3 

  

  

32-33 Sandbar Willow 

 

2 

 

   

Silver Maple 1 1 

 

  

33-34 Cottonwood 

 

1 

 

  

34-35 Silver Maple 4 

  

  

35-36 Silver Maple 3 

  

  

37-38 Silver Maple 3 

  

  

38-39 Sandbar Willow 

 

1 

 

   

Silver Maple 3 

  



 

 96 

  

39-40 Sandbar Willow 1 

  

  

40-41 Sandbar Willow 1 1 

 

   

Silver Maple 2 

 

14, 30 

  

41-42 Sandbar Willow 2 

        Silver Maple 1   72 

6 22 8-9 Green Ash 

 

1 

 

  

11-12 Silver Maple 

  

267 

   

American Elm 

 

3 

 

  

12-13 Green Ash 

 

1 

 

  

14-15 Green Ash 

  

36 

  

15-16 American Elm 3 1 

 

  

16-17 American Elm 3 

  

  

17-18 American Elm 3 

  

  

18-19 American Elm 

  

39 

  

19-20 American Elm 1 

 

27 

    20-22 Box Elder     42 

7 30 6-7 Black Willow  3 1 

 

   

Sandbar Willow 1 1 

 

  

7-8 Black Willow  3 2 

 

   

Sandbar Willow 

 

1 

 

  

8-9 Black Willow  1 3 

 

   

Sandbar Willow 1 3 

 

  

9-10 Black Willow  1 3 

 

   

Sandbar Willow 

 

4 

 

  

10-11 Sandbar Willow 2 4 

 

  

11-12 Sandbar Willow 2 5 

 

  

12-13 Sandbar Willow 1 3 

 

   

Silver Maple 1 

  

  

13-14 Sandbar Willow 1 3 

 

   

Silver Maple 1 

  

  

14-15 Sandbar Willow 

 

3 

 

  

15-16 Sandbar Willow 

 

3 

 

  

16-17 Sandbar Willow 

 

3 

 

  

17-18 Sandbar Willow 

 

3 

 

  

18-19 Sandbar Willow 1 2 

 

  

19-20 Sandbar Willow 

 

3 

 

  

21-22 Sandbar Willow 3 3 

 

  

28-29 Cottonwood 

  

110 

    29-30 Silver Maple     84 



 

 97 

Table 2 

     Lower Minnesota River Basin Transect Survey Percent Species Coverage 

Site 
Transect 

Length (m) 
Quadrat Species 

Cover 

(%) 

1 90 1 Bare 100 

  

2 Bare 100 

  

3 Bare 100 

  

4 Bare 100 

  

5 Bare 98 

   

Unknown 2 

  

6 Bare 100 

  

7 Bare 98 

   

Smartweed 2 

  

8 Bare 100 

  

9 Bare 100 

  

10 Bare 100 

  

11 Bare 100 

  

12 Bare 100 

  

13 Bare 100 

  

14 Bare 100 

  

15 Bare 100 

  

16 Bare 100 

  

17 Bare 100 

  

18 Bare 99 

   

Smartweed 1 

  

19 Bare 98 

   

Smartweed 2 

  

20 Bare 100 

  

21 Bare 98 

   

Smartweed 2 

  

22 Bare 100 

  

23 Bare 100 

  

24 Bare 99 

   

Smartweed 1 

  

25 Bare 99 

   

Smartweed 1 

  

26 Bare 99 

   

Smartweed 2 



 

 98 

  

27 Bare 100 

  

28 Bare 95 

   

Smartweed 3 

   

Awned Umbrella Sedge 1 

   

Cocklebur 1 

  

29 Bare 97 

   

Smartweed 3 

  

30 Bare 100 

  

31 Bare 100 

  

32 Bare 100 

  

33 Bare 100 

  

34 Bare 100 

  

35 Bare 100 

  

36 Bare 100 

  

37 Bare 100 

  

38 Bare 100 

  

39 Bare 100 

  

40 Bare 100 

  

41 Bare 100 

  

42 Bare 75 

   

Litter 20 

   

Silver Maple Seedling 4 

   

Reed Canary Grass 1 

  

43 Bare 80 

   

Reed Canary Grass 17 

   

Aster 3 

  

44 Bare 95 

   

Reed Canary Grass 2 

   

Silver Maple Sapling 3 

  

45 Bare 75 

   

Silver Maple Tree 10 

   

Litter 5 

   

Reed Canary Grass 2.5 

   

Awned Umbrella Sedge 2.5 

  

46 Bare 65 

   

Litter 20 

      Reed Canary Grass 15 

2 94 1 Bare 100 

  

2 Bare 100 



 

 99 

  

3 Bare 100 

  

4 Bare 100 

  

5 Bare 100 

  

6 Bare 100 

  

7 Bare 100 

  

8 Bare 100 

  

9 Bare 100 

  

10 Bare 100 

  

11 Bare 100 

  

12 Bare 100 

  

13 Bare 100 

  

14 Bare 100 

  

15 Bare 100 

  

16 Bare 95 

   

Smartweed 5 

  

17 Bare 95 

   

Smartweed 5 

  

18 Bare 95 

   

Smartweed 5 

  

19 Bare 100 

  

20 Bare 100 

  

21 Bare 100 

  

22 Bare 100 

  

23 Bare 100 

  

24 Bare 100 

  

25 Bare 100 

  

26 Bare 100 

  

27 Bare 100 

  

28 Bare 100 

  

29 Bare 100 

  

30 Bare 100 

  

31 Bare 100 

  

32 Bare 100 

  

33 Bare 100 

  

34 Bare 100 

  

35 Bare 100 

  

36 Bare 98 

   

Smartweed 2 

  

37 Bare 100 



 

 100 

  

38 Bare 100 

  

39 Bare 90 

   

Sandbar Willow Sapling 10 

  

40 Bare 90 

   

Sandbar Willow Sapling 10 

  

41 Bare 90 

   

Sandbar Willow Sapling 10 

  

42 Beggarticks 10 

   

Sandbar Willow Sapling 10 

   

Smartweed 10 

   

Cottonwood Sapling 5 

  

43 Bare 75 

   

Sandbar Willow 15 

   

Silver Maple Seedling 5 

   

Smartweed 5 

  

44 Bare 45 

   

Reed Canary Grass 40 

   

Sandbar Willow Sapling 10 

   

Cottonwood Sapling 5 

  

45 Reed Canary Grass 60 

   

Bare 20 

   

Sandbar Willow Sapling 20 

  

46 Bare 40 

   

Beggarticks 20 

   

Sandbar Willow Sapling 20 

   

Woodnettle 20 

  

47 Bare 35 

   

Beggarticks 35 

   

Sandbar Willow Sapling 10 

      Woodnettle 20 

3 80 1 Bare 98 

   

Smartweed 1 

   

Cocklebur 1 

  

2 Bare 100 

  

3 Bare 100 

  

4 Bare 98 

   

Cocklebur 2 

  

5 Bare 98 

   

Litter 2 
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6 Bare 98 

   

Litter 2 

  

7 Bare 100 

  

8 Bare 100 

  

9 Bare 100 

  

10 Bare 100 

  

11 Bare 100 

  

12 Bare 100 

  

13 Bare 100 

  

14 Bare 100 

  

15 Bare 95 

   

Cocklebur 2.5 

   

Smartweed 2.5 

  

16 Bare 100 

  

17 Smartweed 97 

   

Bare 3 

  

18 Bare 95 

   

Cocklebur 2.5 

   

Smartweed 2.5 

  

19 Bare 100 

  

20 Bare 100 

  

21 Bare 98 

   

Awned Umbrella Sedge 2 

  

22 Bare 100 

  

23 Bare 95 

   

Creeping Lovegrass 2.5 

   

Smartweed 2.5 

  

24 Bare 95 

   

Smartweed 3 

   

Fowl Manna Grass 

 

  

25 Bare 90 

   

Creeping Lovegrass 5 

   

Smartweed 5 

  

26 Bare 90 

   

Creeping Lovegrass 7 

   

Smartweed 3 

  

27 Bare 80 

   

Creeping Lovegrass 10 

   

Smartweed 10 



 

 102 

  

28 Bare 80 

   

Creeping Lovegrass 10 

   

Smartweed 10 

  

29 Bare 100 

  

30 Bare 85 

   

Smartweed 15 

  

31 Bare 75 

   

Creeping Lovegrass 30 

   

Cottonwood Seedling 2.5 

   

Smartweed 2.5 

  

32 Bare 78 

   

Creeping Lovegrass 15 

   

Sandbar Willow Sapling 5 

   

Cottonwood Seedling 2 

  

33 Litter 80 

   

Bare 10 

   

Sandbar Willow Sapling 10 

  

34 Bare 90 

   

Sandbar Willow Sapling 10 

  

35 Bare 40 

   

Litter 40 

   

Sandbar Willow Sapling 15 

   

Reed Canary Grass 2.5 

   

Smartweed 2.5 

  

36 Bare  40 

   

Litter 40 

   

Aster 10 

   

Sandbar Willow Sapling 10 

  

37 Goldenrod 40 

   

Bare 15 

   

Aster 10 

   

Sunflower 10 

   

Sandbar Willow Sapling 5 

  

38 Reed Canary Grass 40 

   

Aster 20 

   

Bare 15 

   

Sunflower 15 

   

Sandbar Willow Sapling 10 

  

39 Bare 45 
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Goldenrod 30 

   

Aster 10 

   

Sunflower 10 

   

Reed Canary Grass 10 

   

Sandbar Willow Sapling 5 

  

40 Bare 45 

   

Goldenrod 25 

   

Sunflower 10 

   

River Bank Grape 10 

   

Aster 5 

      Sandbar Willow Sapling 5 

4 42 1 Bare 50 

   

Litter 50 

  

2 Bare 95 

   

Creeping Lovegrass 5 

  

3 Bare 75 

   

Creeping Lovegrass 15 

   

Smartweed 10 

  

4 Bare 70 

   

Creeping Lovegrass 15 

   

Smartweed 12.5 

   

Litter 2.5 

  

5 Creeping Lovegrass 60 

   

Smartweed 25 

   

Bare 25 

   

Awned Umbrella Sedge 5 

   

Litter 2.5 

   

Unknown 2.5 

   

Beggarticks 2.5 

  

6 Bare 75 

   

Creeping Lovegrass 20 

   

Smartweed 5 

  

7 Bare 65 

   

Creeping Lovegrass 20 

   

Smartweed 10 

   

Awned Umbrella Sedge 5 

  

8 Bare 60 

   

Cocklebur 15 

   

Smartweed 10 
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Beggarticks 5 

   

Litter 5 

   

Woodnettle 5 

  

9 Bare 60 

   

Cocklebur 10 

   

Litter 10 

   

Smartweed 10 

   

Beggarticks 5 

   

Awned Umbrella Sedge 5 

  

10 Silver Maple Sapling 55 

   

Bare 43 

   

Litter 2 

  

11 Bare 60 

   

Litter 25 

   

Reed Canary Grass 20 

   

Smartweed 5 

  

12 Bare 60 

   

Litter 17.5 

   

Green Ash Sapling 10 

   

Reed Canary Grass 5 

   

Smartweed 5 

   

Silver Maple Seedling 2.5 

  

13 Bare 45 

   

Litter 20 

   

Litter 10 

   

American Elm Sapling 10 

   

Reed Canary Grass 10 

   

Woodnettle 5 

  

14 Bare 45 

   

Litter 40 

      Woodnettle 15 

5 42 1 Bare 100 

  

2 Bare 100 

  

3 Bare 100 

  

4 Bare 100 

  

5 Bare 100 

  

6 Bare 100 

  

7 Bare 100 

  

8 Bare 95 
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Smartweed 2.5 

   

Cocklebur 2.5 

  

9 Bare 95 

   

Cocklebur 3 

   

Smartweed 2 

   

Fowl Manna Grass 1 

  

10 Bare 90 

   

Smartweed 8 

   

Fowl Manna Grass 2 

  

11 Smartweed 60 

   

Bare 25 

   

Fowl Manna Grass 14 

  

12 Bare 90 

   

Cottonwood Seedling 5 

   

Sandbar Willow Seedling 5 

   

Smartweed 5 

  

13 Bare 40 

   

Fowl Manna Grass 30 

   

Smartweed 15 

   

Sandbar Willow Sapling 10 

   

Cocklebur 5 

  

14 Bare 35 

   

Cocklebur 35 

   

Reed Canary Grass 15 

   

Sandbar Willow Sapling 15 

  

15 Bare 20 

   

Cottonwood Sapling 20 

   

Fowl Manna Grass 20 

   

Awned Umbrella Sedge 20 

   

Smartweed 20 

   

Sandbar Willow Sapling 15 

  

16 Reed Canary Grass 70 

   

Smartweed 15 

   

Bare 5 

   

Fowl Manna Grass 5 

   

Silver Maple Seedling 5 

  

17 Bare 80 

   

Smartweed 20 

  

18 Smartweed 45 
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Bare 40 

   

Reed Canary Grass 10 

   

Silver Maple Seedling 5 

  

19 Bare 45 

   

Reed Canary Grass 40 

   

Smartweed 10 

   

Silver Maple Seedling 5 

  

20 Bare 45 

   

Reed Canary Grass 40 

   

Smartweed 10 

   

Silver Maple Seedling 5 

  

21 Bare 45 

   

Reed Canary Grass 40 

   

Smartweed 10 

   

Silver Maple Seedling 5 

  

22 Bare 65 

   

Woodnettle 20 

   

Sandbar Willow Seedling 10 

      Silver Maple Seedling 5 

6 22 1 Litter 70 

   

Bare 10 

   

Creeping Lovegrass 10 

   

Fowl Manna Grass 5 

   

Smartweed 5 

  

2 Bare 60 

   

Litter 15 

   

Awned Umbrella Sedge 15 

   

Creeping Lovegrass 5 

   

Smartweed 5 

  

3 Bare 70 

   

Litter 30 

  

4 Bare 50 

   

Litter 45 

   

River Bank Grape 5 

  

5 Bare 50 

   

River Bank Grape 40 

   

Green Briar 5 

   

Litter 5 

  

6 Bare 75 
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Litter 10 

   

American Elm Seedling 5 

   

Green Ash Sapling 5 

   

Fowl Manna Grass 5 

  

7 Bare 70 

   

Litter 10 

   

Aster 5 

   

Fowl Manna Grass 5 

   

River Bank Grape 5 

   

Tall Cone Flower 5 

  

8 Bare 60 

   

Litter 20 

   

American Elm Sapling 5 

   

American Elm Seedling 5 

   

Tall Cone Flower 5 

   

Woodnettle 5 

  

9 Bare 45 

   

Tall Cone Flower 20 

   

Woodnettle 15 

   

Litter 10 

   

American Elm Seedling 5 

   

Violet 5 

  

10 Bare 40 

   

Green Briar 25 

   

Woodnettle 15 

   

Litter 10 

   

American Elm Seedling 5 

   

River Bank Grape 5 

  

11 Bare 60 

   

Woodnettle 20 

   

Litter 10 

      Tall Cone Flower 10 

7 30 1 Creeping Lovegrass 40 

   

Bare 30 

   

Fowl Manna Grass 10 

   

Awned Umbrella Sedge 10 

   

Smartweed 10 

  

2 Creeping Lovegrass 60 

   

Sandbar Willow Seedling 20 
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Bare 10 

   

Beggarticks 5 

   

Smartweed 5 

  

3 Bare 65 

   

Sandbar Willow Seedling 10 

   

Black Willow Sapling 5 

   

Sandbar Willow Sapling 5 

   

Smartweed 5 

  

4 Bare 50 

   

Sandbar Willow Seedling 15 

   

Smartweed 15 

   

Litter 10 

   

Sandbar Willow Sapling 10 

  

5 Sandbar Willow Sapling 70 

   

Bare 15 

   

Smartweed 15 

   

Litter 5 

   

River Bank Grape 5 

  

6 Litter 35 

   

Sandbar Willow Sapling 30 

   

Reed Canary Grass 20 

   

Bare 15 

  

7 Reed Canary Grass 75 

   

Sandbar Willow Sapling 10 

   

Bare 5 

   

Litter 5 

   

River Bank Grape 5 

  

8 Litter 65 

   

Bare 20 

   

River Bank Grape 10 

   

Reed Canary Grass 5 

  

9 Bare 85 

   

Litter 15 

  

10 Litter 55 

   

Bare 40 

      Woodnettle 5 
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Table 3 

       Elm Creek Watershed Transect Survey Seedling and Sapling Densities 

Site 

Transect 

Length (m) 

Distance 

(m) Species Seedlings Sapling 

Tree DBH 

(cm) 

1 8 1-2 Sandbar Willow 4 16 

 

  

2-3 Sandbar Willow 

 

3 

 

  

3-4 Sandbar Willow 2 5 

 

  

4-5 Sandbar Willow 3 12 

 

  

5-6 Sandbar Willow 1 5 

 

  

6-7 Sandbar Willow 

 

3 

 

  

7-8 Sandbar Willow 2 5 

       Green Ash 2     

2 10 5-6 Box Elder 1 

      8-9 Box Elder 1     

3 10 0-1 Silver Maple 

  

11 

  

1-2 Silver Maple 

  

11 

  

2-3 Green Ash 

 

2 

 

  

3-4 Silver Maple 

  

11 

  

4-5 Box Elder 2 

  

  

5-6 Box Elder 

 

1 

     7-8 Box Elder 1 1   

4 14 5-6 Black Willow 1 2 42 

    6-7 Black Willow 3 6 64, 89 

5 13 0-1 Sandbar Willow 2 13   

  

1-2 Sandbar Willow   6   

  

  Silver Maple 2     

  

2-3 Sandbar Willow 5     

  

  Green Ash 3     

  

3-4 Sandbar Willow 13     

  

  Green Ash 4     

  

  Silver Maple   1   

  

4-5 Sandbar Willow   6   

  

5-6 Sandbar Willow   7   

  

  Green Ash 3     

  

6-7 Green Ash 1 2   

  

  Sandbar Willow   7   

  

7-8 Sandbar Willow   5   

  

8-9 Sandbar Willow   5   
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9-10 Sandbar Willow   1   

  
  Silver Maple   2   

  

10-11 Sandbar Willow 

 

2 12 

   

Silver Maple 

 

3 

 

   

Green Ash 3 

  

  
11-12 Green Ash 1 

  

   

Sandbar Willow 

 

3 

 

  

12-13 Sandbar Willow 

 

2 

       Green Ash 2     

6 22 5-6 Cottonwood 1 

  

   

Sandbar Willow 1 1 

 

  
6-7 Sandbar Willow 2 

  

  

8-9 Sandbar Willow 1 1 

 

  

9-10 Sandbar Willow 2 7 

 

  

10-11 Sandbar Willow 

 

3 

 

  
11-12 Sandbar Willow 

 
6 

     12-13 Sandbar Willow 1 1   

7 10 7-8 Box Elder 
  

14 

  

8-9 Box Elder 

 

1 

     9-10 Box Elder     17, 26 

8 10 4-5 Sandbar Willow 1 5 

 

  

5-6 Sandbar Willow 

 

8 

     9-10 American Elm   4   
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Table 4 

     Elm Creek Watershed Transect Survey Percent Species Coverage 

Site Transect Length (m) Quadrat Species Cover (%) 

1 8 1 Reed Canary Grass 40 

   

Sandbar Willow Sapling 20 

   

Bare 10 

   

Woodnettle 10 

  

2 Reed Canary Grass 85 

   

Sandbar Willow Sapling 20 

   

Bare 5 

  

3 Sandbar Willow Sapling 90 

   

Reed Canary Grass 5 

   

Bare 5 

  

4 Sandbar Willow Sapling 85 

   

Reed Canary Grass 10 

   

Bare 5 

  

5 Bare 50 

   

Litter 30 

   

Reed Canary Grass 15 

   

Sandbar Willow Sapling 5 

  

6 Reed Canary Grass 40 

   

Sandbar Willow Sapling 35 

   

Bare 10 

   

Litter 10 

  

7 Reed Canary Grass 85 

   

Bare 5 

   

Litter 5 

  

8 Reed Canary Grass 70 

   

Sandbar Willow Sapling 15 

   

Bare 5 

   

Green Ash Seedling 5 

      Litter 5 

2 10 1 Bare 95 

   

Reed Canary Grass 2.5 

   

Smartweed 2.5 

  

2 Bare  95 

   

Beggarticks 3 
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Awned Umbrella Sedge 1 

   

Smartweed 1 

  

3 Bare 90 

   

Cocklebur 10 

  

4 Bare 70 

   

Cocklebur 30 

  

5 Bare 60 

   

Cocklebur 40 

  

6 Reed Canary Grass 75 

   

Awned Umbrella Sedge 20 

   

Bindweed 5 

  

7 Reed Canary Grass 98 

   

Beggarticks 2 

  

8 Awned Umbrella Sedge 90 

   

Bare 7 

   

Bindweed 2 

   

Box Elder Seedling 1 

  

9 Awned Umbrella Sedge 60 

   

Reed Canary Grass 20 

   

Bare 15 

   

Beggarticks 5 

  

10 Awned Umbrella Sedge 70 

      Reed Canary Grass 30 

3 10 1 Bare 55 

   

Beggarticks 15 

   

Giant Ragweed 10 

   

Litter 10 

   

Cocklebur 5 

   

Fowl Manna Grass 2.5 

   

Woodbine 2.5 

  

2 Wood Neetle 45 

   

Ragweed 20 

   

bare 15 

   

Litter 10 

   

Green Ash Seedling 5 

   

Woodbine 5 

  

3 Goldenrod 55 

   

Buckthorn 15 

   

Sunflower 15 
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Bare 10 

   

Litter 5 

  

4 Bare 50 

   

Goldenrod 10 

   

Reed Canary Grass 10 

   

Sunflower 10 

   

Woodbine 10 

   

Buckthorn 5 

   

Litter 5 

  

5 Bare 60 

   

Goldenrod 10 

   

Goldenrod 10 

   

Woodbine 10 

   

Reed Canary Grass 5 

   

Box Elder Seedling 2.5 

   

Woodnettle 2.5 

  

6 Honeysuckle 70 

   

Bare 20 

   

Woodbine 10 

  

7 Bare 50 

   

Reed Canary Grass 15 

   

Woodnettle 15 

   

Goldenrod 10 

   

Woodbine 7.5 

   

Box Elder Seedling 2.5 

  

8 Raspberry 40 

   

Woodnettle 30 

   

Buckthorn 10 

   

Woodbine 10 

   

Bare 5 

   

Thistle 5 

  

9 Woodnettle 30 

   

Buckthorn 25 

   

Bare 20 

   

Goldenrod 10 

   

River Bank Grape 10 

   

Woodbine 5 

  

10 Bare 40 

   

Honeysuckle 30 
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Buckthorn 10 

   

River Bank Grape 7.5 

   

Woodnettle 5 

   

Woodbine 5 

      Bluejoint 2.5 

4 7 1 Bare 45 

   

Awned Umbrella Sedge 25 

   

Smartweed 25 

   

Beggarticks 5 

  

2 Awned Umbrella Sedge 80 

   

Bare 5 

   

Beggarticks 5 

   

Fowl Manna Grass 5 

   

Smartweed 5 

  

3 Bare 95 

   

Black Willow Sapling 5 

  

4 Bare 45 

   

Reed Canary Grass 35 

   

Goldenrod 20 

  

5 Reed Canary Grass 55 

   

Bindweed 25 

   

Bare 10 

   

Litter 10 

  

6 Reed Canary Grass 95 

   

Bindweed 5 

  

7 Reed Canary Grass 80 

      Bindweed 20 

5 13 1 Bare 55 

   

Reed Canary Grass 30 

   

Sandbar Willow Sapling 10 

   

Goldenrod 5 

  

2 Reed Canary Grass 70 

   

Bare 15 

   

Sandbar Willow Sapling 10 

   

Silver Maple Seedling 5 

  

3 Bare 65 

   

Reed Canary Grass 20 

   

Green Ash Seedling 10 

   

Sandbar Willow Sapling 10 
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Silver Maple Sapling 5 

  

4 Reed Canary Grass 60 

   

Sandbar Willow Sapling 20 

   

Bare 10 

   

Green Ash Seedling 10 

  

5 Reed Canary Grass 80 

   

Sandbar Willow Sapling 10 

   

Green Ash Seedling 5 

   

Bare 5 

  

6 Reed Canary Grass 45 

   

Bare 30 

   

Sandbar Willow Sapling 20 

   

Green Ash Seedling 5 

  

7 Bare 40 

   

Reed Canary Grass 30 

   

Goldenrod 10 

   

Sandbar Willow Sapling 10 

   

Green Ash Sapling 5 

   

Woodnettle 5 

  

8 Reed Canary Grass 85 

   

Sandbar Willow Sapling 10 

   

Bare 4 

   

Green Ash Seedling 1 

  

9 Reed Canary Grass 40 

   

Bare 25 

   

Bindweed 10 

   

Goldenrod  10 

   

Sandbar Willow Sapling 10 

   

Silver Maple Sapling 5 

  

10 bare 15 

   

Sandbar Willow Sapling 15 

   

Woodnettle 10 

   

Goldenrod 5 

   

reed canary grass 5 

   

Silver Maple Sapling 5 

  

11 Woodnettle 30 

   

Sandbar Willow Sapling 25 

   

Bare 20 

   

Reed Canary Grass 10 
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Awned Umbrella Sedge 5 

   

Bindweed 5 

   

Goldenrod 5 

  

12 Sandbar Willow Sapling 60 

   

Bare 20 

   

Woodnettle 10 

   

Green Ash Seedling 7.5 

   

Beggarticks 2.5 

  

13 Sandbar Willow Sapling 40 

   

Bare 20 

   

Woodnettle 20 

   

Goldenrod 10 

   

Beggarticks 5 

      Green Ash Seedling 5 

6 11 1 Bare 90 

   

Awned Umbrella Sedge 2.5 

   

Spike Rush 2.5 

   

Creeping Lovegrass 2.5 

   

Smartweed 2.5 

  

2 bare 75 

   

Spike Rush 10 

   

Cocklebur 5 

   

Smartweed 5 

   

Awned Umbrella Sedge 2.5 

   

Creeping Lovegrass 2.5 

  

3 Bare 85 

   

Awned Umbrella Sedge 5 

   

Sandbar Willow Sapling 5 

   

Smartweed 5 

  

4 Awned Umbrella Sedge 75 

   

Smartweed 10 

   

Bare 5 

   

Creeping Lovegrass 5 

   

Sandbar Willow Seedling 5 

  

5 Bare 45 

   

Reed Canary Grass 30 

   

Sandbar Willow Sapling 15 

   

Aster 5 

   

Beggarticks 5 
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Foxtail 5 

   

Smartweed 5 

  

6 Bare 60 

   

Sandbar Willow Sapling 15 

   

Cocklebur 10 

   

Sandbar Willow Seedling 10 

   

Beggarticks 5 

  

7 Bare 55 

   

Goldenrod 20 

   

Cocklebur 10 

   

Reed Canary Grass 10 

   

Aster 5 

  

8 Bare 45 

   

Goldenrod 30 

   

Aster 10 

   

Foxtail 10 

   

Violet 5 

  

9 Bare 50 

   

Goldenrod 50 

  

10 Bare 50 

   

Goldenrod 50 

  

11 Bare 50 

      Goldenrod 50 

7 10 1 Litter 50 

   

Bare 40 

   

Creeping Lovegrass 5 

   

Awned Umbrella Sedge 2.5 

   

Cocklebur 2.5 

  

2 Creeping Lovegrass 2 

   

Litter 55 

   

Cocklebur 3 

   

Bare 40 

  

3 Bare 50 

   

Litter 15 

   

Aster 5 

   

Cocklebur 5 

   

Reed Canary Grass 5 

  

4 Reed Canary Grass 45 

   

Bare 30 
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Litter 20 

   

Beggarticks 5 

  

5 Bare 85 

   

Litter  10 

   

Reed Canary Grass 5 

  

6 Bare 95 

   

Litter 5 

  

7 Bare 95 

   

Litter 5 

  

8 Litter 60 

   

Bare  40 

  

9 Bare 80 

   

Litter 20 

  

10 Litter 60 

      Bare  40 

8 10 1 Bare 55 

   

Creeping Lovegrass 40 

   

Awned Umbrella Sedge 2.5 

   

Smartweed 2.5 

  

2 Bare 85 

   

Creeping Lovegrass 10 

   

Smartweed 5 

  

3 Bare 60 

   

Creeping Lovegrass 30 

   

Awned Umbrella Sedge 5 

   

Smartweed 5 

  

4 Reed Canary Grass 65 

   

Bare 10 

   

Sandbar Willow Sapling 10 

   

Cocklebur 5 

   

Sandbar Willow Seedling 5 

   

Smartweed 5 

  

5 Bare 60 

   

Reed Canary Grass 25 

   

Sandbar Willow Sapling 10 

   

Smartweed 5 

  

6 Reed Canary Grass 75 

   

Sandbar Willow Sapling 20 

   

Bare 5 
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7 Reed Canary Grass 100 

  

8 Reed Canary Grass 100 

  

9 Reed Canary Grass 100 

  

10 Reed Canary Grass 95 

      Tall Cone Flower 5 
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Table 5 

 

  Minnesota River Basin Transect Survey Species List 

Common Name Scientific Name 

American Elm Ulmus americana 

Aster Aster sp. 

Awned Umbrella 

Sedge 
Cyperus squarrosus 

Beggarticks Bidens sp. 

Bindweed Calystegia sepium 

Black Willow Salix nigra 

Bluejoint Calamagrostis canadensis 

Box Elder Acer negundo 

Buckthorn Rhamnus cathartica 

Cocklebur Xanthium strumarium 

Cottonwood Populus deltoides 

Creeping Lovegrass Eragrostis hypnoides 

Fowl Manna Grass Glyceria striata 

Foxtail Setaria sp. 

Giant Ragweed Ambrosia trifida 

Goldenrod  Solidago sp. 

Green Ash Fraxinus pennsylvanica 

Honeysuckle Lonicera sp. 

Ragweed Ambrosia artemisiifolia 

Raspberry Rubus sp. 

Reed Canary Grass Phalaris arundinacea 

River Bank Grape Vitis riparia 

Sandbar Willow Salix interior 

Silver Maple Acer saccharinum 

Smartweed Persicaria sp. 

Spike Rush Eleocharis sp. 

Sunflower Helianthus sp. 

Tall Cone Flower Rudbeckia laciniata 

Thistle Cirsium sp. 

Violet Violia sp. 

Woodbine Parthenocissus quinquefolia 

Woodnettle Laportea canadensis 

 

 


