
Modeling and Design Space Exploration of Storage
Processing Unit for Energy Efficiency

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Ashwin Nagarajan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Prof. David Lilja

February, 2015

© Ashwin Nagarajan 2015

ALL RIGHTS RESERVED

Acknowledgements

I express my deeply-felt thanks to my advisor Professor David Lilja, for his continuous

support and thoughtful guidance. From offering chance to work in the SPU project to

setting research directions whenever it meandered and to complete writing this thesis,

his advice and positivity were immensely helpful.

I thank Professor Pen Chung Yew and Professor David Hung-Chang Du for serving

on the final committee and providing insightful comments.

I would like to acknowledge Kevin Gomez and Peng Li from Seagate Technology for

sharing their knowledge on SPU and encouraging discussions on various related topics.

I wish to express heartfelt gratitude to other members of SPU project: Manas

Minglani, Luke Everson and Sneha Deshpande. It was an honor to work with each one

of them. I thank Karthi Subbiah, Vivekanandan Seshadri, Vinodh Kumar, Manikandan

Palani, Pushkar Nandkar, Harishankar and Soumya Achanta for being great friends and

for their support throughout my Masters.

Finally, I thank my family: my parents S.Nagarajan and N.Hemalatha, my brother

Kaushik Nagarajan and my sister-in-law Amritha Mani for their support and encour-

agement.

i

Dedication

In memory of my grandfather S.Srikantan (1927 - 2011)

ii

Abstract

Computer architectures in the present era of exascale computing and big data face two

major challenges - (i) Increasing gap between processor and memory/storage speeds

and (ii) Energy Consumption. A compute system that tightly couples data storage and

computation is an attractive solution to mitigate these challenges. By implementing

processing inside NAND Flash SSDs computation is moved closer to data. In fact, a

computational hierarchy, named Storage Processing Unit (SPU), is formed with pro-

cessing elements in NAND Flash Memory Controller, SSD controller and host general

purpose processor. This hierarchy offers unique opportunities to curtail data movement

and reduce energy consumption. This thesis models SPU architecture, explores the

design space using carefully chosen applications and associated optimizations to under-

stand and evaluate its energy and performance. Sparse BLAS, BFS, K-Means Clustering

and K-Nearest Neighbor are used as benchmarks with energy and performance gains

observed up to 11x-400x and 4x-66x respectively.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables v

List of Figures vi

1 Introduction 1

2 Storage Processing Unit Architecture 5

2.1 Overview of SPU . 5

3 Modeling of Storage Processing Unit 10

3.1 Introduction to Modeling Using CoFluent 10

3.2 Developing SPU Model . 12

3.2.1 SPU on CoFluent . 12

3.2.2 ISA . 17

3.2.3 Data Flow and Analytical Validation 18

3.3 Baseline Model . 22

3.4 Applications . 22

4 Mapping Applications on SPU 24

4.1 Introduction to Sparse BLAS . 24

iv

4.2 Sparse Matrix Vector Multiplication . 25

4.2.1 Introduction and Baseline Model 25

4.2.2 Mapping spmv on SPU . 26

4.2.3 Performance and Energy Results 27

4.3 Sparse Matrix Matrix Multiplication . 31

4.3.1 Introduction and Baseline Model 31

4.3.2 Mapping spmm on SPU . 32

4.3.3 Performance and Energy Results 33

4.4 Graph500 on SPU . 35

4.4.1 Introduction: Breadth First Search 36

4.4.2 Mapping graph500 on SPU . 36

4.4.3 Memory Requirements . 37

4.4.4 Performance and Energy Results 39

4.5 Data Mining Applications on SPU . 40

4.5.1 K-Means Clustering . 41

4.5.2 Mapping K-Means on SPU . 42

4.5.3 k-Nearest Neighbor . 44

4.5.4 Mapping K-NN on SPU . 44

5 Optimizations 47

5.1 Automated Design Space Exploration 48

5.1.1 Simulator Setup . 49

5.1.2 SPMV Pareto Front . 49

5.2 SPU Architecture Characteristics . 50

6 Related Work 53

6.1 Active Disks . 53

6.2 Active Flash and Intelligent SSDs . 54

6.3 Other Near Data Processing Techniques 56

7 Summary and Future Work 58

References 61

v

List of Tables

3.1 Specifications . 13

3.2 Instruction Set to Run Applications on SPU Model 18

3.3 Appliations, Characteristics and Limitations 23

4.1 Energy Gain and Speedup for SPMV Crankseg 2 Data Set using in a 32

Channel 4 Dies SPU with Page Size = 4KB 31

4.2 Energy Split of Different Components in SPU 32Channel 4 Dies and Page

Size 1KB for F1 Data Set . 35

4.3 Energy Split of Different Levels of Graph in SPU and Baseline 39

vi

List of Figures

1.1 Models of Computation . 3

2.1 SPU Architecture . 7

2.2 Plane Level Parallelism and Die Interleaving for Read Operation 8

3.1 SSD Controller Function . 14

3.2 Coprocessor Function in TBM . 17

3.3 Command Flow to Dies in 4 channel, 4 Dies/channel SSD 19

3.4 Data Flow from Dies in 4 channel, 4 Dies/Channel SSD 20

3.5 Data Flow through Coprocessor in 4 channel, 4 Dies/Channel SSD . . . 21

4.1 Pipelined Processing inside SSDs for Bandwidth Bound SPMV Kernel . 28

4.2 Energy Split of Components in SSD in SPU architecture for SPMV . . . 30

4.3 Energy Consumption for Different SPU Configurations 31

4.4 Energy Consumption of Naive and Outer Product SPMM on SPU . . . 33

4.5 Energy Gain and Speedup of Outer Product SPMM on SPU 34

4.6 Energy variation with Coprocessor and SSD cores for BFS 40

4.7 Energy variation with CCoprocessor Cores for K-means 42

4.8 Energy variation with Coprocessor Cores and Communication for K-NN 45

5.1 Automated Design Space Exploration using CoFluent 50

5.2 SPMV Exploration-Varying number of channels for CSR-a configuration

forms Pareto front . 51

vii

Chapter 1

Introduction

Design of computer architectures has seen a paradigm shift over the past few decades.

While technological advances in manufacturing transistors has led this transformation,

several limiting challenges have directed the design of present compute systems. Specif-

ically, processor architectures hit the three “walls” : memory wall, power wall and

parallelism wall. Memory wall, caused by difference in processor and memory speeds,

led to creation of memory hierarchies, out-of-order speculative processors, newer DRAM

technologies and interconnects. Increasing power density and lack of effective cooling

solutions resulted in power wall. This effectively saturated the maximum operating

frequency of microprocessors and led to multi-core and many-core processors. Even

with such many core systems, due to power wall, majority of cores will be dormant

unless optimized [1]. These issues, combined with ability of applications to utilize the

increasing number of cores to redeem processor costs, presents the parallelism wall. In

fact, these challenges are not isolated, they coexist to present an energy wall. Energy

efficiency is of major concern from mobile phones to data centers. The next generation

of computing therefore addresses the question - how do we design architectures to reduce

Joules/compute without sacrificing performance ?

In mobile phones, need for energy efficiency is evident from battery life concerns in

present day smart phones. Advanced functionality and superior performance usually

come at expense of battery life. On the other hand, in servers and data centers, the

problem of energy efficiency is significant. Empirical evaluations report that data centers

in USA consume 1.5% of total electricity consumption [2] and is doubling every five years

1

2

[3]. These statistics also project cost of data centers to increase to 1600% between 2005

and 2025 [4]. High-end HPC systems consume several megawatts that is enough to

power small towns [5]. John et al [6] analyze characteristics of present architectures to

identify sources of energy consumption. They show that energy of actual computation

is far less compared to energy associated with moving data to perform the computation.

For example, while floating point operations consume about 10.6pJ/op, reading from

DRAM accounts for 1000pJ [6]. Engineering FLOPS is not a design constraint, data

movement presents the most daunting engineering and computer architecture challenge.

Thus, it is important to reduce energy cost associated with data transfers in future

architectures.

Figure on the left in 1.1 illustrates the concept of conventional model of computation.

With compute engine forming the nucleus of the structure, several layers of memory are

built with increasing storage capacities. However, this increase also attributes higher

time to transfer data to the compute engine. Thus, cost of data transfer is inherent

in this architecture as data needs to be moved from the outermost layer to compute

engine. Over the years, architecture optimizations have focused on improving locality,

spatiality properties of data access and reducing communication between processing

elements. While these optimizations have improved overall performance, movement of

data through the system is inherent and cannot be avoided. One solution to reduce

this movement is to tightly couple compute and storage. This results in model on the

right in 1.1 that shows how compute and storage are distributed in the system. As

data is moved from outermost layer, it is capable of being processed at different stages,

potentially reducing the amount of data transfered. Thus a system of compute and

memory hierarchy is formed.

Different solutions have been proposed depending on technology and type of the

storage system. Gokhale et al. [7] designed and fabricated Processor-in-Memory (PIM)

chip inside main memory. In another attempt, researchers tried to integrate processing

inside hard disks to improve performance of niche applications [8]. However, these

designs were not widely accepted because of the complexity of solution or high cost. The

advent of flash in storage industry has brought a paradigm shift [9], especially for data

centers. Flash offers several benefits, including fast random access, high throughput, and

low power consumption, over other technologies. Moreover, flash based SSDs offer serial

3

I/O interfaces, wider buses for media transfer, and high bandwidths for data transfer

[10]. Therefore, flash provides a good scope for bringing computation and memory

together. Storage Processing Unit(SPU) is an architecture that incorporates processing

capabilities inside a NAND Flash Solid State Drive in addition to SSD controller and

general purpose processor. SPU creates opportunity to reduce energy by limiting data

movement across hierarchy.

Figure 1.1: Models of Computation

In this thesis, SPU architecture is modeled and performance and energy of applica-

tions in conventional and SPU system are measured. A set of applications are identified

and main computation kernels in those applications are simulated using this model.

Architectural and application space are explored and optimizations to achieve maxi-

mum energy reductions are analyzed. Further, a framework to carry out automated

design space exploration and multi-objective (performance and energy) optimization of

SPU system is presented. Energy savings of up to 11x - 423x and performance gains

of up to 4x - 66x for applications including k-means clustering, Sparse BLAS, BFS and

K-Nearest Neighbor Search are observed.

This thesis makes following contributions:

� Creation of transaction level model of a compute system based on Storage Pro-

cessing Unit architecture for measuring performance and energy.

� Identification of applications suitable to be mapped on SPU and different mapping

techniques to achieve energy efficiency.

4

� Propose optimizations within SPU system and investigate its impact on energy

and performance.

� Creation of framework to perform automated design space exploration and multi-

objective optimization using sparse BLAS as example.

This thesis is organized as follows:

Chapter 2 introduces architecture of Storage Processing Unit. With emphasis on

processing inside NAND Flash, characteristics of SPU architecture is portrayed. Feasi-

bility of adding coprocessor and the concept of SPU is extended from previous work by

Peng et al.[11].

Chapter 3 demonstrates modeling methodology. Modeling of SPU is explained in

detail with data flow verification and analytical validation of the model. Development

of entire model is a group effort and my contribution to modeling SSD subsystem is

discussed in detail while giving enough background and supported details to understand

the model.

Chapter 4 describes mapping of applications on SPU. Data layout, memory require-

ments, different optimizations and other related properties are elucidated. A classifica-

tion of applications into bandwidth and compute bound based on these characteristics

is also presented. Further, energy and performance profiles of the applications are ana-

lyzed in detail. Modeling of K-Means and K-NN include work of other members in the

research group and thus mentioned only in brief to complete the discussion.

Chapter 5 presents a summary of all optimizations and discusses importance of

multi-objective optimization. Using spmv kernel as an example, framework to obtain

Pareto fronts is explained.

Chapter 6 outlines research work related to this thesis. Set of other technologies

relevant to coupling processing and memory and the use of NAND flash for processing

by other researchers are covered.

Chapter 7 summarizes the thesis and presents thoughts for future work.

Chapter 2

Storage Processing Unit

Architecture

Storage Processing Unit is a system with coupled compute and storage components.

General purpose processor inside Flash Memory Controllers called coprocessor, SSD

controller and host form the compute elements. NAND Flash memory arrays for copro-

cessor, DRAM, SRAM and register files for SSD controller and host form the memory

elements. Since processing in host and SSD controller are prevalent, this chapter em-

phasizes architecture of coprocessor in the context of SPU system. With a brief intro-

duction to features of SSD relevant to SPU, feasibility and characteristics of coprocessor

are discussed in this chapter.

2.1 Overview of SPU

NAND Flash memory is a persistent data storage medium used in devices such as Solid

State Drives (SSDs). It is designed using Floating Gate MOSFETs [12] that can be

electrically programed to store digital information. This is in contrast to magnetic

storage in hard drives (HDDs) that use rotating platters with magnetic heads to access

data. NAND Flash memory contains data logically organized in a specific form - it is

divided into planes, pages and blocks. A page is the smallest addressable unit of read

and write. Page sizes are usually in the order of several KBs such as from 4KB to

128KB [13]. A set of pages, in multiples of 16 ranging from 16 to 1024, form a block.

5

6

A NAND device encompasses a set of blocks, usually in powers of 2 (e.g. 4096, 8192).

Blocks are grouped to planes. For example, 512 blocks form a plane and 4 such planes

are present in a NAND device. An 8-bit (sometimes 16 bit) bus, called NAND Flash

bus connects the NAND die to external systems. Pages read from NAND Flash arrays

are temporarily stored in DRAM inside SSD controller before being forwarded through

PCIe interface to host processor.

Parallelism inside SSD stems from organization of NAND device into dies and chan-

nels. Multiple dies of NAND flash are present in a Flash package. Each die connects

through NAND Flash bus to transfer pages of data. A Flash Memory Controller man-

ages command/data requests to and from dies. Dies contend for the bus as data is

read from Flash memories. The use of multiple dies helps interleave read and write

operations between dies improving overall performance. These multiple NAND dies on

a flash package connect to a channel in the SSD. Channels are usually referred in this

thesis in the context of NAND Flash Package with dies and coprocessor attached to

it. Multiple such channels operate in parallel and connect to SSD controller. Typical

values of number of dies and channels are 4, 8 and 4, 8, 16, 32 respectively. A timing

diagram of read operation utilizing multiple dies and planes highlighting interleaving

and parallelism is shown in Figure 2.2 . Plane level parallelism refers to simultaneous

read and write on pages/blocks located in different planes of the same die. While a page

from multiple planes are read to registers in parallel, they are transfered serially over

NAND Flash bus. A Quad-plane die is modeled in this study. Also shown in Figure

2.2, multiple read requests are interleaved to different dies within single flash package.

This enables dies to read pages to respective registers in parallel. Only after a complete

page from one die is transfered can another die use NAND interface for its transfer. It

is important to note that these operations happen in parallel in other channels.

SSD controller implements a Flash Translation Layer (FTL) that performs logical to

physical address mapping of pages. Upon receiving commands from host processor, it

initiates requests for read/write to appropriate Flash packages. Page allocation scheme

used in this study is detailed in Chapter3. This scheme results in a balanced distribution

of pages to different flash packages. Due to various reasons like garbage collection, wear

leveling, page updates/writes, it is possible that pages are moved from their initial

address. Such a movement of pages is not taken into account for this study and is a

7

part of future work.

Figure 2.1: SPU Architecture

Feasibility of adding a coprocessor inside NAND Flash package is introduced in pre-

vious work [11]. Briefly, die area in a flash package outside NAND dies that implements

hardware (Flash Memory Controller) to support ECC and FTL functions such as block

management is pad-limited. The die area is driven by number of pins rather than gate

counts. This “wasted” silicon is used to implement functional units to process pages of

data fetched from NAND dies. Since die area does not change, addition of coprocessor

is possible with no additional costs. This functional unit is envisioned as a coprocessor

that aids host compute system to implement energy efficient processing. Gate counts

of coprocessor is expected to be up to few millions. The coprocessor is assumed to be

8

implemented using Low Operating Power (LOP) technology (as opposed to HP technol-

ogy in host) defined by ITRS [14]. At about one-fifth the frequency of a HP technology,

the speed of LOP technology matches the transfer rates of NAND Flash interface(2.5

ns per byte). This is important because clocking the coprocessor at higher frequencies

without sufficient bandwidth leads to energy-inefficient designs. Further, dynamic and

leakage power of LOP technology is only 60% and 5% of HP technology. While reduced

frequency of coprocessor is compensated by rich parallelism inside SSDs, extremely low

power design can potentially deliver impressive energy gains.

Figure 2.2: Plane Level Parallelism and Die Interleaving for Read Operation

Coprocessor offers earliest opportunity to begin data analysis. Second stage of pro-

cessing data (if needed) happens at SSD controller Figure 2.1. SSD controller is imple-

mented in current SSDs using embedded microprocessors such as the ARM Cortex [15] or

even multi-core controllers (e.g. a 4-core 780MHz controller on the OCZ RevoDrive X2

[16]). Software ecosystem enabling computation in these processors have already been

discussed and related works are pointed out in Chapter6.They are attached to RAM

modules to store information necessary for implementing FTL, garbage collection, wear

leveling etc and to store data temporarily before transferring to Host/NAND Flash

channels depending on read/write operations respectively. The size of SSD controller’s

9

DRAM is roughly 1% of the total capacity of NAND Flash memory. The coprocessor

and embedded CPUs in SSD controller form two layers of computation in SPU system.

Third stage of processing (if needed) happens at host compute system. This model of

computation as in Figure 1.1 offers an opportunity to map applications utilizing the

distributed compute and memory hierarchy enabling energy efficient processing.

Chapter 3

Modeling of Storage Processing

Unit

This chapters begins with a brief introduction to modeling using Intel CoFluent touching

the idea of application and platform models. Various functions in the model and their

interactions are then explained in detail. The chapter continues with a brief account of

instruction set and analytical validation of model. Finally, an introduction to kernels

modeled in thesis is included.

3.1 Introduction to Modeling Using CoFluent

SPU system is modeled using Intel’s CoFluent Studio [17]. Intel CoFluent Studio is a

system modeling and simulation environment. Systems are modeled at a transactional

level abstraction and represented using graphical user interface and C++. Modeling

and simulation library based on SystemC kernel generates simulation traces.

Modeling in CoFluent starts with creation of a Timed-Behavioral Model (TBM) of

the system. This step is used to represent different components of system as functions

. A function’s behavior is an application-oriented viewpoint of internal structure of the

architecture. It is the logical technology independent representation of the system. For

example, floating point add unit, bit shift unit, page allocation are functions in TBM

. Several functions can be embedded within a function to create desired functionality.

10

11

Functions contain operations, events, control structures that define its intended oper-

ation. Operations can be thought of different tasks performed by the function. Every

operation has an associated algorithm that defines its functional or behavioral charac-

teristics. Apart from algorithm, several other attributes can be defined for operations

such as time taken to complete the operation, dynamic power and dynamic resource

load. Attributes such as cost, power, memory etc can also be defined for functions. It is

important to note that functions are technology-independent; their attributes may vary

with technology. Several such functions form a system. Functions communicate with

each other through transactions represented as message queues. In fact, functions com-

municate in three ways: (i) A shared variable, (ii) A synchronization or event relation

and(iii) Data transfer through message queues. Functional structure and its associate

behavioral representation is the Timed-Behavioral Model of a system.

Once TBM is verified for correct functionality, a Platform Model is created. The

purpose of platform model is to define a physical architecture or a hardware platform

that implements functions defined in TBM. Platform model comprises of processors,

communication modes that manage relationship between processors and memory. For

example, Processor, DRAM, SSD are components in a platform model. Attributes or

properties of these components are our main focus - these are the design parameters

that decide the overall performance of the system. Examples of design parameters

include CPU Frequency, Dynamic Power, Memory Bandwidth, Number of Dies etc . It

is always possible to create parameters within TBM (implementation specific) that need

not be exposed to architecture model. The Timed Behavioral Model is then mapped

on to the Platform Model to create an Architecture Model of the system. This step

maps functions in application model to corresponding components in platform model.

All the functions inherit the properties of respective components. For example, clock

frequency of operations inside a function in application model is the CPU frequency

assigned to the ‘Processor’ component in platform model. Further, operations inside

functions can be assigned delays in terms of this frequency. Assigning 1 cycle to an

operation will inherit the value of one cycle period (e.g. 1 ns) from CPU frequency(e.g.

1 GHz) defined in platform model. When design parameters are duplicated in TBM

and platform model, values in the latter assume higher precedence. Thus, once TBM is

designed and verified for correctness, design parameters defined in architecture model

12

can be varied to understand system performance. Modeling of message queues/buses

follow a similar procedure. A send time or transfer time attribute is used to define time

taken for transfer over the bus. Since this transfer time is a measure of amount of data

transfered it is necessary to use this amount while defining time attribute. CoFluent

allows this by letting user to pass the value using a variable called USERDATASIZE

which is accessed while setting attributes. Thus transfer time on buses is modeled

from bandwidth values defined in designed parameters and from actual amount of data

transfer. As a special case, since mapping multiple instances of message queues in TBM

to buses in Platform Model created unintended behavior, properties of those buses were

modeled on processor modules. It can be noted that NAND Flash bus is a multiple

instance message queue that gets mapped to a single bus instance in platform model.

While intended behavior is to allow dies in different channels to use its respective NAND

Flash bus in parallel, single instance bus in platform model serialized the process. In such

instances, either application model is used or components in platform model are used

to model bus behavior. Table 3.1 outlines technological and other design parameters

used in the model carried over from [11]. CoFluent simulation process explained above

only include content necessary to understand SPU model. Detailing all capabilities of

CoFluent simulator exceed the scope of this thesis. Interested readers are referred to

CoFluent Methodology Guide and other examples provided by Intel [17].

3.2 Developing SPU Model

This section includes details on modeling of SSD relevant to SPU and other components

of SPU system. A set of instructions developed for simulating applications on the model

is also described. Next, data flow of page read operation is explained with relevant

diagrams from CoFluent and insight into how CoFluent reports performance and power

numbers. Finally, analytical models that capture trend in performance and energy

variation with different design parameters are included to validate the model.

3.2.1 SPU on CoFluent

Two major functions in Application model for SSD include SSD controller and channels

of NAND Flash Memories. Each channel has a flash package that contains multiple

13

Table 3.1: Specifications
Parameters Values

CPU Clock Frequency 2 GHz
CPU Gate Count per Core 200 M

CPU Dynamic/Leakage Power 5.04 W/0.34 W
DRAM Dynamic/Leakage Power 0.44 W/0.09 W

PCIe Interface Speed 24 Gb/s
SSD Controller Clock Frequency 1 GHz

SSD Controller Gate Count 20M
SSD Controller Dynamic/Leakage Power 156 mW/1.3 mW

Coprocessor Core Gate Count 1K - 1 M
Coprocessor Clock Frequency 400 MHz

Coprocessor Dynamic/Leakage Power 3.12 uW/67 nW
NAND ash dynamic/leakage power per die 40 mW/3 mW
Time for NAND ash page read to register 75 us

NAND Flash Bus Bandwidth 2.5 ns per Byte
Page Size 1KB, 2KB, 4KB, 8KB

Number of Channels 4, 8, 16, 32
Number of Dies 4 and 8

NAND dies as functions. Further, each die contains a function for pages of data. Other

functions control data flow between SSD controller and actual pages. Coprocessor is

also modeled as a separate function inside flash package.

Functions of SSD controller modeled for SPU are (i) handling page read/write and

coprocessor requests from host system (ii) processing data from coprocessor before trans-

ferring to host. The controller receives a command from host that indicates operation

to be performed. Command is defined as a struct that forms SSD’s input parameters.

They are: (i) type of operation which is one of read, write, erase or coprocessor (ii)

data size - amount of data to read, write, erase or process (iii) Enable/Disable quad

plane. Other set of design parameters used by SSD controller are page size, number of

channels and dies.

Based on data size requested by host and the design parameters, SSD controller

automatically initiates requests to NAND Flash arrays. All data sizes that are a multiple

of page size are handled. Page allocation policy is according to [18], with parallelism

priority modified as Channel-Pakage-Die-Plane, and modeled as shown in Algorithm1.

As shown in Figure 3.1, SSD controller has send path and receive path. While send path

caters to correct page assignment, receive path is responsible for transferring data back

14

Figure 3.1: SSD Controller Function

to host. It also makes sure that correct amount of data is received from dies. When

data size requested is larger than pages that can be read once from all dies and all

channels, i.e., data size > (Nb Channels × Nb Dies × Page Size), multiple iterations of

read from all the NAND dies are required. Thus, the function has to alternate between

send and receive paths. Since CoFluent does not allow a function to send and receive

simultaneously, the model is made such that SSD controller moves to receive path after

every two requests. CtrlPerform operation models data processing in SSD controller.

The location of this operation in Figure 3.1 indicates that data is processed and then

forwarded to host. Time taken for the operation, dependent on the actual operation

and data size, is set in LoopInit operation.

Commands from SSD controller is received by Flash Memory Controller inside

NAND Flash package. The commands are then placed over NAND Flash Bus to be

processed by Flash dies. Only one die can receive a command from Flash Memory

15

Controller at any instant for a given channel. When a die is busy processing the re-

quest, command is issued to next die and so on. This functionality is achieved using

Semaphore operations in CoFluent. Each die receives the command after time to trans-

fer commands to all previous dies has elapsed. Our model assumes a fixed order in

issuing commands to dies. This time taken to transfer the command is modeled using

NAND Flash bus bandwidth on message queues connecting the functions representing

Flash Memory Controller and NAND Flash dies. If there are enough data to be fetched

from all dies in a channel, data is read from flash memory to registers present in dies

simultaneously. Please note that registers inside dies are different from the registers

present in Flash memory controller where coprocessor resides. Since time to trans-

fer command (hundreds of nanoseconds) is negligible compared to time taken to read

(thousands of nanoseconds), dies in same flash package read in parallel. Please refer

to Figure 2.2 for further details. Please note that time to transfer the command will

represent transfer of data for write requests. NAND dies function route the received

command to read, write and erase operations. Time taken to perform these operations

are calculated dynamically based on data size and assigned to these operations. When

this time has elapsed, NAND die function is ready to send data back for a read request.

Now a semaphore is accessed to request for data transfer on the bus. When bus becomes

available, a lock on semaphore is acquired and data from registers are transfered. After

data transfer, lock is released. For a read operation, multiple dies contend for NAND

Flash bus as data becomes available. In CoFluent model, multiple function instances of

NAND dies attempt to acquire a lock (semaphore) on the shared object (NAND Flash

bus). Transfer is complete when all dies in the channel have completed data transfer.

This process proceeds in parallel on all channels. Depending on the command, pages

read are transfered either to SSD controller or Coprocessor.

16

Algorithm 1 Pseudo-code for SSD controller Function Page Assignment

Input: Number of Channels, Number of Dies/Channel, Page Size, Data Size

Output: Commands to Flash Dies following Page Allocation Policy discussed in [18]

1: Pages Iteration = (Number of Channels × Number of Dies × Page Size)

2: Total Pages = Data Size / Pages Iteration

3: if (Total Pages > 1)

4: Number Iterations = Total Pages → Number of iterations of read from all dies

5: if (Data Size % Pages Iteration != 0) → Residual data read separately at the end

6: Remainder = Data Size - (Pages Iteration×Number Iterations)

7: Dies Count = Remainder / (Page Size×Number of Channels)

8: Dies Remaining = Remainder % (Page Size×Number of Channels)

9: for (i = 1 to Number Iterations)

10: Send → Read Page Size × Number of Dies for all Channels

11: Move to receive path and return after every alternate Send

12: while (Dies Count > 0) Receive path has similar logic

13: Send → Read Page Size × (Dies Count + Dies Remaining)

14: Dies Remaining = Dies Remaining - 1

Coprocessor function models processing inside NAND Flash package. Data flow is

such that a page transferred from die across NAND Flash bus is stored in a buffer

space in Flash Memory Controller. Coprocessor reads a page from this buffer, pro-

cesses it, transfers results to SSD controller and starts processing next page from buffer.

Figure 3.2 shows Coprocessor receiving data from CoProcData message queue. The Re-

ceive Data operation is analogous to buffer space; ProcessData and Process operations

model data processing. Time taken to process data is calculated dynamically in Re-

ceive Data based on page size, size of operands and operation being performed. When

data is read from all dies, coprocessor will receive a page after a time lapseequal to

time taken to transfer a page on NAND Flash bus. Thus, it is necessary for coprocessor

function to return to Receive Data to accept a new page so that NAND Flash bus and

NAND die function can complete the transfer and return to initial states. If sum of

time taken for process and send operation (which varies with application) is lesser than

time to transfer a page, application flow moves to else path in 3.2. Data is processed,

17

sent to SSD controller and next page is received.

Figure 3.2: Coprocessor Function in
TBM

On the other hand, if the sum is greater, it is necessary, in the CoFluent model,

to interrupt processing current page to return to receive a new page and then continue

processing current page. Depending on actual time values, one or multiple Send==false

path is/are taken before moving to else path to transfer data. Time taken to process

a page and amount of data sent from coprocessor are dependent on the application

being modeled. These are set and varied manually for every application. Also, it is

important to note that while NAND Dies and Channels are multiple instance functions,

Coprocessor is a single instance function inside Channels.

3.2.2 ISA

Modeling applications to understand its characteristics requires a mechanism to repre-

sent its data flow and operations that can be executed on CoFluent model discussed in

section 3.1. We developed a simple instruction set that encompasses primitive arithmetic

and control instructions which are listed in Table 3.2. Syntax for these instructions is

given below:

< command name > loops < number > instructions < data size >

where command name can be one of the commands listed in Table3.2, number is a place

18

Table 3.2: Instruction Set to Run Applications on SPU Model
Command Description

ssd nand read Reads data from SSD to Host
ssd nand write Writes data from Host to SSD

ssd nand perform Pseudo for other computations
host dram add Add operation in Host
host dram mult Multiply operation in Host

host dram perform Pseudo for other computations
host dram write Write data to DRAM
coproc cmd add Coprocessor performs add operation
coproc cmd mult Coprocessor performs mult operation

coproc cmd perform Pseudo for other computations
ssd ctrl perform SSD controller performs an operation
ssd nand loops Denotes start of a loop
ssd loops end Denotes end of loop
ssd nand end Marks end of program

holder usually 1 and data size is the amount of data to be processed for this instruction.

When one or several instructions need to be executed in a loop, following loop syntax

is used,

ssd nand loops start < loop count > < loop identifier > < any no., usually 1 >

....................

....................

ssd nand loops end -1 < loop identifier > -1

By using multiple loop identifiers, nested loop structure can be formed. Applications

are understood and reduced to primitve operations that can be represented using one

of these instructions. A script is created capturing data flow and computations of an

application. Host function in CoFluent model parses the script and executes instructions

one by one.

3.2.3 Data Flow and Analytical Validation

SPU model discussed in section 3.1 is validated using (i) technological parameters used in

model, (ii) data flow and (iii) performance and energy trends on variation of parameters

specific to SPU. Table3.1 already lists parameters used in the model. In this section,

data flow is visualized using application models’ timing diagrams and performance,

energy numbers are evaluated against analytical expressions.

19

Figure 3.3: Command Flow to Dies in 4 channel, 4 Dies/channel SSD

Timing diagrams in application model helps visualize data flow between functions

in the model. Command or page transfer to and from NAND flash dies and processing

at coprocessor are highlighted in Figures 3.3, 3.4 and 3.5. Figure 3.3 shows interleaving

operations within a channel and parallelism across channels during page read. Since

this is a page read command, time to issue is very less compared to actual read time. It

can be observed that all four dies read in parallel after four commands are transferred

serially over NAND Flash bus. Figure 3.4 portrays data path as pages are transferred

back to SSD controller. It highlights the instant when one die (one die in each channel)

completes transfer and other die starts transfer of a page. It is important to note that

multiple dies in one flash package are ready to transfer a page but wait to get access

to bus. Time taken for each function and instruction are direct output of simulation

of application model. Also indicated in figures is active/idle periods of the functions -

red and green lines indicating active period, white and yellow lines denoting idle time.

CoFluent stores these values and provides APIs to retrieve and post-process to compute

energy consumption. After simulation is complete, these values are retrieved for each

component and total energy is computed in Post-Simulation section of model. Figure

3.5 depicts data flow for a coprocessor command. One page of data is processed in

every channel at any instant and when new pages arrive, coprocessor function returns

to accept new page before continuing to process current page (3.1) . Active and idle

times and power values of coprocessor is added to SSD subsystem’s time and power

numbers.

20

Figure 3.4: Data Flow from Dies in 4 channel, 4 Dies/Channel SSD

Total time to read data from die is used to arrive at analytical expressions to val-

idate the model. Let us consider that total time is the sum of Tssd, Tpcie (for trans-

fer between SSD and host) and Tcpu. Without loss of generality, for all the cases,

datasize is assumed to be an integral multiple of maximum data d that can be read

when dies in all the channels read once in parallel and time taken for such a read is

Tssd. For example, in a configuration of 4 channels and 4 dies with a page size of

1KB, d equals 4 * 4 * 1024 = 16384 or 16KB. As d is doubled, number of pages read

and thus Tssd double. This approximation is true as various other operations of SSD

controller such as wear leveling, garbage collection, ECC are not modeled in this ar-

chitecture study. Since Tcpu is negligible for read from SSD, Ttotal can be given as,

Ttotal = (Tssd + Tpcie) α datasize, without pipelining Or,

Ttotal α max {Tssd , Tpcie} α datasize, with pipelining

where pipelining implies transfer over PCIe to host while next set of pages are read from

SSD. Similarly, when number of channels is doubled, number of pages read simultane-

ously doubles reducing Tssd by half. However Tpcie remains constant as datasize does

not change resulting in,

Ttotal = Ttotal - 0.5 * Tssd

when number of channels is 4, 8, 16 and 32. If number of flash dies in every flash pack-

age is doubled, number of parallel reads in every channnel doubles. However transfer of

pages from (additional) dies is limited by serial transfer over NAND flash bus resulting

in a saving of only the time to read.

21

Ttotal(Tssd) = Ttotal(Tssd) - Tread

where Tread is time to read a page to registers in dies and number of dies are 4, 8, 12

and 16. Now, it is important to note that Tssd consists of two major components and

can be given as,

Tssd α max { Tnfsb , Tread }
where Tnfsb is time to transfer a page on NAND flash bus. This property is exploited

in incorporating and mapping applications on coprocessor which is explained in chapter

4. This is also useful in verifying trends on variation of page size and NAND flash bus

bandwidth. Writing Tssd in terms of pages and bus bandwidth as,

T ssd =
Number of pages read per channel

x
∗ T nfsb

y

Figure 3.5: Data Flow through Coprocessor in 4 channel, 4 Dies/Channel SSD

When page size id doubled, for example 1KB, 2KB, 4KB, 8KB etc, x and y take val-

ues 2 and 1/2 respectively resulting in a constant Tssd. On the other hand, when NAND

flash bus bandwidth doubles or Tnfsb halves, x = 1 and y = 1/2, 1/4 etc translating to

equivalent impact on Tssd . It is very important to note that improving NAND flash bus

bandwidth and increasing number of channels provide the best performance. However,

adding more channels consumes more power and provide minimum energy savings. Even

if doubling NAND flash bus bandwidth comes at a cost of doubling power consumption,

increase in overall power for the operation is very less. This is because the contribution

of bus power to overall SSD subsystem power is negligible compared to the contribution

22

of all the NAND flash channels. These trade-offs play an important part in optimizing

applications on SPU and are discussed in detail in subsequent chapters.

3.3 Baseline Model

Baseline CoFluent model consists of three major components: Host processor, DRAM

and PCIe bus. Transactions in baseline model reflect processing in a conventional

architecture. An instruction is parsed, operands are fetched from memory, instruction

is executed and results are written back to memory. Since this is an abstract model,

memory hierarchies, pipelines etc are not explicitly modeled. Rather, their impact is

quantified by varying CPI and using cycle counts appropriate to instructions taken from

[19].

3.4 Applications

Five application kernels are modeled on SPU in this study: Sparse Matrix-Vector Mul-

tiplication, Sparse Matrix-Matrix Multiplication, Breadth First Search, K-Means Clus-

tering and K-Nearest Neighbor. These applications belong to different domains and

have different characteristics and limitations when mapped on a conventional architec-

ture. They have also been chosen to understand and provide opportunity to exploit

characteristics of SPU - for, not all applications in these domains can be mapped or

can benefit from SPU. These kernels are also part of Rodinia Benchmark Suite [20] de-

signed for implementation on heterogeneous computing infrastructures. Table 3.3 lists

few properties of the applications.

23

Table 3.3: Appliations, Characteristics and Limitations
Applications Dwarves Domain Limitations Characteristics
Sparse
BLAS

Sparse Linear Algebra Linear
Algebra

Intense and irregu-
lar memory access,
Low Computational
Resource Utilization

Memory
Bound

Graph 500 Graph Traversal Graph
Algo-
rithms

Communication and
Synchronization,
Auxiliary Data Struc-
tures

Memory
Bound

K-Means Dense Linear Algebra Data
Mining

High I/O time and
memory footprint

Compute
Bound

K-Nearest
Neighbor

Dense Linear Algebra Data
Mining

Run time increases
with large data sets

Compute
Bound

Chapter 4

Mapping Applications on SPU

This chapter describes how different applications are mapped to run on SPU architec-

ture. This includes analysis of identifying relevant kernels contributing to data move-

ment, type of algorithm, data layout and memory requirements.

4.1 Introduction to Sparse BLAS

Sparse matrix computations are fundamental problems in several computation disci-

plines. From traditional algebraic operations like linear solvers, multi-grid interpolation

to general purpose computing like image reconstruction, graph clustering and large

scale modeling for weather and nuclear accelerators, sparse matrix computations are

found in myriad of applications. In fact, large scale linear algebra problems constitute

an estimated 70% of computing cycles in the HPC ecosystem [21]. Also, dealing with

sparse matrix computations offer several challenges to parallel architecture community

- Goumaset.al define four common problems: memory intensity, indirect memory ref-

erences, irregular memory accesses for vector and short row lengths [22]. The ratio of

computation to communication, inter-processor communication are other typical prob-

lems in conventional architectures. These features highlight our interest and motivation

in mapping sparse BLAS kernels on SPU architecture.

Sparse BLAS defines a set of routines that operate on sparse matrices. We consider

implementation of Level 2 and Level 3 operations which fall into following two compu-

tation kernels:

24

25

Matrix-Vector Multiply
(
spmv

)
: y = (A × x) + y and

Matrix-Matrix Multiply
(
spmm

)
: C = (A × B) + C

where A nd B are sparse matrices, x and y are dense vectors, and C is either a sparse

or a dense matrix. This chapter covers basics of spmv and spmm kernels, delves into

details of mapping on SPU and details performance and energy characteristics with

various optimizations.

4.2 Sparse Matrix Vector Multiplication

4.2.1 Introduction and Baseline Model

First step in implementing spmv kernel involves choosing appropriate storage structure

for a sparse matrix. Several storage strategies that take advantage of sparsity pattern

of matrices have been developed and investigated previously [23],[24] . However, only

row (CSR) and column (CSC) oriented storage formats are chosen for implementation

on SPU for following reasons: (i) Our concern is not to achieve low storage require-

ments or memory footprints but to understand performance and energy characteristics

on SPU at an abstract level. (ii) These two configurations provide different communica-

tion patterns creating opportunity for multiple computational capabilities and therefore

multiple performance and energy trade-offs and (iii) Storing data in row and column

formats directly map to current implementations at Flash Translation Layer
(
FTL

)
inside SSD controller. Matrix is therefore partitioned during write by default and avail-

able to coprocessors for parallel execution. Software level implementations like decoding

storage format, handling array bounds etc are abstracted for both SPU and baseline

implementations.

Pseudocode of row and column oriented spmv is shown in Figure 2 and Figure 3 respec-

tively. In Row implementation, while multiplication and addition proceed in parallel

between p processors,
(
Line 5

)
, all processing elements need to access potentially all

elements of vector x. A broadcast of x[j] is required if it is partitioned among proces-

sors. On the other hand, in the Column implementation, each column requires only

one element of vector for multiplication. Whereas column vectors within one processing

element can be added in parallel, column vectors of different processing elements need

to be combined in a final step. These two communication pattern give rise to different

26

implementations on SPU architecture.

Algorithm 2 spmv CSR cofiuration

A n by n matrix distributed to p processors Each processor owns i rows such that p *

i = n

1: procedure SpmV Row Algorithm

2: start :

3: for rows 0 to i in processor p

4: for columns j = nnz
(
i
)

5: y[i] = y[i] + A[i][j] * x[j]

6: end :

4.2.2 Mapping spmv on SPU

CSR and CSC Configurations

CSR implementation on SPU follows same data flow as in a conventional architecture.

Elements of a row are multiplied by elements of vector and added together to get

resultant vector. Matrix elements are read in the form of rows from dies. Number

of rows present in a page depends on page size, number of elements and size of every

element in the row. For example, two rows are fetched in a page read if page size

is 1KB, number of non-zeros in row (nnz) is 128 and each non-zero takes 4 bytes

of memory. Page size and nnz are inputs to CoFluent model that can be varied as

desired. Storage of vector elements decides how spmv is executed. Since vector elements

do not change between multiple read from dies, it is possible to cache the vector in

coprocessor local memory, as done in conventional architectures. However size of local

memory for coprocessor is expected to be limited and therefore caching the vector

may not be possible in all cases. This leads to two possible implementations: CSR-a
)

Coprocessors multiply matrix elements with dense vector present in its local memory

- vector elements are either read from DRAM in SSD controller which acts as global

memory or already present in the local memory (from previous read). CSR-b
)

Matrix

elements and corresponding dense vector elements for every row are combined within a

page and written to flash package. Thus a page read will have both matrix and vector

elements. While CSR-b increases storage requirements due to duplication of vector

27

elements, it eliminates repeated reads from DRAM as compared to CSR-a. In either

case, elements of resultant vector is computed in coprocessors.

Algorithm 3 Algorithm-SpmV

A n by n matrix distributed to p processors Each processor owns j columns such that

p * j = n

1: procedure SpmV Column Algorithm

2: start :

3: for column 0 to j in processor p

4: for rows i = nnz
(
j
)

5: yp[i] = y[i] + A[i][j] * x[j]

6: y =

p∑
x=0

yp → Sum intermediate column vectors

7: end :

CSC implementation on SPU offers a different challenge compared to CSR imple-

mentation. The matrix,stored in column layout, is read in columns from dies. One

element of dense vector for every column is also read from dies similar to CSR-b. Re-

sultant column vector from every coprocessor is an intermediate data structure with a

size of upto O(nnz). Now, these intermediate vectors are produced for every page read

and need to be added together. Coprocessors forward the vectors to SSD controller for

addition after every page read or perform addition by buffering one vector of size of

upto O(n) in its buffer space. When additions happen in SSD controller, it is pipelined

(explained below) with computations in coprocessor. This configuration is referred to

as CSC-b. We specifically avoid costly writes
(
writing intermediate column vector

)
to

dies as it is found to be energy inefficient and undesirable to flash devices. We also

consider the case(CSC-a) when intermediate vectors are forwarded all the way to hosts

for addition.

4.2.3 Performance and Energy Results

Before discussing performance and energy benefits of different configurations and also

various other optimizations covered in this thesis, it is important to understand core

28

ideas that result in those benefits. A timing diagram with three components of inter-

est to this study - NAND flash bus transfer time (Tnfsb), time taken by coprocessor

to process one page (Tcoproc) and time taken to complete processing, if any, in SSD

controller (Tssd) - is shown in Figure 4.1 . This diagram indicates that these operations

are essentially pipelined In other words, transfer over NAND Flash bus, processing in

coprocessor and processing in controller form three stages of a pipeline. Total time to

compute is determined by the maximum of these three stages. Now, another inference

is that Tnfsb>>Tcoproc or, time to compute in SPU is masked by the time to transfer

data to coprocessor. This is true for all memory (or bandwidth) bound applications like

spmv.

Figure 4.1: Pipelined Processing inside SSDs for Bandwidth Bound SPMV Kernel

Now, for baseline conventional architecture with p cores, for processing one row,

T cpuα((
nnz

p
× Tmult cycles) +

nnz

p
+ log(p))× T cpuclk

where nnz is average nnz/row. This is nothing but total multiplication and add instruc-

tions (nnz each) parallelized with p cores. For SPU architecture, assuming a page size

of kKB to store nnz and 4 page reads,

Tnfsb = 2.5 × k × 4 ns

Four page reads are used to model processing from 4 dies in a channel. Also, calculated

Tnfsb does not change as number of channels is increased. Now, speedup can be defined

29

as,

Speedup =
T cpu × CPI Data Movement×Number of Rows(Coprocessors)

T nfsb

For example, without any data movement (CPI Data Movement = 1), when number

of cores in host and number of coprocessors (channels) are both 8 with a page size of

4KB to store 250 non-zeros, conventional architecture achieves 15 times speedup over

SPU. However, this case is ideal and SPU achieves better performance for spmv due to

following reasons:

� Goumas et.al [22] show that spmv kernel contains irregular and indirect memory

accesses that are difficult to optimize. Repeated and random memory access does

not benefit from cache optimizations. Even with rows partitioned to cores, vector

elements are shared and vector lengths are at least as large as last level cache in

contemporary machines [25]. Thus CPI Data Movement = 1 is very difficult to

be achieved for spmv. Performance of conventional architecture and SPU with 8

Channel SSD meet at a total CPI of 30 for spmv.

� Increasing number of channels in SSD increases number of rows processed simul-

taneously in coprocessors. As explained in [11] and also verified in this thesis,

energy of SSD subsystem does not increase with additional channels (or coproces-

sors) in contrast to conventional system. Hence, for approximately same energy

consumption, a 32 Channel SSD offers 4 times speedup compared to baseline at

CPI=30.

� Spmv is a bandwidth bound kernel. While number of cycles for computing multi-

plication and addition is the same for host processor and coprocessor, from Table

3.1 Tcoprocclk = 5 × Tcpuclk. Assuming a single core coprocessor, time taken to

process a page in coprocessor, coproc α 2 × nnz × CPI × Tcoprocclk (nnz mul-

tipliations and nnz additions becomes 2 times nnz). Thus, Tnfsb >Tcoporc and

changes in CPI of coprocessor does not impact overall performance. In addition,

CPI of coprocessor cannot be directly compared with host as transfer of pages to

coprocessor is explicitly accounted. Further, CSR-b and CSC configurations have

vector elements embedded inside the pages. This isolates issues with irregular and

indirect memory accesses.

30

Figure 4.2: Energy Split of Components in SSD in SPU architecture for
SPMV

Using non-zeros per row and matrix dimensions from various matrices in University

of Florida Sparse Matrix Collection [26], energy consumption of different configurations

is plotted in 4.3. Intuitively, since SPU uses low power processor and still achieves

speedup over host processor, SPU is energy efficient than host system. While an ideal

CPI=1 in host has comparable energy to SPU, any increase in CPI accounting for data

movement results in direct energy savings for SPU. Figure 4.2 shows contribution of

individual components in SSD. Within a flash package, computation in coprocessor alone

takes 1000 times lesser energy compared to reading and moving data to coprocessor.

In CSC-b configuration, addition in SSD controller takes 10 times lesser energy than

reading and computing in coprocessor. Addition in hosts consumes maximum energy

in CSC-a configuration taking it close to baseline energy consumption. From Table

4.1,it is clear that when processing happens entirely within SPU (CSR-a,b and CSC-a),

speedup of 2-4x (confirm) is observed whereas CSC-b is barely achieves any speedup

due to data transfers for addition operations in host processor. CSR-a achieves better

energy savings than CSR-b as reductions in number of pages fetched outweigh reads

from SSD controller’s DRAM. CSC configuration is less energy efficient than CSR as

addition operations happen in SSD controller/host. Energy associated with transfer of

intermediate column vectors and their addition is higher than that for performing it in

coprocessor. Amount of data transferred from SPU to SSD controller or host is equal

31

Figure 4.3: Energy Consumption for Different SPU Configurations

to the number of non zeros of the matrix. This is essentially same as in a conventional

implementation. Thus one can note that the energy of CSC-b approaches the energy of

baseline

Table 4.1: Energy Gain and Speedup for SPMV Crankseg 2 Data Set using in a 32
Channel 4 Dies SPU with Page Size = 4KB

Configuration Energy Gain Speedup

CSR-a 40.5 3.95
CSR-b 26.4 3
CSC-a 7 0.89
CSC-b 23.5 2.45

4.3 Sparse Matrix Matrix Multiplication

4.3.1 Introduction and Baseline Model

Matrix Multiplication is organized in several ways to improve time complexity of algo-

rithm. Given matrices A ε Rm×k and B ε Rk×n,each element in inner-product product

C ε R m×n usually serving as definition of matrix multiplication is given as,

C(i, j) =

k∑
n=1

A(i, n)B(n, j)

32

This algorithm involves O(mn) operations and is one of the naive implementations. Sev-

eral optimizations are feasible by taking advantage of sparsity structure, storage char-

acteristics and underlying architecture. However, for reasons established in 4.2.1, we

consider inner-product and outer-product implementations on SPU. Since there aren’t

any restrictions on baseline implementation, sparse 2D SUMMA algorithm [27] is mod-

eled on host processor for comparison. It is important to understand that this thesis

tries to explain benefits of controlling data movement and does not necessarily make

claims on identifying the best architecture. Outer-product algorithm proceeds by per-

forming cross product of column of matrix A with rows of matrix B after the matrices

are partitioned to p processors [28]. Each processor produces an intermediate matrix

that is a sum of outputs of all the cross products. These intermediate matrices are

further reduced to get resultant matrix.

4.3.2 Mapping spmm on SPU

We start with naive implementation assuming a row based storage for one of the input

matrices, say A. The other matrix, B is streamed, in columns, across all coprocessors

for every page (row) read. Storing a row/column pair in a single page results in similar

implementation. Every row of matrix read from dies needs to be multiplied with every

column of the matrix streamed across coprocessor from host/SSD controller. At each

instant, the set of rows get multiplied with a set of columns. As only a small fraction of

total number of rows can be processed from a page, pages need to be read several times

again. Therefore this implementation is only feasible for matrices with small number

of non-zeros per row (2-5) and lesser number of total rows/columns in the matrix as

observed in Figure 4.4 . When nnz per row is very less, multiple rows are fetched in a

page read. Also multiple such pages are processed in parallel in coprocessor reducing

number of reads from flash for every column that is multiplied. Implementations of

such algorithms inside coprocessor where a large input dataset needs to be read several

times is therefore not scalable.

Considering a layout with a column of matrix A and row of matrix B stored in a single

page results in outer product implementation. Hence, for every page read, coprocessor

performs nnz×nnz multiplications in the worst case. This intermediate output matrix is

forwarded to SSD controller which receives nnz×nnz×Number of Coprocessor amount

33

Figure 4.4: Energy Consumption of Naive and Outer Product
SPMM on SPU

of data. SSD controller implements addition of these intermediate matrices. Worst case

additions in SSD controller is when indices of matrix elements sent by all coprocessors

match. As discussed in 4.2.2, these additions are pipelined with coprocessor.

4.3.3 Performance and Energy Results

Energy and performance profile of outer-product model is shown in Figure 4.5 . Impor-

tant observations from the figure are discussed below:

� Performance of SPU varies with number of non-zeros. This is because Tcoproc is

dependent on nnz×nnz which can become greater than Tnfsb as opposed to spmv

kernel. For example, assuming a page size of 1KB and average of 40 nnz/row

which represents F1 dataset in Univ of Florida Collection [26], Tnfsb is 2.5×1024

= 2560ns and

Tcoproc α (40×40) × Tcoprocclk >Tnfsb

Similarly, for nnz=2, Tcoproc <<Tnfsb. Therefore, performance of spmv kernel has

a lower bound determined by Tnfsb and upper bound determined by Tcoproc de-

pending on number of non-zeros present in a page.

� Performance of host processor is a combination of computation cost and commu-

nication cost both dependent on nnz×n/
√
p. A CPI=30 as taken in spmv kernel is

34

Figure 4.5: Energy Gain and Speedup of Outer Product SPMM
on SPU

assumed to account for communication cost. Spmm kernel has low surface volume

ratio [28] validating the use of this CPI.

� Speedup obtained decreases as number of non-zeros increases. Assuming a 32

Channel SSD, speedup of a maximum of 2x is obtained for less nnz/row whereas

higher nnz/row does not result in any speedup. To improve performance in such

cases, a many core coprocessor can be incorporated. We scale performance and

power of coprocessors accordingly and estimate maximum speedup attainable.

Upto 2x improvement in performance can be obtained by distributing nnz×nnz

operations to two coprocessor cores in every channel. This improvement is pro-

nounced when average nnz/row is such that Tcoproc >Tnfsb. Performance and

speedup plateaus as speedup is determined by max (Tnfsb,Tcoproc/Number of Co-

processor cores) for all nnz/row . Increasing number of coprocessor cores results

in kernel becoming bandwidth bound.

� Since additions of intermediate matrices from coprocessors are reduced in SSD con-

troller, number of SSD cores are varied to ensure Tssd is below max(Tcoproc,Tnfsb)

to maintain pipelining. As number of channels (or coprocessors) are increased

for performance, number of additions in SSD controller scales also increases pro-

portionally. It also varies with the number of non-zeros/row and row/col pairs

35

fetched in a page. Increasing SSD cores beyond the minimum number of cores

to maintain does not provide much benefit. This is expected as either Tnfsb or

Tcoproc determines overall performance.

Table 4.2: Energy Split of Different Components in SPU 32Channel 4 Dies and Page
Size 1KB for F1 Data Set

Component Energy Consumption in mJ

SSD Controller Operation 101.4
Flash Package - Coproc + Dies 228.91

NAND Flash Bus 0.0528
Others 3.580

� While spmv kernel obtained upto 40x energy gains, spmm kernel obtains a maxi-

mum of 12x gain. As shown in Table 4.2, additional operations in SSD controller

consumes half of energy consumption at coprocessor. Also, number of computa-

tions in coprocessor for same page size is proportional to nnz×nnz compared nnz

computations for spmv. This case indicates that utilizing coprocessor for maxi-

mum number of computations if feasible helps achieve higher energy gains. As

data from coprocessor keep flowing across compute hierarchy to various processing

elements, energy consumption increases.

4.4 Graph500 on SPU

Graphs are used to represent and process many real world phenomena that belong to

diverse fields because of its ability to abstractly model entities and their interactions.

Graph traversal algorithms are inherently memory and compute intensive and success-

ful parallel implementations of such algorithms involve several challenges [29]. These

challenges are only compounded by the recent deluge of data [30]. Graph500 [31] is

a benchmark suite proposed to use graph algorithms as a measure of evaluating par-

allel and distributed architectures. Green Graph500 [32] lists top 500 energy efficient

architectures stressing the need for more energy efficient implementations of graph algo-

rithms. Breadth First Search (BFS) of undirected graphs is one of the evaluated kernels

in the Graph500 benchmark. There are two kernels in Graph500: first kernel gener-

ates a graph defined by its input parameters scale and edgefactor using R-MAT graph

36

generation algorithm [33]. Graph contains 2scale vertices and each vertex has average

number of edges equal to edgefactor. Adjacency matrix representing the graph is stored

for processing by the BFS kernel. We evaluate performance and energy efficiency of

SPU architecture running BFS by modeling it on CoFluent.

4.4.1 Introduction: Breadth First Search

One of the widely followed parallel implementation of BFS kernel is Level Synchronous

BFS [34]. At the outline, algorithm uses ability to process nodes in the same level in

a graph in parallel to improve efficiency over serial version. Level refers to distance

of nodes from source vertex. The algorithm starts with a source vertex and proceeds

by exploring its neighboring vertices - adding them to list of vertices to be processed

in next level and becoming their parent vertex. In subsequent levels, vertices become

parents of those neighbors that were not visited before i.e., any vertex can have only one

parent determined by order in which graph is processed. The algorithm outputs parent

list of vertices and their minimum distance from source vertex. Common characteristics

of algorithm is to maintain data structures (queues, bitmap etc [35],[36],[30],[37]) to

store list of vertices to be processed in current and next levels, list of visited vertices,

and process adjacency list of vertices in the current level in parallel. We abstract actual

implementation of the algorithm and focus on the data flow. While it is not difficult to

expose the nature of parallelism in BFS, the need to implement synchronized operations

to ensure fidelity either through atomic updates or point-to-point communications with

other processing elements impacts performance and energy particularly with increasing

graph sizes.

4.4.2 Mapping graph500 on SPU

The basic idea of executing BFS kernel on SPU architecture stems from the opportunity

to map adjacency list of vertices at a given level in the graph to coprocessors enabling

parallel computation. It is assumed that adjacency matrix corresponding to the graph

is written to NAND Flash dies by kernel 1 utilizing mechanisms described in 2.1 that

exploit parallelism available within SSD. Adjacency list is therefore partitioned across

channels and dies and readily available for coprocessors without additional preprocessing

37

steps for redistribution or partitioning. With this data layout, coprocessors implement

a level synchronous BFS by processing edges of vertices in a given level in parallel. Next

step in BFS is the synchronization. SSD controller aids the coprocessor in this step.

Before delving into further details of BFS model, it is necessary to understand memory

requirements of the operation as real world graphs are typically very large and several

data structures need to be managed by SPU.

4.4.3 Memory Requirements

List of vertices to be processed in current and next level by each coprocessor, parent list

and visited list will be referred using the term Intermediate Data Structures. For levels

with more than millions of vertices processed in each level, memory required to store this

data structure is at least in the order of few GBs. Parent and visited lists are cumulated

set of nodes visited in each level and are several times larger than current or next list

of vertices. In addition to intermediate data structures, BFS processing element needs

memory to read adjacency list. The understanding that coprocessor private memory is

limited is very important and determines data flow in implementing BFS in SPU.The

SPU architecture enables different implementations of level synchronous BFS kernel in

the way of (i) implementing synchronization, (ii) storing and accessing intermediate

data structures. The proposed implementations are approached with a primary motive

of reducing data transfer between coprocessors and also between coprocessors and SSD

controller whenever feasible. Two cases, considered for comparison with each other

and baseline BFS, their associated memory, compute and modeling requirements are

discussed below:

Case 1:

Intermediate Data Structures - Storage and Data Flow: In this case, intermedi-

ate data structure is read/written only from/to private memory of coprocessor without

having to use the dies. SSD controller’s main memory holds all the data structures and

coprocessor holds only those needed to process the adjacency list fetched from one page

of data. This is true because, at any instant coprocessor works only with one page and

the process repeats until all the nodes are processed. For example, a 4KB page read

from a die could correspond to adjacency list of 128 vertices assuming an edgefactor of

38

8 and 4 bytes/edge. Assuming 4 bytes/vertex, it takes 512 bytes to store current level

vertex list. Storing next level vertices follows a similar procedure with actual memory

dependent on the new edges identified. The same discussion however cannot apply to

visited list of vertices because of its size.Therefore, coprocessor reads value for a vertex

in visited list for every edge from global memory.

Synchronization: SSD controller aids coprocessor in implementing synchronization

at each level. It performs an union of next level and parent lists received from the

coprocessors at each level. Since it is possible that one vertex is visited by multiple

coprocessors in parallel or by the same coprocessor during a different page read, SSD

controller removes redundant update and keeps one parent for every vertex. The Graph

500 benchmark allows this relaxation of choosing the parent from a set of parents be-

longing to the same level to allow maximum parallelism. It is important to note that

SSD controller implements this operation pipelined with coprocessor as discussed in

spmv and spmm kernels.

Case 2:

Intermediate Data Structures - Storage and Data Flow: In this case, entire

visited list is written to dies at the beginning of each level. This offloads repeated

read/writes to global memory albeit through costly writes to Flash. It is important to

note that directly writing complete visited list inherently distributes it to coprocessors.

To make sure all the coprocessors receive the entire visited list, it needs to be replicated

across the coprocessors thereby increasing the total data written. The coprocessor reads

adjacency and visited lists for corresponding vertices and writes the vertex list for the

next level back to the dies. Note that all the intermediate data structures are processed

from the dies in this case.

Synchronization: SSD controller implements same operations as in case 1, but only

once for every level unless other optimizations result in writing to the global memory

in which case operations are similar to case 1. Since this case creates huge amount of

writes by modifying pages every time vertex list is updated, we do not consider this

case for study of energy efficiency. Increasing amount of writes to flash leads to write

amplification [38] and fastens wear out of SSD.

39

4.4.4 Performance and Energy Results

Multiple parameters are varied to model different aspects of the kernel. CPI of copro-

cessor is varied to account for number of cycles taken to update parent list of every

edge. Values chosen are: 1,5, 10 and 15. A page of adjacency list and visited list are

explicitly transferred to coprocessor and thus are not accounted in CPI. Since this trans-

fer is pipelined, it does not affect total performance but account for marginal increase

in power. Number of edges in a page discovered is also varied from none to all edges

in steps of one-quarter of total number of edges. Number of cycles for edges that are

discovered and that which were discovered previously is differentiated. Additionally,

SPU and SSD cores are varied similar to spmv and spmm kernels.

Table 4.3: Energy Split of Different Levels of Graph in SPU and Baseline
Number of Vertices Energy Consumption in SPU in mJ Energy Consumption in Baseline

7103690 120.96 5363.7
9088766 154.7 6862.57
130298 1.86 98.3
109239 2.22 82.4

� Similar to spmv kernel, performance of BFS kernel is bounded by Tnfsb. This is

because number of cycles to update parent vertex of an edge for all edges in a page

is very less compared to Tnfsb. This is true for different number of cycles/edge

modeled.

� Performing synchronization operation is not a bottleneck as in conventional im-

plementation. While host processors synchronize through costly broadcasts (or

communication) of frontier vertices, SPU uses SSD controller. Discovery of edges

and formation of new vertices for subsequent reads from pages are done in parallel.

Also, even with many number of edges in one level, synchronization is limited to

number of edges discovered in one page ×Number of Coprocessors.

� Processing in host processor involves update of edges for vertices in current level

and communication/gather of vertices for next level. With multiple reads/writes

and broadcasts and increasing sizes of number of vertices in each level becoming

larger than size of memory, energy due to data movement is high.

40

� Table 4.3 shows energy consumption in conventional and SPU systems across

different levels in a real world graph taken from [36]. Also, Figure 4.6 plots energy

with coprocessor and SSD core variation. Only marginal difference in energy is

observed as coprocessor cores are increased. This is expected as BFS is bandwidth

bound. Increasing SSD cores beyond what is required to achieve pipelining leads

to diminishing returns. This is also expected as overall energy is determined by

transfer of pages on NAND flash bus.

Figure 4.6: Energy variation with Coprocessor and SSD cores for
BFS

4.5 Data Mining Applications on SPU

In this section, modeling of two data mining kernels - K-means clustering and K-Nearest

Neighbor (k-NN) are discussed. Motivation to model applications from data mining

stems from the problem of big data. Data centers and cloud services now work with

peta and exa scale data sets. With more and more devices connected to Internet - smart

phones to sensors to medical instruments - data in cloud is growing leaps and bounds.

Energy efficient processing of such data sets is an open research problem and solutions

and ideas from entire system stack is necessary. Moreover, as applications using these

data sets have varied characteristics, different accelerators aid general purpose processor

to achieve desired performance and power budgets. We envision use of SPU as one such

41

device enabling energy efficient compute of big data applications. Intelligent SSDs for

query processing and other common operations such as sort, aggregate have already been

studied (refer Chapter6). Applications considered in this chapter have computations and

data flow that are different from these and also from sparse computations and graph

traversals already considered in this thesis.

Following sections cover basics of k-means and k-NN, mapping of these algorithms

on SPU, associated optimizations and their performance and energy characteristics. A

brief account of other relevant applications considered for modeling on SPU is presented

at end of the chapter.

4.5.1 K-Means Clustering

Clustering is a procedure to group objects into clusters. Each cluster has a meaning

specific to the type of objects and their characteristics. An observation of radius of n

circles can be grouped into clusters of circles with similar radius ; an observation of

heights of students in a class can be grouped into clusters of similar heights. Algorithm

takes N observations and K cluster values as input and outputs K centroids. Cen-

troids are cluster centers that minimize sum of squared distances of each observation

to it closest cluster center. In this study, we model K-Means algorithm discussed in

[39]. Briefly, the objective is to minimize squared error function i.e., square of distance

between observations and cluster centroids. This function is given as,

J =
N∑
n=1

K∑
k=1

||xn − ck|| × ||xn − ck||

where xn is observation, ck is cluster center. For a cluster k, µk is defined as the mean

of observations that belong to that cluster and given as,

µk =
1

Nk

∑
nεck

xn

Algorithm proceeds by assigning observations to closest cluster center. After all ob-

servations are assigned, cluster centers are reevaluated. The process repeats until a

threshold is met. Latest cluster centers are the centroids.

42

4.5.2 Mapping K-Means on SPU

Observations are written to flash exploiting existing parallelism in SSD to different chan-

nels. They are therefore assumed ready for processing by SPU. We do not use actual

values of clusters and observations, but rather model data flow and computations. We

assume that all coprocessors are initialized with same cluster centers. Computations

involved are given by lines 3 to 8 in pseudo-code. Coprocessor reads a page of observa-

tions from dies, computes J, determines closest cluster center and calculates sum and

number of observations belonging to each cluster. This happens in all coprocessors.

Now, to calculate µk, coprocessor maintains a data structure of size of O(K) to store

sum of observations. Similarly, another data structure of O(K) is maintained to store

count of number of observations in each cluster. Both these data structures are updated

every time an observation identifies its closest cluster center. Coprocessor also stores

updated values of centroids. Since value of K is very less (64, 128 are typical in large

data sets), storing O(K) elements in coprocessor memory is assumed to be feasible.

After every observation is read and cluster center is computed, each coprocessor is left

with its own cluster centroids. It forwards sum, count and J values from its memory to

SSD controller. SSD controller implements a merge of these individual centroids to get

single set of cluster centers that are sent back to coprocessors for next iteration. SSD

controller also determines if threshold (J’- J) is met.

Figure 4.7: Energy variation with CCoprocessor Cores for K-
means

43

Assuming observations of 100000 and 8,64 cluster centers and 36 iterations as used

in [40], performance and energy consumption with varying number of coprocessor cores

is plotted in Figure 4.7. With configurations of baseline and SSD same as discussed in

previous chapters, speedup of a maximum of x and energy gains of up to x is obtained.

Decomposing various components contributing to total time will facilitate understand-

ing reasons behind performance gain. We find that to perform computations to calculate

J and µk , we see that Tcoproc >>Tnfsb . This is intuitive as calculating J for one obser-

vation alone involves k multiplications. For example, with a page size of 1KB containing

128 observations, 8192 multiplication operations are done with number of clusters being

64. Also, Tssd for compute is also pipelined when merging cluster centroids. Now, given

a set of input observations, coprocessor and host processor take equal number of cycles

(nk multiplications and other operations) to compute a cluster center. Tcoproc can be

expressed as,

T coproc = T cpu ×Host CPI ×
Number of host processors

Number of Coprocessors
× Tcpuclk

Tcoprocclk

This can be interpreted as: while number of host and coprocessor cycles are same,

number of observations processed by coprocessor is scaled down by number of channels

in SSD at 5x slower clock. It can be noted than speedup increases with host CPI which

accounts for data movement and number of channels in SSD. Since Tnfsb and Tssd are

pipelined with Tcoproc, total performance is dependent only on Tcoproc. This case clearly

portrays that if number of computations that can be performed in coprocessor given

a limited page size is much higher NAND flash bus bandwidth (compute bound) and

comparable to that of host, then significant performance gains can be achieved without

increase in energy of the system. This characteristic of k-means makes it different from

other kernels modeled before in this study. Above discussion also leads to reasoning

of energy gains of k-means - incorporating multiple low processor coprocessors inside

SSDs that provide enough parallelism to offset its low frequency of operation. Doubling

coprocessor cores directly impacts Tcoproc and hence overall performance and energy of

SPU model. As discussed in spmm kernel in 4.3.2, performance and energy plateaus as

Tcoproc becomes less than Tnfsb .

44

4.5.3 k-Nearest Neighbor

K-NN is one of the most fundamental classification algorithm which does not require

prior knowledge of distribution of data. The training phase of the algorithm involves

storing the data points and its labels [41]. Every data point in the training set contains

a set of vectors and a label associated with it. Distance between input and every point

in the dataset is computed. The ‘k’ smallest distance measures corresponds to elements

that influence classification of unknown sample. Selecting a suitable neighborhood value

‘k’ and distance metric applied determines classification performance. K-NN might

appear to be advantageous when training data is large as there is minimal cost for

training phase. However, it might suffer from costs in terms of computation and run

time if not optimized suitably. We use euclidean distance in 2 dimensional space as

measure of closeness between input data and training set. However, the model can

be extended to include different distance measure and higher number of dimensions.In

summary, we are trying to map distance computation and sorting of resultant values to

find k parameters on SPU architecture. Input dataset for is taken from OpenStreetMap

project [40]. The 2-dimensional dataset contains road network for 50 states and occupies

6.6 GB.

4.5.4 Mapping K-NN on SPU

In a naive implementation of knn algorithm on SPU, distance computation is carried

out by coprocessors and sorting by SSD controller cores. Each coprocessor has input

data point in its private memory and training data points are read from flash. We

assume 8 bytes for each coordinate and 4 bytes for ID totaling to 20 bytes. Therefore,

for a page size of 1KB, each coprocessor computes approximately 50 distance measures.

These values are forwarded to SSD controller for sorting. It repeats sorting of distance

measures received from coprocessor after processing of every page. We assume merge

sorting with a time complexity of (N/P)log(N/P) + Nlogp. (N/P)log(N/P) term refers

to sort distance values for each coprocessor, N logp refers the time to merge k×Number

of Coprocessor values to k values. As modeled in other kernels, we increase SSD cores

such that Tssd is within max (Tcoproc, Tnfsb). As SSD controller starts sorting of distance

measures, we model it to choose ‘k’ closest parameters for every sort. These ‘k’ values are

45

sent back to coprocessors. Now, when each coprocessor computes a distance measure, it

compares calculated value with the maximum of k values received from SSD controller.

This way amount of data forwarded from coprocessor is reduced as values larger than the

maximum need not be forwarded for sorting. We expect that in such an implementation

while most of the distance values are forwarded from coprocessors initially, it reduces

gradually as algorithm starts to converge. Even in conventional implementations several

heuristics are applied to reduce distance computation and sorting for large data sets.

Figure 4.8: Energy variation with Coprocessor Cores and Com-
munication for K-NN

Similar to k-means, reducing amount of data processed by coprocessor with increas-

ing number of channels when compared to host processor results in higher speedups at

constant energy benefits. Assuming a host CPI of 30 gives speedup of x and energy gains

of x with a 32 coprocessor SSD. Since k-NN is compute bound, increasing coprocessor

cores parallelizes distance computations achieving increased speedup and energy gains

until Tcoproc becomes less than Tnfsb. While this benefit appears due to data points

having only two dimensions as lot of distance measures can be computed from single

page, it can apply to other data sets as well. This is because increasing dimensionality

increases time to compute distance. Figure 4.8 shows energy savings with increasing

number of SPU cores. Another optimization considered is to move sorting to coproces-

sors. The main idea is to use coprocessor to compute distance measures and then sort

them to obtain k closest values. These k values are sent to neighboring coprocessor to

46

sort 2k elements. This process is repeated till all the elements are sorted to get only

k elements. At any instant each coprocessor sorts a maximum of 2k elements and it

takes log(Number of Coprocessors) sort steps. From Figure 4.8 we can see that, this

optimization yields better energy savings compared to sorting in SSD controller. The

coprocessors can share data among each other in two ways: through Flash Translation

Layer (FTL) of SSD controller or through a light-weight network between coprocessors.

We assume the latter case. This network should be used for light data trafc and not

lead to additional writes to flash. The detailed analysis of a light-weight network for

coprocessors is a part of future work.

Chapter 5

Optimizations

In previous chapters, several applications were mapped on SPU architecture, different

optimizations were identified and analyzed for impact on energy and performance. In

this chapter, these parameters are considered in unison and automated exploration using

CoFluent is presented. Characteristics of SPU that help decide type of application that

can be mapped and nature of mapping are also discussed. A summary of optimizations

is given below:

� Varying coprocessor cores to expose parallelism available within data in a page is

one of the important optimization that resulted in impressive results. K-means

and K-NN kernels being compute bound offer maximum scope with additional

cores while spmv and BFS kernels are limited by bandwidth of NAND flash bus.

This is an effective optimization because additional gates maximize use of available

silicon providing energy savings as coprocessor operates at low power.

� As number of coprocessors increase, it is possible for SSD controller to become

a bottleneck in the system. This is true especially in cases like spmm where

coprocessor’s output data is larger than a page. Therefore, it is important to set

the right number of cores such that operations are pipelined with coprocessor. It is

also noticed that increasing SSD cores beyond this number results in diminishing

energy benefits.

� To maximize computation within flash package or limit data transfer, coprocessors

can communicate data between each other. As shown in K-NN algorithm, moving

47

48

sorting operations from SSD controller to coprocessors increased energy benefits.

However, it is important to make sure that such communication and subsequent

computation is completed without affecting pipelined operations.

� Increasing number of channels (or coprocessors), directly results in proportionate

performance benefits without any increase in energy consumption. This is in com-

plete contrast to a conventional system where increasing number of cores attempt

to increase performance sacrificing energy consumption.

� Mapping certain kernels also involve modifying data layout and storage to make

use of processing within flash. Need for such modifications is largely due to limited

private memory for coprocessor, avoiding repeated read requests to global memory

in SSD controller and writes to flash. While row and column oriented formats

in spmv offered different communication patterns, CSR-b configuration modified

storage of vector elements. Significance of understanding memory requirements

and managing different data structures was shown with BFS kernel as an example.

5.1 Automated Design Space Exploration

Traditionally, problem of optimization has been formulated based on minimization of

single objective. In most cases, performance is considered as the objective [42]. How-

ever, as computer architectures evolved, it is imperative to simultaneously optimize for

wide variety of objectives such as energy consumption, resilience, cost, code complexity

apart from execution time [43]. These objectives are also possibly competing and hence

compounding optimization problem. For example, increasing processor frequency in-

creases temperature affecting resiliency, ineffective mapping of application to processor

affects energy, distributing an application between different accelerators impacts code

complexity and so on. Thus it is necessary to consider all the factors in unison to

evaluate system configurations. This is referred to as Multi-Objective Optimization.

When objectives are considered together, often there may be a set of optimal solutions

possible. These solutions are said to be on a Pareto front i.e., when two or more ob-

jectives are simultaneously minimized, it may not be possible to improve one without

degrading other objective. Execution time and power on a conventional processor is a

49

classic example. Formal definition of Pareto-front from [43] is given below for reference:

If F1(x), F2(x),...Fp(x) are p objective functions, F(x) is function to be minimized, we

say that F(x)≤F(y) if Fi(x) ≤ Fi(y) for all i = 1,...,p, and F(x) 6= F(y); in this case y

is dominated by x. We say that a point x ∈ X is Pareto optimal or non-dominated, if

there is no y ∈ X with F(y) ≤ F(x). Set of Pareto-optimal points is denoted by X* ⊆
X. The set of objective function values of all Pareto-optimal points, F* = F(x) :x ∈ X*,

is called the Pareto front. Analysis of Pareto front provides better insights than single

objective formulation. It helps in identifying different optimal configurations within our

region of interest.

5.1.1 Simulator Setup

To study optimization on SPU, it is first necessary to create a framework for automated

design space exploration.In this study, design space is explored on CoFluent SPU model

by automated variation of different user defined parameters summarized above. For all

possible parameter values, performance and energy numbers are captured. These values

are also used to find the nature of Pareto-front for SPMV with performance and energy

as objectives. First, an exhaustive search is initiated by varying Number of Channels,

coprocessor cores and data layout for SPMV. Varying data layout refers to simulating

CSR and CSC configurations in the SPU model. In CoFluent, a design parameter is

created to point to these configurations. Now, for each of these configurations, time to

compute in coprocessor, SSD and host (if needed) changes.

Also, amount of data transfered from coprocessor to SSD controller or host changes.

Depending on the type of configuration, appropriate expressions to calculate these time

and data values are included in the Timed Behavioral Model.

5.1.2 SPMV Pareto Front

Figure 5.2 shows Pareto Front of performance and energy obtained for SPMV kernel

from an exhaustive search with Number of Channels (4, 8, 16 and 32), Number of

Coprocessor Cores (1, 2, 4, 8, 16) and configurations (CSR-a, CSR-b and CSC-a). It is

clear from the figure that the set of optimal solutions are from CSR data layout. CSR-a

configuration completely dominates other solutions. Further, Pareto Front is formed

50

Figure 5.1: Automated Design Space Exploration using CoFluent

with energy and performance values obtained by varying number of channels of SSD

for CSR configuration. With equally distributed workload to coprocessors assuming

no movement of pages between flash packages(or channels), increasing number of

channels improves performance at minimum increase in energy. This trend is observed

across different number of average non-zeros per row.

5.2 SPU Architecture Characteristics

� Coprocessor memory: Coprocessor is designed to function within the flash

memory controllers and available additional silicon is ought to be used for imple-

menting processing functions. Thus local memory of coprocessor is expected to be

limited to few pages. This memory is a buffer to data moving across the controller.

Flash arrays act as persistent memories to coprocessor. While data in pages are

read from flash arrays to coprocessor, writing to flash memory is avoided. Also,

it is better if pages are not moved between flash packages to maintain workload

balance and minimize communication costs. DRAM in SSD controller acts as

global memory. This memory model can be compared to other architectures like

host general purpose system or a GPU.

� Data layout and writes to Flash memory: If a matrix is divided into pages by

51

Figure 5.2: SPMV Exploration-Varying number of channels for CSR-a config-
uration forms Pareto front

rows and an applications accesses rows and/or columns simultaneously to perform

an operation, it becomes inefficient to be implemented inside SSD. Further, when-

ever feasible, it is necessary to store data in pages such that maximum parallelism

can be extracted within data in a single page. Also, if multiple reads of the same

data set is needed for implementation in coprocessor as opposed to single read in

host system, then such reads can lead to inefficiency. This is because the slower

NAND Flash interface and coprocessor speed are amortized with die interleaving

and channel parallelism. Repeated reads discount that advantage. Absence of

in-place updates in flash, long write times and write amplification restrict use of

coprocessor to applications that lead to constant update to input/auxiliary data

sets.

� Synchronizations in SSD Controller: SSD controller can aid loosely connected

coprocessors by synchronizing their outputs and/or producing auxiliary outputs

used by coprocessor for processing subsequent pages. Further as this synchro-

nization can potentially be pipelined with other coprocessor functions, impact of

communication overhead on performance can be greatly reduced.

52

� Pipelined Processing: Transfer of pages from NAND dies, compute in coproces-

sor and SSD controller are pipelined. Hence maximum efficiency can be obtained

by minimizing the difference, Tnfsb - Tcoproc and ensuring that SSD controller

operations are lightweight and does not affect pipelined processing. When host

is involved in processing output from SSD, transfer through PCIe and processing

and host are again pipelined as in conventional architecture. In such, it is even

possible to use a low power processor when transfer through PCIe determines

overall performance to maximize energy efficiency.

Chapter 6

Related Work

This chapter covers research work relevant to this thesis i.e., active disks, active flash and

intelligent SSDs and other near data processing schemes such as Processor-In-Memory.

Active disks section discusses work on processing capabilities in hard disks, its favorable

and limiting features . Following active disks, next section presents an extensive account

of active flash and intelligent SSDs, compares and distinguishes it with concepts and

ideas explored in this thesis. Final section throws light on other near data processing

efforts.

6.1 Active Disks

Active storage concepts that move computation towards dates back to Gamma databases

in early 1980s [44]. But research on shifting computation to storage controllers inside

the device were first shown by IDISK [45] and Active disk [46]. IDISK for databases

offloaded data processing from desktop processors to lower-power processors to improve

cost-performance. Active Disk combined on-drive processing and large memory to allow

disks to execute application level functions in the device. Most work exploited excess

computing cycles of the hard disk drive controllers embedded processor for useful data

processing. Acharya et al. focused on the programming model and algorithms rather

than device architecture [47]. They proposed a streaming programming model for ap-

plication development, model for secure task execution and operating system support at

host and device. SmartSTOR [48] consisted of a processing unit coupled to one or more

53

54

disks and semantically smart disks [49] were capable of various high-level functionali-

ties. Mueller et al. introduced an external module (e. g., FPGA) attached to a disk to

implement system intelligence [50]. Teradatas Extreme Performance Appliance [51] and

Oracles Exadata [52] added complex processing into their storage servers. The demon-

strated benefits from active disks were primarily from parallelized data-local execution

for many database related computing activities. These benefits have been realized by

spreading stored data across commodity servers and partitioning data processing across

those same servers. While active disk approach is not a failure nor is obsolete, it didn’t

take off due to limited storage interface, overheads of changing database software, high

manufacturing cost (of adding additional hardware for processing) and increasing real

time demands.

6.2 Active Flash and Intelligent SSDs

Due to the disadvantages listed above and to exploit characteristics of Solid State Stor-

age devices, recent research developments have targeted processing using NAND Flash

based SSDs. Modern SSDs are efficient in concurrent random writes, and have powerful

processors, memory, and multiple I/O channels to ash memory, enabling in-storage pro-

cessing with minimum hardware changes [53]. In addition, offloading I/O tasks allows

a host system to fully utilize devices’ internal parallelism without knowing the details

of their hardware configurations. Active Flash, Active SSD, Intelligent or Smart SSD,

In-Storage Computing, In-Situ Processing using SSDs etc are common terms referring

to the change in computing paradigm. Within this idea, there are two approaches: first

approach uses computational capabilities attached to an SSD in a server farm or a clus-

ter or a high performance computing infrastructure. For example, Ridel et al. added

application programmability on disk resident CPUs [54], John et al. used parallel file

system storage nodes [55] and Andersen et al. developed a FAWN architecture [56] with

low power wimpy nodes connected to Flash drives in a ring. Further Ding [57] imple-

mented a smart storage system in a high performance cluster that allow programmers

to write Map-Reduce like code which can automatically offload data-intensive compu-

tation multi-core processors in the storage node. However these systems had could not

meet performance expectations and also suffered from scalability problems [58]. Need

55

for distributed protocols and lack of portability were some of the issues with such an

architecture. This approach different from this thesis as processing inside SSDs, rather

than using compute nodes attached to permanent storage, to reduce data movement is

the main concern.

Second approach involves processing inside SSDs which follows same contours as

this thesis. Tiwari et al. [59] studied processing in SSD controller in high performance

computing (HPC) environment on large-scale supercomputers. They analyze energy

and performance models of active SSDs and utilization of multiple SSDs on supercom-

puters. They also study policies for scheduling computations on SSDs such as offline,

during GC, after GC etc. and consider cases where data output rates impose real-time

constraints on active computation. In contrast this thesis models a single ash device

with FMC and SSD controller acting as compute nodes and also studies a single SSD

connected to host rather than an entire HPC workow. Do et al. [60] ported query

processing (selection, selection with aggregation and TPC-H queries)components into

SSDs. They provided simple session based APIs to manage commands from the host,

threads for query operation, memory inside the SSD, and data in the DRAM. They

showed 18.7X and 2.9X energy gains for the entire system with the aggregate query.

They also highlighted issues such as buffer pool caching and coordination with DBMS

transaction manager. Unlike this study, their performance is limited because of low

frequency embedded CPUs in SSD controller. Kang et al. [53] constructed a prototype

implementing smart SSD model on a real SATA-based SSD. They used an object-based

protocol for low-level communication with the host, and extended Hadoop Map-Reduce

framework to support smart SSD. Their experiments revealed a reduction of 50% in

energy consumption. They also found that current SSD architecture is not sufficient to

support complex tasks. In contrast this thesis is not restricted to map-reduce type of

workloads and showed that processing inside flash memory controllers can help achieve

greater benefits. Lee et al. [61] focused on improving the external sorting algorithm

which is used extensively in data-intensive computing. While this approach doesn’t limit

data transfer inherent in the application, it reduces additional read and writes caused

in conventional Map-Reduce based external sorting. Since all the above approaches are

limited by capabilities of SSD core quickly becoming a bottleneck for large data sets

56

and slower DRAMs, FPGA and GPU based SSD controller implementations were stud-

ied [62], [63]. While this implementation is impressive addition of new hardware and

considerable modifications to SSD internals to enable such an architecture combined

with its niche application use case make it less affordable. Finally, the work of Bae et

al. [64] and Cho et al. [65] are very relevant to this thesis. In fact, they both exploit

SSD controller and Flash Memory Controller for processing. While Bae et al. work

only focuses on data mining applications, Cho et al. examine various data intensive

kernels such as kmeans, naive bayesian, word count, linear regression etc and show 24

performance increases and 527 energy efficiency gains. However, this thesis is unique

because of the much deeper design space exploration of the application and architec-

tural space. Further several optimizations have been proposed to better fit benchmarks

on SPU architecture. Use of APIs to communicate with active SSD/Flash included in

approaches discussed above is orthogonal to this study and thus not explored.

6.3 Other Near Data Processing Techniques

In contrast to processing inside SSDs, attempts for processing-in-memory (PIM) were

demonstrated more than a decade ago. Simple coprocessors were added near DRAM

and embedded DRAM arrays and potential for improved performances were indicated.

Rajeev et al. [66] point out that widespread commercial adoption of PIM remained

elusive notably due to costly logic process for integration in memory leading to increase

in cost per bit and lack of feasible programming models. They further state that a

resurgence in PIM is in progress motivated by 3D stacked memories, high degrees of

parallelism in big data workloads and the increasing joule per operation in host. As

an example of evidence, Kumar et al. [67] integrated hardware accelerator in last-

level-cache (LLC) . Named SQRL, it consists of a data structure specific LLC refill

engine with a light weight compute array to execute kernels. They showed performance

benefits in the range 13x to 121x for datacentric kernels such as recommender systems,

data cubing etc. Guo et al. [68] presented overall architecture of 3D-stacked Memory

Side Accelerator, which relies on a configurable array of domain-specific accelerators and

demonstrated using a prototype up to 179x and 96x better energy efficiency than Intel

Haswell processor for FFT and matrix transposition algorithms respectively. Loh et al.

57

[69] presented a case for fixed function computing inside memories. On the software

side, Tseng et al. and Chu et al. [70],[71] created programming models enabling PIM.

These research efforts are parallel to the motives of this thesis and together indicate

favorable changes in the realm of computing.

Chapter 7

Summary and Future Work

Modern computer architectures have reached a phase where doing computations happen

at low power and at frequencies that can keep energy values low. Constant movement

of data to perform those computations - either inherent in applications or the need for

better performance or both - consumes relatively much higher energy. Long latency

and limited bandwidth of DRAM, large caches and larger data sets, broadcasts and

synchronizations between processors and accelerators are few dominant reasons for such

higher energy. Storage Processing Unit attempts to mitigate such data movement by

using processing elements from within a NAND Flash package to host processor. By

moving computation closer to data, this thesis presented energy and performance results

from modeling applications on such an architecture. Important properties of NAND

flash SSDs resulted in energy savings - (i) Rich parallelism and high I/O bandwidth

within SSD - Interleaving requests to flash dies within a package and multiple flash

packages operating in parallel offsets slower read and write times compared to SRAMs

and DRAMs in host processor, (ii) Ability to use low power compute device as reduction

in frequency (to enable low operating power) does not affect performance, (iii) Constant

coprocessor to memory ratio with increasing number of channels(or coprocessors) and

(iv) SSD controller synchronizing outputs of coprocessors inside multiple flash packages.

While SPU architecture provided impressive features, not all applications can di-

rectly benefit from it. Specifically, lack of cache like private memories for coprocessor,

write-amplification [38] in flash, one-dimensional data access in the form of pages are

main reasons that create a need to identify suitable applications. Hence, Sparse BLAS,

58

59

BFS, K-Means and K-NN were applications selected from a large array of other applica-

tions. Using these kernels, performance and energy characteristics of SPU was explored

with various design parameters, code variants and mapping strategies. These kernels

were further classified into bandwidth and compute bound from SPU perspective. Such

differences in application characteristics resulted in exploring multiple optimizations

tailored for each of them. Optimizing data layout, increasing coprocessor cores, com-

munication between coprocessors were useful optimizations that resulted in increased

performance and energy benefits.

Performance and energy optimizations cannot be considered in isolation as several

solutions often exist when they are considered together. An automated framework to

perform Pareto analysis for different design parameters and code variants of sparse

BLAS was created. Varying number of channels inside SSDs for CSR configuration

formed the Pareto front.

� As part of future work, CoFluent model of simulation can be compared with other

similar and ISA/interval/cycle accurate simulators and/or validated with results

from real systems. Open source simulators that can be explored in this regard

include SSD Simulator [72], NAND Flash Simulator [73] and Eagle Tree [74].

Further, since these simulators are widely accepted in research domain, feasibility

to add coprocessors to existing simulator framework is also an option.

� The CoFluent model itself can be modified to include other accelerators both as a

conventional aid to host and as coprocessor inside NAND flash package. This will

provide a richer design space to optimize applications for energy efficiency. Accel-

erators can be programmable general purpose/domain specific or fixed function

operations. In such a case, current framework for automated design space explo-

ration can also be extended and different optimization criteria can be evaluated.

� Another avenue for extension is to consider SPU in a distributed/cloud/data center

environment. Specifically application of SPU for big data analytics using existing

database engines such as SciDB [75] or D4M [76] is an open research problem. This

can include identification of queries, suitable data structures and extension of the

database engines to support processing in SSDs. Array data model of SciDB and

60

sparse matrix operations of D4M are characteristics that can potentially benefit

from SPU.

� FTL in a SSD performs several functions such as page allocation, garbage collec-

tion, wear leveling and compression. Current CoFluent set up models static page

allocation part of FTL. The impact of other functions on processing inside SSDs

has not been explored in detail. Since SPU model is an abstract representation,

a probabilistic model for example representing movement of pages (or workload

distribution to coprocessor) can add value to the research.

References

[1] Ulya R. Karpuzcu, Brian Greskamp, and Josep Torrellas. The BubbleWrap Many-

core: Popping Cores for Sequential Acceleration. Proceedings of the 42Nd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 447–458, 2009.

[2] Mueen Uddin and Azizah Abdul Rahman. Server consolidation: An approach to

make data centers energy efficient and green. arXiv preprint arXiv:1010.5037, 2010.

[3] Gartner. Sustainable IT. A Gartner Briefing, 2008.

[4] Gartner Kumar, R. Media Relations. available at:www.gartner.com/it/. 2008.

[5] Ivan Rodero and Manish Parashar. Energy efficiency in HPC systems. Energy-

Efficient Distributed Computing Systems, pages 81–108, 2012.

[6] John Shalf, Sudip Dosanjh, and John Morrison. Exascale computing technology

challenges. High Performance Computing for Computational Science–VECPAR

2010, pages 1–25, 2011.

[7] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in memory: The Terasys

massively parallel PIM array. Computer, 28(4):23–31, 1995.

[8] Erik Riedel, Garth Gibson, and Christos Faloutsos. Active storage for large-scale

data mining and multimedia applications. Proceedings of 24th Conference on Very

Large Databases, pages 62–73, 1998.

[9] D Narayanan, E Thereska, A Donnelly, S Elnikety, and A Rowstron. Migrating

enterprise storage to SSDs: Analysis of tradeoff. 2008.

61

62

[10] Cagdas Dirik and Bruce Jacob. The performance of PC solid-state disks (SSDs) as a

function of bandwidth, concurrency, device architecture, and system organization.

ACM SIGARCH Computer Architecture News, 37(3):279–289, 2009.

[11] Peng Li, Kevin Gomez, and David J Lilja. Exploiting free silicon for energy-efficient

computing directly in NAND flash-based solid-state storage systems. High Perfor-

mance Extreme Computing Conference (HPEC), 2013 IEEE, pages 1–6, 2013.

[12] Dawon Kahng and Simon M Sze. A floating gate and its application to memory

devices. Bell System Technical Journal, 46(6):1288–1295, 1967.

[13] Gyu Sang Choi and Mankyu Sung. Investigating page sizes in nand flash memory.

Science and Technology, 2011:0008686, 2011.

[14] Process Integration, Devices, and Structures(PIDS). The International Technology

Roadmap for Semiconductors, 2012.

[15] ARM Ltd., Cortex A9 processor. http://www.arm.com/products/processors/cortex-

a/cortex-a9.php.

[16] OCZ RevoDrive PCI-Express SSD Specications.

http://ocz.com/consumer/revodrive-3-pcie-ssd/specifications.

[17] Intel System Modeling and Simulation. http: // www. intel. com/ content/ www/

us/ en/ cofluent/ intel-cofluent-studio. html .

[18] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Chao Ren. Exploring

and exploiting the multilevel parallelism inside SSDs for improved performance and

endurance. Computers, IEEE Transactions on, 62(6):1141–1155, 2013.

[19] David Levinthal. Performance analysis guide for intel core i7 processor and intel

xeon 5500 processors. Intel Performance Analysis Guide, 2009.

[20] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-

Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous com-

puting. In Workload Characterization, 2009. IISWC 2009. IEEE International

Symposium on, pages 44–54. IEEE, 2009.

http://www.intel.com/content/www/us/en/cofluent/intel-cofluent-studio.html
http://www.intel.com/content/www/us/en/cofluent/intel-cofluent-studio.html

63

[21] Juan Gonzalez and Rafael C Núñez. Extreme-Speed Scalable Direct Sparse Solvers

for Heterogeneous Supercomputing–An Enhancement to the LAPACKrc Library.

[22] Georgios Goumas, Kornilios Kourtis, Nikos Anastopoulos, Vasileios Karakasis, and

Nectarios Koziris. Understanding the performance of sparse matrix-vector multi-

plication. pages 283–292, 2008.

[23] Richard Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. 2003.

[24] Yousef Saad. Iterative methods for sparse linear systems. 2003.

[25] John D Davis and Eric S Chung. SpMV: A memory-bound application on the

GPU stuck between a rock and a hard place. Microsoft Research Silicon Valley,

Technical Report14 September, 2012, 2012.

[26] Erik Saule, Kamer Kaya, and Ümit V Çatalyürek. Performance evaluation of sparse

matrix multiplication kernels on intel xeon phi. In Parallel Processing and Applied

Mathematics, pages 559–570. Springer, 2014.

[27] Aydin Buluc and John R Gilbert. Parallel sparse matrix-matrix multiplication and

indexing: Implementation and experiments. SIAM Journal on Scientific Comput-

ing, 34(4):C170–C191, 2012.

[28] Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz,

Oded Schwartz, and Sivan Toledo. Communication optimal parallel multiplication

of sparse random matrices. Proceedings of the twenty-fifth annual ACM symposium

on Parallelism in algorithms and architectures, pages 222–231, 2013.

[29] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry.

Challenges in parallel graph processing. Parallel Processing Letters, 17(01):5–20,

2007.

[30] Nadathur Satish, Changkyu Kim, Jatin Chhugani, and Pradeep Dubey. Large-scale

energy-efficient graph traversal: a path to efficient data-intensive supercomputing.

page 14, 2012.

[31] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. Intro-

ducing the graph 500. Cray Users Group (CUG), 2010.

64

[32] Green Graph500. http://htor.inf.ethz.ch/publications/img/hoefler-gg500.pdf.

[33] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive

model for graph mining. 4:442–446, 2004.

[34] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon, Bruce Hendrick-

son, and Umit Catalyurek. A scalable distributed parallel breadth-first search

algorithm on BlueGene/L. Supercomputing, 2005. Proceedings of the ACM/IEEE

SC 2005 Conference, pages 25–25, 2005.

[35] Scott Beamer, Aydin Buluc, Krste Asanovic, and David Patterson. Distributed

memory breadth-first search revisited: enabling bottom-up search. pages 1618–

1627, 2013.

[36] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient parallel graph

exploration on multi-core CPU and GPU. pages 78–88. IEEE, 2011.

[37] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and David A Bader. Scalable

graph exploration on multicore processors. pages 1–11. IEEE Computer Society,

2010.

[38] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.

Write amplification analysis in flash-based solid state drives. page 10. ACM, 2009.

[39] Jing Zhang, Gongqing Wu, Xuegang Hu, Shiying Li, and Shuilong Hao. A parallel

k-means clustering algorithm with mpi. pages 60–64. IEEE, 2011.

[40] Open Street Map. http://www.openstreetmap. org.

[41] Sadegh Baf, Eh Im, and Mohammad Bol. OPEN ACCESS Application of K-

Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoretical

Background.

[42] Prasanna Balaprakash, Stefan M Wild, and Paul D Hovland. Can search algo-

rithms save large-scale automatic performance tuning? Procedia Computer Science,

4:2136–2145, 2011.

65

[43] Prasanna Balaprakash, Ananta Tiwari, and Stefan M Wild. Multi objective opti-

mization of hpc kernels for performance, power, and energy. In High Performance

Computing Systems. Performance Modeling, Benchmarking and Simulation, pages

239–260. Springer, 2014.

[44] David J DeWitt and Paula B Hawthorn. A performance evaluation of data base

machine architectures. Proceedings of the seventh international conference on Very

Large Data Bases-Volume 7, pages 199–214, 1981.

[45] Kimberly Keeton, D Patterson, Joseph Hellerstein, John Kubiatowicz, and Kather-

ine Yelick. The intelligent disk (idisk): A revolutionary approach to database com-

puting infrastructure. Database, 9(6 S 5), 1998.

[46] Erik Riedel, Garth Gibson, and Christos Faloutsos. Active storage for large-scale

data mining and multimedia applications. In Proceedings of 24th Conference on

Very Large Databases, pages 62–73. Citeseer, 1998.

[47] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: Programming model,

algorithms and evaluation. volume 32, pages 81–91. ACM, 1998.

[48] Windsor W Hsu, Alan Jay Smith, and Honesty C Young. Projecting the perfor-

mance of decision support workloads on systems with smart storage (smartstor).

In Parallel and Distributed Systems, 2000. Proceedings. Seventh International Con-

ference on, pages 417–425. IEEE, 2000.

[49] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I Popovici, Timothy E

Denehy, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Semantically-

smart disk systems. In FAST, volume 3, pages 73–88, 2003.

[50] Rene Mueller, Jens Teubner, and Gustavo Alonso. Data processing on fpgas. Pro-

ceedings of the VLDB Endowment, 2(1):910–921, 2009.

[51] Teradata Extreme Performance Appliance. https: // www. ndm. net/

datawarehouse/ pdf/ EB6227. pdf .

[52] Oracle TimesTen in-memory database. http: // www. oracle. com/ technetwork/

database/ database-technologies/ timesten/ overview/ index. html .

https://www.ndm.net/datawarehouse/pdf/EB6227.pdf
https://www.ndm.net/datawarehouse/pdf/EB6227.pdf
http://www.oracle.com/technetwork/database/database-technologies/timesten/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/timesten/overview/index.html

66

[53] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and Chanik Park. Enabling cost-

effective data processing with smart ssd. In Mass Storage Systems and Technologies

(MSST), 2013 IEEE 29th Symposium on, pages 1–12. IEEE, 2013.

[54] Erik Riedel, Christos Faloutsos, Garth A Gibson, and David Nagle. Active disks

for large-scale data processing. Computer, 34(6):68–74, 2001.

[55] Tina Miriam John, Anuradharthi Thiruvenkata Ramani, and John A Chandy. Ac-

tive storage using object-based devices. In Cluster Computing, 2008 IEEE Inter-

national Conference on, pages 472–478. IEEE, 2008.

[56] David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,

Lawrence Tan, and Vijay Vasudevan. Fawn: A fast array of wimpy nodes. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems princi-

ples, pages 1–14. ACM, 2009.

[57] Zhiyang Ding. An Active and Hybrid Storage System for Data-intensive Applica-

tions. PhD thesis, Auburn University, 2011.

[58] Simona Boboila, Youngjae Kim, Sudharshan S Vazhkudai, Peter Desnoyers, and

Galen M Shipman. Active flash: Out-of-core data analytics on flash storage. In

Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th Symposium on,

pages 1–12. IEEE, 2012.

[59] Devesh Tiwari, Simona Boboila, Sudharshan S Vazhkudai, Youngjae Kim, Xi-

aosong Ma, Peter Desnoyers, and Yan Solihin. Active flash: towards energy-

efficient, in-situ data analytics on extreme-scale machines. In FAST, pages 119–132,

2013.

[60] Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park, Kwanghyun Park, and

David J DeWitt. Query processing on smart ssds: opportunities and challenges. In

Proceedings of the 2013 ACM SIGMOD International Conference on Management

of Data, pages 1221–1230. ACM, 2013.

[61] Young-Sik Lee, Luis Cavazos Quero, Youngjae Lee, Jin-Soo Kim, and Seungryoul

Maeng. Accelerating external sorting via on-the-fly data merge in active ssds.

67

In Proceedings of the 6th USENIX conference on Hot Topics in Storage and File

Systems, pages 14–14. USENIX Association, 2014.

[62] Benjamin Y Cho, Won Seob Jeong, Doohwan Oh, and Won Woo Ro. Xsd: Accel-

erating mapreduce by harnessing the gpu inside an ssd. 2013.

[63] Jian Ouyang, Shiding Lin, Zhenyu Hou, Peng Wang, Yong Wang, and Guangyu

Sun. Active ssd design for energy-efficiency improvement of web-scale data analy-

sis. In Proceedings of the International Symposium on Low Power Electronics and

Design, pages 286–291. IEEE Press, 2013.

[64] Duck-Ho Bae, Jin-Hyung Kim, Sang-Wook Kim, Hyunok Oh, and Chanik Park.

Intelligent ssd: a turbo for big data mining. In Proceedings of the 22nd ACM

international conference on Conference on information & knowledge management,

pages 1573–1576. ACM, 2013.

[65] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan Kim, Youngmin Yi, and Gre-

gory R Ganger. Active disk meets flash: A case for intelligent ssds. In Proceedings

of the 27th international ACM conference on International conference on super-

computing, pages 91–102. ACM, 2013.

[66] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno,

Richard Murphy, Ravi Nair, and Steven Swanson. Near-data processing: Insights

from a micro-46 workshop. Micro, IEEE, 34(4):36–42, 2014.

[67] Snehasish Kumar, Arrvindh Shriraman, Vijayalakshmi Srinivasan, Dan Lin, and

Jordon Phillips. Sqrl: hardware accelerator for collecting software data structures.

In Proceedings of the 23rd international conference on Parallel architectures and

compilation, pages 475–476. ACM, 2014.

[68] Qi Guo, Nikolaos Alachiotis, Berkin Akin, Fazle Sadi, Guanglin Xu, Tze Meng

Low, Larry Pileggi, James C Hoe, and Franz Franchetti. 3d-stacked memory-side

acceleration: Accelerator and system design.

[69] G Loh, N Jayasena, M Oskin, et al. A processing in memory taxonomy and a case

for studying fixed-function pim. In Near-Data Processing Workshop, 2013.

68

[70] Hung-Wei Tseng and Dean M Tullsen. Data-triggered multithreading for near-data

processing.

[71] Michael L Chu Nuwan Jayasena Dong and Ping Zhang Mike Ignatowski. High-level

programming model abstractions for processing in memory.

[72] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Urgaonkar. Flash-

sim: A simulator for nand flash-based solid-state drives. In Advances in System

Simulation, 2009. SIMUL’09. First International Conference on, pages 125–131.

IEEE, 2009.

[73] Myoungsoo Jung, Ellis Herbert Wilson, David Donofrio, John Shalf, and Mahmut T

Kandemir. Nandflashsim: Intrinsic latency variation aware nand flash memory sys-

tem modeling and simulation at microarchitecture level. In Mass Storage Systems

and Technologies (MSST), 2012 IEEE 28th Symposium on, pages 1–12. IEEE, 2012.

[74] Niv Dayan, Martin Kjær Svendsen, Matias Bjørling, Philippe Bonnet, and Luc

Bouganim. Eagletree: exploring the design space of ssd-based algorithms. Proceed-

ings of the VLDB Endowment, 6(12):1290–1293, 2013.

[75] M Balazinska, J Becla, D Heath, D Maier, M Stonebraker, and S Zdonik. A

demonstration of scidb: A science-oriented dbms. Cell, 1:a2, 2009.

[76] Jeremy Kepner, Christian Anderson, William Arcand, David Bestor, Bill Bergeron,

Chansup Byun, Matthew Hubbell, Peter Michaleas, Julie Mullen, David O’Gwynn,

et al. D4m 2.0 schema: A general purpose high performance schema for the ac-

cumulo database. In High Performance Extreme Computing Conference (HPEC),

2013 IEEE, pages 1–6. IEEE, 2013.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Storage Processing Unit Architecture
	Overview of SPU

	Modeling of Storage Processing Unit
	Introduction to Modeling Using CoFluent
	Developing SPU Model
	SPU on CoFluent
	ISA
	Data Flow and Analytical Validation

	Baseline Model
	Applications

	Mapping Applications on SPU
	Introduction to Sparse BLAS
	Sparse Matrix Vector Multiplication
	Introduction and Baseline Model
	Mapping spmv on SPU
	Performance and Energy Results

	Sparse Matrix Matrix Multiplication
	Introduction and Baseline Model
	Mapping spmm on SPU
	Performance and Energy Results

	Graph500 on SPU
	Introduction: Breadth First Search
	Mapping graph500 on SPU
	Memory Requirements
	Performance and Energy Results

	Data Mining Applications on SPU
	K-Means Clustering
	Mapping K-Means on SPU
	k-Nearest Neighbor
	Mapping K-NN on SPU

	Optimizations
	Automated Design Space Exploration
	Simulator Setup
	SPMV Pareto Front

	SPU Architecture Characteristics

	Related Work
	Active Disks
	Active Flash and Intelligent SSDs
	Other Near Data Processing Techniques

	Summary and Future Work
	References

