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Abstract 

Gene expression profiling has been widely used in understanding global gene 

expression alterations in endometrial cancer vs. normal cells. In many microarray-based 

endometrial cancer studies, comparisons of cancer with normal cells were generally 

made using heterogeneous samples in terms of menstrual cycle phases, or status of 

hormonal therapies, etc, which may confound the search for differentially expressed 

genes playing roles in the progression of endometrial cancer. These studies will 

consequently fail to uncover genes that are important in endometrial cancer biology. 

Thus it is fundamentally important to identify a gene signature for discriminating normal 

endometrial cyclic phases. To this end, gene expression analysis was performed on 29 

normal endometrium specimens. Unsupervised analysis demonstrated that gene 

expression profiles common to secretory endometrium were distinctively different from 

those of proliferative and atrophic endometrium. Pairwise comparisons further revealed 

no significant difference in gene expression between proliferative and atrophic 

endometrium. In addition, using a normal mixture model-based clustering algorithm we 

were able to identify a gene signature consisting of 35 unique annotated genes that 

display a switch-like or bimodal expression pattern across all samples. Functional 

annotation of this gene signature revealed that complement and coagulation cascades 

and Wnt signaling pathway were significantly enriched. Utility of this gene signature was 

validated in an independent gene expression data set, where clustered proliferative 

samples from clustered early, mid, and late-secretory samples were successfully 

separated. These data suggest that the bimodal gene signature identified in this study 

could potentially be used to distinguish cyclic phases of the menstrual cycle. Our 

findings will facilitate future work in understanding the molecular characteristics of 

endometrial cancers in comparison to normal endometrium. 
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Chapter 1 

 

Introduction 

Problem statement 

Gene expression profiling has been widely used in studying global gene expression 

alterations to characterize cancer vs. normal cells, including endometrial cancer, for the 

purpose of identifying cancer subtypes, discovering new drug targets and developing 

novel therapeutic strategies. Normal endometrium is a highly dynamic tissue and 

undergoes profound histological and structural cyclic changes during menstrual cycle 

every month, which are ultimately the result of changes in gene expression affected by 

levels of ovarian steroids. In many microarray-based gene expression studies of 

endometrial cancers, comparisons of cancer cells with normal cells were generally made 

using heterogeneous samples in terms of menstrual cycle phases or status of hormonal 

therapies, etc. Therefore, this may confound the search for differentially expressed 

genes that may play important roles in the progression of endometrial cancer. These 

studies will consequently fail to uncover genes that are important in endometrial cancer 

biology. Thus, it is fundamentally important to identify the gene signature for 

discriminating endometrial cyclic phases. To this end, we compared the whole-genome 

expression profiles of tens of human normal endometrium. Our aim is to identify a gene 

signature with discriminative power to separate endometrial tissue samples into 

subgroups with respect to their menstrual cycle phases. To demonstrate the gene 

signature could be used as menstrual cycle phase markers, we performed 2-way 
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hierarchical clustering analysis on a gene expression data set obtained from public 

database using the gene signature.  

Structure of the thesis 

Following the introduction in this chapter, Chapter 2 describes the data sets used in 

the thesis in details. Chapter 3 describes the methods used in this thesis and details 

about how they were implemented. Chapter 4 presents the results of our analysis. 

Finally, Chapter 5 summarizes and discusses our findings.   

The endometrial cycle 

Cyclic change of endometrium is tightly regulated by ovarian steroid hormones, 

estrogen and progesterone. Hormonal control of endometrium including endometrial, 

epithelial, and stromal cells is mediated by estrogen and progesterone receptors, which 

are proteins located in the nuclei of those cells, through high affinity binding to the 

hormones [1]. In a typical 28-day cycle, following menstrual shedding (day 1-5) the 

endometrium regenerates under the stimulation of estrogen, and endometrial thickness 

increases dramatically as a result of active growth of glands, stromal cells, and blood 

vessels, which is described as proliferative phase (day 6-14, Figure 1.1). During 

proliferative phase, the glands become longer, larger, and more coiled following multiple 

mitoses, which are often seen at higher magnification. The stroma becomes highly 

vascularized. In addition to tissue proliferation, estrogen is believed to promote the 

production of estrogen receptors and progesterone receptors. As a result, 

concentrations of estrogen receptors and progesterone receptors are elevated in both 

blood and tissue during the proliferative phase. When increased secretion of 

progesterone inhibits the endometrium proliferation, the secretory transformation initiates 

under the overall control of estrogen and progesterone, which is known as secretory 

phase (day 15-28, Figure 1.1). During this phase, the secretory activity is featured by a 

diversity of structural changes, displaying a different pattern on every day of the cycle. 
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During the first four days of the secretory phase, infrequent mitoses can still be seen in 

the glandular epithelium. Endometrial stromal cells show less edema. The glands are not 

yet in the state of active extracellular secretion. During day 5 and 6 of secretory phase, 

the newly synthesized intracellular products are secreted into the glandular space. It is 

characterized by protrusions. The mid and late secretory phase is completely absence of 

mitoses in the glands.  The sharp reduction in the level of estrogen and progesterone 

leads to the shedding of the endometrium, a phase termed as menstrual phase (Figure 

1.1) [2].  

The morphological changes described above are often used as characteristics by 

pathologist to dating endometrial biopsy and categorize them into different cyclic phases. 

However, there is very low inter-observer agreement, and the histologic endometrial 

dating is considered inaccurate to guide clinical decision and diagnosis [3]. In fact, the 

profound changes in physiology, biology, and histology are ultimately the result of 

altered gene transcription and gene expression pattern, which is believed to precede 

visually identifiable morphological changes. Therefore, molecular markers will probably 

be more sensitive than histological characteristics in dating endometrial biopsy and 

distinguishing cyclic phases. 

Microarray and gene expression data 

Nowadays the most popular techniques to measure gene expression on a global 

scale include RNA-sequencing and microarray. While RNA-sequencing is a powerful 

technique, microarray is still popular because it is cheap, requires fewer resources, and 

has more mature methods for data analysis. Additionally, tens of thousands of data sets 

generated by microarray-based experiments are publicly available in databases, such as 

Gene Expression Omnibus (GEO) Database at National Center for Biotechnology 

Institute (NCBI).   
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Microarray is a high-throughput technology for measuring the expression levels of 

tens of thousands of genes simultaneously by hybridization of complementary DNA 

(cDNA) to a collection of oligonucleotide probes, which are attached to a microscope-

sized glass slide [4, 5]. The use of microarrays allows for parallel quantification of gene 

expression on a global scale in cells and tissues of distinct phenotypes. The application 

of microarrays facilitates better understanding and classification of diseases as well as 

identification of novel therapeutic targets from studying basic biology, clinical diagnostics 

to drug discovery. To be specific, researchers often run microarray experiments to 

measure the expression level of each known transcript in a set of samples under 

investigation, or to explore what genes are activated in cells and at what level after 

stimulation; or to compare the gene expression profiles of treatment versus control 

groups (e.g. cancer vs. normal); or to identify changes in gene expression under specific 

conditions. 

Two microarray data sets to be analyzed in this thesis are both generated with 

Affymetrix GeneChip Human Genome U133 Plus 2.0 platform, which is made up with 

more than 54,000 probe sets, each of which consists of 11-20 probes (25 

oligonucleotides long) corresponding to a particular gene or EST (expressed sequence 

tag). There are two types of probes, perfect match (PM) and mismatch (MM). PM probes 

are perfectly complementary to a specific region of a gene. MM probes are identical to 

the PM probes except for the middle (13th) nucleotide in the sequence, which is 

replaced with its complementary nucleotide. MM probes are informative during 

computational data analysis to account for non-specific probe binding. Different types of 

probe sets can be inferred from suffices to the probe set name [6]. Probe sets without 

suffix are predicted to match a single transcript perfectly; those with “_a” suffix recognize 

multiple transcript variants from the same gene. Common probe sets with “_s” suffix 
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recognize multiple transcripts from different genes. Probe sets with “_x” suffix contain 

some probes that are identical or highly similar to other sequences.  

Bimodal expression and biomarker discovery 

wide gene expression analysis with microarrays has been widely used for 

identifying genes that are differentially expressed between subgroups of 

A frequent goal in translational research is to look for a gene or gene signature

power to separate patients into subgroups with respect to physiological 

states, prognosis or drug response. Compared to a unimodal distribution

or switch-like behavior possess a clear advantage to classify 

patients into high and low expression subgroups. A bimodal distribution is a continuous 

probability distribution with two different modes (Figure 1.2). The observati

been described in numerous studies [7, 8]. Therefore, bimodal 

promising candidates for biomarkers of disease outcome or phenotype

Figure 1.2. An example of bimodal distribution 
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Chapter 2 

 

Description of the gene expression data sets 

In this thesis, two sets of gene expression profiling array data were used: Wong et al. 

[9] and Talbi et al. [10]. Both data sets underwent histopathological evaluation for cyclic 

phase. And both were generated using Affymetrix GeneChip Human Genome U133 Plus 

2.0 platform.  

The Wong et al. data set consists of 84 clinical samples from Hong Kong Chinese 

women. Among them, 55 are human microdissected sporadic endometriod endometrial 

adenocarcinomas and 29 are microdissected normal endometrium specimens. For the 

scope of this study, the subset of 29 normal endometrium specimens was extracted and 

used for our analysis. The endometrial cyclic phase of each normal endometrium 

specimen was determined by histological typing. Among the 29 normal specimens, there 

are 10 proliferative, 10 secretory, and 9 atrophic (postmenopausal) specimens, 

respectively. Patient sample IDs and their corresponding cyclic phase are listed in Table 

2.1 (information of patient age is unavailable). Thus, these 29 arrays were used as an 

exploration data set. Each array contains 54675 probe sets corresponding to more than 

38500 well-characterized human genes. The extracted data matrix has 54675 rows and 

29 columns, where each row represents a probe set and each column is a patient 

specimen. This expression data set was normalized and log2 transformed.  

The Talbi S et al. data set consists of 27 samples from normally cycling women 

undergoing hysterectomy or endometrial biopsy [10]. This data set was used to examine 

the utility of the gene signature identified from the Wong et al. data set. The cyclic phase 
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of these specimens was assigned through pathological review according to the criteria of 

Noyes et al [2]. Of them, four are proliferative, six ambiguous, and samples of secretory 

phase are sub-categorized into three early, eight mid, and six late secretory phase. The 

expression data set and clinical information were downloaded from the National Center 

for Biotechnology Information Gene Expression Omnibus data repository under the 

accession number GSE4888 [11]. The downloaded expression data set was normalized 

and log2 transformed. 
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Table 2.1. Patient sample ID and corresponding cyclic phase 

  NO. SAMPLE ID CYCLIC PHASE
1 187 P
2 188 P
3 212 S
4 214 S
5 215 S
6 163 S
7 165 A
8 168 A
9 169 A
10 170 S
11 171 A
12 206 P
13 160 P
14 161 P
15 211 S
16 184 A
17 162 P
18 166 P
19 172 A
20 175 S
21 176 S
22 177 A
23 178 P
24 179 A
25 181 S
26 182 A
27 183 P
28 185 P
29 189 S

P: proflierative phase

S: secretary phase

A: atrophic phase
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Chapter 3 

 

Methods 

Data preprocessing 

In large-scale microarray experiments, it is a common problem for the presence of 

noise, which can originate from various sources. Noise from non-specific binding of 

cRNA fragments to probes is one such source. In Affymetrix GeneChip platform, each 

Perfect Match probe (PM) is matched to a second probe, Mis-Match probe (MM). MM 

probes are identical to the PM probes except for the middle (13th) nucleotide in the 

sequence, which is replaced with its complementary nucleotide. Subtracting the signal 

for the MM probe from that for the PM probe would show the true signal value. Various 

preprocessing algorithms have been developed to deal with these artifacts [12]. 

Among others, GCRMA [13, 14]  is a popular preprocessing method of converting 

CEL files directly into expression set using the Robust Multichip Average (RMA) method 

[15] in combined with additional considering of probe sequence information and GC-

content to compute probe affinity to adjust for background correction. Thus, GCRMA is 

considered as an improved version of RMA. While using the same normalization and 

expression value summarization steps as RMA, GCRMA uses probe sequence 

information to adjust for background intensities raised from non-specific binding in 

Affymetrix data. Usually, the preprocessing includes three steps, background correction, 

normalization, and summarization. 
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For background correction step, GCRMA is designed to remove background noise 

as well as non-specific binding and separate the specific signal from the non-specific 

signal. GCRMA incorporates probe sequence information to estimate probe affinity to 

non-specific binding and computes the Affymetrix PM and MM probe affinities from their 

sequences and MM probe intensities. Specifically, background correction consists of 

three steps: a) Optical background correction on the PM and MM intensity values; b) 

Probe intensity adjustment through non-specific binding using affinity information and 

optical-noise adjusted MM intensities; c) Gene-specific binding correction using probe 

affinity data. 

Normalization is necessary to remove non-biological variations between multiple 

arrays used in the same experiment, so that multiple arrays can be compared to each 

other and analyzed together. The normalization used in GCRMA is quantile 

normalization, which is applied to background-corrected PM probe values.  

Once been background-corrected and normalized the probe-level PM values need 

to be summarized into a single expression measure. This step generates a single 

expression value for each probe set corresponding to each gene per chip, and ultimately 

creates an expression matrix to summarize the Affymetrix microarray probe-level data. 

An expression matrix contains log2 expression values where each row corresponds to a 

probe set and each column corresponds to an Affymetrix data CEL file generated from a 

single chip. 

For data sets used in this thesis, the CEL files containing the intensities determined 

for every oligonucleotide probe on a GeneChip were preprocessed in R using 

Bioconductor packages GCRMA (version 2.34.0) for background correction, 

normalization and data summarization. justGCRMA function was applied to convert CEL 

files directly into an R expression set object, which was further transformed into 

expression measures of log base 2 scale for each probe set.  
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Multidimensional scaling 

Multidimensional scaling (MDS) is a useful dimensionality reduction technique that 

allows researchers to uncover the underlying structure of high-dimensional data sets, 

such as microarrays. In comparing pairs of objects, MDS helps visualize the level of 

proximity between individual objects.  MDS takes proximities among objects as an input. 

Proximity is a measurement of the similarity or dissimilarity of a pair of objects. If all pairs 

of objects were measured in a set, the proximities are represented by a proximity matrix. 

The output of MDS is a lower-dimensional spatial representation points in a plot. Each 

point corresponds to one of the objects. The further apart the points in the graph are, the 

smaller the similarity between the pair of objects are [16]. To represent the distances 

among the normal endometrial samples in Wong et al. data set, a distance matrix was 

first computed and then MDS was applied to the distance matrix using a function in the 

R stats package. Finally, the result was plotted for visualization. 

Principal components analysis 

Principal component analysis (PCA) is a data exploration tool that can reduce the 

dimensionality of data. It finds a linear projection of high dimensional data into a lower 

dimensional subspace [17]. PCA transforms a set of correlated variables into 

uncorrelated variables by decomposing the original data into a set of mutually orthogonal 

eigenvectors and their weights. Two main methods for performing principal component 

analysis are eigenvalue decomposition and singular value decomposition. For a given 

data set stored as a column matrix � , where each column corresponds to a multi-

dimensional variable of dimension � and the number of variables is �, the size of the 

matrix � is � � �. For eigenvalue decomposition, we try to decompose matrix ��� into: 

��� � �Σ�� 
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, where �  is a � � �  matrix whose columns are the eigenvectors or principal 

components. Σ  is a diagonal matrix whose elements on its diagonal represents the 

importance of each corresponding principal component in the original data. Usually, the 

columns of � and the diagonals of Σ are ordered in the descending order based on their 

importance. An alternative and much more popular way of carrying out principal 

component analysis is to use singular value decomposition. In this method, we try to find 

the following factorization: 

� � 	Λ�� 

, where 	 is a column matrix of size � � �. The column vectors are orthogonal to each 

other and sometimes called left singular vectors. �  is the same matrix �  as in 

eigenvalue decomposition and sometimes also called right singular vectors. Matrix Λ has 

the same shaped of matrix Σ and its elements on the diagonal is the square roots of 

those of Σ . PCA is more widely calculated by SVD than eigenvalue decomposition 

because of its availability, efficiency and applicability [18, 19]. R stats package was used 

to perform the PCA computation. The first two principal components were plotted for 

visualization.  

Hierarchical Clustering 

Clustering is the process to sort different objects into groups in a way that objects in 

the same group are more similar to each other than to those in other groups. In gene 

expression data analysis, a common question facing researchers is how to organize the 

observed data into a meaningful structure. A number of clustering methods have been 

applied to identify the patterns of gene expression data set. Clustering can be either 

supervised or unsupervised. Supervised methods use known biological information 

about specific genes to be functionally related to guide the clustering algorithm. However, 

most widely used methods are unsupervised, and these methods are usually applied 
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first to explore structures in the data without any prior knowledge. Although clustering is 

powerful in data analysis, great caution should be taken in applying these techniques as 

different methods may place different objects in different clusters when different 

algorithms or distance metrics were selected subjectively. 

Hierarchical clustering is one of the most widely used techniques for the analysis of 

gene expression data to group experimental samples (usually clinical specimens or cell 

lines) based on the similarity of their gene expression patterns. The same clustering 

method could be used to group genes based on the similarity in the pattern with which 

their expression varied over all the samples [20]. Hierarchical algorithms can be further 

classified into two categories, agglomerative and divisive. Agglomerative approach starts 

with all objects as individual clusters, at each iteration merge the most similar pair of 

clusters. The iteration continues until all objects are in a single cluster. The definition of 

cluster similarity is discussed in the following section. Divisive approach begins with one 

cluster including all objects and at each iteration cluster is gradually broken down until 

only singleton clusters of each individual object remain.  

Agglomerative approach is more commonly used thus will only be described in 

detail here. The procedure of performing agglomerative hierarchical clustering involved 

several steps. Before any clustering, distance between each pair of objects is computed, 

and a distance matrix is constructed. During the clustering, initially each object is 

assigned to its own cluster. Then the algorithm starts iterating by searching the distance 

matrix for the two most similar objects or clusters, and merges them to produce a new 

cluster. At each iteration, distances between the new cluster and all other clusters are 

recomputed. The iteration continues until all objects are in one cluster [21]. 

A number of clustering methods of hierarchical clustering are available and each of 

them aims at finding clusters with different characteristics. Single-linkage (MIN) method 

is also known as minimum or nearest-neighbor method. This technique defines the 
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distance of two clusters as the minimum of the distance (maximum of the similarity) 

between members of one cluster and members of another cluster. Complete-linkage 

(MAX) method is also referred to as maximum or furthest-neighbor method. In complete-

linkage method, the distance of two clusters is defined as the maximum of the distance 

(minimum of the similarity) between members of one cluster and members of another 

cluster. Thus it is in general less sensitive to noise and outliers compared to other 

methods. Average-linkage method aims for finding clusters with characteristics 

somewhere between single-linkage and complete linkage methods. It computes the 

distance of two clusters using the average values of the distance between all members 

of one cluster and all members of another cluster. Ward’s method assumes that a cluster 

is represented by its centroid. Cluster membership is assigned by calculating the total 

variance from the mean of a cluster and joining clusters in such a way that it minimizes 

possible increase in variance. Thus, this method aims for finding compact and spherical 

clusters [22]. 

The key step of the above algorithm is the computation of the distance or similarity 

between two objects to construct distance or similarity matrix. The way in which distance 

or similarity measure is carried out between each pair of objects will produce slightly 

different result in clustering. There are several different definitions of distance measure, 

which differentiates the various hierarchical clustering techniques. Among others, 

Euclidean distance is the most commonly used type of distance measure.  The distance 

between object x and y is defined as 

��
, �� � ���
� � �����
���  
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, where n is the number of dimensions, and xi and yi are the i th components of x and y, 

respectively. As in the case of maximum distance between two components of x and y is 

defined as  ��
, �� � max �|
� � ��|� 
In addition, Manhattan distance defines the distance between two objects as the sum of 

the absolute differences of their Cartesian coordinates, formally as 

��
, �� � �|
� � ��|�
���  

, where n is the number of dimensions, and xi and yi are the i th components of x and y, 

respectively. Other methods for distance measure, such as Minkowski and Canberra are 

described in more details elsewhere [23, 24]. As for similarity measure, a number of 

methods are commonly used in microarray gene expression analysis including 

Pearson’s and Spearman’s correlation, etc. Pearson’s correlation coefficient between 

two objects is defined as 

r = 
���� ∑  !"�!#$% & '("�()$* +���,  

, where 
# and �) are the sample mean of x and y, respectively, and -! and -( are the 

sample standard deviation of x and y, respectively. Pearson’s distance for two objects x 

and y can be defined from their correlation coefficient as �!,( = 1 – r 

The Spearman’s rank correlation is a nonparametric similarity measure. In calculating 

the Spearman’s rank correlation coefficient, each value in the data matrix is replaced by 

their rank ordered by their value in each vector. Then Pearson’s correlation coefficient is 

calculated between two rank vectors instead of value vectors [25].  
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In this work, R stats package allows the computation of distance matrices based on 

the methods discussed above. For hierarchical clustering different methods for clustering 

were experimented. The results of hierarchical clustering were visualized graphically as 

a dendrogram tree and compared. Two-way hierarchical clustering was also conducted 

for both rows (probe sets) and columns (samples or arrays) of expression data matrices. 

The results were visualized in a heat map using R package gplots.  

Differential gene expression analysis 

Analysis of differential gene expression was carried out using LIMMA (linear models 

for microarray analysis), a software package available from Bioconductor. LIMMA is 

designed to analyze both simple and complex experiments involving comparisons 

between many RNA targets at the same time. Essentially it utilizes the expression data 

for each gene to fit a linear model. Empirical Bayes approach is then used to gather 

information across genes of different samples (arrays). Summary statistics were 

computed to describe differences in gene expression among samples [26, 27]. 

Differentially expressed gene lists generated from each pairwise comparison include 

only the probe sets that had a fold change value of 2.0 or greater (log2 fold change 

greater than 1.0). Differentially expressed genes between each pairwise comparison 

were determined separately with moderated t-test with an adjusted P- value of less than 

0.05 by Benjamin-Hochberg multiple hypothesis testing for correcting for false positives 

in these probe sets. For annotation, all probe sets were first mapped to ENTREZ gene 

IDs Bioconductor annotation data packages hgu133plus2.db, then the duplicates were 

determined. Probe sets that mapped to more than one gene were annotated manually.  

Definition of bimodality index 

In the literature, a number of methods for identification of genes with bimodal 

distribution have been described [8, 28-30]. Some of these approaches are based on 

clustering the expression of a gene into two groups and formulating scores for bimodality 
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from the clustering result. In this work, the bimodality index described by Wang et al. [29] 

was used as criteria to identify bimodal genes in the endometrial gene expression data. 

It was assumed that for a given gene with bimodal expression pattern, the distribution 

can be expressed as a mixture of two normal distributions [29] 

y = . N( µ1, σ)  + (1- .) N(µ2, σ)     

, where y is the normalized expression value,  . is the proportion of samples in one 

component, parameters µ1 and µ2 are the means of the expression measurements of the 

two components, and σ is the assumed common standard deviation. The standardized 

distance between the two components is defined as [29] 

δ = 
|/�� /�|$        

The bimodality index (BI) is defined as [29] 

BI = 0.�1 �  .� 2�/� . δ      

In order to accurately estimate the parameters . and δ in the above equation for a given 

data set, a normal mixture model-based clustering algorithm implemented in R package 

MCLUST was used [31]. Once the value of . and δ are estimated, the bimodality index 

can be computed and ranked to identify relevant bimodal gene expression patterns. The 

value of bimodality index is larger if the two components are balanced in size or if the 

separation between the two model is larger and easier to be distinguished. Theoretically, 

bimodality index value of 1.1 or greater is suggested as ‘useful’ bimodal pattern of 

expression [29]. In this work, R ClassDiscovery package was used to compute 

component means µ1 and µ2, standard deviation σ, standardized distance δ, . and 

bimodality index BI for each probe set. Probe sets were then ranked based on value of 

bimodality index. Distributions of the expression of selected probe sets were estimated 

using the kernel density function in R.   
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Chapter 4  

 

Results 

In this chapter, experimental analysis of the endometrial gene expression data sets 

and results are presented. The Wong et al. data set consists of 29 endometrial samples 

(10 proliferative, 10 secretory, and 9 atrophic), and can be viewed as a very large matrix 

with the gene expression value of 54675 probe sets as its rows and 29 columns 

representing individual samples (arrays).  

Data exploration 

To explore the level of similarity of individual samples, we visualized the data set by 

multidimensional scaling (MDS), a technique for dimensionality reduction. MDS 

essentially represents the relationship among all samples in terms of their position in 

two-dimensional Euclidean space. Samples with similar gene expression profiles are 

placed at closer proximity compared with the dissimilar ones. The coordinates were 

plotted so that the distances between points reflect the Euclidean distance of the 

logarithms of expression between the samples. This analysis, which includes the data 

matrix obtained from the entire 54675 probe sets on arrays, demonstrates distinctively 

separated cluster for secretory samples (red) from all the other samples in different 

phases (Figure 4.1). All secretory samples appear on the left side of the plot with only 

two exceptions (sample 181 and 189), indicating consistent global expression profiles for 

secretory samples (Figure 4.1). The samples of the other phases seem to have some 

structures as well: samples are partly mingled but there are obviously groupings. 
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Atrophic samples (blue) are localized towards the top right of the plot, while proliferative 

samples (green) spread relatively widely on the right side of the plot (Figure 4.1). 

Although variable gene expression patterns between individual samples were observed 

as expected, differential gene expression between secretory and proliferative samples 

seem to be sufficient to separate the majority into their respective histological subgroups. 

Principal component analysis (PCA), another commonly used technique for 

dimensional reduction, was also applied to the data set containing expression values of 

all probe sets. Display of the first two components of PCA-transformed data showed that 

secretory samples (red) are clearly separated from samples of the other two phases with 

two exceptions (sample 181 and 189). In contrast, proliferative and atrophic samples are 

less obvious to be separated (Figure 4.2). This indicates a set of gene signature could 

be identified to discriminate secretory phase from the other two phases, since the 

majority of secretory samples is already separated on the plane of the first two 

components. It is somewhat challenging to discriminate between proliferative and 

atrophic samples. Consistently, both MDS and PCA analysis suggests that the gene 

expression profiles common to secretory samples are distinctly different from the 

expression profiles of proliferative and atrophic samples.  
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Figure 4.1. Multidimensional scaling analysis using the gene expression data of 29 

endometrial samples generated using all probe sets. A two-dimensional projection 

shows each individual sample (labeled with sample ID) plotted onto an arbitrarily scaled 

x-y plane. Colors represent different cyclic phases: red, secretory; green, proliferative 

and blue, atrophic.  
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Figure 4.2. Principal component analysis. First and second components of the 

endometrial expression data using all probe sets are displayed. Sample is shown as 

sample ID. Colors represent different cyclic phases: red, secretory; green, proliferative 

and blue, atrophic. 
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Unsupervised hierarchical clustering 

Next, unsupervised hierarchical clustering was conducted to explore if normal 

cycling endometrial tissues could be organized into meaningful structures on the basis of 

similarity of gene expression profiles. As shown in a dendrogram tree, hierarchical 

clustering using all 54675 probe sets clearly identified two major clusters, where 6 of 10 

secretary samples self-clustered as one major branch, while the other branch is mingled 

with proliferative and atrophic samples (Figure 4.3A). As some probe sets have relatively 

small variations in expression values across patient samples or subgroups, which would 

be less informative for clustering analysis, standard deviation (SD) of the log2 

expression values of each probe set across 29 samples was computed and probe sets 

were ranked based on their SD values. Varying number of top-ranked probe sets was 

experimentally tested using hierarchical clustering analysis. As shown in Figure 4.3B, 

hierarchical clustering with 200 top-ranked probe sets resulted a dendrogram tree with 

one branch primarily consists of secretory samples (with exception of two proliferative 

samples), and the other branch is still mingled with proliferative and atrophic samples. 

Further, the branch that contains only the proliferative and atrophic samples is 

composed of two sub-branches. One sub-branch contains mostly proliferative samples 

(5 proliferative and 3 atrophic samples). The other sub-branch contains 6 atrophic and 3 

proliferative samples. Clustering with a subset of top-rank probe sets showed a superior 

performance in self-clustering of secretory samples compared to clustering with all probe 

sets. 

In addition to clustering samples, we also performed hierarchical clustering of probe 

sets to explore if the expression of any sets of genes were regulated in a similar way 

across different samples. As demonstrated in a heat map, a two-way hierarchical 

clustering with 200 top-ranked probe sets identified two major gene clusters with 

distinctive expression patterns across different phases of endometrial samples (Figure 
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4.4). Cluster 1 contains a cluster of genes that were selectively up-regulated in self-

clustered secretory samples, thus may representing genes involved in active regulation 

in secretary phase of menstrual cycle. These included, among others, progestagen-

associated endometrial protein (PAEP), chemokine ligand 14 (CXCL14), glutathione 

peroxidase 3 (GPX3), complement factor D (CFD), complement component 3 (C3), 4A 

(C4A), and metallothionein 1M (MT1M). Genes in cluster 2A were only up-regulated in a 

cluster of samples consisting proliferative samples and two secretory outliers (sample ID 

181 and 189). These genes included topoisomerase II alpha (TOP2A), insulin-like 

growth factor 1 (IGF1), matrix metallopeptidases, MMP11, MMP26, etc. Majority of the 

genes in cluster 2B were increasingly expressed in atrophic and a subset of proliferative 

samples. These included, among others, early growth response 1 (EGR1), WNT 

inhibitory factor 1 (WIF1), and secreted frizzled related protein 4 (SFRP4). These 

indicate the expression of individual cluster or sub-cluster of genes was regulated by a 

similar pattern in cyclic phase-specific endometrial sample. 
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Figure 4.3. Dendrogram of unsupervised hierarchical clustering using Euclidean distance 

and complete link with all 54675 probe sets (A) and 200 top-ranked (by SD) probe sets 

(B). A, P, S represents atrophic, proliferative, and secretory endometrium, respectively. 
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Figure 4.4. Heat map of u

ranked probe sets. Gene expression values of different samples are shown in

and probe sets in rows. Probe 

samples were clustered using

intermediate and blue low expression.
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Heat map of unsupervised two-way hierarchical clustering using

Gene expression values of different samples are shown in

Probe sets were clustered using Pearson correlation 

using Euclidean distance. Red indicates high expression, white 

and blue low expression. 

 

cal clustering using 200 top-

Gene expression values of different samples are shown in columns 

Pearson correlation and 

Red indicates high expression, white 



 

28 

  

Supervised analysis of gene expression profiles  

In parallel, the gene expression profiles were subjected to pairwise comparisons, 

which were made between different cycle phases, specifically, secretory (S) vs. 

proliferative (P), atrophic (A) vs. secretory (S), and proliferative (P) vs. atrophic (A). The 

pairwise comparisons were carried out through linear model fitting using the software 

package LIMMA implemented for the R computing environment [32]. Differentially 

expressed probe sets between each pairwise comparison were determined separately 

with moderated t-test. Only probe sets with at least a 2.0 fold change and an adjusted p-

value of less than 0.05 by Benjamini-Hochberg test for adjusting false discovery rate 

were considered. Probe sets were ranked based on their adjusted P-values.  

Comparison of secretory vs. proliferative endometrium (S_P) identified 406 probe 

sets to be significantly differentially expressed (P < 0.05). Among them, about two-thirds 

of the probe sets were up-regulated and one-third were down-regulated in secretory 

compared to proliferative samples. Under a more stringent condition, secretory vs. 

proliferative endometrium comparison identified a total of 86 probe sets (fold change > 

4.0 and P < 0.01 by Benjamini-Hochberg test) (Table 4.1). The majority of these probe 

sets displays up-regulated expression in secretory compared to proliferative samples. 

On the other hand, comparison of atrophic vs. secretory endometrium (A_S) revealed 

1071 differentially expressed probe sets to be significant (P < 0.05), where 

approximately two-thirds were increasingly expressed and one-third was decreasingly 

expressed in atrophic compared to secretory samples. Surprisingly, the expression 

profiles of proliferative and atrophic samples (P_A) are highly similar as no probe set 

was found to be differentially expressed under the criteria as described above. 

Relationship of these differentially expressed probe sets is shown in a Venn diagram 

(Figure 4.5), where 326 probe sets are shared between the S_P and A_S comparisons. 

Consistent with the findings in the unsupervised analysis, these suggest the greatest 



 

  

significant difference in the expression profiles was between secretory and the other two 

phases, whereas the least between proliferative and atrophic phase. 

 

Figure 4.5. Relationship of differentially expressed 

comparisons. S_P: secretory vs. proliferative, A_S: atrophic vs. secretory, P_A: 

proliferative vs. atrophic. 
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such as acute inflammatory response and adaptive immune response (Table 4.2). In 

addition, the KEGG pathway, complement and coagulation cascades, was significantly 

enriched (adj. P = 2.3×10-3). Enriched genes in the complement and coagulation 

cascades pathway are listed in Table 4.3.  

Comparison of atrophic and secretory endometrium (A_S) identified 1071 

differentially expressed probe sets (P < 0.05). Among them the expression of 657 probe 

sets were elevated and 414 were decreasingly expressed in atrophic endometrium as 

compared to secretory endometrium. Functional annotation analysis identified Wnt 

signaling pathway was significantly enriched in the up-regulated genes (P = 1.6×10-3) 

and ECM-receptor interaction (P = 2.6×10-4) and complement and coagulation cascades 

(P = 3.1×10-2) are significantly enriched among the down-regulated genes. Enriched 

genes of these pathways are listed in Table 4.4 and Table 4.5, respectively. These data 

provide an overview of the biological processes and pathways that are involved in the 

cyclic phases of menstrual cycle. These data demonstrate the activation of complement 

and coagulation cascades in the secretory phase but not in the proliferative and atrophic 

phases.  
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Table 4.1. Differentially expressed genes between secretory and proliferative 
endometrium * 
 

NO. PROBE ID GENE SYMBOL LogFC AveExpr Adj.P-VALUE 

1 218002_s_at CXCL14 6.86 5.27 3.02E-03 
2 241031_at C2CD4A 6.12 5.56 1.39E-03 
3 222484_s_at CXCL14 5.84 6.11 8.07E-03 
4 204602_at DKK1 5.11 4.84 8.11E-04 
5 205799_s_at SLC3A1 4.68 5.95 4.90E-03 
6 207254_at SLC15A1 4.54 4.05 1.26E-03 
7 205713_s_at COMP 4.51 3.94 9.27E-03 
8 213524_s_at G0S2 4.28 6.87 2.58E-04 
9 229638_at IRX3 4.22 8.35 6.01E-03 

10 207802_at CRISP3 4.20 4.21 8.44E-03 
11 205382_s_at CFD 3.95 8.04 4.21E-03 
12 214450_at CTSW 3.84 4.89 2.16E-03 
13 39248_at AQP3 3.65 9.09 6.44E-03 
14 243713_at SLC1A1 3.63 4.58 7.04E-03 
15 209875_s_at SPP1 3.60 8.20 6.26E-03 
16 202238_s_at NNMT 3.58 4.24 2.23E-03 
17 204388_s_at MAOA 3.58 6.13 6.82E-03 
18 210164_at GZMB 3.57 6.12 5.75E-03 
19 208451_s_at C4A, C4B 3.56 7.79 3.55E-03 
20 229254_at MFSD4 3.53 4.85 3.59E-03 
21 217546_at MT1M 3.49 3.76 8.44E-03 
22 215223_s_at SOD2 3.47 5.62 9.00E-03 
23 229004_at ADAMTS15 3.23 5.94 5.16E-03 
24 203946_s_at ARG2 3.22 5.13 2.06E-03 
25 224840_at FKBP5 3.16 6.14 5.67E-03 
26 212741_at MAOA 3.15 6.25 5.41E-03 
27 230084_at SLC30A2 3.13 3.93 2.16E-03 
28 204745_x_at MT1G 3.10 7.82 4.21E-03 
29 209283_at CRYAB 3.10 5.84 2.31E-04 
30 216841_s_at SOD2 3.09 6.10 9.13E-03 
31 217165_x_at MT1F 3.07 8.80 8.39E-03 
32 228486_at SLC44A1 3.03 5.19 8.73E-03 
33 203973_s_at CEBPD 2.95 10.70 2.57E-03 
34 214428_x_at C4A 2.89 9.26 6.82E-03 
35 206461_x_at MT1H 2.79 8.78 5.23E-03 
36 213629_x_at MT1F 2.78 9.48 8.44E-03 
37 242874_at ENSG00000260711 2.78 4.93 2.17E-03 
38 203836_s_at MAP3K5 2.71 6.41 2.55E-03 
39 218960_at TMPRSS4 2.68 5.86 5.71E-03 
40 211417_x_at GGT1 2.68 5.97 4.26E-03 
41 208581_x_at MT1X 2.61 8.82 7.69E-03 
42 200986_at SERPING1 2.60 9.74 6.96E-03 
43 213637_at DDX52 2.57 6.98 2.07E-03 
44 212859_x_at MT1E 2.56 8.84 8.81E-03 
45 202856_s_at SLC16A3 2.55 5.24 7.92E-03 
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46 209919_x_at GGT1 2.53 5.94 6.32E-03 
47 204389_at MAOA 2.51 5.17 8.44E-03 
48 215603_x_at GGT2, GGT1 2.51 5.29 3.49E-03 
49 208284_x_at GGT1 2.50 5.80 4.21E-03 
50 238063_at TMEM154 2.46 4.91 4.32E-03 
51 33323_r_at SFN 2.43 10.06 5.92E-03 
52 211456_x_at MT1HL1 2.42 8.89 6.96E-03 
53 212834_at DDX52 2.36 6.95 4.23E-03 
54 218880_at FOSL2 2.30 7.47 3.32E-03 
55 212185_x_at MT2A 2.27 11.14 4.28E-03 
56 211416_x_at GGTLC1 2.27 4.06 8.44E-03 
57 210524_x_at MT1F 2.26 9.73 9.95E-03 
58 218001_at MRPS2 2.25 6.58 6.94E-03 
59 1553986_at RASEF 2.24 5.81 4.17E-03 
60 216336_x_at MT1E 2.20 7.76 8.44E-03 
61 33322_i_at SFN 2.17 10.78 5.71E-03 
62 207131_x_at GGT1 2.16 5.76 9.27E-03 
63 230537_at AA401256 2.16 3.73 8.81E-03 
64 1568736_s_at BC030096 2.13 3.17 1.39E-03 
65 205098_at CCR1 2.11 3.97 7.07E-03 
66 208869_s_at GABARAPL1 2.06 7.27 4.32E-03 
67 224374_s_at EMILIN2 2.03 7.88 5.23E-03 
68 214889_at FAM149A 2.01 4.87 8.44E-03 
69 235048_at FAM169A -2.17 5.43 6.84E-03 
70 224480_s_at AGPAT9 -2.19 4.58 2.06E-03 
71 235079_at ZNF704 -2.20 8.78 1.26E-03 
72 224428_s_at CDCA7 -2.25 8.33 7.80E-03 
73 214247_s_at DKK3 -2.29 9.83 4.32E-03 
74 230943_at SOX17 -2.41 8.81 2.07E-03 
75 218718_at PDGFC -2.61 6.78 5.92E-03 
76 202037_s_at SFRP1 -2.93 8.42 4.90E-03 
77 206622_at TRH -2.96 7.01 9.44E-03 
78 210319_x_at MSX2 -2.97 6.76 9.13E-03 
79 218824_at PNMAL1 -2.98 6.95 1.39E-03 
80 238066_at RBP7 -3.24 6.84 1.78E-03 
81 203296_s_at ATP1A2 -3.28 5.74 1.39E-03 
82 229281_at NPAS3 -3.40 7.05 2.57E-03 
83 223475_at CRISPLD1 -3.53 6.02 5.36E-03 
84 210809_s_at POSTN -4.01 6.88 1.52E-03 
85 204051_s_at SFRP4 -4.26 10.90 1.39E-03 

86 204052_s_at SFRP4 -4.42 10.36 1.78E-03 
* Only probe sets with logFC (log2 fold change) greater than 2.0 and adjusted P-value less than 
0.01 are included. Probe sets were ranked based on logFC. 
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Table 4.2. Enrished biological processes in secretory vs. proliferative comparison 

 

 

 

 

 

 

 

TERM Adj. P-VALUE 

Defense response 0.005 
Response to wounding 0.005 
Regulation of epithelial cell proliferation 0.018 
Acute inflammatory response 0.023 
Complement activation 0.029 
Locomotory behavior 0.026 
Activation of plasma proteins involved in acute inflammatory 
response 0.024 

Regulation of cell proliferation 0.022 
Complement activation, classical pathway 0.026 
Protein processing 0.026 
Innate immune response 0.024 
Inflammatory response 0.026 
Humoral immune response mediated by circulating 
immunoglobulin 0.025 

Lymphocyte mediated immunity 0.027 
Positive regulation of immune system process 0.032 
Protein maturation 0.031 
Response to organic substance 0.034 
Immunoglobulin mediated immune response 0.033 
Adaptive immune response 0.035 

Adaptive immune response based on somatic recombination of 
immune receptors built from immunoglobulin superfamily domains 0.035 

Immune response 0.035 
B cell mediated immunity 0.035 
Humoral immune response 0.036 
Vascular process in circulatory system 0.038 
Behavior 0.040 



 

  

Table 4.3. Enriched genes in complement and coagulation cascade pathway in 
secretory vs. proliferative comparison
 

 

Table 4.4. Enriched genes in 
comparison 
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. Enriched genes in complement and coagulation cascade pathway in 
secretory vs. proliferative comparison 

genes in Wnt signaling pathway in atrophic vs. secretory 

. Enriched genes in complement and coagulation cascade pathway in 

 

pathway in atrophic vs. secretory 

 

 



 

  

 

 

 

Table 4.5. Enriched genes in ECM
secretory comparison 
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. Enriched genes in ECM-receptor interaction pathway in atrophic vs. 
 

 

 

 

receptor interaction pathway in atrophic vs. 
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Identification of bimodal genes  

Compared to a unimodal distribution, genes with bimodal distributions or switch-like 

behavior have a clear advantage to classify samples into high and low expression 

subgroups. A bimodal distribution is a continuous probability distribution with two 

different modes. In the unsupervised analysis, we noticed switch-like behavior of two 

most dynamically expressed genes, PAEP (progestagen-associated endometrial protein, 

SD = 4.49) and CXCL14 (chemokine ligand 14, SD = 4.19). Both have been reported 

being functionally involved in endometrium cycling [34-36]. Distribution of PAEP 

expression showed a profile with distinctive two peaks roughly at 2.6 and 12.0, 

respectively, and covers an overall range of approximately 20.0, so as CXCL14 (Figure 

4.6A). Figure 4.6B plotted the gene expression values of these two genes, where we can 

visually separate secretory samples (in red with relatively high expression values) from 

proliferative and atrophic samples (in green and blue, respectively with relatively low 

expression values) to certain extent, although with two secretory samples (sample 181 

and 189) being exceptions. These suggest that genes with bimodal expression, similar 

to PAEP and CXCL14 are likely relevant to distinguish endometrial cycle phases. 

In order to systematically develop a comprehensive list of bimodal or switch-like 

genes that are markedly changed during the process of endometrial menstrual cycle, the 

proposed two-component mixture model was applied to the data using the MCLUST 

algorithm. As in large-scale microarray experiments, it is a common problem for the 

presence of noise originating from various sources. In order to remove some noises and 

reduce dimensionality of data matrix prior to the analysis, we computed standard 

deviation (SD) for each probe set across all samples and ranked the probe sets based 

on SD values. Only probe sets with a SD value of 1.5 or greater (n = 1683) were 

subjected to MCLUST algorithm.  
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For each probe set, parameters µ1, µ2, σ, δ, and π were estimated from the expression 

data set across all samples. These parameters were then used to compute the bimodal 

index. Results were summarized in a table containing values of the above six 

parameters for each of 1683 probe sets. To identify a list of tens of genes that are 

applicable to molecular measurements, several filtering conditions were applied (some 

subjectivity in the selection of filtering criteria was involved). First, a cutoff of BI equal or 

greater than1.5 as suggested by Wang et al. was applied [29]. As π is the proportion of 

samples in one group ranging from 0.0 to 1.0 and there are almost equal numbers of 

proliferative, secretory, and atrophic samples in the data set, when π is close to either 

end of the range the power is much weaker to distinguish endometrial phases. 

According to manual inspection of their distribution, probe sets with π values out of the 

range from 0.20 to 0.80 were filtered out. Further, the larger the separation between the 

two components (δ) the easier they could be distinguished. δ value equal or greater than 

4.0 as a cutoff identified 263 bimodal probe sets (Table 4.6). In order to get an 

impression of the distribution of these probe sets, we examined density plot of the log2 

expression values. Density plots for selected top ranked genes are shown in Figure 4.7. 

The bimodality index identifies these genes have apparently visible bimodal expression 

distribution. Density plots for these top genes all show a larger group with lower 

expression and a smaller group with higher expression.  

In order to identify a robust gene signature to distinguish menstrual cycle phases, 

we checked if any of the 263 bimodal probe sets was also differentially expressed 

between secretory and proliferative endometrium in the supervised analysis. As shown 

above, under a more stringent condition, secretory vs. proliferative endometrium 

comparison identified a total of 86 probe sets (fold change > 4.0 and P < 0.01 by 

Benjamini-Hochberg test) (Table 4.1). The majority of these probe sets displays up-

regulated expression in secretory compared to proliferative samples. In merging 263 
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bimodal probe sets and 86 differentially expressed probe sets, we identified 43 probe 

sets corresponding to 35 unique genes common to both list of probe sets (Table 4.7). 

Approximately three quarters of these genes were up-regulated, and a quarter were 

down-regulated in secretory as compared to proliferative endometrium.  

To examine if these genes could be used as a gene signature to distinguish 

endometrial cyclic phase markers, we performed a two-way hierarchical clustering 

analysis on an independent data set (see Talbi et al. data set in Chapter 2) using these 

genes. As different from the analyzed data set used above, Talbi data set assessed 

samples into proliferative (P), early (ES), mid (MS), and late-secretary (LS) cyclic phases. 

As shown in a heat map in Figure 4.8, hierarchical clustering separated samples into two 

major clusters. The left branch consists of all four proliferative samples (P) as one sub-

cluster and all three early secretory samples (ES) as another sub-cluster. The rest 

secretory samples form the right branch, where one sub-branch is almost exclusively 

composed of mid secretory samples (MS) with only two exceptions (LS), and the other 

sub-branch contains three late secretory samples (Figure 4.8). As for probe sets, 

hierarchical clustering identified two major clusters. The smaller cluster consisting 9 

probe sets was dramatically up-regulated in proliferative samples, moderated up-

regulated in selected ES samples compared to MS and LS samples. These 9 probe sets 

correspond to genes SFRP4, SOX17, ATP1A2, TRH, MSX2, POSTN, PDGFC, and 

PNMAL1. In contrast, expression of genes in the other big cluster was gradually 

increased from P to ES, and even more in MS, while much reduced in LS samples. 

Genes in this big cluster showed a continuous gene expression pattern throughout 

menstrual cycle phases. The expression patterns of ES samples across these genes 

were somewhere in between those of P and MS samples (Figure 4.8). Thus, this gene 

signature was able to separate clustered proliferative endometrium from clustered early, 

mid, and late-secretory samples to a different extent.  
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Table 4.6. Identified bimodal genes with their estimated parameters # 

NO. PROBE ID GENE SYMBOL µ1 µ2 σ δ π BI 

1 207254_at SLC15A1 3.06 9.62 0.54 12.23 0.72 5.46 
2 236761_at LHFPL3 2.28 8.09 0.58 10.10 0.66 4.80 
3 203815_at GSTT1 2.89 7.50 0.62 7.46 0.52 3.73 
4 238103_at LOC100505989 2.40 6.75 0.53 8.24 0.72 3.68 
5 230673_at PKHD1L1 3.21 9.91 0.80 8.41 0.76 3.60 
6 209728_at HLA-DRB4 3.09 9.21 0.78 7.87 0.72 3.52 
7 238275_at HAP1 2.36 7.36 0.64 7.88 0.76 3.37 
8 204818_at HSD17B2 2.36 6.91 0.65 6.95 0.62 3.37 
9 207802_at CRISP3 2.46 9.48 0.97 7.24 0.69 3.36 

10 239336_at THBS1 2.77 9.06 0.95 6.63 0.66 3.15 
11 241031_at C2CD4A 3.46 11.44 1.24 6.46 0.62 3.13 
12 218002_s_at CXCL14 4.15 14.39 1.44 7.13 0.76 3.05 
13 1563077_at LOC100289058 2.81 6.21 0.55 6.13 0.62 2.97 
14 1568736_s_at NA 2.34 5.55 0.52 6.20 0.66 2.94 
15 206859_s_at PAEP 3.04 13.24 1.68 6.07 0.68 2.84 
16 238032_at NA 3.23 6.42 0.57 5.64 0.52 2.82 
17 206391_at RARRES1 5.05 9.37 0.76 5.71 0.59 2.81 
18 213791_at PENK 2.92 9.86 1.06 6.55 0.76 2.81 
19 202376_at SERPINA3 3.00 6.40 0.61 5.60 0.55 2.78 
20 1554663_a_at NUMA1 2.38 5.57 0.51 6.21 0.72 2.78 
21 229177_at C16orf89 3.83 8.78 0.82 6.02 0.71 2.72 
22 204745_x_at MT1G 8.09 12.58 0.71 6.29 0.76 2.70 
23 204602_at DKK1 2.96 10.11 1.28 5.59 0.64 2.68 
24 202238_s_at NNMT 3.98 9.12 0.87 5.90 0.72 2.64 
25 204846_at CP 4.12 9.24 0.98 5.23 0.47 2.61 
26 205844_at VNN1 3.94 9.53 1.09 5.14 0.52 2.56 
27 231181_at NA 3.58 10.31 1.13 5.97 0.76 2.56 
28 1555867_at GNG4 2.78 6.55 0.69 5.49 0.69 2.54 
29 230084_at SLC30A2 3.43 8.54 0.97 5.29 0.65 2.52 
30 205591_at OLFM1 3.15 8.69 1.05 5.28 0.65 2.51 
31 219580_s_at TMC5 5.42 9.49 0.81 5.03 0.56 2.50 
32 1565484_x_at EGFR 2.84 6.44 0.72 4.97 0.53 2.48 
33 231773_at ANGPTL1 2.83 7.26 0.89 4.99 0.58 2.46 
34 1554771_at NA 2.72 6.18 0.65 5.29 0.69 2.46 
35 204137_at GPR137B 4.74 8.41 0.75 4.91 0.51 2.46 
36 205654_at C4BPA 3.28 8.94 1.13 4.99 0.59 2.45 
37 215223_s_at NA 5.36 10.26 0.93 5.25 0.68 2.45 
38 228097_at MYLIP 3.18 6.54 0.63 5.37 0.71 2.44 
39 242579_at BMPR1B 5.24 8.53 0.67 4.92 0.42 2.43 
40 206461_x_at MT1H 8.90 13.07 0.74 5.61 0.75 2.43 
41 205433_at BCHE 2.51 7.56 0.93 5.43 0.73 2.41 
42 213992_at COL4A6 2.77 6.25 0.70 4.99 0.63 2.40 
43 203887_s_at THBD 3.43 7.08 0.71 5.14 0.68 2.39 
44 1553179_at ADAMTS19 3.09 6.30 0.67 4.81 0.55 2.39 
45 205890_s_at NA 2.85 6.52 0.71 5.17 0.69 2.39 
46 204378_at BCAS1 3.93 6.70 0.58 4.76 0.49 2.38 
47 224840_at FKBP5 4.33 9.50 1.06 4.86 0.61 2.37 
48 205259_at NR3C2 3.53 7.76 0.77 5.52 0.76 2.37 
49 219463_at LAMP5 3.46 7.04 0.76 4.72 0.51 2.36 
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50 226690_at ADCYAP1R1 3.32 7.51 0.80 5.22 0.72 2.36 
51 209555_s_at CD36 2.93 7.57 0.88 5.27 0.72 2.36 
52 212671_s_at NA 3.04 7.40 0.83 5.27 0.72 2.35 
53 1552507_at KCNE4 2.56 5.60 0.59 5.16 0.71 2.35 
54 227475_at FOXQ1 4.98 10.09 0.98 5.21 0.72 2.34 
55 201242_s_at ATP1B1 8.98 12.42 0.60 5.76 0.21 2.34 
56 202870_s_at CDC20 2.65 6.59 0.78 5.06 0.69 2.33 
57 204051_s_at SFRP4 8.44 13.58 0.96 5.35 0.26 2.33 
58 219649_at ALG6 3.88 6.83 0.63 4.73 0.42 2.33 
59 209270_at LAMB3 3.90 7.93 0.77 5.22 0.73 2.33 
60 212834_at DDX52 6.61 10.76 0.77 5.37 0.75 2.33 
61 203951_at CNN1 4.35 7.89 0.71 5.01 0.31 2.33 
62 223672_at SGIP1 2.97 7.03 0.78 5.18 0.72 2.32 
63 1568768_s_at BRE-AS1 2.58 7.73 0.98 5.26 0.74 2.31 
64 205883_at ZBTB16 2.76 7.86 1.10 4.65 0.56 2.31 
65 221477_s_at NA 4.56 7.93 0.72 4.67 0.58 2.30 
66 205799_s_at SLC3A1 3.78 10.50 1.43 4.69 0.60 2.30 
67 209570_s_at NSG1 4.38 7.73 0.73 4.60 0.49 2.30 
68 244726_at NA 7.61 10.77 0.69 4.59 0.48 2.30 
69 211143_x_at NR4A1 7.72 11.15 0.64 5.34 0.76 2.29 
70 219260_s_at ELP5 3.71 7.03 0.72 4.60 0.56 2.29 
71 202237_at NNMT 7.51 12.28 0.95 5.02 0.71 2.27 
72 222484_s_at CXCL14 5.49 14.17 1.65 5.27 0.75 2.27 
73 202575_at CRABP2 5.19 8.98 0.82 4.59 0.58 2.27 
74 214567_s_at NA 5.30 9.28 0.86 4.62 0.59 2.27 
75 231063_at NA 3.82 9.29 1.15 4.76 0.35 2.26 
76 209283_at CRYAB 4.92 8.83 0.80 4.89 0.70 2.24 
77 228055_at NAPSB 2.97 6.67 0.81 4.56 0.60 2.24 
78 228325_at SPIDR 3.16 6.39 0.69 4.69 0.65 2.23 
79 218960_at TMPRSS4 4.99 8.68 0.83 4.46 0.52 2.23 
80 204052_s_at SFRP4 6.62 12.76 1.18 5.21 0.24 2.23 
81 1565483_at EGFR 4.83 8.79 0.88 4.48 0.44 2.23 
82 226612_at UBE2QL1 3.66 7.06 0.68 4.97 0.73 2.22 
83 244876_at NA 2.50 5.67 0.64 4.99 0.73 2.22 
84 202952_s_at ADAM12 2.93 7.01 0.85 4.80 0.69 2.22 
85 218880_at FOSL2 6.78 10.09 0.69 4.77 0.69 2.22 
86 205242_at CXCL13 2.76 7.91 1.12 4.60 0.64 2.22 
87 234032_at NA 3.16 6.34 0.72 4.44 0.54 2.21 
88 239178_at FGF9 3.67 7.42 0.73 5.11 0.75 2.21 
89 203180_at ALDH1A3 4.75 10.06 1.16 4.59 0.64 2.20 
90 210029_at IDO1 4.53 8.94 1.00 4.40 0.49 2.20 
91 201289_at CYR61 6.76 12.65 1.16 5.09 0.25 2.20 
92 227463_at ACE 3.72 7.21 0.72 4.85 0.71 2.19 
93 233241_at PLK1S1 4.37 7.40 0.64 4.72 0.69 2.19 
94 205413_at MPPED2 2.72 7.19 0.92 4.85 0.28 2.18 
95 1568647_at LOC100505851 2.63 5.80 0.65 4.87 0.28 2.18 
96 1568648_a_at LOC100505851 3.98 7.84 0.77 5.03 0.24 2.16 
97 1568611_at NA 3.66 7.10 0.71 4.86 0.73 2.16 
98 214234_s_at CYP3A5 2.74 6.88 0.82 5.06 0.76 2.16 
99 244444_at PKD1L2 3.51 8.03 1.02 4.43 0.61 2.16 
100 203571_s_at ADIRF 3.51 6.39 0.65 4.43 0.61 2.16 
101 243395_at NA 4.85 8.99 0.94 4.40 0.60 2.16 
102 225834_at NA 3.24 6.41 0.67 4.70 0.70 2.16 
103 230378_at SCGB3A1 4.96 8.96 0.89 4.48 0.63 2.16 
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104 242064_at SDK2 5.31 9.22 0.90 4.35 0.57 2.15 
105 241595_at NA 2.83 5.53 0.62 4.31 0.49 2.15 
106 240253_at NA 3.68 7.53 0.88 4.38 0.60 2.15 
107 241916_at NA 4.00 7.34 0.72 4.62 0.68 2.15 
108 236373_at NA 3.15 6.54 0.70 4.82 0.73 2.14 
109 1555786_s_at LINC00520 2.87 6.43 0.83 4.27 0.49 2.14 
110 229254_at MFSD4 4.28 9.14 1.02 4.74 0.72 2.13 
111 206622_at TRH 2.98 8.79 1.34 4.33 0.41 2.13 
112 224339_s_at ANGPTL1 2.69 5.55 0.66 4.32 0.59 2.13 
113 228143_at CP 4.60 8.90 1.00 4.30 0.42 2.12 
114 210809_s_at POSTN 3.63 9.02 1.21 4.44 0.35 2.12 
115 213131_at OLFM1 5.56 10.69 1.19 4.31 0.59 2.12 
116 211456_x_at MT1HL1 9.89 13.24 0.68 4.95 0.76 2.12 
117 228377_at KLHL14 3.72 7.17 0.75 4.62 0.70 2.11 
118 239568_at PLEKHH2 2.43 5.73 0.78 4.23 0.56 2.10 
119 221872_at RARRES1 2.82 7.16 1.01 4.29 0.61 2.10 
120 230147_at F2RL2 3.36 7.01 0.75 4.89 0.76 2.10 
121 206366_x_at XCL1 5.28 9.03 0.88 4.25 0.59 2.09 
122 225987_at STEAP4 3.36 8.33 1.17 4.25 0.60 2.08 
123 1558605_at NA 3.63 7.14 0.75 4.67 0.73 2.08 
124 222378_at NA 3.39 7.36 0.93 4.28 0.62 2.08 
125 205656_at PCDH17 5.95 9.83 0.86 4.51 0.69 2.08 
126 230943_at SOX17 7.87 11.69 0.81 4.74 0.26 2.08 
127 212859_x_at MT1E 8.98 12.70 0.77 4.84 0.76 2.07 
128 236901_at NA 2.67 6.41 0.79 4.72 0.74 2.07 
129 229839_at SCARA5 3.38 10.06 1.46 4.58 0.71 2.07 
130 1556474_a_at FLJ38379 3.07 7.65 1.08 4.23 0.60 2.07 
131 227641_at FBXL16 3.95 7.16 0.78 4.14 0.52 2.07 
132 202953_at C1QB 6.09 9.01 0.70 4.16 0.57 2.06 
133 223423_at GPR160 3.80 7.25 0.83 4.15 0.44 2.06 
134 220794_at GREM2 3.80 7.99 1.02 4.12 0.50 2.06 
135 236264_at LPHN3 3.17 6.12 0.65 4.54 0.71 2.06 
136 242324_x_at CCBE1 3.59 6.28 0.65 4.13 0.54 2.06 
137 236420_s_at ANO4 4.32 7.01 0.65 4.14 0.45 2.06 
138 202833_s_at SERPINA1 4.68 9.54 1.05 4.63 0.73 2.05 
139 1554485_s_at TMEM37 4.04 8.08 0.90 4.49 0.70 2.05 
140 205470_s_at KLK11 3.97 8.09 0.99 4.15 0.57 2.05 
141 1556097_at HOMER2 3.43 7.27 0.86 4.47 0.70 2.05 
142 213790_at ADAM12 4.18 8.59 1.07 4.13 0.55 2.05 
143 204388_s_at MAOA 5.51 10.77 1.10 4.76 0.76 2.05 
144 227058_at MEDAG 4.90 8.82 0.94 4.16 0.59 2.05 
145 217767_at C3 5.94 11.77 1.36 4.30 0.35 2.05 
146 203296_s_at ATP1A2 3.01 7.40 1.07 4.12 0.44 2.04 
147 232481_s_at SLITRK6 3.98 8.75 1.11 4.29 0.35 2.04 
148 1559528_at LOC100129917 3.13 6.19 0.71 4.30 0.66 2.04 
149 210346_s_at CLK4 7.49 10.23 0.65 4.22 0.37 2.04 
150 231982_at C19orf77 3.30 6.28 0.65 4.55 0.72 2.03 
151 228218_at LSAMP 2.69 6.26 0.88 4.07 0.50 2.03 
152 202920_at ANK2 3.21 6.42 0.78 4.11 0.59 2.02 
153 204794_at DUSP2 4.36 8.26 0.90 4.35 0.31 2.02 
154 229542_at C20orf85 3.36 6.75 0.83 4.10 0.59 2.02 
155 229569_at NA 3.55 7.53 0.99 4.04 0.49 2.02 
156 204712_at WIF1 3.87 11.32 1.60 4.66 0.75 2.02 
157 239006_at SLC26A7 4.66 9.87 1.28 4.07 0.43 2.02 
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158 242907_at GBP2 4.91 8.08 0.79 4.04 0.53 2.02 
159 209792_s_at KLK10 3.83 7.20 0.77 4.39 0.70 2.01 
160 205266_at LIF 5.00 8.25 0.77 4.24 0.66 2.01 
161 219181_at LIPG 2.99 6.83 0.82 4.70 0.76 2.01 
162 214595_at KCNG1 3.00 5.90 0.68 4.26 0.67 2.01 
163 240935_at NA 2.90 5.84 0.73 4.04 0.55 2.01 
164 1559663_at NA 2.75 5.91 0.78 4.02 0.51 2.01 
165 203789_s_at SEMA3C 4.37 7.90 0.79 4.49 0.28 2.01 
166 228004_at LINC00261 4.26 7.87 0.82 4.39 0.70 2.01 
167 213524_s_at G0S2 5.80 10.34 1.05 4.32 0.69 2.00 
168 231969_at STOX2 4.69 7.62 0.72 4.09 0.60 2.00 
169 239726_at ANK3 5.16 8.09 0.68 4.34 0.69 2.00 
170 219478_at WFDC1 4.58 8.61 0.99 4.07 0.59 2.00 
171 227884_at TAF15 3.49 6.21 0.67 4.05 0.42 2.00 
172 228692_at PREX2 4.46 7.33 0.69 4.13 0.62 2.00 
173 213880_at LGR5 3.86 9.72 1.37 4.28 0.68 2.00 
174 205382_s_at CFD 6.58 12.01 1.24 4.39 0.71 1.98 
175 203946_s_at ARG2 3.51 7.76 1.03 4.14 0.64 1.98 
176 240509_s_at GREM2 2.75 5.94 0.74 4.27 0.69 1.98 
177 204748_at PTGS2 2.79 5.81 0.69 4.35 0.71 1.98 
178 213637_at DDX52 7.07 10.47 0.75 4.51 0.74 1.98 
179 242874_at NA 4.53 8.23 0.88 4.20 0.67 1.98 
180 205765_at CYP3A5 3.22 7.71 1.01 4.43 0.73 1.98 
181 32625_at NPR1 5.28 8.69 0.78 4.40 0.72 1.97 
182 208581_x_at MT1X 9.09 12.79 0.80 4.61 0.76 1.97 
183 243713_at NA 3.73 8.98 1.18 4.46 0.73 1.97 
184 203417_at MFAP2 5.86 9.71 0.91 4.24 0.31 1.97 
185 218824_at PNMAL1 4.79 9.29 1.00 4.48 0.26 1.95 
186 238584_at IQCA1 4.35 8.08 0.93 4.04 0.37 1.95 
187 218718_at PDGFC 5.63 9.11 0.85 4.08 0.35 1.94 
188 1568638_a_at IDO2 2.87 7.78 1.08 4.53 0.76 1.94 
189 217165_x_at MT1F 8.80 13.20 0.98 4.51 0.76 1.93 
190 231172_at C9orf117 2.87 6.08 0.74 4.34 0.73 1.93 
191 206268_at LEFTY1 3.25 7.78 1.04 4.34 0.73 1.92 
192 222314_x_at EGOT 3.22 7.10 0.88 4.41 0.74 1.92 
193 1555938_x_at VIM 3.95 7.54 0.88 4.09 0.33 1.92 
194 229659_s_at PIGR 5.75 9.62 0.90 4.29 0.28 1.92 
195 206010_at HABP2 3.51 7.78 1.06 4.04 0.65 1.92 
196 206012_at LEFTY2 4.37 9.63 1.28 4.10 0.68 1.92 
197 203304_at BAMBI 5.73 9.12 0.83 4.08 0.67 1.91 
198 201243_s_at ATP1B1 7.36 11.29 0.95 4.14 0.31 1.91 
199 228174_at SCAI 4.60 7.49 0.71 4.06 0.67 1.91 
200 226334_s_at AHSA2 7.53 10.65 0.76 4.08 0.32 1.91 
201 237719_x_at RGS7BP 2.88 6.10 0.78 4.15 0.70 1.91 
202 203186_s_at S100A4 7.74 10.99 0.73 4.44 0.76 1.91 
203 220014_at PRR16 3.78 7.14 0.80 4.21 0.72 1.90 
204 1555950_a_at CD55 7.46 11.64 1.04 4.01 0.66 1.90 
205 235849_at SCARA5 3.38 9.87 1.58 4.12 0.69 1.90 
206 228697_at HINT3 4.35 7.77 0.81 4.24 0.72 1.89 
207 201926_s_at CD55 7.42 11.45 1.00 4.02 0.67 1.89 
208 1556054_at NA 3.78 6.82 0.72 4.22 0.73 1.88 
209 238063_at TMEM154 4.79 8.21 0.85 4.02 0.68 1.87 
210 205495_s_at GNLY 4.25 11.79 1.78 4.24 0.26 1.87 
211 213212_x_at NA 6.89 10.16 0.79 4.12 0.29 1.87 
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212 204619_s_at VCAN 8.26 11.79 0.78 4.53 0.22 1.87 
213 215775_at THBS1 2.51 5.56 0.75 4.05 0.69 1.87 
214 210524_x_at NA 9.51 12.64 0.72 4.35 0.76 1.86 
215 207828_s_at CENPF 3.69 7.36 0.85 4.34 0.76 1.86 
216 209542_x_at IGF1 7.18 11.87 1.13 4.16 0.27 1.85 
217 1570259_at LIMS1 3.10 6.06 0.71 4.19 0.74 1.84 
218 216248_s_at NR4A2 5.61 10.05 1.07 4.17 0.73 1.84 
219 233090_at NA 2.74 5.73 0.74 4.04 0.71 1.84 
220 205316_at SLC15A2 4.63 8.44 0.93 4.07 0.72 1.82 
221 238123_at GABRQ 3.02 7.73 1.15 4.11 0.73 1.82 
222 211748_x_at PTGDS 9.43 13.19 0.91 4.13 0.26 1.81 
223 218009_s_at PRC1 5.07 8.93 0.92 4.18 0.75 1.81 
224 211577_s_at IGF1 6.91 11.70 1.19 4.02 0.28 1.81 
225 205934_at PLCL1 3.66 7.86 1.02 4.13 0.74 1.81 
226 212867_at NCOA2 5.84 9.72 0.90 4.32 0.22 1.80 
227 229638_at IRX3 8.05 13.10 1.21 4.18 0.75 1.80 
228 235049_at ADCY1 3.15 6.13 0.74 4.05 0.73 1.80 
229 33304_at ISG20 5.93 9.49 0.88 4.05 0.73 1.80 
230 225777_at SAPCD2 4.04 7.06 0.75 4.03 0.73 1.79 
231 230987_at NA 4.13 7.65 0.87 4.04 0.73 1.79 
232 227404_s_at EGR1 8.49 13.12 1.14 4.07 0.26 1.78 
233 213629_x_at MT1F 10.37 14.08 0.91 4.08 0.74 1.78 
234 219993_at SOX17 6.35 9.93 0.87 4.11 0.25 1.78 
235 210319_x_at MSX2 3.45 8.54 1.18 4.32 0.21 1.75 
236 37145_at GNLY 3.41 10.66 1.80 4.02 0.25 1.75 

# Probe sets were ranked based on BI values. 
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Figure 4.7. Density plots of top probe sets ranked by bimodality index 
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Table 4.7. Identified 43 probe sets as gene signature of endometrial cyclic phase 

PROBE ID GENE 
SYMBOL GENE NAME       

202238_s_at NNMT Nicotinamide N-methyltransferase 
 

203296_s_at ATP1A2 ATPase, Na+/K+ Transporting, Alpha 2 Polypeptide  

203946_s_at ARG2 Arginase 2 
   

204051_s_at, 
204052_s_at 

SFRP4 Secreted frizzled-related protein 4 
 

204388_s_at MAOA Monoamine oxidase A 
  

204602_at DKK1 
Dickkopf WNT signaling pathway 
inhibitor 1  

204745_x_at MT1G Metallothionein 1G 
  

205382_s_at CFD Complement factor D (adipsin) 
 

205799_s_at SLC3A1 Solute carrier family 3 member 1 
 

206461_x_at MT1H Metallothionein 1H 
  

206622_at TRH Thyrotropin-releasing hormone 
 

207254_at SLC15A1 
Solute carrier family 15 (oligopeptide transporter), 
member 1 

207802_at CRISP3 Cysteine-rich secretory protein 3 
 

208581_x_at MT1X Metallothionein 1X 
  

209283_at CRYAB Crystallin, alpha B 
  

210319_x_at MSX2 Msh homeobox 2 
  

210524_x_at, 
213629_x_at, 
217165_x_at 

MT1F Metallothionein 1F 
  

210809_s_at POSTN Periostin, osteoblast specific factor 
 

211456_x_at MT1HL1 Metallothionein 1H-like 1 
  

212834_at, 213637_at DDX52 DEAD (Asp-Glu-Ala-Asp) box polypeptide 52 

212859_x_at MT1E Metallothionein 1E 
  

213524_s_at G0S2 G0/G1switch 2 
  

215223_s_at SOD2 Superoxide dismutase 2, mitochondrial 
 

218002_s_at, 
222484_s_at 

CXCL14 Chemokine (C-X-C motif) ligand 14 
 

218718_at PDGFC Platelet derived growth factor C 
 

218824_at PNMAL1 Paraneoplastic Ma antigen family-like 1 
 

218880_at FOSL2 FOS-like antigen 2 
  

218960_at TMPRSS4 Transmembrane protease, serine 4 
 

224840_at FKBP5 FK506 binding protein 5 
  

229254_at MFSD4 Major facilitator superfamily domain containing 4 

229638_at IRX3 Iroquois homeobox 3 
  

230084_at SLC30A2 Solute carrier family 30 (zinc transporter), member 2 

230943_at SOX17 SRY (sex determining region Y)-box 17 
 

238063_at TMEM154 
Transmembrane protein 
154   

241031_at C2CD4A C2 calcium-dependent domain containing 4A 
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Figure 4.8. Two-way hierarchical clustering of an independent data set using 43 probe 

sets. Gene expression values of different samples are shown in columns and probe sets 

in rows. Red indicates high expression, black intermediate and green low expression. ES, 

early secretory; MS, mid secretory; LS, late secretory; P, proliferative   
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Chapter 5 

 

Discussions and Conclusions 

Several studies have been done to investigate whole-genome transcriptional profiles 

of normal endometrial menstrual cycle phases using microarray technologies [10, 37, 

38] . However, these studies all used bulk collection of heterogeneous tumor samples 

which may contain contaminations from intervening stromal cells and infiltrating 

lymphocytes. In this study, we utilized a microarray gene expression data set generated 

by Wong et al. using laser microdissected (LCM) endometrial tissues. LCM is a powerful 

technique to accurately dissect pure population of specific cells from clinical specimens. 

Difference in gene expression patterns between microdissected vs. bulk dissected 

endometrial cancer tissues was demonstrated earlier [39], highlighting a confounding 

role of tissue dissection method play in interpreting the results of gene expression 

profiling data.  

The Wong data set was originally used to investigate the development and 

progression of endometrial cancers through comparing gene expression profiles of 

endometrial cancers and normal endometrial tissues. In this study, our primary goal is to 

identify a relevant gene signature with the discriminative power to separate patient 

samples into subgroups with respect to menstrual cyclic phases. To achieve this, we 

investigated the global gene expression profiles of 29 normal endometrium samples, a 

subset of Wong data set. This data subset contains almost equal number of proliferative 

(10), secretory (10), and atrophic (postmenopausal, 9) endometrial samples, which 

provides composite representation of dynamic endometrial menstrual cycle (Table 2.1).  
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In our analysis, dimension reduction techniques, multidimensional scaling and 

principal component analysis were used to explore hidden structure in the data set. And 

unsupervised and supervised hierarchical clustering was used to cluster samples into 

meaningful structures based on similarities in their gene expression profiles. Interestingly, 

all these approaches, although using different list of genes, consistently demonstrated 

that global gene expression profiles of secretory endometrium are highly similar to each 

other, but significantly different from proliferative and atrophic endometrium (Figure 4.1, 

4.2, 4.3 and 4.4). These suggest that endometrial tissue in each menstrual cycle phase 

harbors a unique gene expression signature, which could potentially be used as markers 

to distinguish endometrial cyclic phase in clinical samples. In clinical practice, menstrual 

cyclic phase of clinical endometrial samples is routinely determined by histological 

assessment, where errors or ambiguity might occur. There were two exceptional 

secretory samples (sample 181 and 189), which were consistently observed to be 

segregated away from the other secretory samples, and clustered together with 

proliferative samples in PCA, MDS, as well as hierarchical clustering analysis (Figure 4.1, 

4.2, and 4.4). This may indicate histological dating errors in these two samples. It further 

highlights the potential of using gene expression profiles in conjunction with histological 

assessment in clinical practice to achieve better accuracy in dating endometrial tissues. 

As far as for gene expression, unsupervised analysis using 200 probe sets with the 

most varying expression levels across samples, detected three major patterns (Figure 

4.4). Cluster 1 was highly expressed in almost all secretory samples but not in samples 

of other phases. These included, among others, progestagen-associated endometrial 

protein (PAEP), chemokine ligand 14 (CXCL14), glutathione peroxidase 3 (GPX3), and 

complement factor D. Cluster 2A was only up-regulated in proliferative samples and two 

secretory outliers (sample 181 and 189), as well as a few atrophic samples. These 

included topoisomerase II alpha (TOP2A), insulin-like growth factor 1 (IGF1), matrix 
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metallopeptidase, MMP11 and MMP26. In contrast, expression of cluster 2B was 

somewhat heterogeneous across the samples (Figure 4.4). Majority of the genes in 

cluster 2B were increasingly expressed in atrophic and a subset of proliferative samples. 

These included, among others, early growth response 1 (EGR1), WNT inhibitory factor 1 

(WIF1), and secreted frizzled related protein 4 (SFRP4). These indicate the expression 

of individual cluster or sub-cluster of genes was regulated in a similar pattern for cyclic 

phase-specific endometrial sample. 

The observation of significant up-regulation of gene expression in only a subgroup 

of samples motivated us to look for switch-like or bimodally expressed genes. Bimodal 

distribution of gene expression have been observed in alternative mode within 

physiological or disease states such as diabetes, congestive heart failure, Alzheimer’s 

disease, breast cancer, hypertension, obesity, and skeletal muscle tissue etc. [8, 40]. 

Thus, genes with bimodal distribution of expression process more robust power to 

distinguish endometrium menstrual cyclic phase. In this study, we demonstrated that the 

gene signature consisting 37 unique genes not only display a robust bimodal distribution 

in their gene expression across all samples, but also highly differentially expressed 

between secretory vs. proliferative phases (Table 4.7). Among these 37 genes, three 

quarters of them were highly up-regulated, and a quarter was down-regulated in 

secretory as compared to proliferative endometrium. The dramatic increased expression 

level of a large amount of transcripts in secretory endometrium is probably due to the 

influence of steroid hormones,  estrogen and progesterone acting on the response 

element in the promoter regions of targeted genes [41]. 

Although it is unable to directly compare with others’ report, as in the Wong data set 

secretory phase was not further subdivided into early, mid, and late secretory phase as 

some other data sets did, some observations in our analysis were still in consistency 

with previous reports. For example, we identified CXCL14 to be the most up-regulated 
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gene (> 100-fold) in S vs. P (Table 4.1). A previous study showed a 61-fold increase in 

CXCL14 expression, the most among others, in MS vs. ES [10]. CXCL14 has been 

known as a chemokine to recruit monocytes and may be other cell types to endometrium 

during the endometrial implantation window. Besides, numerous roles of CXCL14 have 

been described in cancers, including chemotactic factor for dendritic cells, potent 

inhibitor of angiogenesis,  target for epigenetic silencing, and mediator of cancer cell 

mobility [42-44]. These all indicate important and complicated roles that CXCL14 play 

under both normal physiological and disease conditions. 

Our study reports differences in expression levels of metallothioneins between 

phases of menstrual cycle. We showed that a number of metallothionein family members, 

MT1E, MT1F, MT1G, MT1H, MT1X, and MT1HL1 were significantly up-regulated in 

secretory phase endometrium (Table 4.1 and 4.7). This is in agreement with the 

previous observations in comparing MS vs. ES [10] and secretory vs. proliferative 

endometrium [41], respectively. Metallothioneins are a family of cysteine-rich heavy-

metal binding proteins that express ubiquitously to protect cells against heavy metal 

toxicity and harmful reactive oxygen species [45]. Increased expression of these genes 

during the menstrual cycle probably plays a role in protecting the embryo from heavy 

metals and free radicals. It is worth noting that elevated metallothionein expression also 

has been observed in endometrial carcinomas [46, 47].  

Among the down-regulated genes, Wnt signaling inhibitor SFRP4 was the most 

highly down-regulated (nearly 20-fold) in S vs. P. Significant decrease in SFRP4 

expression has been observed in MS vs. ES previously [10]. Another Wnt inhibitor DKK1 

was up-regulated more than 30-fold in S vs. P, which is known as an induced effect by 

progesterone. Furthermore, SOX17, a transcription regulator of Wnt signaling, was 

down-regulated 4-fold in secretory endometrium (Table 4.1). As the Wnt family consists 

of more than 20 secreted glycoproteins, the balance of these proteins determines the net 
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effect of Wnt signaling in regulating tissue remodeling, cellular proliferation, and 

differentiation during different phases of the menstrual cycle.  

The current study used a model that assumes both components are normally 

distributed with equal variances in the bimodal distribution. As the two components of 

the bimodal distribution often do not follow normal distributions and are unequally 

distributed in reality, future study using models that allow for other distributions and 

unequal variances is worth pursuing for performance comparison. Methods using such 

models were described previously [48-50]. 

As shown in this study and many by others, the gene expression profiles of normal 

endometrium is highly dynamic during the menstrual cycle due to changing levels of 

ovarian steroids. In microarray-based gene expression studies of endometrial cancers, 

comparisons of cancer versus normal tissues were generally made using heterogeneous 

samples in terms of menstrual cycle phases or status of hormonal therapies, etc. 

Therefore, this may confound the search for differentially expressed genes that may play 

important roles in the progression of endometrial cancer.  

As an exploration for this issue, we assessed expression of the signature genes 

identified above in an endometrial cancer gene expression data set, consisting 30 

cancers and 28 surrounding normal samples, that we generated using Affymetrix 

GeneChip U133 plus 2.0 platform (unpublished data). For example, we observed high 

expression of NNMT, nicotinamide N-methyltransferase, in both normal and endometrial 

cancer samples (Figure 5.1). As NNMT was shown to be increasingly expressed in 

secretory phase of menstrual cycle in our analysis, this may confound the comparison of 

endometrial cancer and normal tissues. And knowing individual sample’s cyclic phase is 

helpful to interpret results of specific gene expression comparison between normal and 

cancer endometrial samples. 
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In conclusion, our study provided a comprehensive overview of gene expression 

profiles of different cyclic phases of menstrual cycle. We identified a clinically 

manageable panel of signature genes that could potentially serve as a predictor to 

determine the menstrual cyclic phase of individual endometrium specimens. In addition, 

our study highlights the potential confounding effects of these cyclic genes on detecting 

differentially expressed genes in cancer versus normal endometrial tissues. Thus, it is 

recommended to determine the status of cyclic phase for each sample in identifying 

novel genes responsible for cancer aggressiveness, especially for endometrial cancer 

patients under 45 years old who still have normal menstrual cycle. For future work, 

further validation of the gene signature identified in this study is worth pursuing using a 

larger data set and quantitative real-time PCR on clinical specimens.  
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Figure 5.1. Expression of cyclic gene NNMT in a data set consisting endometrial cancer 

and surrounding normal tissues. Log2 expression value of normal (green) and cancer 

(red) samples were plotted. Black bars indicate the mean of each group.  
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