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1. Primordial NG: what signals should we look for? 
!
!
!
!
2.  Data analysis challenges 
!
!
!
!
3. WMAP/Planck results and interpretation
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Cosmological initial conditions

• Adiabatic scalar: The initial conditions are completely 
determined by the (3D) adiabatic curvature 𝜁(x) 

• Gaussian: The statistics of the adiabatic curvature 𝜁(x) are 
completely determined by the power spectrum P⇣(k)

• Power law: (k3/2⇡2)P⇣(k) = A⇣(k/k0)
ns�1

CMB

Large-scale 
structure

Adiabatic curvature 𝜁 

Within current observational errors, initial conditions are: 



Primordial non-Gaussianity
Searching for deviations from non-Gaussian statistics probes 
field content of inflation and interactions between fields 
!
There are many possible signals to search for (partial list: 
                                                              ).  Each of these 
parameters is the coefficient of either a 3-point or 4-point 
function and can be further classified as “local” or “nonlocal”.
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Local non-Gaussianity
“Local” = general term for non-Gaussianity generated by nonlinear 
processes which are local in real space.  E.g.

⇣(x) = ⇣G(x) + f loc

NL⇣G(x)
2 where       = Gaussian⇣G

⇒ “squeezed” 3-point function
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⇣k2
⇣k3



Local non-Gaussianity
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⇣(x) = ⇣G(x) + glocNL⇣G(x)
3

⇒ “squeezed” 4-point function

“Local” = general term for non-Gaussianity generated by nonlinear 
processes which are local in real space.  E.g.



Local non-Gaussianity

⇣(x) = ⇣G(x) + f loc

NL⇣G(x)
2 where       = Gaussian⇣G

⇒ “squeezed” 3-point function
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⇣(x) = ⇣G(x) + glocNL⇣G(x)
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⇒ “squeezed” 4-point function

⇣(x) = ⇣G(x) + ⌧NL⇣G(x)�G(x)

⇒ “collapsed” 4-point function

“Local” = general term for non-Gaussianity generated by nonlinear 
processes which are local in real space.  E.g.



“Nonlocal” non-Gaussianity
“Nonlocal” = General term for non-Gaussianity generated by 
quantum-mechanical processes at horizon crossing during inflation.  
To illustrate by example, consider two models:
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“Non-local” non-Gaussianity
Both slow-roll and DBI inflation can give (ns,r) values which 
are consistent with CMB constraints. 
!
3-point function can discriminate the two:

h⇣k1⇣k2⇣k3i ⇡ 0

h⇣k1⇣k2⇣k3i ⇡ f equil
NL

1

k1k2k3(k1 + k2 + k3)3

(single-field slow-roll)

(DBI)



1-1 correspondence between operators in       and        -like parameters 
(Degree-N operator generates N-point CMB correlation function)
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Non-local NG: EFT of inflation

These terms generate  two 3-point signals  
(Senatore, KMS & Zaldarriaga 2009)
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1-1 correspondence between operators in       and        -like parameters 
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Non-local NG: EFT of inflation

Leading quartic  
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These terms generate three 4-point signals, in principle independent. 
However, a Fisher matrix analysis shows that there is one large 
correlation among the three 4-point functions, so we propose 
two observables                         (KMS, Senatore &Zaldarriaga 2015) g�̇
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Quasi single-field inflation 
(Chen & Wang 2009, 

Baumann & Green 2011) 

These terms generate interesting four-point signals, but currently 
unconstrained due to technical difficulties to be explained shortly
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more possibilities I won’t mention in this talk! 
(resonant models, higher-derivative, etc.)



Non-Gaussian models
In summary, primordial non-Gaussianity is a many-parameter 
space; each parameter corresponds roughly to one interaction 
term in the inflationary action, or one physical process 
!
Measuring these parameters constrains the inflationary action, 
in the same sense that measuring cross sections in a collider 
experiment constrains the action. 
!
!
!
!
!
!
!
Next: Data analysis challenges
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Data analysis challenges

h⇣k1⇣k2 · · · ⇣kN iCurvature N-point function

CMB N-point function ha`1m1a`2m2 · · · a`N mN i

CMB estimator
E =

X

`imi

ha`1m1a`2m2 · · · a`N mN i
NY

i=1

ã`imi + · · ·

General problem: we want to estimate the amplitude of a specified 
curvature N-point function                           , given an observation 
of the CMB multipoles 

h⇣k1⇣k2 · · · ⇣kN i
a`m

Conceptually, we are trying to do the following:

observed CMB multiples (appropriately filtered)
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CMB transfer function (computed w/CAMB)

In general, there are computational difficulties…

CMB three-point function: 4D oscillatory integral for each

E =
X

`imi

ha`1m1a`2m2a`3m3i ã`1m1 ã`2m2 ã`3m3 + · · ·

(`i, mi)

CMB estimator: number of terms in sum is O(`5
max

)

observed CMB multiples (appropriately filtered)

Data analysis challenges



… which can be solved by going back to the physics as follows. 
!
First, take a step backwards by writing down the Feynman diagram 
which gives the N-point function                            , but leave 
integrals unevaluated.  E.g. for DBI inflation:

h⇣k1⇣k2 · · · ⇣kN i
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Data analysis challenges
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If we write down the CMB estimator and bring the time integral 
to the outside, then everything factorizes, leading to reduced 
computational cost:

Generalizes to any tree diagram, e.g. 4-point estimators:

Data analysis challenges



Computational cost is still marginal: number of spherical  
transforms is O(Nmc Nquad) where

Data analysis challenges

Nmc = # of MC sims = O(103) 
!

Nquad = # of quadrature points needed to do (𝜏,r) integrals 
         = O(105) for cubic or quartic diagrams 
!
         = O(109) for exchange diagrams!
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This problem is currently preventing us from analyzing 
exchange-diagram 4-point functions. 



Data analysis challenges
Sensitivity to modeling errors in the Gaussian part of the signal. 
Simple four-point estimators of the schematic form

ĝNL = (T1T2T3T4)� hT1T2T3T4iGaussian

are disastrous since                                  is very sensitive to 
modeling of beams, noise, residual foregrounds, etc.

hT1T2T3T4iGaussian

Must model instrument with fractional error O(lmax-1) ~ 0.1% !

Powerful fact: estimators with “(2+2)-point terms”
ĝNL = (T1T2T3T4)� (T1T2hT3T4iGaussian + 5 perm.)

+3hT1T2T3T4iGaussian

have smaller error bars and are parametrically less sensitive to 
modeling errors.  Modeling requirement is O(lmax-1/2) ~ (few %)



Data analysis challenges

Large guaranteed 4-point signals. 
!

Gravitational lensing trispectrum is 40𝜎 in Planck! 
  … but uncertainty in the expected signal is small enough that one 
        can simply compute (by Monte Carlo) the lensing bias in  
        a fiducial model and subtract it. 
!
Residual secondaries (SZ, dusty galaxies, etc.) also have large  
4-point functions 
     Need excellent foreground removal (template subtraction is 
      good enough for WMAP, for Planck we need a fancy method 
      like SMICA)



Current status

Local Nonlocal

3-pt

4-pt

Blue = WMAP Magenta = Planck 2013 Red = Planck 2015 
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Note normalization of these parameters! 
     3-point: fNL~1 corresponds to dimensionless NG of order ~10-4 
     4-point: gNL or 𝜏NL~1 corresponds to NG of order ~10-8



Interpretation

Non-Gaussianity at the fNL ~ 101-102  
level is easy to generate in non-Gaussian 
models of inflation, but to rule out 
qualitative classes of models, we need 
to get to fNL ~ 1.

We are getting close with Planck, and future E-mode polarization 
measurements will help by a factor ~few.

More futuristic large-scale structure measurements can do much 
better in principle (mode-counting 3D vs 2D) but practical 
challenges are currently unclear

(Note: there is a “guaranteed signal” at fNL ~ 10-2 even 
in single-field slow-roll inflation)
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Interpretation: local NG

There are theorems (Maldacena 
2002, Creminelli & Zaldarriaga 
2003) which show that single-field 
inflation cannot generate local NG 
of any type

f loc

NL = 0.71± 5.1

glocNL = (�9.00± 7.73)⇥ 104

⌧NL < 2800 (95% CL)

Conversely, local NG is somewhat generic in multifield models 
of inflation. 
!
Our results on local NG constrain parameter spaces in multifield 
models, but won’t rule out qualitative classes of models until 
fNL~1 is reached.



Interpretation: nonlocal NG

f equil
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Planck 2013

In single-field inflation, 3-point function  
is linked to the sound speed cs

Four-point function constrains 
interactions which are allowed 
by symmetry and radiatively stable



Conclusions
• Primordial NG is a multifaceted probe of the field content and 

interactions in inflation (“one parameter per Feynman 
diagram”) 

!
• 3-point and 4-point pipelines are now working in Planck, but 

can only do “contact” 4-pt case, not the “exchange” case

• Nondetection of local NG places strong constraints on 
multifield inflation but not particularly conclusive until fNL~1 

!
• Nondetection of nonlocal NG constrains sound speed during 

inflation and constrains interacting models such as DBI 
inflation



f loc

NL = 37.2± 19.9

f equil
NL = 51± 136

forth

NL = �254± 100

g(@�)
4

NL = (�1.10± 3.82)⇥ 105

g�̇
4

NL = (�2.11± 1.74)⇥ 106

glocNL = (�9.00± 7.73)⇥ 104

⌧NL < 2800 (95% CL)

f loc

NL = 0.71± 5.1

f equil
NL = �9.5± 44
forth

NL = �25± 22


