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EXECUTIVE SUMMARY 

Maintaining an efficient traffic signal operation is a challenging task for many traffic 
management agencies. Due to intensive labor costs required in the signal retiming process, most 
of the traffic signals in the US are retimed once every 2-5 years. However, it has been shown in 
the past that traffic delay increases 3-5% per year simply because the timing plans are not kept 
up to date. For many resource-constrained agencies, it would be desirable to reduce signal re-
timing costs by automating all or a portion of the manual process. The research takes one step 
toward this direction.  

In this research, we develop a performance visualization and fine-tuning tool for arterial 
traffic signal systems, aimed at reducing the labor cost for signal retiming and to help identify 
adjustment opportunities. Using high-resolution event-based traffic data collected by the 
SMART-Signal System, a set of theoretically sound, while easy-to-use algorithms are proposed 
to refine traffic signal systems for coordinated arterials.  

In detail, a framework to diagnose operational problems regarding cycle lengths, green 
splits and offsets is first developed. Then algorithms for offsets and green splits fine-tuning are 
proposed. To fine-tune signal offsets, a practical procedure to construct the time space diagram 
(TS-Diagram) to visualize the progression quality on arterials is proposed and validated using the 
field data. A field experiment is carried out to illustrate how decisions regarding changes can be 
made by intuitively evaluating the TS-Diagram. For green splits, an adjusted measure of 
effectiveness (MOE), the utilized green time (UGT), is proposed for performance evaluation. 
The information is further tabulated in a ring-and-barrier diagram to facilitate evaluation. 
Moreover, a practical procedure for time of day (TOD) transitions is proposed to generate 
optimal timing plan schedules. The procedure is validated by simulation experiment.  

The proposed algorithms are intended to partly automate the signal retiming process, thus 
help agencies to reduce labor costs during the retiming process. The algorithms also would be 
suitable to help engineers refine the traffic signal systems periodically and hence maintain 
efficient signal operations in a timely manner. 
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CHAPTER 1 
INTRODUCTION 

It is commonly understood that traffic delay increases 3-5% per year simply due to the fact that 
the timing plans are not kept up to date. The signal retiming, however, is only conducted once 
every 3 to 5 years because it involves largely manual processes. For many resource-limited 
agencies, it would be desirable to reduce the labor-intensive signal re-timing process by using 
algorithms for automated or semi-automated updating of the signal parameter settings. Previous 
attempts have largely failed due to the unavailability of the field performance data, and the need 
for calibrating parameters of embedded traffic models. However, over the past decade or so, 
there have been significant advances in data collection and performance measurement 
technology (for example, the SMART-SIGNAL system developed at the University of 
Minnesota), such that a fresh look at automated timing plan generation is warranted. 

The goal of this research is to develop methods to reduce labor costs associated with 
signal retiming process by using detector and signal data, and thus to automate, at least partly, 
the generation of coordinated timing plan on signalized arterials. This project aims to extend 
SMART-SIGNAL’s capability for automatic diagnosis of operational problems and fine-tuning 
signal control parameters. Based upon large volume of traffic signal performance data collected 
by the SMART-SIGNAL system, we propose systematic diagnosis and optimization tools for 
signal parameter optimization and fine-tuning. These data-driven algorithms and tools are aiming 
at extending the life of an existing signal timing plan by fine-tuning the parameters and reduce 
the frequency and expense of manual work for signal retiming.  

1.1 Background and Relevant Work 
In the literature, traffic signal retiming plans typically require labor/cost-intensive field data 
collections (volume, queue, delay, etc.). Gordon (2010) surveyed agencies’ practices regarding 
traffic signal retiming and summarized that traffic movement data used in existing signal 
retiming processes are usually collected manually. Because data collection is a labor/cost-
intensive process, traffic signal retiming is usually performed in a 3 to 5-year time interval. 
Koonce et al. (2008) suggested a shorter time interval for signal retiming if there are significant 
changes in traffic volumes or roadway conditions. However, as indicated by Gordon & Braud 
(2009), it is more appropriate to review the intersection performance in a higher frequency, 
especially for performance-oriented operation. Limited by the level of resources, existing signal 
retiming processes are not suitable for high frequency adjustment. With limited resources, some 
researchers (e.g., Henry, 2005) provided compromised procedures to accomplish retiming at a 
lower cost but with degradation in performance. Smaglik et al. (2007) proposed to use a 
controller to collect data for signal retiming; however, algorithms that can use the data to 
optimize the signal parameters are not provided. An automated signal retiming process is highly 
desired to identify operational problems and suggest solutions simultaneously. 

It is not surprising that very few studies can be found in the literature focusing on 
automatic generation or fine-tuning of signal control parameters. It is partly due to the 
complexity of the problem and partly due to the lack of advanced techniques to collect large-
scale and high-resolution traffic signal data. Therefore, most of previous studies on updating 
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signal parameters were developed with specific objectives. For example, Khosla & Williams 
(2006) investigated how the adjustment of green time impacts the saturation flow change; 
Denney et al. (2009) tested the relationship between the length of green and headway as well as 
the relationship between cycle length and throughput; Yin et al. (2007a) studied how to fine-tune 
offsets in semi-actuated coordinated systems to improve the signal control system performance; 
Wood et al. (1994) provides a simple decision tree based approach to diagnose offset problems 
under congestion. Since these studies were problem-specific, they did not provide a general 
methodology that can detect operational problems of traffic signal and provide potential 
solutions.  

Most existing studies on automated signal updating have been focused for developing 
adaptive traffic signal control using real-time traffic data, and very few of studies have examined 
the use of archived traffic signal data to fine-tune signal parameters (Yin et al. 2007b). Smith et 
al. (2002) developed a clustering algorithm to determine appropriate Time of Day (TOD) 
intervals using archived 15-minute volume data for traffic signal operations. Yin et al. (2007a) 
presented the concept and implementation of an offline offset refiner using archived signal status 
data. Later, Yin (2008) established robust signal timing settings based upon archived traffic 
conditions at signalized intersection. However, in these studies, either volume data or signal 
status data was used, but not both. Therefore, these approaches do not capture the inherent 
dependency between traffic flow and traffic control.  

On the other hand, the University of Minnesota has developed and implemented the 
SMART-SIGNAL: Systematic Monitoring of Arterial Road Traffic Signals, which is an arterial 
data collection and performance measurement system. In the SMART-SIGNAL system, a 
complete history of traffic signal control, including all signal events such as vehicle actuations 
on detectors and signal phase changes, is archived and stored. Using the high resolution event-
based data, SMART-SIGNAL can provide a set of performance measures, through monitoring 
the maximum queue length, intersection delay, and level of service at the single intersection level 
and reporting travel time, speed, and average number of stops at the arterial level. The event-
based signal data are being collected in a 24/7 mode and then immediately archived in the 
SMART-SIGNAL system, thus yielding a tremendous amount of field data available for 
diagnosis of problems and refining signal plans parameters. The SMART-SIGNAL system has 
been installed at 11 intersections along France Avenue in Hennepin County, Minnesota in 
February 2007, and at six intersections along Trunk Highway 55 of Mn/DOT in February 2008. 
The updated SMART-SIGNAL system with redesigned hardware and software for the TS-2 
controller cabinet has also been implemented and tested at 13 intersections on Trunk Highway 13 
since December 2011. 

The data collection and performance measurement effort with the SMART-SIGNAL 
system serves as a solid foundation for this proposed work. Using the large volume of data 
archived by SMART-SIGNAL system, in this work, we further develop the SMART-SIGNAL 
system and propose a set of data-driven algorithms and tools to investigate the archived data and 
identify potential operational problems, and thus fine-tune and optimize signal control 
parameters correspondingly.  
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1.2 Research Objectives 
This work has a high priority to maximize the investment in traffic signal systems, particularly 
with declining funding to add roadway capacity. Since outdated signal plans will increase travel 
delays, fuel consumption, vehicle emissions, and accident rates, a frequent adjustment of signal 
timing plans is desired. A system for monitoring signal timing performance and identifying 
improvement opportunities is ideal to reduce the cost for signal retiming, and thus improving the 
system performance of signalized arterials.  

In addition, this work will serve as a natural extension of the existing developments of the 
SMART-Signal system. It may also bring innovative changes to the state-of-the-practice because 
of the anticipated significant reductions in the frequency and effort needed for manual signal re-
timing. Based on continuous data collection and processing, the proposed algorithms can easily 
help engineers refine the signal system periodically without much labor costs, and hence 
significantly reduce the expense of traffic signal operations. 

There are four main tasks for this project. The first task of this project focuses on 
developing a framework for systematic parameters optimization regarding offsets, green splits 
and cycle length. In the second and third tasks, we will get into more details regarding offsets 
and green splits fine-tuning. The last task focuses on optimizing signal plan schedules for time of 
day (TOD) traffic signal operations. 

1.3 Organization of This Report 
The rest of the report is organized as following. First, in Chapter 2, we will briefly discuss the 
data collection and then introduce a framework of simple fine-tuning algorithms for cycle length, 
offset, and splits. Then, in chapter 3, we will discuss in details about offset fine-tuning procedure 
with focus on generating and evaluating time space diagram using detector and signal data. In 
chapter 4, the procedure to fine-tune green splits will be discussed in details. Chapter 5 
introduces a data-driven algorithm to fine-tune the TOD transition points among different time 
plans for coordinated arterials. Finally, concluding remarks and future researches are 
documented in Chapter 6. 
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CHAPTER 2 
FRAMEWORK OF FINE-TUNING SIGNAL PARAMETERS AND 

ALGORITHMS TO DIAGNOSE OPERATIONAL PROBLEMS 

In this chapter, we will briefly describe the data collection unit, which is implemented in the 
SMART-Signal system, and then introduce the framework for optimizing and fine-tuning offsets, 
splits and cycle lengths (Zheng et al., 2013). 

2.1 Introduction 
Efficient traffic signal operation is vital for smoothing traffic flows in signalized network and 
greatly beneficial for road users. Conventionally, traffic signal settings are determined based on 
manually collected field data (Day et al., 2009). Due to the intensive labor required, although 
signal retiming has a very high benefit/cost ratio (Koonce et al., 2008), most of the traffic signals 
in the US are retimed once every 3-5 years, or even longer (Gordon, 2010). Although detectors 
are widely implemented for signalized arterials, the majority of agencies operating traffic signal 
system do not archive and analyze traffic performance data frequently (Balke & Herrick, 2004; 
Balke et al., 2005; Liu & Ma, 2009;). Such practice may miss the opportunities for operational 
improvements and result in unnecessary delays. 

One of the major obstacles to improve the practice is the lack of data collection capability 
and a convenient performance monitoring tool for traffic signal systems. Although real-time 
performance measures for freeway travel speeds and travel time are commonly available 
nowadays, they are still relatively new for signalized arterials (Day et al., 2010a). Recently, 
increasing research interests were found in performance measure for traffic signal systems using 
high-resolution event-based data, and encouraging results were achieved. The "event" here refers 
to vehicle-detector actuation and de-actuation and traffic signal phase changes, all measured in 
high resolution time intervals. Appeal of such event-based data over aggregated data includes: 
(a) performance measures based on larger time intervals (per phase, cycle, hour, and day, etc) 
can be easily calculated and (b) event-based data on individual vehicle level  helps to make more 
accurate and detailed traffic state evaluation, particularly during congested traffic condition. 

To the best of our knowledge, researchers from the Texas Transportation Institute (TTI) 
made the first attempt to retrieve traffic event data from existing traffic detection systems. Their 
prototype system, the Traffic Signal Performance Measurement System (TSPMS) can 
automatically collect traffic event data and generate performance measures for individual 
intersections (Balke et al., 2005; Sunkari et al., 2011). Using event-based data, Smaglik et al. 
proposed methodologies for calculating vehicle-actuated controller performance measures 
(Smaglik et al., 2007). It has also been demonstrated that Webster’s work (Webster, 1958) can be 
applied easily with the same type of data to identify opportunities to shorten the cycle lengths 
and correct phase failures (Day et al., 2010a). In a recent work by Day et al. (2010b), the Purdue 
Coordination Diagram (PCD) is developed to visualize event-based data, and it has been shown 
as a convenient tool to help adjusting offsets. Based on the same type of high-resolution data, the 
University of Minnesota researchers developed the Systematic Monitoring of Arterial Road 
Traffic and Signals (SMART-SIGNAL) System that can accurately estimate arterial travel time 
and intersection queue length in real time (Liu & Ma, 2009; Liu et al., 2009; Gordon 2010;). 
Research by Wu et al. (2010) demonstrated that by using high resolution event-based data, 
oversaturation at signalized intersections could be identified. 
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Utilizing the event-based traffic data, in this chapter, we propose a performance diagnosis 
tool for arterial traffic signals. The tool consists of a data collection system deployed within the 
signal cabinets and a data analysis package in a remote center. Given that most of the current 
traffic signal cabinets are not capable of collecting event-based traffic data, an event-based data 
collection unit (DCU) is developed to overcome this issue. An easy-to-implement framework for 
evaluation of offset, green split and cycle length is then developed based on proper measure of 
effectiveness (MOE) with corresponding optimization strategies. It is our hope that the proposed 
data-driven performance diagnosis tool will improve the state-of-the-practice on traffic signal 
operations by automatically identifying necessary changes to traffic signal timing parameters. 

2.2 Data Collection Unit 
Although detectors are commonly available in many signalized intersections, further 
modifications are required for existing traffic signal system to retrieve event-based data, as 
standard traffic signal controllers normally aggregate data in 5-60 minutes bins. To address the 
issue of the non-standardized interface of controller MOE output, Bullock & Catarella (1998) 
developed the controller interface device (CID) that can interface the signal controller with a 
personal computer recording signal events and detector events in real time. TTI’s TSPMS 
extended CID with a data acquisition card to obtain event-based data from NEMA (National 
Electrical Manufacturers Association) TS1 cabinets. The data is further processed by an 
industrial computer within the cabinet. For NEMA TS2 cabinets, an enhanced bus interface unit 
(BIU) is used to interface with the Synchronous Data Link Control (SDLC) bus of the controller, 
and the industrial computer is replaced by a rugged laptop for easier user interaction (Balke et 
al., 2005; Sunkari et al., 2011). The National Institute for Advanced Transportation Technology 
(NIATT) of the University of Idaho developed a data logging device (DLD) for recording high 
resolution traffic event data, adopting similar architecture of data collection system as in the 
TSPMS for TS1 cabinets (Ahmed & Brain, 2008). Although SDLC bus based interface is 
recognized, the connection of DLD for TS2 cabinet is still based on harness cable connection 
matrix on the back panel within the signal cabinet.  

As mentioned by Smaglik et al. (2007), Econolite ASC/3 Controller features a data logger 
capability that can retrieve event-based data. Events are recorded with 0.1 sec time-stamp, and 
stored as binary-formatted files. The raw data can be stored within the controller, and uploaded 
via FTP. However, vender based data collection solution, such as Econolite ASC/3 Data Logger, 
is still far from standardization and is not convenient for agencies with controllers from various 
venders. Although efforts can be seen recently from the vender side to enhance event-based data 
collection capability within the controller, we expect that the progress for a vendor-dependent 
solution will be gradual and time consuming. 

The Data Collection Unit (DCU) we developed for the SMART-Signal system is a low cost add-
on module to enhance traffic cabinets with event-based data collection capabilities. There are 
two types of DCUs: Type 1 DCU with pin-to-pin interface and Type 2 DCU with SDLC 
interface, to interface with TS1 and TS2 cabinets, respectively. The DCU can automatically 
archive event-based traffic data on a local storage media card and send the data to a remote 
center using Ethernet based communications. Based on the embedded system technology, the 
DCU is compact and reliable to be equipped in traffic signal cabinets. The general architecture 
and snapshots of two types of DCUs are shown in Figure 2.1. More details related to DCU 
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design can be found in a recent research report funded by Minnesota Department of 
Transportation (Liu et al., 2013). 

 
Figure 2.1 Architecture and snapshots of DCUs 

The sample of data collected by DCUs is illustrated in Figure 2.2, along with a Type 2 DCU 
installed at intersection of Nicollet Avenue & TH13 in Burnsville, Minnesota. Detector events 
are recorded with detector actuation time, event duration length and detector ID.  Traffic signal 
events are recorded with signal phase start time, duration length, signal status and phase ID. The 
timing in Type 1 DCU is synchronized with the central server. Since Type 2 DCU interface with 
controller by SDLC bus directly, it synchronized with controller from the controller broadcasting 
time (NEMA, 2003). 
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Figure 2.2 Illustration of field installation of Type 2 DCU and data sample 

2.3 Diagnosis Framework and Methodology 
While performance measures based on various intervals can be calculated with event-based data, 
cycle-by-cycle and phase-by-phase performance measures are selected for analysis due to their 
intrinsic meaning for traffic signal systems (Day et al., 2010a). Three modules are included for 
evaluation: the offset, green split and cycle length diagnosis modules. Since cycle length is 
commonly shared by multiple intersections within a signal timing zone, changes of cycle length 
will lead to necessary adjustments of associated green splits and offsets. Similarly, adjustments 
of green splits of coordinated phases will require additional offset adjustments at adjacent 
intersections. On the other hand, changes of offsets normally do not require subsequent changes 
of green splits and cycle length. Because of this causal relationship, the diagnosis procedure is 
proposed to be hierarchical, as indicated in Figure 2.3. To start, the user can select one of the 
parameters for evaluation. Then, the tool will evaluate selected parameters in the order indicated 
in Figure 2.3. For example, if a user selects cycle length to start with, subsequent diagnosis and 
fine tuning of green splits and offsets will need to be done. The implementation of diagnosis also 
needs to be done iteratively with implementing parameter changes until no further fine-tuning is 
needed. 
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Figure 2.3 Implementation procedures for traffic signal parameter diagnosis 

2.3.1 Offset Diagnosis Module  
Classical measures of effectiveness (MOE) for signal coordination include travel time, vehicle 
stops, arrival type, arrivals on green (AOG), percent arrivals on green (POG), and bandwidth 
(Day et al., 2009; Balke & Herrick, 2004; Smaglik et al., 2007; TRB, 2000). Although arterial 
travel time and vehicle stops are intuitive to drivers, AOG, POG and bandwidth are more useful 
from traffic operation perspective. Using data from setback detectors, AOG can be obtained 
directly. Based on AOG, the POG can be further calculated by: 

ܩܱܲ = ைீ 
௩௦ ௩ ௬              (2.1) 

Another widely used MOE for offset optimization is the bandwidth, defined as “maximal green 
time for a designated movement to pass through a corridor” (Koonce et al., 2008). It can be 
further characterized as link bandwidth for two consecutive intersections and arterial bandwidth 
for the entire corridor. 
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Optimal offset for a specific MOE can be easily found for one-direction coordination. For two-
direction coordinated arterials, the trade-off in opposite directions makes it difficult to find an 
optimum. Considering arterial bandwidth, well-established offset optimization models include 
the famous MAXBAND and its derivatives (Morgan & Little, 1964; Little et al., 1981; Gartner et 
al., 1990). One of the disadvantages of MAXBAND is that the methodology does not utilize the 
vehicle arrival data effectively. Recent studies by Day et al. (2010b), and Day & Bullock (2011) 
extended the classical combination method (CM) (Gartner & Little, 1975) with vehicle arrivals 
from setback detectors and illustrated the Link Pivot Combination Method (LPCM) for offset 
optimization. Different from MAXBAND with the objective to maximize bandwidth through 
arterials, CM assumes that changes of signal offset only make an impact to its nearest 
downstream intersections. Such simplification helps to change optimization for a corridor into 
sequential optimizations based on links, and makes it convenient to incorporate vehicle arrival 
information. In fact, CM for a signalized corridor can be stated by a simple rule: considering two 
phases that share a same link, if vehicles for a signal phase arrive relatively early than green start 
while vehicles for another phase arrives relatively late than green start, then an improvement can 
be made to accommodate both by offset shifting. For the details of the methodology, the readers 
can refer to (Day & Bullock, 2011). This rule is used in the offset diagnosis module, with the 
criteria: 

A change of offset is needed if: the difference between the AOG optimized by CM and 
observed AOG exceeds an acceptable range. 

2.3.2 Green Split Diagnosis 
For green split, one of the most widely used MOE is the volume to capacity ratio (v/c ratio) that 
indicates saturation level of a specific signal phase (Day et al., 2010a; TRB 2000). It can be 
calculated by: 

ܺ = 
௦௫

               (2.2) 

Where: 

 ܺ: =v/c ratio of phase i, 

 ܸ: = Flow rate of phase i, 

:ݏ  = Saturation flow rate of phase i, 

ݔ  = 
 : = Green split of phase i, 

 ݃: = Effective green time of phase i, and 

:ܥ  = Cycle length. 
When applying Equation (2.2), vehicle counting accuracy using loop detectors needs to be taken 
into consideration. The accuracy for vehicle-counting reduces with stop bar detectors that are 
mostly used for detection of vehicle presence. For presence detectors, the miscounting may 
become significant due to relatively short spacing between consecutive vehicles. It becomes even 
worse when long or sequential detectors are implemented (Lawrence et al., 2006). Recent 
research has shown that the Green Occupancy Ratio (GOR), sum of detector occupation time 
during green over green duration time, can be used as a reasonable alternative for v/c ratio after 
calibration (Smaglik et al., 2011). The GOR can be calculated by: 
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ܴܱܩ = ை


             (2.3) 

Where: 

ܱ = Total duration time that detector is occupied during a green interval. 

Thus, for intersections with both setback detectors and stop bar detectors, we propose the 
adjusted performance measure for green split diagnosis accounting for such miss-counting 
phenomena, the Green Utilization Ratio (GUR) ୧ܷ as: 

ܷ = )ݔܽܯ ܺ,ܴܱܩ)           (2.4) 
The rule of thumb for determining green splits is to assign them proportional to demands 
(Webster, 1958). Unbalanced GURs indicate improvement opportunities especially when some 
phases are oversaturated. Therefore, the criteria of green split diagnosis based on GUR, is 
proposed as:  

A change of green splits is needed if: GURs are not balanced, with oversaturated phases 
indicated by high GURs. 

2.3.3 Cycle Length Diagnosis 
Cycle length is probably the most important parameter for traffic signal system (Gartner & Little, 
1975). Longer cycle lengths usually increase intersection capacity. On the other hand, shorter 
cycle lengths reduce delays for unsaturated phases. Shorter cycle lengths that do not exceed 100-
120 seconds are typically preferred since marginal capacity gain from increasing cycle length is 
rather modest (Koonce et al., 2008; TRB, 2000). Conventionally, the maximum and minimum 
cycle lengths of each intersection using Webster's formula (Webster, 1958) are selected as the 
common cycle lengths for coordinated arterials. This is mostly from capacity management 
consideration. For fine-tuning of an implemented cycle length, the impacts on progression 
increase the concerns for changes. Thus, the proposed cycle length diagnosis procedure includes 
two parts of evaluations: intersection capacity evaluation based on Webster’s formula and 
coordination evaluation based on bandwidth. As mentioned before, the change of cycle length 
will result in needs for subsequent adjustments of green splits and offsets. If diagnosis and fine-
tuning of green splits and offsets are not performed subsequently, the cycle length change should 
not be implemented. 

Intersection Capacity Evaluation 

For an evaluation of individual intersection capacity, the Degree of Saturation ܺ based on GUR 
is selected as an indication of overall saturation. The formula for ܺ (Day et al., 2010a) is given 
by: 

ܺ = σ (ݔܷ) ቀ 
ିቁ          (2.5) 

Where: 

:ܮ = Lost time, and 
σ (ή) = Summation over critical phases. 
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In the formula, the critical phases are phases that serve critical movement (Koonce et al., 2008; 
Day et al., 2010a; TRB, 2000). For a typical eight phase dual ring signal diagram, the following 
calculation can be used: 
σ (ݔܷ) = max [(ܷݔ)ଵଶ, [ହ(ݔܷ) + max [(ܷݔ)ଷସ,  ଼]     (2.6)(ݔܷ)

Where: (ܷݔ) = ܷݔ + ܷݔ.  
Based on ܺ, the optimal cycle length by Webster’s model, ܥ, is calculated as: 

ܥ = ଵ.ହାହ
ଵି

           (2.7) 

Coordination Evaluation 
With cycle length changes, the simplified treatment for changes of arrivals based on CM is not 
appropriate. Although modified treatment of arrivals can be applied, it does not necessarily 
benefit the analysis considering the subsequent adjustments of green splits and offsets. As an 
alternative, we only focus on utilizing signal information, and use bandwidth efficiency (Koonce 
et al., 2008) as MOE for coordination evaluation regarding cycle length change. The formula for 
bandwidth efficiency is: 

ܧ = (ାത)
ଶ = ଵ

ଶ (ܾ + തܾ)          (2.8) 

Where: 

E := bandwidth efficiency,  

തܤ,ܤ  := the bandwidths in forward and reverse directions, and 

ܾ, തܾ := normalized bandwidths, which is bandwidths divided by cycle length, in forward 
and reverse directions. 

Based on bandwidth efficiency, MAXBAND can be used to optimize offset with different cycle 
lengths and evaluate the best possible coordination parameters. The criteria for cycle length 
diagnosis is proposed as:  

A change of cycle length is needed if: Webster’s model yields a significantly different 
cycle length, while the change of bandwidth efficiency with the new cycle length is acceptable. 

2.4 Field Case 
With support from MnDOT, thirteen sets of Type 2 DCUs were implemented in intersections on 
TH13. For illustrative purposes, only part of network with nontrivial diagnosis results is 
highlighted here. 

Offset Diagnosis 
Three of the instrumented intersections (Figure 2.4), labeled with 0407 - 0409, were selected 
with data collected during 10:00 AM-06:00 PM on Saturday April 14th, 2012 to evaluate offsets 
of a weekend signal timing plan. Phases 2 and 6 are coordinated phases. Since phase 6 at 
intersection 0407 and phase 2 at intersection 0408 share a link, arrivals of these two phases need 
to be considered jointly. The same rule applies for phase 6 at intersection 0408 and phase 2 at 
intersection 0409. The optimization results based on CM are listed in Table 2.1. Even though 
relatively high POGs (>70%) are observed, optimization based on CM still shed light on 
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improvement opportunities. The main improvement is at intersection 0408 phase 2 with largest 
increase of AOG, however, with reduction at intersection 0407 phase 6. 

Table 2.1 Comparison of Observation and Optimization Results 
 0407 Phase6 0408 Phase2 0408 Phase6 0409 Phase2 
POG Observed 77.86% 73.86% 82.89% 74.34% 

Optimized 73.94% 80.90% 86.96% 77.15% 
Absolute Change -3.922% 7.03% 4.08% 2.80% 

AOG 
(Vehicle/Lane) 

Observed 3891 4845 4038 4458 
Optimized 3695 5307 4237 4626 
Absolute Change -196 462 199 168 

 

In Figure 2.4, qualitative investigation using PCD (Day et al., 2010) reveals some further details 
of potential improvements. In each of the six sub-figures in Figure 2.4, the horizontal axis shows 
time of day, and vertical axis shows time within a cycle. The green, yellow and red lines 
represent start times of green, yellow and red signal respectively. Each dot indicates a vehicle 
arrival, and major arrivals are circled by ellipses with red dash. Four red arrows indicate 
estimated arrivals change directions with optimal offset adjustments. As shown in the figure, 
major arrivals of phase 2 at intersection 0409 arrived late regarding the green start, while at 
intersection 0408 phase 6, the secondary platoon arrived early regarding green start. This can be 
improved with offset adjustment. Similar opportunity exists for improvement at intersection 
0408 phase 2 and 0407 phase 6 as well. 
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Figure 2.4 PCD of three instrumented sites 
Green Split and Cycle Length Diagnosis 

Figure 2.5 shows another two instrumented intersections on TH 13, indexed 0403, 0404, with 
corresponding signal timing ring diagrams for weekday morning peak hours. The diagnosis 
results here are based on data collected on Monday, April 9th 2012 from 6:30-8:30 AM.  
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Figure 2.5 Layout and ring diagrams for instrumented intersections 

Green Split Diagnosis 

Table 2.2 shows the average GURs for both intersections, with critical phases indicated in red. 
In general, intersection 0404 is more saturated than intersection 0403. In intersection 0403, 
relatively low GURs of phase 7 and 8 are observed with high GURs of phase 1 and 2, indicating 
chances for the rebalancing of green splits. A similar situation occurs in intersection 0404, with 
highest GUR of 81% of phase 1, while phase 8 has only utilized 18% percent of green time 
assigned. Opportunity and necessity for green split changes of both intersections are therefore 
justified.  

Table 2.2 Average GUR for Intersection 0403 and intersection 0404 
(Red color indicated it is a critical phase) 

Phase 1 2 3 4 5 6 7 8 
0403 70% 55% 54% 30% 56% 46% 38% 57% 
0404 81% 74% 17% 31% 52% 60% 51% 18% 

Cycle length diagnosis 
Intersection Capacity Evaluation  Figure 2.6 plots optimal cycle lengths over an evaluation 
period using Webster’s formula. The optimal cycle lengths are around 50-120 seconds, much 
shorter than the operating value of 240 seconds. The need for cycle length changes is indicated. 
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Figure 2.6 Optimized intersection cycle length 

Coordination Evaluation  In the next step, the impact on coordination with cycle length 
changes was evaluated using MAXBAND. The average values of the observed green splits were 
used to calculate maximal bandwidth efficiency with cycle lengths ranging from 60 to 240 
seconds. As shown in Figure 2.7, with a shorter cycle length around 70-130 seconds, bandwidth 
efficiency can be improved from the one achieved by the current cycle length of 240 seconds.  

 

 
Figure 2.7 Estimated optimal bandwidth efficiency with varied cycle length 

Therefore, it would be reasonable to conclude that a shorter cycle length around 100-120 seconds 
can help to reduce delays on non-coordinated approaches with only minor impact on 
coordination for selected intersections. The need for change of cycle length at selected 
intersections is justified. 

2.5 Conclusions 
Although detectors for signalized arterials are available in general, the lack of data collection and 
analysis could result in inefficient operation of traffic signal system and unnecessary delays. The 
tool presented in this chapter is intended to make up for such inefficiency. A flexible and low 
cost add-on module, the DCU, is developed to enhance current traffic signal cabinets for event-
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based data collection. The proposed methodology of the diagnostic tool is based on classical 
traffic engineering fundamentals and thus makes the results traceable and readily understood by 
the users. The implementation is demonstrated based on instrumented sites on TH 13, MN. Note 
that the diagnostic algorithms present in this chapter is intend for preliminary and quick 
evaluations regarding the offsets, splits and cycle lengths, while more detailed algorithms for 
offsets and splits fine-tuning will be present in the next. 
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CHAPTER 3  
OFFSET EVALUATION AND FINE-TUNING 

This chapter will introduce the evaluation and fine-tuning procedure for the offsets, with focus 
on constructing TS-Diagram to visualize progression quality for arterials. The proposed 
procedure is demonstrated with field cases and validations were performed using detector data 
and probe vehicle trajectories data collected from fields. An experiment is then carried out to 
illustrate how signal parameter changes could be made by intuitively evaluating the generated 
TS-Diagram. 

3.1 Background about Time Space Diagram 
Time space diagram (TS-Diagram) is a popular visualization tool for traffic signal evaluation, 
and has been used widely for signal operations (Koonce et al., 2008). With the time and distance 
as the X-Y axes, vehicle trajectories and signal status are commonly shown in a TS-Diagram. 
With the graphical illustration of the queues and delays, the progression quality can be evaluated 
intuitively. Figure 3.1 plots one example of TS-Diagram, with trajectory of one vehicle and 
signal status at two intersections. Delay of the subject vehicle due to traffic signals can be clearly 
observed. If similar delays occur for the majority of the vehicles, a poor progression quality will 
be indicated. 

 
Figure 3.1 Example of TS-Diagram  

[Source: Koonce et al., 2008] 

 Because of such convenience, TS-Diagram has been utilized by several commercial 
software as an output of signal optimization. For instance, TRANSYT-7F plots TS-Diagram with 
the green bands, and Synchro provides options to plot simulated trajectories in its TS-Diagram 
(Wallace et al., 1998; Husch & Albeck, 2006). A screenshot of Synchro TS-Diagram is 
illustrated in Figure 3.2, with blue and red lines as the trajectories of southbound and 
northbound traffic, respectively. 
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Figure 3.2 Screenshot of Synchro TS-Diagram 

In the practice, the Synchro TS-Diagram is being used widely, to design or update signal timing 
parameters in the signal retiming process. An accurate Synchro TS-Diagram can properly reflect 
the field traffic condition, and help engineers choose appropriate timing parameters. On the 
contrary, inaccurate Synchro TS-Diagram, could mislead the engineers, degrade the timing 
performance, and increase the fine-tuning efforts. More importantly, since the Synchro TS-
Diagram only uses manually collected data during a limited period, it cannot reflect the changing 
traffic conditions over time. 

On the other hand, many intersections in the US are now using actuated signals, whereas few 
agencies have archived or analyzed the detector and signal status data to help signal operation 
(Liu et al., 2008). Recently, increasing attentions have been paid on using detector and signal 
data for performance evaluation and optimization of the traffic signal system. However, to the 
best of our knowledge, few studies have been done to generate the TS-Diagram for evaluation of 
signal coordination. This research attempts to fill in this gap. 

In this chapter, we propose a practical procedure to generate TS-Diagram using the high-
resolution event-based traffic data collected from the field. With data collected and archived 
automatically, the TS-diagram can be generated periodically without significant labor cost. This 
is particularly beneficial for the practitioners to evaluate traffic signal performance after the 
retiming process, or to fine-tune the system over time. The proposed procedure is demonstrated 
with field examples and validations were performed using detector and probe vehicle trajectories 
data. Then, an experiment is demonstrated to illustrate how signal parameter changes could be 
made by intuitively evaluating the generated TS-Diagram.  

3.2 Constructing Link TS-Diagram 
The proposed procedure is to first generate TS-Diagrams for each link individually. Then, the 
link TS-Diagrams are combined as the arterial TS-Diagram. Note that, for two opposite through 
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directions, there are two links between two adjacent intersections. The TS-Diagrams of these two 
links are overlapped, similarly to the Synchro TS-Diagram. Then the TS-Diagrams of 
consecutive links are stacked up sequentially, to form the arterial TS-Diagram. 

In light of the cyclic nature of the traffic signal system (Day et al., 2010a), the TS-Diagram is 
constructed cyclically using data aggregated from multiple cycles. This indicates no variations of 
traffic patterns over different cycles in the plot. The reason is that traffic signal parameters are 
generally governed by dominant cyclical patterns while variations from cycle to cycle are usually 
limited with TOD operation. Moreover, the aggregation can help reduce the data noise from the 
detector, and make it easy to evaluate the average performance of a timing plan. Two steps are 
involved to generate a link TS-Diagram, described as follows. 

Step 1. Aggregating high-resolution event-based data 
In this step, both detector and signal data are aggregated. The detector event data is aggregated as 
the average cyclic flow profile (CFP), i.e. the interval volume over time within a cycle. Note 
that, the CFP has been used in TRANSYT-7F and SCOOT system (Wallace et al., 1998; 
Robertson & Bretherton, 1991), as well as some other researches for offset optimization (Abbas 
et al., 2001;Gettman et al., 2007; Day & Bullock, 2011). Here, we calculate the CFP of the 
through traffic at the link entrance, based on the advance detector data. To do so, the time 
instances of vehicle arrivals at the link entrance are estimated first. Depending on the queue 
impacts on the detector data, two cases need to be considered. 

Case A: Queue does not propagate to the advance detectors  
In this case, all vehicles would travel from the entrance to detector location in free flow speed. 
Hence, the arrival time at entrance are estimated by simply shifting the arrival time at the 
detector location with free flow travel time, as expressed by formula (3.1). 

(݇)ݐ = (݇)ௗݐ െ 
௩

            (3.1) 

Where: 

 ,(݇) is arrival time of k th detector actuation event at link entranceݐ

  ,ௗ(݇) is start time of k th detector actuation event at detector location and is measured directlyݐ

݈ௗ is distance from detector location to the link entrance, and 

  . is free flow speedݒ

Case B: Queue propagates to the advance detectors 
In this case, vehicles may not all travel freely from the entrance to detector location, as some 
vehicles are delayed by the queue. Hence, the shifting in formula (3.1) is not applicable for all 
arrivals. Such cases can be identified with the queue over detector (QOD) phenomena from the 
detector data (Liu et al, 2009; Wu et al., 2010). This is illustrated in Figure 3.3. After the red 
starts, if a long queue exists, the detector will see vehicles standing at the detector location for 
unusually long time. The end time of this particular actuation event is when the vehicle on the 
detector starts to move after green starts, followed by queuing vehicles passing the detector at a 
saturated departure rate. In Figure 3.3, Point A indicates the time when queue propagates to the 
detector location. Point B indicates the time when the queuing vehicle on the detector starts to 



 

20 
 

move, and Point C indicates the time when the last queuing vehicle passes the detector. The 
arrivals between points A and C are delayed by the queue, and need further adjustment to 
estimate their arrival times at the entrance. The corresponding detector status is also shown in 
Figure 3.3. 

 To estimate the arrival time of the delayed vehicles, we adopt the algorithm in (Liu et al., 
2009). Essentially, the algorithm attempts to identify three points A, B, and C based on the 
occupancy times and the time gaps from the vehicle-detector actuation event data. The points A 
and B can be identified as the start and the end of a detector event with long duration time. Point 
C, the end of queue departure, could be identified as the end of consecutive saturated departure 
events after green start, followed by a large gap. For more details of identifying point A, B, and 
C, we refer to (Liu et al., 2009). After the points A, B, C are identified, the arrivals are assumed 
as uniform arrivals between Point A and C, as expressed in the formula (3.2). 

(݇)ݐ = ቐ
ௗ(݇)ݐ + (ିಲ)

ିಲ
ௗ(݇)ݐ] െ [ௗ(݇)ݐ  െ 

௩
݇ ݎ݂, א [݇,݇]

(݇)ௗݐ െ 
௩

݁ݏ݅ݓݎ݄݁ݐܱ,
    (3.2) 

Where: 

݇ is index of detector event starts at Point A, and 

݇ is index of detector event at Point C. 
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Figure 3.3 Illustration of queuing at intersection with QOD 
 Based on the estimated arrival times at the entrance, the interval volume can be then 
calculated using formula (3.3). 

(݆)ݍ = σ {݆οݐ  (݇)ݐ < (݆ + 1)οݐ}, ݆ ݎ݂ = 1,2 …ܶ.ே
ୀଵ      (3.3) 

Where: 

 ,is volume of j th interval over investigation period (݆)ݍ

οݐ is the length of interval, 

݆ is the index of interval over investigation period, 

ܰ is the total number of detector events, 

ܶ is the total length of investigation period, normalized by οݐ, and 

{. } is the indicator function, with 1 if condition within bracket is satisfied, and 0 otherwise: 
Then, the average CFP can be obtained by aggregating interval volume over cycles using 
formula (3.4). One example of the CFP with 5 sec interval is shown Figure 3.4. 

(݅)ොݍ = σ ()ಾ(ೕ,)స
ே

, ݅ ݎ݂ = 1, …  (3.4)       .ܥ,

 Where: 

 ,ො(݅) is flow of i th interval over time within cycle, as the CFPݍ

ܰ is total number of cycles during investigation period,  

 and ,ݐis for cycle length, which is the cycle length divided by ο ܥ

Mod (,) is the modulo operator. 
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Figure 3.4 Example of CFP 

 Based on signal event data, the average green start and end of the associated phase are 
calculated by formula (3.5). For simplicity, yellow signal is treated as part of red signal. 

൞
ҧௌ௧ݐ = σ ௌ(௧ೄ(),)ಿ

ೖసబ
ே

ҧாௗݐ = σ ௌ(௧ಶ(),)ಿ
ೖసబ

ே

          (3.5) 

Where: 

 ,ҧௌ௧ is the average green start time over time of cycleݐ

 ,ௌ௧(݇) is the time of k th green startݐ

  ,ҧாௗ is the average green end time over time of cycleݐ

 ாௗ(݇) is time of k th green end, andݐ

all variables including ݐҧௌ௧, ݐௌ௧(݇), ݐҧாௗ, ݐாௗ(݇) DUH�QRUPDOL]HG�E\�¨W� 

Step 2. Generating Virtual Trajectories 
The CFP, average green start and end will be used to generate the link TS-Diagram. Before 
plotting, based on the CFP, a sequence of time instances at the link entrance will be generated, 
simulating virtual vehicles entering the link. This is a little tricky, due to the non-integer flow 
rate during an interval. For instance, with a 5 sec interval length, if a 1800 vehicle per hour (vph) 
flow rate is observed for the 1st interval, and 800 vph for the 2nd interval, , the problem is then 
to simulate 2.5 vehicles during 1st interval window, and 1.25 vehicles for the 2nd interval. One 
approach is to rounding up the numbers of vehicles, but it will introduce substantial rounding up 
errors. Instead, we simulate 250 vehicles equally spaced in the 1st interval, and 125 vehicles in 
the 2nd interval. Then, 100th, 200th, and 300th vehicles over the 10 sec horizon will be selected 
as the virtual arrivals to generate the trajectories. This approach can be viewed as generating 
fraction of vehicle based on flow rate. Then fractions are accumulated as whole vehicles. 
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 At each time instance, a vehicle is simulated traversing from the entrance to stop bar, 
using the Newell's simplified car following model (Newell, 2002). In Newell's model, the 
follower's trajectory is simply a temporal-spatial translation of the leader in car-following mode. 
The calculation is expressed in formula (3.6).  

ݐ)ݔ + ߬) = (ݐ)ିଵݔ}݊݅ܯ െ ݀, (ݐ)ݔ +  }        (3.6)ݒ߬

Where:  

 ,are the trajectories of the leader and follower respectively (ݐ)ݔ,(ݐ)ିଵݔ

߬ is the time displacement, and 

݀ is the space displacement. 

 To account for the signal impact, a dummy vehicle based on red signal is generated as the 
first leading vehicle within the cycle. The procedure is repeated cycle by cycle to expand the 
plot. The illustration of the dummy vehicle is shown in Figure 3.5. 
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Figure 3.5 Illustration of car following and dummy vehicle. 

3.3 Validation of TS-Diagram 
Two cases are demonstrated, using data collected on Trunk Highway (TH) 55 and TH 13 in 
Minnesota. Both arterials are operated with vehicle-actuated coordinated control. Here, the 
parameters of the car following model are not calibrated but using typical values. In details, the 
post speed limit was used as the free flow speed, around 50 mph. 30 ft and 1.6 sec were used for 
the space and time displacement, approximately leading to jam density of 175 vehicle per mile 
(vpm) and capacity of 1800 vph. 

3.3.1 Case 1: TH 55 
Five intersections on TH 55 deployed with the SMART-Signal system are highlighted, with data 
collected on Nov 17th, 2008, from 7:15 AM-8:45 AM, when the morning peak timing plan was 
running. The TS-Diagram are shown in Figure 3.6, with arterial layout. In addition to the 
advance detectors, there were also temporary detectors at the link entrances for research purpose. 



 

24 
 

The eastbound (EB) and westbound (WB) trajectories are plotted with blue and red lines, 
respectively. The associated signal status for each direction was plotted facing the corresponding 
trajectories. As can be seen clearly, although the link TS-Diagrams were constructed 
independently, the traffic patterns were consistent across intersections, reflecting the consistent 
progression impact from the signal. This can also be viewed as a preliminary validation of traffic 
patterns in the TS-Diagram. 
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Figure 3.6 Layout and TS-Diagram for TH 55 Time 

 Using data from the entrance detectors, a comparison was conducted, regarding the 
estimated and observed CFPs at the entrances. For each link, the total volumes from advance 
detectors and entrance detectors were balanced to reduce the impacts from the sinks and sources. 
The result is shown in Figure 3.7. As we can see, the estimated CFPs match well with the 
observed CFPs, indicating good estimation by the proposed method. 
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Figure 3.7 Estimated CFPs VS Observed CFPs for EB (Up) and WB (Down) traffic 

3.3.2 Case 2: TH 13 
In this case, seven intersections on TH13 with the SMART-Signal system were selected. The 
data was collected during afternoon peak period, from 4:30 to 6:00 PM, on Jul 23, 2013, with 
GPS data of nine field rides through the selected intersections. The TS-Diagram is shown in 
Figure 3.8, with the field ride trajectories in black. Note that, the field rides were actually made 
during several cycles, but were plotted within a single cycle based on individual departure time 
within each cycle at both ends of the arterial. 

 As indicated in the figure, the EB trajectories match well with the generated TS-Diagram, 
while some disagreements were found, indicated by letter A and B. This is expected as the TS-
Diagram only reflects the average conditions, and cannot reflect the variations of the green start 
due to side street actuations and pedestrian calls. Similar disagreement was found for WB 
trajectories at Int. 6, denoted by C. However, significant disagreements were observed for WB 
trajectories approaching Int. 5, denoted by D. This was mainly due to the occurrence of WB 
oversaturation and residual queues at Int. 5. Due to the residual queues, the repetitive patterns 
were interrupted, resulting in amplified variations over cycles. This is evident from the 
significantly different trajectories traversing the intersection, while the vehicle entered the link at 
similar times within cycle. This indicates a limitation of the proposed TS-Diagram for the 
oversaturated intersections. 
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Figure 3.8 TS-Diagrams for selected intersections on TH 13 

3.4 Fine-Tuning Using TS-Diagram with Offset and Lead-Lag Sequence 
To illustrate the potential application of the TS-Diagram, an experiment was carried out to adjust 
the offsets and main street phase sequence, i.e. the lead-lag sequence, indicating whether the 
main street left turn phase is leading or lagging the through phase, for a eight-phase dual-ring 
NEMA controller. For the offset, we use green start of first coordinated phase as the reference 
point. Regarding the lead-lag sequence, there are four possible configurations for an eight-phase 
dual-ring NEMA controller, as shown in Figure 3.9. The configuration can be identified easily 
from the shape of overlapping green signals in the TS-Diagram. 
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Figure 3.9 Offset reference point and combinations of lead lag sequence 

 So far, the TS-Diagrams are generated based on average data, reflecting the average 
traffic conditions. Many agencies, however, may concern about traffic signal performance for 
congested traffic conditions. To address such concerns, we also construct the TS-Diagram for 
relatively congested conditions, which will be the base of the analysis hereafter. To do so, when 
aggregating the raw data, the cycle volumes are calculated and ranked. Then, cycles with high 
cycle volume is kept and the rest will be filtered out. Here, we kept data with the highest 60-100 
percentiles cycle volumes for each intersection, and constructed the TS-Diagram for the 
congested conditions. In practice, the criteria can be user specified, while our choice of 60-100 
percentiles is to reflect relatively congested yet not extreme cases.  

 Both of the TS-Diagrams are shown in Figure 3.10, with Int.1 to Int. 5 of TH13 
highlighted for analysis. The data was collected on four consecutive weekdays, 10/28/2013 to 
10/31/2013, during 7:15 to 8:45 AM, for the evaluation of morning peak timing plan. Note that, 
while main traffic patterns remained similar, the queues were clearly longer in the congested 
case than the average case, indicated by letter A and B. 
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Figure 3.10 TS-Diagrams for selected intersections on TH 13 with average (left) and 
relatively congested conditions (right) 

 For a two-way coordinated arterial, trade-off exists for traffic in the opposite directions. 
With TS-Diagram, established method e.g. MAXBAND or combination method (Morgan & 
Little, 1964; Gartner & Little, 1975; Day & Bullock, 2011) can be incorporated easily for 
optimization. Here, instead of using a specific optimization method, we performed a quick, 
visual based evaluation of the TS-Diagram for the changes. Indeed, this would involve 
engineering judgment, and may lead to sub-optimal solution. For the sake of illustration, we will 
the visualization approach with this analysis, leaving systematic optimization for future research. 

 First, the queue length and delays were identified from the TS-Diagram. In Figure 3.10, 
the EB cases are indicated by letter A and B, with the WB cases by C and D. The offsets were 
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first fine-tuned for the direction with larger volume. The opposite direction was optimized next. 
Here, the EB was favored with a higher volume. The queues indicated by A and B, in the 
congested case, could be reduced by slightly shifting offsets to the left. The tradeoff exists with 
degraded WB performance at Int. 3 and Int. 4. This, however, should be minimal with the lower 
volumes. The decision was made to shift the offset at Int. 4 to the left for 4 sec, and 4 sec further 
to the left for offset at Int. 5, with a total 8 sec to the left at Int. 5. The 4 sec was selected 
arbitrarily because we want implement small adjustments only. 

 For the WB cases, to reduce the queue labeled with C, either the offset at Int. 3 needs to 
be shifted to the left, or offsets at Int. 4 and Int. 5 to the right. If offset at Int. 3 were shifted to the 
left, the end of EB platoon at Int.3 would be cut off and delayed by the red. If offsets at Int.4 and 
Int.5 were shifted to the right, the EB queues and delays would increase at Int. 4. Considering 
queue labeled with D, the end of the WB platoon was close to the green end, and would be 
delayed if offset were shifted to the left. Considering the overall benefit, no offset changes were 
justified regarding the WB cases. 

 Next, lead-lag sequences were evaluated. Here, we search for configuration of the lead-
lag sequences that provides the max green window for the platoons in both directions. One 
example of a proper lead-lag sequence is indicated by E. The overlapping shape of platoon 
arrivals (EB first), indicated by the blue and red parallelograms was consistent with the 
overlapping shape of the green windows (EB first) for the two directions. This indicates the 
current setting of Lag (phase 1)-Lead (phase 5) was appropriate at Int.2. The intersections were 
evaluated one by one with similar logic. One potential change was identified, indicated by F. In 
this case, the end of EB platoon was cut off by the red signal, and could be better served by 
changing the Lead-Lead to Lead-Lag. The change was then granted. In addition, to accommodate 
the lead-lag change, the offset in Int. 3 was also shifted 7 sec to the left, so that there would not 
be unused EB green time after the end of EB platoon. 

 The offset and lead-lag changes are summarized in left part of Figure 3.11. For better 
illustration, the shifts of individual phases are indicated by the arrows. The changes were 
implemented from 11/05/2013 to 11/07/2013. Due to a connection issue, the data for 11/06/2013 
was not available. The TS-Diagram generated using data collected on 11/05/2013 and 
11/07/2013 is shown on the right part of Figure 3.11. 

 Slight changes of traffic patterns were found from Figure 3.11. For EB traffic, the 
shockwave at Int. 2, indicated by A, was slightly reduced. The EB arrivals near the start of red at 
Int.3 was better accommodated, indicated by B. No obvious change was found for the EB 
arrivals at Int.4, indicated by C. This is intriguing given the relatively large shift of EB phase at 
Int. 3. If observed carefully, the density of the lines for the arrivals has changed slightly as 
circled by the blue parallelograms, and both arrivals showed slight inconsistency with departures 
at Int. 3. The potential interpretation is as follows: in the before case, the drivers decelerated with 
anticipation of the queue formation, and the queuing profile at Int. 4 were based on the delayed 
arrival time, and were underestimated. For WB traffic, degraded performance was found at Int.1, 
Int.3 and Int.4. Some improvements were found at Int. 2, labeled by E, likely because main street 
arrivals near the green start and arrivals from the site street at Int. 3 were better coordinated. 
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Figure 3.11 Before-After comparisons of TS-Diagrams with relatively congested condition 
 For further validation, the queue length and delay were estimated by the SMART-Signal 
system (Liu & Ma, 2009; Liu et al., 2009; Wu et al., 2010), and the results are summarized in 
Figure 3.12 and Table 3.1. As indicated in Figure 3.12, average maximum queues were reduced 
for most of EB phases, while slightly increased for the WB phases. This is consistent with the 
TS-Diagram, as the proposed changes favored EB over WB traffic.  
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Figure 3.12 Before-After comparison of maximum queue length from SMART-Signal 
System 

 As indicated in Table 3.1, the average delay for EB travel was reduced by 14%, with 4.6 
sec/veh, while for WB traffic, it increased by 4%, with 2.7 sec/veh. Overall, with the higher 
volume of EB traffic, the total delay was reduced by 4%, i.e., 163.8 veh sec/cycle. 

Table 3.1 Before-After comparison of delay from SMART-Signal System 
Average  Before After Abs. Change Per. Change 

EB Vol. (vph)  1314 1310 -4 0% 
EB Delay (sec)  32.4 27.8 -4.6 -14% 
WB Vol. (vph)  1003 1007 4 0% 
WB Delay (sec)  65.3 68 2.7 4% 

Cycle Delay (Veh*Sec)  4607.6 4443.8 -163.8 -4% 

3.5 Conclusions 
In this chapter, we proposed a practical procedure to construct the TS-Diagram for progression 
visualization of signalized arterials. The TS-Diagram can be constructed periodically based on 
high-resolution event-based traffic data that can be collected automatically and continuously. 
The field examples with validation were illustrated for the proposed procedure. Reasonable 
agreements were found based on entrance detectors data and field ride trajectories. A field 
experiment was carried out to illustrate the potential application of TS-Diagram, with focus on 
fining-tuning offsets and lead-lag sequence. Based on visual evaluation of the TS-Diagram, 
changes were recommended, and 4% reduction of total delays was achieved. 
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CHAPTER 4 
GREEN SPLITS EVALUATION AND FINE-TUNING 

This chapter will introduce the performance evaluation and fine-tuning module for the green 
splits. 

4.1 Measure of Effectiveness for Green Splits 
Assigning green splits proportionally to traffic demands is a simple while effective rule to 
determine green splits. To evaluate the performance of green splits, classical measures of 
effectiveness (MOE), the volume/capacity ratio (v/c ratio) is commonly used when designing 
signal timing parameters. However, in the conventional practice, the v/c ratios are only 
calculated during signal retiming process with manual collected data, and are not monitored 
continuously. Although the practice is limited, there are some researches trying to calculate v/c 
ratios using the detector and signal data for evaluation of the green split and cycle length (Balke 
& Herrick, 2004; Balke et al., 2005; Smaglig et al., 2007; Day et al., 2010a; Sunkari et al., 2011). 

 The green splits fine-tuning module proposed here can be viewed as an extension from 
(Smaglig et al., 2007; Day et al., 2010a). The main difference is, instead of using detector 
volume directly, we proposed a new MOE, the Utilized Green Time (UGT), extended from the 
queue service time (QST) for green split evaluation. The purpose is to address the issue that 
volume measured at stop bar detectors could be inaccurate, since the stop bar detectors are 
mainly for vehicle presence detection, especially when long or sequential detectors are used 
(Lawrence et al., 2006). 

4.1.1 V/C Ratio 
 

ܺ (݆) =

The v/c ratio indicates saturation level of a specified signal phase (TRB, 2000), and can 
be cal



culat


ed
()

 cycle-by-cycle, as: 

            (4.1) 

ܺ(݆)
ܸ

W

(

h

݆

er

)

e: 
௦௫()

ݏ


 is the v/c ratio of phase i, for j th cycle, 



 is the flow rate of phase i, for j th cycle, 

ݔ

 

(
is

݆)
 sa

=
tu

r


a
(
tio
) 

n flow rate of phase i, 

  is the green split, and, 

is the green time. ݃(݆) 
When long or sequential detectors are used, vehicle counts could be inaccurate. This is 

because consecutive arrivals may only cause a single detector actuation event with long duration 
length. One example from a sequentially connected detector at stop bar is shown in Figure 4.1, 
with example of detector actuation events. In such cases, occupancy-based measures will be 
more desirable. 
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Figure 4.1 Example of traffic events from long detector at stop bar 

4.1.2 Queue Service Time (QST) 
Another important MOE is the Queue Service Time, defined as the length of green time used to 
clear the queue (TRB, 2000; Balke & Herrick, 2004). Balke & Herrick (2004) proposes to use 
the time elapsed from the green start to the start of first time gap identified from stop bar detector 
data, as the QST. This is based on the assumption that queuing vehicles will constantly place 
calls on stop bar detector until queue is cleared, which may not be the case if the detector is not 
long enough. Alternatively, we propose following formula for QST calculation. The key is to 
identify the end of queue departures, by detecting the first large gap from detector events. Here, a 
threshold gap value of 2.5 sec is used. An illustration of QST is shown in Figure 4.2. 
ܳܵ ܶ(݆) = (݆)ொ,ݐ െ  , (݆)          (4.2)ீݐ

Where: 

ܳܵ ܶ(݆) is the queue service time for phase i, for j th cycle. 

 ொ,(݆) is the end of queue departure, and is identified as the start of the first gap larger than 2.5ݐ
sec after green start, and 

 .,(݆) is the start of greenீݐ
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Figure 4.2 Illustration of QST 

4.1.3 Utilized Green Time and Slack Green 
While QST represents green time to clear the queue, it does not account for green time used by 
the vehicles that are not queuing. Based on the QST, the following formula is proposed to 
calculate the Utilized Green Time (UGT), as the total green time needed to serve the demand 
within a cycle. In the formula, the first part is the QST, while the second part represents the 
minimum green time needed to serve the rest of arrivals. 

ܩܷ ܶ(݆) = ܳܵ ܶ(݆) + ݄௦, × ݊(݆)         (4.3) 

Where: 

ܩܷ ܶ(݆) is utilized green time at phase i, for jth cycle, 

݄௦, is the saturation headway for phase i (2 sec in our study), and  

݊(݆) is number of random arrivals within green time after queue is cleared, at phase i, for j th 
cycle. 

 An example of calculation of QST and UGT is shown in Figure 4.3. As indicated in the 
figure, the green start is indicated as ݐ , and the end of queue departure is indicated as ݐ , 
followed by a relatively large gap with four additional arrivals. Hence, the QST is (ݐ െ  ,(ݐ
while the UGT is (ݐ െ ݐ + 4 ×  .(ܿ݁ݏ 2
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lack green, , unutilized to serve the traffic, can be calculated as: 

            (4.4) 

 Based on the slack green, the phase failure can be identified for cycles without any slack 
green, meaning that the green time may not be sufficient to serve all the demands within one 
cycle. 

 ݃ௌ,
݃ = ݃ െ ܶܩܷ

Figure 4.3 Example of QST and UGT calculation 

4.2 Green splits rebalancing based on UGT 
For vehicle-actuated signals, traffic engineers are typically concerned with phase failures for 
non-coordinated phases. Therefore, the recommended fine-tuning rule is to maintain acceptable 
slack green time for each phase to reduce the potential phase failures (Day et al., 2010a). In 
addition, since the progression quality of coordinated phases is another major concern, the green 
split rebalancing is restricted to non-coordinated phases only. 

 In addition, since NEMA controller operates the two rings concurrently, in order to 
compare the phase utilization across different phases, the critical phases need to be identified 
first. The critical phases are phases with higher green utilization, hence, smaller slack green, than 
the concurrent phases on the other ring. General speaking, these are relatively more congested 
phases. For a typical eight phase NEMA dual ring controller, following rules can be used to 
identify the critical phases based on the slack green, excluding the coordinated phases.  

x For phase 1, 5, if ݃௦,ଵ < ݃௦,ହ, phase 1 is critical phase. Otherwise, phase 5 is critical 
phase. 

x For phase 3, 4, 7, 8, if ݃௦,ଷ + ݃௦,ସ < ݃௦, + ݃௦,଼, then phase 3 and 4 are critical phases. 
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Otherwise, phase 7 and phase 8 are critical phases. 

 Once the critical phases are identified, the splits can be first rebalanced across the critical 
phases. Since more slack greens exist at non-critical phases, further balancing across non-critical 
phases can be easily done to accommodate the changes at critical phases. 

4.3 Split Fine-tuning Example 
To demonstrate the split fine-tuning, an example is illustrated based on one of the intersections 
on TH13. Figure 4.4 shows the layout of the selected intersection, at Nicollet Ave & Highway 
13, Burnsville. The ring-and-barrier diagram is also shown in the figure. Six phases are used with 
a cycle length of 130 seconds, with phase 2 and 6 as coordinated phases, and the rest phases, 
phase 1, 3, 4, 5, non-coordinated. The numbers on the green bars in the ring-and-barrier diagram 
show the max green time, plus yellow and red clearance time. The detector and signal data used 
were collected during 1:30 pm to 3:00 pm, from 7/08/2013 to 7/12/2013, Mon to Fri.  

22s

15s

58s 25s 25s

65s

p1
p2

p4 p3

p6 p5

 
Figure 4.4 Intersection layout and ring-and-barrier diagram of the signal timing 

 In Figure 4.5, cycle-by-cycle green time with UGTs was plotted for the non-coordinated 
phases. The X-axis denotes the cycle index, while the Y-axis shows the length of time duration. 
The purple lines indicate the separation between two consecutive days. From the figure, varying 
green time was clearly shown at phase 1, 3, 4. Due to the fixed force off setting at coordinated 
phase 6, phase 5 was essentially operated as fixed-time. For phase 4 and phase 5, relatively high 
proportion of green has been utilized, with small slack green left, indicated by letter A. For phase 
1 and phase 3, on the contrary, relatively large slack green was observed, indicated by letter B. 
This indicated opportunities to rebalance the green splits among the four. 
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Figure 4.5 Green Time VS Utilized Green Time 
 After the aggregation of 5 days data, average statistics were summarized in the table in 
Figure 4.6. The information was further tabulated within the ring-and-barrier diagrams, for more 
intuitive interpretation. In the ring-and-barrier diagram, the green bar indicates the average green 
time, while the blue bar indicates the average UGT. For brevity, the yellow and red clearance 
signals were not plotted. The values of the UGT and green time were also denoted nearby the 
diagram, and were stated in the format as "Phase ID-UGT/Average Green, (Phase Failure rate)". 
For instance, "P3-9/15 (19%)", represents for "Phase 3 with 9 sec UGT, 15 sec Average Green, 
and a 19% phase failure rate". 

 Then, the critical phases were identified. The slack green at phase 5 was 2 sec, which was 
shorter than slack green at phase 1; hence, the phase 5 was the critical phase. Since no phase 7 
and 8 were used, phase 4 and phase 3 were critical phases. Among the critical phases 5, 4 and 3, 
it would be feasible to reduce max green time for phase 3 slightly, with increase at phase 4 and 5, 
particularly when considering the relatively high phase failure rate with 57% and 36% at phase 5 
and 4 respectively. 
 
 

Table 4.1 Average Values for the MOEs 

Phase 
ID 

Max Green 
(s) 

Average Green 
(s) 

UGT 
(s) 

Slack 
Green (s) 

Phase Failure 
Rate2 

1 17 15 8 7 3% 
51 10 8.0 6 2 57% 
4 18.5 19 14 5 36% 
3 18.5 15 9 6 19% 

1: underline indicates this is a critical phase; 

2: phase failure rate is the proportion of cycles with phase failures. 
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 Phase 3, UGT: 9 s, Average Green: 15 s, 

 Phase Failure Rate: 19%. 

P1-8/15
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P6-N/A

P2-N/A P3-9/15 P4-14/19
(19%) (36%)

P5-6/8
(57%)

 

Figure 4.6 Ring-and-barrier diagrams with UGTs 

4.4 Conclusions 
In this chapter, we propose a new MOE, the UGT for green splits evaluation, based on queue 
service time. The proposed calculation of UGT explicitly considers the queuing process for 
better estimation of queue service time. The calculated statistics can be easily tabulated within 
the Ring-and-barrier diagram, to facilitate visual evaluation. The calculation is illustrated by an 
example using field collected data. 
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CHAPTER 5 
OPTIMIZING AND FINE-TUNING TIME OF DAY TRANSITIONS 

In this chapter, we will introduce the optimization and fine-tuning algorithm for Time of Day 
transitions among different timing plans for coordinated arterials. 

5.1 Introduction 
Urban traffic typically possesses time-dependent patterns over time of day, e.g. peak hour pattern 
and non-peak hour pattern. To accommodate these traffic patterns, traffic signal system 
commonly implements different timing plans over time of day (TOD), which is the TOD 
operation. In the current practice of signal operation, due to the lack of convenient, easy-to-use 
optimization tools, transitions between different timing plans, or TOD transitions for short, are 
largely determined based on engineering judgments. It may thereby lead to an inefficient 
operation of traffic signals systems. To reduce such deficiencies, we aim at developing an easy-
to-use, while theoretically sound, approach to assist traffic engineers to determine proper TOD 
transitions using detector and signal status data for signalized arterials. 

 Even though it is limited in practice, several researches so far have proposed 
methodologies aiming at systematically optimizing TOD transitions. Among work been reported, 
statistical clustering approach has been a popular choice to identify proper TOD break points. 
The essence is to group time periods into different clusters based on specific measures. Smith et 
al (2001) deployed a hierarchical statistical cluster approach to determine TOD points. In their 
work, TOD candidates were eliminated based on Euclidian distance using state vectors of 
volumes and occupancies. In Wang et al. (2005), a non-hierarchical clustering, the K-Mean 
clustering is used. The main difference with the hierarchical clustering method is the simpler 
calculation. However, the algorithms in both work may generate unreasonable clusters, the 
outliners (Park et al., 2004), that will lead to unrealistic, frequent transitions. And subjective 
interventions are required before implementation. To reduce outliners, more recently, Ratrout 
(2010) proposed to use Z-Score of the volume in lieu with time, to construct state vector for 
clustering. Commercial software i.e. SYNCHRO and SimTraffic were then integrated into the 
proposed procedure for optimization. 

 Instead of using statistical approach, other researches focus on refining TOD transitions 
based on performance measures such as delay or stops, assuming that initial TOD break points 
are given. In this way, signal performance could be considered more explicitly. For instance, 
Park et al. (2004) proposed a two-stage optimization procedure using genetic algorithm (GA) to 
determine optimal TOD breakpoints. The inner loop optimizes splits and cycle length based on 
delay formula from HCM (TRB, 2000), while the outer loop refines the TOD break points to 
minimize total delay. However, neither the coordination impact nor transition cost was taken into 
account. Later, Park & Lee (2008) proposed a procedure utilizing micro-simulation to determine 
optimal TOD break points. Initial breakpoints are determined by visually inspecting optimal 
cycle length first, and are then refined based on performance measure calculated by a micro-
simulation software e.g. CORSIM. In Abbas & Sharma, (2005), a multi-objective evolutionary 
algorithm based approach is proposed to optimize TOD break points. They proposed the degree 
of detachment (DOD) as a performance measure for transition frequency of signal plans. The 
DOD, together with delay and stop, is then used to determine Pareto optimality regarding TOD 
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transitions. Signal optimization software, PASSER V, was used to generate optimal signal timing 
parameters within each period, as well as calculating delay and stops. 

 From pervious researches, several shortcomings can be summarized. Some approaches, 
e.g. Smith et al. (2002) and Park et al (2004) do not take into account coordination quality of 
signal plan, but only concentrate on performance at individual intersections. Other researches 
rely on micro-simulation to calculate performance measure. To properly set up such evaluation, 
substantial efforts e.g. calibration, are incurred and accuracy may vary on a case-by-case basis. 
Moreover, the majorities of these approaches are aiming at design stage of signal timing, and 
may not be appropriate in cases when only some refinements are desirable after the signal 
retiming. 

 In this chapter, we propose an easy-to-use approach to fine-tune TOD transition, by 
revisiting the approaches proposed in Park et al. (2004) and Park & Lee, (2008). Different from 
previous methods with focus on the design stage of signal timing, the scope of the proposed 
procedure is restricted to refining TOD transitions, assuming that signal plan parameters are 
given and remain unchanged. Moreover, we assume that initial TOD transitions are available as 
well. For delay calculation, instead of using micro-simulation, we use HCM formula with 
explicit consideration of coordination quality. To estimate green duration of actuated traffic 
signals for delay calculation, a signal estimation model is proposed and validated using field 
collected data. The proposed approach could be particularly beneficial for practitioners to fine-
tune TOD transitions for signalized arterials in the parameter fine-tuning process during signal 
retiming. 

5.2 Methodology 
Considering two timing plans at two joint TOD periods, our objective here is to determine an 
appropriate transition point between the two. If transition between two plans can be determined, 
the procedure can be similarly applied to determine transitions of several timing plans over the 
entire day. To determine such transition, here, the focus is on calculating performance measure 
for the candidate timing plans. As a popular choice, the total delay, which includes delays at all 
associated intersections, is selected as the performance measure. For coordinated arterials, the 
total delay can be further grouped as delays at coordinated phases and delays at non-coordinated 
phases, as expressed in Eq. (5. 1). 

(ࡿ,ݐ)ܦ = σ ,ݐ)[,]ܦ א[,](ࡿ + σ א[,](ࡿ,ݐ)[,]ܦ       (5.1) 

Where: 

  ,ࡿ is the total delay at time t, depending on k th candidate signal timing (ࡿ,ݐ)ܦ

 ,is the delay for the lane with a non coordinated phase (ࡿ,ݐ)[,]ܦ

  ,is the delay for a lane group with coordinated phase (ࡿ,ݐ)[,]ܦ
[݅, ݆] denotes this is phase group j, at Int. i, and, 

 . are the sets of lane groups with non-coordinated and coordinated phases, respectively,
 After optimal timing plans with minimum delays are selected, TOD schedules can be 
determined correspondingly. This is expressed in Eq. (5. 2). 

(ݐ)כࡿ = argmin(5.2)          {(ࡿ,ݐ)ܦ}ࡿ 
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5.2.1 Delay at Non-coordinated Phases 
For non-coordinated phases, HCM delay formula is used (TRB, 2000), similar to Park et al. 
(2004). The calculation is expressed by Eq. (5.3). In the formula, the first term, ݀ଵ, estimates 
uniform control delay, and the second term, ݀ଶ, estimates overflow delay. For the sake of 
brevity, subscript [i, j] is dropped in the right hand side of the formula. 

(ࡿ,ݐ)[,]ܦ = ݀ଵ + ݀ଶ = ݒ ቊ .ହቀଵିቁ
మ

ଵିቂ୫୧୬(ଵ,)×
ቃ

+ 900ܶ ቈ(ܺ െ 1) + ට(ܺ െ 1)ଶ + ଼
் ቋ   (5.3) 

Where:  

C is the cycle length (s),  

g is the effective green time (s),  

T is duration of analysis period (h),  
k is the incremental delay factor depending on controller setting,  

l is the upstream filtering and metering adjustment factor,  

v is the lane group volume (veh/hour),  

c is the lane group capacity (veh/h), and, 

X is volume to capacity (v/c) ratio = ௩
/. 

5.2.2 Delay at Coordinated Phases 
Eq (5.3) is only suitable to estimate delay with uniform arrivals. Due to coordination impact, the 
arrivals at the coordinated phases generally cannot be assumed as uniform arrivals. Instead of 
using Eq (5.3) directly, we calculate the first term of Eq (5.3) at coordinated phases based on a 
simplified arrival and departure process between two intersections. Here, we assume that main 
street departure is uniform during green of coordinated phases, and departure from side street is 
uniform during red. Hence, delay can be calculated numerically, based on the diagram shown in 
Figure 5.1. Note that, this is similar to Hu & Liu (2013). The second term of Eq (5.3) for 
calculation of overflow delay, remains the same. 
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Figure 5.1 Illustration of delay calculation at coordinated phases 
Based on the Figure 5.1, delay can be calculated as the accumulative difference between 

arrival traffic and departure traffic. This is expressed in Eq. (5.4). 

݀ଵ = οܶ{ܣ(݅) െ݉݅݊[ܦ,(݅)ܣ(݅)]}


ୀଵ
 

= οܶ ቄσ ۂ/ο்ہ(݅)ܣ
ୀଵ + σ (݅)ܣ]}ݔܽ݉ െ ܿ × (݅ െ ,[(ݎ ۂ/ο்ہ{0

ୀہ/ο்ۂାଵ ቅ    (5.4) 

Where: 

οܶ is the time interval to discretize a cycle,  

 ,is the accumulative number of vehicle arrivals (݅)ܣ

 ,is the accumulative number of vehicle departure, and (݅)ܦ

ܥ is the effective red time, equals to ݎ െ ݃. 

 Based on upstream volume and signal status, the flow rate ܽ(݇) can be calculated as: 

ܽ(݇) = ቐ
ೠ,ೞ
ିீೠ

, ݇ ݁݉݅ݐ ݐܽ ݀݁ݎ ݏ݅ ݈ܽ݊݃݅ݏ ݉ܽ݁ݎݐݏݑ ݂݅
ೠ,
ீೠ

,                                                                  ܱ.ܹ.       (5.5) 

Where:  

ܽ(݇) is the arrival flow rate at k th interval within cycle, 

 ,௨,௦ is the volume from the site street at upstream intersectionݍ

 ,௨, is the volume from the main street at upstream intersection, andݍ

 .௨ is the green length of coordinated phase at upstream intersectionܩ

 Then, the accumulative vehicle arrivals ܣ(݅) can be calculated by simply summing up 
flow rate ܽ(݇) as: 

(݅)ܣ = σ ܽ(݇)
ୀଵ            (5.6) 

5.2.3 Estimating Duration Length for Actuated Signals 
Clearly, from previous equations i.e. Eq. (5.3) and (5.5), green duration plays an important role 
in delay calculation. For fixed time signal control, green time is simply a constant that is 
unaffected by traffic demand. For actuated traffic signals, however, green time varies 
significantly with different traffic demands. To estimate green time for actuated signals, 
researches have been done before by calculating gap out and max out probability with random 
headways (Lin 1982a, 1982b; Akcelik, 1994). Here, we propose a simplified procedure to 
estimate green time for actuated signals. The main assumption is that the green time is a 
piecewise linear function depending on arrival volume and pedestrian calls within a cycle, 
bounded by minimum green and maximum green time. The function is illustrated in Figure 5.2. 
Depending on whether there are any vehicle calls, two cases are considered, as follows: 

 Case A) If no vehicle is at presence, the signal phase will be either skipped or 
maintaining pedestrian green plus clearance time if there are any pedestrian calls.  
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݂(ݔ, (ܫ = ݔ ݂݅    ,݃ܫ = 0           (5.7A) 

Where:  

  ,is cycle volume ݔ

 , is indicator of pedestrian call with 1 means calls and 0 means no callܫ

݂(ݔ,  ,is the duration of green time within a cycle, and (ܫ

݃ is the pedestrian green plus clearance time. 

 Case B)  If there are vehicle calls at presence, green time will linearly dependent with 
vehicle arrivals, constrained by a minimum and maximum green. In case if there are pedestrian 
calls, corresponding green time must not be smaller than pedestrian green plus clearance time. 

݂(ݔ, (ܫ = max {min{max(ܿଵ + ܿଶݔ,݃),݃௫},݃ܫ} ݔ ݂݅    , > 0;     (5.7B) 

Where: 

ܿଵ, ܿଶ are model coefficients,  

݃ is minimum green, and, 

݃௫ is maximum green.  

Overall, the function can be expressed as: 

݂(ݔ, (ܫ = ൜݃ܫ,                                                                                     ݂݅ ݔ = 0
max {min{max(ܿଵ + ܿଶݔ,݃),݃௫},݃ܫ},          ݂݅ ݔ > 0    (5.8) 
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Phase skipped 

Figure 5.2 Green duration depending on cycle volume without pedestrian calls (left) and 
with pedestrian calls (right) 

 Then, Eq. (5.8) is used to calculate average green time over relatively long intervals for 
further delay calculation. Here, 15 minutes evaluation interval is used, which is the default value 
from HCM. The average green conditioning on volume, ҧ݃(ݔ), can be calculated as: 

ҧ݃(ݔ) = ൣܧ ݂൫ݔ, ൧,ݒ|൯ܫ = σ ݂൫ݔ, ,ݔ൯Pr൫ܫ ൯௫,ூ,ݒ|ܫ        (5.9) 

Where:  

Pr (ݔ, ,ݔ) is probability for ൫ܫ  .൯ܫ
 ,is average cycle volume during a 15-minute evaluation period, and ݒ
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 . is probability of pedestrian calls during a cycle

 Assuming Poisson distribution for volume ݔ, and Bernoulli distribution for occurrence of 
pedestrian calls, ܫ, with additional assumption that ܫ ,ݔ are independent, we will have: 

Pr൫ݔ, ൯,ݒ|ܫ = ௩ೣషೣ
௫! 

ூ൫1 െ ൯
ଵିூ        (5.10) 

 Unfortunately, an explicit form for Eq. (5.10) is difficult to obtain. Instead, numerical 
calculation is used, which eventually leads to a table relating average green to volume and 
probability of pedestrian calls.  

 To better illustrate the estimation model described above, a numerical example is 
demonstrated here. Considering hypothetic parameters as,  = 10%, ܿଵ = ଶܿ ,ݏ 4 =  ,ݏ 3
݃ = ௫݃ ,ݏ 10 = ݃ ,ݏ 25 = ܥ ,ݏ30 =  then in such setting, green time over a cycle ,ݏ 160
without pedestrian call, ݂(ݔ, 0), is shown in sub-figure (A) in Figure 5.3. The average green 
time is shown in sub-figure (B) in Figure 5.3. The curves in sub-figure (B) is similar with but 
smoother than sub-figure (A), due to that ൣܧ ݂൫ݔ,  ൧ is simply a transformation of,ݒ|൯ܫ
݂൫ݔ,  ൯. The v1 and v2 in the figure refer to traffic volumes that minimum and maximum greenܫ

can serve correspondingly. 
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Figure 5.3 Cycle green duration depending on cycle volume (A) and average green duration 
depending on average volume (B) 

5.3 Case Study 
To test the proposed methodology, high-resolution event-based traffic data were collected from 7 
intersections on Trunk Highway (TH) 13, via SMART-Signal System (Liu et al., 2008; Liu et al., 
2013). The data was first used to verify the green time estimation procedure described in this 
chapter. Then, a simulation experiment was conducted to fine-tune the TOD transitions, based on 
a commercial traffic simulator VISSIM. The layout of interested segment is shown in Figure  
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Figure 5.4 Layout of interested segment from Google Map (Left) and layout of simulated 
road network in VISSUM (Right) 

5.3.1 Estimating green time 
The selected intersections run coordinated-actuated traffic signals. The through phases at main 
street, Highway 13, are designated as coordinated phases with site street phases in actuated 
mode. For left turn phases at main street, there are two configurations: if left turn phase is 
leading through phase, the left turn will be in actuated mode; if left turn phase is lagging through 
phases, it will be running essentially as fixed time control, to guarantee a fixed determination 
point (or reference point) for coordinated phases. A typical configuration, regarding whether a 
phase is coordinated, actuated or fixed, is illustrated by the ring-and-barrier diagram in Figure 
5.5. In this case, phases 2 and 6 for EB movement and WB movement are coordinated. Phases 5, 
4 and 8 are actuated. Due to fixed force off points associated with phase 2 and phase 1, phase 1 
will be fixed if there are any vehicle calls. Otherwise, phase 1 will be skipped. 
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Coordinated Fixed

2 1 4

5 6 8

(Phase 3,4,5,7,8 are actuated)  
Figure 5.5 Intersection layout and Ring-and-Barrier Diagram at Int. TH13 & Portland 

Ave. 
 Utilizing volume data collected from 10/21/2013 to 10/24/2013, Monday to Thursday, 
green time depending on volume for non-coordinated phases are estimated, using 4 sec for ܿଵ 
and 3 sec for ܿଶ. These two values of the model constants have been manually tuned so that the 
estimation yields a reasonable match with observed value. The results are plotted in Figure 5.6. 
Note that in sub-figure (A), as phase 1 is skipped in some cycles, the average green time over 15 
minute interval could be less than the fixed value which is 14.5 sec, as indicated by letter A. 
Clear biased estimations are shown for phase 4, indicated by letter B. This is due to that phase 8 
is more congested than phase 4, and hence is the critical phase in the two ring. Hence, the green 
time of phase 4 and 8 is mainly determined by demand at phase 8 rather than phase 4. At phase 5 
and 8, the estimated curves match generally well with observed data, while better estimation is 
found at phase 5. This is due to that there is only one lane at phase 5, while multiple detectors 
and lanes at phase 8. Hence, the extension mechanism at phase 8 is more complicated, and 
cannot be fully capture by the simple model proposed here. 
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Figure 5.6 Estimated green time VS observed green time depending on 15 minutes volume 
(A) phase 1, (B) phase 4, (C) phase 5 and (D) phase 8. 
 After duration of non-coordinated phases are determined, the duration of coordinated 
phases can be calculated, since the cycle length are fixed for coordinated signals. The 
comparison of estimated green versus the observed green for the coordinated phases is shown in 
Figure 5.7. As can be seen from the figure, the estimated values match the observed values 
relatively well for both of the coordinated phases. 

 
(A) 

 
(B) 

Figure 5.7 Estimated green time VS observed green time for coordinated phases 

5.3.2 Fine-tuning TOD based on delay 
 In the next, data collected on 10/28/2013, Monday, was highlighted to demonstrate the 
procedure for TOD transitions fine-tuning. The 15-min interval average volume on the main 
street was shown in Figure 5.8. Clearly, AM peak and PM peak periods can be identified based 
on the volume patterns. In the AM peak period, EB volumes is heavier than the WB volumes, 
while reversed volume condition exists during PM peak period. In total, there are 8 timing plans 
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in operation for weekdays. Periods with different timing plans are separated by black lines, 
indicating TOD transition points. For the purpose of illustration, here, we only focus on fine-tune 
TOD transition points between PM off-peak timing plan, and PM-peak timing plan, as indicated 
by the dash line in Figure 5.8. 

 
Figure 5.8 Main-street volume over time of day 
 PM off-peak plan runs from 1:30 PM to 3:00 PM, and PM peak plan runs from 3:00 PM 
to 6:30 PM. Hence, the transition point is at 3:00 PM. For PM off-peak plan, cycle time is set as 
130 sec, while 160 sec cycle time is used for PM peak plan. The green splits are comparable 
between the two plans at most of phases, except that slightly more green time is assigned to the 
main street phases in PM peak plan. 

 Based on the procedure described in section 5.3, the total delays over time for both of the 
plans are plotted in Figure 5.9. The blue line is delay assuming PM-peak plan is running all day, 
and red line is for PM-off-peak plan. As indicated in the figure, off-peak plan performs better 
throughout the day than the PM-peak plan. This is unexpected at first, but understandable when 
considering the longer cycle length for the PM-peak plan, as cycle length plays a critical role in 
delay calculation. In the original design for this case, cycle length is mainly determined based on 
traffic conditions at coordinated phases, which are prioritized than the non-coordinated phases. 
Nevertheless, based on Figure 5.9, the optimal choice regarding total delay would be to run off-
peak plan through 1:30 PM to 6:30 PM, instead of running two plans during this period. 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time of Day (h)

vo
lu

m
e (

ve
h/

ho
ur

,2
 la

ne
s)

 

 

Phase2
phase6

PM PKPM
Off-PKTOD Transition Point

Interested
TOD Point



 

49 
 

 
Figure 5.9 Total delays over TOD for the two timing plans 
 To further investigate the performance of these two plans, delays at the main street were 
also calculated and plotted in Figure 5.10. The PM peak plan performs better than Off-peak plan 
from 4:30 PM to 6:00 PM, as indicated in the figure. Obviously, if only considering delay at the 
main street, the optimal choice would be to run peak hour plan from 4:30 PM to 6:00 PM. 

 
Figure 5.10 Delay at the main street for the two timing plans 
 Considering priority at the main street imposed by the agency, a proper decision, while 
conservative, will be to set transition point at 4:30 PM between the two plans, instead of 3:00 
PM. Hence, in the modified schedule, the Off-peak plan runs from 1:30 PM to 4:30 PM, and 
peak plan runs from 4:30 to 6:30 PM. Note that, only one point, 3:00 PM, is being fine-tuned 
even though two transition points are identified, 4:30 PM and 6:00 PM.  

 The modified schedule and original schedule were then tested by VISSIM to verify the 
performance. In total, 5 simulation runs were conducted, and network performance regarding 
delays and vehicle stops are averaged and listed in Table 5.1. As indicated in the table, with the 
modified schedule, average delay decreased by 5%, average vehicle stops decreased by 4%, 
comparing to the original schedule. Delays at the main street decreased by 2%, while stops 
decreased by 1%. The improvement verifies that the modified schedule improves signal 
performance over the original schedule. The effectiveness of the model was thus validated. 
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Table 5.1. Performance comparison between original and modified schedules 

 Original Schedule Modified Schedule Relative Change 
Delay per veh [s] 78.94 74.99 -5% 
# of stops per veh 1.83 1.76 -4% 
Delay per veh, main street [s] 23.76 23.39 -2% 
# of stops per veh, main street 0.54 0.53 -1% 

5.4 Conclusions 
In this chapter, we propose an easy-to-use procedure for TOD fine-tuning for signalized arterial. 
HCM equations are adopted and modified for delay calculation. We propose a simple but 
effective model to estimate phase duration length for the actuated traffic signals. Using high 
resolution event based traffic data from SMART-Signal system, the green estimation algorithm 
is validated, and TOD fine-tuning procedure is demonstrated. The proposed modification is then 
verified using VISSIM simulation, showing slight improvements over unmodified schedule. The 
proposed procedure can be easily implemented using detector and signal data collected from 
coordinated actuated traffic signals. The objective is to assist the practitioners to fine-tune TOD 
transitions during signal retiming process. It can also be utilized to fine tune the TOD transitions 
periodically, thus to help make TOD schedules more responsive to traffic pattern changes. 
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CHAPTER 6 
CONCLUDING REMARKS AND FUTURE RESEARCHES 

6.1 Concluding Remarks 
Due to the increasing needs to improve traffic management, performance measure for signalized 
networks has become an emerging focus in the U.S (Liu et al., 2008). However, despite the 
availability of detectors, few agencies have archived or analyzed detector and signal data at 
signalized intersections to help signal operations. In this study, by using data collected from 
existing traffic signal systems, a systematic tool is successfully developed for performance 
visualization and fine-tuning of the arterial traffic signal system. The objective of this study is to 
provide convenient tools for the agencies to automate at least partially the signal retiming 
process, to reduce costs associated with signal retiming, and help agencies maintain efficient 
signal operations. 

In detail, this study: 

x An easy to implement framework was proposed for cycle length, offsets wheel and split fine-
tuning. Simplified algorithms for the three parameters were described, that can be used for a 
preliminary and quick fine-tuning. 

x Regarding more advanced fine-tuning for the evaluation and fine-tuning of offsets, we 
proposed a practical procedure to construct the TS-Diagram to visualize progression qualities 
of signalized arterials. Based on the data collected automatically, the TS-Diagram can be 
constructed periodically without significant labor cost. The field examples were 
demonstrated for the proposed TS-Diagrams, and reasonable agreements were found for 
validation using detector data and vehicle trajectories. A field experiment was also carried 
out to illustrate the application of TS-Diagram for adjusting offsets and lead-lag sequence. 
By intuitively evaluating the TS-Diagram, changes were recommended and a 4% reduction 
of total delays was achieved. 

x For the evaluation and fine-tuning of green splits, an adjusted MOE, the UGT, was proposed, 
extended from queue service time. The ring-and-barrier diagram was adopted to tabulate the 
information for performance visualization and evaluation. Field examples were also 
illustrated to demonstrate implementation potential. 

x For fine-tuning TOD transition points, a simple algorithm was developed for delay 
calculation on coordinated arterials. In the present algorithm, signal coordination and 
actuation are explicitly considered using field collected data. The algorithm was then verified 
by a simulation study. 

There are two potential applications of the signal operations in current practice that the proposed 
algorithms are intended to help:  

(1) They can be employed to validate traffic patterns and fine-tune signal parameters during 
signal retiming process, thus reducing associated labor costs. 

(2) It can be used to evaluate the signal performance periodically, and help engineers to identify 
adjustment opportunities for improvements, thus maintaining efficient signal operations over 
time. 
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6.2 Limitations and Future Research 
Limitations of the proposed approaches are discussed in this section. For the TS-Diagram, 
because traffic patterns at oversaturated intersections are not represented accurately, applications 
of the proposed approach to oversaturated cases should be avoided. In addition, the proposed 
approach tends to underestimate queues and delays due to the mechanism that only data on the 
subject link is considered. In cases with long queues, it may be necessary to consider the 
upstream intersection jointly to better evaluate traffic conditions. For TOD fine-tuning, the 
transition costs are not taken into account by the proposed procedures.  

Our next step is to try to improve the accuracy of the TS-Diagram by incorporating data 
from adjacent intersections and incorporate the transition costs into to the TOD fine-tuning 
algorithm. Another focus will be to extending the application scope from signalized corridors to  
an area-wide signalized network, such as a grid network in a central business district (CBD), for 
a more complete evaluation of traffic signal systems.  
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