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ABSTRACT 

 

Macromolecular crowding refers to the presence of inert molecules in close proximity to 

other reacting molecules, and is often discussed in the context of biochemical reactions 

in the cytoplasm.  This phenomenon has been proposed to cause alterations in the 

intrinsic kinetics and thermodynamics of chemical reactions, which has led to certain 

undefined caveats when relating biochemical characteristics observed in vitro to those 

seen in vivo.  In this work, the effects of macromolecular crowding were studied by 

means of a computational, Monte Carlo simulation using Brownian Dynamics, where 

generalized chemical association and dissociation reaction kinetics of varying degrees of 

stereospecificity were modeled both in the absence and presence of crowding molecules 

of different sizes.  It was found that crowded environments impose energetic 

contributions to reactant pairs through depletion forces, which bias their translational 

and rotational diffusion in such a way that overall net assembly is favored, with stronger 

effects on reactants with higher degrees of stereospecificity than for those with low 

stereospecificity.  These favorable forces are insufficient to overcome the slowing of 

translational diffusion by crowders for low stereospecificity reactions, but more than 

compensate for the translational slowing for high stereospecificity reactions. In general, 

the effects observed in the simulation are relatively modest, with kon decreasing by 2-fold 

for low stereospecificity reactions, and increasing by 3-fold for high stereospecificity 

reactions.  In addition, koff decreases by ~30-60% in the presence of crowders (depending 

on the strength of the bond between the reactant pair), so that the equilibrium constant 

is increased by at most ~3.5-fold (G0 ≅ -1.3kBT).  The moderate effects of crowding 

predicted in this work through strictly geometric constraints suggest that any effects 

observed in vitro larger than those found here are due to other energetic effects, such as 

solvent reordering.  More generally, the results suggest that reactions in the cytoplasm 

are fundamentally insensitive to the physical presence of crowders over a large range of 

volume fractions (0-0.3).  
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CHAPTER 1 

 

INTRODUCTION 

Macromolecular Crowding 

 The intracellular domain is a very complex and dynamic environment, 

comprised of nanometer-scale macromolecules diffusing throughout the cytoplasm, 

repeatedly colliding with one another, while their stochastic interactions provide an 

exchange of kinetic and thermal energy.  What is less known, is how similar interactions 

with inert macromolecules might affect the reaction kinetics of biochemical 

macromolecules, and the detailed characteristics of the physical mechanisms of such 

interactions. 

   In terms of composition, the intracellular milieu consists of large amounts of 

proteins, nucleic acids, complex sugars, filament structures, and other large organelles, 

which collectively occupy a significant amount of cellular volume (Fulton, 1982).  

Although it is difficult to assign a value to the percentage of intracellular volume 

occupied by macromolecules, it has been estimated to be about 5-40% (Ellis 2001a; Ellis 

and Minton, 2003).  This volume occupancy has been referred to as “crowded”, rather 

than “concentrated”, because no single macromolecule need be present at high 

concentrations for this effect to occur (Minton and Wilf, 1981;  Minton, 2001), and, 

although it is common for this phenomenon to be referred to as the “excluded volume 
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effect”, such a title might imply misleading ideas, for reasons discussed below.  

Therefore, this phenomenon shall be referred to in this work as “macromolecular 

crowding” or, more simply, “crowding”.    

 In recent years, the idea of macromolecular crowding has become of increasing 

interest to biochemists when studying biochemical reactions in vitro.  Discrepancies 

observed between reaction kinetics, thermodynamics, and diffusive characteristics of 

macromolecules measured in vivo with those measured in vitro raised more questions 

than answers, and triggered a large investigation for possible causes.  For example, 

Banks et al. reported a ~3-fold drop in the diffusion coefficient of streptavidin in a 

solution of 1.08kDa dextran at a 0.25 volume fraction (Banks & Fradin, 2005).  

Additionally, Kozer and Schreiber observed a decrease in the diffusion-limited 

association rates of the β-lactamase (TEM)- β-lactamase inhibitor protein (BLIP)  with 

the addition of crowding molecules, as compared to rates observed in buffer solutions 

(Kozer & Schreiber, 2004).  Lindner et al. also reported a ~3-fold increase in the 

association rate constant of human spectrin heterodimers in the presence of 10% w/v 

concentration of dextran, and, similarly, over a ~2-fold increase in the association rate 

constant for actin polymerization in the presence of 15%w/v concentration of dextran 

(Lindner & Ralston, 1995).  Clearly, macromolecular crowding caused noticeable effects 

in experimentation, but the details of why and how it occurred remained nebulous.

 In the early 1980s, Allen Minton proposed several arguments as to how crowding 

can increase association rates and equilibrium constants by orders of magnitude through a 
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theoretical approach investigating the changes in thermodynamic activity coefficients of 

reactants as a function of excluded volume (i.e. volume occupied by crowding 

molecules, no longer accessible to reactants) (Minton & Wilf, 1981; Minton, 1983; Minton, 

1997; Zimmerman & Minton, 1993).  Minton’s initial predictions raised many questions 

as to whether or not reactions studied in vitro should be compared to those in vivo 

without some sort of treatment of crowding (Ellis & Minton, 2003; Minton, 2006), and, if 

such precautions are necessary, how they should be treated.  

In particular, researchers have begun to investigate the effects of crowding on 

various in vitro experiments, such as protein folding and aggregation, bimolecular 

association rates, actin polymerization (Frederick et al. 2008), ligand/receptor binding 

rates, microtubule assembly (Wieczorek et al., 2013), and many others.  Recently, results 

of many experimental efforts with regards to crowding have suggested that some of 

Minton’s initial predictions might have been an overestimation (Phillip & Schreiber, 

2013).   Therefore, the question of whether or not crowding should be accounted for 

(and, if so, how) when studying reactions in vitro still stands. 

 

Depletion Forces in Crowded Environments 

 As early as the 1950’s, the physical mechanisms involved within crowded 

solutions were being studied.  Asakura and Oosawa derived theoretical predictions 

describing energetic consequences of molecules diffusing in a crowded environment due 

to local fluctuations in entropy (Oosawa, 1954; Asakura & Oosawa, 1958).  They found 
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that there is an increase in entropy in the system when molecular pairs come in close 

enough proximity such that other molecules cannot be placed between them, producing 

a force acting radially inward on the pair, which biases their translational diffusion 

toward one another.   

Yodh et al. reproduced this effect experimentally by studying the separation 

distances between test pairs of molecules under different crowding scenarios (Yodh et 

al., 2001).  They found that these depletion forces induce negative (favorable) energy of 

roughly 1kBT (where kB is Boltzmann’s constant and T is the absolute temperature) on 

rods and spheres approaching one another for relatively low concentrations of crowders. 

Clearly, depletion effects are an important aspect of crowded environments that 

must be considered when investigating association and dissociation kinetics of 

biomolecules in the cytoplasm.  However, there has been little discussion of how 

changes in the energetic landscape felt by pairs of molecules in crowded media affect 

their reaction kinetics, leaving the significance of these effects undefined in terms of 

their relevance to how biomolecular reactions in crowded, in vivo studies differ from 

reactions in uncrowded, in vitro studies.  

 

Monte Carlo Methods & Brownian Dynamics 

Given modern advancements in computational capabilities, recent studies have 

focused on computational simulations using Brownian Dynamics to examine the 

changes in diffusion patterns and reaction rates as functions of the volume occupied by 
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crowders (Phillip & Schreiber, 2013; Kim & Yethiraj, 2009; Kim & Yethiraj, 2010; 

Wieczorek & Zielenkiewicz, 2008).  In general, Brownian dynamics is a well-established, 

reliable method for modeling the Brownian (random) motion of molecules (Metropolis 

& Ulam, 1949), derived through a simplification of the Langevin Dynamics approach by 

assuming there are no inertial effects in the system.  Using these methods enables one to 

investigate changes in diffusion characteristics, as well as the reaction kinetics and 

thermodynamics, of biomolecules in the presence of crowding.   

 In many cases, the chosen tool for creating such models is an approach called the 

Monte Carlo method, a type of computational algorithm which relies on multiple 

generations of pseudo-random numbers to obtain a specific numerical outcome—an 

especially useful tool when studying the random, Brownian motion that drives the  

diffusion of particles.  In Monte Carlo simulations, information from a current state is 

used as the input to calculate, according to the appropriate probabilistic rates, the next 

system state, thus creating a history-dependent model of events in space and time.  For 

example, a molecule’s current position and orientation in space can be used as 

information to determine the molecule’s upcoming translation and rotation.  More 

specifically, random numbers can be generated for the molecule’s x-, y-, and z-

coordinate translation, as well for as its rotation about the x-, y-, and z-axes (in the 

laboratory reference frame), and added to its previous position, resulting in one time 

step in three dimensions.  This process can be repeated multiple times, resulting in a 

realistic simulation of molecular diffusion. 
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 Like the in vitro experiments discussed earlier, the past few years have been a 

bourgeoning time for scientists studying macromolecular crowding using computational 

methods.  For example, Wieczorek and Zielenkiewicz, developed a computational 

model, using Brownian Dynamics methods, with which protein-protein associations 

were modeled (Wieczorek & Zielenkiewicz, 2008).  Their model represented a range of 

spherical crowding molecule sizes (relative to the spherical reactant size), as well as an 

incorporation of the diffusion-limited condition for generic protein-protein associations.  

They reported a ~2-fold drop in the diffusion-limited association rate constant for 

crowding agents of equal radii to that of the reactant molecules, and a ~1.3-fold drop for 

larger-sized crowding molecules (5/3 times larger radii than the reactants).  However, 

when Wieczorek et al. simulated an atomically detailed model for the association of a 

hen egg lysozyme with the HyHEL antibody, they reported a ~2.7-fold increase in the 

association rate with crowding— a much lower-probabilistic reaction than the diffusion-

limited case.  However, exactly how crowding was affecting the reaction kinetics was 

still unclear because of their use of an atomically detailed case for only one particular 

pair of non-spherical reactants only provides predictions for this one particular case.  A 

more robust, generalized model (i.e. not specific to a particular antibody-antigen pair) 

examining the predicted effects of crowding would enable further comparisons to a 

greater variety of cases and a more fundamental understanding of the consequences of 

crowding for reversible association-dissociation reactions. 
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More recently, Kim et al. developed a more generic computational model with 

which they explored changes in the relative on-rate constants for pseudo-first-order 

reactions with increasing volume fractions of crowding agents, using a Brownian 

Dynamics approach (Kim & Yethiraj, 2009).  The group simulated biochemical reactions 

in crowded solutions by altering the probability of undergoing a reaction during an 

encounter such that some cases had a very low probability of reacting (0.001), whereas 

others had a very high probability of reacting (1.00, for the diffusion-limited case) upon 

an encounter.  They found that the lower probability reactions produced a ~2.5-fold 

increase in relative association rates, and a ~2-fold reduction for the diffusion-limited 

case as the crowder volume fraction increased from 0.0 to 0.4.  However, it can be 

argued that the reaction probability of diffusing reactants is not constant in time (i.e. is 

history-dependent).  Inherent to biological reactions, the probability of undergoing a 

reaction depends on previous failed attempts to react and the rotational correlation of 

the reactants while in close proximity to one another (discussed in detail in The Role of 

Stereospecificity, below). This history dependence is not addressed in this group’s 

model due to their assumption of a uniformly reactive surface on their spherical 

reactants, thus, perhaps, not accurately capturing important details within stereospecific 

reactions under crowding (Qin et al., 2012).   
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The Role of Stereospecificity 

Even with such efforts to model the effects of macromolecular crowding, there 

has yet to be a comprehensive model which captures the effects due to variable crowder 

densities and sizes relative to the reactants, while including rotationally dependent 

reaction criteria (stereospecificity) and potential energy considerations.  Stereospecificity 

is an important detail to consider when studying macromolecular crowding, as it 

describes the rotational restrictions most biomolecules have to meet when undergoing 

association, as proposed in a computational model of protein-protein associations by 

Northrup and Erickson (Northrup & Erickson, 1992).  In part, the history-dependent 

probability of a reaction during an “encounter” between two reactants (i.e. when they 

are sufficiently close to each other that they could potentially form an association) can be 

thought of as related to the stereospecificity associated with each reaction, thus creating 

a conditionally probabilistic reaction.  The idea of conditional probability arises when 

considering that the relative rotational orientation of reactants at one encounter 

contributes to the probability of the reactants experiencing a reaction at subsequent 

encounters, essentially creating a history-dependent, non-constant probability of 

reacting at any given encounter.  An encounter can be roughly defined as when the 

reactants diffuse to a close enough proximity such that if they were properly aligned, 

they would form a bond.  Therefore, based solely on geometry, each reactant has a 

certain intrinsic probability of reacting with another reactant on their first encounter.  If, 

however, on that first encounter the reactants do not form a bond, then the probability 
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that they form a bond on their second encounter is extremely unlikely, and, in fact, 

much less probable than that of their first encounter due to their relative rotational 

configurations likely being highly uncorrelated.  Therefore, the reactants are more likely 

to diffuse apart after their first failed attempt to form a bond rather than remain in close 

proximity exploring different rotational configurations until a binding event occurs.   

Northrup and Erickson developed a computational model in which they 

addressed the importance of including stereospecificity while simulating protein-protein 

association rates (Northrup & Erickson, 1992).  They reported that stereospecificity leads 

to association rate constants that are well below the Smoluchowski limit (~1000-

10,000μM-1s-1), but in agreement with experimental data for many protein-protein 

association reactions (~1-10μM-1s-1).  They simulated stereospecificity by assigning four 

“contact points” lying on a plane tangential to the surface of spherical reactants, and 

defining a range of stereospecific reactions as when N = 0, 1, 2, or 3 contact points on one 

reactant became aligned (separated by <0.2nm) with the corresponding contact points on 

another reactant (see Stereospecificity in Chapter 2, below).   However, they did not 

examine how the presence of crowding molecules would influence the association or 

dissociation rate constants of such stereospecific reactants.   

In general, the crowder-modeling field has yet to address the issue of 

stereospecificity at the level detail proposed by Northrup and Erickson’s computational 

simulation.  As stated above, the Wieczorek and Zielenkiewicz model included the 

stereospecific antibody-antigen binding case (Wieczorek & Zielenkiewicz, 2008), but 
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lacks the generality of Northrup and Erickson’s model, whereas the ad hoc probability of 

reacting upon any given encounter used by Kim and Yethiraj (Kim & Yethiraj, 2009) 

does not capture the potential influences of stereospecificity in crowded environments 

(Qin et al., 2012).  In addition, neither computational model addresses changes in 

dissociation kinetics with the addition of crowding molecules. 

The Northrup and Erickson model provides a generalized, robust framework for 

studying the dependence of association reaction kinetics on stereospecificity in the 

absence of crowders, and, in principle, can be extended to dissociation rate kinetics to 

obtain a complete thermodynamic analysis of reversible association.  The idea here is to 

use the generic framework developed by Northrup and Erickson to create a novel, 

stereospecific-dependent model of biochemical reaction kinetics and thermodynamics in 

the presence of crowding molecules. 

 

Model Objectives 

 The purpose of this study is to elucidate the effects of macromolecular crowding 

on reaction kinetics for reactants with varying degrees of stereospecificity as a function 

of increasing crowder volume fraction, as well as of varying crowding molecule sizes 

relative to the reactants, through developing a generalized, robust computational model.  

The results of this model should describe, in detail, how macromolecular crowding 

affects the association and dissociation kinetics of various stereospecific biomolecules by 

capturing the intrinsic physics and thermodynamics embedded in these interactions at 
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the molecular level.  The model should also be able to accurately reproduce results and 

observations made by others for similar experimental or computational situations, while 

remaining general enough such that changes in the parameter set of the model can be 

made to address other questions not previously answered.  Lastly, the model should 

provide valuable insight as to if and/or how macromolecular crowding should be 

treated when studying biochemical reactions in vitro.  By developing a firmer theoretical 

understanding of how biomolecules behave in crowded environments, we can predict 

how these behaviors might influence biological processes. 
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CHAPTER 2 
 

 

METHODS 

To investigate the theoretically expected effects of macromolecular crowding on 

the association and dissociation rates of two macromolecular reactants, a Brownian 

Dynamics simulation was developed, creating a three-dimensional, spatiotemporal 

model.  A variety of crowding scenarios were investigated, providing a comprehensive 

characterization of the role of macromolecular crowding on biochemical reaction 

kinetics and thermodynamics. 

 

 

Overall Computational Model 

 

Model Parameters 

 All molecules in the simulation were treated as hard spheres with infinite 

repulsion at their surfaces.  The nonspecific steric repulsion is described as a piecewise-

defined potential energy function based on the spheres’ relative radial separation 

distances, r, with respect to their centroids, as in Eq. 1.   












c
R

r
Rr,

c
R

r
Rr,

U(r)
0

                                                     (1) 

Reactants had radii  rR  of 1.8nm, a parameter initially proposed in Northrup 

and Erickson’s model (Northrup & Erickson, 1992), whereas crowding molecules, or 

“crowders”, had radii  cR  ranging from 0.85 times the reactant radius, equal to, or 1.25 
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times (1.53nm, 1.8nm, and 2.25nm, respectively).  Each simulation trajectory consisted of 

two reactants in a 16x16x16nm (4.096x10-21L) box (simulation domain), resulting in a 

concentration of 0.405mM, and were surrounded by a homogeneous composition of 

crowding molecules of one of the varying sizes described above.  This range in crowder 

size allowed for the effects due to crowding to be investigated as a function of relative 

crowder size. 

All molecules were assumed to be placed in a continuum solvent of room-

temperature water— a valid assumption for molecules sufficiently larger than that of the 

solvent (Hall & Minton, 2003).   

 

Initial Molecular Placement 

 Reactants were initially placed in the simulation domain at random locations 

either in a bound state (when simulating dissociation), or randomly oriented (when 

simulating association).  The reactants were allowed to be placed up to one radius-

length outside the box, such that their centroid positions were contained inside the box 

at all times.  Crowding molecules were placed among the reactants at random locations 

while avoiding overlap with any other molecule in the system, but were allowed to be 

placed such that their centroid positions could be up to one crowding radius outside the 

box.  This was done to minimize the depletion effects at the boundaries of the box, as 

well as to more closely resemble the Poisson distribution associated with taking a 
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random sample of macromolecules from an arbitrary intracellular domain.  A depiction 

of these initial placement constraints is shown in Figure 1.   

 
Figure 1.  Diagram of the criteria for the initial placement of molecules and boundary conditions.  

Reactants were allowed to be placed up to one radius (Rr) outside box, whereas crowding spheres 

were allowed to be placed up to 2 radius-lengths (2Rc) outside the domain. 

 

Boundary Conditions 

 Since this model relies on maintaining a constant volume fraction (φ) of 

crowding molecules in the simulation, reflective boundary conditions along the walls of 

the cubic domain were implemented. If a crowding molecule were to take a step 

resulting in its centroid being more than one radius-length in the x-, y-, or z-direction 

outside of the box, the crowding sphere would then take a step in the corresponding x-, 

y-, or z-coordinate of equal magnitude, but in the opposite direction (i.e. perpendicularly 

away from the wall).  This allowed the crowding spheres to step almost completely out 

of the box before being reflected into the domain.  If, however, the reflection resulted in 
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an illegal overlap with another molecule, the crowding sphere was brought back to its 

previous legal position (i.e. not back outside the box), and a new random step was 

generated for that molecule.  Similarly, the reactants were reflected away from the walls 

in the same manner if their centroids attempted to step out of the domain, and followed 

the same overlapping guidelines.  Figure 1 again depicts these constraints, as they are 

the same as for the initial placement of molecules in the domain. 

 

 

Volume Fraction 

 Next, the volume fraction of the molecules in the system was determined to serve 

as an independent variable in the model.  The volume fraction is a dimensionless 

quantity describing the amount of volume occupied by the crowding molecules at any 

given time.  It is important to note that, although there is a loss of volume in the box at 

any single moment of time by inserting crowders, every molecule still has some 

probability of exploring every unit of space in the domain (due to diffusion) given a long 

enough duration of time.  Therefore, the term “volume fraction” does not refer to some 

finite “accessible” volume to the reactants, but is, rather, a metric to quantify the average 

amount of volume in the domain being occupied by crowders over the duration of the 

simulated time. 

A naïve approach to calculating the volume fraction would be to use simple 

geometric ratios of the volume of the box and the total volume of crowding molecules 

inside the box.  However, one would find that using such a method would result in 
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significantly underestimated values for the volume occupancy of the crowding spheres 

actually contained inside the box due to the initial placement criteria and boundary 

conditions for each molecule (see Figure 1).  Therefore, the volume fraction was 

determined by defining a grid throughout the domain (Figure 2a), and calculating the 

distance, L, that every grid-point was separated from each crowding sphere’s centroid, 

and summing those that were within Rc from a crowder centroid (Eq. 2), providing a 

total (summed) crowder volume contained within the box at any moment in time.  In the 

limit of filling the box with infinitely-many grid-points, this method would yield an 

exact value for the fraction of volume of the box consumed by the crowding spheres at 

any single time point.  Here, a grid of n = 106 points was used (1003), and an average over 

multiple runs was taken to determine the mean volume fraction, φ, as a function of the 

number of each of the three sizes of crowding spheres (Figure 2b). 

 


cRL
tot

n
n

1
                                                             (2) 
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Figure 2.  Volume fraction description. a) Depiction of the grid method used to determine the 

volume fraction occupied by the crowding molecules. The number of grid-points shown above is 

203 for clarity, however,  1003 grid-points were used when calculating φ in the model.                  

b) Calculated volume fraction, φ, as a function of the number of crowding molecules, Nc. 

 

Stereospecificity 

As initially proposed by Northrup and Erickson’s protein-protein association 

model, on each reactant sphere, four contact points, or zones, were assigned to a plane 

lying tangential to the surface of the reactant, creating a ~1.7 x ~1.7nm “reactive patch” 

for each reactant (Figure 3a) (Northrup & Erickson, 1992).  These four zones lying on the 

tangential plane provided a rotational constraint as the reactants now needed to be 

oriented properly relative to one another to undergo a reaction (for reactions other than 

the diffusion-limited type). 

 As in the Northrup and Erickson model (Northrup & Erickson, 1992), 

stereospecificities were defined as an N = 0, 1, 2 or 3 reaction, where N is the number of 

zones on one reactant coupled with the corresponding zones on the other reactant.  

More explicitly, an “N = 0 reaction” occurred if the surfaces of the reactants came within 
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2Å of one another, irrelevant of rotational conformation (i.e. the “N = 0” case is 

synonymous with the “diffusion-limited” case, or the “Smoluchowski” limit 

(Smoluchowski 1971)), whereas an “N = 1 reaction” was said to occur if one pair of zones 

(red-to-red, for example) came within 2Å of one another.  Understandably, an “N = 2 

reaction” and an “N = 3 reaction” were defined as two pairs (red-to-red and blue-to-blue, 

for example), or three pairs of zones coming within 2Å, respectively.  An example of 

reactants in an N = 2 conformation is shown in Figure 3b, below.  In general, the higher 

the value of N, the greater the extent of stereospecificity that is required for the reactants 

to undergo a reaction.  Each of these stereospecific requirements were initially proposed 

by Northrup and Erickson’s protein-protein association model (Northrup & Erickson 

1992). 

 
Figure 3.  Description of reactant molecules and their stereospecificities.  a) Dimensions of 

reactant spheres, and the “reactive patch” assigned to each sphere.  The patch was defined as four 

zones, arranged in a ~1.7x~1.7nm square, lying on a plane tangential to the surface of the sphere.  

b)  Example of an N = 2 conformation.  The green and turquoise zones on each reactant are 

within 2Å of one another.  These model parameters were initially proposed by Northrup and 

Erickson (Northrup & Erickson, 1992). 
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Molecular Diffusion & Variable Time Step 

 All translational and rotational molecular diffusion was simulated using a 

modified, Metropolis Monte Carlo method (Metropolis & Ulam, 1949) to update the 

molecular positions after each time step, j, as 

)(),,(),,( )1()( δ jj zyxzyx                                                 (3) 

and molecular orientations, as 

 )(),,(),,( )1()(  δ jj

                                              
(4) 

where ,,  and   are rotational orientations relative to the x-, y-, and z-axes, (in the 

laboratory reference frame) respectively, and τ is the increment of time for a diffusive 

step.  The terms on the left represent each molecule’s new position and orientation in 

space, whereas the first terms on the right are each molecule’s previous location and 

orientation in space.  The second term on the right, )(δ , is a vector quantity of random 

numbers sampled from a Gaussian distribution, where each element has characteristics 
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where i = x, y, or z, and k = ρ, θ, or ψ. The terms DT,r and DT,c are the translational 

diffusivities for reactants and crowders, respectively, and DR is the rotational diffusivity 

for reactants, based on the Stokes-Einstein-Sutherland equations for a sphere, 
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where  
Bk  is Boltzmann’s constant, KT 15.298 , and 24 /)(1091.8 msNx   . 

The updated angles of rotation after each step were then used in traditional 

rotation matrices (Eq. 9) to apply the new three-dimensional rotation to each reactant, as 

in Eq. 10 and 11 below.  It should also be noted that rotation was ignored for crowding 

molecules, as it was an unnecessary detail for the purposes of this model.

  















 









































100

0cossin

0sincos

,

cos0sin

010

sin0cos

,

cossin0

sincos0

001











 









 zyx RRR    (9) 

zyx RRRM M )1()(  jj
                                                  (10) 

The matrix )( jM  is a three-dimensional rotation matrix that defines the overall rotation 

of the reactants about the laboratory reference frame, and is updated after every time 

step, j.  Therefore, the combination of Eq. 3, 4, 9 and 10 yields the total translational-

rotational movement taken by the reactants at every step, as 

)(),,(),,( )1()()( δ jjj zyxzyx M           .                           (11) 

To optimize the simulation run-time by minimizing the number of translational 

displacements taken by each molecule, a variable time step was derived, which varied as 

a function of the overall minimum center-to-center distance, d, of any two molecules in 

the system, unless the reactants were in some bound conformation (i.e. in any of the N 

conformations discussed above), for which case the time step was fixed at 0.2ps.  The 
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variable time step was derived using the root mean squared displacement (RMSD) of 

two diffusing spheres in three dimensions at any given time step, and relating it to d, as 




d
DRMSD T  )2(6                                                 (12) 

where λ is an adjustable optimization parameter determined based on the amount of 

detail required per step (a more demanding stereospecificity, i.e. higher N, required 

finer rotational and translational steps when the reactants were in close proximity).  For 

the diffusion-limited (N = 0) and N = 1-3 cases, it was found that λ = 5  and λ = 20, 

respectively, were sufficient values to reach other predicted on-rate constant values 

(Northrup & Erickson 1992) (see Table A3).  It should be noted that the factor of 2 

multiplied by the diffusion coefficient is a correction factor to account for the fact that 

both spheres of interest were diffusing.  Therefore, the variable time step, τ, was 

recalculated after every diffusive step, using  

 2
12

1


 d

DT

                                                       (13) 

It should be noted that there was no distinction between reactant molecules and 

crowding molecules for the purposes of this calculation.   
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On-rate Simulation 

 

Far-field & Near-field Regimes 

 Using this model, simulations became very computationally expensive with 

increasing volume fractions of crowding molecules, and, therefore, became very time-

consuming.  This is because the pair-wise checks required to ensure there were not any 

spheres overlapping with one another after each translational step increased non-

linearly with the number of molecules in the system.  Consequently, the total simulation 

time scaled as a higher-order polynomial with the number of crowding spheres in the 

system (see Data Analysis section, below, for an example of the scaling).  To combat this, 

the model was broken down into two regimes: a far-field regime and a near-field 

regime.   

The far-field regime was considered to be when the reactants were separated by 

a center-to-center distance of 4.2 nanometers or greater, and the near-field regime was 

considered to be when the reactants were separated by a center-to-center distance less 

than 9 nanometers. More specifically, the far-field regime was treated by placing each 

pair of reactants at an initial separation distance of 9 nanometers, center-to-center, and 

terminating the trajectory when the reactants became separated by a distance of 4.2 

nanometers, center-to-center.  A diagram depicting this treatment is shown in Figure 4.  

In the far-field regime, reactant orientation was not accounted for, as each trajectory was 

terminated prior to the reactants being in close enough proximity to undergo a reaction 

of any type with any reasonable probability (<0.003), making this portion of the model 
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much more computationally efficient.  Additionally, terminating the trajectory at 

reactant separation distances of 4.2 nanometers essentially simulates a diffusion-limited 

case, thus enabling the larger variable time step to be utilized (λ = 5), further decreasing 

the computational run-time.  Depending on the volume fraction of crowding spheres 

used, either 100,000 or 50,000 trajectories were run to comprise the distributions of the 

far-field diffusion times (i.e. the time to diffuse from 9nm to 4.2nm, center-to-center).  

These distributions of diffusion times were saved and reused for the near-field 

simulation, as discussed in the following section, and the rates of arrival to a separation 

distance of 4.2nm (from 9nm) were recorded as kDIFF, as shown in Figure 4. 

 
Figure 4.  Diagram of the far-field and near-field regimes.  The far-field regime was considered to 

be when reactants were separated by a center-to-center distance greater than 4.2 nanometers after 

having started at a center-to-center distance of 9nm.  The rate of arrival to 4.2 nanometers after 

starting from 9 nanometers was defined as kDIFF.  The near-field regime was considered to be when 

reactants were separated by a distance less than 9 nanometers, center-to-center, after having 

started at 4.2nm.  While in the near-field regime, if reactants diffused back to 9nm, they were 

instantaneously placed back at a distance of 4.2nm (as discussed above), but if the reactants 

associated (N=0 conformation shown), the trajectory was terminated (as discussed below).  
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The near-field regime was initiated by placing reactants at a center-to-center 

separation of 4.2nm (the termination distance for the far-field regime), with randomly 

oriented rotations relative to one another.  All crowding spheres were then randomly 

redistributed within the domain, following all placement guidelines discussed above.  

Now, however, if the reactants diffused back to a center-to-center distance of 9nm (the 

initial distance of the far-field simulation), a random sample from the exponentially 

distributed far-field diffusion times was added to the near-field diffusion time to reach 

that 9nm separation distance.  This provided a pseudo-continuum between the far-field 

regime and the near-field regime, as the total diffusion time was required for 

determining the on-rate constant.  This process was repeated multiple times, collecting 

data for any N = 0, 1 and 2 conformations that happened to occur prior to reaching an N 

= 3 conformation, at which point the trajectory was terminated and the cumulative 

diffusion time to achieve each conformation was recorded. 

The near-field simulations required much higher levels of detail regarding the 

translational and rotational diffusion, since the reactants needed to diffuse to the proper, 

specific orientation (e.g. N = 3) prior to each trajectory’s termination.  Therefore, as stated 

above, a value of λ = 20 was used for the variable time step in the near-field simulation. 

 

Potential Energy Consideration 

Once reactants reached an N = 2 conformation, they began stepping on a square-

well potential with a depth of -4.2kcal/mol (or about -7.1kBT), a value initially used in 
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Northrup and Erickson’s model based on generally accepted bond strengths for protein-

protein interactions of the types being modeled (Northrup & Erickson 1992).  They also 

assumed no appreciable energetic contribution for reactants in the N = 1 conformation.  

Thus, the conformation-dependent, piecewise-defined potential energy function, U(N), 

is described in Eq. 14, and illustrated in Figure 5. 
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Figure 5.  Potential energy diagram describing the energetic interaction between reactants as a 

function of the number of coupled zones, N.  To completely bind, reactants had to reach an N = 3 

conformation, although intermediate partial bonds were also recorded. 

 

 

With each Brownian step taken in the N = 2 conformation, the probability, P, of 

breaking both, or either, of the two zones was defined according to Boltzmann’s Law, as,  

)1,02()1.7exp(
)1,0(

)2( 



eqB KTk
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NP
      .                          (15) 

If an attempt to break this bond was rejected, the step was refused, time was advanced, 

and the bond remained intact.   
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Finally, the mean diffusion time for the reactants to bind (i.e. the time needed to 

reach a reactive conformation of N = 0, 1, 2, or 3), was used to calculate the overall 

association rate constant for each conformation, Nonk , , using 

11

,

, ][
1  sM

Ct
k

rNB

Non                                           (16) 

where Cr is the reactant concentration (0.405mM) and NBt ,  is the diffusion time prior to 

binding in either an N = 0, 1, 2, or 3 conformation, depending on the stereospecific 

definition of the reaction.  

 

Off-rate Simulation 

 The off-rate simulation began with the reactants in a bound state, and randomly 

positioned in the simulation domain.  The bimolecular complex was also randomly 

oriented, and the crowding spheres were then placed randomly among the bound 

reactants, following the initial placement and overlap criteria discussed above.  With 

every Brownian step taken while in the N = 3 conformation, the probabilities associated 

with breaking part of, or all of, the bond were now given values  
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per Eq. 14, and the probability of going from an N = 2 conformation to an N = 0 or 1 

conformation was the same as for the binding case (Eq. 15).   
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An arbitrary intrinsic bond strength had to be chosen such that the 

computational expense for running the dissociation simulation was not too great, and 

such that the simulation would yield generally excepted values for bimolecular reaction 

thermodynamics.  Therefore, an overall bond strength of -18.6kBT was selected, as it is 

well within the range of published values for the intrinsic bond strength of protein-

protein bonds (Howard 2001).  It was also assumed that the changes in energy between 

the N = 3 and N = 4 or N = 0 and N = 1 cases are negligible compared to that between the 

N = 2 and N = 3 or N = 1 and N = 2 cases (e.g. the rotational orientation required for the 

reactants to be in an N = 3 configuration is very similar to that of the N = 4 case, thus not 

imposing a significant additional entropic penalty).   

 Determining when the reactants were officially unbound could not simply be 

treated as when all four zones were separated by a distance greater than 2Å.  This is due 

to the fact that, when the reactants first separate, their relative orientations are still 

highly correlated, thus increasing the probability that they will soon re-associate.  

Therefore, reactants were assumed to be completely unbound only once they had again 

reached the far-field regime, where their centroid separation distance is at least 9 

nanometers.  Simulating association and dissociation enabled a complete analysis of the 

thermodynamics during the process of reactants beginning in the far-field regime, 

diffusing into the near-field regime, binding, unbinding, and diffusing back out to the 

far-field regime. 
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Next, the off-rate constants were calculated in a similar way as in Eq. 16, in that 

the total diffusion time to unbind from an N-bound state, NUt , , was monitored and 

saved.  The inverse of the average diffusion time to unbind was taken as the off-rate 

constant, as  
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Thermodynamic Considerations 

Due to the nature of the simulation, the standard Gibbs free energy for the 

association of an N-conformation (
o

NG ) could easily be broken up into two main 

contributors, as 
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where 
o

NBG ,
 is the intrinsic bond energy for reactants in conformation, N, and o

NSG ,  

is an entropic penalty—a positive value which encompasses the loss of translational and 

rotational freedom of the reactants due to binding. 

 Lastly, the intrinsic bond strength of the reactants is an average of the potential 

energy, weighted by the time, t, spent diffusing in the various stages of the overall 

potential well.  Therefore, the intrinsic bond energy was calculated as the time-averaged 

potential energy using 
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where m  is the number of trajectories simulated, and n is the number of steps taken by 

the reactants prior to completely unbinding (i.e. i is any one trajectory, and j is a 

completed diffusional step taken by the reactants within one trajectory).  It should be 

noted that this calculation included the diffusion time it took for the reactants to diffuse 

to a center-to-center distance of 9nm after fully breaking all four zones.  However, the 

added time to reach the far-field regime is negligible compared to the total time spent 

diffusing in some bound conformation.  To ensure that the added time for reactants to 

go from the N = 0 state to a 9nm center-to-center separation distance was not biasing the 

weighted average for the intrinsic bond strength, this extra duration of time was 

monitored and compared to the total time needed to completely unbind, and was found 

to be less than one percent of the total simulated time. 

 

Data Analysis 

 Since the diffusion times for these stochastic processes fit an exponential 

distribution, an inordinate amount of computational time was required to simulate those 

points lying far out on the tail of the distribution.  Therefore, an estimate for the mean 

value of the distribution was established using binomial theory and exponential 

distribution statistics, as follows. 

First, ~30 trajectories were run to completion, providing an initial distribution 

and estimate for the mean time (τE) for an event to occur.  This initial distribution was 

then fit to an exponential distribution of equal mean to ensure it was, indeed, 
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exponential (p>0.15 in a Kolmogorov-Smirnov test).  Next, 200 trajectories were run until 

the total simulated time reached that mean value (τE) regardless of whether or not a 

binding or unbinding event had occurred.  The probability, pE, that an event had 

occurred was calculated as the number of successes,
E , out of the total number of 

trajectories, m (the subscript E is defined as any specific event; E ≡ N = 0, 1, 2, or 3 for a 

binding event, or E ≡ U for an unbinding event).  This probability was then used to 

define the probability density function (PDF) for the exponential distribution, as 

)exp(1 EEE
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
                                              (22) 

where λE is the rate of the distribution.  Solving for λE yields 
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which serves as the most probable estimate for the inverse of the mean diffusion time for 

an event to occur in any given simulation.  Therefore, these values were substituted into 

Eq. 16 and 19 for NBt ,1 and NUt ,1 , respectively. 

 Using the definition for the variance of a binomial distribution, the standard 

deviation, σE, for the estimated rate was then used to determine a 95% confidence 

interval (CI), using the relationship 

],[)1(22%95 ,, UpELoEEEEEE pmpCI                    (24) 

where λE,Up and λE,Lo are the upper and lower bounds for λE, respectively, and are 

defined as 
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This allowed for an upper and lower bound of the standard error of the mean (SEME,Up 

and SEME,Lo, respectively) to be calculated as 
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Implementing this statistical method provided extremely beneficial decreases in 

simulation time.  It was found that for φ = 0, each trajectory required about 30 minutes of 

simulation time to reach an N = 3 conformation, whereas for φ = 0.3, each trajectory 

required about 10 hours (for the Rc = Rr case) to reach N = 3.  Therefore, in the latter case, 

to run m = 200 trajectories to completion would require about 2000 hours of simulation 

time (approximately 83 days).  However, using this statistical method resulted in the 

same simulation to only require about 310 hours (13 days), and produced similar values 

with similar standard error.  Therefore, this process was employed for determining the 

on-rate constants for the N = 2 and 3 conformations, as well as for all off-rate 

simulations, as it was these events that required the most simulation time. It should be 

noted that since the N = 1 and N = 0 on-rate constants had a 100% success rate (i.e. 0N  = 

1N  = m), the mean and SEM could simply be calculated directly from the data. 
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RESULTS & DISCUSSION 

 In general, the process of reversible association can be broken down into three 

main steps: translational diffusion of the reactants to close proximity, followed by 

stereospecific binding, and, lastly, dissociation.  Each of these steps was examined for 

reactants in the presence of crowding, and translational diffusion shall be discussed first. 

 

Crowding reduces effective translational diffusivity 

 By monitoring a test molecule’s mean squared displacement over an 80 

nanosecond interval, its effective translational diffusion coefficient ( TD ) could be 

calculated as a function of time for different volume fractions and varying sizes of 

crowders.   Figure 6a, below, shows that at a volume fraction of 0.3, the apparent 

diffusivity of the test molecule decreases relative to a non-crowded environment (φ = 0), 

and the effect is only slightly stronger as the size of the crowding molecule decreases 

relative to the test molecule.  It should be noted that the gradual drop in the effective 

diffusivity observed in Figure 6a, below, is due to the gradually increasing number of 

collisions between the test molecule and its neighboring molecules at short time scales. 
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Figure 6. a) Effective diffusivity of reactants as a function of volume fraction (φ), where

03.0 


 TTT DDD .  b) Reactant rates of arrival from a center-to-center separation distance 

of 9nm to 4.2nm, where 0||   DIFFDIFFDIFF kkk . 

 

 

 The drop in diffusivity is also evident by the decrease in the normalized rates of 

arrival ( DIFFk , as in Figure 4 in the Methods section, above) from the far-field regime to 

the near-field regime, as shown in Figure 6b.  For higher volume fractions, the steric 

repulsion from the surrounding crowders hinders the overall mobility of the reactants, 

limiting their rates of arrival to the near-field regime. 

Intuitively, the addition of macromolecules into the system should decrease the 

rate of arrival between two test molecules, as it is not hard to imagine that at higher 

volume fractions, the number of collisions between molecules increases, thus limiting 

the number of possible random walks each molecule can experience.  Additionally, it 

can be seen that the fold drop in the effective diffusion coefficient is proportional to the 

fold decrease in the diffusion-limited rates of arrival when comparing Figure 6a to 

Figure 6b.  In general, these findings are consistent with trends reported in previous 
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Brownian Dynamics simulations of crowding effects on diffusion (Wieczorek & 

Zielenkiewicz, 2008; Kim & Yethiraj, 2009).  This proportionality also agrees with the 

Smoluchowski equation for diffusion-limited rates of equal sized spheres, which states 

that the diffusion-limited rate of arrival depends linearly on the effective diffusion 

coefficient (Smoluchowski, 1971).   

Upon translationally diffusing to close proximity, the second step in the 

reversible association process is stereospecific binding. 

 

Effects of crowding on association rates depend on stereospecificity 

Due to the findings of Wieczorek and Zielenkiewicz (Wieczorek & Zielenkiewicz, 

2008), and Kim and Yethiraj  (Kim & Yethiraj, 2009) (as discussed in Chapter 1), it was 

hypothesized that there are important details in the stereospecificity of a reaction, as 

defined by Northrup and Erickson (Northrup & Erickson, 1992), that make it a key 

determinant of the reaction’s sensitivity to crowding.  Through simulating the 

association rates of stereospecific reactants (as described in the Methods section, above), 

the effects of crowding on association rates were found to be sensitive to two main 

parameters: the fraction of volume occupied by the crowding molecules, and the degree 

of stereospecificity required for the reactants to undergo a reaction.  Observing Figure 7 

below, it is evident that there is a dual effect on the association rate constants depending 

on the stereospecificity (N) of the reaction. At highest volume fractions (φ = 0.3), 

diffusion-limited (N = 0) reactions had a ~1.3-fold decrease in on-rate constant for 
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crowding molecules 1.25 times larger than reactants, and a ~2-fold decrease for equal-

sized and smaller crowding molecules.  On the other hand, for more stereospecific 

reactions (the N = 2 and N = 3 cases), and at the same volume fraction (φ = 0.3), there was 

a two-to-threefold increase on the association rate constants, with minor variations for 

the different crowding molecule sizes (see Table A1 in Appendix for actual values).   

 

 
Figure 7. Relative on-rate constants for varying crowder volume fractions (φ), and 

stereospecificity (N), where 0,,, ||   NonNonNon kkk .   Varying degrees of stereospecificity (N 

= 0-3) were investigated for crowding molecules being a) larger than, b) equal to, and c) smaller 

than the reactant molecules. Error bars are the standard error of the mean (SEM) as defined in 

the Data Analysis section. 

  

Essentially, the degree of stereospecificity is the determining factor as to how 

crowding affects the overall association rates: low stereospecificity, such as the 

diffusion-limited (N = 0) case, results in a decrease in the association rate with increasing 

volume fraction of crowding molecules, whereas a higher degree of relative rotational 

requirements (especially N = 2 and N = 3) results in an increase in association rate 

constant.   

As discussed in Chapter 1, Kim and Yethiraj (2009) presented a model in which 

reactions that had low probabilities of occurring (per encounter), showed an increase in 



 

36 

 

association rates with higher volume fractions, whereas high-probabilistic reactions 

(such as the diffusion-limited case) had decreased association rates at the same volume 

fraction (Kim & Yethiraj, 2009).  Although their model lacks important details pertaining 

to the conditional probability of stereospecific reactants undergoing a reaction (Qin et al., 

2012), they predicted the same trend presented here for similar conditions.  

Additionally, the computational model proposed by Wieczorek and Zielenkiewicz 

(discussed in Chapter 1) produced comparable results to those shown in this work.  

Their hen egg lysozyme/HyHEL-5 antibody model describes a particular case of a 

stereospecific association rate being enhanced due to crowding, whereas their non-

stereospecific model showed a decrease in association rates, each of comparable 

magnitude to the fold-changes presented here (Wieczorek & Zielenkiewicz, 2008).  

However, the generality of the model in this work enables a wider variety of 

comparisons to experimental systems to be made, as compared to the limited 

predictions capable of Wieczorek and Zielenkiewicz’s model (pertaining only to the 

particular case of the hen egg lysozyme/HyHEL-5 antibody system). 

As discussed in Chapter 1, both the Wieczorek and Zielenkiewicz group and the 

Kim and Yethiraj group attributed their increases in association rates to a “caging” effect 

induced by the crowding molecules, keeping the reactants in close proximity for longer 

durations of time, allowing them more opportunities to react (Wieczorek & 

Zielenkiewicz, 2008; Kim & Yethiraj, 2009).   It was hypothesized that, although neither 

group explicitly reported it, the “caging” effect they were referring to was in fact the 
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depletion forces theoretically predicted to be present in crowded environments by 

Asakura and Oosawa (Oosawa, 1954; Asakura & Oosawa, 1958).  Thus, even though 

neither group had done so, it seemed that capturing the presence of depletion forces in 

the model presented here was necessary for explaining the observed increases of 

stereospecific association rate constants in crowded solutions. 

 

Capturing the energetic landscape of a crowded environment 

 Quantifying the apparent energetic landscape, as experienced by reactant pairs 

in crowded environments (due to crowder-induced depletion effects, as described by 

Asakura and Oosawa (Oosawa, 1954; Asakura & Oosawa, 1958)), was a vital component 

for describing how their reaction kinetics are altered due to crowding.  Thus, the 

apparent free energy due to depletion forces (ΔGDEP) between two reactants, as a 

function of the radial separation distance (r) between them was computed (see 

Appendix) for the highest volume fraction investigated here (φ = 0.3), and is shown in 

Figure 8, below.  For higher volume fractions, it is evident that the apparent interaction 

energy due to depletion forces is more negative when the pair of molecules approach 

one another (i.e. it is more favorable to be closer together, as predicted by Oosawa and 

Asakura (Oosawa, 1954; Asakura & Oosawa, 1958)).  This effect is not sensitive to the 

range of sizes of crowding molecules studied, which agrees well with the minimal 

changes in association rates between crowding scenarios (i.e. comparing Figures 7a, 7b, 

and 7c). 
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Figure 8.  Induced free energy due to depletion forces (ΔGDEP), (as a function of radial separation 

distance between reactant pairs, r) on reactants in close proximity due to crowding (for φ = 0.3).  

Depletion forces act on molecular pairs less than Lcrit apart from one another, biasing their 

translational diffusion toward one another. Due to the hard-sphere assumption, there is infinite 

repulsion upon the collision of reactant surfaces (i.e. when r = 2Rr). 

 

 Although quantifying the energetic effects of depletion forces was a good first 

step in explaining the changes association rate constants, it was still unclear exactly how 

more stereospecific reactants were benefitting from this additional free energy while in 

close proximity more so than non-specific reactions.  Thus, further investigation was 

required. 

 

 

Depletion forces prolong encounters to drive more efficient transitions from partially 

bounded states (N = 0, N = 1) to more completely bounded states (N = 2, N = 3) 

 

In the model, an encounter was defined to begin when reactant surfaces came 

within 2Å of one another, regardless of rotational configuration.  Each subsequent 
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encounter was not counted until the reactants had diffused away to some critical, center-

to-center, distance, and then back to 2Å, edge-to-edge, ensuring that an encounter was 

not simply defined as a re-collision event via stochastic motion of reactants in close 

proximity.  This critical, center-to-center distance was defined as the minimum required 

amount of separation between reactants such that one crowding sphere’s centroid could 

be placed collinearly with both reactant centroids.  Therefore, the critical distance varied 

with the dimensions of the crowding molecule, as 

)(2 crcrit RRL       .                                                (28) 

It is interesting to note that the interaction potential described in Figure 8 approaches 

zero near the critical length for each crowder size (i.e. when critLr  ), as initially 

predicted by Asakura and Oosawa (Oosawa, 1954; Asakura & Oosawa, 1958).   

Given that the overall on-rate constants increase with increasing volume 

fractions for stereospecific bonds (i.e. when N = 2 or N = 3) while the overall far-field 

diffusion of the reactants is inhibited, suggests that there is a higher degree of efficiency 

during each reactant encounter that not only negates, but overcompensates for the 

negative effects of effectively slower translational diffusion in a crowded environment.   

Consequently, the overall average time spent by the reactants diffusing prior to 

achieving a highly stereospecific bond actually decreases with the addition of crowding 

molecules, providing a net increase in the association reaction rate, as seen in Figure 7 

(see, also, Table A1 in Appendix).  
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Figure 9, below, shows that at higher volume fractions, fewer encounters are 

required for 100% of the trajectories to reach an N = 3 conformation.  

 

 
Figure 9.  Cumulative distribution function of the number of encounters at low (φ = 0) and high 

(φ = 0.3) volume fractions prior to reaching an N = 3 conformation for crowding molecules        

a) larger than, b) equal to, and c) smaller than the reactant molecules.  

 

 

It was found that the presence of crowding molecules increases the efficiency of 

each encounter by increasing the probability of forming a complete bond at each 

encounter.  Once the reactants diffuse to within close proximity (< Lcrit), depletion forces 

originating from steric repulsions from crowders surrounding the edges of a reactant 

pair (Oosawa, 1954; Asakura & Oosawa, 1958) act as an entropic spring, biasing the 

reactants’ translational diffusion toward one another.  These depletion forces will drive 

the reactants to an overall closer separation distance during an encounter, enabling 

greater interactions between each respective reactive zone (see Table A4 in Appendix), 

thus increasing the probability that the proper orientational configuration between 

reactants will be achieved during the encounter.   
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Additionally, depletion forces will prolong the duration of encounters, allowing 

even more rotational configurations to be explored per encounter (see Table A6 in 

Appendix).  This “caging effect”, or entrapment of the reactants, coupled with the 

average smaller separation distance during an encounter, decreases the number of 

encounters needed prior to reaching the proper relative orientation to react (Figure 9).  

Thus, the combination of these two consequences of depletion forces acting on reactants 

in close proximity drives more efficient encounters.  This agrees well with arguments 

made by Northup and Erickson, where they discussed that, even in the absence of 

crowders, two reactants have enough time to explore multiple rotational configurations 

during a single encounter, explaining the ~400-fold difference between their simulated 

association rates, and rates predicted purely by geometric parameters (Northrup & 

Erickson, 1992).  

From the simulation, it was possible to determine which step in stereospecific 

association was rate-limiting, and examine how this step was enhanced in the presence 

of crowders.  This was accomplished by monitoring the number of times a given 

conformation was achieved relative to another conformation in a single trajectory of 

reactant pairs.  For example, the number of times an N = 2 conformation was achieved 

by the reactants prior to reaching an N = 3 conformation (in the same trajectory) was 

denoted as the conformation ratio (N = 3):(N = 2), as in Table 1, below.   
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Table 1.  Efficiency of transitioning to higher degrees of stereospecific conformations. 

Conformation 

Ratio 

φ Fold  

Increase 0 0.3 

(N = 1):(N = 0) 0.0854 0.2267 2.655 

(N = 2):(N = 1) 0.0041 0.0141 3.439 

(N = 3):(N = 2) 0.6747 0.9103 1.349 

 

Table 1 shows that, for increasing volume fractions, the probability that reactants 

in an N = 1 conformation eventually lead to an N = 2 conformation (i.e. (N = 2):(N = 1)) 

increases by over 3-fold.  If reactants are in an N = 1 conformation, their relative 

rotational orientations are much more correlated than if they are not in any 

conformation as defined here, and the longer durations of time prior to diffusing apart 

allow more opportunities for an N = 2 conformation to be achieved.  Since achieving the 

N = 2 conformation is the rate-limiting step in forming a complete (N = 3) bond (see 

Appendix), an acceleration of this step most strongly contributes to the overall increase 

in the association rates.  

After translationally diffusing to close proximity and undergoing stereospecific 

binding, the final step in reversible association is the unbinding of the reactants, and its 

sensitivity to crowding is discussed below. 

 

 

Dissociation is weakly slowed by crowding because of rotational correlation during 

bond breakage 

 

 The decrease of off-rate constants with increasing volume fraction observed in 

Figure 10 and Table 2 can also be explained by the depletion forces due to crowding. The 
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additional free energy imposed on the reactants while in close proximity makes it more 

difficult for them to separate, as shown by the overall decreasing trends in the off-rates.  

The steric repulsion due to crowding molecules (depletion forces) surrounding bound 

reactants will limit their translational escape routes, forcing them to stay together, 

increasing the time spent in the bound state and decreasing their off-rate constants.   

 
Figure 10.   Normalized off-rate constants for varying crowder volume fractions (φ) and for 

crowding molecules a) larger than, b) equal, and c) smaller than reactant molecules, where  

0,,, ||   NoffNoffNoff kkk . The dissociation of the reactants starting from the N = 0 and N = 3 

conformations were investigated (*Insufficient data).  Error bars are the standard error of the 

mean (SEM) as defined in the Data Analysis section. 

 

Intuitively, one might expect that the fold-decrease in off-rate should be the same 

as the fold increase in the on-rate for identical crowding conditions.  However, 

observing Figures 7 and 10, above, it is clear that dissociation is more weakly affected by 

crowding than association.  This can be explained in terms of rotational correlation.  In 

general, if the reactants’ diffusive step results in a positive change in energy (i.e. going 

from a higher conformation (N = 3 or N = 2) to a lower (N = 1 or 0) conformation), it is 

likely that they immediately reform whatever conformation they were previously in, 
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regardless of whether or not depletion effects are present.  This is because the stochastic 

nature of their diffusion makes it as equally probable that they will step back to where 

they previously were, as it is that they will step further apart.  Therefore, in general, the 

dissociation of reactants is a translational diffusion-driven process, rather than rotational.  

However, since the association of the reactants relies heavily on their ability to 

rotationally explore multiple relative orientations (as discussed above), there is much to 

be benefitted from the presence of depletion forces, but, since there is no opposite of this 

effect for dissociation (that is, the reactants do not dissociate based on rotational 

exploration, regardless of the crowding environment), there is less of an effect of 

crowding on dissociation.  This is also supported by the fact that the diffusion-limited 

dissociation (a purely translationally diffusive process by definition) decreases for 

increasing volume fractions and does not depend strongly on stereospecificity, as seen in 

Figure 10, above.   

Another interesting observation is that dissociation of the N = 0 conformation is 

more strongly influenced by crowders than the N = 3 case.    While in the N = 3 

conformation, a significant amount of the rotational and translational degrees of 

freedom have been taken away from the reactants due to the strength of the bond 

between them.  This is also supported by the ~13kBT entropic penalty imposed on the 

reactants due to being in the bound state (Table 2, below).  Therefore, the presence of 

crowders does not greatly contribute to the loss of translational and rotational freedom 

of the reactants, since the majority of it has already been taken away.  However, for the 
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N = 0 case, any loss in rotational and translational freedom of the reactants is strictly due 

to the presence of crowders, since there is no bond energy associated with this 

conformation.  Therefore, crowding more strongly affects dissociation of the unbound 

reactants than for the bound reactants. 

 

Depletion forces due to crowding increase reactant affinity 

Since the forward and reverse reaction rate constants were both simulated, the 

changes in equilibrium constant and standard Gibbs free energy as functions of crowder 

volume fraction and reactant stereospecificity could be calculated.  When observing 

Table 2, it is interesting to note the decreases in the entropic penalty and standard Gibbs 

free energy with increasing crowder volume fractions. By the reactants being separated 

by a distance less than Lcrit, the local available volume to the crowders increases, thus 

increasing their entropy and providing a paradoxical, favorable increase in entropy to 

the system (Marenduzzo et al., 2006).   Therefore, since it is more favorable for the 

reactants to be in contact when in close proximity, their overall affinity increases, which 

manifests itself in the simulation as a decrease in koff,N, and, consequently, a more 

negative
o

NG .  Since the intrinsic bond strength (
o

NBG , ) remains roughly constant 

regardless of crowding, the increased affinity (i.e. decrease in 
o

NG ) must result in a 

drop in the entropic penalty felt by the reactants due to binding (
o

NSG , ), per Eq. 20.  

Therefore, for stereospecific (N = 3) bonds, the overall effects of crowding result in a 
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~3.5-fold increase in the equilibrium constant, Keq,3 (where Keq,3 = kon,3 / koff,3), as seen in 

Table 2, below. (See Table A5 in the Appendix for the diffusion-limited case).   

Table 2.  Numerical values for simulated N=3 off-rate constants and thermodynamic parameters. 

Crowding 

Molecules 
φ )(msk 1

off,3
  -1

eq,3 MK  T)(kΔG B
o
3

 T)(kΔG B
o
B,3

 T)(kΔG B
o
S,3

 

 0 20.02 108.8 -4.69 -18.50 13.81 

Rc = 1.25Rr 0.29 17.15 370.0 -5.77 -18.47 12.69 

Rc = Rr 0.30 13.07 370.9 -5.92 -18.42 12.51 

Rc = 0.85Rr 0.29 15.67 427.5 -6.06 -18.23 12.17 

 

It is interesting to note that the magnitude of the drop in potential energy due to 

the added interaction energy from depletion effects (represented in Figure 8) agrees well 

with the drop in overall Gibbs free energy in Table 2 for each of the crowding situations 

(excluding the off-rates for smallest crowding molecules due to a lack of data).  

Additionally, the amount of energy due to depletion forces (~1kBT) also agrees well with 

the ~e-fold decrease in the off-rate for the diffusion-limited case (koff,0) observed in Figure 

10 and Table A5, as well as with the experimental data presented by Yodh et al. as 

discussed above in Chapter 1 (Yodh et al., 2001). 

 

Visual Summary of Crowding-mediated Effects on Reversible Association 

 Given that the process of reversible association was examined in three main 

steps, it is simple to summarize the overall effects of crowding on each step, as shown 

below, in Figure 11. 
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Figure 11.  Visual summary of effects of crowding for φ=0.3 on each step in the process of 

reversible association. 

 

 

 

Observing Figure 11, above, it is easy to see that even though the translational 

diffusivity of the reactants in crowded environments decreased by about 2-fold, the net 

effect of crowding after stereospecific binding of the reactants depends strongly on the 

stereospecificity, as discussed above.  Figure 11 also shows that the dissociation of the 

reactants is only weakly hindered by crowding, but also depends on the strength of the 

bond between the reactants, as also discussed in the preceding sections (see Table 2, 

above, and Table A5 in the Appendix, below, for all numerical values). 

 

Thermodynamic Discussion 

 As stated in Chapter 1, Minton et al. predicted that, due to their assumption that 

the thermodynamic equilibrium constants of reactants in crowded media depend on the 
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“excluded volume” of the system after the addition of crowders, the equilibrium 

constants for reactants in the system will increase by orders of magnitude (Minton, 1983; 

Minton & Wilf, 1981; Zhou et al., 2008; Hall & Minton, 2003; Minton, 2006; Ellis & 

Minton, 2003).  However, the model presented in this work predicts very modest 

changes in equilibrium constants with the addition of crowders (Keq increases by ~3.5-

fold).  As discussed in the Volume Fraction section above, due to the diffusion of the 

molecules in the system, there is some probability that every molecule will explore every 

unit of space in the domain, provided a long enough duration of time.  Therefore, it is 

argued that there is not any excluded volume in the system.  This lack of consideration of 

transport theory is a fundamental error in the key assumption of “excluded volume”, of 

which Minton et al. based the majority of their predictions. 

 

Consequences of Adding Crowders to Solutions in vitro 

First, it is important to consider that if the crowding molecules become 

sufficiently small relative to the reactants, they essentially act as solvent molecules from 

the reactant’s perspective, and will behave as in the φ = 0 case, although with a different 

(likely higher) viscosity than the solvent (e.g. water).  Therefore, there is some lower 

limit on the size of crowding molecules that will cause the effects discussed in this work.  

Moreover, the opposite case can also be argued, which is that crowders much larger 

than the molecules of interest diffuse much slower and are less influential, and, 

therefore, also cannot be regarded as crowding molecules.  In this case, there may in fact 



 

49 

 

be excluded volume due to stationary/slowly diffusing organelles (e.g. mitochondria, 

nuclei).  It is important to only consider crowding to occur where crowding molecules 

and reactants are similar in dimension. 

Secondly, the model presented here suggests that for high volume fractions of 

crowding molecules, at most, a threefold increase and a twofold decrease in the 

association rates and dissociation rates, respectively, can be expected for similar 

experimental conditions (i.e. roughly a 3.5-fold increase in Keq for N = 3 stereospecific 

associations).  Energetically, this corresponds to only a TkTkG BB

o 3.1)5.3ln(   

energy change, roughly equivalent to a hydrogen bond.  Therefore, the addition of 

macromolecules to the solvent of an in vitro experiment are not predicted to produce 

large, order-of-magnitude changes in the reaction kinetics, as recently reported 

experimentally by Wieczorek et al. (Wieczorek et al., 2013).  If such effects are observed, 

they are more likely due to a thermodynamic reordering of the energetic state of the 

solvent through interactions between the macromolecules and water molecules (Winzor 

& Wills, 2006), rather than due to the enhanced efficiency of encounters due to depletion 

forces, as discussed in this model.  With that, it is recommended that the addition of 

macromolecules to an in vitro experiment, in attempts to recreate the intracellular 

environment, should not be done without sufficient knowledge of the macromolecules’ 

precise effects on the state of the solvent.  A more reliable correction might be to avoid 

the addition of crowding molecules to experiments in vitro altogether, and simply adjust 
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the rate constants by the fold changes presented in this work based on the size of 

reactants, relative size of the crowding agents, and the apparent volume fraction of the 

in vivo environment of interest. 

 

Relevance to evolution in cellular biology 

 The results of this work suggest that crowders do not have a strong effect on the 

overall reaction kinetics and thermodynamics of biomolecules.  Therefore, cytoplasmic 

reactions are also predicted to be unaffected by fluctuations in local microenvironments, 

suggesting that overall cellular function has evolved to be insensitive to changes in 

intracellular crowding composition.  That is, there is little evolutionary pressure for 

biomolecules to evolve to some optimal stereospecificity given the extent of crowding in 

their environment, since there are only small favorable energetic contributions in doing 

so, as shown by this model.  

 

 

CONCLUSIONS 

 Changes in overall biochemical reaction kinetics in the presence of 

macromolecular crowding agents were investigated with a computational model using 

Brownian dynamics.  It was determined that depletion forces (due to crowding) provide 

a favorable energetic contribution (~1kBT) to reactants in close proximity, effectively 

increasing the overall reactant affinity.  However, decreased diffusivity in the far-field 
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inhibits reactant encounters, and by itself tends to reduce the association equilibrium 

(affinity) constant.  Therefore, the degree of stereospecificity of the reactants is the 

determining factor as to how the reactants are affected by the depletion forces due to 

crowding.  Diffusion-limited reactions in crowded solutions do not significantly benefit 

from the increased affinity once in close proximity, disabling them from the ability to 

overcompensate for the inhibited long-range diffusivity, thereby decreasing their 

association rate constants.  However, more stereospecific reactions are able to explore 

more relative rotational conformations once in close proximity, as well as being forced 

closer together in crowded environments than in a buffer solution (both due to depletion 

forces), which decreases the amount of time spent diffusing prior to completing a bond, 

effectively increasing their association rate.  Additionally, since bound reactants remain 

rotationally correlated during separation, their dissociation is a translational diffusion-

driven process.  Therefore, depletion forces can only hinder the bound reactants’ ability 

to dissociate (i.e. decreases their dissociation rates), and their dissociation depends 

weakly on stereospecificity.  

However, in the most extreme cases investigated in this model, the combination 

of the effects of crowding on association and dissociation only result in about a 3.5-fold 

increase in the equilibrium constant for highly stereospecific reactions. Therefore, when 

studying reactions in vitro, the addition of crowding agents to the solution is not 

recommended, as the energetic reordering of the solvent is, at present, unpredictable for 

different crowding reagents.  Rather, reactions should be studied in buffer solutions, 
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with a final adjustment of the equilibrium constant based on the fold changes presented 

here, depending on the stereospecificity of the reaction, relative molecular sizes, and the 

in vivo volume fraction of interest.  In the future, it will be important to test the model 

predictions experimentally, and to critically assess the contributions of so-called 

“crowding” agents to the solvent thermodynamics. 
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CHAPTER 3 

 

FURTHER REMARKS 

Bodystorming 

 Complementing the design of the computational model presented here, a novel 

and modern approach to characterizing the effects of macromolecular crowding took the 

form of a human movement and interaction study.  Members of the Black Label 

Movement, a performing arts and dance theater based in Minneapolis, MN, were asked 

to participate in a qualitative experiment, of which the combinations of dance and 

diffusion theory,  coupled with direct feedback through verbal communication, 

provided new, insightful perspectives of the computational model— a useful 

brainstorming technique known as “bodystorming” (Flink & Odde, 2012).   

 Each participant was given a set of rules to follow, such that their collective 

movement would loosely demonstrate a system of molecules undergoing Brownian 

motion in a confined domain.  Dancers were asked to take translational steps with each 

half-beat of the rhythm of a song, as well as to rotate roughly 45 degrees with each step. 

They were also confined to a square domain on the dance floor, of which “reflective 

boundary conditions” were implemented, similar to the computational model design.  

Next, two people of interest were chosen as the “reactants” of the system surrounded by 

various amounts of other non-reactive dancers (i.e. crowders).  The time it took for the 
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two dancers of interest to collide (with no orientational constraints) was calculated for 

the cases of having 4 people in the domain (2 “reactants” and 2 “crowders”), as well as 9 

people, total (2 “reactants” and 7 “crowders”).  The reciprocal of this time was said to be 

the “on-rate constant” for this “diffusion-limited association reaction”. 

 The results of this qualitative experiment agree well with predictions made by 

the computational model.  The “on-rate constant” for the case of having more people on 

the dance floor resulted in a statistically significantly (p < 0.02) decrease relative to the 

less crowded dance floor.  This result agrees with the overall decreasing trend for the 

diffusion-limited, Smoluchowski (i.e. N = 0 case) scenario predicted by the 

computational model presented here.  Additionally, the visualization of the active 

system, coupled with direct verbal feedback from participants, provided a uniquely 

beneficial and productive environment for developing new concepts to be implemented 

in the computational model. 

 

 

Future Work  

 In the immediate future, certain components of the results of this model will be 

addressed.  For one thing, a more complete collection of dissociation simulation data 

will be necessary, as Table 2 and Figure 10 are lacking values.   

 More generally, it is clear that the model presented here is quite simplistic with 

regards to many of the assumptions made.  For one thing, the hard-sphere interaction 
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assumption is a good approximation (Hall & A. P. Minton 2003) for this type of 

stochastic simulation, however, some would argue that there should be soft interactions 

between colliding molecules (Kim et al., 2010).  Conservation of energy was also not 

accounted for at each collision of molecules, which would dictate the velocity of the 

molecules after each collision (however, greatly increasing the computational cost of the 

simulation). Additionally, this model assumes no hydrodynamic interactions between 

the molecules and the solvent.  The use of hydrodynamic interactions could be 

introduced into the model to further mimic an in vivo environment (Długosz & Trylska 

2011; Ermak & McCammon 1978; Ando & Skolnick 2010), and would be an interesting 

addition.  By including hydrodynamic interactions, further effects due to crowding 

could be investigated and compared to those without hydrodynamic interactions, 

providing an assessment of the contributions made from these interactions.  Provided 

the long-term continuation of this model in the future, all of these additions would be a 

contributable asset to quantifying more of the details in the effects of crowding in the 

cytoplasm. 

Certain components of this model presented many challenges when attempting 

to expand on the parameter space it explores.  As stated in Chapter 2, the simulation 

run-time became extremely cumbersome, especially when investigating the dissociation 

rates, or large numbers of crowding molecules.  Therefore, experimenting with other 

assumptions embedded in the model was difficult.  Provided more time and 

computational resources, some components of the model would be tested.  For one 
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thing, the square-well potential used in this model is an artifact of reproducing work 

originally done by Northrup and Erickson, as this was the potential well they had 

assumed for their protein-protein association model (Northrup & Erickson 1992).  The 

use of a harmonic potential might be a more realistic model of the spring-like 

characteristics generally accepted for the type of bimolecular bond being modeled here.  

Each of the four zones would have its own harmonic potential such that each time 

another zone associates with its partner zone, another harmonic potential would 

contribute to the overall strength of the bond (like adding springs in parallel).  Modeling 

the potential energy in this manner would not only be more realistic, but would provide 

insight as to how valid of an approximation the square-well potential used here actually 

is.  Additionally, a Lennard-Jones type of potential could be tested for similar purposes. 

 Aside from possible additions to the model, an interesting component to 

consider is the model’s potential to estimate the extent of stereospecificity from the 

association rate constant.  For biomolecules with values of kon = 1-10μM-1s-1 in the absence 

of crowding molecules, this corresponds to an N = 3 reaction in this model (as well as 

Northrup and Erickson’s model (Northrup & Erickson 1992)).  However, in the presence 

of crowding (i.e. in the cytoplasm), measured on-rate constants can be compared to 

those presented in this work corresponding to the estimated volume fraction of the 

environment, and a degree of stereospecificity could be estimated for that reactant pair.  

This could be beneficial for estimating more specific characteristics of macromolecules in 

the cytoplasm, such as surface charge distribution or overall protein conformation. 



 

57 

 

Lastly, validating certain parts of this model through in vitro experiments would 

be extremely valuable.  Recently, Dr. Xiang Cheng and his lab group in the Department 

of Chemical Engineering at the University of Minnesota have successfully created an 

experimental environment much like the simulation domain described in this work.    

They are able to image the diffusion of colloidal particles in a small, controlled 

environment with variable amounts of crowding molecules.  Through Dr. Cheng’s 

techniques, it is hoped that an experimental validation of certain components of this 

model could be performed.  Certainly, a comparison between the inhibited diffusion of 

molecules in Dr. Cheng’s crowding system could be made with those predicted in this 

model, assuming very similar characteristics of each domain are achievable.  Although 

studying stereospecific reactions in Dr. Cheng’s experimental setting would likely be 

much more challenging than studying pure diffusion, certain scenarios might be 

feasible.   For one thing, the use of commercially available reactive reagents could be 

beneficial.  Given macromolecules with similar reactive characteristics to those proposed 

in this work, an experimental correlation between these molecules in Dr. Cheng’s system 

and those presented here would provide much enlightenment as to how the 

assumptions made in this model compare to those seen in in vitro systems.  

 Overall, it is hoped that the generality and robustness of the model presented in 

this work will provide new insight to those studying biochemical reactions in vitro.  

Through answering some of the previously unanswered questions regarding how 

crowding affects biochemical reaction kinetics and thermodynamics in the cytoplasm, 
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researchers and scientists studying these reactions should now have a better 

understanding of the compatibility between observations made in in vitro systems and 

those of the intracellular domain, as well as elucidating how, if desired, the effects of 

crowding should be handled when modeling in vivo systems.  Through this deeper 

understanding of the physical mechanisms and thermodynamics in crowded, 

intracellular environments, those studying these systems can conduct valuable research 

with a higher degree of confidence that the effects of macromolecular crowding are well-

accounted for. 
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CHAPTER 4 

 
APPENDIX 

 

Supporting Tables 

 

Table A1.  On-rate constants for varying degrees of stereospecificity. 

Crowding 

Molecules  
φ 

)s(nMk 11
on,0,1


 )sM(k 11

on,2,3
  

N = 0 N = 1 N = 2 N = 3 

 0 7.43 0.55 4.50 2.18 

rc RR 25.1
 

0.05 7.82 0.43 4.16 2.09 

0.08 6.48 0.51 5.62 2.16 

0.12 6.72 0.64 4.77 2.40 

0.29 4.67 0.88 9.81 5.51  

rc RR 
 

0.05 6.36 0.51 5.25 2.20 

0.10 6.59 0.54 5.11 2.40 

0.14 5.83 0.62 5.40 2.50 

0.30 3.52 0.94 10.55 4.85 

rc RR 85.0
 

0.07 7.63 0.56 5.55 3.27 

0.10 5.82 0.51 5.98 2.93 

0.15 6.88 0.73 8.78 4.73 

0.29 3.75 0.78 10.55 6.70 

 

It should be noted that the overall decrease in on-rate constants between an N = 1 

and N = 2 conformation is about two orders of magnitude (Table A1), making this the 

rate-limiting step of the entire binding process. This observation was also reported by 

Northrup and Erickson’s protein-protein association model (Northrup & Erickson 1992).  

This is also supported in Table 1 (Chapter 2) by the fact that once the reactants have 

achieved an N = 2 conformation, 60% of the trajectories in an uncrowded case, and over 

90% in a crowded case, remain partially bound and lead to an N = 3 conformation prior 

to diffusing apart— a much greater probability than N = 0 or 1 going to N = 3 for any 
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crowding scenario.  Once in the N = 2 conformation, depletion forces again increase the 

probability of finishing the bond by biasing the reactants to not separate, and to rotate 

about this hinge-like partial bond until a complete bond is formed, although this is not 

the rate limiting step, so there is little is little difference in fold-change of kon from N = 2 

to N = 3. 

 

Table A2.  Rates of arrival for reactants from 9nm to 4.2nm center-to-center. 

Crowding 

Molecules 
φ )s(k 1

DIFF
  

 0 3.26 

rc RR 25.1
 

0.05 3.23 

0.08 3.22 

0.12 3.17 

0.29 2.14 

rc RR 
 

0.05 3.16 

0.10 3.02 

0.14 2.89 

0.30 1.82 

rc RR 85.0
 

0.07 3.09 

0.10 2.81 

0.15 2.58 

0.29 1.70 

 

 

 

        Table A3.  Comparison of the model presented here with Northrup and Erickson’s model. 

Stereospecificity 
kon (M-1s-1) 

(Northrup & Erickson 1992) 

kon (M-1s-1) 

Current model (φ = 0) 

N = 0 (Smoluchowski) 7x109 7.43x109 

N = 1 3.8x108 5.52x108 

N = 2 4x106 4.50x106 

N = 3 2x106 2.18x106 
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Table A4.  Mean edge-to-edge separation distance of reactants during an encounter. 

Crowding 

 Molecule 
φ 

Edge-to-Edge 

Separation (nm) 

Rc = 1.25Rr 
0 2.17 

0.29 1.70 

Rc = Rr 
0 1.79 

0.30 1.35 

Rc = 0.85Rr 
0 1.54 

0.29 1.16 

 
 
 

Table A5.  Diffusion-limited (N = 0) and N = 1 off-rate results. 

Crowding 

Molecules 
φ koff,0,1  (μs-1) Keq,0,1  (M-1) 

T)(kΔG B
o
0,1

 

 0 18.45 402.85 -6.00 

Rc = 1.25Rr 0.29 8.49 550.03 -6.31 

Rc = Rr 0.30 6.12 508.85 -6.23 

Rc = 0.85Rr 0.29 7.04 531.80 -6.28 

 

 It should be noted that, since it was assumed there was no energetic contribution 

for reactants in the N = 1 conformation, their dissociation was the same as for the N = 0 

results, as seen in Table A5, above. 

It is interesting to note that the equilibrium constant still increases for the 

diffusion-limited case, even though the on-rate constant decreases.  This is because the 

extent to which the off-rate constant decreases is greater than the fold decrease in the on-

rate constant for equivalent crowding scenarios.  Thus, the addition of crowders 

(slightly) promotes net assembly for reactants with no stereospecific requirements 

(diffusion-limited) as seen by the small drop in 
o
0,1ΔG  in Table A5, above.  
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Surface Area Calculation 

A fractional amount of surface area explored by a freely diffusing molecule over a given 

time interval, tenc, can be found using 

2

rRS                                                               (A1) 

 

where δS is an arbitrary, differential amount of surface area rotated in space during a 

rotation event, and 

)cos1(2        [=]    Steradians   .                 (A2) 

The term Δθ can be found using the definition of the root-mean squared rotational 

displacement (RMSD) in three dimensional space, as 

 encr tDRMSD 6        .                                    (A3) 

Substituting Eq. A2 and Eq. A3 into Eq. A1 yields an expression for determining a 

differential amount of surface area explored by a freely diffusing sphere, as 

  encrr tDRS 6cos12 2         .                               (A4) 

Dividing Eq. A4 by the total surface area of a sphere (
24 rTOT RS  ) yields the fractional 

amount of surface area explored by a freely diffusing sphere in some average amount of 

time, <tenc>, as in Eq. A5. 

  encr

TOT

tD
S

S
6cos1

2
1


                                          (A5) 

Table S6, below, shows the fold increases of explored surface area during an 

encounter for different crowding environments. Northrup and Erickson reported that 
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the rotational correlation time for the 1.8nm sphere is 5.3ns.  Observing Table S6, it is 

evident that the addition of crowders brings the duration of an encounter (as defined in 

the Results and Discussion section) sufficiently close to the correlation time, thus 

enabling the reactants to almost completely rotationally reorient themselves during any 

given encounter, leading to the increase in probability of achieving the N = 3 

conformation, thus increasing their on-rate constants. 

 

Table A6.  Fractional surface area explored by a freely diffusing reactant in various crowding 

situations.  Encounters were treated as defined in the Results & Discussion section in Chapter 2. 

Crowder Size φ <tenc>  (ns) 
TOTS

δS
 

Fold 

Increase 

Rc = 1.25Rr 
0 4.354 0.1922 

1.1956 
0.29 5.284 0.2298 

Rc = Rr 
0 4.050 0.1796 

1.3179 
0.30 5.459 0.2367 

Rc = 0.85Rr 
0 3.444 0.1542 

1.2983 
0.29 4.550 0.2002 

 

 

Interaction Potentials in Crowded Solutions 

  

 Pairs of test molecules were initiated at an edge-to-edge distance of 2Å and 

underwent Brownian motion for 0.l microseconds while the center-to-center separation 

distance between the pair was recorded at every step.  To capture the energetic 
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landscape associated with the interaction potential between a pair of molecules as a 

function of radial separation distance, r, Boltzmann’s relation was utilized, as  

 TkGrP BDEP exp)(                                               (A6) 

where ΔGDEP is the apparent free energy due to depletion effects, kB is Boltzmann’s 

constant, and T is the absolute temperature.  The probability density function (PDF) of 

the distribution of their separation distances for each crowding case was normalized to 

the φ = 0 crowding case, and this normalized distribution was entered into Eq. A6 as an 

estimation for P(r), which is the probability of finding two spheres separated by a center-

to-center distance, r (Yodh et al. 2001).  Figure A1, below, shows the probability density 

functions of 1,000 molecular pair trajectories for various crowding scenarios.  The shift 

(to the left) in the median separation distance between test molecule pairs (i.e. the peaks 

of each curve in the PDFs) is evidence for depletion forces biasing translational diffusion 

of the pair closer together once within the critical distance. 
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Figure A1.  Probability density functions for reactant separation distances in various crowded 

environments.  Due to the hard-sphere assumption, reactants cannot be separated by a centroid 

separation distance less than r = 2Rr. It should also be noted that r = 9Rr approaches the 

dimension of the simulation domain, resulting in impossible separation distances as defined by 

this model. 

 

 

 

Dependence on potential energy curve 

 An interesting investigation of the model involved changing the potential well 

from that described in Eq. 14 and Figure 1f, to  


























,0,0

1,2.6

2,4.12

4,3,6.18

,

)(

N

NTk

NTk

NTk

Overlap

NU

B

B

B

                                                  (A7) 

to determine the sensitivity of the shape of the potential to the effects of depletion forces 

due to crowding.  The most important change in this potential curve is the addition of an 

energetic component to the N =1 conformation.  
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 It was found that, with the modified potential well, the rate-limiting step in 

association (i.e. reaching N = 3) is no longer reaching the N = 2 conformation, but is now 

reaching the N = 1 conformation.   This is evident in the fact that the probability of 

reaching an N = 2 conformation after having reached an N = 1 conformation is ~98%, 

whereas only ~30% of encounters ever reached the N = 1 case.  Therefore, since reaching 

the N = 1 conformation (a much less stereospecific restriction than reaching the N = 2 

conformation), the on-rate constants do not benefit as much from the increased 

encounter time (due to depletion forces) beyond what is required to achieve the rate-

limiting step.  This is evident in figure below in how the on-rate constants for the higher 

degrees of stereospecificity (i.e. N = 2 and 3) collapse onto that of the N = 1 conformation 

on-rate constant.  Thus, the stereospecific requirement for the rate-limiting step of 

association is a key determinant in how reactions are affected by crowding.   

 
Figure A2.  Normalized on-rate constants as a function of crowder volume fraction (φ) for 

reactants with the modified potential well described in Eq. S7, where 0,,, ||   NonNonNon kkk .  

Only the case where crowding and reactant molecules are of equal size was investigated, but 

similar trends can be expected for the range of crowder size investigated previously in this work.  


