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Abstract 

 Tubulysins are antimitotic natural products with potent anticancer activity against 

multidrug-resistant (MDR) cancer cells, acting by inhibition of tubulin polymerization.  

The marked difference in antiproliferative activity between tubulysins V and U 

exemplifies the importance of an acetate positioned alpha to the thiazole ring.  However, 

this acetate has been shown to be labile under both acidic and basic conditions, so the 

effectiveness of this modification may be hindered due to this instability.  Hence, the 

work presented here focuses on the synthesis of analogs that mimic and stabilize the 

acetate at this position. 

 Heteroatom exchange at the α-thiazole position of tubuvaline was hypothesized to 

increase molecular stability while maintaining observed activity by bioisosteric 

replacement of the tubuvaline oxygen with a nitrogen.  The nitrogen-containing analogs 

of tubulysin V and U, Ntubulysin V and U, were the most important targets to test the 

singular modification of heteroatom exchange on bioactivity and to survey molecular 

stability.  The synthetically derived Ntubuvaline amino acid residue was generated 

following a rigorously controlled Mitsunobu reaction, but difficult final stage deprotections 

to Ntubulysin V suggests a lowered stability compared to tubulysin V.  N-acylation of a 

penultimate tetrapeptide intermediate led to generation of Ntubulysin U and other 

acylated Ntubulysin analogs to establish a more robust SAR at the α-thiazole position.  

NTubulysin U was found to be more stable than tubulysin U under strongly basic 

conditions, and upcoming biochemical evaluation will determine the effect that these 

modifications have on antiproliferative activity. 

 Investigations into the SAR at the tubuvaline α-thiazole position also included 



 

 v 

oxygen-based analogs, where two methods for acylation of tubulysin V were exploited to 

generate O-acylated analogs with various alkyl groups.  Biochemical evaluation of 

antiproliferative activity, along with the use of two electrophilic analogs to act as affinity 

labels, will survey important interactions within the tubulysin-tubulin binding site. 
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Chapter 1: 

Background on Tubulysins, Antimitotic Natural Products with Potent Cytotoxicity Against 

Multi-Drug Resistant Cancer Cells 

Discovery, Isolation, Structure Elucidation, and Biochemical Evaluation of Tubulysins 

Tubulysins are naturally occurring antimitotic tetrapeptides with potent anticancer 

activity against multidrug-resistant (MDR) cancer cells, acting by inhibition of tubulin 

polymerization.  Their first report was in 2000, when they were identified through a 

screen of the culture broths from myxobacteria Archangium gephyra and Angiococcus 

disciformis against mammalian cell lines (Sasse et al. 2000).  Tubulysins A (1), B (2), D 

(4), and E (5) possessed potent antiproliferative activity against L929 mouse fibroblasts, 

PtK2 kidney cancer cells, and KB-3.1 cervix cancer cells (IC50 = 20 pg/mL to 1 ng/mL, 

Sasse et al. 2000).  Additionally, all retained their high potency against the MDR cervical 

cancer cell line KB-V1 (IC50 = 80 pg/mL to 1 ng/mL, Sasse et al. 2000).  Investigation 

into the cellular structure of treated cells showed that the tubulysins function through 

disruption of the microtubule network, where microtubule decay was followed by 

complete solubilization beginning after 2 and 24 hours, respectively (Sasse et al. 2000). 

Tubulysins follow a standard tetrapeptide template with a few key modifications 

to the core structure (Figure 1).  Starting at the N-terminus, the four amino acid residues 

are N-methyl-D-pipecolinic acid (Mep), L-isoleucine (Ile), tubuvaline (Tuv), and 

tubuphenylalanine or tubutyrosine (Tup or Tut).  Variations exist at the oxygen and 

nitrogen of tubuvaline, where substitution of a rare N,O-acetal is present in certain 

members (1–10), and at the phenyl ring of the C-terminus residue based on either a 

phenylalanine or tyrosine source for this residue.  Full stereochemical determination was 
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found by analysis of fragmentation following acidic hydrolysis of tubulysin D (4) (Höfle et 

al. 2003). 

 

Figure 1: Structures of naturally occurring tubulysins. 

Biosynthesis of the tubulysins is through a mixed nonribosomal peptide 

synthetase (NRPS)-polyketide synthase (PKS) system (Sandmann et al 2004), which 

contains 7 modules (2 PKS and 5 NRPS) on 5 proteins (Tub B–F) (Chai et al 2010, 

Figure 2).  Initial loading of L-pipecolinic acid derived form L-lysine onto module 1 forms 

the methylated pipecolinic acid residue through an N-methyltransferase; the point at 

which pipecolinic acid isomerization occurs providing the stereochemistry observed in 

the final analogs has yet to be determined.  Further chain elongation occurs on modules 

2–4 with L-isoleucine, L-valine, and malonyl-CoA, with the malonyl installed as part of the 

first PKS module.  Module 5 is responsible for installation of the unique thiazole ring as a 

result of cysteine addition and heterocyclization.  Addition of either phenylalanine or 

tyrosine on module 6 precedes the final chain elongation where another PKS module 

adds malonyl-CoA and following a C-methyltransferase, releases the molecule as 



 

 3 

pretubulysin A (15) or D (16).  Tailoring oxidations and acylations of these intermediates 

add the acylated functional groups at tubuvaline which finishes the tubulysin 

biosynthesis (Chai et al 2010).  The specific enzymes that oxidize and acylate 

pretubulysins are difficult to determine since the tubulysin gene cluster does not express 

proteins with this potential (Chai et al. 2012). 
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Figure 2: Graphical representation of tubulysin biosynthesis. 
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Tubulysins bind to β-tubulin at the peptide site of the Vinca alkaloid domain and 

exert their anticancer activity through inhibition and destabilization of microtubule 

polymerization (Khalil et al. 2006).  Microtubules are long, polymeric cylinders made up 

of α- and β-tubulin heterodimers and are essential to normal cellular function.  These 

functions include maintenance of the cellular structure and transportation of cellular 

components involved in cell signaling, mitosis and apoptosis.  Microtubule cellular tasks 

are achieved through its frequent lengthening and shortening via 

polymerization/depolymerization of the heterodimeric tubulin subunits, termed ‘dynamic 

instability’ (Jordan and Wilson 2004).  Agents that affect the dynamic instability of 

microtubules have found much success as anticancer agents. These include the taxanes 

and epothilones (inducing and stabilizing tubulin polymerization), and the Vinca alkaloids 

(disrupting and inhibiting microtubule polymerization). 

The anticancer activity of both microtubule stabilizing and destabilizing molecules 

lies within their ability to suspend mitosis (Jordan and Wilson 2004).  Mitosis is the 

multistage process of cell division, wherein a parent cell replicates into two genetically 

identical daughter cells.  In contrast to the microtubule dynamics of interphase, the 

resting phase of the cell cycle, comparatively rapid dynamic instability is necessary for 

proper attachment and movement of the duplicated chromosomes through each stage of 

mitosis (Jordan and Wilson 2004).  Studies have shown that drugs targeting 

microtubules cause incomplete delivery of chromosomes to the metaphase plate, a 

process critical to cell division (Jordan and Wilson 2004).  Even one chromosome not 

aligned at the metaphase plate will stop forward mitotic progress, trapping the cell mid-

mitosis and eventually causing programmed cell death, or apoptosis (Jordan and Wilson 

2004).  These agents’ effectiveness against malignant cells can be partially explained by 
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the higher rate of mitosis cancer cells undergo compared to normal cells.  An increased 

incidence of mitosis puts cancer cells in a position of vulnerability with drugs that arrest 

the mitotic cycle (Jordan and Wilson 2004). 

Biochemical investigations into the tubulysin mode of action have revealed their 

ability to disrupt microtubule dynamics by depolymerizing or inhibiting the polymerization 

of the tubulin subunits onto microtubules (Sasse et al. 2000, Khalil et al. 2006).  As a 

result, treated cells are halted mid-mitosis which leads to their eventual shift into 

apoptosis, as shown by classic markers such as DNA fragmentation and increased 

caspase-3 activity (Kaur et al. 2006, Khalil et al. 2006).  Additionally, cell angiogenesis 

was severally hindered upon treatment with tubulysin A, which may prove to be another 

venue in which these compounds exert their effects.  Competitive binding studies have 

shown non-competitive inhibition of vinblastine with tubulysin A, similarly to the peptide 

antimitotics dolastatin 10 and phomopsin A (Khalil et al. 2006). This, together with NMR 

conformation studies showing that tubulysin A and epothilone A share a common tubulin 

binding site (Kubicek et al. 2010), suggests that the tubulysins bind at the peptide site of 

the Vinca domain. 

Naturally derived tubulysins have shown potent in vitro growth inhibitory activity 

against a variety of different cancer cell lines, including breast (Ranganathan et al. 

2009), cervix (Sasse et al. 2000, Steinmetz et al. 2004), colon (Kaur et al. 2006), 

leukemia (Sasse et al. 2000), lung, (Ullrich et al. 2009b), melanoma (Kaur et al. 2006), 

ovarian (Ranganathan et al. 2009), and prostate (Kaur et al. 2006) carcinomas, with IC50 

values representing a 20-1000 fold improvement over the epothilones, vinblastine and 

palitaxel (Steinmetz et al. 2004).  A correlation exists between lipophilicity and in vitro 

activity, where tubulysins A through I follow a predictable tend of increased lipophilicity 
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showing more potent antiproliferative activity (Steinmetz et al. 2004).  This trend may be 

explained by the observation that increased cellular uptake of the more lipophilic 

tubulysins resulted in higher cellular concentrations in mouse fibroblast cells.  The 

question of whether the mechanism of cellular uptake is through diffusion or active 

transport is still unknown (Steinmetz et al. 2004).   

Preliminary animal studies have shown limited success using low doses of 

tubulysin A in hollow fiber assays of 12 human cancer cell lines (Kaur et al. 2006), and 

no success in xenograft mouse models, where both tubulysins A and B show no 

therapeutic window (Leamon et al. 2008, Schluep et al. 2009, Reddy et al. 2009).  

Targeted delivery of tubulysins by conjugation to cancer-specific substrates, on the other 

hand, has seen limited success in mouse studies.  Over-expression of the folate 

receptor in cancer cells was taken advantage of by conjugation of tubulysins to folate, 

where the drug is released for its anticancer action follow cancer cell selective 

absorption of the complex (Vlahov et al. 2008, Leamon et al. 2008, Reddy et al. 2009).  

This same strategy has also been used with cyclodextrin nanoparticle-tubulysin 

conjugates (Schluep et al. 2009) and prostate-specific antigen-tubulysin prodrugs 

(Kularatne et al. 2010).  The folate and nanoparticle bound conjugates have both shown 

an increased therapeutic window and prolonged survival when compared to unbound 

tubulysins in mice (Leamon et al. 2008, Reddy et al. 2009, Schluep et al. 2009). 

In short, tubulysins exhibit low nanomolar to picomolar inhibition against drug-

sensitive cancer cell lines and their potency is retained against multidrug resistant 

(MDR) cancer cell lines, a claim their closely related clinical counterparts (paclitaxel, 

Vinca alkaloids) cannot make.  These attractive qualities make the tubulysins potential 
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alternatives to the currently available small molecule treatments of MDR cancers, and 

represent the motivation for focusing on these molecules in the studies presented below. 

Established SAR for Tubulysins 

 Many synthetic efforts have been put forth to generate both the naturally isolated 

and modified analogs of tubulysins.  From these investigations, the minimum 

pharmacophore necessary for cytotoxicity have been established as structure-activity 

relationships (SAR) at several points on the tubulysin structure.  In general, 

modifications and simplifications are additive (Patterson et al. 2007) and potency tends 

to increase with greater lipophilicity. 

 At the N-terminus of all the naturally isolated tubulysins lies an N-methyl-D-

pipecolinic acid, which SAR studies have deemed the most favorable group for potent 

cytotoxicity.  Stereochemistry of the ring is important as exemplified by comparing the 

observed IC50 values in 1A9 ovarian cancer cells of 17 to 18 (Figure 3, Raghavan et al. 

2008), but variation in ring size to N-methyl-D-proline causes an insignificant change in 

anticancer activity (19, Raghavan et al. 2008).  Replacement with truncated residues is 

not well tolerated and causes significant loss of potency, as shown with the secondary 

amine 20 (Raghavan et al. 2008), non-cyclic amino acids such as the alanine derivative 

21 (Balasubramanian et al. 2009), and acetamides (Patterson et al. 2007, not shown). 
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Figure 3: Representative examples of SAR trends at the N-methyl-D-pipecolinic acid 

residue. 

 SAR studies have been most heavily invested into the tubuvaline residue since the 

synthetically derived nature of this fragment lends itself to analog synthesis and dramatic 

effects on activity occur as a consequence of structural changes.  One of the most 

crucial aspects of this tubulysin portion is stereochemistry, which can be seen by 

comparing the antiproliferative activity of 4 and 22–24 in MCF-7 breast cancer cells 

(Figure 4).  Significant decreases in activity are observed when either stereocenter is 

isomerized (22 and 23), and these changes are additive as seen with 24.  A minor one-

fold loss of activity occurs with simplification of 4 to N-methyl 25 when dosed in L929 

mouse fibroblast cells, and in separate studies, analogs 4 and 11 were shown to have 

comparable activity in the MCF-7 cell line with IC50 values of 0.67 nM and 0.4 nM despite 

the simplification to a secondary amide.  This leads to the conclusion that the N,O-acetal 

is not essential for potent cytotoxicity, and hence can be replaced with less labile groups. 
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Figure 4: Representative examples of SAR trends at the tubuvaline residue. 

 A general paradigm at the acetate of tubuvaline is contentious since only a slight 

decrease of potency in L929 cancer cells occurs when comparing 4 to alcohol 26, but 

this same change in 11 to 12 causes a drastic loss of activity in MCF-7 cells.  This may 

be an outcome of additive effects from structural simplification at both the oxygen and 

nitrogen of the tubuvaline.  Regardless of the source, the comparison of 11 and 12 

clearly shows that the acetate at the α-thiazole position is crucial for potent 

antiproliferative effects in cancer cells when the tubuvaline secondary amide is not 

substituted.  Cyclization between the oxygen and nitrogen of tubuvaline as in 27 results 

in equivalent potency to 11 when screened in HEp-2 epidermoid carcinoma cells (Shibue 

et al. 2010). 

 The difficulty in installing and maintaining the labile N,O-acetal group has led to 

several investigations into SAR at this position.  Equivalent IC50 values were observed in 
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PC-3 prostate cancer cells when an N-branched peptide-like functional group replaces 

the N,O-acetal at the tubuvaline residue (28).  Semi-synthetic work with naturally 

isolated tubulysins gave access to analogs with ether, thioether, and amide replacement 

of the N,O-acetal (29–31); in KB cells, all of these were equally active in inhibiting growth 

of the cancerous cells.  Based on these results and the positive correlation of lipophilicity 

with antiproliferative activity noted above, it appears that the determining factor for 

activity at this position is not the identity of the functional group but rather its contribution 

to overall molecule lipophilicity. 

 Some results not graphically represented here have established that activity 

equivalent to tubulysin V (12) is retained when replacing the α-thiazole hydroxyl with 

either a ketone (Balasubramanian et al. 2009) or a methylene (pretubulysin D (16), 

Ullrich et al. 2009a).  Replacement of the thiazole ring with an oxazole does not affect 

activity (Shankar et al. 2011), while substitution with a phenyl ring causes a significant 

loss in IC50 values (Burkhart et al. 2011). 

Residing at the C-terminus of naturally occurring tubulysins is either 

tubuphenylalanine or tubutyrosine, resulting in a largely insignificant change in 

cytotoxicity; this general trend is highlighted by comparison of 1 and 4 cytotoxicity in 

L929 mouse fibroblasts (Figure 5).  Simplification of tubuphenylalanine by removal of the 

carboxylate end results in a small loss of potency as shown by phenylethanamine 32 

(IC50 value = 0.33 nM).  Alternatively, removal of the benzyl moiety results in a great loss 

of activity as shown in 33, but potency is returned with replacement of the further 

simplified N-methyl amide 34.  This demonstrates that none of the functional groups of 

the tubuphenylalanine backbone are absolutely necessary to maintain activity.  With 

addition of the poor activity resulting from full removal of all residues at the tubuvaline 
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carboxylate (35), this data again confirms the effect that lipophilicity has on tubulysin 

anticancer activity.  

 

Figure 5: Representative examples of SAR trends at the tubuphenylalanine/tubutyrosine 

residue. 

Previous Work on Tubulysins from the Fecik Group 

Work in the Fecik lab has focused on the synthesis and biological evaluation of 

simplified tubulysin analogs to probe minimum structural requirements for cytotoxicity 

and the identification of a clinical candidate. The Fecik lab has synthesized and 

evaluated 2 natural tubulysins, tubulysins V and U (Figure 6), and approximately 75 

analogs (Balasubramanian et al. 2008, Raghavan et al. 2008, Balasubramanian et al. 

2009).  The marked difference in antiproliferative activity between tubulysins V and U 

exemplifies the importance of an acetate positioned alpha to the thiazole ring.  However, 

these acetates have been showed to be labile under both acidic and basic conditions 

(Höfle et al. 2003), so the in vivo effectiveness of this modification may be hindered due 

to this instability.   
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Figure 6: Comparison of tubulysin U (11) and tubulysin V (12) IC50 values in 1A9 

ovarian cancer cells. 

Thesis Goals 

The overall goal of these research projects was to synthesize and evaluate 

tubulysin analogs with structural modifications at the tubuvaline α-thiazole position which 

mimic and stabilize the crucial yet labile acetate seen in the most potent tubulysins.  This 

was done by synthesizing analogs which replace the acetate with nitrogen based 

functional groups and with oxygen based functional groups which are less hydrolytically 

unstable.  Following analog synthesis, biochemical evaluation will be performed by our 

collaborators at the NIH to test their activity against both normal and MDR cancer cell 

lines, in addition to their ability to inhibit tubulin polymerization.  Based on the apparent 

effect that modifications to the acetate impose, an SAR will be developed, which can be 

used as a tool to more fully understand the interactions of tubulysins with their binding 

site on tubulin and assist with future development of these compounds as anticancer 

therapeutics. 

Studies which replace the tubuvaline oxygen with a nitrogen have not yet been 

reported, so the first focus of the project was to synthesize the tubuvaline residue with 

installation of the key nitrogen.  Previously established syntheses of tubulysins V and U 

reported by the Fecik lab were seen as a foundation for this work, where modifications to 
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these routes would modify the α-thiazole position without significant detriment in the rest 

of the transformations.  Peptide couplings with the other tubulysin residues would then 

give access to Ntubulysin V (36, Figure 7), a critical analog which will unequivocally 

judge the effect of heteroatom exchange at this position and function as a common 

precursor to the other N-substituted analogs.   

 

Figure 7: Proposed modification of ester 11 and hydroxyl 12 leading to Ntubulysin V 

(36), Ntubulysin U (37), and Ntubulysin analogs. 

Acetylation of 36 would then give access to Ntubulysin U (37), which will survey 

whether stabilized acetylation at this position will result in increased activity as seen with 

comparison of 11 and 12.  Since all the other proposed Ntubulysin V analogs will not 

have O-substituted analogs available for direct comparison, these compounds are 

crucial pieces to understand the singular modification to the heteroatom and will act as 

links to the SAR of other N-substituted analogs.  By general substitution of 36 with other 

functional groups such amides, amines, carbamates, ureas, and imides, insights will be 

given to the effect that space filling, hydrogen bonding, and polarity have on tubulin 

active site binding, and in turn cytotoxicity in cancer cells. 

The established potency of the acetate-containing tubulysins has not been 

supplemented by investigations into the effect that other esters and various other oxygen 

based functional groups have at this position.  Hence, with access to 12 from previous 
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synthetic efforts, another thesis objective was to attach various acyl and alkyl groups to 

this position.  Various esters appended to 12 will determine the importance and 

limitations of the alkyl group at this position, while acylation resulting in non-ester 

functionality will gauge the effect that hydrogen binding and polarity have on tubulin 

binding.  O-alkylation will replace the carbonyl with a more hydrolytically stable moiety 

while maintaining a hydrophobic presence, which will survey the importance of the 

acetate carbonyl.  In addition to the SAR data gained through biochemical evaluation of 

these compounds, O-acylation of 12 also affords the opportunity to attach electrophilic 

groups at this position in order to develop affinity probes, which will covalently bind to 

tubulin and provide data on the specific interactions between tubulysins and the tubulin 

active site residues. 
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Chapter 2: 

Studies Toward Design and Synthesis of NTubuvaline Fragments with Regio- and 

Diastereoselective Installation of the Key Nitrogen 

Introduction 

 Testing the biochemical effect that replacement of the tubuvaline oxygen with a 

nitrogen has with regards to cytotoxicity in cancer cells first required access to the 

synthetically derived compounds 36 and 37.  Synthesis of the target tubulysin analogs 

starts with access to tubuvaline modified with regio- and stereoselective replacement of 

the hydroxyl oxygen.  In order to generate this residue, the chemistry to an established 

ketone was reevaluated with improvements to reaction setup and purification.  

Addendums to a synthetic route pioneered by the Fecik lab led to exclusive formation of 

an unforeseen side product as a result of a Mitsunobu reaction which would have 

diastereoselectively installed the key nitrogen.  An alternative strategy, which called 

upon the use of a nitrile electrophile, initially underwent similar side product formation 

and required survey of alternative protecting groups. 

 Following the successful regioselective installation of the nitrogen via a nitrile 

electrophile, this route was deemed problematic stemming from issues with 

stereoselectivity and purification.  With the intention of circumventing both the previously 

seen side product formation and lack of selectivity, a hybrid approach was taken 

resulting in an unavoidable retro-Michael cleavage of the target molecules.  Finally, after 

exhausting the usefulness of these alternative options, a working Mitsunobu reaction 

was established based upon the original synthetic pathway.  With the nitrogen installed 

as a phthalimide, further functional group transformations which build upon established 
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methods led to the generation of the Boc protected Ntubuvaline residue 89. 

Retrosynthetic Analysis of the Target NTubulysin V (36) 

 Retrosynthetic analysis of the target 36 starts with amide bond disconnections into 

the four individual amino acid residues: N-methyl-D-pipecolinic acid (Mep, 38), L-

isoleucine (Ile, 39), Ntubuvaline (NTuv, 40), and tubuphenylalanine (Tup, 41, Figure 8).  

Of these fragments, Boc protected L-isoleucine is commercially available, N-methyl-D-

pipecolinic acid is easily generated in one step from commercial materials, and the 

synthesis of tubuphenylalanine has been reported by several groups including the Fecik 

lab (Raghavan et al. 2008).  Conversely, the current syntheses of tubuvaline fragments 

have all contained either oxygen based functional groups or full saturation at the α-

thiazole position.  Hence, the initial synthetic focus to 36 concerned production of 40 with 

correct regio- and stereo-controlled installation of the key nitrogen.  Production of the 

other target analog Ntubulysin U (37) was predicted to be available by acetylation of 36. 

 

Figure 8: Retrosynthetic strategy to form Ntubulysin V. 

 The route to Ntubuvaline was envisioned to go though a convenient intermediate 
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ketone (42), made accessible using chemistry previously established in our lab towards 

the bis-Boc protected ketone 43 (Raghavan et al. 2008, Figure 9).  In the forward sense, 

stereoselective reduction of other tubuvaline ketones has been shown to be selective 

and high yielding (Sani et al. 2007).  Following diastereoselective reduction of 42, 

production of the desired Ntubuvaline diastereomer 40 was then predicted to be available 

through a Mitsunobu reaction and further functional group transformations of the 

resulting alcohol.  The formation of ketone 42 was possible through arylation of the 

known Weinreb amide 44 with the known thiazole 45 (Raghavan et al. 2008). 

 

Figure 9: Retrosynthetic strategy to form Ntubuvaline using the Weinreb amide 44. 

 The advantage to using Weinreb amide 44 as the electrophilic precursor to ketone 

42 lies in its resistance to excessive nucleophilic addition (Nahm and Weinreb 1981).  

Esters and acid chloride electrophiles contain leaving groups which can prematurely 

cleave following nucleophilic addition, causing collapse of the tetrahedral intermediate 

before the reaction is quenched.  The resulting ketone is then susceptible to a second 

addition with the still present nucleophile, leading to production of an undesired tertiary 

alcohol byproduct.  Alternatively, addition of the nucleophile into the carbonyl of Weinreb 

amides generates a stabilized tetrahedral intermediate supported by lithium chelation 
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(46, Figure 9).  This intermediate is resistant to further nucleophilic addition even when 

several equivalents of the nucleophile are used, allowing for greater reaction control.  

Only upon work up is the carbon-nitrogen bond cleaved, freeing the desired ketone 

without fear of additional nucleophilic addition. 

Modified Syntheses of the Weinreb Amide 44 and Thiazole 45 Starting Materials 

 Starting with synthesis of thiazole 45, the established strategy calls for 

condensation of ethyl bromopyruvate (47) with thiourea (48) to form the thiazole ring.  

Bromination of the resulting thiazole 49, followed by reduction of ethyl ester 50 and silyl 

ether protection of the alcohol 51 generates thiazole 45 in 44–61% overall yield over 4 

steps (Figure 10, Kelly and Lang 1996, Raghavan et al. 2008).  Despite the efficiency of 

this route, several aspects can still be improved since flash chromatography purification 

is required in 3 of the 4 steps, and the reaction scale is limited. 

 

Figure 10: Established synthesis of thiazole 45. 

 With several key modifications to reaction set up and purification, a scalable route 

to thiazole 45 which allows for fewer instances of chromatography was developed 
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(Figure 11).  Previously, the condensation of ethyl bromopyruvate with thiourea was 

done neat, where careful heating and generous head space in the reaction container 

were necessary due to the violently exothermic reaction occurring upon reagent 

homogenization (Kelly and Lang 1996).  By heating the starting materials as a solution in 

refluxing EtOH instead, the reaction can run safely at >50 gram scales.  Following 

bromination of amino thiazole 49, reaction purification has been flash chromatography, 

where bromine species are a common impurity.  Alternatively, simple recrystallization in 

boiling hexanes gives pure bromo thiazole 50 without these impurities, and allows 

reaction scaling beyond what would be practical for silica-based purification.   

 Full reduction of the ethyl ester 50 was previously performed using 2 equivalents of 

a DIBAL-H solution (Figure 10).  This reaction presents several challenges, including 

scale limitations based upon volume of available equipment, the difficulty in working up 

reactions with large amounts of aluminum salts, and the requirement for flash 

chromatography.  The alternative route presented here uses simple reagents for in situ 

generation of LiBH4 in a biphasic mixture of THF and H2O (Figure 11).  This route is 

preferable due to its reduced solvent volume supporting a large scale reaction, 

operational simplicity, and production of highly pure alcohol 51 after aqueous quench 

and organic extraction, making additional purification unnecessary. 
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Figure 11: Detailed reactions in the new synthesis of thiazole 45. 

 The other synthetically derived starting material towards the ketone 42 is Weinreb 

amide 44.  Weinreb amide 44 was synthesized through a one-pot Arndt–Eistert reaction, 

which furnishes the desired one carbon homologation at the Boc-L-valine carboxylate 

(Figure 12).  Synthesis of the intermediate diazomethylketone begins with carboxylate 

activation as a mixed anhydride, followed by addition of diazomethane as a solution in 

ether.  The true scale limitation of this route to the crucial ketone 42 lies in the scale that 

diazomethane can be safely generated, since it is explosive and therefore requires 

special equipment and handling considerations.  Wolff rearrangement of the 

diazomethylketone in the presence of N,O-dimethylhydroxylamine and catalytic silver 

benzoate gives Weinreb amide 44.  Use of silver benzoate was preferable to the silver 

trifluoroacetate previously reported (Raghavan et al. 2008) since the benzoate salt is 

soluble in the Et3N, making its transfer into the reaction more operationally simple. 
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Figure 12: Synthesis of the Weinreb amide 44. 

First Generation Synthesis to NTubuvaline 40: Synthesis and Conversion of Ketone 42 

 Arylation of the Weinreb amide previously relied on a bis-Boc protection of 42 to 

avoid N–H deprotonation by the lithiated thiazole nucleophile 53 (Figure 13, Raghavan 

et al. 2008).  This extra protection was low yielding (55%) but necessary so as not to 

waste the precious thiazole intermediate 45.  Investigators at Merck (Liu et al. 2002) 

have reported a method where secondary N-carbamate protected electrophiles are first 

deprotonated by adding a simple, commercially available, non-nucleophilic Grignard 

reagent termed a “sacrificial base.”  Instead of adding an extra equivalent of nucleophile 

to account for the acidic N–H proton, a near stoichiometric amount of any number of 

lithiated or Grignard based nucleophiles were added to electrophiles pre-deprotonated 

with a sacrificial base.  High yields of the target molecules confirmed this method’s value 

for economic use of nucleophiles. 

 Such a procedure was adopted for the arylation of the singly Boc protected 

Weinreb amide 44 (Figure 13).  The sacrificial base, i-PrMgCl, was added first to 

deprotonate 44, while the thiazole 45 was separately lithiated using n-BuLi.  After their 

respective exchanges, the two solutions were mixed, predominately resulting in the 

target ketone 42 and the bromine exchanged thiazole 54 as an impurity.  Purification of 

the reaction was challenging due to the similar Rf values of 42 and 54 on silica gel, 

where slowly eluting flash chromatography with a very non-polar mobile phase was 
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necessary for complete purification.  The yield of this reaction was modest at 51% (58% 

based on recovered starting material), but up to 5 grams of ketone 42 was generated 

and the overall yield of 42 from commercial starting materials was improved by 

eliminating the inefficient bis-Boc protection. 

 

Figure 13: Synthesis of the ketone 42 using a sacrificial base. 

 Access to multi-gram quantities of ketone 42 set the stage for the second half of 

the Ntubuvaline synthesis: installation of the key nitrogen.  A stereoselective reduction 

was performed using the (R)-CBS catalyst and borane to form the desired (S)-alcohol 55 

(Figure 14).  Reaction selectivity tended to fluctuate, and retrospective literature survey 

suggests that the CBS reduction may have been more reproducible if performed at 

elevated temperatures (Stone 2004).  The stereochemical identity of the alcohol 55 was 

confidently assigned based upon precedent set by the Zanda group, where (R)-CBS 

reduction of a similar ketone led to the corresponding (S)-alcohol, which was 

unambiguously assigned by X-ray crystallography (Sani et al. 2007).  The Fecik lab has 

also used the CBS catalysts for selective reduction of tripeptides towards the synthesis 

of tubulysin V and its epimer at the α-thiazole position (Balasubramanian et al. 2009).  

This study confirmed stereochemistry at this position both by Mosher ester analysis 
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(Dale and Mosher 1973) and comparison of the respective cytotoxicity of each epimer 

against naturally occurring tubulysin V.   

 

Figure 14: Attempted synthesis of the azide 56 as an intermediate towards Ntubuvaline. 

 With 55 in hand, stereospecific nucleophilic substitution through a Mitsunobu 

reaction was then performed to install the nitrogen as an azide.  Under the many various 

Mitsunobu and hydroxyl activation conditions described below, however, conversion of 

55 did not produce the desired azide compound 56.  Instead, an intramolecular 

cyclization of the Boc group resulted in the cyclized carbamate 57 as the exclusive 

product, where an SN2-type mechanism characteristic to Mitsunobu and nucleophilic 

displacement reactions is assumed.  Along with standard Mitsunobu conditions (PPh3, 

NaN3/DPPA, then DIAD), several modifications were attempted.  These included 1) 

changing the order of reagent addition, 2) running the reaction at room temperature, 0 or 
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-15 °C, 3) using the oxidant DDQ in place of DIAD (Iranpoor et al. 2004), and 4) using 

conditions which were reported to be superior to standard Mitsunobu conditions in the 

case of a benzylic alcohols (Thompson et al. 1993).  These modifications all resulted in 

either no reaction or production of 57 as the major product. 

 In preparation for an SN2-type hydroxyl displacement with an azide nucleophile, 

alcohol 55 was activated as a mesylate or tosylate in the presence of amine bases at 

both 0 °C and room temperature.  When kept to 0 °C, no reaction occurs; when the 

reaction was performed at room temperature, activation was presumed to occur followed 

immediately by intramolecular cyclization to form 57 exclusively.  In hopes that this route 

could be salvaged, a reductive amination was performed on ketone 42 to non-

diastereoselectively install the amine (Figure 14).  This too failed by not progressing past 

the starting material. 

 Ultimately it was determined that regardless of reaction conditions, intramolecular 

cyclization would always be faster than intermolecular nucleophilic substitution in cases 

where the hydroxyl at the α-thiazole position was activated as a leaving group.  Other 

members of the Fecik lab have noted the same reactivity occurs under these conditions 

using a tripeptide alcohol previously established for use towards the synthesis of 

tubulysins V and U (Balasubramanian et al. 2009).   

Second Generation Synthesis to NTubuvaline 40: Attempted Synthesis of Nitriles 

Electrophiles 

 Since side product production via an intramolecular cyclization dominated the first 

generation route to the Ntubuvaline analogs, a new method was developed.  In order to 

preinstall the nitrogen and negate the need for activation of the α-thiazole position, 



 

 26 

Weinreb amide 44 was replaced with a nitrile electrophile 58 (Figure 15).  

Retrosynthetically, a diastereomeric mixture of amine 59 was to be accessible via 

arylation of nitrile 58 with thiazole 45 followed by non-diastereoselective reduction of the 

in situ imine.  Following separation of the diastereomers and functional group 

transformations, 40 would then be available.  This strategy was inspired by the reported 

route Wipf used to tubulysin analogs (Wipf and Wang 2007), where an aldehyde 

electrophile was used to non-diastereoselectively install the hydroxyl at the α-thiazole 

position of tubuvaline. 

 

Figure 15: Retrosynthetic strategy to form Ntubuvaline using the Boc protected nitrile 58. 

 Reduction of the Boc Weinreb amide 44 followed by conversion to nitrile 58 (Zhu et 

al. 2007) was successful, but was also low yielding and would require a substantial 

amount of precious Weinreb amide intermediate (Figure 16).  Instead, synthesis of 58 

was attempted by starting with the easily accessible Boc protected valinol 60.  This route 

proved to be problematic, since at both the halogenation of 60 and the cyanide addition 

into 62, partial intramolecular cyclization occurred yielding the cyclized carbamate 61 as 

well as a low yield of the targeted molecules 62 and 58.  Little variation to this paradigm 

was found when changing the leaving group X (OTs, Br, or I) or reaction temperature (0 

°C, room temperature, or 70 °C).  This was surprising since, although one source reports 

similar yields of activated Boc-valinol (Veitía et al. 2009), most previous studies report 
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yields ranging from 80 to 95% at each step (Sott et al. 2005 and references within).  This 

reactivity is not without precedent, however, with the intramolecular cyclization of Boc-

alinanol occurring after its activation as a tosylate (van den Broek et al. 1989).  These 

cyclized side products were accessible in part by the presence of a tert-butyl cationic 

leaving group at Boc. 

 

Figure 16: Attempted synthesis of the Boc protected nitrile 58. 

 In order to fix the problem of cyclized product formation, it was hypothesized that 

by removing leaving groups or hydrogens within the protecting group, any cyclization 

that occurred would be reversible back to useful molecules.  For this purpose 

phthalimide (Phth) protection was picked since any intramolecular cyclization at the 

proposed intermediates would result in an unstable, non-progressive cationic species 63 

(Figure 17).  Synthesis of phthalimide protected valinol was possible through subjecting 

L-valine to standard reduction (McKennon et al. 1993) and protection (Sheehan et al. 

1952) conditions.  This protecting group strategy did indeed improve the hydroxyl 

activation step, with both bromo- and tosyl-activated intermediates 67 synthesized in 

good yield without formation of cyclized side products.   
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Figure 17: Poorly productive synthesis of the phthalimide protected nitrile 68. 

 Unfortunately, cyanide addition gave a product mixture favoring the cyclized side 

product 69 over the intended nitrile 68, indicating that an in situ equilibrium exists 

between the open form of 67 and the reversible, cyclized intermediate 63 made 

irreversible with cyanide addition.  NMR analysis of 69 clearly shows only one 

diastereomer present, but simple experiments to determine relative stereochemistry 

such as NOESY would not be possible since the newly created stereocenter does not 

have a proton.  For complete structural characterization, further chemical manipulations 

or X-ray crystallography will be necessary.  A fair assumption would be that, due to the 

mostly planar nature of the cationic intermediate 63 and the apparent stereospecificity of 

nitrile addition, the steric effects of the isopropyl must strongly dictate the facial 

selectivity to the re face, resulting in the nitrile on the opposite face to the isopropyl.  In 

retrospect, this route may have also been subject to undesired reactivity in later 

reactions based upon phthalimide base sensitivity, which will be discussed at length 

later. 
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Synthesis and Application of Dibenzyl Protected Nitrile 72 

 Based upon the results using carbamate and imide based protecting groups, any 

protecting groups containing carbonyls were predicted to undergo undesired cyclization 

at some point during Ntubuvaline fragment synthesis.  With this consideration in mind, a 

dibenzyl protecting group strategy was picked to eliminate potential cyclization, along 

with the added advantage of removing the acidic N–H proton in preparation for the 

arylation step.  The activation of dibenzyl protected L-valinol 70 (Reetz et al. 2004) 

resulted in the bromide 71 (Savithri et al. 1996, Figure 18), where the crude reaction was 

first filtered through Celite to remove the PPh3 and triphenylphosphine oxide side 

products which tended to complicate flash chromatography.  Nucleophilic substitution of 

71 with a cyanide affords the nitrile 72 at either room temperature or 65 °C, but with a 

greater than 100 fold rate enhancement when run at the elevated temperature 

(completion within 1 hour versus 5 days).  Each step in the synthesis to 72 efficiently 

gives its respective product in multi-gram quantities. 

 

Figure 18: Productive synthesis of the dibenzyl protected nitrile 72. 

 With the two precursors to 40 in hand, installation of the amine onto the Ntubulysin 

backbone was possible by activation of thiazole 45 as a Grignard reagent, nucleophilic 

addition into nitrile 72, and in situ reduction of the resulting imine 73 (Figure 19).  

Activation of the thiazole as a nucleophile via Grignard reagents was necessary due to 

the instability of lithiated thiazoles at the relatively higher temperatures required for 

dddaddition into the nitrile and their reported tendency to undergo double addition into 
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nitriles (Spieß et al. 2004).  The bromine-magnesium exchange used to activate thiazole 

45 originates from a commercially available Grignard reagent, as Grignard formation 

using elemental Mg turnings was non-productive.  Prior to the NaBH4 reduction, absolute 

EtOH was added to destroy any remaining Grignard species, a procedure which has 

been shown to improve the reaction outcome (Brussee et al. 1990).  As noted above, 

this procedure is very similar to the protocol that Wipf used for oxygen based tubuvaline 

intermediates (Wipf and Wang 2007). 

 

Figure 19: Synthesis of the amino mixture 74. 

 While productive for the installation of the amine functionality within the Ntubuvaline 

carbon framework, several significant issues exist in this synthetic strategy.  This non-

diastereoselective reduction gives a nearly equal mixture of(R,R)- and (R,S)-74, and 

since these types of tubuvaline analogs have not been reported, the identity of the major 

diastereomer would be pure conjecture.  The mixture 74 was poorly separable by flash 

chromatography, a characteristic which persisted even after several functional group 

manipulations (N-acetylation, TBDPS deprotection, and oxidation, below).  Finally, 

based upon the requisite peptide couplings towards the final tetrapeptide, the amine 

would have to undergo relatively early functionalization or protection.  These options lack 

efficiency since late stage N-derivatization is desirable when generating many similar 
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compounds and a protection/deprotection strategy would add superfluous synthetic 

steps and reduce available material through yield loss. 

 What this route did offer was material to develop improved functional group 

transformations to Ntubuvaline intermediates with model reactions.  Following acetylation 

of the diastereomeric mixture 74, TBDPS deprotection was found to be faster and very 

high yielding when using a solution of the fluoride salt tetrabutylammonium fluoride 

(TBAF, Figure 20).  Procedures for oxidation of the alcohol 76 to the aldehyde 77 were 

scanned using standard conditions.  Swern oxidation caused degradation of the starting 

material.  Due to its location at a benzylic position, oxidation using MnO2 successfully 

generated 77 in moderate yield (60–70%), with the advantage of convenient reaction set 

up and simple purification (filtration through Celite).  Parikh-Doering oxidation gave the 

product but with a yield higher than theoretically possible; it was found that DMSO, 

SMe2, and other impurities were trapped in the product mixture. 

 

Figure 20: Model reactions for manipulation of Ntubuvaline fragments. 

 Synthesis of the fully oxidized acid was also investigated with standard methods 

from either the alcohol 76 or aldehyde 77.  Full oxidation of 76 was more heavily 
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investigated since a successful route via the alcohol would eliminate redundant steps 

(Figure 20).  Use of catalytic tempo/NaOCl in the presence of NaClO2 (Zhao et al. 2005) 

was non-reactive with the alcohol, whereas Jones and KMnO4 oxidations caused full 

degradation.  PDC did produce aldehyde 77 and acid 78, but multiple reaction variations 

could not give a consistent yield of each product or fix the problem of multiple impurities 

which hindered purification.  The poor reaction outcomes with full oxidation of 76 showed 

that stepwise oxidation was superior.  Alternative reactions to oxidize the aldehyde 77 

were attempted, but the previously established oxidation system using NaClO2 

(Raghavan et al. 2008) was superior in reaction set up, yield, and ease of purification. 

Third Generation Synthesis to NTubuvaline 40: Attempted Synthesis of Dibenzyl 

Protected Ketone 79 and Aldehyde 82 Leading to a Retro-Michael Reaction 

 From this point, synthetic efforts were focused upon installation of the Ntubuvaline 

nitrogen stereoselectively but without the previously encountered intramolecular 

cyclization.  Dibenzyl protected ketone 79 (Figure 21) was seen as a superior choice 

compared to the amino intermediate 74 under the prediction that a stereoselective 

nitrogen installation via the previously proposed Mitsunobu route would be possible 

while avoiding the pervasive cyclization endemic with Boc protection (Figure 14).  

Following the same nucleophilic addition of thiazole 45 into nitrile 72 used to generate 

imine 73 (Figure 19), hydrolysis of 73 was employed using acidic, neutral, or basic 

aqueous quenches (Figure 21).  Instead of the expected dibenzyl ketone 79, the reaction 

exclusively formed the retro-Michael products dibenzyl amine and α,β-unsaturated 

ketone 80.  A large coupling constant (J = 15.7 Hz) between the two alkene hydrogens 

of 80 establishes that the E isomer was formed based upon the established paradigm of 

E/Z proton splitting patterns in 1H NMR and the report of a similar molecule (Dondoni et 
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al. 1994).  This type of intermediate has been studied pertaining to tubuvaline synthesis 

before (Shankar et al. 2009). 

 

Figure 21: Routes to the unstable dibenzyl protected ketone 79. 

 An alternative route based on the successful synthesis of ketone 42 through a 

Weinreb amide electrophile (Figure 13) was adapted for use in production of ketone 79 

by first synthesizing the dibenzyl protected Weinreb amide 81 (Figure 21).  Using nitrile 

72, hydrolysis was successful with minimal production of retro-Michael products using 

concentrated aqueous HCl at 80 °C; alternative acids (H2SO4), concentrations (6 M 

aqueous HCl), and temperatures (reflux) all resulted in partial or full production of the 

retro-Michael products.  Standard peptide coupling supplied the Weinreb amide 81, 

making the synthesis of this β-amino acid available from commercial starting materials 

without the need for anhydrous, oxygen free, or potentially explosive reaction conditions.  

This is unique when compared to standard procedures for one carbon homologations, 

where the Ardnt-Eistert reaction (shown above), Kowalski ester homologation (Gray et 

al. 2004), Danheiser’s diazotransfer modification (Danheiser et al. 1998), and Gmeimer’s 

aspartic acid method (Gmeimer 1990) all require the use of a sensitive reagents.  
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Carbamate-protected amino acids have previously been used for β-amino acid synthesis 

through a nitrile intermediate (Caputo et al 1995), but as shown above, this method 

tends to be subject to intramolecular cyclization (Figure 14).    

 Unfortunately, arylation of the dibenzyl Weinreb amide 81 also underwent 

cleavage into the retro-Michael products (Figure 21).  Based upon these results, the 

ketone 79 was clearly unstable under even mild conditions and was therefore a 

nonviable intermediate. 

A general paradigm established by the work shown above can be summarized as such;  

The Ntubuvaline intermediates will be susceptible to:  

1) intramolecular cyclization upon α-thiazole activation if a carbonyl is present in 

the amine protecting group,  

2) poor stereoselectivity with nucleophilic addition and reduction at a valine-derived 

nitrile, and  

3) retro-Michael cleavage with dibenzyl amine protection β-positioned to a ketone.   

 With this in mind, the next route planned was to synthesize aldehyde 82, which 

would be subjected to a non-stereoselective arylation using lithiated thiazole 53 towards 

the single desired diastereomer 84 (Figure 22).  Despite the assured production of a 

diastereomeric mixture from this arylation, literature precedent will assist in 

determination of absolute stereochemistry of each alcohol.  Following isolation of the 

pure (S)-alcohol 83, diastereoselective installation of the key nitrogen via a Mitsunobu 

reaction was envisioned to run smoothly since intramolecular cyclization is not possible 

with the dibenzyl protection.   This route agrees with the three criteria stated above: 1) 
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the nitrogen protecting group does not contain a carbonyl and hence 83 would not be 

subject to cyclization during a Mitsunobu reaction, 2) unlike the nitrile reactions, 

Mitsunobu reactions are well know to be stereoselective, and 3) at no point does a 

ketone exist at the α-thiazole position. 

 

Figure 22: Routes to the unstable dibenzyl protected aldehyde 82. 

 Synthesis of aldehyde 82 from nitrile 72 by DIBAL-H reduction proceeded to full 

consumption of the starting material by TLC analysis, but after aqueous workup, 1H NMR 

analysis did not show any trace of the expected characteristic aldehyde peak.  Instead, 

several peaks were present in the alkene region indicative of an elimination, so a less 

direct route starting with Swern oxidation of dibenzyl protected L-valinol 70 was used 

instead.  A Wittig reaction at the aldehyde generated the methyl vinyl ether 85 which has 

been reported to provide a one carbon homologation to an aldehyde upon exposure to 

acidic conditions in aqueous solvents (Liu et al. 2009).  When CSA was added to a 

solution of 85 in 2:1 MeCN:H2O, TLC analysis of the crude reaction after 18 hours 

revealed starting material and dibenzyl amine.  The reaction was deemed a failure due 

to the dibenzylamine’s role as a marker for retro-Michael products and was not 
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investigated further.  According to a report with an analogous aldehyde, the silica 

chromatography used to monitor the reaction may have been responsible for the retro-

Michael product observed (Burke et al. 2004).  This data shows that the dibenzyl 

protection is susceptible to elimination when positioned β to an aldehyde as well, which 

leads to the conclusion that the dibenzyl protection is too vulnerable to cleavage for use 

in diastereoselective routes to 40. 

Successful Regio- and Stereoselective Installation of the NTubuvaline Nitrogen 

 Following extensive laboratory research and literature survey, a method in which to 

successfully perform a Mitsunobu reaction was eventually established using the Boc 

protected alcohol 55 previously synthesized using a (R)-CBS catalyzed reduction of the 

ketone 42 (Figure 14).  The CBS reduction of 42 discussed above is stereospecific, but 

gives only a modest yield of the desired (S)-alcohol 55.  A non-stereoselective reduction 

of the ketone using NaBH4 gives a 3:2 mixture of the two diastereomers favoring the 

target alcohol, but with a yield comparable to the CBS reduction and the opportunity to 

recover and convert the (R)-alcohol 86 back to 42 using MnO2 oxidation (Figure 23).  

Overall, this route is preferable since it uses basic reagents in an operationally simple 

reaction that is equally productive as the diastereoselective reduction and easily 

separable by flash chromatography.  In fact, with several rounds of 42 reduction and 

oxidation of recovered 86, the overall yield of the desired alcohol 55 would surpass that 

of the diastereoselective CBS reduction.  Work from this lab has previously featured the 

non-diastereoselective reduction of di-, tri-, and tetrapeptide ketones with approximately 

the same diastereomeric ratio (Balasubramanian et al. 2009). 
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Figure 23: An alternative approach to the synthesis of alcohol 55. 

 Under carefully controlled reaction conditions featuring the use of phthalimide as a 

nitrogen source, a successful Mitsunobu reaction was established with a reproducible 

yield of 50%, thus providing the means to stereoselectively install the nitrogen at the 

tubuvaline α-thiazole position (Figure 24).  Unimportant factors for reaction success 

include the equivalents of reagents used as long as they are in a slight excess of 55, and 

the reaction temperature, where lowering the temperature below 0 °C does not impact 

reaction yield or the time of reaction.  A benzene:heptane solvent system does not 

change reaction outcome despite reports of improvements in systems with allylic 

alcohols (Lopez et al. 2005).  A concentrated reaction (0.2 M) was important for reaction 

success, wherein the reagents were not fully dissolved until the addition of DIAD.  The 

order of reagent addition should follow the standard for Mitsunobu reactions (alcohol, 

then PPh3 and phthalimide, then slow addition of DIAD) and was crucial for any reaction 

progress.  Compared to other organic solvents (EtOAc, CH2Cl2), post-reaction work up 

with ether extractions was superior by removing many of the impurities that complicate 

purification.  Along with providing the desired product with regio- and stereo-controlled 

installation of the target nitrogen, this route is also advantageous by concurrently 

protecting the amine as a phthalimide.  Phthalimides have unique deprotection 
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conditions which will allow for late-stage divergent synthesis via their selective 

deprotection, which will be discussed in detail later. 

 

Figure 24: The successful Mitsunobu reaction and finishing steps to the Ntubuvaline 

fragment 89. 

 Based upon the methods established through functional group transformations of 

the diastereomeric mixture of acetylated amino compounds 75–77, modifications were 

made to the published procedures to finish the Ntubuvaline synthesis.  In order to 

potential improve the yield and reproducibility of the TBAF deprotection of 87, different 

acid additives were screened with the intention of buffering the reaction, thereby 

avoiding the reactive anionic intermediate.  In conjunction with TBAF, the addition of 

AcOH did not improve reaction yield but greatly increased reaction time, while the 

addition of p-TsOH caused a non-productive reaction.  Deprotection through use of 



 

 39 

H2SiF6 alone caused a mixture of products containing both the desired product and the 

Boc/TBDPS bis-deprotected amino alcohol.  Ultimately, deprotection of the silyl ether 

was performed with the use of just TBAF. 

 Oxidation of the alcohol 88 would have previously been performed using the Dess-

Martin periodinane, but MnO2 oxidation was picked as an alternative due to its 

reproducibility, efficiency (80-90% yield typical), and the ease of purification.  Full 

oxidation to the carboxylic acid went to nearly quantitative yield with NaClO2, thus 

providing the bis-protected Ntubuvaline 89.  Purification of 89 by flash chromatography 

was not necessary according to 1H NMR analysis, but more than a quantitative yield was 

obtained by crude weight, and the subsequent peptide coupling step ran more efficiently 

when purification was performed.  This route to 89 improves on our previous work by 

increasing the yield from 33% to 66% over the final three steps to 90 (Raghavan et al. 

2008, Figure 24). 

Conclusion 

 After several synthetic iterations to circumvent side product formation and poor 

stereoselectivity, a method to regio- and stereoselectively install the key nitrogen of 

Ntubuvaline has been developed.  Unavoidable intramolecular cyclization with use of 

established starting materials prompted changing the Weinreb amide electrophile to a 

nitrile for nitrogen pre-installation.  Undesirable reactivity necessitated screening of 

different protecting groups towards the nitrile intermediate, wherein regioselective but 

non-stereoselective nitrogen installation was possible through use of a dibenzyl 

protected nitrile.  This route presented a serious problem early on, and an alternative 

approach which hydrolyzed the in situ imine resulted in retro-Michael products 
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exclusively. 

 Following extensive laboratory and literature research, a method to properly run 

the Mitsunobu reaction through established intermediates was developed, where 

rigorously controlled reaction conditions reproducibly furnished phthalimide installation.  

As a supplement to target molecule synthesis, use of phthalimide as the nitrogen source 

will allow for selective deprotection, supporting an efficient late-stage divergence 

strategy.  Addendums to the already established deprotection and oxidation steps 

improved overall yield to finish the Ntubuvaline fragment 89 synthesis.  Availability of 89 

and the other three amino acid residues of target compound 36 forms the material basis 

for generating Ntubulysin analogs following peptide couplings and deprotections, which 

will be discussed next. 
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Chapter 2 Experimentals: 

General Procedures.  All commercial reagents were used as provided unless otherwise 

indicated.  THF and CH2Cl2 were dried by passage sequentially over 3Å molecular 

sieves followed by an alumina column.  All reactions were performed under an inert 

atmosphere of dry Ar or N2 in oven-dried (140 °C) glassware.  Column chromatography 

was performed with silica gel 60 (43–60 Å).  TLC was performed on Whatman silica gel 

(150 Å) F254 glass plates and spots visualized by UV, I2, and KMnO4 staining. 

Ethyl 2-aminothiazole-4-carboxylate hydrochloride salt (49).  A suspension of ethyl 

bromopyruvate (90%, 33 mL, 0.26 mol, 1 equiv), thiourea (30 g, 0.39 mol, 1.5 equiv) and 

absolute EtOH (500 mL) was heated to reflux.  The resulting solution was refluxed for 18 

h, concentrated under reduced pressure, and purified by recrystallization from 

EtOH/MeOH to afford the title compound as a white solid (56.0 g, 84% yield).  1H and 

13C NMR of the product matched those previously reported (Kelly and Lang 1996). 

Ethyl 2-bromothiazole-4-carboxylate (50).  To a solution of thiazole 49 (20.1 g, 0.0794 

mol, 1 equiv) and CuBr (26.6 g, 0.119 mol, 1.5 equiv) in acetonitrile (400 mL) at 0 °C 

was added t-BuNO2 (90%, 15.7 mL, 0.119 mol, 1.5 equiv) dropwise.  After warming to 

room temperature over 1 h, the reaction was quenched with 1 M aqueous HCl (400 mL) 

and diluted with CH2Cl2 (400 mL).  The layers were separated, and the aqueous layer 

was extracted with CH2Cl2 (2 x 200 mL).  The combined organic layers were dried 

(Na2SO4), filtered, and concentrated under reduced pressure.  Purification by 

recrystallization from hexanes afforded the title compound as a tan solid (13.2 g, 71% 

yield).  Rf = 0.3 (SiO2, 10% EtOAc:hexanes); 1H and 13C NMR of the product matched 

those previously reported (Kelly and Lang 1996). 
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(2-Bromothiazol-4-yl)methanol (51).  To a solution of ester 50 (10.0 g, 42.4 mmol, 1 

equiv) in THF (200 mL) was added NaBH4 (4.81 g, 127 mmol, 3 equiv), LiCl (5.4 g, 130 

mmol, 3 equiv) and H2O (40 mL).  The resulting biphasic mixture was vigorously stirred 

for 2 h, after which TLC (20% EtOAc:hexanes) showed complete consumption of starting 

material.  The reaction was quenched with saturated aqueous NH4Cl (200 mL), diluted 

with EtOAc (200 mL), and the layers were separated.  The aqueous layer was extracted 

with EtOAc (100 mL), and the organic layers were combined, dried (Na2SO4), filtered, 

and concentrated under reduced pressure to give the title compound as a yellow semi-

solid (7.82 g, 95%).  Rf = 0.2 (SiO2, 20% EtOAc:hexanes); 1H and 13C NMR of the 

product matched those previously reported (Wipf and Wang 2007). 

2-Bromo-4-((tert-butyldiphenylsilyloxy)methyl)thiazole (45).  To a solution of alcohol 

51 (22.55 g, 0.116 mol, 1 equiv) in DMF (50 mL) was added imidazole (7.923 g, 0.116 

mol, 1 equiv), DMAP (1.421 g, 0.0116 mol, 0.1 equiv), and TBDPSCl (30.5 mL, 0.116 

mol, 1 equiv).  After 48 h, TLC (20% EtOAc:hexanes) showed complete consumption of 

starting material.  The reaction was quenched with H2O (330 mL), diluted with EtOAc 

(300 mL), and the layers were separated.  The aqueous layer was extracted with EtOAc 

(2 x 200 mL), and the combined organic layers were washed with H2O (330 mL), 1 M 

aqueous HCl (330 mL), and saturated aqueous NaCl (330 mL), dried (Na2SO4), filtered, 

and concentrated under reduced pressure.  Purification by flash chromatography (0–

10% EtOAc:hexanes) afforded the title compound as a white solid (42.45 g, 85%).  Rf = 

0.8 (SiO2, 20% EtOAc:hexanes); 1H and 13C NMR of the product matched those 

previously reported (Raghavan et al. 2008). 

(R)-tert-Butyl 1-(methoxy(methyl)amino)-4-methyl-1-oxopentan-3-ylcarbamate (44).  

To a solution of Boc-L-valine 52 (10.5 g, 48.3 mmol, 1 equiv) in THF (100 mL) at -78 °C 
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was added Et3N (6.8 mL, 48 mmol, 1 equiv) and the reaction was stirred for 15 min.  To 

this solution was added ethyl chloroformate (4.62 mL, 48.3 mmol, 1 equiv) causing a 

white precipitate to form.  The reaction mixture stirred for 15 min, followed by removal of 

the stir bar.  To the standing reaction mixture was added 75% of an ethereal 

diazomethane solution generated using Diazald (21.4 g, 100 mmol, 2 equiv) and KOH 

(16.8 g, 300 mmol, 6 equiv) (de Boer and Backer 1963).  After 1 h, the remaining 

diazomethane solution and a stir bar were added to the reaction mixture, and the 

reaction stirred while warming to room temperature overnight.  Separately, a mixture of 

(MeO)MeNH•HCl (14.4 g, 145 mmol, 3 equiv) and Et3N (20.4 mL, 145 mmol, 3 equiv) in 

THF (100 mL) was stirred at room temperature overnight.  After 18 h, the diazomethane 

reaction was quenched with 0.5 M aqueous AcOH solution (60 mL), and the resulting 

clear yellow mixture was stirred for 30 min.  The layers were separated, and the organic 

layer was washed with saturated aqueous NaHCO3 (100 mL) and saturated aqueous 

NaCl (100 mL), dried (Na2SO4), filtered, and concentrated under reduced pressure.  The 

crude diazomethylketone was then dissolved in THF (100 mL), and the mixture 

containing the desalted (MeO)MeNH was added following salt removal by filtration 

through a fritted glass funnel.  (CAUTION: Diazoketones have been reported to be 

explosive, and proper precaution should be used in the synthesis and handling of these 

compounds.)  The resulting solution was cooled to -40 °C and the flask was wrapped in 

aluminum foil.  To the reaction was added silver benzoate (1.6 g, 7.3 mmol, 0.15 equiv) 

as a solution in Et3N (15 mL), and the reaction was stirred while warming to room 

temperature overnight.  After 24 h, the reaction was diluted with CH2Cl2 (200 mL) and 

washed with 0.1 M aqueous HCl (100 mL).  The aqueous layer was extracted with 

CH2Cl2 (3 x 200 mL), and the combined organic layers were dried (Na2SO4), filtered, and 

concentrated under reduced pressure.  Purification by flash chromatography (30% 
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EtOAc:hexanes) afforded the title compound (9.8 g, 74%) as a colorless oil.  Rf = 0.6 

(SiO2, 50% EtOAc:hexanes); 1H and 13C NMR of the product matched those previously 

reported (Raghavan et al. 2008). 

(R)-tert-Butyl 1-(4-((tert-butyldiphenylsilyloxy)methyl)thiazol-2-yl)-4-methyl-1-

oxopentan-3-ylcarbamate (42).  To a solution of bromo thiazole 45 (9.5 g, 22 mmol, 1.2 

equiv) in THF (200 mL) at -78 °C was added n-BuLi (2.4 M in hexane, 11 mL, 26 mmol, 

1.4 equiv) dropwise and the reaction was stirred for 90 min.  Separately, to a solution of 

Weinreb amide 44 (5.0 g, 18 mmol, 1 equiv) in THF (200 mL) at -10 °C was added i-

PrMgCl (1.7 M in THF, 11.2 mL, 19 mmol, 1.05 equiv) dropwise and the reaction stirred 

for 30 min.  The Weinreb amide 44 solution was cooled to -78 °C and was added 

dropwise to the bromo thiazole 45 solution via cannula over 30 min.  The reaction was 

stirred at -78 °C for 200 minutes, warmed to 0 °C, and stirred for an additional 90 min.  

TLC (10% EtOAc:hexanes) showed the reaction was no longer progressing, so the 

reaction was quenched with saturated aqueous NaHCO3 (200 mL).  The reaction mixture 

was diluted with Et2O (200 mL) and the layers were separated.  The organic layer was 

washed with saturated aqueous NaHCO3 (100 mL) and the combined aqueous layers 

were extracted with Et2O (2 x 100 mL).  The combined organic layers were washed with 

H2O (100 mL) and saturated aqueous NaCl (100 mL), dried (Na2SO4), filtered, and 

concentrated under reduced pressure.  Purification by flash chromatography (5% 

EtOAc:hexanes, then 50% EtOAc:hexanes) afforded the title compound (5.245 g, 51%, 

58% brsm) as a viscous orange oil and recovered Weinreb amide 44 (0.650 g).  Rf = 0.5 

(SiO2, 20% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.72–7.67 (m, 4H), 7.62 (s, 

1H), 7.48–7.33 (m, 6H), 5.00–4.82 (m, 3H), 4.01–3.88 (m, 1H), 3.25 (dd, J = 15.6, 7.4 

Hz, 1H), 3.16 (dd, J = 15.6, 4.0 Hz, 1H), 1.97–1.76 (m, 1H), 1.37 (s, 9H), 1.12 (s, 9H), 
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0.93 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 192.9, 

166.8, 159.3, 155.6, 135.7, 133.1, 130.1, 128.0, 121.7, 79.1, 63.0, 53.3, 40.9, 32.2, 28.5, 

27.0, 19.4, 19.4, 18.6; HRMS calcd for C31H43N2O4SSi+ [M + H+] 567.2707, found 

567.2714. 

tert-Butyl (1S,3R)-1-(4-((tert-butyldiphenylsilyloxy)methyl)thiazol-2-yl)-1-hydroxy-4-

methylpentan-3-ylcarbamate (55).  To a solution of (R)-CBS (20 mg, 0.072 mmol, 0.2 

equiv) in THF (10 mL) at 0 °C was added BH3•SMe2 (2.0 M in THF, 0.21 mL, 0.42 mmol, 

1.2 equiv) and the reaction stirred for 30 min.  Ketone 42 (200 mg, 0.353 mmol, 1 equiv) 

was added as a solution in THF (6 mL, with 3 mL wash) dropwise.  The reaction was 

stirred at 0 °C for 30 min and was then warmed to room temperature.  After 3.5 h, TLC 

(20% EtOAc:hexanes) showed remaining starting material.  The reaction was re-cooled 

to 0 °C and additional BH3•SMe2 (2.0 M in THF, 0.21 mL, 0.42 mmol, 1.2 equiv) was 

added.  The reaction was slowly warmed to room temperature overnight.  After 24 h 

total, TLC showed complete consumption of starting material.  The reaction was 

quenched with slow addition of MeOH (CAUTION: generates hydrogen gas) and 

concentrated under reduced pressure.  Purification by flash chromatography (20% 

EtOAc:hexanes) afforded the title compound as a clear oil (123 mg, 61% yield).  Rf = 0.2 

(SiO2, 20% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.73–7.64 (m, 4H), 7.46–7.33 

(m, 6H), 7.19 (s, 1H), 5.02 (ddd, J = 7.5, 5.4, 4.5 Hz, 1H), 4.85 (d, J = 1.3 Hz, 2H), 4.61–

4.48 (m, 1H), 4.39 (d, J = 5.7 Hz, 1H), 3.68–3.59 (m, 1H), 2.28–2.17 (m, 1H), 1.97–1.86 

(m, 1H), 1.86–1.76 (m, 1H), 1.41 (s, 9H), 1.10 (s, 9H), 0.93 (d, J = 6.8 Hz, 3H), 0.90 (d, J 

= 6.8 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 175.8, 156.9, 156.6, 135.7, 133.4, 129.9, 

127.9, 113.7, 78.0, 71.3, 63.2, 53.7, 41.0, 32.6, 28.5, 27.0, 19.4, 19.1, 17.7; HRMS calcd 

for C31H45N2O4SSi+ [M + H+] 569.2863, found 569.2863. 
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(4R,6R)-6-(4-((tert-Butyldiphenylsilyloxy)methyl)thiazol-2-yl)-4-isopropyl-1,3-

oxazinan-2-one (57).  Rf = 0.4 (SiO2, 50% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) 

δ 7.69 (t, J = 6.4 Hz, 4H), 7.48–7.33 (m, 6H), 7.28 (s, 1H), 6.17 (s, 1H), 5.64 (dd, J = 4.6, 

4.6 Hz, 1H), 4.86 (s, 2H), 3.17–3.09 (m, 1H), 2.44 (ddd, J = 14.0, 4.9, 4.9 Hz, 1H), 2.16 

(ddd, J = 13.5, 8.8, 4.7 Hz, 1H), 1.80–1.67 (m, 1H), 1.10 (s, 9H), 0.97 (d, J = 6.7 Hz, 

3H), 0.94 (d, J = 6.8 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 169.0, 157.4, 153.0, 135.7, 

133.3, 130.0, 127.9, 115.2, 75.2, 63.0, 53.7, 32.6, 28.6, 27.0, 19.4, 18.15, 18.13. 

(3S,9bR)-3-Isopropyl-5-oxo-2,3,5,9b-tetrahydrooxazolo[2,3-a]isoindole-9b-

carbonitrile (69). White solid; Rf = 0.5 (SiO2, 20% EtOAc:hexanes); 1H NMR (400 MHz, 

CDCl3) δ 7.85–7.64 (m, 4H), 4.64 (dd, J = 9.1, 7.5 Hz, 1H), 4.32 (dd, J = 9.1, 7.5 Hz, 

1H), 3.82 (dt, J = 9.2, 7.4 Hz, 1H), 2.15–1.95 (m, 1H), 1.20 (d, J = 6.6 Hz, 3H), 1.02 (d, J 

= 6.7 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 172.1, 139.8, 134.3, 132.5, 131.5, 125.1, 

123.8, 116.1, 90.4, 76.3, 62.4, 32.9, 20.5, 18.9. 

(S)-2-(Dibenzylamino)-3-methylbutan-1-ol (70). (Reetz et al. 2004) To a solution of L-

valinol (9.457 g, 91.7 mmol, 1 equiv) and K2CO3 (25.34 g, 183 mmol, 2 equiv) in EtOH 

(180 mL) and H2O (40 mL) at reflux was added BnBr (27.4 mL, 229 mmol, 2.5 equiv) 

slowly over 15 min.  After refluxing for 24 h, TLC (10% EtOAc:hexanes) showed 

complete consumption of starting material.  The reaction was cooled to room 

temperature and the reaction was quenched with addition of saturated aqueous NaHCO3 

(20 mL) and H2O (10 mL).  The aqueous layer was extracted with Et2O (3 x 100 mL), 

and the combined organic layers were washed with saturated aqueous NaCl (100 mL), 

dried (Na2SO4), filtered, and concentrated under reduced pressure.  Purification by flash 

chromatography (10% EtOAc:hexanes) afforded the title compound (24.411 g, 94% 

yield) as a yellow oil.  Rf = 0.3 (SiO2, 10% EtOAc:hexanes); 1H and 13C NMR of the 
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product matched those previously reported (Métro et al. 2006). 

(S)-N,N-Dibenzyl-1-bromo-3-methylbutan-2-amine (71). (Savithri et al. 1996) To a 

solution of the alcohol 70 (5.022g, 17.7 mmol, 1 equiv) in CH2Cl2 (150 mL) at 0 °C was 

added CBr4 (7.346 g, 22.2 mmol, 1.25 equiv) in one portion.  After 5 min stirring, PPh3 

(6.972 g, 26.6 mmol, 1.5 equiv) was added portionwise over an additional 5 min.  After 

an additional 5 min, TLC (10% EtOAc:hexanes) showed complete consumption of 

starting material.  Celite was added to the reaction mixture and the slurry was 

concentrated under reduced pressure.  To the resulting free flowing powder was added 

hexanes (150 mL), and the slurry was filtered through a tightly packed plug of Celite and 

washed with hexanes (3 х 50 mL).  The solution was concentrated under reduced 

pressure, and this method of Celite filtration was repeated until all the PPh3 and 

triphenylphosphine oxide were removed by TLC.  Purification by flash chromatography 

(10% EtOAc:hexanes) afforded the title compound (5.701 g, 93% yield) as a clear oil.  Rf 

= 0.7 (SiO2, 10% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.31–7.13 (m, 10H), 

4.00 (ddd, J = 8.5, 6.2, 2.4 Hz, 1H), 3.62 (d, J = 13.5 Hz, 2H), 3.40 (d, J = 13.5 Hz, 2H), 

2.81 (dd, J = 13.5, 8.5 Hz, 1H), 2.74 (dd, J = 13.5, 6.2 Hz, 1H), 2.03–1.90 (m, 1H), 0.85 

(d, J = 6.7 Hz, 3H), 0.51 (d, J = 6.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 139.3, 129.3, 

128.5, 127.4, 63.7, 59.42, 59.37, 30.5, 22.0, 16.6. 

(R)-3-(Dibenzylamino)-4-methylpentanenitrile (72). To a solution of bromide 71 (1.952 

g, 5.64 mmol, 1 equiv) in DMF (70 mL) was added NaCN (0.829 g, 16.9 mmol, 3 equiv) 

and the reaction was heated to 65 °C.  After 1 h, TLC (10% EtOAc:hexanes) showed 

complete consumption of the starting material.  The reaction was cooled to room 

temperature and was partitioned between H2O (350 mL) and Et2O (350 mL).  The 

aqueous layer was extracted with Et2O (2 x 350 mL), and the combined organic layers 
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were washed with H2O (3 x 350 mL), dried (Na2SO4), filtered, and concentrated under 

reduced pressure.  Purification by flash chromatography (5–10% EtOAc:hexanes) 

afforded the title compound (1.411 g, 86% yield) as a clear oil.  Rf = 0.4 (SiO2, 10% 

EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.37–7.09 (m, 10H), 3.84 (d, J = 13.7 Hz, 

2H), 3.39 (d, J = 13.7 Hz, 2H), 2.55–2.44 (m, 2H), 2.41–2.32 (m, 1H), 2.10–1.91 (m, 1H), 

0.98 (d, J = 6.6 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 139.1, 

129.0, 128.5, 127.3, 119.5, 60.6, 54.0, 29.9, 20.9, 20.4, 14.3. 

N3,N3-Dibenzyl-1-(4-((tert-butyldiphenylsilyloxy)methyl)thiazol-2-yl)-4-

methylpentane-1,3-diamine (74). (Spieß et al. 2004) To a solution of thiazole 45 (1.98 

g, 4.58 mmol, 2.5 equiv) in THF (25 mL) at 0 °C was added i-PrMgCl (2.0 M in THF, 1.9 

mL, 4.8 mmol, 2.5 equiv) dropwise.  The resulting yellow solution was stirred for I h, after 

which nitrile 72 (0.535 g, 1.83 mmol, 1 equiv) was added as a solution in THF (10 mL, 

with 5 mL wash) dropwise.  The reaction was immediately warmed to room temperature, 

and a dark orange color formed after I h.  After an additional 21 h, TLC (10% 

EtOAc:hexanes) showed complete consumption of 72, so the reaction was cooled to 0 

°C, the Grignard species were quenched with absolute EtOH (10 mL), and NaBH4 (0.208 

g, 5.50 mmol, 3 equiv) was added in one portion.  The reaction was stirred while 

warming to room temperature overnight, and after 24 h the reaction was quenched with 

slow addition of saturated aqueous NH4Cl (30 mL).  The reaction was diluted with Et2O 

(40 mL) and H2O (10 mL), the layers were separated, and the organic layer was washed 

with saturated aqueous NH4Cl (20 mL), dried (Na2SO4), filtered, and concentrated under 

reduced pressure.  Purification by flash chromatography (5–30% EtOAc:hexanes) 

afforded a 2:1 mixture of the title compounds (0.80 g, 67% yield) as a yellow oil.  Less 

polar diastereomer: clear oil, Rf = 0.25 (SiO2, 30% EtOAc:hexanes); 1H NMR (400 MHz, 
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CDCl3) δ 7.65 (d, J = 7.0 Hz, 4H), 7.42–7.27 (m, 8H), 7.26–7.04 (m, 8H), 4.81 (d, J = 0.9 

Hz, 2H), 4.38 (dd, J = 10.0, 3.3 Hz, 1H), 3.80 (d, J = 13.2 Hz, 2H), 3.49 (d, J = 13.2 Hz, 

2H), 2.54 (dt, J = 10.8, 3.7 Hz, 1H), 2.28–2.11 (m, 2H), 1.44–1.28 (m, 3H), 1.06 (s, 9H), 

0.97–0.92 (m, 3H), 0.91 (d, J = 6.8 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 178.4, 156.9, 

140.6, 135.7, 133.5, 129.8, 129.4, 128.4, 127.8, 127.1, 113.0, 63.4, 58.2, 54.1, 51.3, 

37.0, 27.1, 27.0, 22.8, 20.0, 19.5.  More polar diastereomer: yellow oil, Rf = 0.18 (SiO2, 

30% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.63 (dd, J = 7.8, 1.3 Hz, 4H), 7.39–

7.23 (m, 10H), 7.23–7.15 (m, 4H), 7.15–7.02 (m, 3H), 4.77 (s, 2H), 4.09 (t, J = 6.2 Hz, 

1H), 3.61 (d, J = 13.6 Hz, 2H), 3.55 (d, J = 13.6 Hz, 2H), 2.55–2.42 (m, 1H), 1.99 (s, 3H), 

1.91–1.76 (m, 2H), 1.11–0.96 (m, 9H), 0.94–0.80 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 

177.7, 156.7, 140.3, 135.7, 133.5, 129.9, 129.2, 128.4, 127.9, 127.0, 113.0, 63.3, 61.0, 

54.4, 53.8, 36.3, 28.9, 27.0, 22.1, 20.1, 19.5. 

(E)-1-(4-((tert-Butyldiphenylsilyloxy)methyl)thiazol-2-yl)-4-methylpent-2-en-1-one 

(80). To a solution of the thiazole 45 (146 mg, 0.338 mmol, 1.2 equiv) in THF (3.0 mL) at 

-78 °C was added n-BuLi solution (2.5 M in hexanes, 0.16 mL, 0.40 mmol, 1.4 equiv) 

dropwise.  The resulting deep orange solution was stirred for 1.5 h, followed by addition 

of Weinreb amide 81 (100 mg, 0.282 mmol, 1 equiv) as a solution in THF (2.0 mL, with 1 

mL wash) dropwise.  The reaction was stirred at -78 °C for 1 h and warmed to 0 °C over 

an additional 105 min, after which TLC (5% EtOAc:hexanes) showed complete 

consumption of starting material.  The reaction was quenched with saturated aqueous 

NaHCO3 (6 mL) and the THF was removed under reduced pressure.  The resulting 

aqueous mixture was extracted with Et2O (3 x 20 mL), and the combined organic layers 

were washed with H2O (15 mL) and saturated aqueous NaCl (15 mL), dried (Na2SO4), 

filtered, and concentrated under reduced pressure.  Purification by flash chromatography 
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(3% EtOAc:hexanes) afforded the title compound (0.114 g, 90% yield) as a yellow oil.  Rf 

= 0.3 (SiO2, 3% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.75–7.70 (m, 4H), 7.64 

(s, 1H), 7.50–7.37 (m, 6H), 7.30 (dd, J = 15.7, 6.5 Hz, 1H), 7.19 (dd, J = 15.7, 1Hz, 1H), 

4.99 (d, J = 0.9 Hz, 2H), 2.66–2.51 (m, 1H), 1.15 (ovlp s, 9H), 1.15 (ovlp s, 3H), 1.13 (s, 

3H); 13C NMR (101 MHz, CDCl3) δ 182.2, 168.1, 159.2, 157.5, 135.7, 133.2, 130.1, 

128.0, 121.8, 121.5, 63.1, 31.9, 27.0, 21.4, 19.5. 

(R)-3-(Dibenzylamino)-4-methylpentanoic acid (Supplemental 1, S1). A solution of 

nitrile 72 (0.907 g, 3.10 mmol) in concentrated HCl (16 mL) was heated to 80 °C and 

stirred for 1.5 h, after which TLC (50% EtOAc:hexanes) showed complete consumption 

of starting material.  The reaction was adjusted to pH 6–8 with 10% aqueous NaOH, 

resulting in a white precipitate.  The aqueous mixture was extracted with Et2O (4 x 30 

mL) to give the title compound as a clear oil (0.870 g, 90% yield) in sufficient purity for 

the next reaction.  Rf = 0.2 (SiO2, 50% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 

11.25 (br s, 1H), 7.38–7.27 (m, 10H), 3.95 (d, J = 13.0 Hz, 2H), 3.55 (d, J = 13.0 Hz, 

2H), 3.00 (dt, J = 11.3, 4.0 Hz, 1H), 2.61 (dd, J = 16.8, 11.3 Hz, 1H), 2.31 (dd, J = 16.8, 

4.2 Hz, 1H), 2.27 2.19 (m, 1H), 0.98 (dd, J = 6.8, 0.9 Hz, 6H).; 13C NMR (101 MHz, 

CDCl3) δ 174.6, 136.1, 129.8, 128.9, 128.2, 59.5, 53.6, 30.3, 25.9, 22.5, 18.9. 

(R)-3-(Dibenzylamino)-N-methoxy-N,4-dimethylpentanamide (81). To a solution of 

S1 (125 mg, 0.40 mmol, 1 equiv) in CH2Cl2 (15 mL) at -10 °C was added NMM (0.20 mL, 

1.8 mmol, 4.5 equiv) and ethyl chloroformate (60 µL, 0.62 mmol, 1.5 equiv).  After 15 

min, HCl●HN(OMe)Me was added resulting in a white precipitate, and the reaction 

stirred while warming to room temperature overnight.  After 16 h, TLC (50% 

EtOAc:hexanes) of the resulting yellow/orange mixture showed complete consumption of 

starting material.  The reaction was concentrated under reduced pressure and 
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purification by flash chromatography (20% EtOAc:hexanes) afforded the title compound 

(100 mg, 70% yield) as a clear oil.  Rf = 0.3 (SiO2, 20% EtOAc:hexanes); 1H NMR (400 

MHz, CDCl3) δ 7.39 (d, J = 7.3 Hz, 4H), 7.30 (t, J = 7.5 Hz, 4H), 7.21 (t, J = 7.2 Hz, 2H), 

3.76 (d, J = 13.6 Hz, 2H), 3.66 (s, 3H), 3.42 (d, J = 13.6 Hz, 2H), 3.19 (s, 3H), 3.05–2.94 

(m, 1H), 2.68–2.52 (m, 2H), 1.91–1.74 (m, 1H), 0.99 (d, J = 6.6 Hz, 3H), 0.80 (d, J = 6.7 

Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 174.6, 140.3, 129.3, 128.2, 126.8, 61.3, 60.9, 

54.5, 32.6, 31.5, 29.7, 21.2, 20.0. 

(S)-2-(Dibenzylamino)-3-methylbutanal (Supplemental 2, S2). (Reetz et al. 2004) To 

a solution of (COCl)2 (0.74 mL, 8.5 mmol, 1.2 equiv) in CH2Cl2 (40 mL) cooled to -78 °C 

was added DMSO (1.00 mL, 14.1 mmol, 2 equiv) dropwise.  After 5 min, valinol 70 

(1.995 g, 7.06 mmol, 1 equiv) was added as a solution in CH2Cl2 (20 mL, with 5 mL 

wash) via cannula, resulting in a light yellow solution.  After 30 min, Et3N (4.0 mL, 28 

mmol, 4 equiv) was added and the reaction was warmed to room temperature resulting 

in formation of a white precipitate.  After 15 min, TLC (5% EtOAc:hexanes) showed 

complete consumption of starting material.  The reaction was quenched with H2O (40 

mL), the layers were separated, and the aqueous layer was extracted with CH2Cl2 (3 x 

20 mL).  The combined organic layers were washed with 0.1 M aqueous HCl (20 mL), 

H2O (20 mL), and 5% aqueous NaHCO3 (20 mL), dried (Na2SO4), filtered, and 

concentrated under reduced pressure.  Purification by flash chromatography (5% 

EtOAc:hexanes) afforded the title compound (1.807 g, 91% yield) as a yellow oil.  Rf = 

0.5 (SiO2, 5% EtOAc:hexanes);1H NMR of the product matched that previously reported 

(Cooke et al. 1996). 

(S)-N,N-Dibenzyl-1-methoxy-4-methylpent-1-en-3-amine (85). (Liu et al. 2009) To a 

suspension of (methoxymethyl)triphenylphosphonium chloride (276 mg, 0.782 mmol, 2.2 
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equiv) in THF (5 mL) at 0 °C was added t-BuOK (84 mg, 0.71 mmol, 2 equiv) in one 

portion.  The resulting red-orange suspension stirred for 75 min, after which S2 (100 mg, 

0.355 mmol, 1 equiv) was added as a solution in THF (1 mL with 0.5 mL wash) 

dropwise.  The resulting yellow suspension was stirred at 0 °C for 75 min, and was then 

stirred while warming to room temperature overnight.  After 48 h, the reaction was 

quenched with saturated aqueous NH4Cl (10 mL) and H2O was added until full solvation 

of the precipitates.  The layers were separated, the aqueous layer was extracted with 

EtOAc (3 x 20 mL), and the combined organic layers were washed with saturated 

aqueous NaCl (30 mL), dried (Na2SO4), filtered, and concentrated under reduced 

pressure.  Purification by flash chromatography (2% EtOAc:hexanes) afforded a 10:1 

E:Z mixture (according to 1H NMR analysis at room temperature) of the title compound 

as a yellow oil.  Rf = 0.6 (SiO2, 5% EtOAc:hexanes); E isomer: 1H NMR (400 MHz, 

CDCl3) δ 7.32 (d, J = 7.5 Hz, 4H), 7.21 (t, J = 7.4 Hz, 4H), 7.12 (t, J = 7.2 Hz, 2H),  6.08 

(d, J = 12.7 Hz, 1H), 4.49 (dd, J = 12.5, 10.4 Hz, 1H), 3.71 (d, J = 13.7 Hz, 2H), 3.51 (s, 

3H), 3.16 (d, J = 13.8 Hz, 2H), 2.31 (t, J = 10.2 Hz, 1H), 1.82–1.68 (m, 1H), 1.00 (d, J = 

6.5 Hz, 3H), 0.67 (d, J = 6.6 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 149.9, 140.7, 128.9, 

128.3, 126.7, 98.7, 64.1, 56.2, 53.7, 30.3, 21.4, 20.7. 

tert-Butyl (1R,3S)- and tert-Butyl (1R,3R)-1-(4-((tert-butyldiphenylsilyloxy)methyl)thiazol-

2-yl)-1-hydroxy-4-methylpentan-3-ylcarbamate (55 and 86).  To MeOH (45 mL) at 0 °C 

was added NaBH4 (0.268 g, 7.1 mmol, 15 equiv) resulting in gas evolution.  After 20 min, 

ketone 42 (0.268 g, 0.473 mmol, 1 equiv) was added as a solution in MeOH (35 mL, with 

10 mL wash) precooled to 0 °C.  After 4 h, TLC showed complete consumption of 

starting materials (20% EtOAc:hexanes).  The reaction was quenched with saturated 

aqueous NH4Cl (50 mL) and MeOH was removed under reduced pressure.  The 
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remaining aqueous reaction mixture was diluted with enough H2O to dissolve all solids 

and was extracted with EtOAc (3 x 30 mL).  The combined organic layers were dried 

(Na2SO4), filtered, and concentrated under reduced pressure.  1H NMR of the crude 

reaction mixture showed a 1.6:1 dr of the R,S and R,R diastereomers, respectively.  

Purification by flash chromatography (20% EtOAc:hexanes) afforded the title compounds 

as a yellow oil (R,R diastereomer 86, 0.102 g, 38% yield) and a clear oil (R,S 

diastereomer 55, 0.156 g, 58% yield).  55: 1H and 13C NMR of the product matched 

those reported above.  86: Rf = 0.4 (SiO2, 20% EtOAc:hexanes); 1H NMR (400 MHz, 

CDCl3) δ 7.72–7.64 (m, 4H), 7.45–7.31 (m, 6H), 7.18 (s, 1H), 5.07–4.95 (m, 1H), 4.91 (d, 

J = 9.8 Hz, 1H), 4.85 (s, 2H), 4.57 (d, J = 9.6 Hz, 1H), 3.78–3.66 (m, 1H), 1.97–1.86 (m, 

1H), 1.83–1.75 (m, 1H), 1.75–1.66 (m, 1H), 1.43 (s, 9H), 1.10 (s, 9H), 0.94 (d, J = 4.2 

Hz, 3H), 0.92 (d, J = 4.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 175.4, 158.0, 156.5, 

135.7, 133.4, 129.9, 127.8, 113.4, 80.4, 69.2, 63.2, 52.5, 46.2, 42.1, 32.3, 28.5, 27.0, 

19.4, 18.5; HRMS calcd for C31H45N2O4SSi+ [M + H+] 569.2863, found 569.2859. 

(R)-tert-Butyl 1-(4-((tert-butyldiphenylsilyloxy)methyl)thiazol-2-yl)-4-methyl-1-

oxopentan-3-ylcarbamate (42).  The ketone 42 (42.5 mg, 89% yield) was obtained 

from alcohol 86 (48 mg, 0.084 mmol) in an identical fashion to that of S1 after 

purification by flash chromatography (10% EtOAc:hexanes).  1H and 13C NMR of the 

product matched those reported above. 

tert-Butyl (1R,3R)-1-(4-((tert-butyldiphenylsilyloxy)methyl)thiazol-2-yl)-1-(1,3-

dioxoisoindolin-2-yl)-4-methylpentan-3-ylcarbamate (87).  To a solution of alcohol 55 

(0.590 g, 1.04 mmol, 1 equiv) in THF (5.0 mL) at 0 °C was added PPh3 (0.345 g, 1.35 

mmol, 1.3 equiv) and phthalimide (0.199 g, 1.35 mmol, 1.3 equiv) with only partial 

dissolution of solutes.  To this mixture was added DIAD (94%, 0.28 mL, 1.4 mmol, 1.3 
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equiv) dropwise which resulted in an orange reaction solution.  After 2 h, the reaction 

had turned yellow and TLC (20% EtOAc:hexanes using an aliquot partitioned between 

H2O and ether) showed complete consumption of starting material.  The reaction was 

quenched with ice cold H2O (20 mL) and THF was removed under reduced pressure.  

The remaining aqueous reaction mixture was extracted with Et2O (2 x 20 mL), and the 

combined organic layers were dried (Na2SO4), filtered, and concentrated under reduced 

pressure.  Purification by flash chromatography (10% EtOAc:hexanes) afforded the title 

compound as a white solid (0.316 g, 50% yield).  Rf = 0.4 (SiO2, 20% EtOAc:hexanes); 

1H NMR (400 MHz, CDCl3) δ 7.83 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 (dd, J = 5.4, 3.1 Hz, 

2H), 7.68–7.63 (m, 4H), 7.45–7.30 (m, 6H), 7.17 (s, 1H), 5.76 (dd, J = 12.2, 4.5 Hz, 1H), 

4.83 (s, 2H), 4.37 (d, J = 10.5 Hz, 1H), 3.51–3.40 (m, 1H), 3.14–3.04 (m, 1H), 2.13 (ddd, 

J = 14.3, 12.3, 4.5 Hz, 1H), 1.77–1.63 (m, 1H), 1.39 (s, 9H), 1.08 (s, 9H), 0.89 (d, J = 6.9 

Hz, 3H), 0.87 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 169.5, 167.9, 156.8, 

155.7, 135.7, 134.1, 133.4, 132.1, 129.9, 127.9, 123.6, 114.1, 79.4, 63.2, 52.3, 50.2, 

34.2, 33.3, 28.5, 27.0, 19.4, 19.2, 18.1; HRMS calcd for C39H48N3O5SSi+ [M + H+] 

698.3084, found 698.3099. 

tert-Butyl (1R,3R)-1-(1,3-dioxoisoindolin-2-yl)-1-(4-(hydroxymethyl)thiazol-2-yl)-4-

methylpentan-3-ylcarbamate (88).  To a solution of silyl ether 87 (202 mg, 0.290 mmol, 

1 equiv) in THF (2.0 mL) at 0 °C was added TBAF (1.0 M in THF, 0.32 mL, 0.32 mmol, 

1.1 equiv).  After 1.5 h, TLC (50% EtOAc:hexanes) showed complete consumption of 

starting material.  The solvent was removed under reduced pressure, and the reaction 

was purified by flash chromatography (50% EtOAc:hexanes) affording the title 

compound as a clear oil (105 mg, 79% yield).  Rf = 0.3 (SiO2, 50% EtOAc:hexanes); 1H 

NMR (400 MHz, CDCl3) δ 7.83 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 (dd, J = 5.4, 3.1 Hz, 2H), 
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7.10 (s, 1H), 5.79 (dd, J = 12.2, 4.4 Hz, 1H), 4.70 (s, 2H), 4.52 (d, J = 10.5 Hz, 1H), 

3.52–3.38 (m, 1H), 3.16–3.02 (m, 1H), 2.77 (br s, 1H), 2.23–2.10 (m, 1H), 1.77–1.63 (m, 

1H), 1.39 (s, 9H), 0.88 (apparent t, J = 7.5 Hz,  6H); 13C NMR (101 MHz, CDCl3) δ 170.3, 

167.9, 156.2, 155.8, 134.2, 132.0, 123.6, 115.2, 79.4, 61.0, 52.3, 50.1, 34.2, 33.2, 28.5, 

19.2, 18.1; HRMS calcd for C23H30N3O5S+ [M + H+] 460.1906, found 460.1925. 

tert-Butyl (1R,3R)-1-(1,3-dioxoisoindolin-2-yl)-1-(4-formylthiazol-2-yl)-4-

methylpentan-3-ylcarbamate (Supplemental 3, S3).  To a solution of alcohol 88 (53 

mg, 0.12 mmol, 1 equiv) in CH2Cl2 (5 mL) was added MnO2 (88% activated, 114 mg, 

1.15 mmol, 10 equiv) and the reaction was stirred vigorously overnight.  After 20 h, TLC 

(50% EtOAc:hexanes) showed complete consumption of starting material.  The solvent 

was removed under reduced pressure, and the crude solid was mixed with EtOAc (10 

mL).  The resulting slurry was filtered through a tightly packed plug of Celite and washed 

with EtOAc (3 х 10 mL).  The combined washings were concentrated under reduced 

pressure to give the title compound as a white/yellow solid (45 mg, 0.098 mmol, 85% 

yield) in sufficient purity for the next reaction.  An analytically pure sample can be 

prepared by flash chromatography (20% EtOAc:hexanes).  Rf = 0.6 (SiO2, 50% 

EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 9.96 (s, 1H), 8.10 (s, 1H), 7.84 (dd, J = 

5.4, 3.0 Hz, 2H), 7.72 (dd, J = 5.4, 3.0 Hz, 2H), 5.87 (dd, J = 12.2, 4.6 Hz, 1H), 4.45 (d, J 

= 10.5 Hz, 1H), 3.52–3.40 (m, 1H), 3.19–3.04 (m, 1H), 2.22 (ddd, J = 14.2, 12.2, 4.7 Hz, 

1H), 1.78–1.64 (m, 1H), 1.38 (s, 9H), 0.89 (apparent t, J = 7.3 Hz,  6H); 13C NMR (101 

MHz, CDCl3) δ 184.9, 171.5, 167.8, 155.8, 154.7, 134.5, 132.0, 128.0, 123.8, 79.6, 52.3, 

50.2, 34.4, 33.3, 28.5, 19.3, 18.2; HRMS calcd for C23H28N3O5S+ [M + H+] 458.1750, 

found 458.1769. 

2-((1R,3R)-3-(tert-Butoxycarbonylamino)-1-(1,3-dioxoisoindolin-2-yl)-4-
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methylpentyl)thiazole-4-carboxylic acid (89).  To a solution of S3 (0.138 g, 0.302 

mmol, 1 equiv) and 2-methyl-2-butene (1.76 mL, 16.6 mmol, 55 equiv) in t-BuOH (12 

mL) was added a solution of NaClO2 (80%, 0.306 g, 2.71 mmol, 9 equiv) and NaH2PO4-

•H2O (0.291 g, 2.11 mmol, 7 equiv) in H2O (6 mL) dropwise.  The reaction color changed 

from yellow to colorless over 2 h and TLC (50% EtOAc:hexanes) showed complete 

consumption of starting material.  t-BuOH was removed under reduced pressure, and 

the resulting slurry was partitioned between H2O (30 mL) and CH2Cl2 (30 mL).  The 

layers were separated, and the aqueous layer was acidified to pH 3 with 5% aqueous 

KHSO4 and extracted with CH2Cl2 (2 х 30 mL).  The combined organic layers were dried 

(Na2SO4), filtered, and concentrated under reduced pressure.  Purification by flash 

chromatography (10% MeOH:CH2Cl2 with 0.5% AcOH), followed by removal of AcOH by 

addition and removal of benzene (3 х 20 mL) under reduced pressure, afforded the title 

compound as a white solid (0.138 g, 98%).  Rf = 0.4 (SiO2, 10% MeOH:CH2Cl2 with 0.5% 

AcOH); 1H NMR (400 MHz, CDCl3) δ 8.20 (s, 1H), 7.86 (dd, J = 3.1, 5.4 Hz, 2H), 7.75 

(dd, J = 3.1, 5.4 Hz, 2H), 5.87 (dd, J = 4.7, 11.9 Hz, 1H), 4.40 (d, J = 10.5 Hz, 1H), 3.56–

3.44 (m, 1H), 3.15–3.01 (m, 1H), 2.28–2.15 (m, 1H), 1.78–1.63 (m, 1H), 1.40 (s, 9H), 

0.92 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 175.5, 

170.9, 167.7, 161.3, 155.8, 134.5, 131.9, 128.5, 123.8, 79.7, 52.3, 50.0, 34.6, 33.2, 28.5, 

19.3, 18.0; HRMS calcd for C23H26N3O6S- [M - H] 472.1548, found 472.1549. 
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Chapter 3: 

Synthesis of NTubulysin V (36), U (37), and N-acylated NTubulysin Analogs as 

Complements to Naturally Isolated Tubulysins 

Introduction 

 With the crucial Ntubuvaline fragment 89 in hand, the stage has been set for 

peptide couplings with the other amino acid residues of Ntubulysin V (36) to form a 

common tetrapeptide intermediate.  Procedures for the Ntubuvaline-tubuphenylalanine 

coupling based upon literature precedence resulted in undesirable N-acyl transfer 

impurities which poisoned the desired product.  Modifications to this route have 

supported high yielding reactions to supply the protected tetrapeptide 98 as a common 

intermediate.  This molecule allows for efficient final compound synthesis through late-

stage modifications.   

 Consecutive deprotections of the phthalimide and benzyl ester groups caused 

reaction material degradation, so a strategy wherein final stage tetrapeptides more 

robust under the necessary deprotection conditions was used.  These changes 

eventually proved successful in the total synthesis of amine 36.  Acylation of the 

Ntubuvaline nitrogen was ran as the penultimate step through the late stage primary 

amine 100, where subsequent hydrolysis furnished a range of compounds which will 

support an initial SAR profile.  The stage has also been set for the synthesis of various 

derivatives of Ntubulysin V. 

Synthesis of the NTubuvaline-Tubuphenylalanine Dipeptide 93 and Further Ligations 

 The precedent set in the Fecik lab (Raghavan et al. 2008) calls for peptide 
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coupling of the tubuvaline and tubuphenylalanine residues by carboxylate activation 

using an electron withdrawing phenol, itself installed by DCC activation of the 

carboxylate.  When this was performed on Ntubuvaline residue 89 and the benzyl 

protected tubuphenylalanine 92 (from Boc deprotection of tubuphenylalanine fragment 

91, Raghavan et al. 2008), the reaction was seemingly high yielding, albeit with some 

excessive proton integration in the aliphatic region of dipeptide 93 by 1H NMR (Figure 

25).  While this dipeptide coupling was high yielding, its use as starting material in the 

synthesis of tripeptide 95 proved to be far less efficient, where coupling to Boc-L-

isoleucine generated the desired product in 50% yield or less under the same conditions 

which had furnished the analogous coupling in 78% yield previously (Raghavan et al. 

2008).  Full characterization of the individual components of the reaction using 1H and 

13C NMR, and low resolution MS, revealed that two products had been formed from the 

reaction: the desired tripeptide 95 and N-acylurea 96 (Figure 25).  Production of 96 from 

pure 93 would require the cleavage and reformation of the Ntubuvaline-

tubuphenylalanine amide bond under the relatively mild conditions of the tripeptide 

coupling.  Hence, the source of the impurity must have been from an N-acylurea 94 

impurity in the starting material, a fact that was not initially discovered since 93 and 94 

are inseparable by flash chromatography.   
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Figure 25: Reactions producing N-acylurea side products 94 and 96 with dipeptide 93 

and tripeptide 95.  

 This theory was confirmed by activation of 89 with DCC and para-nitro phenol.  

Purification of the reaction mixture before addition of the tubuphenylalanine fragment 92 

supplied the activated ester 97 and 94 as separable entities, allowing for their isolation 

as pure samples (Figure 26).  Tubuphenylalanine fragment 92 was then added to the 

purified activated ester 97, and dipeptide 93 was isolated from this reaction without 

impurity 94.  Full 1H NMR characterization of each product allowed comparison to the 

NMR of the previously generated mixture of 93:94 and showed that a 1.2:1 molar ratio 

existed based upon relative integration, translating to approximately a 50% yield of 

dipeptide 93 and 40% yield of the N-acylurea 94.  This provides a clear explanation for 
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the poor yield in the tripeptide synthesis and the incorrect integration in the aliphatic 

region of the dipeptide mixture.  An N-acyl shift occurring with DCC activation of 

carboxylates has been studied previously (DeTar and Silverstein 1966), but has not 

been reported pertaining to tubulysin synthesis. 

 

Figure 26: Synthesis of pure samples of dipeptide 93 and N-acylurea side product 94. 

 Such a significant loss of these synthetically derived intermediates prompted 

investigation into alternative methods of Ntubuvaline-tubuphenylalanine amide bond 

formation.  By simply activating the carboxylate of Ntubuvaline 89 as a mixed anhydride 

with ethyl chloroformate, diepeptide 93 was obtained following addition of a small excess 

of the tubuphenylalanine fragment 92.  The reaction resulted in moderate yields of 93 

(60–70%) with use of crude 89, but a high yield of 92% when using purified 89 (Figure 

27).  In addition to the efficiency of this reaction, chromatographic purification proved to 

be much simpler with no N-acylurea side product impurities formed.  The same strategy 

was used previously to form the tubuvaline-tubuphenylalanine amide bond during 

tubulysin analog synthesis (Wipf and Wang 2007). 
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Figure 27: Highly productive amide bond forming reactions to tetrapeptide 98. 

 With access to pure dipeptide 93, coupling to Boc-L-Isoleucine using the HATU 

peptide coupling reagent generated the tripeptide 95 exclusively following the protocol of 

our previously established syntheses (Raghavan et al. 2008, Balasubramanian et al. 

2008).  Amide bond formation to furnish tetrapeptide 98 was only somewhat successful 

using the phenol-activated ester of N-methyl-D-pipecolinic acid, but ran with nearly 

quantitative yield using HATU.  Based upon the work described here, tetrapeptide 98 is 

available from the 4 individual Ntubulysin residues in 6 steps with a 79% overall yield 

(Figure 27) and thus represents an extremely productive method to a common late-stage 

intermediate. 
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Attempts to Synthesize Amine 36 through Successive Deprotection of Tetrapeptide 98 

 The strategy to quickly generate many Ntubulysin analogs was contingent on the 

selective deprotection of the phthalimide and benzyl ester protecting groups of 98. 

Selective functionalization of the resulting molecules would provide a range of products 

to establish an initial SAR at the α-thiazole position of Ntubuvaline.  Phthalimides have 

long been known to be selectively deprotected with the use of hydrazine in the presence 

of other common functional groups (Ing–Manske procedure, Ing and Manske 1926).  

Adding excess hydrazine to a solution of 98 in methanol fully converts the phthalimide 

ring into partially cleaved intermediate 99 after 3 hours reaction, where hydrazine has 

added into one of the carbonyls of the imide (Figure 28).  For conversion of 99 to the 

primary amine 100, the reaction is refluxed overnight; the intermediate 99 is long lived at 

room temperature, and will not proceed to the target molecule 100 unless heated.  A 

convenient workup, starting with removal of MeOH under reduced pressure, has the 

reaction taken up in 0.1 M aqueous HCl and extracted with 3 portions of diethyl ether, 

which effectively separates 100 from the excess hydrazine and most of the other 

impurities that make purification challenging.  Interestingly, when the reaction is 

performed in absolute EtOH, it progresses from the intermediate to the product slowly at 

50 °C, but significant degradation is observed by TLC and a 52% yield of the amine 100 

is obtained when the reaction is heated to the temperature at which MeOH refluxes (65 

°C). 
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Figure 28: Initial deprotection strategy to synthesize amine 36. 

 Standard LiOH hydrolysis based upon our previous benzyl ester deprotections of 

tubulysin analogs (Raghavan et al. 2008) was performed on 100 in order to obtain 36.  

When two separate hydrolysis reactions were performed using 100 generated from 

different sources, both reactions resulted in complete degradation of the starting material 

(Figure 28).  The materials resulting from the reaction were a white solid which was 

insoluble in a range of polar and non-polar solvents, and an orange oil that was 

indistinguishable by 1H NMR, 13C NMR, and MS analysis.  



 

 64 

 Final stage deprotection of tetrapeptide 98 was also attempted by first hydrolyzing 

the benzyl ester in the presence of the phthalimide protected amine.  Since phthalimide 

rings are susceptible to base hydrolysis in environments with pH as low as 7.4 (Astleford 

and Weigel 1991 and references therein), LiOH caused both removal of the ester and 

partial hydrolysis of the phthalimide ring to benzoic acid 101 (Figure 28).  With full 

cleavage of the now opened phthalimide ring in mind, 101 was heated in the presence of 

hydrazine, resulting in the same type of degradation as seen with hydrolysis of the 

amine.  Unexpectedly, a purified and dried sample of this bis-hydrolyzed side product at 

room temperature had partially transformed into both the recyclized phthalimide ring 102 

and 36 after 6 months according to low resolution MS.  Unfortunately, the sample was so 

small that not nearly enough of this product mixture could have been used for complete 

characterization upon repurification. 

Attempts to Synthesize Amine 36 through Milder Deprotection of Tetrapeptide 98 

 Benzyl ester deprotection using milder palladium catalyzed hydrogenation was 

attempted on several model systems in an attempt to overcome the reaction degradation 

seen with LiOH hydrolysis.  Using di, tri, and tetrapeptide tubulysin intermediates, the 

reaction outcomes were erratic and ranged from no reaction to full starting material 

degradation into several products.  In general, if excess Pd/C was used in anhydrous 

EtOAc under high hydrogen gas pressure, progress of starting material occurred given 

several days reaction.  The lack of desired reactivity under metal-catalyzed 

hydrogenation of tubulysin intermediates bearing a thiazole ring has been observed 

several times before (Wipf and Wang 2007, Ullrich et al. 2009b, Burkhart and Kazmaier 

2012), and this limitation is apparent through this work as well.  On the other hand, 

plenty of successful hydrogenations with tubulysin intermediates not containing thiazoles 
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have also been reported (Peltier et al. 2006, Patterson et al. 2007, Pando et al. 2009, 

Pando et al. 2011, Shibue et al. 2011, Vlahov et al. 2011). 

 Replacing the primary amine of 100 with an azide to stabilize the molecule for 

LiOH hydrolysis was considered a viable option, since a mild Staudinger reaction could 

remove the azide following benzyl deprotection instead of relying on the standard yet 

problematic azide deprotection through hydrogenation.  Azido transfer using a shelf 

stable azido transfer reagent (Goddard-Borger and Stick 2007) under conditions that 

have previously been used successfully with other tubulysin intermediates resulted in 

complete destruction of the starting material. 

 These reactions made apparent that the final stage tetrapeptide intermediates 98, 

100, and 101 are sensitive to the standard deprotection conditions to remove the benzyl 

ester, but are also resistant to alternative means to perform this transformation.  The 

options moving forward then were to either use these intermediates in a less direct route 

to Ntubulysins, or to use modified versions of these intermediate which are not sensitive 

to basic conditions.  One strategy using an available intermediate was to recyclize the 

hydrolyzed phthalimide ring of 101 into phthalisoimide 103 using DCC, followed by 

hydrazine cleavage to the primary amine (Figure 29).  This route is reported to increase 

the deprotection strength of hydrazine, thereby allowing for transformation to the amine 

under milder conditions more amenable to compounds with acid and base sensitive 

functionalities (Kukolja and Lammert 1975, Hemenway et al. 2010).  Due to the 

presence of the crucial carboxylate at the C-terminus and a suspicion that side product 

formation would occur as seen in the early dipeptide coupling strategy (Figure 25), this 

route was not used.  Work that will be discussed later confirms that in the presence of 

DCC, this carboxylate undergoes undesirable reactivity. 
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Figure 29: Potential alternative deprotection strategy to amine 36. 

Hydrolytically Stable Intermediates Used in a Modified Route to Amine 36 

 After much work with unproductive and destructive routes to Ntubulysin V (36), the 

means by which to synthesize this molecule was eventually possible based upon work 

reported from investigators at Lilly (Astleford and Weigel 1991).  Their publication 

showed that β-lactams appended with phthalimides can be selectively reacted with 

pyrrolidine in the presence of other reactive functionalities, not the least of which is the 

electrophilic lactam.  The resulting open-chain intermediate has a reversal of reactivity: 

whereas phthalimide rings undergo hydrolysis in basic conditions but are robust under 

acidic conditions, opening the phthalimide ring by addition of a pyrrolidine causes the 

functional group to become very stable under basic or nucleophilic conditions, but 

cleavable back to the phthalimide ring under acidic conditions.  A crucial example from 

this report featured the hydrolysis of the ethyl ester 105 using NaOH without disturbing 

the pyrrolidine-opened phthalimide (106, Figure 30).  Hence this system is well suited to 

solve the problems seen with these late-stage deprotections, since an intact phthalimide 

ring following benzyl ester hydrolysis was predicted to be cleaved with hydrazine under 

more mild conditions than shown above (Figure 28).  While it is not an obvious factor in 

the success of this reaction, the presence of the pyrrolidine salt in 105 may be critical 

based upon the discussions below. 
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Figure 30: A pertinent example of basic hydrolysis from the Astleford and Weigel paper. 

 Pyrrolidine mediated phthalimide ring opening of 98 was initially performed using 

1.2 equivalents of pyrrolidine in THF as reported (Astleford and Weigel 1991), but even 

after an additional 2.5 equivalents of pyrrolidine was added with 3 days reaction time, 

progression beyond the starting material had not occurred.  When a large excess of 

pyrrolidine was added to the THF solution, the reaction was finally pushed to completion 

within 6 hours; subsequently it was found that the reaction can be run in neat pyrrolidine 

for full production of 107 in 5 hours without side product formation or product 

degradation (Figure 31).  Steric bulk at the phthalimide may be the factor which 

necessitates the use of a large excess of pyrrolidine for reaction progress.  Reaction 

workup through simple concentration resulted in a crude product with sufficient purity to 

move forward to the next step.  An analytically pure sample can be made by aqueous 

work up and chromatographic purification of crude 107 to give 92% yield of pure 107. 
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Figure 31: Synthesis of the phthalimide protected, benzyl deprotected tetrapeptide 102 

with intermediate isolation. 

 Based upon the observations noted in the parent paper (Figure 30), base 

hydrolysis was expected to generate the desired benzyl ester deprotection of 107 

without pyrrolidine hydrolysis.  When performed on a sample of crude 107, LiOH 

hydrolysis of the benzyl ester required additional equivalents (20 equivalents) of base 

beyond the standard protocol (10 equivalents) for complete progress to the acid 108, 

where no significant hydrolysis of the pyrrolidine was observed.  After acidic quench and 

CH2Cl2 extraction of the resulting aqueous phase, the crude product can be brought 

forward unpurified or an analytically pure sample can be obtained through flash 

chromatography.   

 When this same reaction was run on purified 107, extensive hydrolysis of the 
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pyrrolidine was seen with production of 101 as the major product (Figure 31).  Based 

upon the need for excess hydroxide to fully deprotect crude 107, and the significant side 

product formation when using purified 107 under the same conditions, it is hypothesized 

that residual pyrrolidine carried over with the crude product buffers the reaction, 

providing for the observed selective hydrolysis.  Valuable future studies should measure 

product formation under a range of buffered hydrolysis conditions in order to optimize 

this reaction.  While seemingly innocuous, the potential role of the pyrrolidine salt as a 

buffer in the NaOH hydrolysis of 105 reported in the parent paper cannot be ignored, 

especially in light of 105 as the singular example of this type of modification subjected to 

basic hydrolysis (Astleford and Weigel 1991) and the results presented here. 

 Reclosure of the phthalimide ring was reported to run smoothly in acidic MeOH 

(Astleford and Weigel 1991, McCormick et al. 2006); however, previous studies from our 

lab have noted transesterification at the carboxylate of tubuphenylalanine occurring with 

use of an acidic H2O/MeOH HPLC solvent system (Balasubramanian et al. 2009).  In 

order to avoid methyl ester formation after the crucial benzyl ester hydrolysis, other 

acidic reaction media were investigated.  No reaction progress was observed when 108 

was stirred for extended periods in either 4 M HCl in dioxane or 3 M aqueous HCl at 

room temperature.  Partial reaction occurred with 4 M HCl in dioxane at 50 °C, with full 

consumption of either crude or pure starting material at 60 °C after 48 hours to produce 

the closed phthalimide 102.  The more extreme reaction conditions necessary for 

pyrrolidine cleavage compared to those reported (slight excess of HCl in MeOH, room 

temperature) may again be attributed to steric bulk at this position. 

 While each intermediate in this pathway can be isolated as a pure entity, 

performing these 3 steps without intermediate purification is also possible.  Simple 
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aqueous workups between steps and a final purification of 102 generates the desired 

molecule in 48% yield over the 3 steps, and is in fact the desirable choice due to yield 

efficiency and the elimination of unnecessary purifications (Figure 32). 

 

Figure 32: Synthesis of the phthalimide protected, benzyl deprotected tetrapeptide 102 

without intermediate isolation. 

Investigation into Phthalimide Deprotection Conditions to Furnish Amine 36 

 With a method to selectively deprotect the benzyl ester and maintain the 

phthalimide established, milder transformations to generate 36 were attempted with a 

focus on reducing the hydrazine equivalents, reagent concentration, and temperature of 

the 102 deprotection.  Since standard protocol calls for use of absolute EtOH in 

phthalimide deprotections (Ing–Manske procedure) and since the previously mentioned 

transesterification had been seen with use of MeOH as a solvent, initial reactions were 

performed using EtOH with a reduced hydrazine loading (10 equivalents compared to 

the 50 equivalents used previously).  After an overnight reaction, the starting material 

102 was shown by TLC to have been consumed and low resolution MS showed the 

production of both the partially cleaved benzamide and 36. 

 Attempts to push the reaction to full product formation led to a change to aprotic 
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solvents and heating of the crude mixture.  After removal of EtOH, the crude product 

was taken up in either CH2Cl2 or MTBE to test the effect of an aprotic solvent.  When 

CH2Cl2 was used, most of the intermediate had proceeded to product after 48 hours, 

resulting in a higher product:intermediate ratio as shown by TLC and low resolution MS.  

Very little of the crude reaction mixture dissolved in the non-polar MTBE, so the mixture 

was heated to 60 °C, and after 48 hours some reaction progress had taken place.  

Despite the reaction progress seen in both cases, this strategy also caused significant 

degradation of reaction material as indicated by TLC.   

 After HPLC purification with an aqueous NH4OAc (buffered with AcOH):MeCN 

solvent system, 36 was isolated in pure product fractions as confirmed by HPLC trace 

analysis and low resolution MS.  To avoid isolating 36 by heated concentration of the 

fractions and risk potential degradation, the aqueous solutions were extracted with either 

CH2Cl2 or EtOAc.  Upon organic solvent removal, impure samples of insufficient scale 

for characterization were isolated, where degradation may have occurred as a result of 

co-extraction and concentration of AcOH with the product.  Thus, these final 

deprotections of the phthalimide ring in EtOH served as proof of concept, but additional 

modifications were needed for successful synthesis of 36. 
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Figure 33: The final deprotection step to synthesize amine 36. 

 By running the tetrapeptide 102 hydrazine deprotection as a dilute MeOH solution 

instead of in EtOH, a more mild reaction occurred as evidenced by only partial reaction 

of 102 after 72 hours stirring with hydrazine at room temperature according to low 

resolution MS; somewhat expectedly, the peak corresponding to the Ntubulysin V methyl 

ester was present to a small extent by MS analysis.  With heating to 40 °C, no reaction 

progress was observed after 48 hours, so additional hydrazine was added to the heated 

solution.  After an additional 24 hours, starting material had been consumed with 

production of the partially cleaved intermediate and desired product, favoring 36.  No 

reaction progress was observed after an additional day’s reaction according to low 

resolution MS, but the degradation observed in the EtOH reactions had also not 

occurred as shown by TLC, so the reaction was concentrated and purified by HPLC 

despite remaining benzamide intermediate.  MeOH solvated hydrazine deprotection of 

102 is therefore preferable due to the formation of fewer degradation products compared 

to EtOH, with the caveat that minimal product loss occurs through transesterification. 

 Noting the stability of 36 at 40 °C, the HPLC fractions containing product were 

removed under high vacuum at 40 °C by way of a centrifugal evaporator.  These dried 

HPLC fractions were combined with MeOH transfer to furnish the product as an acetate 

salt.  NMR analysis was run as a solution in d4-MeOH, a deuterated solvent that had 
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been used with other Ntubulysins to give superior spectra when compared to use of 

CDCl3, without incidence of transesterification.  Additionally, the increased volatility of 

CD3OD served as a more convenient feature compared to the D2O previously used for 

NMR analysis of Fecik lab final molecules.  Despite the precedent for use of CD3OD in 

earlier analogs, observations of more complicated splitting patterns than were expected 

in the 1H NMR spectra and a doubling of the peaks in the 13C NMR spectra led to doubts 

of product purity.  Upon MS analysis, mass peaks for 36 were dominant, but peaks 

representative of a methyl added to 36 were also observed, and it was hypothesized that 

transesterification had occurred with the catalytic acid provided by the acetate salt.  

Although the 1H NMR was too populated to show clear peaks correlating to the methyl 

ester to establish a relative ratio of the two products, minor peaks matched nearly every 

significant peak in the 13C spectra.  Comparison of the 36 13C spectra to that of tubulysin 

V in d4-MeOH (Shibue et al. 2010 and this work) assisted in assigning the major 13C 

peaks by taking into consideration the upfield shift of the α-thiazole carbon 

(approximately 70 ppm for tubulysin V (12) to approximately 53 ppm for 36).  Unrelated 

to the purity issues as a consequence of the solvents chosen to analyze 36, this 

purification protocol shows that removal of HPLC solvents by high vacuum and mild 

heating is superior to extraction. 

Synthesis of NTubulysin Analogs by Acylation of Tetrapeptide 100 

 Previous syntheses towards natural tubulysins and tubulysin analogs containing a 

hydroxyl on the tubuvaline residue were free to acetylate and deacetylate this oxygen 

due to the susceptibility of acetates to hydrolytic cleavage.  Strategies have included 

either late stage acetylation to avoid undesired hydrolysis in preceding reactions, or 

careful control of reaction conditions in order to not disturb an early stage acetylation.  
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The Fecik lab and several others have used conditions wherein tubulysin V (12) is 

acetylated by adding an excess of acetic anhydride to a concentrated solution of 12 in 

pyridine, thus providing the tubulysin U (13) acetate in the last step to this natural 

product (Balasubramanian et al. 2009). 

 Since the nitrogen-containing tubulysins presented here make an amide bond 

instead of an ester bond following acylation, the reactivity at this position and reaction 

planning are very different.  Amide bonds are not easily broken under even extreme 

conditions, and are certainly not broken under the standard conditions used for synthesis 

of tubulysin intermediates based on the sustainability of the molecule’s other amide 

bonds.  Reaction planning must be done strategically because of this stability, since 

early stage N-acylation would result in processing each analog individually through the 

remaining synthetic steps.  Hence, the functionalization at this position should be done 

as late in the synthesis as possible for maximum output from synthetic efforts.  Based 

upon the stability of amide bonds to basic hydrolysis and the need for divergence at a 

common late-stage intermediate, tetrapeptide 100 was used as the penultimate 

intermediate to several acylated Ntubulysin analogs. 

 Comparison of the N-acetate analog 37 to tubulysin U (13) will directly 

demonstrate the effect that the oxygen to nitrogen heteroatom exchange at the α-

thiazole position has on biological activity, so N-acetylation of 100 was investigated first.  

With the reaction conditions previously set by the Fecik group for acetylation of 12 

described above, a low yield of the product was observed with several strange impurities 

by MS analysis of HPLC fractions.  By taking advantage of the increased nucleophilicity 

of the amine, less strongly electrophilic conditions gave an equal mixture of mono- and 

di-acetylated product.  As predicted, LiOH hydrolysis of the monoacetylated benzyl ester 
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intermediate under our standard conditions gave 37 cleanly.  This demonstrates a 

general method to generate the target molecule 37 and other N-acylated analogs, and 

confirms the stability of N-acetylated compounds to basic hydrolysis (Table 1). 

 This 2 step procedure was used to acylate the penultimate intermediate 100 

leading to final compounds with a range of differing functional groups.  A general 

procedure was followed where a solution of the acylating agent and an amine base in 

CH2Cl2 at 0 °C consumed the starting material in less than 2 hours to generate 

compounds 109–111.  The acylated benzyl esters were subject to an aqueous work up, 

and the resulting crude samples were run through a standard procedure for LiOH 

hydrolysis.  Peaks corresponding to the TFA carbonyl and trifluoromethyl are absent in 

the 13C NMR spectra of 110, an observation seen with other trifluoromethyl acetamides 

(Merritt and Bagley 2007). 
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Table 1: Synthesis of acylated Ntubulysin analogs 37 and 109–113. 

 The standard procedure for bis-substituted methyl urea installation at a primary 

amine is with the use of methyl isocyanate.  This method was not used due to its 

inherent danger as a lachrymator (methyl isocyanate caused the Bhopal disaster), its 

lack of availability from common commercially sources, and the difficulty in its synthesis.  

Additionally, the dimethyl urea would be unavailable via this route.  Acylation of the 

amine using CDI, a shelf stable alternative to phosgene, had low reactivity and the 

products produced from the reaction were not clear based upon MS analysis. 
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 These issues with regard to urea formation at amines or carbamate formation at 

alcohols were confronted in a report published in Tetrahedron (Grzyb et al. 2005).  CDI-

based reagents with increased electrophilic character at the central carbonyl were 

described, wherein a simple amine is preinstalled onto one side of CDI followed by N-

methylation of the remaining imidazole ring to increase its leaving group potential (Figure 

34).  The resulting iodo salt is reported to be over a hundred fold more reactive than CDI 

due to the enhanced stability of the charged imidazole unbound to the carbonyl.  

Synthesis of these reagents using primary amines preinstalled onto CDI, as in the case 

of 114, were not described in the original paper or publications citing that work. 

 Surprisingly, extrapolation of this work to the synthesis of the 2 target molecules 

112 and 113 resulted in drastically different results under the same reaction conditions.  

Addition of either methylamine (116) or desalted dimethylamine hydrochloride (117) into 

CDI followed by H2O workup gave crude mixtures of imidazole and the uncharged 

intermediates 118 and 119 (Figure 34).  When these crude samples were subjected to 

MeI in acetonitrile, a complicated reaction mixture was formed which did not contain the 

desired product.  Conversely, the literature procedure notes pure compound isolation 

upon reaction concentration, albeit without imidazole impurity at either step. 

 In order to generate pure starting materials for the N-methylation step, both 

samples were separately partitioned between saturated aqueous NH4Cl solution and 

CH2Cl2 to remove the imidazole impurity.  Even after multiple extractions, a significant 

portion of 118 was trapped in the aqueous layer according to TLC.  Alternatively, 119 

was lipophilic enough to remain in the organic layers with its imidazole impurity stripped 

away into the aqueous phase.  Once these purified intermediates were methylated, 

CH2Cl2 trituration removed any impurities, leaving the pure carbamoylimidazolium salts.  
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In the case of the methylamine-based reagent 114, a minute 7% yield was isolated from 

this reaction, seemingly from extensive side product reactivity or degradation based 

upon TLC and 1H NMR analysis of the titrant.  Alternatively, the dimethylamine-based 

reagent 115 was synthesized in nearly quantitative yield.  This difference in reactivity 

and stability between the primary and secondary amine based reagents gives credence 

to the absence of primary amines included in the parent paper. 

 

Figure 34: Synthesis of reagents 114 and 115 for generating Ntubulysin urea analogs. 

 As was described in the Grzyb paper, addition of the methylamine-based 

carbamoylimidazolium salt 114 with Et3N at room temperature gave full conversion of 

amine 100 to the acylated product overnight.  Following an aqueous workup, the impure 

reaction was put through standard LiOH hydrolysis, which fully converted the benzyl 

ester intermediate to 112 by MS.  When this same procedure was applied using 115, no 

conversion of the starting material was seen after 48 hours.  Multiple days of heating the 

reaction to reflux with addition of DMAP and a large excess of 115 was necessary to 

finally consume 100 with production of the acylated benzyl ester intermediate as shown 

by TLC and low resolution MS.  Ester hydrolysis ran as expected, and both 112 and 113 

were purified by HPLC.  An explanation of the vast difference in reactivity between the 2 
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salts may be the additional bulk of the dimethylamine-based reagent 115, along with its 

increased stability as observed with more productive synthesis of 115 compared to 114. 

Model Studies Examining Synthetic Routes to N-Alkylated NTubulysin Analogs 

 As part of a full SAR profile for N-substitution at the α-thiazole position of 

Ntubuvaline, probing the significance of the carbonyl at this position was of interest and 

led to model studies concerned with alkylation of the amine.  The goal was to install 

functional groups that mimic the previously synthesized molecules above; the methyl, 

ethyl, and methoxymethyl appended amines were picked as logical starting points due to 

their close homology to 37.  Tetrapeptide 100 was picked as a close representation of 

36, but its use as a starting material for these compounds was dismissed due to the 

unfavorable reactivity observed with benzyl ester hydrolysis of 100.  Future 

implementation of this chemistry will require synthesis of additional 36 starting material. 

 With the intention of generating both secondary and tertiary methylated amines 

concurrently, a reaction was ran using 1.5 equivalents of iodomethane in the presence of 

a nitrogen base and 100 (Table 2).  No reaction occurred with the use of Et3N as the 

amine base, whereas the use of pyridine and additional iodomethane gave a 

complicated reaction mixture as shown by HPLC and MS.  Both of these results can be 

explained by the non-selective alkylation of amines characteristic of iodomethane.  

When a nearly stoichiometric amount of iodomethane was used with an excess of Et3N, 

the base was preferentially alkylated before the amines of 100.  Competitive alkylation of 

the N-methyl-D-pipecolinic acid tertiary amine with the Ntubuvaline primary amine in the 

presence of excess methylating agent has the potential to generate 5 different products, 

thus resulting in a complicated mixture of reaction products. 
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 Table 2: Model studies for alkylated Ntubulysin analogs 120–122. 

 Reductive amination does not easily allow for stoichiometric control in alkylation, 

but it is a well established method to alkylate only primary and secondary amines, and 

thus was used towards the dimethyl and diethyl analogs 120 and 121 (Table 2).  The 

use of excess paraformaldehyde and sodium triacetoxyborohydride (NaBH(OAc)3), a 

reagent selective for mild reduction of imines in the presence of other reducible 

functional groups, partially consumed the starting material, and mass peaks for both the 

mono- and di-alkylated products were seen in low resolution MS.  This method of 

reductive amination is not optimal, and future work should use the better established 

aqueous formaldehyde/NaBH(OAc)3 system.  The use of excess acetylaldehyde, AcOH, 

and NaBH(OAc)3 gave spot to spot conversion of the tetrapeptide to a less ninhydrin 

active product by TLC, where ninhydrin stain is active in the presence of amines but is 

less intense upon increasing amine substitution.  Although low resolution MS analysis 
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showed this to be the dialkylated product 121, HPLC purification did not produce enough 

material for proper characterization. 

 The methoxymethyl alkylated analog 122 is a homolog of 37 with N,O-acetal 

replacement of the carbonyl.  Surprising results came after full consumption of 100 with 

excess methoxymethyl chloride (MOMCl) and pyridine, where the formula weight 

representative of the target molecule as a methyl ester was the only prominent product 

by low resolution MS (Table 2).  One possible explanation for the observed 

transesterification of the benzyl ester lies in the apparent old age of the MOMCl reagent, 

where gradual degradative build up of MeOH and HCl within the reagent would supply 

the necessary conditions for this reactivity.  As predicted by to the instability of N,O-

acetals and the previously observed degradation of 100 under basic conditions, LiOH 

hydrolysis of this molecule resulted in complete material degradation.  Future work 

should take advantage of the reaction of formaldehyde with 36 in MeOH, which has 

been shown to regioselectively install MOM N,O-acetals at amines through imine 

intermediates (Padwa and Dent 1993). 

Conclusion 

 Peptide couplings of the now synthetically available Ntubuvaline residue 89 to the 

other amino acid moieties, followed by late stage deprotections and acylations, have 

furnished several nitrogen-containing Ntubulysin analogs.  The amide bond formation 

between Ntubuvaline and tubuphenylalanine was modified from the literature precedent 

to avoid undesired N-acylurea side product formation.  Subsequent coupling reactions 

efficiently yielded more than 90% product at each step to a common tetrapeptide 

intermediate 98.  Where direct deprotection of 98 failed to yield Ntubulysin V (36), a 
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strategy which generates more robust intermediates insensitive to standard deprotection 

conditions successfully led to the target molecule.   

 By taking advantage of the stable amide bond formed through N-acylation of the 

benzyl protected amine 100, the previously destructive basic hydrolysis used to remove 

the benzyl ester completed the synthesis of several Ntubulysin analogs.  Urea formation 

at the nitrogen of Ntubuvaline presented unique challenges, where synthesis of 112 and 

113 was possible through use of specialized reagents and appeared to be greatly 

affected by steric interactions.  The methods to synthesize N-alkylated Ntubulysin 

analogs have been investigated and await the production of additional 36 starting 

material. 
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Chapter 3 Experimentals: 

Dipeptide 93.  A solution of benzyl ester 91 (160 mg, 0.40 mmol, 1.4 equiv) in HCl (4.0 

M in dioxane, 5.0 mL) was stirred at room temperature for 2 h, after which TLC (50% 

EtOAc:hexanes) showed complete consumption of starting material.  The reaction 

solution was concentrated under reduced pressure, and the resulting solid was dissolved 

in CH2Cl2 (5 mL) and concentrated under reduced pressure; this was repeated twice to 

afford the crude HCl salt as a white solid.  Separately, to a solution of acid 89 (138 mg, 

0.29 mmol, 1 equiv) in CH2Cl2 (10 mL) at -15 °C was added Et3N (0.12 mL, 0.87 mmol, 3 

equiv) and ethyl chloroformate (33 µL, 0.35 mmol, 1.2 equiv), and the resulting solution 

stirred for 35 min.  To this was added a solution of the crude HCl salt in CH2Cl2 (10 mL) 

at -15 °C via cannula.  After 1 h, TLC (10% MeOH:CH2Cl2 with 0.5% AcOH) showed 

complete consumption of starting material.  The reaction was quenched with saturated 

aqueous NH4Cl (15 mL), the layers were separated, and the aqueous layer was 

extracted with CH2Cl2 (2 х 15 mL).  The combined organic layers were dried (Na2SO4), 

filtered, and concentrated under reduced pressure.  Purification by flash chromatography 

(30% EtOAc:hexanes) afforded the title compounds as a white solid (202.4 mg, 92% 

yield).  Rf = 0.3 (SiO2, 40% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.98 (s, 1H), 

7.83 (dd, J = 5.4, 3.1 Hz, 2H), 7.72 (dd, J = 5.4, 3.1 Hz, 2H), 7.35–7.07 (m, 11H), 5.76 

(dd, J = 12.1, 4.7 Hz, 1H), 5.10 (d, J = 12.5 Hz, 1H), 5.05 (d, J = 12.4 Hz, 1H), 4.48–4.35 

(m, 2H), 3.54–3.42 (m, 1H), 3.14–3.03 (m, 1H), 2.91 (A of ABX, dd, J = 13.7, 6.0 Hz, 

1H), 2.85 (B of ABX, dd, J = 13.7, 6.6 Hz, 1H), 2.69–2.57 (m, 1H), 2.11 (ddd, J = 14.1, 

12.4, 4.8 Hz, 1H), 2.00 (ddd, J = 13.7, 9.2, 4.2 Hz, 1H), 1.77–1.65 (m, 1H), 1.60 (ddd, J 

= 14.2, 9.8, 4.6 Hz, 1H), 1.40 (s, 9H), 1.16 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H), 

0.89 (d, J = 6.8 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 176.1, 169.6, 167.8, 160.5, 
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155.8, 149.8, 137.7, 136.3, 134.4, 132.0, 129.7, 128.7, 128.6, 128.22, 128.18, 126.7, 

123.9, 123.7, 79.6, 66.5, 52.3, 49.9, 48.6, 41.4, 37.8, 36.8, 34.4, 33.3, 28.5, 19.4, 18.1, 

17.8; HRMS calcd for C42H49N4O7S+ [M + H+] 753.3322, found 753.3311. 

Tripeptide 95.  A solution of dipeptide 93 (95.6 mg, 0.127 mmol, 1 equiv) in HCl (4.0 M 

in dioxane, 4.0 mL) was stirred at room temperature for 2 h, after which TLC (50% 

EtOAc:hexanes) showed complete consumption of starting material.  The reaction 

solution was concentrated under reduced pressure, and the resulting solid was dissolved 

in CH2Cl2 (5 mL) and concentrated under reduced pressure; this was repeated twice to 

afford the crude HCl salt as a white solid.  Separately, to a solution of Boc-L-Ile (41 mg, 

0.18 mmol, 1.4 equiv) in DMF (1.5 mL) at -15 °C was added HATU (68 mg, 0.18 mmol, 

1.4 equiv) and N-methylmorpholine (56 µL, 0.51 mmol, 4 equiv), and the resulting 

solution was stirred for 20 min.  To this solution was added a solution of the crude HCl 

salt in DMF (1.5 mL, with 0.5 mL wash) at -15 °C dropwise via pipette, and the reaction 

stirred while warming to room temperature overnight.  After 18 h, the reaction was 

concentrated under reduced pressure and partitioned between CH2Cl2 (30 mL) and 5% 

aqueous KHSO4 (15 mL).  The aqueous layer was extracted with CH2Cl2 (15 mL), and 

the combined organic layers were washed with H2O (15 mL), saturated aqueous 

NaHCO3 (15 mL), H2O (15 mL) and saturated aqueous NaCl (15 mL).  The combined 

organic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure.  

Purification by flash chromatography (30% EtOAc:hexanes) afforded the title compounds 

as a white solid (99 mg, 90% yield).  Rf = 0.2 (SiO2, 40% EtOAc:hexanes); 1H NMR (400 

MHz, CDCl3) δ 7.96 (s, 1H), 7.86 (dd, J = 5.4, 3.1 Hz, 2H), 7.74 (dd, J = 5.4, 3.1 Hz, 2H), 

7.36–7.07 (m, 10H), 6.09 (d, J = 9.9 Hz, 1H), 5.64 (dd, J = 11.7, 4.2 Hz, 1H), 5.10 (d, J = 

12.4 Hz, 1H), 5.04 (d, J = 12.4 Hz, 1H),  4.97–4.78 (br m, 1H), 4.49–4.35 (m, 1H), 3.90–
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3.75 (br m, 2H), 3.10 (ddd, J = 14.5, 11.9, 2.9 Hz, 1H), 2.91 (A of ABX, dd, J = 13.7, 6.1 

Hz, 1H), 2.85 (B of ABX, dd, J = 13.7, 6.6 Hz, 1H), 2.68–2.57 (m, 1H), 2.22 (ddd, J = 

14.5, 11.6, 4.5 Hz, 1H), 2.06–1.63 (m, 4H), 1.58 (ddd, J = 14.3, 9.9, 4.5 Hz, 2H), 1.42 (s, 

9H), 1.16 (d, J = 7.1 Hz, 3H), 1.13–1.03 (m, 1H), 1.00 (d, J = 6.7 Hz, 3H), 0.95 – 0.84 

(m, 9H); 13C NMR (101 MHz, CDCl3) δ 176.0, 171.9, 169.4, 167.7, 160.4, 149.9, 137.6, 

136.3, 134.5, 131.8, 129.7, 128.59, 128.55, 128.3, 128.2, 128.0, 126.6, 123.83, 123.76, 

80.4, 66.4, 59.8, 50.8, 50.0, 48.6, 41.4, 37.93, 36.8, 35.4, 34.2, 32.6, 28.4, 24.8, 19.2, 

18.0, 16.0, 11.3; HRMS calcd for C48H60N5O8S+ [M + H+] 866.4163, found 866.3153. 

Tetrapeptide 98.  A solution of tripeptide 95 (41.5 mg, 0.0479 mmol, 1 equiv) in HCl (4.0 

M in dioxane, 3.0 mL) was stirred at room temperature for 1 h, after which TLC (50% 

EtOAc:hexanes) showed complete consumption of starting material.  The reaction 

solution was concentrated under reduced pressure, and the resulting solid was dissolved 

in CH2Cl2 (5 mL) and concentrated under reduced pressure; this was repeated twice to 

afford the crude HCl salt as a white/yellow solid.  Separately, to a mixture of N-Me-D-Pip 

(20 mg, 0.14 mmol, 3 equiv) in DMF (4 mL) at 0 °C was added HATU (53 mg, 0.14 

mmol, 3 equiv) and Et3N (27 µL, 0.19 mmol, 4 equiv), and the resulting suspension was 

stirred for 1 h.  To this suspension was added a solution of the crude HCl salt in DMF 

(2.0 mL, with 0.5 mL wash) at 0 °C dropwise via pipette, and the reaction stirred while 

warming to room temperature overnight.  After 18 h, the reaction was concentrated 

under reduced pressure and partitioned between CH2Cl2 (30 mL) and H2O (15 mL).  The 

aqueous layer was extracted with CH2Cl2 (15 mL), and the combined organic layers 

were washed with saturated aqueous NaHCO3 (15 mL), H2O (15 mL) and saturated 

aqueous NaCl (15 mL).  The combined organic layers were dried (Na2SO4), filtered, and 

concentrated under reduced pressure.  Purification by flash chromatography (3.5% 
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MeOH:CH2Cl2) afforded the title compounds as a yellow solid (41.0 mg, 96% yield).  Rf = 

0.3 (SiO2, 5% MeOH:CH2Cl2); 1H NMR (400 MHz, CDCl3) δ 7.96 (s, 1H), 7.86 (dd, J = 

5.5, 3.0 Hz, 2H), 7.74 (dd, J = 5.5, 3.1 Hz, 2H), 7.36–7.09 (m, 9H), 7.03 (d, J = 8.4 Hz, 

1H), 6.34 (d, J = 10.0 Hz, 1H), 5.65 (dd, J = 11.7, 4.3 Hz, 1H), 5.10 (d, J = 12.4 Hz, 1H), 

5.04 (d, J = 12.4 Hz, 1H), 4.48–4.36 (m, 1H), 4.09 (t, J = 8.4 Hz, 1H), 3.90–3.78 (m, 1H), 

3.08 (ddd, J = 14.4, 11.9, 2.8 Hz, 1H), 2.97–2.79 (m, 3H), 2.69–2.56 (m, 1H), 2.50 (dd, J 

= 11.1, 3.0 Hz, 1H), 2.22 (s, 3H), 2.09–1.29 (m, 15H), 1.19–1.12 (ovlp m, 1H), 1.16 (d, J 

= 7.1 Hz, 3H), 1.03 (d, J = 6.7 Hz, 3H), 0.95–0.81 (m, 9H); 13C NMR (101 MHz, CDCl3) δ 

176.1, 175.4, 171.3, 169.3, 167.7, 160.4, 150.0, 137.7, 136.3, 134.5, 131.8, 129.6, 

128.6, 128.5, 128.3, 128.2, 126.6, 123.83, 123.78, 100.1, 69.8, 66.4, 58.1, 55.5, 50.7, 

50.1, 48.7, 45.1, 41.4, 37.9, 36.8, 34.7, 33.9, 32.5, 31.0, 25.2, 25.0, 23.4, 18.9, 18.1, 

18.0, 16.2, 10.9; HRMS calcd for C50H63N6O7S+ [M + H+] 891.4474, found 891.4481. 

Tetrapeptide 100.  To a solution of tetrapeptide 98 (14 mg, 0.016 mmol, 1 equiv) in 

MeOH (2.6 mL) was added hydrazine monohydrate (39 µL, 0.79 mmol, 50 equiv) and 

the solution was stirred for 3 h, after which TLC (10% MeOH:CH2Cl2) showed complete 

consumption of starting material to the intended product and the open chain intermediate 

99.  The reaction was heated to reflux and stirred overnight.  After 18 h, TLC showed full 

conversion to the desired product.  The reaction was concentrated under reduced 

pressure, 0.1 M aqueous HCl (20 mL) was added and the resulting aqueous solution 

was extracted with Et2O (3 x 10 mL).  The combined organic layers were dried (Na2SO4), 

filtered, and concentrated under reduced pressure.  Purification by flash chromatography 

(5% MeOH:CH2Cl2) afforded the title compound as a white/yellow solid (11.2 mg, 94% 

yield).  An analytically pure sample can be prepared by removing residual grease using 

the following procedure:  The crude sample is partitioned between MeCN (6 mL) and 
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hexanes (4 mL).  The layers are separated, the hexanes layer is extracted with MeCN (3 

x 3 mL), the combined MeCN layers are washed with hexanes (3 x 3 mL), and MeCN is 

removed under reduced pressure to yield the pure product.  Rf = 0.2 (99), 0.4 (100) 

(SiO2, 10% MeOH:CH2Cl2); 1H NMR (400 MHz, MeOD) δ 8.01 (s, 1H), 7.36–7.12 (m, 

10H), 5.08 (d, J = 12.3 Hz, 1H), 5.01 (d, J = 12.3 Hz, 1H), 4.44–4.33 (m, 1H), 4.19 (d, J 

= 8.9 Hz, 1H), 4.13 (dd, J = 10.3, 3.3 Hz, 1H), 4.04–3.95 (m, 1H), 2.99 (d, J = 11.7 Hz, 

1H), 2.90 (dd, J = 13.6, 7.2 Hz, 1H), 2.84 (dd, J = 13.7, 6.7 Hz, 1H), 2.72 (dd, J = 11.1, 

1.8 Hz, 1H), 2.69–2.59 (m, 1H), 2.26 (s, 2H), 2.25–2.15 (m, 1H), 2.03 (apparent dddd, J 

= 27.7, 13.8, 9.9, 3.7 Hz, 2H), 1.93–1.49 (m, 10H), 1.40–1.25 (m, 3H), 1.25–1.18 (m, 

1H), 1.16 (d, J = 7.1 Hz, 3H), 0.95 (d, J = 6.7 Hz, 8H), 0.89 (t, J = 7.4 Hz, 3H); 13C NMR 

(101 MHz, MeOD) δ 178.1, 177.5, 174.8, 174.1, 163.1, 150.6, 139.4, 137.5, 130.5, 

129.5, 129.4, 129.2, 129.1, 127.4, 124.5, 70.3, 67.4, 59.3, 56.6, 52.8, 52.5, 50.3, 44.5, 

42.4, 42.0, 39.0, 38.0, 37.4, 33.8, 31.4, 26.0, 25.9, 24.1, 20.0, 18.7, 18.3, 16.2, 11.0; 

HRMS calcd for C42H61N6O5S+ [M + H+] 761.4424, found 761.4419. 

Tetrapeptide 101.  To a solution of tetrapeptide 98 (10.6 mg, 11.9 µmol) in THF (1.5 

mL) and H2O (0.5 mL) was added LiOH●H2O (20 mg, 0.48 mmol, 40 equiv) and the 

reaction was stirred overnight.  After 72 h, HPLC showed complete consumption of 

starting material, and THF was removed under reduced pressure.  The aqueous reaction 

mixture was acidified to pH 2 with 1.0 M aqueous HCl, extracted with CH2Cl2 (4 х 15 

mL), and the combined organic layers were dried (Na2SO4), filtered, and concentrated 

under reduced pressure.  Purification by HPLC (C18, 150 х 10 mm, 32% MeCN/25 mM 

aqueous NH4OAc, pH 4.78 for 10 min, 90% MeCN/25 mM aqueous NH4OAc, pH 4.78 

for 5 min, 5 mL/min) afforded the title compound as a white solid (4.6 mg, 47% yield).  

HPLC rt = 5.5 min; Rf = 0.1 (SiO2, 10% MeOH:CH2Cl2 with 1% AcOH); 1H NMR (400 
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MHz, D2O) δ 8.41 (d, J = 9.1 Hz, 1H), 8.00 (s, 1H), 7.70–7.52 (m, 4H), 7.30 (d, J = 4.3 

Hz, 3H), 7.28–7.21 (m, 1H), 5.28 (dd, J = 11.3, 3.5 Hz, 1H), 4.33–4.25 (m, 1H), 4.22 (d, 

J = 8.5 Hz, 1H), 4.06–3.96 (m, 1H), 3.86 (d, J = 9.9 Hz, 1H), 3.54 (d, J = 12.8 Hz, 1H), 

3.17–3.06 (m, 1H), 3.02 (dd, J = 13.2, 5.3 Hz, 1H), 2.84 (dd, J = 13.9, 8.7 Hz, 1H), 2.77 

(s, 2H), 2.61–2.52 (m, 1H), 2.42–2.15 (m, 4H), 2.10–1.84 (m, 5H), 1.85–1.65 (m, 4H), 

1.65–1.42 (m, 3H), 1.34–1.18 (m, 2H), 1.16 (d, J = 7.1 Hz, 3H), 0.95 (d, J = 6.7 Hz, 6H), 

0.86 (t, J = 7.3 Hz, 3H); 13C NMR (214 MHz, D2O) δ 183.2, 175.1, 173.6, 172.8, 172.4, 

168.8, 162.8, 148.3, 138.4, 136.8, 133.8, 130.7, 129.7, 129.5, 128.4, 128.2, 127.6, 

126.5, 124.5, 66.9, 59.0, 55.1, 51.9, 50.0, 49.8, 41.9, 40.7, 40.4, 38.1, 37.9, 35.6, 32.2, 

28.7, 24.4, 22.6, 20.7, 18.1, 17.6, 17.5, 15.0, 9.9; HRMS calcd for C43H59N6O8S + [M + 

H+] 819.4115, found 819.4137. 

Tetrapeptide 107.  A solution of tetrapeptide 98 (37.9 mg, 0.0425 mmol) in pyrrolidine 

(2.0 mL) was stirred for 5 h, after which TLC (5% MeOH:CH2Cl2, using an aliquot 

partitioned between 1.0 M aqueous HCl and EtOAc) showed complete consumption of 

starting material.  The reaction was poured into 1.0 M aqueous HCl (75 mL) and the 

resulting aqueous solution was extracted with EtOAc (30 mL, then 2 х 20 mL).  The 

combined organic layers were washed with 1.0 M aqueous HCl (2 х 25 mL) and 

saturated aqueous NaCl (25 mL), dried (Na2SO4), filtered, and concentrated under 

reduced pressure.  Purification by flash chromatography (5%–10% MeOH:CH2Cl2) 

afforded the title compounds as an off white solid (37.8 mg, 92% yield).  Rf = 0.4 (SiO2, 

10% MeOH:CH2Cl2); 1H NMR (400 MHz, CDCl3) δ 7.96 (s, 1H), 7.91–7.75 (m, 1H), 

7.60–7.39 (m, 3H), 7.39–7.12 (m, 11H), 5.48 (s, 1H), 5.12 (d, J = 12.4 Hz, 1H), 5.06 (d, J 

= 12.4 Hz, 1H), 4.54–4.37 (m, 1H), 4.05 (d, J = 39.3 Hz, 2H), 3.70–3.58 (m, 1H), 3.57–

3.48 (m, 1H), 3.29–3.13 (m, 2H), 3.09 (dd, J = 14.6, 7.3 Hz, 1H), 3.03–2.78 (m, 3H), 
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2.75–2.64 (m, 1H), 2.64–2.11 (m, 5H), 2.05 (ddd, J = 13.7, 9.6, 4.0 Hz, 2H), 1.99–1.31 

(m ,15 H), 1.19 (d, J = 7.1 Hz, 3H), 1.15–1.01 (m, 2H), 0.93 (dd, J = 14.7, 6.7 Hz, 7H), 

0.88–0.69 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 176.6, 176.1, 174.9, 171.6, 171.3, 

169.6, 167.7, 160.7, 150.4, 138.0, 136.3, 133.0, 131.0, 129.6, 129.5, 128.57, 128.55, 

128.5, 128.2, 128.1, 128.0, 126.5, 123.1, 69.8, 66.4, 57.7, 55.5, 51.2, 49.6, 49.3, 48.8, 

46.1, 45.1, 41.6, 38.0, 36.9, 36.8, 35.9, 32.1, 30.9, 26.0, 25.3, 24.6, 23.4, 22.8, 19.4, 

18.1, 16.0, 14.3, 10.9; HRMS calcd for C54H72N7O7S + [M + H+] 962.5214, found 

962.5197. 

Tetrapeptide 108.  To a solution of the tetrapeptide 107 (37.8 mg, 0.0393 mmol) in THF 

(2.0 mL), H2O (0.40 mL) and MeOH (0.40 mL) was added LiOH●H2O (33 mg, 0.79 

mmol, 20 equiv), and the resulting mixture was stirred overnight.  After 18 h, the reaction 

had turned an orange color, and TLC (10% MeOH:CH2Cl2) showed complete 

consumption of starting material to the intended product and 101.  The organic solvents 

were removed under reduced pressure, and the resulting aqueous reaction mixture was 

diluted with H2O (3 mL) and acidified to pH 2 with 1.0 M aqueous HCl.  The resulting 

aqueous reaction solution was extracted with CH2Cl2 (5 х 5 mL), and the combined 

organic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure.  

Purification by HPLC (C18, 150 х 10 mm, 32% MeCN/25 mM aqueous NH4OAc, pH 4.78 

for 10 min, 90% MeCN/25 mM aqueous NH4OAc, pH 4.78 for 5 min, 5 mL/min) afforded 

the title compound as a white solid (5.10 mg, 15%) and 101 (18.85 mg, 59%) as an 

acetate salt.  HPLC rt = 8.4 min; Rf = 0.3 (SiO2, 10% MeOH:CH2Cl2); 1H NMR (400 MHz, 

D2O) δ 8.51–8.35 (m, 1H), 8.02 (s, 1H), 7.81 (d, J = 7.4 Hz, 1H), 7.78–7.59 (m, 2H), 7.44 

(d, J = 7.1 Hz, 1H), 7.41–7.17 (m, 4H), 5.24 (dd, J = 11.0, 3.2 Hz, 2H), 4.33 (br s, 1H), 

4.21 (d, J = 8.4 Hz, 1H), 4.10 (br s, 1H), 3.97–3.66 (m, 3H), 3.55 (d, J = 11.9 Hz, 1H), 
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3.47–3.30 (m, 2H), 3.24–2.97 (m, 3H), 2.95–2.75 (m, 4H), 2.66 (br s, 1H), 2.46–2.33 (m, 

1H), 2.33–2.16 (m, 2H), 2.14–1.42 (m, 13H), 1.40–1.26 (m, 2H), 1.20 (d, J = 6.9 Hz, 3H), 

1.08–0.90 (m, 7H), 0.90–0.76 (m, 3H); 13C NMR (214 MHz, D2O) δ 185.1, 181.1, 172.8, 

170.4, 168.8, 162.7, 158.7, 148.3, 138.3, 135.8, 132.1, 131.3, 129.8, 129.4, 128.4, 

127.9, 127.0, 126.5, 124.6, 66.9, 59.0, 55.2, 51.6, 49.6, 49.5, 48.9, 45.9, 41.9, 40.7, 

37.7, 36.7, 35.5, 35.0, 32.5, 28.7, 25.1, 24.3, 24.0, 22.6, 20.7, 18.2, 17.4, 17.1, 15.1, 9.9; 

HRMS calcd for C47H66N7O7S + [M + H+] 872.4744, found 872.4738. 

Tetrapeptide 102.  A solution of tetrapeptide 108 (5.0 mg, 5.7 µmol) in HCl (4.0 M in 

dioxane, 3 mL) was heated to 60 °C and stirred for 48 h, after which TLC (10% 

MeOH:CH2Cl2) showed complete consumption of starting material.  The reaction solution 

was concentrated under reduced pressure, and the resulting solid was dissolved in 

CH2Cl2 (5 mL) and concentrated under reduced pressure; this was repeated twice to 

afford the crude HCl salt as a white/yellow solid.  Purification by flash chromatography 

(10% MeOH:CH2Cl2) afforded the title compounds as a white/yellow solid (2.5 mg, 54% 

yield).  Rf = 0.4 (SiO2, 10% MeOH:CH2Cl2); 1H NMR (400 MHz, D2O) δ 8.31 (d, J = 9.4 

Hz, 1H), 8.03 (s, 1H), 7.99–7.84 (m, 3H), 7.30–7.09 (m, 4H), 5.60 (dd, J = 11.8, 3.2 Hz, 

1H), 4.24 (d, J = 7.8 Hz, 2H), 3.90–3.59 (m, 5H), 3.53 (d, J = 12.2 Hz, 1H), 3.36 (s, 1H), 

3.12 (dd, J = 28.8, 13.3 Hz, 2H), 2.94 (dd, J = 13.3, 4.2 Hz, 1H), 2.74 (s, 3H), 2.59–2.45 

(m, 1H), 2.45–2.32 (m, 1H), 2.28–2.15 (m, 1H), 1.99–1.45 (m, 10H), 1.36–1.16 (m, 2H), 

1.11 (d, J = 6.9 Hz, 2H), 1.04 (d, J = 6.7 Hz, 2H), 0.90 (dd, J = 14.4, 6.9 Hz, 8H); 13C 

NMR (214 MHz, D2O) δ 181.0, 172.9, 169.8, 168.83, 168.76, 162.4, 147.9, 137.9, 135.4, 

130.8, 129.4, 128.3, 126.5, 125.4, 123.8, 66.9, 59.0, 55.2, 52.1, 49.9, 49.4, 41.9, 40.5, 

37.5, 36.6, 35.7, 32.6, 32.3, 28.7, 24.2, 22.5, 20.7, 18.1, 17.6, 17.1, 15.0, 10.0; HRMS 

calcd for C43H57N6O7S + [M + H+] 801.4009, found 801.4000. 
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Tetrapeptide 36.  To a solution of tetrapeptide 102 (9.5 mg, 0.012 mmol) in MeOH (5 

mL) was added H2NNH2●H2O (6.0 µL, 0.12 mmol, 10 equiv) and the reaction stirred at 

room temperature over 72 h, where crude MS showed major mass peaks for the starting 

material and the hydrazine added intermediate, and a minor product mass peak.  The 

reaction was heated to 40 °C and stirred for an additional 48 h, where crude MS showed 

the reaction had not progressed significantly.  The reaction was cooled to room 

temperature, additional H2NNH2●H2O (30 µL, 0.62 mmol, 50 equiv) was added and the 

reaction was heated to 40 °C.  After an additional 24 h, crude MS showed that starting 

material had been consumed and a small portion of the intermediate remained.  After an 

additional 24 h, no significant reaction progress was observed, so the reaction was 

concentrated under reduced pressure.  Purification by HPLC (C18, 150 х 10 mm, 10–

50% MeCN/25 mM aqueous NH4OAc, pH 4.78 over 10 min, 90% MeCN/25 mM aqueous 

NH4OAc, pH 4.78 for 5 min, 5 mL/min) afforded the acetate salt of the title compound as 

a white/yellow solid (1.99 mg, 25% yield) as a mixture with the methyl ester of the 

product.  HPLC rt = 7.4 min; Rf = 0.2 (SiO2, 10% MeOH:CH2Cl2); 1H NMR (400 MHz, 

MeOD) δ 8.04 (s, 1H), 7.23 (d, J = 3.8 Hz, 4H), 7.19–7.10 (m, 1H), 4.41–4.29 (m, 1H), 

4.26–4.14 (m, 2H), 4.02–3.93 (m, 1H), 3.16–3.05 (m, 1H), 3.03–2.82 (m, 3H), 2.63–2.48 

(m, 1H), 2.46–2.31 (m, 4H), 2.16–2.06 (m, 1H), 1.95 (s, 3H), 2.05–1.52 (ovlp m, 12H), 

1.41 (ddd, J = 16.3, 8.5, 3.8 Hz, 1H), 1.31–1.18 (m, 1H), 1.18–1.10 (m, 3H), 1.06–0.86 

(m, 11H); 13C NMR (214 MHz, MeOD) δ 182.3, 177.4, 176.6, 174.2, 173.8, 162.9, 150.8, 

139.7, 130.5, 129.3, 127.4, 124.5, 69.8, 59.6, 56.4, 53.0, 52.3, 51.0, 44.1, 42.6, 41.7, 

41.6, 39.0, 37.4, 33.7, 31.1, 26.1, 25.5, 23.7, 22.2, 19.9, 18.8 (2C), 16.2, 11.0; HRMS 

calcd for C35H55N6O5S + [M + H+] 671.3955, found 671.3960. 

Tetrapeptide 37.  To a solution of tetrapeptide 100 (2.9 mg, 3.8 µmol) in CH2Cl2 (1 mL) 
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at 0 °C was added Et3N (4.2 µL, 30 µmol, 8 equiv) as a solution in CH2Cl2 (100 µL) and 

AcCl (1.1 µL, 15 µmol, 4 equiv) as a solution in CH2Cl2 (100 µL), and the reaction stirred 

while warming to room temperature overnight.  After 18 h, TLC (2 х 5% MeOH:CH2Cl2 

with 1% Et3N) showed complete consumption of starting material.  The reaction was 

concentrated under reduced pressure and purification by HPLC (C18, 250 х 10 mm, 0–

20% MeCN/0.04% aqueous HCl over 2 min, 20% MeCN/0.04% aqueous HCl for 2 min, 

20–90% MeCN/0.04% aqueous HCl over 35 min, 90% MeCN/0.04% aqueous HCl for 5 

min, 90–10% MeCN/0.04% aqueous HCl over 5 min, 3 mL/min) afforded the benzyl 

ester intermediate as a white solid (1.3 mg, 42 % yield) as confirmed by HRMS.  The 

intermediate was brought forward without further characterization.  HPLC rt = 21.9 min; 

Rf = 0.5 (SiO2, 5% MeOH:CH2Cl2 with 1% Et3N); HRMS calcd for C44H63N6O6S+ [M + H+] 

803.4524, found 803.4511. 

 To a solution of the intermediate (1.3 mg, 1.6 µmol) in THF (1.2 mL) was added an 

aqueous LiOH solution (0.2 M in H2O, 0.4 mL, 0.08 mmol, 50 equiv) and the reaction 

stirred overnight.  After 18 h, HPLC trace analysis showed complete consumption of 

starting material, and a crude MS confirmed the presence of the product mass peak.  

The reaction mixture was acidified to pH 2 with 1.0 M aqueous HCl, and was 

concentrated under reduced pressure.  Purification by HPLC (C18, 250 х 10 mm, 0–20% 

MeCN/0.04% aqueous HCl over 2 min, 20% MeCN/0.04% aqueous HCl for 2 min, 20–

90% MeCN/0.04% aqueous HCl over 35 min, 90% MeCN/0.04% aqueous HCl for 5 min, 

90–10% MeCN/0.04% aqueous HCl over 5 min, 3 mL/min) afforded the title compound 

as a white solid (0.73 mg, 63 % yield, 27% yield over two steps).  HPLC rt = 15.9 min; Rf 

= 0.2 (SiO2, 10% MeOH:CH2Cl2);  1H NMR (400 MHz, D2O) δ 7.96 (s, 1H), 7.38–7.21 (m, 

5H), 5.09 (dd, J = 11.3, 3.2 Hz, 1H), 4.35 – 4.25 (m, 1H), 4.22 (d, J = 8.4 Hz, 1H), 3.94–
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3.82 (m, 2H), 3.55 (br d, J = 13.3 Hz, 1H), 3.20–3.07 (m, 1H), 3.00 (dd, J = 13.5, 5.4 Hz, 

1H), 2.85 (dd, J = 13.8, 8.3 Hz, 1H), 2.78 (s, 3H), 2.72 – 2.61 (m, 1H), 2.28–2.13 (m, 

2H), 2.10 (s, 3H), 2.07–1.69 (m, 8H), 1.67–1.45 (m, 3H), 1.26–1.16 (ovlp m, 1H),  1.19 

(d, J = 7.0 Hz, 3H), 0.97 (d, J = 6.7 Hz, 3H), 0.92 (ovlp d, J = 6.7 Hz, 5H), 0.88 (ovlp t, J 

= 7.5 Hz, 4H); 13C NMR (214 MHz, D2O) δ 181.0, 174.2, 174.1, 172.8, 168.8, 162.8, 

148.4, 138.3, 129.5, 128.4, 126.5, 124.3, 66.9, 59.0, 55.2, 51.5, 49.6, 49.4, 41.9, 40.8, 

37.5, 36.6, 35.6, 32.4, 28.7, 24.3, 22.6, 21.7, 20.7, 18.3, 17.3, 17.0, 15.0, 9.9; HRMS 

calcd for C37H57N6O6S+ [M + H+] 713.4060, found 713.4055. 

Standard Procedure for NTubulysin Analogs 109–111 from Amine 100 

Standard Acylation Procedure:  

To a solution of tetrapeptide 100 (1 equiv) in CH2Cl2 (5.0 mL) at 0 °C was added base 

(15–50 equiv) and acylating agent (10–25 equiv), and the reaction was stirred for up to 2 

h.  When TLC showed complete consumption of starting material, the reaction was 

quenched with 1.0 M aqueous HCl (3 mL), and the layers were separated.  The aqueous 

layer was extracted with CH2Cl2 (3 х 3 mL), and the combined organic layers were dried 

(Na2SO4), filtered, and concentrated under reduced pressure.  The crude intermediate 

was brought forward without purification. 

Standard LiOH Hydrolysis Procedure:  

To a solution of the intermediate in THF (2.5 mL), MeOH (0.5 mL), and H2O (0.5 mL) 

was added LiOH●H2O (21 mg) to make a 0.14 M reaction solution.  If complete 

consumption of starting material was not observed by TLC after 18 h, additional 

LiOH●H2O (21 mg) was added.  After TLC and crude MS showed loss of starting 

material, the organic solvents were removed under reduced pressure and the remaining 
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aqueous mixture was diluted with additional H2O (3 mL).  The aqueous mixture was 

acidified to pH 2 with 1.0 M aqueous HCl solution and extracted with CH2Cl2 (5 х 3 mL).  

The combined organic layers were dried (Na2SO4), filtered, and concentrated under 

reduced pressure.  Purification by HPLC afforded the title compounds. 

Tetrapeptide 109.  The title compound was obtained using 100 (5.2 mg, 6.8 µmol, 1 

equiv), pyridine (14 µL, 0.17 mmol, 25 equiv) and trimethylacetyl chloride (21 µL, 0.17 

mmol, 25 equiv) following the standard procedure for Ntubulysin analogs 109–111 and 

after purification by HPLC (C18, 150 х 10 mm, 30–35% MeCN/25 mM aqueous NH4OAc, 

pH 4.78 over 3 min, 35% MeCN/25 mM aqueous NH4OAc, pH 4.78 for 7 min, 90% 

MeCN/25 mM aqueous NH4OAc, pH 4.78 for 5 min, 5 mL/min).  White solid (1.68 mg, 

33% over 2 steps); HPLC rt = 8.6 min; Rf = 0.5 (SiO2, 10% MeOH:CH2Cl2); 1H NMR (601 

MHz, MeOD with NH4OAc) δ 7.98 (s, 1H), 7.25–7.19 (m, 4H), 7.17–7.11 (m, 1H), 5.14 

(dd, J = 11.5, 3.3 Hz, 1H), 4.36–4.28 (m, 1H), 4.19 (d, J = 8.7 Hz, 1H), 3.93 (ddd, J = 

11.5, 4.9, 3.0 Hz, 1H), 3.00–2.94 (m, 2H), 2.91 (dd, J = 13.6, 7.2 Hz, 1H), 2.67 (dd, J = 

11.1, 2.8 Hz, 1H), 2.53–2.46 (m, 1H), 2.27 (ddd, J = 14.7, 11.7, 3.4 Hz, 1H), 2.22 (s, 3H), 

2.20–2.11 (m, 2H), 2.00 (ddd, J = 14.2, 9.4, 4.7 Hz, 1H), 1.88–1.71 (m, 4H), 1.69–1.53 

(m, 5H), 1.36–1.27 (m, 2H), 1.25 (s, 9H), 1.22–1.16 (m, 1H), 1.15 (d, J = 7.0 Hz, 3H), 

0.97 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 4.8 Hz, 3H), 0.94 (d, J = 4.8 Hz, 3H), 0.91 (t, J = 7.4 

Hz, 3H); 13C NMR (226 MHz, MeOD with NH4OAc) δ 184.3, 181.2, 179.9, 176.1, 175.1, 

173.7, 162.8, 151.0, 139.8, 130.6, 129.2, 127.3, 123.9, 70.4, 59.5, 56.6, 52.3, 51.4, 50.7, 

44.5, 41.5, 40.6, 39.8, 39.6, 37.4, 36.5, 34.1, 31.4, 27.8, 26.0, 24.1, 23.9, 19.5, 19.4, 

18.5, 16.4, 11.0; HRMS calcd for C40H63N6O6S+ [M + H+] 755.4530, found 755.4546. 

Tetrapeptide 110.  The title compound was obtained using 100 (2.2 mg, 2.9 µmol, 1 

equiv), pyridine (11 µL, 0.14 mmol, 50 equiv), and TFAA (4 µL, 0.03 mmol, 10 equiv) 
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following the standard procedure for Ntubulysin analogs 109–111 and after purification by 

HPLC (C18, 150 х 10 mm, 10–50% MeCN/25 mM aqueous NH4OAc, pH 4.78 over 10 

min, 90% MeCN/25 mM aqueous NH4OAc, pH 4.78 for 5 min, 5 mL/min).  White solid 

(0.22 mg, 10% over 2 steps); HPLC rt = 9.9 min; Rf = 0.2 (SiO2, 10% MeOH:CH2Cl2); 1H 

NMR (900 MHz, MeOD) δ 8.08 (d, J = 3.0 Hz, 1H), 7.31–7.23 (m, 4H), 7.20–7.15 (m, 

1H), 5.24 (dd, J = 11.3, 3.4 Hz, 1H), 4.41–4.35 (m, 1H), 4.23 (d, J = 8.4 Hz, 1H), 3.93 

(ddd, J = 11.4, 5.4, 2.9 Hz, 1H), 3.28–3.25 (m, 1H), 3.19–3.10 (m, 1H), 2.98–2.92 (m, 

2H), 2.62–2.47 (m, 2H), 2.44 (s, 3H), 2.32 (ddd, J = 14.6, 11.6, 3.4 Hz, 1H), 2.26 (ddd, J 

= 14.4, 11.4, 2.9 Hz, 1H), 2.02 (ddd, J = 13.9, 9.5, 4.3 Hz, 1H), 1.97–1.80 (m, 4H), 1.77 

(d, J = 13.6 Hz, 1H), 1.72–1.59 (m, 4H), 1.50–1.41 (m, 1H), 1.26–1.20 (m, 1H), 1.18 (d, J 

= 7.1 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H), 0.98 (t, J = 7.3 Hz, 6H), 0.96–0.92 (m, 3H); 13C 

NMR (226 MHz, MeOD) δ 173.8, 172.9, 162.7, 160.7, 159.2, 151.2, 139.7, 130.5, 129.3, 

127.4, 124.6, 69.6, 59.8, 56.3, 52.4, 51.1, 50.9, 43.9, 41.6, 38.9, 37.5, 36.7, 33.8, 31.0, 

25.9, 25.3, 23.5, 19.5, 19.4, 18.9, 18.5, 16.2, 11.1; HRMS calcd for C37H54F3N6O6S+ [M + 

H+] 767.3778, found 767.3776. 

Tetrapeptide 111.  The title compound was obtained using 100 (4.9 mg, 6.4 µmol, 1 

equiv), Et3N (13 µL, 0.094 mmol, 15 equiv) and methyl chloroformate (12 µL, 0.16 mmol, 

25 equiv) following the standard procedure for Ntubulysin analogs 109–111 and after 

purification by HPLC (C18, 150 х 10 mm, 20–25% MeCN/0.05% aqueous formic acid 

over 5 min, 25% MeCN/0.05% aqueous formic acid for 10 min, 90% MeCN/0.05% 

aqueous formic acid for 5 min, 5 mL/min).  Off-white solid (0.69 mg, 15% over 2 steps); 

HPLC rt = 10.3 min; Rf = 0.3 (SiO2, 10% MeOH:CH2Cl2); 1H NMR (900 MHz, MeOD with 

NH4OAc) δ 7.98 (s, 1H), 7.25–7.19 (m, 4H), 7.16–7.10 (m, 1H), 4.32–4.27 (m, 1H), 4.21 

(d, J = 8.7 Hz, 1H), 4.00–3.92 (m, 1H), 3.66 (s, 3H), 2.98 (dd, J = 13.8, 5.6 Hz, 1H), 2.92 
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(dd, J = 13.3, 8.1 Hz, 2H), 2.55 (dd, J = 11.2, 2.5 Hz, 1H), 2.50–2.44 (m, 1H), 2.21–2.13 

(ovlp m, 1H), 2.17 (s, 3H), 2.09–1.97 (m, 3H), 1.83–1.72 (m, 3H), 1.66–1.52 (m, 5H), 

1.36–1.25 (m, 3H), 1.24–1.16 (m, 1H), 1.14 (d, J = 7.0 Hz, 3H), 1.00 (d, J = 6.7 Hz, 3H), 

0.96–0.90 (m, 9H); 13C NMR (226 MHz, MeOD with NH4OAc) δ 185.0, 176.5, 175.7, 

173.9, 162.8, 159.0, 151.4, 139.9, 130.6, 129.2, 127.2, 123.9, 70.7, 59.3, 56.7, 52.8, 

52.4, 52.3, 51.8, 44.7, 41.3, 41.2, 39.8, 37.5, 34.1, 31.6, 30.8, 26.2, 26.0, 24.4, 19.6, 

19.5, 18.5, 16.3, 11.0; HRMS calcd for C37H57N6O7S+ [M + H+] 729.4009, found 

729.4013. 

N-Methyl-1H-imidazole-1-carboxamide (118).  To a suspension of CDI (3.57 g, 22.0 

mmol, 1.1 equiv) in CH2Cl2 (20 mL) at 0 °C was added a solution of methylamine 116 

(2.0 M in THF, 10 mL, 20 mmol, 1 equiv) dropwise and the resulting orange solution was 

stirred while warming to room temperature overnight.  After 72 h, the reaction was 

quenched with H2O (20 mL) and the layers were separated.  The aqueous layer (pH 8) 

was extracted with CH2Cl2 (4 х 10 mL), and the combined organic layers were dried 

(Na2SO4), filtered, and concentrated under reduced pressure.  The resulting 

orange/white solid (1.363 g) was a 1:1 mixture of 118:imidazole by 1H NMR.  A portion of 

this crude intermediate was purified by partitioning between CH2Cl2 (15 mL) and 

saturated aqueous NH4Cl (15 mL), and the layers were separated.  The aqueous layer 

was extracted with CH2Cl2 (3 х 10 mL), and the combined organic layers were dried 

(Na2SO4), filtered, and concentrated under reduced pressure.  The resulting white solid 

was exclusively 118 by 1H NMR and was used without further purification.  1H NMR (400 

MHz, CDCl3) δ 8.20 (s, 1H), 7.34 (s, 1H), 7.10 (s, 1H), 5.92 (br s, 1H), 3.05 (d, J = 4.8 

Hz, 3H). 

N,N-Dimethyl-1H-imidazole-1-carboxamide (119).  To a suspension of CDI (3.57 g, 
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22.0 mmol, 1.1 equiv) in CH2Cl2 (20 mL) at 0 °C was added Na2CO3 (2.12 g, 20.0 mmol, 

1 equiv) and dimethyl amine hydrochloride 117 (1.63 g, 20.0 mmol, 1 equiv), and the 

resulting suspension was stirred while warming to room temperature overnight.  After 72 

h, the reaction was quenched with H2O (20 mL), diluted with CH2Cl2 (20 mL), and the 

layers were separated.  The aqueous layer (pH 11) was extracted with CH2Cl2 (4 х 10 

mL), and the combined organic layers were dried (Na2SO4), filtered, and concentrated 

under reduced pressure.  The resulting yellow liquid (2.63 g) was a 2:1 mixture of 

119:imidazole by 1H NMR.  A portion of this crude intermediate was purified by 

partitioning between CH2Cl2 (15 mL) and saturated aqueous NH4Cl (15 mL), and the 

layers were separated.  The aqueous layer was extracted with CH2Cl2 (3 х 10 mL), and 

the combined organic layers were dried (Na2SO4), filtered, and concentrated under 

reduced pressure.  The resulting orange liquid, which solidified to an orange solid upon 

standing, was exclusively 119 by 1H NMR and was used without further purification.  1H 

NMR (400 MHz, CDCl3) δ 7.90 (s, 1H), 7.24 (br s, 1H), 7.09 (s, 1H), 3.11 (s, 6H). 

3-Methyl-1-(methylcarbamoyl)-1H-imidazol-3-ium iodide (114).  To a solution of 118 

(39.8 mg, 0.318 mmol, 1 equiv) in MeCN (3 mL) was added MeI (80 µL, 1.3 mmol, 4 

equiv) dropwise.  After 72 h, the reaction was concentrated under reduced pressure, and 

the resulting crude was triturated with CH2Cl2 (3 х 3 mL) leaving the title compound (5.6 

mg, 7% yield) as a yellow solid.  1H NMR (400 MHz, CDCl3) δ 10.97 (s, 1H), 9.21 (br s, 

1H), 8.10 (s, 1H), 7.24 (s, 1H), 4.09 (s, 3H), 3.06 (d, J = 4.6 Hz, 3H). 

1-(Dimethylcarbamoyl)-3-methyl-1H-imidazol-3-ium iodide (115).  The same 

procedure for 114 was followed using 119 (161.5 mg, 1.16 mmol) to afford the title 

compound (325.1 mg, 99.7% yield) as an orange oil that solidified upon standing.  1H 

NMR (400 MHz, CDCl3) δ 10.72 (s, 1H), 7.65 (s, 1H), 7.33 (s, 1H), 4.30 (s, 3H), 3.32 (br 
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s, 6H). 

Tetrapeptide 112.  To a solution of tetrapeptide 100 (5.3 mg, 7.0 µmol, 1 equiv) in 

MeCN (1.0 mL) was added imidazolium 114 (2.8 mg, 10 µmol, 1.5 equiv) and Et3N (1 

drop) and the resulting solution was stirred overnight.  After 18 h, TLC (5% 

MeOH:CH2Cl2) showed complete consumption of starting material.  The reaction was 

concentrated under reduced pressure, partitioned between CH2Cl2 (3 mL) and 1.0 M 

aqueous HCl solution (3 mL), and the layers were separated.  The aqueous layer was 

extracted with CH2Cl2 (3 х 1 mL), and the combined organic layers were dried (Na2SO4), 

filtered, and concentrated under reduced pressure.  The resulting crude product was 

hydrolyzed using the standard LiOH hydrolysis procedure.  Purification by HPLC (C18, 

150 х 10 mm, 10–50% MeCN/25 mM aqueous NH4OAc, pH 4.78 over 10 min, 90% 

MeCN/25 mM aqueous NH4OAc, pH 4.78 for 5 min, 5 mL/min) afforded the title 

compound as a white solid (0.86 mg, 17% yield over 2 steps).  HPLC rt = 8.3 min; Rf = 

0.2 (SiO2, 10% MeOH:CH2Cl2); NMR studies are ongoing; HRMS calcd for C37H58N7O6S+ 

[M + H+] 728.4169, found 728.4164. 

Tetrapeptide 113.  To a solution of tetrapeptide 100 (5.6 mg, 7.4 µmol, 1 equiv) in 

MeCN (1.0 mL) was added imidazolium 115 (4.1 mg, 15 µmol, 2 equiv) and Et3N (1 

drop) and the resulting solution was stirred overnight.  After 48 h, no reaction had 

occurred by TLC (3 х 5% MeOH:CH2Cl2) or crude MS.  Additional 115 (21 mg, 75 µmol, 

10 equiv) was added as a solution in MeCN (1.0 mL) and the resulting solution was 

stirred overnight.  After an additional 40 h, no reaction had occurred by crude MS, so a 

catalytic amount of DMAP was added and the resulting solution was heated to reflux and 

stirred overnight.  After an additional 48 h, crude MS showed some reaction progress.  

Additional 115 (98 mg, 350 µmol, 47 equiv) was added to the reaction and the solution 
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was heated to reflux and stirred overnight.  After an additional 24 h, TLC showed 

complete consumption of starting material.  The reaction was concentrated under 

reduced pressure, taken up in 1.0 M aqueous HCl (3 mL), and the resulting aqueous 

mixture was extracted with CH2Cl2 (3 х 3 mL).  The combined organic layers were dried 

(Na2SO4), filtered, and concentrated under reduced pressure.  The resulting crude 

product was hydrolyzed using the standard LiOH hydrolysis procedure.  Purification by 

HPLC (C18, 150 х 10 mm, 10–50% MeCN/25 mM aqueous NH4OAc, pH 4.78 over 10 

min, 90% MeCN/25 mM aqueous NH4OAc, pH 4.78 for 5 min, 5 mL/min) afforded the 

title compound as a white solid (0.55 mg, 10% yield over 2 steps).  HPLC rt = 8.7 min; Rf 

= 0.2 (SiO2, 10% MeOH:CH2Cl2); 1H NMR (850 MHz, MeOD) δ 7.97 (s, 1H), 7.28–7.20 

(m, 4H), 7.19–7.12 (m, 1H), 5.02 (dd, J = 11.1, 3.6 Hz, 1H), 4.38–4.30 (m, 1H), 4.19 (d, J 

= 8.7 Hz, 1H), 4.00 (ddd, J = 10.9, 5.0, 3.2 Hz, 1H), 3.95–3.69 (m, 2H), 3.03 (d, J = 11.8 

Hz, 1H), 2.95 (s, 6H), 2.88–2.83 (m, 1H), 2.57 – 2.51 (m, 1H), 2.30 (s, 3H), 2.23 (ddd, J 

= 14.6, 11.2, 3.8 Hz, 1H), 2.13 (ddd, J = 14.3, 11.2, 3.1 Hz, 1H), 2.00 (ddd, J = 13.9, 9.3, 

4.6 Hz, 1H), 1.90–1.54 (m, 10H), 1.40–1.31 (m, 1H), 1.24–1.17 (m, 1H), 1.15 (d, J = 7.1 

Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.91 

(t, J = 7.4 Hz, 3H); 13C NMR (214 MHz, MeOD) δ 183.1, 178.9, 177.9, 174.3, 173.7, 

163.0, 160.0, 150.9, 139.8, 130.5, 129.3, 127.3, 123.9, 70.1, 69.0, 59.6, 56.4, 52.5, 52.3, 

51.3, 44.3, 41.6, 39.7, 39.2, 37.5, 37.4, 36.7, 33.8, 31.2, 26.1, 25.7, 23.9, 23.3, 19.6, 

19.1, 18.4, 16.3, 11.0; HRMS calcd for C38H60N7O6S+ [M + H+] 742.4326, found 

742.4310. 
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Chapter 4: 

Synthesis of Unique Tubulysin U (11) Analogs with Various Oxygen-Based Functional 

Groups Replacing the Key Tubuvaline Acetate 

Introduction 

 In addition to the nitrogen containing Ntubulysin compounds, analogs with an 

oxygen at the α-thiazole position of tubuvaline were synthesized to further test the SAR 

at this position with molecules that more closely resemble naturally isolated tubulysins.  

With the refined chemistry used towards synthesis of Ntubuvaline, production of the α-

keto thiazole tubuvaline intermediate was improved.  Adapted reactions also improved 

the tubuvaline-tubuphenylalanine peptide coupling, where N-acylurea side product 

formation was observed and removed similarly to Ntubulysin intermediate synthesis.  

Alkylated products of tubulysin V were the initially targeted molecules, where simple 

ethers would gauge the effect that the acetate carbonyl of 11 has on bioactivity.  

Installation of a methyl at late-stage tri- and tetrapeptide intermediates proved to be 

problematic, so a route which takes advantage of an early stage isoleucine-tubuvaline 

intermediate was successfully initiated using modified versions of materials previously 

synthesized (Peltier et al., 2006).  Alkylation as a methoxymethyl ether was 

regioselectively installed at the tubuvaline oxygen, and will be instrumental in early 

survey of alkylation at this position. 

 The method to synthesize tubulysin U by the conditions previously published in our 

lab (Balasubramanian et al. 2009) has been reinvestigated, leading to changes in the 

synthesis of this molecule and other O-acylated analogs.  Experimentation has 

determined that the temperature of acylations performed in pyridine, as well as the 
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quenching methods to end these reactions, were determining factors in reaction 

outcome.  A less problematic route to O-acylated tubulysin analogs lies in pre-activation 

of the pertinent acid with DCC, where full reaction of the reagents before addition into 

tubulysin V (11) was crucial to avoid reactivity at the tubuphenylalanine carboxylate.  

Success in acylation with a variety of functional groups was variable depending on the 

group being added, and will be discussed in greater detail below.  With these new 

acylation conditions, two analogs which follow classic affinity label design were produced 

for covalent labeling of the tubulin binding pocket for in-depth analysis of substrate-target 

interactions. 

Evaluation and Modification of Precursor Synthesis towards Tubulysin V (12) 

 Implementation of the modified synthetic methods used to generate Ntubuvaline 

fragments strengthened the α-keto thiazole tubuvaline finishing steps by increasing 

yields compared to previously published work.  Not surprisingly, the single Boc 

protection at the N-terminus of 42 was an inconsequential factor in reaction success 

when these fragments were subjected to the standard functional group transformations 

previously used to produce bis-Boc protected intermediates (Raghavan et al. 2008).  In 

the same respect, the reaction conditions which had efficiently generated the Ntubuvaline 

fragments 89 from 87 (Figure 24) were expected to undergo the same selective and 

efficient reactivity with the α-keto thiazole tubuvaline intermediates. 

 Implementation of the newly developed conditions discussed above resulted in 

more than doubling the overall yield in the final 3 functional group transformations to 125 

(Figure 35).  TBAF deprotection of 42 slightly enhanced the yield compared to an 

already efficient HF●pyridine deprotection of 43 (77% yield, Raghavan et al. 2008).  
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Previously, oxidation of 123 was run using Dess-Martin periodinane (DMP), an 

expensive reagent that is also synthetically available from cheaper 2-iodobenzoic acid 

via an explosive intermediate, 2-iodoxybenzoic acid (IBX, Frigerio et al. 1999).  Both 

DMP and MnO2 will oxidize the alcohol of 123, but MnO2 oxidation uses a stable, 

inexpensive reagent which does not require further purification beyond filtration and 

results in heightened production of aldehyde 124 (90% yield; a 65% yield was obtained 

using DMP on a similar alcohol, Raghavan et al. 2008).  As was the case with 

Ntubuvaline 89 and earlier efforts, NaClO2 oxidation efficiently converts 124 into acid 

125.  During characterization of 125, a 1:1 mixture of rotamers was present in both 1H 

and 13C NMR spectra with use of CDCl3, a phenomenon that did not occur with 

fragments 89 or 90 (Figure 24, Raghavan et al. 2008).  Based upon literature 

precedence (Hu et al. 2012) and the significant difference in the N–H proton shift 

between rotamers (6.75 versus 4.83 ppm), one of the nitrogen-carbon bonds of the Boc 

protected amine is hypothesized to be slowly rotating, resulting in 2 distinct conformers.  

No change was observed in variable temperature NMR experiments, but by switching to 

CD3OD, the splitting pattern ceased (Balasubramanian 2008).  These procedures 

support production of tubuvaline fragment 125 in multi-gram quantities, and in 80% yield 

over 3 steps from an intermediate that is common to the Ntubuvaline route (42).  
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Figure 35: New synthetic methods to tubuvaline 125. 

 In addition to the synthetic methods to tubuvaline fragment 125, further peptide 

coupling conditions towards tetrapeptide 128 were also surveyed (Figure 36).  As was 

the case with the dipeptide coupling furnishing the Ntubuvaline-tubuphenylalanine bond, 

125-tubuphenylalanine 92 coupling resulted in an inseparable N-acylurea side product 

126 not previously reported.  Identification of this impurity was only discovered upon 

coupling of the 126/127 mixture with Boc-L-isoleucine, where isoleucine-ligated 126 was 

separable from the keto tripeptide (not shown) under silica chromatography, furnishing 

both as pure samples for full characterization.  With the aim of not wasting synthetically-

derived intermediates, the operationally simpler mixed anhydride activation of 125 was a 

viable alternative to this reaction and cleanly led to the dipeptide 127.  Published 

methods proved to be the best option for synthesis of tetrapeptide 128 following the 

modified dipeptide coupling (Figure 36). 
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Figure 36: Use of old and new synthetic methods to generate tubulysin V. 

 Hydrolysis of the tetrapeptide 128 was run under conditions similar to those 

previously used, but with a key modification which became the standard for benzyl 

deprotections in all the tubulysin analogs.  Previously, LiOH hydrolysis was performed in 

a 3:1 to 15:1 biphasic mixture of THF:H2O.  Despite the eventual production of the target 

molecule, these conditions were frequently subject to unpredictable reaction times 

ranging from 12 hours to 7 days and non-reproducible yields.  The cause of these 

observations was hypothesized to be a separation of the LiOH dissolved in H2O and the 

comparatively hydrophobic benzyl ester dissolved in THF, meaning reaction outcome is 

based on efficient solvent mixing.  According to suggestions from Dr. Peter Dosa, MeOH 

was added to the THF:H2O mixture in order to created a coalesced solution, with the 

presumption that any methyl ester formed would be hydrolyzed in the course of the 
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reaction.  Indeed, hydrolyses run using a 5:1:1 THF:H2O:MeOH solvent ratio saw a 

homogenous reaction solution with complete miscibility of the benzyl ester and LiOH.  

The results from this simple modification were astounding, since these unpredictable 

reactions now run in predictable reaction times of 12 to 48 hours and were high yielding 

for the target carboxylic acids.  As predicted, a portion of methyl ester intermediate is 

generated during the course of the reaction, but these are short lived and are eventually 

fully hydrolyzed to the target molecule.  The nearly quantitative production of >95% pure 

12 possible through this protocol serves as a good example to the power of this 

modification (Figure 36).   

 Using the multi-gram stocks of individual amino acid residues along with the 

efficient couplings and late-stage reactions described above, access to greater than 100 

mg quantities of 12 was possible, and served as the material basis for the ensuing 

modifications to the tubuvaline oxygen. 

Synthetic Efforts towards Tubulysin Analogs with O-Alkylation at the Tubuvaline 

Hydroxyl Group 

 Initial tubulysin analog synthesis focused on etherification of the tubuvaline 

hydroxyl group, a change that would greatly increase the stability of the functional group 

at this position, and would also survey the importance of the 11 acetate carbonyl for 

cytotoxicity.  The most productive starting point was to install a methyl group on the most 

mature intermediate possible.  Following successful methyl group installation, the stage 

would then be set for alkylations using other groups, particularly the ethyl ether since it 

most closely mimics the acetate of 11 with a methylene replacement of the acetate 

carbonyl.  Tripeptides 129 and 130 were initially picked since they exhibited the 
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maximum number of functional groups within 12 without the presence of the N-methyl-D-

pipecolinic acid tertiary amine, which was deemed a liability by its potential to be 

alkylated. 

 Several routes to methyl ethers 131–133 based upon literature precedence were 

attempted, but ultimately this was a non-viable starting point to generate O-alkylated 

tubulysin analogs (Figure 37).  The combination of iodomethane with silver (I) oxide has 

previously been used to selectively methylate secondary alcohols on other natural 

products, such as prostaglandins (Finch et al. 1975) and ribonucleosides (Hodge and 

Slnha 1995).  Subjecting tripeptide 129 to the reaction conditions established in these 

papers resulted in no progress past the starting material (Figure 37).  In retrospect, 

reaction productivity may have been improved by using freshly made Ag2O along with 

molecular sieves to absorb water generated during the reaction (Reymond and Cossy 

2007).  A report from Evans had described a mild methylation of polyoxygenated natural 

products which was productive when the standard Ag2O/MeI system had failed (Evans et 

al. 1994).  An excess of 1,8-bis(dimethylamino)naphthalene, or proton sponge, and 

Meerwein’s salt had selectively methylated secondary alcohols in complex molecules, 

but use on tripeptide 130 was unproductive and resulted in the recovery of starting 

material.  This same paper also described selective methylation with use of the bulky 

base 2,6-di-tert-butyl-4-methylpyridine and methyl triflate.  These reagents failed to 

methylate either the hydroxyl or the tertiary amine of the tetrapeptide 128, a surprising 

conclusion based on the tendency of tertiary amines to be alkylated in the presence of 

such a strongly electrophilic alkylating agent (Table 2).  Faced with a lack of even a 

small amount of progress in these procedures established to alkylate the alcohols of 

complex natural products, efforts were instead spent on earlier intermediates with more 
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established use in this type of transformation. 

 

Figure 37: Attempted methylation of the tubuvaline hydroxyl in late-stage intermediates. 

 A route which is less efficient but better established for selective alkylation in 

tubulysin intermediates was explored next.  In his synthesis of tubulysin D, Ellman 

described a strategy using an azido protected isoleucine-tubuvaline intermediate to 

install the labile N,O-acetal, which was strategically protected to mask all potentially 

nucleophilic sites excluding the position that was to be alkylated (Peltier et al. 2006).  A 

version of this strategy was used to selectively install a methyl group at the tubuvaline 

hydroxyl group (Figure 38).  Following Boc deprotection of 134, azido protection was 

furnished by use of a purportedly shelf stable azido transfer reagent 136 (Goddard-
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Borger and Stick 2007).  As a safety note, a correction to the original article noted 

explosive potential of degraded 136 as an outcome of water absorption causing reagent 

hydrolysis to hydrazoic acid (Goddard-Borger and Stick 2011).  Despite its issues with 

long-term storage, this reagent is simple to make and provided 137 in high yield 

according to the literature procedure.  

 

Figure 38: Revised strategy to install a methyl ether at the tubuvaline hydroxyl group. 

 The isoleucine-tubuvaline coupling started with activation of the 137 carboxylate as 

an acid chloride, a method which is usually discouraged for amino acids due to the 

tendency of amino acid chlorides to equilibrate as ketenes or oxazolones (Williams and 

Young 1964), thus destroying enantiopurity through racemization of the α stereocenter.  

In the case of azido protected amino acids, however, previous studies have noted their 

lack of racemization upon acid chloride activation (Meldal et al. 1997).  This study also 

established their use in generating sterically encumbered peptide bonds, a characteristic 
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of the isoleucine-tubuvaline bond that has been noted (Sani et al. 2007).  Selective 

deprotection of the 86 Boc group in the presence of its TBDPS silyl ether (Cavelier and 

Enjalbal 1997) afforded the tubuvaline free amine 138, which was added into the acid 

chloride to furnishing the azido protected dipeptide 139.  The yield of this reaction could 

potentially be improved by use of an EtOAc/HCl deprotection of 86 according to the work 

of Cavelier and Enjalbal (Cavelier and Enjalbal 1997).   

 The choice of intermediate 139 for O-methylation was not a foregone conclusion, 

and was instead influenced by many factors from literature survey.  Early tubulysin 

research noted that the tubuvaline nitrogen is sterically encumbered (Steinmetz et al. 

2004), and commentary on the difficulty of synthetic transformations at this position have 

been made (Pando et al. 2011).  Alkylation of the tubuvaline nitrogen has nonetheless 

been a heavily researched area due to the N,O-acetal at this residue in naturally isolated 

tubulysins, and the observation that picomolar antiproliferative activity is maintained by 

simple N-methylation of the tubuvaline amide (Wang et al. 2007).  Syntheses involving 

tubuvaline N-methylation install this functionality before coupling to isoleucine, thereby 

avoiding this steric liability as a factor in reaction success.  Previous works which install 

the N,O-acetal are the only examples where isoleucine-tubuvaline coupled intermediates 

are N-alkylated, where minimalist silyl ether protection of the tubuvaline hydroxyl is 

required to avoid both O-alkylation and poor reaction productivity due to restrictive 

crowding (Peltier et al. 2006).  The overwhelming evidence regarding crowding at the 

tubuvaline amide and the difficulties reported in alkylation of this position led to the 

hypothesis that N-methylation would not occur under controlled reaction conditions for 

O-methylation of 139. 

 Selective methylation at the hydroxyl of tubuvaline 139 using a nearly 
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stoichiometric amount of iodomethane following sodium hydride deprotonation gave the 

target 140 in moderate but unoptimized yield (Figure 38), where the position in which 

methylation occurred was confirmed by 1H NMR.  In both the compounds reported here 

and in our other publications (Raghavan et al. 2008, Balasubramanian et al. 2009), a 

paradigm exists where tubulysin intermediates containing a isoleucine-tubuvaline amide 

bond have a doublet in the >6.0 ppm range with a coupling constant (J) of approximately 

9 Hz representative of the N–H proton at this position.  Comparison of the 1H spectra of 

139 and 140 clearly shows the presence of the amide N–H proton as a doublet at 6.5 

ppm (J = 9.3 Hz) and 6.5 ppm (J = 9.6 Hz), respectively.  The typical tubuvaline O–H 

proton is a doublet between 4.5–5.5 ppm, which has been established by comparing 

tubulysin intermediates containing a ketone at the α-thiazole position to their products 

following ketone reduction.  Within the 3.0–5.0 ppm range, two doublets appear in the 

139 spectra (5.0 and 4.0 ppm), where azido protected isoleucine intermediates have 

typically shown a doublet at approximately 4.0 ppm representing the isoleucine 

backbone methine (Peltier et al. 2006).  Upon methylation, the doublet at 5.0 ppm 

disappears in the 140 spectra while a doublet at 3.9 ppm remains, indicating the loss of 

the O–H proton. 

 Despite the consistency of these N–H and O–H protons in the 1H NMR spectra of 

many tubulysin intermediates, the fact remains that heteroatom protons can be shifted 

drastically based on more factors than just their position within the molecule, such as 

sample concentration and temperature.  Hence, the most convincing argument for O-

methylation lies in analysis of a telltale methine proton between the two spectra.  This 

methine is a multiplet at 4.8 ppm in the 139 spectra that shifts upfield to 4.45 ppm and 

simplifies to a doublet of doublets in the 140 spectra.  Both of these changes would be 
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predicted for the α-thiazole methine proton upon O-methylation but would not be 

predicted for the γ-thiazole methine proton upon N-methylation.  This overwhelming 

evidence strongly supports the claim of O-methylation, confirming the hypothesis that 

139 will undergo selective methylation under non-specialized conditions, most likely as a 

result of the steric crowding around the amide nitrogen of tubuvaline. 

 Future work along this route would involve trivial functional group transformations 

and peptide couplings using established reactions.  Previous work has demonstrated a 

one pot hydrogenation/peptide coupling strategy in which pre-activated N-methyl-D-

pipecolinic acid and palladium on carbon were used to install the N-terminus residue on 

an azido deprotected isoleucine intermediate similar to 140 (Peltier et al. 2006).  As 

previously discussed, metal-catalyzed hydrogenation of tubulysin intermediates 

containing a thiazole ring have been problematic according to relevant literature.  As an 

alternative strategy, a Staudinger reaction could be used to deprotect the azido group 

should issues with a lack of reactivity arise, followed by peptide coupling to generate 141 

(Figure 39).  Completion of the molecule would then involve the well established 

strategies presented in Figures 24 and 35 to give the carboxylate at the tubuvaline 

fragment, followed by coupling to tubuphenylalanine 92 to furnish the methyl ether 

analog 133.  While this route is certainly not optimized in step efficiency, it is the most 

viable option to generate alkylated tubulysin analogs. 
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Figure 39: Proposed steps to finish the synthesis of methyl ether 133. 

 Attachment of a methoxymethyl ether at the hydroxyl of 128 represents the 

singular successful alkylation of a late-stage intermediate towards alkylated analogs of 

11 (Figure 40).  The stability of this functional group under basic conditions is robust, so 

competitive alkylation of the free carboxylate of 12 was avoided by functionalizing the 

precursor 128.  Following benzyl ester hydrolysis and purification by HPLC, a low yield 

of the methoxymethyl protected analog 142 was isolated for full characterization and 

upcoming biochemical evaluation.  Despite not appearing in the preceding low resolution 

MS, 12 was also isolated upon HPLC purification.  The lability of methoxymethyl ethers 

under acidic conditions is well documented, so a less acidic aqueous phase for HPLC 

purification may be necessary in the future.  As highlighted in Figure 40, a close 

structural comparison can be made between 11 and methoxymethyl ether 142.  

Changes to the polarity and hydrogen bonding potential at this position, together with the 

resulting comparison in biological activity, will be a commentary on the interaction of 

these molecules with the tubulin binding pocket. 
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Figure 40: Synthesis of the methoxymethyl ether 142 and its comparison to ester 11. 

Synthesis of Acylated Tubulysin Analogs using Anhydrides in Pyridine  

 Acetylation of the tubuvaline hydroxyl group in tubulysins has been shown to 

confer orders of magnitude increased anticancer activity, a trend supported by the 1000 

fold increased potency of tubulysin U (11) compared to tubulysin V (12, Figure 6).  Most 

established tubulysin syntheses acetylate the tubuvaline residue with acetic anhydride in 

a pyridine solution containing the molecule of interest.  Work in the Fecik lab is no 

different, where our total synthesis of 11 was completed by acetylation of 12 in pyridine 

using a large excess of acetic acid at room temperature (Balasubramanian et al. 2009).  

This reaction was reported to generate 11 in 65% yield following HPLC purification.  

Unexpectedly, reproducing the reported reaction conditions resulted in a 5:6 ratio of 11 

and an unknown species.  As predicted, 11 was formed as confirmed by comparison to 

its reported HPLC retention time, 1H NMR, and low resolution MS (Balasubramanian et 

al. 2009).  The other product of this reaction had a 1H NMR spectra very similar to 11, 

but was less polar than 11 judging by its increased HPLC retention time, and exhibited 

mass peaks correlating to dehydrated 11 exclusively.   
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 Based upon analysis of the collected data and an understanding of tubulysin 

reactivity, the identity of this side product was determined to be 11 with a lactam at the 

N-terminus created by intramolecular cyclization (143, Figure 41).  Conversion of the 

carboxylic acid of 11 to the proposed lactam would certainly reduce the overall molecular 

polarity, as characterized by slower elution in reverse-phase HPLC.  The 1H NMR 

spectra of 11 and 143 in D2O are expected to be similar due to the nearly unchanged 

structure between the molecules, and the removal of more distinguishing spectral 

changes from deuterium exchange at the acidic proton of the carboxylate and amide.  

Finally, the formula weight of 143 is that of dehydrated 11, corresponding to the findings 

through low resolution MS.  In addition to the data collected, a reasonable assessment 

of the possible outcomes of this reaction favors a scenario where activation of the 

tubuphenylalanine carboxylate as a mixed anhydride causes an intramolecular 

cyclization of this residue into a γ-lactam. 

 

Figure 41: Resulting products of hydroxyl 12 acetylation under published conditions. 

 As further conformation of the side product identity, subjecting 143 to LiOH 

hydrolysis produced both 11 and 12 as confirmed by HPLC retention time and low 

resolution MS, where this procedure opens the tubuphenylalanine lactam during the 

synthesis towards 91 (Raghavan et al. 2008).  The hydrolysis of the 143 lactam leading 

to 11 and 12 exemplifies the issue with this particular side product formation; there is not 
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a straightforward way in which to reopen the lactam ring without hydrolysis of the labile 

acetate.  While this finding had not been noted in our previous publications, it was not 

completely unexpected due to the established formation of this lactam as an 

intermediate towards tubuphenylalanine and as a side product in the work published by 

other labs (Höfle et al. 2003, Wipf and Wang 2007, Ullrich et al. 2009b).   

 In order to avoid this side product formation, the reaction conditions for acetylation 

of 12 were reevaluated by lowering reaction temperature (Table 3).  At 0 °C, the same 

reaction was much more selective for 11, giving an 11:1 ratio of 11:143 according to 

HPLC trace analysis of the crude reaction mixture.  Following purification, this 

unoptimized reaction yielded 47% of 11.  At -20 °C, 11 was essentially the sole product 

upon reaction workup with a >100:1 ratio of 11:143 by HPLC and with an overall purity of 

90%; this slightly crude material was isolated in 91% yield.  By simply lowering the 

reaction temperature, these model reactions have established a method to negate 

lactam formation while still forming the acetylated product.  These acylation conditions 

have been applied to all further reactions where an excess of the acylating agent is 

added to a solution of 12 in pyridine.  It should also be noted that tubulysin publications 

by Ellman and Shibue make special note of long H2O:dioxane quenches following acetic 

anhydride/pyridine acetylation of the tubuvaline hydroxyl (Peltier et al. 2006, Patterson et 

al. 2007, Patterson et al. 2008, Shibue et al. 2010, Shibue et al. 2011).  No mention of 

the significance of this procedure is made within these papers, but these reactions are 

reported to be high yielding and may be another viable method in which to prevent 

lactamization. 
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Table 3: Acylation reactions using an anhydride in a pyridine solution of hydroxyl 12 

(pyridine/anhydride method). 

 Having established a productive means to acetylate tubulysin V (12) without 

undesired intramolecular cyclization, acylations were attempted using other anhydrides 

under the same conditions (Table 3).  Generally, a solution of the natural product was 

dissolved in pyridine and placed in a -20 °C freezer, where upon addition of the 

anhydride and 48 hours reaction time, there was a spot to spot conversion of 12 to 

products 11 and 144–146 according to TLC analysis.  The reaction quench was best 

performed by pouring the reaction solution directly into 1.0 M aqueous HCl and 

extracting with portions of EtOAc, which was effective in completely separating the 

pyridine and product.  In the reactions using acetic anhydride or formic acetic anhydride, 

the reagent was completely hydrolyzed to its respective acids during the aqueous 

quench since no anhydride was present in the organic layers following extraction.  

Benzoic and butyric anhydrides, on the other hand, are not as quickly hydrolyzed and 
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significant amounts of these reagents were co-extracted into the organic layer.  With the 

product mixture and excess anhydride present in the same ethyl acetate solution, 

solvent removal created a room temperature, concentrated mixture of these reactive 

species.  Despite the clean reaction apparent from TLC analysis before reaction quench, 

these reactions resulted in complicated mixtures consisting of product, starting material, 

and to a varying extent the cyclized lactam versions of these molecules.  Hence, any 

future work should use anhydrides which are destroyed upon aqueous quench or 

workup conditions which do not isolate the crude product mixtures along with 

anhydrides.   

 Unexpectedly, the nearly pure sample of formate ester 144 isolated after aqueous 

workup underwent full degradation to 12 upon HPLC purification and NMR analysis.  

Following the typical reaction setup using acetic formic anhydride in pyridine and 

finishing the reaction with an aqueous quench and organic extraction, immediate TLC 

and low resolution MS analysis showed production of 144 with an almost nonexistent 

presence of remaining 12.  Upon HPLC purification using the aqueous NH4OAc 

(buffered with AcOH):MeCN solvent system typical for these tubulysin analogs, 2 

prominent peaks were isolated separately and confirmed to be 144 and 12.  Centrifugal 

evaporator concentration of the pure 144 fractions resulted in complete degradation to 

12 as confirmed by 1H NMR, 13C NMR, and low resolution MS.  This result is confusing 

since the formate ester group has been attached to natural products before, and has 

remained stable during purification and biochemical evaluation (Kumar et al. 2012).  

Although formate esters are sometimes used as a hydroxyl protecting group, indicating 

that there are non-demanding reaction conditions to cleave this group from the hydroxyl 

oxygen, formate deprotection is achievable under basic conditions, not the acidic HPLC 
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purification conditions presented here.  Future work should manipulate 144 as little as 

possible after aqueous workup, and should purification be deemed necessary, flash 

chromatography should be used to generate purified 144. 

Studies towards the Synthesis of Halogenated Analogs of Tubulysin U (11) 

 As part of the SAR profile for oxygen based functional groups on the tubuvaline 

hydroxyl, we wished to investigate halogenated versions of tubulysin U (11).  Fluorine 

acts as a bioisosteric replacement to hydrogen by exhibiting a similar Van der Waals 

radius; in this same way, chlorine acts as a bioisosteric replacement to methyl groups.  

The advantage of this sort of replacement comes in to play when metabolic processing 

of xenobiotics causes unfavorable loss in activity or change in pharmacokinetic 

properties.  Strategic halogenation using fluorine or chlorine can help solve these 

weaknesses, since the structure of the modified drug is not drastically changed but the 

points of modification are not susceptible to the same metabolic processing.  In this way, 

replacement of the acetate methyl with halogenated analogs would survey the feasibility 

of making these modifications for future drug applications.  Further use of these analogs 

would take advantage of the halogen’s increased electronegativity, where the additional 

electron withdrawing properties at this position would make these tubulysin analogs 

even more susceptible to deacylation.  The increased tendency to cleave under 

nucleophilic conditions qualifies these compounds to gauge whether the tubulysin mode 

of action is at all based upon acylation of a nucleophilic site within the biological target, 

which would serve to explain the increased activity of acetylated analogs. 

 Unfortunately, the synthetic efforts towards these molecules were all non-

productive or destructive (Table 4).  Multiple iterations towards the trifluoroacetyl analog 
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of 11 under the conditions discussed above resulted in the complete destruction of the 

starting material 12.  Modifications intended to make this a more mild reaction, such as 

using a less concentrated solution of trifluoroacetic anhydride and pyridine in CH2Cl2, or 

DCC activation of TFA, were simply not reactive enough to progress beyond 12. 

 

Table 4: Attempted acylations of hydroxyl 12 with halogenated acyl groups. 

 An unexpected outcome occurred under modified conditions using trichloroacetyl 

chloride as the acylating reagent (Table 4).  After 48 hours, TLC showed loss of the 

product but no other UV active spots, an unusual observation since tubulysin analogs 

are typically visualized on TLC even at low concentration.  HPLC trace analysis of the 

crude reaction showed a complicated mixture of many nearly equal peaks, where one 

peak was somewhat more significant than the others.  Following isolation, low resolution 

MS of this peak gave a mass peak of 670, which correlates to the formula weight of 

tubulysin V minus 2 mass units.  The ambiguous nature of this mass reading in addition 

to insignificant material for full NMR analysis led to inconclusive results, with the only 

definitive conclusion being that the isolated product was not the target molecule. 



 

 120 

Studies towards the Synthesis of Carbamate and Urea Analogs of Tubulysin U (11) 

 In the realm of van der Waals forces that influence the strength of the substrate-

biological target interaction, we wished to test the effect that hydrogen bonding and 

dipole-dipole interactions have at the space that the acetate of 11 interacts with in the 

tubulin binding pocket.  In order to do this, the electronegativity of the atoms bonded at 

the tubuvaline hydroxyl group, and in turn the overall polarity and hydrogen bonding 

potential at this position, were to be changed by replacing the acetate with carbamate 

and carbonate based functional groups.  So as to have the smallest impact on the other 

forces which dictate substrate binding such as hydrophobic effects and steric 

interactions with the binding pocket, the targeted compounds had only methyl groups 

appended at the new functional groups. 

 Initial focus was on installation of a methyl carbonate at the tubuvaline residue of 

12 using a modified version of the procedure to synthesize 11, which resulted in 

unforeseen reactivity (Table 5).  Using either pyridine or Et3N as base with or without the 

addition of DMAP, the reaction was solely productive for one product correlating with a 

methyl group added to 12 by low resolution MS.  Any methyl carbonate containing 

product with this formula weight would be unreasonable considering the reaction 

conditions, and methylation of the tubuvaline hydroxyl is also very unlikely, so it can be 

safely assumed that the product from this reaction is the methyl ester of 12.  This 

product is not implausible based upon the reaction conditions, since methanol could 

easily add into the tubuphenylalanine carboxylate after its in situ activation as a mixed 

anhydride.  However, 1H NMR analysis of the methyl chloroformate reagent showed 

>95% purity with no trace of methanol formation, the reaction was kept under strictly 

anhydrous conditions, and reaction quench is through the addition of saturated, aqueous 
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salts, so the source of methanol as the driving force of this reaction is not clear. 

 

Table 5: Attempted synthesis of tubulysin analogs with non-ester functional groups. 

 Carbamates appended to tubuvaline would also serve as simple functional groups 

useful to probe the electronic nature of the tubulin binding pocket, where CDI was picked 

to act as the carbonyl equivalent in the preparation of these molecules (Table 5).  This 

reaction is complicated by the reactivity of CDI at the tubuphenylalanine carboxylate, 

where carboxylates classically react with CDI to form a mixed anhydride, which is then 

subject to nucleophilic attack from the imidazole generated during the activation step.  

Since this reactivity was undesirable, a strategy to block this site was attempted through 

pre-formation of a mixed anhydride, which was postulated to limit the reactivity with CDI 

and in doing so reduce the in situ generation of imidazole.  Not only was this mixed 

anhydride reactive with imidazole during the course of the reaction, a side product had 

also formed wherein lactam cyclization of the tubuphenylalanine fragment occurred.  CDI 

activation of the benzyl ester 128 was attempted instead, since the imidazole would 

assuredly not be reactive at the unactivated carboxylate, and under the assumption that 



 

 122 

the resulting carbamate would not be susceptible to the hydrolytic cleavage used to 

remove the ester.  Despite following literature precedent and running the reaction at high 

temperatures, the hydroxyl group was not reactive with CDI, even in the presence of 

DMAP. 

 A lack of reactivity at the hydroxyl group of tubuvaline prompted the use of a more 

electrophilic acylating agents, so the two imidazolium salts 114 and 115 were exploited 

based upon their success in the previous Ntubulysin urea syntheses when CDI had 

failed.  Instead of hydroxyl group deprotonation using sodium hydride as noted in the 

parent paper (Grzyb et al. 2005), Et3N was used with 128 (Table 5) in order to avoid 

deprotonation and reactivity of other acidic protons on 128.  Productivity of these 

reactions was questionable since these types of reagents are reported to be limited to O-

acylation when installing carbamates at phenols and non-aromatic alkoxides.    Not 

surprisingly, this reaction was not productive for the target molecule even after days of 

reflux by low resolution MS.  The failure to produce the target carbamates underscores 

the difference in reactivity between the oxygen and nitrogen containing tubulysin 

analogs, where acylation at this position is more efficient with the increased 

nucleophilicity of the nitrogen.  Future work towards these carbamates will focus on use 

of more established acylating agents, such as carbamoyls and isocyanates, with a 

special focus on the safe production of the non-commercially available N-methyl based 

reagents. 

Synthesis of Acylated Tubulysin Analogs using DCC Pre-Activated Acids 

 The problems with acylation of tubulysin V (12) described above led to the 

development of improved conditions for acylation of the tubuvaline hydroxyl group.  
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Rigorous survey of typical reagents and reaction conditions for installation of the ester 

eventually led to DCC activation of various acids.  This is a common strategy to make 

ester bonds between an alcohol and acid, but tubulysin analogs such as 12 present 

certain structural features which make this method more complicated than normal.  As 

was previously discussed, N-acylurea side products have been observed with DCC 

activation of the tubuvaline carboxylate.  In this case, N-acyl shifting was not as pressing 

a concern since simple, commercially available acids would be used, allowing for an 

excess of these reagents compared to the far more precious tubulysin intermediates.  

Additionally, use of a catalytic portion of DMAP with this reaction has been shown to 

reduce the incidence of N-acyl shift (Neises and Steglich 1978). 

 DCC activation of simple acids for addition onto tubulysin analogs was subject to 

the more serious consideration of regioselectivity due to the persistence of the free 

carboxylate at the tubuphenylalanine residue.  Under normal circumstances, DCC 

esterification between an acid and alcohol occurs by adding DCC to a solution 

containing both substrates.  This would not be possible with acylation of 12 without 

risking undesired reactivity at the tubuphenylalanine carboxylate such as intramolecular 

cyclization, polymerization, or N-acylurea formation.  Use of the benzyl protected 

precursor 128 would allow for selective reaction at the tubuvaline hydroxyl, but this 

strategy was dismissed based upon the problem of selectively deprotecting the benzyl 

ester under basic hydrolysis as was seen with 143. 

 With consideration to the potential liabilities of this route, the acids were pre-

activated in a separate solution of CH2Cl2 and allowed to fully react for more than 4 

hours before their addition to 12.  To ensure complete consumption of DCC, a 10:5:1 

molar ratio of acid:DCC:12 was used in addition to one equivalent of DMAP, which 
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serves the dual purpose of reducing the incidence of N-acyl shifting and promoting 

efficient hydroxyl group acylation (Neises and Steglich 1985).  Activation of acids with 

simple alkyl chains prior to their addition to 12 resulted in full conversion of the starting 

material after 20 to 48 hours with a high yield of the target molecule following simple 

filtration of the insoluble DCU byproducts and HPLC purification (149 and 150, Table 6).  

A critical aspect in the success of this reaction was the production of the desired product 

without N-acylurea or cyclized side products associated with activation of the 

tubuphenylalanine carboxylate, even when run at room temperature.  In terms of 

reaction setup and reagent addition, this method for tubulysin acylation represents a 

more operationally complicated strategy when compared to the pyridine/anhydride 

method.  However, the advantage of this method lies in its temperature independence 

resulting in no incidence of side product formation when using simple alkyl acids, 

whereas successful pyridine/anhydride reactions require carefully control of the reaction 

temperature and anhydride quench. 
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Table 6: Synthesis of acylated tubulysin analogs by DCC activation of simple acids 

(DCC pre-activation method). 

 

Figure 42: Cyclized lactams resulting from modification to the DCC pre-activation 

method. 

 Abnormal reactivity has occurred upon modification of the DCC pre-activation 

method with sterically demanding acids.  Acylation of 12 with pivalic acid was attempted 

in order to probe the steric limitations at the tubulysin binding pocket in tubulin.  

Following reaction setup under the standard DCC pre-activation conditions followed by 

heating to 45 °C, no reaction progression had been made, so additional pivalic acid (50 
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equivalents) and DCC (25 equivalents) were combined with catalytic DMAP in a 

separate container, and the resulting mixture was added to the reaction solution after a 

relatively quick 15 minute activation.  When still no progress had been made, the 

reaction was concentrated, taken up in DMF, and heated to 80 °C.  After an additional 

36 hours reaction time, the starting material was consumed and a new ninhydrin active 

spot formed as shown by TLC.  Low resolution MS of the crude reaction gave a 

predominant mass peak correlating with the cyclized lactam 151 (Figure 42) without a 

peak corresponding to pivalate acylation.  The lack of acylation in light of the successful 

production of the pivalic amide 109 and O-acylated products 149 and 150 is likely 

caused by the inability of 12 to overcome the additional steric bulk of the activated pivalic 

acid together with the lower nucleophilicity of the tubuvaline hydroxyl.  Reactivity was 

instead dictated by activation of the tubuphenylalanine carboxylate in combination with 

increased energy supplied from reaction heating, resulting in intramolecular cyclization 

to the lactam 151. 

Synthesis of Affinity Labels Modeled after Tubulysin U (11)  

 Acylation of tubulysin V (12) with various acetate mimics affords the opportunity to 

synthesize molecules with a purpose beyond their use in further establishing SAR.  By 

attaching electrophilic acyl groups at the hydroxyl group of 12, structurally homologous 

analogs to 11 have the chance of creating a covalent bond with nucleophilic moieties 

within the tubulin binding pocket.  These types of compounds are known as affinity 

labels and function as active site directed irreversible inhibitors.  Covalently bound 

affinity labels that very closely mimic the structural elements of the substrate of interest 

can then be used to provide data critical to understanding the substrate binding mode 

through important interactions within the active site.  This in turn provides insights into 
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deliberate structural changes to the substrate which may increase potency through 

improved binding.  This data may be provided by digestion of the bound substrate-target 

complex followed by analysis of the resulting fragments, or more directly by providing an 

X-ray crystal structure of the complex.  The advantage of a crystal structure is in 

obtaining a 3D picture of important binding interactions, and with modern computing 

software, the ability to quickly predict the effect of structural modifications before new 

analogs are made in the lab.  Productive use of these compounds depends on 

sufficiently nucleophilic groups present at the tubulysin binding site and a low level of 

promiscuity with other nucleophilic areas on tubulin.  Synthesis of the two affinity labels 

152 and 153 follow classic affinity label design by installation of a chloromethyl ketone 

and a Michael acceptor as an α,β-unsaturated carbonyl (Table 6). 

 Syntheses of the two affinity labels 152 and 153 were at first run under the 

standard DCC pre-activation conditions, with the acylation using chloroacetic acid 

attempted first.  Since no progress had occurred after 48 hours of reaction time, 

additional acid, DCC, and DMAP were added to the reaction solution following a quick 

pre-activation in the same manner as pivalic acid (above).  Consideration was given to 

the previously seen cyclization of 12 to lactam 151 when addition reagents were added, 

but it was reasoned that this same reactivity would not occur if the reaction was not 

heated.  After an additional 30 hours, low resolution MS analysis showed that the 

starting material had been consumed and the mass peak associated with 152 had been 

formed, but without cyclization at the carboxylate.  The success of this reaction is in 

contrast to the previously attempted syntheses of halogenated tubulysin analogs (Table 

4), and may represent an alternative method to generate these compounds. 

 In addition to its use as an affinity label functioning as a Michael acceptor, an 



 

 128 

acrylic acid based analog of 11 was envisioned to also survey the effect of acetate 

replacement with an α,β-unsaturated carbonyl while minimizing steric debt.  Reaction 

progress was slow under the standard DCC pre-activation conditions, with starting 

material remaining according to TLC and low resolution MS analysis after 78 hours.  As 

was the case in the synthesis of 151 and 152, a large excess of acid and DCC were 

added to a separate CH2Cl2 solution with catalytic DMAP.  After a quick activation, this 

reagent mixture was transferred to the reaction, and complete consumption of starting 

materials was confirmed after an additional 36 hours.  TLC analysis of the crude reaction 

revealed the presence of two ninhydrin active compounds, and low resolution MS gave 

peaks representative of 153 and lactam 154.  This indicates that both 153 and the 

intramolecular cyclized analog 154 were formed under these conditions, despite the lack 

of heat.  The significantly different outcomes from these three reactions in which nearly 

the same modification to the standard procedure was employed suggests that DCC 

activation and reactivity of the tubuphenylalanine carboxylate is variable based upon 

subtle changes in reaction environment.  HPLC purification, data acquisition, and 

biological evaluation of compounds 151–154 are currently underway. 

Conclusion 

 Synthesis of oxygen based tubulysin analogs with various functional groups 

appended to the tubuvaline hydroxyl group have been investigated in order to generate 

a more complete understanding of the SAR at this position based upon changes in 

hydrogen bonding, polarity, and space filling properties.  The materials necessary for this 

work are provided by improvements to the construction of the α-keto thiazole tubuvaline 

residue 125, and a change in the conditions to form the tubuvaline-tubuphenylalanine 

bond which eliminates the occurrence of a wasteful N-acylurea side product.  Due to the 



 

 129 

failure in late-stage alkylation of tubulysin intermediates, an indirect route to the methyl 

ether analog was established by regioselective methylation of an azido protected 

isoleucine-tubuvaline fragment 139.  Biochemical evaluation of the methoxymethyl ether 

142 and other alkylated tubulysins will provide insight into the effect of carbonyl removal 

at the crucial acetate of 11. 

 Conditions to acylate the tubuvaline hydroxyl group have also been heavily 

investigated.  Reevaluation of previously established reaction conditions to produce 11 

received attention to reduce intramolecular cyclization, and a newly developed method 

based upon DCC activation of simple acids was successfully implemented.  Attempts to 

acylate the tubuvaline hydroxyl to produce halogenated, carbonate, or carbamate 

functional groups resulted in nonproductive or degradative reactions when performed 

under established conditions.  General trends in the reactivity of the hydroxyl group of 

tubuvaline and the carboxylate of tubuphenylalanine were strengthened by observations 

from these reactions: 1) Acylation of the hydroxyl group is more susceptible to steric 

effects when compared to the amino compounds due to its reduced nucleophilicity, and 

2) electrophilic activation of the tubuphenylalanine carboxylate has the potential to 

undergo intramolecular cyclization to a γ-lactam under conditions with sufficient energy 

based on reaction temperature.  In addition to the new O-tubulysin analogs subjection to 

antiproliferative assays against MDR cancer cell lines leading to a more robust SAR, 

compounds 152 and 153 have the potential to act as affinity labels for greater 

understanding of the interactions important to tubulysin-tubulin binding. 
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Chapter 4 Experimentals: 

(R)-tert-Butyl 1-(4-(hydroxymethyl)thiazol-2-yl)-4-methyl-1-oxopentan-3-

ylcarbamate (123).  The same procedure to synthesize 88 was followed using 42 (298 

mg, 0.526 mmol) and purification by flash chromatography (50% EtOAc:hexanes ) to 

afford the title compound (164 mg, 95% yield) as a clear oil.  Rf = 0.3 (SiO2, 50% 

EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.56 (s, 1H), 4.92 (d, J = 8.5 Hz, 1H), 

4.81 (s, 2H), 4.04–3.91 (m, 1H), 3.22 (d, J = 5.4 Hz, 2H), 3.39–2.94 (ovlp m, 1H), 1.93–

1.74 (m, 1H), 1.34 (s, 9H), 0.96–0.88 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 192.6, 

167.0, 159.0, 155.7, 122.3, 79.3, 61.0, 53.3, 41.4, 32.3, 28.4, 19.4, 18.4; HRMS calcd for 

C15H25N2O4S+ [M + H+] 329.1535, found 329.1528. 

(R)-tert-Butyl 1-(4-formylthiazol-2-yl)-4-methyl-1-oxopentan-3-ylcarbamate (124).  

The same procedure to synthesize S3 was followed using 123 (228 mg, 0.695 mmol) 

and purification by flash chromatography (20% EtOAc:hexanes) to afford the title 

compound (205 mg, 90% yield) as a white solid.  Rf = 0.25 (SiO2, 20% EtOAc:hexanes); 

1H NMR (400 MHz, CDCl3) δ 10.10 (s, 1H), 8.44 (s, 1H), 4.77 (d, J = 9.1 Hz, 1H), 4.09–

3.99 (m, 1H), 3.38 (dd, J = 15.1, 3.9 Hz, 1H), 3.22 (dd, J = 15.0, 8.2 Hz, 1H), 1.98–1.83 

(m, 1H), 1.36 (s, 9H), 0.99 (d, J = 1.7 Hz, 3H), 0.97 (d, J = 1.7 Hz, 3H); 13C NMR (101 

MHz, CDCl3) δ 192.5, 184.9, 168.1, 155.9, 155.7, 132.3, 79.4, 53.3, 41.8, 32.4, 28.4, 

28.4, 19.5, 18.5; HRMS calcd for C15H22N2O4SNa+ [M + Na+] 349.1193, found 349.1182. 

(R)-2-(3-(tert-Butoxycarbonylamino)-4-methylpentanoyl)thiazole-4-carboxylic acid 

(125).  The same procedure to synthesize 89 was followed using 124 (24.6 mg, 0.0754 

mmol) and purification by flash chromatography (10% MeOH:CH2Cl2 with 0.5% AcOH) to 

afford the title compound (24.3 mg, 94% yield) as a white solid.  Rf = 0.2 (SiO2, 10% 
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MeOH:CH2Cl2 with 0.5% AcOH); 1H and 13C NMR analysis showed a 1:1 mixture of 

rotamers using CDCl3; 1H NMR (400 MHz, CDCl3) δ 8.51 (s, 1H), 8.33 (s, 1H), 6.75 (d, J 

= 9.5 Hz, 1H), 4.83 (d, J = 9.5 Hz, 1H), 4.18–3.88 (m, 3H), 3.37 (dd, J = 15.2, 4.6 Hz, 

1H), 3.26 (dd, J = 15.2, 7.7 Hz, 1H), 2.78 (d, J = 12.7 Hz, 1H), 1.97–1.78 (m, 2H), 1.46 

(s, 9H), 1.38 (s, 9H), 1.05–0.99 (m, 6H), 0.97 (d, J = 6.6 Hz, 6H); 13C NMR (101 MHz, 

CDCl3) δ 193.4, 192.3, 167.6, 167.3, 163.1, 162.8, 158.5, 155.9, 148.9, 148.2, 134.4, 

134.0, 81.7, 79.8, 55.6, 53.2, 42.3, 41.0, 33.4, 32.3, 28.4 (2 C), 19.5 (2 C), 18.3 (2 C); 1H 

and 13C NMR analysis showed a single rotamer using d4-MeOD; 1H NMR (400 MHz, 

MeOD) δ 8.67 (s, 1H), 4.02–3.88 (m, 1H), 3.34–3.15 (ovlp m, 2H), 1.91–1.76 (m, 1H), 

1.33 (s, 9H), 0.97 (t, J = 7.0 Hz, 6H); 13C NMR (101 MHz, MeOD) δ 193.7, 168.9, 163.8, 

158.1, 150.0, 135.2, 79.8, 54.4, 42.3, 34.2, 28.7, 19.6, 18.5; HRMS calcd for 

C15H21N2O5S- [M - H] 341.1177, found 341.1175. 

Dipeptide 127.  The same procedure to synthesize 93 was followed using 125 (250 mg, 

0.730mmol) and purification by flash chromatography (20% EtOAc:hexanes) to afford 

the title compound (269 mg, 59% yield) as a clear oil that solidified to a white solid upon 

standing.  Rf = 0.4 (SiO2, 30% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 8.32 (s, 

1H), 7.37–7.16 (m, 10H), 5.10 (d, J = 12.4 Hz, 1H), 5.06 (d, J = 12.5 Hz, 1H), 4.80 (d, J 

= 9.3 Hz, 1H), 4.52–4.40 (m, 1H), 4.17–4.04 (m, 1H), 3.31–3.12 (m, 2H), 2.98 (dd, J = 

13.6, 6.0 Hz, 1H), 2.89 (dd, J = 13.9, 6.7 Hz, 1H), 2.75–2.63 (m, 1H), 2.06 (ddd, J = 

13.8, 9.3, 4.2 Hz, 1H), 1.96–1.81 (m, 1H), 1.75–1.61 (m, 2H), 1.39 (s, 9H), 1.20 (d, J = 

7.1 Hz, 3H), 0.95 (t, J = 6.9 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ 192.1, 176.7, 176.1, 

166.2, 160.0, 155.6, 151.7, 137.6, 136.1, 129.7, 129.6, 128.6, 128.2, 128.1, 126.7, 79.4, 

66.5, 53.3, 48.8, 42.0, 41.3, 37.6, 36.8, 31.9, 28.4, 19.6, 18.3, 17.8; HRMS calcd for 

C34H44N3O6S+ [M + H+] 622.2951, found 622.2971. 
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(2S,3S)-2-Azido-3-methylpentanoic acid (137).  (Goddard-Borger and Stick 2007) A 

solution of Boc-L-isoleucine (0.998 g, 4.31 mmol, 1 equiv) in HCl (4.0 M in dioxane, 15.0 

mL) was stirred at room temperature for 18 h, after which TLC (50% EtOAc:hexanes) of 

the resulting mixture showed complete consumption of starting material.  The reaction 

solution was concentrated under reduced pressure, and the resulting solid was dissolved 

in CH2Cl2 (5 mL) and concentrated under reduced pressure; this was repeated twice to 

afford the crude HCl salt as a white solid.  To the HCl salt in MeOH (22 mL) was added 

K2CO3 (1.19 g, 8.6 mmol, 2 equiv), CuSO4 (18 mg, 0.11 mmol, 0.026 equiv), and 

imidazole-1-sulfonyl azide hydrochloride (1.08 g, 5.17 mmol, 1.2 equiv, Goddard-Borger 

and Stick 2007) resulting in a bright blue solution with a white precipitate.  CAUTION: An 

addition/correction to the Goddard-Borger and Stick paper notes the explosive potential 

of imidazole-1-sulfonyl azide hydrochloride and should be referred to for safety 

recommendations (Goddard-Borger and Stick 2011).  After 44 h, TLC (5% MeOH:CH2Cl2 

with 0.5% AcOH) showed partial consumption of starting material, so additional K2CO3 

(0.42 g, 3.0 mmol, 0.7 equiv) was added, resulting in a green then grey reaction solution.  

After TLC showed complete consumption of starting material, the reaction was 

quenched with H2O (60 mL), extracted with EtOAc (3 x 50 mL), and the combined 

organic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure.  

Purification by flash chromatography (5% MeOH:CH2Cl2 with 0.5% AcOH), followed by 

washing the pooled fractions with saturated aqueous NaCl solution (3 x 30 mL) to 

remove AcOH, afforded the title compound (0.593 g, 87% yield) as an orange oil.  Rf = 

0.3 (SiO2 with KMnO4 stain, 5% MeOH:CH2Cl2 with 0.5% AcOH); 1H NMR of the product 

matched that previously reported (Lundquist, IV and Pelletier 2001). 

Dipeptide 139.  (Peltier et al. 2006) A solution of alcohol 86 (102 mg, 0.18 mmol, 1 
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equiv) in HCl (4.0 M in dioxane, 5.0 mL) was stirred at room temperature for 1 h, after 

which TLC (50% EtOAc:hexanes) showed complete consumption of starting material.  

The reaction solution was concentrated under reduced pressure, and the resulting solid 

was dissolved in CH2Cl2 (5 mL) and concentrated under reduced pressure; this was 

repeated twice to afford the crude HCl salt as a white solid.  Separately, to a solution of 

azide 137 (46 mg, 0.29 mmol, 1.6 equiv) in hexanes (12 mL) was added oxalyl chloride 

(0.11 mL, 1.3 mmol, 7.5 equiv) and DMF (22 µL, 0.29 mmol, 1.6 equiv) resulting in a 

white/yellow precipitate which slowly turned orange.  After 1 h, the mixture was filtered 

and the solution was concentrated under reduced pressure.  To a solution of the 

hydrochloride salt in CH2Cl2 (5 mL) at 0 °C was added DIPEA (0.16 mL, 0.90 mmol, 5 

equiv), followed by the acid chloride as a solution in CH2Cl2 (2 mL).  After 1.5 h, the 

resulting yellow solution was quenched with saturated aqueous NaCl (10 mL), the layers 

were separated, and the aqueous layer was extracted with EtOAc (2 x 15 mL).  The 

combined organic layers were dried (Na2SO4), filtered, and concentrated under reduced 

pressure.  Purification by flash chromatography (10–20% EtOAc:hexanes) afforded the 

title compound (71.2 mg, 65% yield over 2 steps) as an off white solid.  Rf = 0.25 (SiO2, 

20% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.73–7.63 (m, 4H), 7.45–7.31 (m, 

6H), 7.19 (s, 1H), 6.51 (d, J = 9.2 Hz, 1H), 5.03 (d, J = 4.3 Hz, 1H), 4.85 (s, 2H), 4.83–

4.76 (m, 1H), 4.01 (d, J = 3.7 Hz, 1H), 4.05–3.95 (ovlp m, 1H), 2.23–2.10 (m, 1H), 2.07–

1.96 (m, 1H), 1.93–1.71 (m, 2H), 1.50–1.22 (m, 3H), 1.10 (s, 9H), 1.14–1.05 (ovlp m, 

2H), 0.95 (d, J = 6.9 Hz, 6H), 0.91 (d, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

174.9, 170.7, 156.5, 135.6, 133.4, 129.9, 127.8, 113.6, 69.9, 68.9, 63.2, 51.7, 41.5, 38.6, 

32.0, 27.0, 24.3, 19.8, 19.4, 18.4, 16.1, 11.8; HRMS studies are ongoing. 

Dipeptide 140.  To a solution of 139 (43.8 mg, 0.072 mmol, 1 equiv) in THF (10 mL) at 0 
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°C was added NaH (60% dispersion in mineral oil, 9 mg, 0.2 mmol, 3 equiv) and the 

reaction was stirred for 1 h.  To the resulting light yellow solution was added MeI (5.4 µL, 

0.086 mmol, 1.2 equiv), and the reaction stirred while warming to room temperature 

overnight.  After 12 h, TLC (20% EtOAc:hexanes) showed complete consumption of 

starting material.  The reaction was quenched with saturated aqueous NaCl (15 mL) and 

the THF was removed under reduced pressure.  The aqueous mixture was diluted with 

H2O (5 mL) to dissolve the resulting solids and was extracted with Et2O (30 mL, then 2 x 

10 mL), and the combined organic layers were dried (Na2SO4), filtered, and 

concentrated under reduced pressure.  Purification by flash chromatography (10–20% 

EtOAc:hexanes) afforded the title compound (25.6 mg, 57% yield) as a clear oil/colorless 

semisolid.  Rf = 0.3 (SiO2, 20% EtOAc:hexanes); 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J 

= 6.6 Hz, 4H), 7.46–7.32 (m, 6H), 7.23 (s, 1H), 6.49 (d, J = 9.6 Hz, 1H), 4.87 (s, 2H), 

4.45 (dd, J = 10.0, 3.0 Hz, 1H), 4.20–4.10 (m, 1H), 3.89 (d, J = 4.2 Hz, 1H), 3.43 (s, 3H), 

2.18–2.05 (m, 1H), 1.99–1.68 (m, 4H), 1.54–1.38 (m, 1H), 1.11 (s, 9H), 1.06 (d, J = 7.0 

Hz, 3H), 0.91 (t, J = 7.3 Hz, 9H); 13C NMR (101 MHz, CDCl3) δ 173.9, 168.5, 156.9, 

135.7, 133.3, 129.9, 127.9, 114.0, 78.9, 70.4, 63.2, 58.6, 51.2, 40.1, 38.4, 32.1, 27.0, 

24.4, 19.4, 19.1, 18.3, 16.2, 11.7; HRMS calcd for C33H48N5O3SSi+ [M + H+] 622.3247, 

found 622.3238. 

Tubulysin V (12):  1H NMR (600 MHz, MeOD with NH4OAc) δ 8.01 (s, 1H), 7.27–7.18 

(m, 4H), 7.18–7.09 (m, 1H), 4.40–4.26 (m, 1H), 4.20 (d, J = 8.8 Hz, 1H), 4.08 (ddd, J = 

11.0, 5.9, 2.4 Hz, 1H), 3.03–2.98 (m, 1H), 2.97–2.88 (m, 2H), 2.79 (dd, J = 11.1, 2.7 Hz, 

1H), 2.54–2.45 (m, 1H), 2.26 (s, 3H), 2.25–2.18 (m, 1H), 2.12 (ddd, J = 13.7, 11.3, 2.3 

Hz, 1H), 2.03–1.96 (m, 1H), 1.89–1.54 (m, 10H), 1.32 (dd, J = 19.2, 15.2 Hz, 2H), 1.26–

1.17 (m, 1H), 1.14 (d, J = 7.1 Hz, 2H), 1.11 (dd, J = 7.8, 6.9 Hz, 1H), 0.98 (d, J = 6.8 Hz, 
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3H), 0.96 (d, J = 1.9 Hz, 3H), 0.94 (d, J = 1.8 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H); 13C NMR 

(151 MHz, MeOD with NH4OAc) δ 179.3, 179.1, 174.7, 174.0, 163.0, 157.7, 151.0, 

139.7, 130.6, 129.2, 127.3, 124.1, 70.2, 69.8, 59.6, 56.5, 52.6, 51.2, 44.4, 41.6, 40.9, 

40.1, 39.5, 37.5, 33.8, 31.3, 26.1, 25.9, 24.0, 23.5, 19.6, 19.2, 18.8, 16.2, 11.0. 

Tubulysin U (11):  1H NMR and HPLC spectra of the product matched those previously 

reported (Balasubramanian et al. 2009). 

Tetrapeptide 142.  To a solution of the tetrapeptide 128 (5.1 mg, 6.7 µmol, 1 equiv) in 

CH2Cl2 (5 mL) at 0 °C was added chloromethyl methyl ether (20 µL, 0.27 mmol, 40 

equiv) and DIPEA (50 µL, 0.29 mmol, 40 equiv).  After 2 h, TLC (5% MeOH:CH2Cl2) 

showed complete consumption of starting material, and the reaction was quenched with 

0.1 M aqueous HCl (5 mL) resulting in a biphasic mixture with a white precipitate.  The 

layers were separated, the aqueous layer was extracted with CH2Cl2 (2 x 5 mL), and the 

combined organic layers were washed with saturated aqueous NaCl (2 x 5 mL).  The 

resulting clear organic layer was dried (Na2SO4), filtered, and concentrated under 

reduced pressure.  The crude intermediate was brought forward without purification and 

subjected to the standard LiOH hydrolysis procedure.  Purification by HPLC (C18, 150 х 

10 mm, 10–50% MeCN/25 mM aqueous NH4OAc, pH 4.78 over 10 min, 90% MeCN/25 

mM aqueous NH4OAc, pH 4.78 for 5 min, 5 mL/min) afforded the title compound (0.52 

mg, 11% over 2 steps) as a white solid following grease removal following the procedure 

outlined for 100.  HPLC rt = 10.8 min; Rf = 0.2 (SiO2, 10% MeOH:CH2Cl2); NMR studies 

are ongoing; HRMS calcd for C37H58N5O7Si+ [M + H+] 716.4057, found 716.4051. 

Tetrapeptide 143.  1H NMR (400 MHz, D2O) δ 8.28 (d, J = 9.7 Hz, 1H), 7.96 (s, 1H), 

7.34–7.10 (m, 5H), 5.85 (d, J = 10.9 Hz, 1H), 4.96 (q, J = 6.8 Hz, 1H), 4.24 (d, J = 7.8 
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Hz, 1H), 4.01–3.91 (m, 1H), 3.87 (dd, J = 12.3, 2.7 Hz, 1H), 3.55 (d, J = 12.2 Hz, 1H), 

3.19–2.95 (m, 3H), 2.78 (s, 3H), 2.43–2.26 (m, 2H), 2.23 (s, 3H), 2.20–1.44 (m, 12H), 

1.28–1.17 (m, 1H), 1.14 (d, J = 6.9 Hz, 3H), 1.00 (d, J = 6.7 Hz, 3H), 0.92 (t, J = 5.8 Hz, 

9H); HPLC (C18, 250 х 10 mm, 0–20% MeCN/0.04% aqueous HCl over 2 min, 20% 

MeCN/0.04% aqueous HCl for 2 min, 20–90% MeCN/0.04% aqueous HCl over 35 min, 

90% MeCN/0.04% aqueous HCl for 5 min, 90–10% MeCN/0.04% aqueous HCl over 5 

min, 3 mL/min) rt = 21.3 min; low resolution MS calcd for C37H54N5O6Si+ [M + H+] 696.38, 

found 696.31. 

Standard Procedure for Tubulysin V (12) Acylation using Anhydrides in Pyridine: 

To a solution of 12 (1 equiv) in pyridine (0.035 M) at -20 °C was added the anhydride 

(100 equiv) and the solution was placed in a -20 °C freezer overnight.  After 24–48 h, 

TLC (10% MeOH:CH2Cl2, using an aliquot partitioned between 1.0 M aqueous HCl and 

EtOAc) showed complete consumption of starting material.  The reaction was poured 

directly into 1.0 M aqueous HCl (30 mL) and extracted with EtOAc (15 mL).  The layers 

were separated, and the aqueous layer was extracted with EtOAc (2 x 5 mL), and the 

combined organic layers were dried (Na2SO4), filtered, and concentrated under reduced 

pressure.  Purification by HPLC afforded the title compound. 

Standard Procedure for Tubulysin V (12) Acylation using DCC Activated Acids: 

To a solution of the acid (10 equiv) in CH2Cl2 (5 mL) at 0 °C was added DMAP (1 equiv) 

and DCC (5 equiv) and the reaction was stirred while warming to room temperature over 

4.5 h.  The resulting mixture was re-cooled to 0 °C and cannulated into a flask pre-

loaded with 12 (1 equiv) and the reaction stirred while warming to room temperature 

overnight.  After 12–48 h, TLC (10% MeOH:CH2Cl2) showed complete consumption of 
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starting material.  The reaction was concentrated under reduced pressure, the crude 

solid was mixed with MeCN (3 mL), and filtered through a plug of cotton.  The solution 

was concentrated under reduced pressure and purified by HPLC to afford the title 

compound. 

Tetrapeptide 144.  After subjecting 12 (5.9 mg, 8.8 µmol) and formic acetic anhydride 

(55 µL, 0.88 mmol, Krimen 1988) to the standard procedure for tubulysin V (12) acylation 

using anhydrides in pyridine, low resolution MS showed complete consumption of 

starting material after 24 h with exclusive production of the title compound following 

aqueous reaction workup.  During HPLC purification (C18, 150 х 10 mm, 32% MeCN/25 

mM aqueous NH4OAc, pH 4.78 for 10 min, 90% MeCN/25 mM aqueous NH4OAc, pH 

4.78 for 5 min, 5 mL/min), partial degradation back to 12 occurred, followed by full 

degradation of purified 144 back to 12 upon heated centrifugal evaporation of the HPLC 

fractions, as shown by 1H NMR, 13C NMR and low resolution MS.  HPLC rt = 9.2 min; Rf 

= 0.25 (SiO2, 10% MeOH:CH2Cl2); low resolution MS calcd for C36H54N5O7S+ [M + H+] 

700.37, found 700.21. 

Tetrapeptide 145.  After subjecting 12 (5.2 mg, 7.7 µmol) and benzoic anhydride (175 

µL, 0.77 mmol) to the standard procedure for tubulysin V (12) acylation using anhydrides 

in pyridine, TLC analysis showed complete consumption of starting material after 24 h.  

Following aqueous reaction workup using the standard protocol, the title compound was 

obtained as a mixture with 12 and the intramolecularly cyclized lactams of 145 and 12 

according to low resolution MS.  HPLC purification and structural characterization of 145 

are currently underway.  Low resolution MS calcd for C42H58N5O7S+ [M + H+] 776.41, 

found 776.24. 
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Tetrapeptide 146.  The title compound was obtained using 12 (4.8 mg, 7.1 µmol) and 

butyric anhydride (0.12 mL, 0.71 mmol) after 18 h following the standard procedure for 

tubulysin V (12) acylation using anhydrides in pyridine and after purification by HPLC 

(C18, 150 х 10 mm, 50% MeCN/25 mM aqueous NH4OAc, pH 4.78 for 10 min, 90% 

MeCN/25 mM aqueous NH4OAc, pH 4.78 for 5 min, 5 mL/min).  White solid (3.10 mg, 

58% yield); HPLC rt = 2.7 min; Rf = 0.35 (SiO2, 10% MeOH:CH2Cl2); 1H NMR (400 MHz, 

MeOD) δ 8.07 (s, 1H), 7.23 (d, J = 4.2 Hz, 4H), 7.19–7.11 (m, 1H), 5.92 (dd, J = 10.8, 

2.7 Hz, 1H), 4.41–4.29 (m, 1H), 4.21 (d, J = 8.4 Hz, 1H), 3.96 (ddd, J = 8.3, 5.2, 2.7 Hz, 

1H), 3.11 (d, J = 11.8 Hz, 1H), 3.05 (dd, J = 11.2, 2.6 Hz, 1H), 2.92 (d, J = 6.7 Hz, 2H), 

2.60–2.37 (ovlp m, 4H), 2.40 (s, 3H), 2.24 (ddd, J = 14.0, 10.9, 2.9 Hz, 1H), 2.18–2.08 

(m, 1H), 1.99 (ddd, J = 13.9, 9.7, 4.1 Hz, 1H), 1.93–1.53 (m, 11H), 1.48–1.34 (m, 1H), 

1.26–1.18 (m, 1H), 1.16 (d, J = 7.1 Hz, 3H), 1.02–0.88 (m, 15H); 13C NMR (101 MHz, 

MeOD) δ 174.2, 173.7, 173.4, 171.9, 162.7, 151.0, 139.7, 130.5, 129.3, 127.4, 124.9, 

71.2, 69.7, 59.6, 56.4, 52.0, 51.1, 44.0, 41.7, 39.1, 38.0, 37.6, 36.8, 33.8, 31.1, 25.9, 

25.4, 23.5, 22.4, 19.4, 19.3, 18.5, 16.2, 14.1, 11.1; HRMS calcd for C39H60N5O7S+ [M + 

H+] 742.4213, found 742.4198. 

Tetrapeptide 149.  The title compound was obtained using 12 (4.5 mg, 6.7 µmol), 

propionic acid (5 µL, 67 µmol), DMAP (1 mg, 8 µmol) and DCC (6.8 mg, 33 µmol) after 

48 h following the standard procedure for tubulysin V (12) acylation using DCC activated 

acids and after purification by HPLC (C18, 150 х 10 mm, 50% MeCN/25 mM aqueous 

NH4OAc, pH 4.78 for 10 min, 90% MeCN/25 mM aqueous NH4OAc, pH 4.78 for 5 min, 5 

mL/min).  White solid (4.3 mg, 89% yield); HPLC rt = 2.4 min; Rf = 0.3 (SiO2, 10% 

MeOH:CH2Cl2); 1H NMR (600 MHz, MeOD with NH4OAc) δ 8.07 (s, 1H), 7.23 (d, J = 4.2 

Hz, 4H), 7.18–7.12 (m, 1H), 5.92 (dd, J = 11.0, 2.5 Hz, 1H), 4.38–4.31 (m, 1H), 4.22 (d, 
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J = 8.3 Hz, 1H), 3.99–3.94 (m, 1H), 3.12 (d, J = 12.0 Hz, 1H), 3.05 (dd, J = 11.1, 2.6 Hz, 

1H), 2.92 (d, J = 6.8 Hz, 2H), 2.57–2.41 (m, 4H), 2.40 (s, 3H), 2.24 (ddd, J = 13.9, 11.2, 

2.7 Hz, 1H), 2.13 (ddd, J = 14.4, 11.9, 2.6 Hz, 1H), 2.00 (ddd, J = 13.8, 9.4, 4.2 Hz, 1H), 

1.91–1.53 (m, 9H), 1.45–1.36 (m, 1H), 1.24–1.18 (m, 1H), 1.18–1.12 (m, 6H), 0.99 (d, J 

= 6.7 Hz, 3H), 0.95 (d, J = 7.0 Hz, 6H), 0.92 (d, J = 7.4 Hz, 3H); 13C NMR (151 MHz, 

MeOD with NH4OAc) δ 182.3, 177.8, 175.0, 173.7, 173.4, 171.9, 162.7, 151.0, 139.7, 

130.5, 129.3, 127.3, 124.8, 71.2, 69.7, 59.6, 56.3, 52.0, 51.1, 44.1, 42.5, 41.8, 39.2, 

38.0, 37.6, 33.8, 31.1, 28.3, 25.9, 25.4, 23.5, 22.5, 19.5, 19.0, 18.6, 16.3, 11.1, 9.3; 

HRMS calcd for C38H58N5O7S+ [M + H+] 728.4057, found 728.4076. 

Tetrapeptide 150.  After subjecting 12 (4.8 mg, 7.1 µmol), isovaleric acid (7.9 µL, 71 

µmol), DMAP (0.9 mg, 7 µmol) and DCC (7.4 mg, 36 µmol) to the standard procedure for 

tubulysin V (12) acylation using DCC activated acids, TLC analysis showed complete 

consumption of starting material after 24 h and low resolution MS showed exclusive 

production of the title compound.  HPLC purification and structural characterization of 

150 are currently underway.  Low resolution MS calcd for C40H62N5O7S+ [M + H+] 756.44, 

found 756.52. 

Tetrapeptide 151.  Modification to the standard procedure for tubulysin V (12) acylation 

using DCC activated acids was performed with 12 (4.7 mg, 7.0 µmol), pivalic acid (7.1 

mg, 70 µmol), DMAP (0.85 mg, 7 µmol) and DCC (7.2 mg, 35 µmol): 

After 24 h, no reaction progress had occurred by low resolution MS, so the reaction was 

heated to 45 °C.  After an additional 24 h, no reaction progress had occurred by low 

resolution MS.  To a separate container with a solution of pivalic acid (36 mg, 50 equiv) 

in CH2Cl2 (1.5 mL) at 0 °C was added DMAP (1 mg, 1 equiv) and DCC (36 mg, 25 
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equiv), resulting immediately in a white precipitate.  After 15 min, to this mixture was 

added the heated 12 mixture. After an additional 30 h, no reaction progress had 

occurred by low resolution MS, so DMF (6 mL) was added to the reaction and the 

mixture was heated to 80 °C.  After an additional 36 h, TLC analysis showed complete 

consumption of starting material and low resolution MS showed exclusive production of 

the title compound.  HPLC purification and structural characterization of 151 are 

currently underway.  Low resolution MS calcd for C35H52N5O5S+ [M + H+] 654.37, found 

654. 

Tetrapeptide 152.  Modification to the standard procedure for tubulysin V (12) acylation 

using DCC activated acids was performed with 12 (5.2 mg, 7.7 µmol), chloroacetic acid 

(7.3 mg, 77 µmol), DMAP (0.94 mg, 7.7 µmol) and DCC (7.9 mg, 39 µmol): 

After 48 h, no reaction progress had occurred by TLC analysis.  To a separate container 

with a solution of chloroacetic acid (37 mg, 50 equiv) in CH2Cl2 (3 mL) at 0 °C was 

added DMAP (1 mg, 1 equiv) and DCC (40 mg, 25 equiv), resulting in a white precipitate 

and effervescence to immediately form.  After 15 min, to this mixture was added the 12 

mixture.  After an additional 30 h, TLC analysis showed complete consumption of 

starting material and low resolution MS showed exclusive production of the title 

compound.  HPLC purification and structural characterization of 152 are currently 

underway.  Low resolution MS calcd for C37H55ClN5O7S+ [M + H+] 748.35, found 748.42. 

Tetrapeptides 153 and 154.  Modification to the standard procedure for tubulysin V (12) 

acylation using DCC activated acids was performed with 12 (6.5 mg, 9.7 µmol), acrylic 

acid (6.6 µL, 97 µmol), DMAP (1.2 mg, 9.7 µmol) and DCC (9.9 mg, 48 µmol): 

After 72 h, partial reaction progress had occurred by low resolution MS, which showed 
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peaks corresponding to the starting material and 153 exclusively.  To a separate flask 

with a solution of acrylic acid (6.6 µL, 10 equiv) in CH2Cl2 (1.5 mL) at 0 °C was added 

DMAP (1 mg, 1 equiv) and DCC (9.9 mg, 5 equiv), and after 15 min, to this solution was 

added the 12 mixture.  After an additional 36 h, TLC analysis showed complete 

consumption of starting material and low resolution MS showed production of the title 

compounds.  HPLC purification and structural characterization of 153 and 154 are 

currently underway.  Low resolution MS calcd for C38H56N5O7S+ [153 + H+] 726.39, found 

726.47; low resolution MS calcd for C38H54N5O6S+ [154 + H+] 708.38, found 708. 
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Chapter 5: 

Overview of Current and Future Studies Associated with Synthesis and Biochemical 

Evaluation of Stabilized Tubulysin Analogs 

Review and Discussion of the Synthetic Efforts Associated with NTubulysin Analogs 

 Tubulysins are antimitotic natural products with potent antiproliferative activity 

against multidrug-resistant cancer cells, with the most cytotoxic members containing a 

crucial acetate.  Application of these molecules as treatments of MDR cancers is 

important since the current standards of therapy are ineffective in these cases, but the 

hydrolytic instability of the important acetate may diminish the effectiveness of this 

pharmacophore.  The study presented here aimed to synthesize and evaluate stabilized 

tubulysin analogs which mimic the tubuvaline acetate, and in doing so supplement the 

known SAR at this position.  Nitrogen based functional group replacements of the 

tubuvaline oxygen received the most attention, where syntheses of the two analogs 

which are directly comparable to tubulysin V and U (12 and 11) by heteroatom exchange 

were most crucial to fairly judge the effect of this replacement (36 and 37, Figure 43).  

Synthesis of the other nitrogen based functional groups presented here will provide for a 

more robust SAR according to changes in polarity, hydrogen bonding, space filling, and 

aromaticity within the tubulin binding pocket, as evaluated by changes in cytotoxicity. 
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Figure 43: Comparison of heteroatom exchange in tubulysins/Ntubulysins V and U. 

With the other three amino acid residues (38, 39, and 41, Figure 8) of 36 

available commercially or through established syntheses, initially synthetic work focused 

on regio- and diastereoselective nitrogen installation at Ntubuvaline (40).  According to 

an established route to a crucial α-keto thiazole 42, the syntheses of thiazole 45 and 

Weinreb amide 44 starting materials were reevaluated.  Operational improvements to 

the synthesis of 45 were made through fewer instances of chromatography, reaction 

scalability, and replacement of a DIBAL-H reduction with in situ generated LiBH4 (Figure 

11).  A low yielding bis-Boc protection of 44 (Raghavan et al. 2008) was avoided by first 

deprotonating 44 with a sacrificial base during the thiazole coupling, which led to 

formation of the ketone 42 with a nearly stoichiometric amount of the lithiated thiazole 

(Figure 44).  Following a stereoselective reduction of 44, a Mitsunobu reaction or 

hydroxyl group activation/nucleophilic displacement was envisioned to properly install 

the key nitrogen; unfortunately, intramolecular cyclization (57) precluded product 

formation and forced investigation into alternative methods. 
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Figure 44: First generation synthesis to Ntubuvaline. 

 Since the new goal towards synthesis of the Ntubuvaline fragment was to avoid the 

intramolecular cyclization seen with α-thiazole activation of 55, nitrogen pre-installation 

was attempted by alternating to a nitrile electrophile (Figure 45).  Synthesis of the Boc 

protected nitrile 58 led to the same cyclization seen under Mitsunobu conditions, so 

phthalimide protection was used instead to promote reversible cyclization.  Undesired 

side product formation occurred when a reversible phthalimide cyclized intermediate was 

trapped in the presence of nucleophilic cyanide (69, Figure 45), leading to the conclusion 

that cyclization was inevitable when using oxygen containing protecting groups.  As 

predicted, dibenzyl protection led cleanly to the desired nitrile 72.  Arylation of 72 and in 

situ reduction of the resulting imine led to regioselective nitrogen installation, but low 

diastereoselectivity, poor separation of the product mixture 74, the necessity for early N-

functionalization made this route unnecessarily problematic. 
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Figure 45: Second generation synthesis to Ntubuvaline. 

 With regioselective nitrogen installation established, the next focus was on 

controlling the stereoselectivity of this transformation without the previously seen 

cyclization.  Since the absence of a carbonyl at the benzyl protecting group negates the 

possibility for intramolecular cyclization as demonstrated by the synthesis of nitrile 72, a 

Mitsunobu reaction following the diastereoselective reduction of ketone 79 became the 

premier strategy.  Under the nitrile arylation conditions, hydrolysis of the in situ imine 

was attempted but led exclusively to retro-Michael products 80 and Bn2NH, presumably 

through the desired product 79.  This paradigm was reproducible for both arylation of the 

Weinreb amide 81 and synthesis of aldehyde 82 as well.  These experiments made clear 

that dibenzyl protection is susceptible to elimination when positioned β to a carbonyl, 

and is therefore not usable for diastereoselective production of 40. 
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Figure 46: Third generation synthesis to Ntubuvaline. 

 In spite of the consistent cyclization problems observed under the first generation 

synthesis to 40, extensive laboratory research and literature survey eventually led to a 

successful Mitsunobu reaction using phthalimide as the nitrogen source, which 

simultaneously protects the amine for later deprotection (Figure 24).  After extensive 

survey of various classic conditions to perform silyl ether deprotections and oxidations of 

allylic alcohols, TBDPS deprotection using TBAF and MnO2 oxidation of the resulting 

alcohol complimented the previously reported finishing steps to improve overall yield of 

the Ntubuvaline fragment 89 (Figure 24). 

 When established conditions for coupling of the Ntubulysin amino acid residues 

caused N-acylurea side product formation that poisoned the desired dipeptide product, 

simple mixed anhydride activation of Ntubuvaline fragment 89 was instead employed 

(Figure 25).  This modification improved reaction yield and purification by avoiding side 

product formation.  Subsequent peptide couplings using the HATU coupling reagent 

gave the bis-protected tetrapeptide 98 (Figure 27) as a common intermediate to the 

Ntubulysin analogs. 

 Following smooth phthalimide deprotection of 98 to 100 (Figure 28), the benzyl 

ester deprotection of 100 caused full material degradation under the basic hydrolysis 
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conditions which had previously supplied 12 (Balasubramanian et al. 2009).  

Alternatively, by removing the 98 benzyl ester first, phthalimide base sensitivity became 

a factor by leading to partial hydrolysis of the heterocycle (101).  Subjecting this 

intermediate to comparable conditions used successfully to generate 100 resulted in 

complete molecule degradation.  Observing the lowered stability of 36 and its precursors 

under conditions which were amenable to naturally isolated tubulysin analogs, such as 

tubulysin V (12), weakens the hypothesis that nitrogen containing Ntubulysin analogs will 

serve as stabilized alternatives to oxygen containing tubulysins. 

 Since the standard conditions for benzyl ester deprotection of the above 

intermediates resulted in material destruction and milder alternative methods for this 

transformation were non-productive, a compromise using intermediates insensitive to 

basic hydrolysis became necessary (Figure 47).  By partially opening the phthalimide 

ring of 98 with addition of pyrrolidine, a reversal of reactivity occurs where this new 

functional group remains stable under basic conditions.  Subsequent removal of the 

benzyl ester runs smoothly under buffered LiOH hydrolysis, resulting in minimal 

hydrolysis of pyrrolidine.  Reclosure of the phthalimide ring is possible under heated 

acidic conditions to furnish 102.  Successful phthalimide ring opening and closing of 98 

required harser versions of the transformations previously reported in other phthalimide 

based molecules (Astleford and Weigel 1991), which provides evidence of significant 

steric bulk at the amino position of 36.  As predicted, the closed phthalimide ring was 

cleaved under less harsh conditions, where minimal heating in methanolic hydrazine 

produced the target molecule 36 with minimal material degradation.  Along with 

providing a route to 36, this route supplies Ntubulysin analogs with benzamide-based 

functional groups which will provide insight into the effect of conformationally free 
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aromaticity at this position. 

 

Figure 47: Synthesis of amine 36 under modified deprotection conditions. 

 In contrast to the O-acylated tubulysins and the amino compounds described 

above, N-acylated tubulysin intermediates are resilient to the basic hydrolysis conditions 

used to cleave the benzyl ester, which supported use of a common late-stage 

intermediate 100.  Common acylating reagents provided acetamide and carbamate 

based modifications to the free amine of 100, while synthetically derived CDI-based 

reagents provided urea functional groups.  Slower reactivity was seen at higher 

temperatures when the precursor to the dimethyl urea analog 113 was synthesized, 

indicating the effect that steric hindrance has at this position. 

Following acylation, these intermediates were subjected to hydrolysis, providing 

compounds which will support a diverse functional group SAR at this position.  This non-

destructive benzyl deprotection of the N-acylated compounds constitutes a dichotomy 

with regards to the stability of Ntubulysin intermediates.  Whereas 12 is stable under 

basic hydrolysis, 36 is unstable, resulting in degradation (Figure 28).  On the other hand, 

the acylated analogs of 36 are stable under these same conditions, whereas the acetate 

of 11 is cleaved.  This dependence on stability is important, since it confirms the 

hypothesis that N-acylated analogs of naturally isolated tubulysins are more stable, but 

with the caveat that the free amine is more prone to degradation. 
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 The synthetic work presented here has provided compounds 36 and 37 for direct 

comparison with tubulysin analogs V and U (12 and 11), where any changes in biological 

activity can be attributed to the singular modification of the tubuvaline heteroatom.  

Limitations of steric bulk at the tubulysin-tubulin binding site will be tested to its extremes 

with the pivalamide 109.  Replacement of the acetamide with its trifluoromethyl analog 

110 will evaluate the use of this bioisostere.  Although similar in their steric bulk, the 

methyl carbamate 111 and ureas 112 and 113 will evaluate the nuances of H-bonding 

and polarity at this position in the binding pocket.  Finally, the benzamides 101, 102, and 

108 will test an element of conformationally-free aromaticity that has not been present 

before in tubulysin analogs.  All put together, the biological activity of these 10 Ntubulysin 

analogs will support a robust initial SAR of tubulysins with nitrogen-based functional 

groups on Ntubuvaline. 

Review and Discussion of the Synthetic Efforts Associated with Tubulysin Analogs 

In conjunction with the use of Ntubulysin analogs to survey the effect that 

heteroatom exchange has at the crucial acetate, oxygen containing analogs also serve 

an important role in gauging the role of the acetate carbonyl and methyl groups.  With 

this information, a full understanding of the acetate pharmacophore will be available to 

define the SAR at this position and influence the types and limitations to future 

modifications.  Previous work showing retention of potency with replacement of the 

acetate with a cyclized methylene (27, Figure 27, Shibue et al. 2010) gives evidence that 

the carbonyl may not be essential for bioactivity. 

Generating the materials necessary for oxygen containing analogs of 11 and 12 

prompted reevaluation of the established synthetic methods towards these molecules in 

light of the success producing the precursors to 36.  These modifications built upon the 
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previously established methods by more than doubling the overall yield in the final three 

functional group transformations to the tubuvaline fragment 125 (Figure 35).  

Unexpected N-acylurea side product formation during the dipeptide coupling was 

avoided under the same protocol applied to Ntubuvaline coupling (Figure 36). 

 Alkylation of late stage intermediates to 12 into simple ether and N,O-acetal 

analogs was not straight forward and required addendums to expected reactivity.  The 

singular successful alkylation of 12 was by installation of a methoxymethyl ether (142, 

Figure 40); the activity of this compounds will be a commentary on the effect that polarity 

and hydrogen bonding have on tubulin binding at this position.  Despite the well 

established methods to selectively O-alkylate complex natural products, direct 

methylation of late stage tubulysin analogs were not productive, so a less direct route 

was necessary.  A strategy using an azido protected isoleucine-tubuvaline dipeptide 

gave regioselective methylation under non-specialized conditions as confirmed by 

analysis of the 1H NMR spectra of 139 and 140 (Figure 38).  Selective methylation gives 

additional evidence of the highly steric environment at the tubuvaline amide, while 

preferential reactivity at the α-thiazole position is in spite of the observed steric 

hindrance in the Ntubulysin intermediates.  Established conditions to generate the full 

methyl ether tetrapeptide should be performed to finish this molecule. 

 Marked differences in antiproliferative activity between 11 and 12 exemplifies the 

importance of an acetate at the α-thiazole position, so scanning different hydroxyl group 

acylations was of interest to further understand the effect of this modification.  By 

repeating the reported procedure to acetylate 12 in preparation for generalized acylation, 

lactamization of the tubuphenylalanine residue (143, Figure 41) occurred with more than 

half of the product when the reaction was performed at room temperature.  Lacking a 
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method to preferentially open the lactam without disturbing the newly formed ester, 

methodology work was undertaken and found that lowering reaction temperature 

eliminated intramolecular cyclization while still providing acylation.  During synthesis of 

other ester derivatives under the same protocol, non-hydrolyzed anhydride co-extracted 

with the product mixture caused partial intramolecular cyclization after reaction quench 

as predicted by the observation of intramolecular cyclization at room temperature.  

Conditions for destruction of the excess anhydride during aqueous quench will 

supplement the general utility of this protocol. 

 Analogs of 11 with halogenation at the key acetate are predicted to test the viability 

of these modifications as bioisosteres and the effect that increased acylation of tubulin 

has on bioactivity.  As described above for the Ntubulysin analogs, carbonate and 

carbamate replacement of the acetate will survey polarity and hydrogen bonding at the 

acetate binding pocket within tubulin-tubulysin active site.  All efforts to generate these 

molecules under the established conditions and modifications to these conditions to 

accommodate the observed reactivity were unsuccessful (Figure 48).  Considering the 

successful modification of the nitrogen containing tubulysin intermediates with these 

same acyl groups, the lack of nucleophilicity typically seen with alcohols when compared 

to amines clearly runs true in tubulysin synthesis. 
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Figure 48: Failed syntheses of acylated analogs of ester 11. 

 The issues described above led to development of an alternative method for 

acylation of 12.  By DCC pre-activation of acids with simple alkyl chains prior to their 

reaction with 12, full conversion to the desired products was possible (Table 6).  This 

more operationally involved process offers the advantage of a lowered incidence of side 

product formation under less strict adherence to variable reaction conditions such as 

reaction temperature and aqueous quench.  Acylation of 12 by DCC pre-activation of 

sterically hindered alkyl groups or non-alkyl functional groups required modification to 

the standard paradigm, where excess acid was added following a quick pre-activation 

with DCC.  Pivalic acid was non-reactive with the hydroxyl group of 12, and instead 

underwent intramolecular cyclization to give the lactam 151 upon heating.  Chloroacetic 

acid was exclusively productive for the desired product when no productivity had 

occurred following the standard procedure, while acrylic acid was slowly productive for 

product before excess reagents were added but underwent cyclization at room 

temperature following their addition.  The significantly different outcome from these three 

reactions, in which nearly the same modification to the standard procedure was 

employed, suggests that DCC activation and reactivity of the tubuphenylalanine 

carboxylate is variable based upon subtle changes in reaction environment.   

 Comparing the reactions presented above pertaining to manipulation of the α-
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thiazole position of tubuvaline residues, reactivity is clearly dependent on steric 

interactions.  In cases of O-acylation, the reactions run well until a hindered substrate is 

to be added, wherein no acylation occurs (see DCC pre-activated pivalic acid).  With 

consideration to N-acylation, the increased nucleophilicity of the amine outweighs any 

steric debts that must be paid with bulkier substrates.  Thus, there is a clear point when 

the steric debt of the added substrate outweighs the nucleophilicity of the heteroatom at 

this position.  Alternatively, when phthalimide based functional groups are appended to 

Ntubuvaline, the steric environment at this position requires harsher reaction conditions 

than usually necessary for these types of transformations.  From these observations, a 

general paradigm can be established with consideration to the effect that sterics play on 

reactivity at the α-thiazole position: Manipulation of amino intermediates is controlled by 

the sterics of parent molecule, whereas the alcohol intermediates are controlled by the 

sterics of the substrate to be added. 

Future Studies, Project Directions 

The future goals for this project will be based on the outcome of ongoing 

biochemical evaluation.  The synthetic endeavors presented here are unique in being 

the first to replace the hydroxyl group of the tubuvaline residue with a nitrogen, and the 

impact of this change on antiproliferative activity is still in question.  A fair hypothesis 

predicts that these compounds will retain at least partial activity since heteroatom 

exchange is a staple of medicinal chemistry and has been used widely in order to 

increase potency and change pharmacokinetic properties.  By comparing the relative 

activity of these compounds with tubulysins with established cytotoxicity, a new tool will 

be available for the understanding of tubulin polymerization inhibition by tubulysins and 

general SAR at the α-thiazole position.  New work is expected to build upon this SAR for 
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a greater understanding of the important interactions at this position and lead to 

identification of an analog suitable for in vivo studies. 

Biochemical evaluation of these tubulysin analogs will be performed by our 

collaborator at the NIH, Dr. Dan L. Sackett.  Antiproliferative activity will be determined 

initially in drug-sensitive 1A9 human ovarian carcinoma cells and MCF-7 human breast 

cancer cells, both of which have drug-sensitive and drug-resistant sublines, and have 

been used by our lab as standard antiproliferative assays.  Tubulin polymerization 

inhibition will be performed by observing the in vitro inhibition of purified tubulin 

polymerization.  A hemisaterlin analog, HTI-286, is used as a positive control in these 

assays since it has close structural homology to tubulysins and also binds to the peptide 

site of the Vinca alkaloid domain. 

Compounds with promising antiproliferative activity in drug-sensitive 1A9 and 

MDF-7 cells, generally in the 0.1–100 nM (IC50 value) range, will be tested against 

additional drug-resistant cell lines.  Resistance in MCF-7/Tax400 cells is a result of P-

glycoprotein (P-gp) over expression (Giannakakou et al. 1997), whereas additional 1A9 

sublines with β-tubulin mutations confer drug resistance; activity against these cells will 

be examined with the requisitely potent compounds.  Preliminary data from the Fecik 

and Sackett labs has established that tubulysin analogs retain antiproliferative activity 

against cells with both mechanisms of drug resistance (unpublished results).  Results 

from these secondary assays will determine if select analogs warrant further biochemical 

evaluation.   

Upon conformation of the affinity probes 152 and 153 antiproliferative activity in 

the primary assays described above, covalent modification of β-tubulin by these agents 
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will need to be established.  Unlike non-covalent inhibitors which establish a perpetual 

equilibrium between bound and unbound states, covalent inhibition is permanent and 

time-dependent.  Experiments which measure compound activity as a function of time 

will therefore determine if covalent inhibition is occurring.  The permanence of bound 

substrate will also preclude displacement by other substrates which bind to this site.  

Hence, use of a radio-labeled substrate established to bind in the same site of tubulysins 

(such as HTI-286) will not displace any bound affinity label and will show the same 

signal regardless of increased substrate concentration. 

  Once covalent inhibition is confirmed, collaboration with an X-ray 

crystallographer will then become necessary to implement the probes for their intended 

purpose.  Several groups are involved in this sort of work within the University of 

Minnesota; however, previous studies with other tubulin binding drugs such as taxol 

(Nogales et al. 1998) and vinblastine (Gigant et al. 2005) have shown the difficulty in the 

crystallization of tubulin.  With that in mind, principle investigators with a history of 

successful tubulin crystallization may be the best choice. 

 Several critical analogs that have yet to be developed will be accessible once a 

larger scale of the material towards 36 is accessible.  Arguably the most crucial reaction 

of this synthetic sequence is the Mitsunobu reaction which installs the key nitrogen 

modification.  While the 50% yield presented above does supply a means to generate 

final molecules, it also significantly reduces the already limited diazomethane-based 

material available due to yield loss.  Hence, improvements to this transformation, or 

greater access to its starting materials, would further support final molecule generation.  

Of the several methods used for one carbon homologations, the enol ether method 

(Figure 49) is potentially the most scalable route since it is not susceptible to the safety 
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concerns seen with use of diazomethane.  Following hydrolysis of enol ether 156 

(Demacrcus et al. 1999), an established non-diastereoselective arylation of 157 (Wipf 

and Wang 2007) supplies the desired alcohol 55, with recovery of 86 by MnO2 oxidation 

to the α-keto thiazole 42 (Figure 23). Alternatively, the β-valinal could be oxidized and 

subject to peptide coupling to form the Weinreb amide 44, which would then be 

subjected to the established transformations.   

 

Figure 49: Potential methods for larger scale generation of tubuvaline intermediates. 

Danheiser has developed a diazotransfer reaction to generate diazoketones, 

such as 159 (Danheiser et al. 1998).  Preliminary work has generated 158 by trivial 

reactions with Boc-L-valine (52) (Figure 49).  Modifications to the reported diazotransfer 

reaction starts with deprotonating the carbamate and methyl ketone of 158, followed by 

diazotransfer using the reagent described above (Figure 38).  The critical diazotransfer 

was done in high yield (84% over 2 steps) and constitutes a safer alternative compared 

to diazomethane.  Established Wolff rearrangement of 159 then supplies the Weinreb 

amide 44 for use in generation of the Ntubuvaline fragment 89. 
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Another challenge in synthesis of 36 has been the full deprotection of 

tetrapeptide 98, where sequential deprotection resulted in degradation (Figure 28). After 

several alternative routes failed, a strategy in which the phthalidmide was masked to 

allow for benzyl deprotection successfully led to Ntubulysin V precursor 102.  A close 

examination of the pertinent literature (Peltier et. al. 2006) shows that 102 could be 

produced by instead installing fully deprotected tubuphenylalanine 41 on to the 

phthalimide protected tripeptide 160 (Figure 50), itself available through standard 

couplings.  This route would save step economy and negate the troubles seen under 

hydrolysis of the benzyl ester. 

 

Figure 50: A potential alternative method to generate tetrapeptide 102. 

Upon the generation of additional 36, important analogs to test the significance of 

substitution at this position will be the N,N-dimethyl, N,N-diethyl, and N-formylated 

analogs 161–163 (Figure 51).  Amines 161 and 162 will probe the importance of the 

carbonyl and chain length as it pertains to N-acylation, while the formyl group of 163 will 

retain the carbonyl and lose the hydrocarbon component.  These modifications most 

closely resemble the acetamide of 37 while still removing individual components to test 

their significance in the pharmacophore, and are thus important pieces to a full SAR. 



 

 158 

 

Figure 51: Important Ntubulysin analogs for complete SAR analysis. 

 In conclusion, several nitrogen and oxygen containing tubulysin analogs have 

been synthesized as stabilized and cytotoxic alternatives to the naturally isolated 

tubulysins.  The critical Ntubuvaline residue is generated by reaction conditions not 

succesptable to the frequently seen intramolecular cyclization in tubuvaline 

intermediates.  Following peptide couplings, a common tetrapeptide intermediate led to 

the target molecules Ntubulysin V, Ntubulysin U, and other N-acylated Ntubulysin analogs.  

Additionally, modification to an established method and a new DCC pre-activated 

method offer improvements in the acylation of tubulysin V.  Several tubulysin U analogs 

with various alkyl groups at the tubuvaline acetate have been made.  The usefulness of 

these compounds as cytotoxic agents will be determined by biochemical evaluation, 

which will lead to a better understanding of the SAR at the α-thiazole position. 
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Appendix A: NMR Spectra of Key Compounds 
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