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Abstract 
 

The human DNA copy number variation (DCV) has been proven to be correlated to 

abnormal traits and features in human beings. The genomic hybridization experiment is 

a powerful biological tool to measure the level of the DNA copy number in thousands 

or millions of genomic sites simultaneously. The experiment is subject to large amounts 

of noise and a high level of uncertainty about the biological meaning of its 

measurements. 

 

The existing methods to detect the DCV are based on the two-channel approach 

which consists of test and reference samples. Most of the methods are ill conditioned 

for large data sets because of their complexity and sophisticated approaches. 

Furthermore, they fall short of achieving an acceptable sensitivity or they generate large 

amounts of false calls. The first part of this thesis explores the existing methods and 

presents four new models to simplify the solution. The four models are based on Band-

Pass Wavelet Transform, Uncovered Markov Model, the Uniformly Most Powerful 

Test, and the Maximum Likelihood Estimator. The four models achieve the highest 

sensitivity, lowest false alarm rate, and the least complexity of all models. 
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The second part of the thesis presents a novel model for DCV detection using a 

single-channel approach. The model is based on the concept of sensor networks which 

can be used to analyze the DNA samples from one or two channels. The model 

comprises three normalization techniques to remove the non-biological bias from the 

measurements. Then, it estimates the true distribution of the normal measurements by 

isolating their distribution from the heterogeneous mixture. The complexity of 

calculating the probability of the average error is overcome by using the saddle-point 

approximation and the log-lattice design. The accuracy of the saddle-point 

approximation is proven for both the two-channel and the single-channel approaches in 

homogenous and non-homogenous environments. The analysis includes both simulated 

and real-world datasets and it explores the recurrent DCV in large populations using the 

International Hapmap Project Datasets. The end of the second part of the thesis 

demonstrates the stationarity of the hybridization experiment and shows its impact on 

reducing the complexity of the analysis. 

The third part of the thesis investigates patterns of the DNA copy number variations. 

The human genetic network is a quite complex system where hundreds, or even 

thousands, of DNA segments interact internally with each other directly or indirectly to 

control all the body’s functions. A bottom-up subspace-clustering algorithm is 

presented to reveal the biological signature of two studied phenotypes: Autism, and the 

lethal castration-resistant prostate cancer. 
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Chapter 1 
 
Introduction 

 

 

1.1 Overview 
 

The deoxyribonucleic acid (DNA) is the main blueprint of all life forms except RNA 

viruses. Certain segments of the DNA, called genes, contain all the genetic information 

about the organism. Other parts of the DNA have minor structural or regulating 

functions, but the functions of most of the DNA parts are still unknown or not fully 

understood. The genes control the mechanism of all biological functions in the 

organism through the production of functional Ribonucleic acid (RNA) and protein. 

The DNA consists of two long strands made up of phosphate groups and sugar 

connected to nucleobases. Each base from one strand is connected to a base on the other 

strand through hydrogen bonds. The two bases with the hydrogen bonds compose a base 

pair, while the base pair with the phosphate group and the sugar compose a nucleotide. 

There are only 4 types of bases in the genome: adenine (A), thymine (T), cytosine (C), 

and guanine (G). The base A pairs exclusively with T through two hydrogen bonds, and 

C pairs exclusively with G through three hydrogen bonds. The genetic code is stored in 

the sequence of these four bases along the strands. See figure 1.1. This sequence is the 

main factor that controls phenotypes, traits, and cellular activities. The differences 

within and among species are mainly due to the differences in the DNA sequences. 
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The human genome consists of about 3 billion base pairs divided into 46 

chromosomes. 22 chromosomes are identical to 22 other chromosomes and the 22 pairs 

comprise the autosomes. The last pair includes the sex chromosomes: XX in females 

and XY in males. The human genome contains 20,000-25,000 genes covering only 

1.5% of its total length. Although more than 99% of the human genome’s sequence is 

identical in all people, no two individuals are identical. All differences among humans 

are caused by the differences in 1% of their genomes. 

The variability of the genome occurs in two main forms: single nucleotide 

polymorphism (SNP) and copy number variation. The single nucleotide polymorphism 

occurs when a certain nucleotide differs between large groups of humans. For example, 

S	
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Figure 1.1: DNA base composition. S: sugar, A: adenine, T: thymine,  
C: cytosine, and G: guanine. 
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a nucleotide A-T might convert to T-A, G-C, or C-G in at least 5% of all humans. The 

difference is limited to a single base called allele and fortunately, there are only two 

alleles for the vast majority of the common SNPs. There are approximately 3 million 

SNPs on the human genome which roughly represents 0.1% of its total length. The 

detection and the analysis of SNPs are beyond the scope of this thesis and will not be 

covered in our work. 

The copy number variation occurs more frequently than SNPs and covers much 

longer portions of the genome. In the ideal case, the genome carries two copies of its 

exact sequence, one in each side of the paired autosomes, and only one copy of the sex 

chromosomes in males. The copy number variation is defined as any abnormality or 

amputation that occurs at any section of the genome. While the SNP affects only a 

single base, the copy number variation usually occurs at sections of length more than 

1000 base pairs (bps). The main types of variation are duplication, deletion, insertion, 

and inversion. Figure 1.2 illustrates an example of each type. The illustrated variations 

are too short to be called copy number variation but we used them as examples because 

the space is limited. The total number of copies of a specific sequence changes to higher 

than normal in the duplication case, lower than normal in the deletion case, and it 

remains the same in the inversion and insertion cases.  

 

A T T T T T G G G G C C C A A A A C                 A T T T T T G G G G C C C A A C A A C A A A A C A T  

| | | | | | | | | | | | | | | | | |                 | | | | | | | | | | | | | | | | | | | | | | | | | |  

T A A A A A C C C C G G G T T T T G                 T A A A A A C C C C G G G T T G T T G T T T T G T A  

(a) Normal sequence                 (b) Duplication – 2 extra copies 

               
                

  
 

 
    

   
                   

A T T T T T G G G G C C A A C      A T T T T T G G G G C C A A C A A C     A A C T T T G G G G C C A T T A A C 

| | | | | | | | | | | | | | |      | | | | | | | | | | | | | | | | | |     | | | | | | | | | | | | | | | | | | 

T A A A A A C C C C G G T T G      T A A A A A C C C C G G T T G T T G     T T G A A A C C C C G G T A A T T G 

(c) Deletion      (d) Inversion     (e) Insertion 

Figure 1.2: Types of variation of the DNA copy number 
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There are several methods to measure the amount of DNA copy number. One of the 

most efficient methods is the genomic hybridization process. The principal concept of 

the process is to dismantle the DNA sequence into short fragments and then to remove 

one the double strands from each fragment. The complementary sequence of each 

fragment is fabricated on a small chip called the array. The single-stranded fragments 

are called targets, while the fabricated sequences on the chip are called probes. There is 

a specific probe designed for each speicific target, and the binding process occurs based 

on the affinity between them. The resolution of the array is measured as the average 

number of probes within a fixed length of the genome and it varies drastically from one 

platform to another.  

 

1.2 Motivation 
 

The study of detecting the alteration in the DNA copy number (DCN) has drawn a lot 

of attention in the last decade. At the beginning, the work focused on observing the 

development and the progression of numerous types of cancers based on the genetic 

alterations. Recently, the field’s scope extended to cover a wide spectrum of diseases 

that have been proven to be related to the DNA copy number variation (DCV). Several 

studies have reported independently that frequent gains and losses are widespread all 

over the human genome and they naturally cover up to 12% of the whole genome of 

typical normal humans [1]. Unlike the variation in cancerous tissues where the 

amputation starts at any stage of life, CNV in normal tissues is either inherited from 

parents or caused by de novo amputations. Many DCV occurs in Low Copy Repeat 

segments (LCR), which are also known as Segmental Duplication (SD) regions. In these 

regions, a sequence of 10-300kbp repeats itself multiple times and the replicate copies 

share at least 95% of their sequences. The DCV that encompasses a gene causes some 

alteration in the gene’s production which may accounts for a significant portion of 

phenotypic variations [2]. Several studies presented evidences of high correlation of 

CNV with behavioral and developmental abnormalities such as cognitive impairment, 
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autism, mental retardation, and possibly psychiatric diseases [3]. Cohesive 

understanding of the DNA copy number and its production is the key to a better 

understanding of human diseases and phenotypes. 

The importance of understanding the human genome is reflected in tens of thousands 

of studies being published every year to contribute to the human genome projects. The 

genomic hybridization experiment of new DNA samples is in high demand by 

numerous labs and clinics throughout the world. The copy number variation in these 

samples is detected using several algorithms and software packages. But these 

algorithms are not immaculate and they need a lot of improvement. Most of the 

algorithms fall short of achieving an acceptable amount of sensitivity or they generate 

large amounts of false calls. There is still an insistent demand for improvement in the 

field and this is our ultimate goal in the first part of this work. 

In the second part of this thesis, we investigate patterns of the DNA copy number 

variations. The human genetic network is a quite complex system where hundreds, or 

even thousands, of DNA segments interact internally with each other directly or 

indirectly to control all body’s functions. Each specific trait or phenotype is affected by 

several parts of the genome at the same time. Efficient clustering techniques after 

accurate detection of the DCN variation can provide biological signatures of the studied 

phenotype. 

 

 

1.3 Contributions of this work and chapter descriptions 
 

In chapter 2, we present four new algorithms to detect the variation of the DNA copy 

number under the conventional two-channel approach. The algorithms are: Truncated 

Maximum Likelihood Test TMLT, Minimum Interval Score MIS, Uncovered Markov 

Model UMM, and Band-Pass Wavelet Transform BPWT. We prove their superiority 

over 25 existing algorithms and software packages. Then, we discuss the reproducibility 

of the ROC curves from one experiment to another. 
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In chapter 3, we investigate three sources of non-biological bias in the DCN 

microarrays. We present three models: Universal Threshold Adjustment UTA, 

GCNORM, and FLNORM to remove the bias of the imperfect scanner, the GC content, 

and the fragment length, respectively. Next, we present a novel Quantile-based 

Perfectly Isolated model QPI of the distribution of the microarrays. And also we prove 

that the hybridization process is stationary and show the impact of this result on the 

analysis. 

 

In chapter 4, we introduce the first single-channel approach for the analysis of the 

DNA microarrays. The approach detects and quantifies the variation of the DNA copy 

number using sensor networks approach. We expand the theory of the saddle-point 

approximation to cover the non-homogenous environments like DNA microarrays. We 

present Log Lattice Lemma (LLL) to maximize the performance of the non-uniform 

scalar quantizers. We prove that a quadratic quantizer followed by a moving average 

window is capable of analyzing the DCN arrays more accurately than any existing two-

channel method. 

 

In chapter 5, we present the Segregation-Based Subspace Clustering algorithm SBC 

to identify specific patterns of DCN variations. We will show the connection between 

the variations and autism and advance prostate cancer. 
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Chapter 2 
 
DNA Copy Number Profiling 
Using Two-Channel Approaches 

 

 

2.1 Genomic Hybridization Experiment 
 

The genomic hybridization experiment is a powerful biological tool to measure the 

level of the DNA copy number in thousands or millions of genomic sites 

simultaneously. The experiment follows a standard approach that consists of sequential 

steps. The first step is to dismantle the DNA molecules into short fragments of length  

0-2000bps using specific types of restriction enzymes such as NspI and StyI. After that, 

the short fragments are ligated to a very short sequence (~4bps) that can be recognized 

by the polymerase chain reactor PCR. The PCR amplifies the ligated fragments by 

producing thousands of identical copies of them to make the quantities of the DNA 

fragments readable or detectable. The amplified fragments are purified and denaturized 

using heat to separate the two DNA strands from each other. Only one of the two 

strands is taken into consideration during the experiment while the other strand is 

renounced. The single-stranded fragments, which are called targets, are dyed with a 

special fluorescence and finally hybridized to a fabricated chip.  
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The chip consists of made up probes that match partial sequences of the renounced 

strands to make the targeted strands bind to them. The targets from each specific site of 

the genome (ideally one target from each chromosome of each DNA molecule) are 

captured by thousands of identical complementary probes on the chip. The number of 

fabricated probes is much larger than the number of targets. When the hybridization 

process is completed, the chip is washed to remove the renounced fragments. And 

finally, the chip is scanned using a high-resolution scanner to generate an image whose 

intensities are equivalent to the amount of DNA fragments that have bound to each 

specific probe. Each probe on the chip is represented by a single pixel in the image. The 

intensity of that pixel represents the copy number level at a certain site of the genome. 

These intensities are the final product of the hybridization experiment and they form the 

signal that is used in the detection and pattern recognition analysis.  

The probe design is a very tedious process and it depends on multiple factors. Since 

the binding between targets and probes is affinity-based, a target might bind to a probe 

other than its specific capturer if they match partially. This phenomenon is widely 

called cross-hybridization and it produces a large amount of error in the data. The main 

goal of the probe design is to reduce the similarity among targets to avoid the cross-

hybridization. The experiment’s resolution is equivalent to the total number of probes 

on the chip or to the average number of probes per a unit length of the genome. 

Consequently, the average length of the targets must be reduced to increase the 

resolution, and that endorses larger components of cross hybridization. There is a trade-

off between the resolution and the error component. The number of probes that can be 

designed on one chip reaches up to 1.8 million probes in some platforms and that 

provides a good resolution to detect fine variations.  

All available detection methods employ a conventional two-channel approach. The 

approach is based on a comparison between a test and a reference DNA samples and 

thus the process is called comparative. The intensity ratio of the test and the reference at 

each probe is analogous to the ratio of their copy number at the corresponding site on 

their genomes (R = test/reference). The ratio is greater than one if the test sample has 
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gained more copies than the reference, less than one if the test sample has lost one or 

more copies, and equal to one if they have the same copy number. The ratios are usually 

transformed to the log2 space where the duplication corresponds to positive values, the 

deletion corresponds to negative values, and the no-change status corresponds to zero 

values. 

 

The next-generation sequencing is an emerging powerful method to read the whole 

sequence of a DNA molecule. It is by far the most precise and accurate tool of reading 

the genome’s nucleotides but at a significantly higher price. The current price range of 

the next-generation sequencing methods is around $13,000 per sample (or $6,500 for 

one set of 23 chromosomes) while the cost is around $300 for genomic hybridization 

experiments [4]. 

 

 

2.2 Data Modeling 
 

The variation of DCN usually spreads into segments covering several probes. Thus, 

all the included probes in the variant interval, theoretically, have the same intensity. 

Therefore, the comparative profile is usually modeled as a piecewise function consisting 

of constant sub-functions. The mean of every sub-function is unknown and it is equal to 

the copy number ratio of the test and the reference at that sequence. The locations of the 

transitions between the sub-functions are unknown as well. 

 

If the experiment was ideal and the reference sample did not have any copy number 

variation, the mean of the sub-functions would be a discrete random variable with 

values equal to log2(χ/2) where χ is a non-negative integer. However, the cross-

hybridization component does not have a zero mean, and the reference sample does not 

necessarily have only two copies everywhere in its genome. Therefore, the mean of the 

sub-functions of a noise-free comparative profile is a continuous random variable. 
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In real experiments, the log2 ratios are corrupted with substantial amounts of noise 

from many sources, and the variation is not even visually seen in the plots. Therefore, 

the goal of partitioning the genome into segments of the same DNA copy number is 

equivalent to partitioning the noisy log2 ratios into a piecewise function with unknown 

transition locations and amplitudes. The amplitude of the sub-functions in the log2 

domain is 0 in normal cases, and a positive or negative real number in the variant 

regions. Higher amplitude corresponds to a higher variation. The noise is widely 

assumed to be additive white Gaussian. 

 

Z[n] = F[n] + W[n] , n = 0,1,2,….,N-1           (2.1) 

 

Where F[n] is the true piecewise function, Z[n] is the observed noisy signal, and W[n] 

is the additive white noise N(µ,σ2). The challenge is to extract the noise-free signal F[n] 

from the observation Z[n]. F[n] consists of M successive segments, each segment has an 

unknown start, end, and mean.  

Accurate identification of the break points between the sub-intervals is the most 

crucial step in the process. The remaining step is just to replace the raw intensity ratios 

in each segment by their arithmetic means. 

 

 

2.3 Related Work 
 

The study of detecting the alteration of DNA copy number has drawn a lot of 

attention in the last decade. The importance and the high resolution of the CGH arrays 

have attracted researchers to develop tens of algorithms to analyze the copy number 

microarrays [5-25]. The algorithms can be categorized into four famous approaches: 

Finite Impulse Response (FIR) filters, Hidden Markov Models (HMM), Neyman-

Pearson theory tests, and Maximum Likelihood Estimators (MLE).  
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2.3.1 Finite Impulse Response Filters 

Finite impulse response filter (FIR) is a general concept that comprises various 

models such as moving weighted average windows, random walk process, wavelet 

transforms, and others. The FIR filter is applied directly at the log2 ratios, Z[n]: 
 

𝑍! 𝑛 = 𝑍 𝑛 ∗ ℎ[𝑛] 
 

The uniformly weighted moving window is one of the earliest FIR filters used in the 

microarrays [26] because of its simplicity and time efficiency. The filter’s coefficients 

can be uniform or non-uniform, and its order can be constant or variable. Sigma filter 

[5] is an example of uniform-coefficient variable-order FIR filters. The filter’s order 

varies because it eliminates the observations that exceed local thresholds. Only the 

retaining observations are averaged. The filter in CGHRW [6] and SegN [7] is a step 

function which makes the process equivalent to the random walk model. The output of 

the filter is segmented based on local trends that identify the breakpoints. 

The discrete wavelet transform [8-11] is a very popular application and it consists of a 

bank of FIR filters. The wavelet coefficients are computed as: 
 

𝑊𝑓 𝑗,𝑛 = 𝛹!,! 𝑢 .𝑍[𝑢]
!

!!!!

 

 

Where 𝛹!,! 𝑢 = 2!/!𝛹([𝑢 − 𝑛]. The term 𝛹!,! is the Haar wavelet in the Maximal 

Overlapping Discrete Wavelet Transform MODWT [8] and it is the first derivative of 

Gaussian wavelet in GWT [9]. Another way of creating the filter bank is by the 

combination of multiple hierarchical levels of atomic filters like Haar as shown in 

figure 2.1. The Discrete Wavelet Transform (DWT) and the Stationary Wavelet 

Transform (SWT) [10] are hierarchical structures to decompose the signal into several 

frequency bands. The low pass filter L is 1/ 2      1/ 2  while the high pass filter H is 

−1/ 2      1/ 2 . The filters are the same at all levels of DWT while they are upsampled 

at each level of SWT. The wavelet coefficients are filtered using hard or soft threshold, 

then the coefficients are inversely transformed to re-construct the denoised signal.  
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Other methods like WaveCD [11] employ adaptive thresholds to filter the wavelet 

coefficients. The thresholds are extracted from the coefficients at each level of the bank. 

 

2.3.2 Hidden Markov Models:  

Hidden Markov Models are governed by three factors: the hidden states, the transition 

matrix, and the initial state distribution [27]. The model assumes that the observations 

have only one order of dependency (Markov) and their underlying comparative copy 

number measurements are represented by the hidden states of the model [12-14]. The 

transition probability matrix rules the transition from one state to another, and all states 

are assumed to be connected. The transition matrix allocates most of its weight to 

remaining in the same state and it allocates small non-zero probabilities to transitioning 

to other states. The model can be seen as a clustering algorithm where the observations’ 

order is preserved. The model employs Expectation-Maximization algorithms (EM) to 

construct the hidden states and the transition matrix that maximizes the likelihood 

between the model and the observations. The noise distribution is either assumed 

normal or extracted from the data. 
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Figure 2.1: The filter banks of the discrete wavelet transform (top) and the stationary 
wavelet transform (bottom) 



	
   13	
  

The model was first introduced to the microarrays field by [28] and that model is 

embedded in the package FASST [12]. SMAP [13] is another hidden Markov model 

which takes into consideration the genomic distance between the targets. The 

dependency decays as the distance increases. Both FASST and SMAP assume that the 

number of states is known a priori. CGHRJA [14] takes into consideration the genomic 

distance and presents a higher level of sophistication by inferring the number of states 

from the observations. 

 

2.3.3 Maximum Likelihood Estimators 

The ultimate goal of the maximum likelihood estimators (MLE) is to estimate the true 

noise-free piecewise function that represents the comparative genomic profile. The 

bottleneck for these estimators is the heavy computational load since a dataset of size N 

observations can be segmented into 2N-1 different piecewise functions. The piecewise 

function that exhibits the maximum likelihood with the observations is selected. Several 

dynamic programs and clustering techniques were introduced to reduce the complexity 

of the solution [15-24]. If the noise is Gaussian, the maximum likelihood coincides with 

the least square error. Therefore, the solution X for the observations Yi, i = 1,2,…,N is 

the one that minimizes the quantity: 
 

argmin   Y! − X! !
!

!!!
 

 

Intuitively, the maximum likelihood occurs when the piecewise function is broken 

into N segments where each piece of the function consists of only one observation. In 

such a case, the likelihood is 1 and the error is zero, but the solution is meaningless. A 

stopping function must be employed to avoid overestimating the solution. CGH-

segmentation [30] and CGHtrimmer [21] apply similar dynamic programs with various 

stopping functions: Akaike information criterion (AIC) [16], Bayesian Information 

Criterion (BIC) [17], Emillie Lebarbier [18], and Marc Lavielle [19]. The first three 

functions are merely penalty terms to penalize the likelihood for adding one more 

breakpoint. Therefore, the previous quantity becomes: 
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argmin Y! − X! ! + Penalty!
!!!   term                 (2.2) 

 

The penalty term for fitting the data into K segments is equal to 2K in AIC, Klog(n) 

in BIC, and 2.6log(N/K)+2 in Emillie. The fourth stopping criterion is adopted from the 

dynamic program itself to make the segmentation process stop when the improvement 

of the likelihood is not significant. The penalty term of CGHtrimmer is similar to AIC. 

BCP [22] and cghFLasso [20] are other dynamic programs based on Barry and Hartigan 

model [31] and SQOPT algorithm [32], respectively. 

The process of the clustering algorithms is similar to the dynamic programs. The only 

difference is that the clustering algorithms are bottom-up approaches as opposed to the 

up-bottom approaches in the dynamic programs. The dynamic programs start with one 

segment covering the whole observations and they break it progressively into smaller 

segments. The clustering algorithms start by assigning every observation in a separate 

segment and then they combine the small segments hierarchically based on their 

similarity until the observations are combined into one segment. Several techniques are 

used to stop the clustering process. CLAC [23] employs a universal threshold where 

only the clusters above that threshold are considered. Vega [24] adopts the exact 

opposite stopping criterion of Marc. Iteratively, the algorithm combines the two 

segments whose impact on the likelihood is the least. It keeps combining more 

segments, as long as the deterioration of the likelihood is not significant. 

 

2.3.4 Neyman-Pearson Theory 

The Neyman-Pearson theory is a powerful tool for the two-hypothesis tests to dictate 

the rejection of the null hypothesis. The rejection is determined based on a score given 

to the test. The test becomes the uniformly most powerful test if the test is one-sided, 

i.e. the detection of the duplication is performed separately from the detection of the 

deletion.  
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If the noise process is independent and identically distributed (i.i.d) Gaussian with 

zero mean and unit variance, then the score of an interval of M observations is equal to 

their sum divided on the square root of M: score = Y!/ M!!!
!!!  . The interval score is 

directly proportional to the level and the length of the variation of the copy number. 

Circular Binary Segmentation (CBS) [29] is one of the most popular and widely used 

algorithms in the analysis. It is embedded in several packages like DNAcopy [15] and 

RANK [12]. The algorithm seeks the interval whose score is the highest, and then it 

looks for the interval whose score is second highest and so on. N2 iterations are required 

to detect each interval where N is the number of observations. Several solutions were 

suggested in [33] to reduce the computational load. 

 

 

2.4 Our Contribution 
The continuing increase of the technology of the CGH arrays leads to a constant 

increase in the data size and to more necessity for simpler but efficient algorithms. We 

present four novel methods to analyze the DCN microarrays: Band-Pass Wavelet 

Transform (BPWT), Uncovered Markov Model (UMM), Truncated Maximum 

Likelihood Test (TMLT), and Minimum Interval Score (MIS). Each method belongs to 

one of the main four categories. 

 

2.4.1 Band-Pass Wavelet Transform BPWT 

The structure of the filter bank in figure 2.1 is equivalent to an orthonormal matrix W 

of size 2L where L is the number of decomposition levels. The elements of the matrix 

are ±1/2!/!. The wavelet coefficients are computed through a regular convolution 

process: 

𝑊𝑓 𝑛, 𝑗 = W[j].𝑍[𝑛 − 𝑢]
!

!!!!
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The wavelet transform is widely used in data compression, image processing, filtering 

audio signals, and several other signal processing applications. The treatment of the 

wavelet coefficients is modified based on the problem that is being solved.  In the 

analysis of the comparative DCN, the piecewise constant function is featured with very 

low frequency components. Therefore, the bases of the matrix W should be given 

different weight in the analysis, where the low-frequency bases are given more weight 

than other bases. We chose to give weight 1 to the low frequency bases and zero weight 

to the others. We define the low frequency base as the base whose elements’ sign 

changes at most one time. The column Wj is considered a low-frequency base if it 

satisfies the bound: 

         𝑊 𝑖 + 1, 𝑗 −𝑊 𝑖, 𝑗         !!!!
!!! ≤    2!!!       (2.3) 

 

The microarray data sets are subject to great amounts of noise, and the signal-to-noise 

ratio is relatively small. Therefore, the wavelet coefficients of non-low frequency 

features are definitely generated by noise and therefore, they must be eliminated.  
 

𝑊𝑓 𝑛, 𝑗 = C!W[j].𝑍[𝑛 − 𝑢]!
!!!!             (2.4) 

                              C! =
1, 𝑖𝑓  𝑊!   𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠  (2.3)
  0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

A universal hard threshold is applied at the wavelet coefficients: 
 

𝑊𝑓 𝑛, 𝑗 =   
𝑊𝑓 𝑛, 𝑗 ,

0,
      
𝑊𝑓 𝑛, 𝑗 ≥ 2𝑚𝑒𝑑𝑖𝑎𝑛   𝑊𝑓 𝑛, 𝑗

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (2.5) 

 

And the piecewise function is re-constructed as: 
 

𝑍[𝑛] = W[j].𝑊𝑓 𝑛 − 𝑢, 𝑗
!

!!!!

!!

!!!
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2.4.2 Uncovered Markov Model 

The hidden Markov Model (HMM) can be regarded as an unsupervised clustering 

algorithm. The clusters’ centroids are analogous to the hidden states while the order of 

the observations is preserved. The essential fault of applying this model into the DCN 

microarrays is that there are no real “states” in the data, especially in the low copy 

repeat (LCR) sequences. The ideal comparative copy numbers in the LCR sequences 

take rational values (Ctest/Cref) where Ctest and Cref are non-negative integers. That means 

the number of possible states is relatively larger than the number of states that can be 

analyzed practically by the available algorithms. Therefor, the observations are forced 

to fit into an under-estimated model and consequently, the small copy number variation 

will not be detected. 

In our uncovered Markov model (UMM), the actual number of states is totally 

ignored. All duplication states are substituted by one state representing the minimum 

gain and all deletion states are substituted by one state representing the minimum loss. 

The mean vector 𝒖 = (−𝑢, 0,𝑢)!. The initial state distribution is not critical to the 

analysis and we chose it to be 𝝅 = (1/3  , 1/3  , 1/3). The state transition probability 

matrix A is: 

𝑨 =   
1− 2𝜖 𝜖 𝜖
𝜖 1− 2𝜖 𝜖
𝜖 𝜖 1− 2𝜖

 

 

And the emission distribution B has independent unit variance Gaussian distributions:  

𝑩 =
    𝑁 −𝑢, 1     
𝑁(0,1)
𝑁(𝑢, 1)

 

 

The expectation-maximization algorithm is eliminated since the states are already 

uncovered, and that is a considerable reduction in the complexity. The model that 

exhibits the maximum likelihood with the observations under the parameters A, B, and 

π  is selected to be the solution. The value of the likelihood is measured using the 

Forward-Backward procedure [27]. 
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2.4.3 Truncated Likelihood Ratio Test (TLRT): 

The estimator that is used in the dynamic programs and the clustering algorithms is 

significantly redundant. If we look at the noise-free piecewise function, we find that 

almost one half of its components are already known and they have zero amplitude 

representing the normal state which fits with the baseline. The quadratic complexity of 

estimating all pieces of the solution can be reduced to a linear complexity by focusing 

only at the encompassed variant pieces. Therefore, the estimating process converts to a 

detecting process without jeopardizing the performance. 

The role of the first term of equation 2.2 can be achieved using a moving likelihood 

ratio test against one-sided hypothesis. The role of the second term, which is 

responsible for reducing the effect of the outliers, can be incorporated into the 

likelihood ratio test by truncating its extreme values. Assuming that the noise process is 

i.i.d Gaussian with zero mean and σ2 variance, the likelihood test of the hypothesis of 

an existing duplication H1: 𝑁(𝑢!,𝜎!!) of size M is: 
 

Λ Y = !(!!/!!)
!(!!/!!)

!
!!! = !!

!!

!
exp!

!!!
!!!!! !

!!!!
− !!!!! !

!!!!

H!
≶
H!

!!
!!

           (2.6) 

 

The left hand side of (2.6) should be truncated to eliminate the effect of the outliers. If 

we define the operator Y  and Y  as:  
   

Y =
Y,

τ!""#$ ,
            Y < τ!""#$
            Y ≥ τ!""#$

       and         Y = Y,
τ!"#$% ,

            Y > τ!"#$%
            Y ≤ τ!"#$%

 

 

Then the likelihood ratio test becomes: 
 

ℓ𝓁 Y = exp !!!!! !

!!!!
− !!!!! !

!!!!
!
!!!

H!
≶
H!

!!
!!

!!
!!

!
           (2.7) 

 

 If the noise is homogenous (σ0 = σ1), u0 = 0, and π0 = π1 = 0.5, then the log 

likelihood ratio test of a duplication event is simplified to: 
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LLR Y !"# = Y! −
!!
!

!
!!!

H!
≶
H!
0              (2.8) 

 

The test for the deletion hypothesis H1: 𝑁(−𝑢!,𝜎!!) is similar to (2.8) with a reversed 

relational expression as:  

LLR Y !"# = Y! +
!!
!

!
!!!

H!
≶
H!
0            (2.9) 

 

This test is sufficient to identify the segmental variations more accurately than the 

dynamic programs and the clustering algorithms. And yet, it is nothing but a moving 

summation window of size M applied on the observations after truncating the ones that 

are significantly far from u1/2. Sigma filter follows a similar approach, but it employs 

local thresholds instead of a universal one, and it eliminates the outliers instead of 

truncating them.  

The algorithm SW is also based on the principle of truncated likelihood-ratio-test but 

with varying-sized window. It eliminates the observations whose absolute values are 

above a universal threshold and assigns zero values to the observations whose absolute 

values are under another universal threshold. The main misstep of this algorithm is that 

it permits using very short windows and that generates large amounts of false alarms in 

environments with low SNR.  

The choice of M is controlled by two parameters: the false positive rate (false alarm 

Pf) and the signal-to-noise ratio (SNR) where the SNR is defined as 20log10(µ/σ) in dB. 

Considering the independent and homogenous Gaussian noise, the relationship that 

governs the three parameters: M, Pf, and SNR (𝜇!/2𝜎) is: 
 

P! =
!

!"!!!
!
!!/!"

e!
!!!

!!! 𝑑𝑥             (2.10) 

 

The relationship is illustrated in figure 2.2 for multiple values of Pf.  
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Figure 2.2: SNR (M/2σ) versus window size for multiple levels of false alarm	
  

 

 

2.4.4 Minimum Interval Score: 

As we mentioned earlier, the Most Powerful Test MPT, is performed by assigning a 

score to an interval of size M; score = Y!/ M!!!
!!! . The maximum score coincides 

with the minimum false alarm if the noise distribution is Gaussian. MPT is uniformly 

the most powerful test if one of two requirements is met: either the length of the 

variation is accurately known, or if all observations in the window are drawn from the 

same distribution (H1 or H0). If none of the two requirements is met, which is the case 

in DCN microarrays analysis, then the results of the UMPT might be misleading even in 

noise-free environments. We present a simple example to demonstrate that fact. 

Assume F is a piecewise function consisting of 2K+1 segments of different length    

F1, F2, …, F2K+1. The magnitude of odd-numbered segments F1, F3, …, F2K+1 is µ 

(duplication) and the magnitude of even-numbered segments F2, F4, …, F2K is zero 

(normal status). Also assume that F1 is relatively longer than the other segments which 

implies that its score is larger. Under these assumptions, it is straightforward to 

conclude that the score of all the pieces of the piecewise function F (including the 

duplicated and the normal segments) is equal to: 



	
   21	
  

 

Score F = score F!
1+ O

A+ O+
O!

A A+ O

1+ E
A+ O

   

 

Where O is the total length of the odd segments: O =    F! + F! +⋯+ F!"!! , E is 

the total length of the even segments: E =    F! + F! +⋯+ F!" , and A is the length 

of F1. This result states that, if segments F3 is longer than F2: 
 

If  F!  > F!  

⇒  Score F! ∪ F! ∪ F! > Score(F!) 

   then if F!  > F!  

⇒  Score F! ∪ F! ∪ F! ∪ F! ∪ F! > Score(F!) 

 

That means, for any K+1 duplication segments separated by K normal segments: if 

the total length of the K normal segments is shorter than the total length of the K+1 

duplication segments, then the score of the 2K+1 segments is the highest. That means 

all the normal segments in the middle will be called copy number variant. That is the 

reason why CBS algorithm has a great tendency to combine close segments of 

duplication or deletion into one large segment, which generates a large amount of false 

alarms. We present a numerical example to demonstrate this result. 

Consider the piecewise function F = {F1UF2UF3UF4UF5}. E[F1]=E[F3]=E[F5]=10. 

And E[F2]=E[F4]=0. The standard deviation = 0.25 for all pieces. F! =100, F! =50, 

F! =60, F! =60, and F! =40. The observations are classified in distinct clusters as 

shown in figure 2.3 and it is easy to identify the breakpoints. However, the CBS 

algorithm combines the 5 segments in one large segment. The reason is that the score of 

the first segment, which is the highest segment, is 99.9 but the score of the five 

segments together is 113 in this example. 
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Figure 2.3: Numerical result of CBS (solid line) applied at the observation (dots) 

 

Since the maximum interval score does not necessarily lead to the interval of the 

maximum variation, it is intuitive to replace the search for the maximum score by the 

search for all intervals whose scores exceed a universal threshold. This approach was 

mentioned briefly in [33] but has never been explored. Because the hypothesis is one-

sided, the test is applied twice, one to detect the duplication and one to detect the 

deletion. 

The size of the one-sided UMPT is measured by its specificity, Φ(η) = 𝜑 𝑥 𝑑𝑥!
!!  

where 𝜑 𝑥  is a zero-mean unit-variance normal distribution. The outliers are removed 

by truncating the distant observation as we did in TLRT. If Y is an interval of width M, 

the minimum interval score test for the duplication hypothesis H1: 𝑁(𝑢!,𝜎!!) is: 
 

MIS Y !"# =
!
!

Y!!
!!!

H!
≶
H!
η              (2.11) 

 

And the test for the deletion hypothesis H1: 𝑁(−𝑢!,𝜎!!) is: 
 

MIS Y !"# =
!
!

Y!!
!!!

H!
≶
H!

− η              (2.12) 

 

We will show that this test achieves the most powerful performance in our 

comprehensive comparison in the next section. 
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2.5 Comprehensive Comparison Using Real-World Data 
 

The performance of each algorithm is greatly controlled by several tuning parameters. 

It is common for different studies to test the same data using the same algorithms but 

report significantly different results. That raises the importance of conducting a 

comprehensive and accurate comparison of the available algorithms to assess their 

performance under wide ranged parameters. 

Several comparative analyses have been published to compare multiple algorithms 

[34-42]. The biggest comparison is the one made by Lai et al [35], which compared 11 

algorithms and generated their receiver operating characteristic curves (ROC) using 

simulated data. None of the comparisons considered the detection of the low variations 

where the segment mean-to-noise ratio is less than one (SNR < 0dB).  

Here we present a comprehensive comparative analysis of 29 algorithms using real 

world data. The algorithms are: Sigma [5], RANDOMwalk [6], SegN [7], MODWT [8], 

GWT [9], SWT and DWT [10], and WaveCD [11] from the FIR filters category. 

FASST[12], SMAP [13], and RJACGH [14] from the MMs category. SegMNT [15], 

AIC [16], BIC [17], Emillie [18], Marc  [19], Flasso [20], CGHtrimmer [21], bcp [22], 

CLAC [23], Vega [24], and SW [25] from the category of the maximum likelihood 

estimators. And DNAcopy [15] and RANK [12] from the Neyman-Pearson category. 

We also included our algorithms BPWT, UMM, TLRT, and MIS. 

 

2.5.1 Finely Tiled Arrays: 

We got the data from [42]. Seven comparative arrays were designed by Roche-

NimbleGen at a resolution of 1probe/120pb at segmental duplication regions and 

1probe/200pb in the unique sequences. The arrays cover five genomic intervals from 

five chromosomes: chr7: 61058424-82000033, chr10: 77000071-91999959, chr15: 

18260026-34999973, chr17: 12000112-22187066, and chr22: 14430001-26000041.  
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Chromosome Center position Source Status 

7 69835342 [43] Gain 

7 70059379 [43] Gain 

7 71910357 [43] Loss 

10 88959840 [45] Loss 

15 18841527 [45] Gain 

15 19153955 [45] Gain 

15 19191228 [43] Gain 

15 19911312 [43] Gain 

15 20231763 [43] Gain 

15 21609973 [43] Gain 

15 24990280 [43] Gain 

17 18306691 [1] Gain 

22 14529515 [45] Loss 

22 15238042 [43] Gain 

22 16438723 [43] Gain 

22 18839270 [1] Loss 

22 18966258 [1] Loss 

22 19227578 [1] Gain 

22 20783786 [43] Gain 

22 21002600 [43] Gain 

22 21027437 [45] Gain 

22 21291645 [43] Gain 

22 21344609 [43] Gain 

22 22684672 [1] Gain 

22 22715307 [1] Gain 
 

Table 2.1: QPCR sites for NA10851 versus NA15510 
 

The total length of the five intervals is almost 75Mbps (almost 2.5% of the whole 

genome) with about 25% of their length covered by segmental duplication sequences. 

The total number of probes is 384,432 in each array. The authors in [43] conducted 4 

dye-swapped experiments using DNA samples of two HapMap subjects: NA15510 and 

NA10851. In two experiments, they tested NA15510 versus NA10851 and in the other 
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two they tested NA10851 versus NA15510. That means the duplication in two 

comparative arrays appear as deletion in the other two arrays and vise versa. They also 

conducted three experiments to assess the rate of the false alarm. In each experiment, 

two DNA samples from the same individual are compared. Since the two samples are 

theoretically identical, any declared variation between them is merely a false alarm. 
 

2.5.2 QPCR Test: 

Various sites of NA10851 versus NA15510 were tested using the quantitative 

polymerase chain reaction test QPCR, and the results are reported in [1,43,45]. The 

QPCR is a highly reliable test to confirm the variation of DNA copy number if it truly 

exists, and it is widely used to evaluate the performance of detection. We selected 25 

genomic variant sites confirmed by the QPCR to be included in our comparison. Since 

we have 4 arrays, the total number of confirmed sites is 25×4=100. The QPCR sites, 

sources, and statuses are presented in table 2.1. 
 

2.5.3 Sensitivity Versus False Alarm: 

For any algorithm, the sensitivity is measured as the percentage of the QPCR sites 

that are detected. The false alarm is measured as the total length of the detected 

variation in the three self-self arrays divided by their total length. The sensitivity and 

the false alarm rate are used to generate the receiver-operating characteristic curves 

(ROC) for the 29 algorithms. 

We chose two measurements to evaluate the performance of the ROC curves: the area 

under the curve and the residual. The area under the curve (AUC) is the total area under 

the curve in the interval from Pf=0 to Pf=1. Its maximum value is 1 (perfect detection) 

and its minimum value is 0.5 (the no-discrimination line). An algorithm is considered 

good only if its AUC is equal to 0.9 or above. We define the residual as the total area 

above the curve in the interval [0, 0.1] multiplied by 10: 
 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =   1− 10  × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑃!)
!!!!.!

!!!!
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The residual also ranges from 0 to 1. It is more accurate to evaluate the performance 

only at low false alarm rates since the performance at high rates of false alarm is not 

considered. More efficient algorithms generate values of residual closer to zero. 

 

2.5.4 Data Modeling 

Two assumptions are widely considered in the analysis: the independency of the 

observations and the normality of the distribution. The first assumption can be verified 

by inspecting the autocorrelation of the self-self arrays as illustrated in figure 2.4. The 

autocorrelation is 1 at x=0 and almost zero everywhere else which confirms that the 

observations are independent. The second assumption can be verified by comparing the 

quantiles of the self-self experiments with the quantiles of a normal distribution. The   

Q-Q plot is illustrated in figure 2.5 and the straight line confirms that the two 

distributions are similar.  
 

 

                                 
 

 

The variance of the log2 ratios is different from one experiment to another and 

therefore, the samples need to be normalized to have identical variances. Since the 

outliers have a great impact on calculating the variance, we scaled all our arrays to have 

a median absolute deviation equal to 0.6745. 𝑀𝐴𝐷 𝑥 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑥 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑥) . 

MAD = 0.6745 for unit-variance Gaussian distributions. This measurement is more 

robust to the outliers than the standard deviation. We also assume that the variance is 

the same in the duplication, deletion, and normal states, σ0=σ1=1. 

Figure 2.4: The autocorrelation of 
self-self experiment # 1. 

 Figure 2.5: Q-Q plots of a self-self array 
versus a normal distribution 
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2.5.5 Results and Discussion 

We evaluated the sensitivity and the false alarm of the previously mentioned 

algorithms to generate the receiver operation characteristic (ROC) curves. The 

performance is relatively poor in SegN, GLAD, SW, MODWT, GWT, DWT, WaveCD, 

bcp, SegMNT, Emillie, BIC, and AIC as illustrated in figure 2.6.  

 
 

Figure 2.6: ROC curves of several poorly performing algorithms 

 

SWT and DWT are almost identical except that SWT is 2JN times redundant where J 

is the decomposition level and N is the data size. In [10], J is recommended to be equal 

to log2(N)-4 and it is justified because the noise power gets reduced to 2-J. However, 

this is not true at low SNR because after a few decomposition levels, the wavelet 

coefficients of the true signal are drowned under the coefficients of the noise. In our 

experiment, the optimal choice of J is 4 for DWT and BPWT, and 5 for CWT. The 

results in figure 2.7 show that the redundant representation SWT is much better in its 

performance than the non-redundant DWT. It also shows that the performance of our 

algorithm BPWT enjoys some advantage over SWT at low false alarms. The two curves 

merge together when the false alarm > 0.1. 
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Figure 2.7: ROC curves of 4 FIR filters 

 

 
Figure 2.8: ROC curves of 4 Markov Models 

 

Figure 2.8 shows that SMAP, FASST, and CGHRJA performed modestly even 

though SMAP’s AUC is equal to 0.92! This is a practical example to show the benefit 

of using the residual along with the AUC. The high value of SMAP’s AUC is 

concentrated mostly at high rates of false alarm covering the interval [0.2, 1]. However, 

the interest of the researchers is limited to narrow intervals on the left side of the ROC 

curve. The residual has large values in SMAP, FASST, and CGHRJA. The reason why 

all HMM algorithms perform modestly is that the solutions were forced to fit with 

under-estimated models as we explained earlier. The performance improved 

significantly when this restriction was eliminated in our algorithm UMM. 
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For the MLE algorithms, the performance of Vega is appealing. It is worth 

mentioning that the optimal parameter for Vega in our analysis is different than what 

the authors suggested in [24]. They assigned ±0.2 threshold to declare the gain and the 

loss but we found the threshold to be more accurate at ±0.5. The latter threshold 

generates 6.5% of false alarm compared to 33.8% using ±0.5. 

In the dynamic programs, the largest AUC was achieved by CGHtrimmer with λ = 1 

and the least residual was achieved by cghFLasso. The reduction in the waiting time is 

highly remarkable in CGHtrimmer compared to Picard’s program, mainly due to their 

novel approach of building the NxN auxiliary matrix. The penalty function of AIC, bcp, 

cghFLasso are very cheap and therefore, the number of the detected segments is too 

large. On the other hand the algorithms SegMNT, Marc, and Emillie are conservative in 

breaking new segments and that leads to underestimated solutions. Approximately, the 

average number of segments per array are 240, 460, 560, 2600, 9800, 15000, and 22500 

for SegMNT, Emillie, Marc, CGHtrimmer, BIC, cghFLasso, bcp, and AIC, 

respectively. Almost half of the segments in the last three algorithms are single outliers. 

Figure 2.9 proves that our algorithm TLRT is in agreement with Vega and Flasso at low 

false rate levels (Pf<0.05). TLRT surpasses them in the rest of the interval even though 

the range is not considered in any practical analysis. 
 

 
Figure 2.9: ROC curves of 6 MLE models 
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In the likelihood ratio test algorithms, the impact of replacing the varying sized 

window with a fixed sized one is remarkable. Regardless of the reduction in the waiting 

time, the area under the curve surged from 0.62 in SW to 0.98 in the TLR test, and the 

residual dropped from 0.77 to 0.12. 

 

Figure 2.10 illustrates the ROC curves of Neyman-Pearson algorithms. It shows that, 

out of the 28 algorithms, our Minimum Interval Score (MIS) algorithm yielded the best 

ROC curve with the highest AUC and the lowest residual. It also shows that DNAcopy 

performed outstandingly better than RANK even though they implement the same CBS 

algorithm. This result highlights the sensitivity of Neyman-Pearson theory to the 

outliers. The improvement in the performance of DNAcopy is due to a preprocessing 

step to reduce the effect of the outliers using a median window. Still, it generated a high 

amount of false alarm because of its tendency to combine the adjacent small segments 

into one large segment as we proved earlier. 

 

 
Figure 2.10: ROC curves of 3 Neyman-Pearson models 
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Figure 2.11: ROC curves of our BPWT, TLRT, UMM, and MIS 

 

 

 

 

Figure 2.11 illustrates a comparison of our four algorithms. MIS and TLRT are in 

agreement in the interval [0.06, 1] but the false alarm of MIS is less than TLRT in the 

interval [0, 0.06]. A summary of the AUC and the residual of each algorithm is 

presented in figure 2.12. Based on the performance, our four algorithms are ranked the 

first, the second, the third, and the fifth in the list. 

 

 

 
Figure 2.12: AUC (long bars) and residual (short bars) for various algorithms 
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2.6 Complexity of BPWT, UMM, TLRT, and MIS 
 

The novel algorithms we presented are not only better in their detection performance, 

but also they are much more efficient in the computational load. If the data contain N 

observations and the filter bank has L decomposition levels, then the SWT requires 

N(2L-1)2L+1 additions and N22L+1 multiplications. Our algorithm BPWT requires only 

4N(2L-1) additions and N2L+2. 

Considering k states, HMMs require 2k(k-1)N additions and 2(k2+k)N multiplications 

for each iteration of the EM algorithm. The algorithm requires hundreds of iterations to 

converge to the solution. This algorithm is not needed anymore in our algorithm UMM. 

The MLE algorithms require N(N-1) additions and N(N-1) multiplications to built the 

auxiliary matrix. Using likelihood ratio test of size M, TLRT requires only 2NM 

additions with zero multiplications.  

The CBS algorithm requires N(N-1) additions and N(N-1) multiplications. Using a 

hypothesis test of size M, MIS requires 2NM additions and 2N multiplications. 

In our experiment, we had 385,000 probes divided into 5 intervals. Considering 

Navg=77,000, M=25, and k=6 with 1000 iterations as the result provided by CGHRJA, 

the total numbers of required additions and multiplications are shown in table 2.2. 

 

Existing algorithms  Our contribution 

Algorithm Additions 
×106 

Multiplications 
×106  Algorithm Additions 

×106 
Multiplications 

×106 

SWT 36.96 39.42  BPWT 4.62 4.93 

CGHRJA 4620 6468  UMM 0.92 1.85 

Vega 5929 5929  TLRT 3.85 0 

CBS 5929 5929  MIS 3.85 0.154 

 

Table 2.2: Additions and multiplications required by several algorithms. 
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2.7 Reproducibility of ROC curves 
 

We conducted another experiment to test the similarity among ROC curves 

when they are generated by different datasets. Each point on the ROC curve is created 

by a specific tuning parameter and we want to test if using the same tuning parameter 

for the same algorithm at another dataset yields the same sensitivity and false alarm 

probability or not. 

 We used publicly available data from http://www.ncbi.nlm.nih.gov/geo/ with 

GEO accession GSE28111 [93]. The data contain 36 test-reference arrays of NA15510 

versus NA10581 and 30 self-self arrays. Each array covers the whole genome. We used 

a list of 50 DCN variant sites confirmed by the QPCR [1]. The total 1800 (36x50) 

confirmed sites of the test-reference arrays are used to measure the sensitivity while the 

30 self-self arrays are used to measure the probability of the false alarm. The ROC 

curves of our algorithms: MIS, TLRT, UMM, and BPWT are shown in figure 2.13. 
 

 
Figure 2.13: ROC curves for MIS, UMM, BPWT, and TLRT 
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 To test the hypothesis, we applied a cross-validation approach on the data bank. 

In each trial, we compared the sensitivity from one single array with the sensitivity from 

all other arrays. The comparison is conducted by applying the same tuning parameter at 

the training arrays and the tested array to compare the values of sensitivity that they 

achieve. The same approach was applied to compare the false alarm rate between the 

tested and the training data. The tuning parameter’s space is wide enough to permit the 

sensitivity or the false alarm probabilities to reach its limit of 0 or 1. 

 The sensitivity exhibits a reasonable stability in the cross-validated arrays in all 

four algorithms. The sensitivity-sensitivity plots between the tested and the training data 

generated by using the identical tuning parameters for MIS are shown in figure 2.14. 

The plots are similar in TLRT, UMM, and BPWT. 
 

 
Figure 2.14: Sensitivity of the tested arrays versus the sensitivity of the training arrays. 
Each line represents one trial of the cross-validation process, while each point on a line 
represents the sensitivity of the test and the training arrays at the same tuning parameter. 
 

 Using MIS, the deviation of sensitivity between the tested and the training 

arrays is less than 5% in 83% of the time, and less than 10% in 97.5% of the time. For 

the other algorithms, the deviation is limited to less than 10% for 97%, 96.5%, and 96% 

of the time using TLRT, UMM, and BPWT, respectively. 
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 The plot also indicates that, the sensitivity is monotonic with the tuning 

parameter in all cases. That means, if the sensitivity at parameter L1 is higher than the 

sensitivity at parameter L2 in one experiment, then L1 will always provide a higher 

sensitivity than L2 in any other experiment. 

 The deviation of sensitivity at high and low values is much less than the 

deviation at the middle of its range. This is an advantage since the experiments are 

preferred to be run at higher values of sensitivity, which corresponds to a less deviation. 

Figure 2.15 illustrates the mean and standard deviation of sensitivity under each tuning 

parameter. It is almost guaranteed that, the deviation of sensitivity between any two 

experiments is less than 5% if the sensitivity is higher than 80%. 
 

 
Figure 2.15: Variability of sensitivity under different tuning parameters of MIS. The 
white circles represent the sensitivity mean µ, and the blue bars cover the distance from 
µ-σ to µ+σ, where σ is the standard deviation of the sensitivity at each parameter. 
 

The deviation of the false alarm is larger than the deviation of the sensitivity. 

Figure 2.16 illustrates the results of the cross-validation of the false alarm rates under 

the same tuning parameters. However, the arrays can be forced to generate very similar 

false alarm rates if they are scaled to have the same variance. In that case, the generated 

false alarm rate is similar in all experiments but the sensitivity is significantly different. 
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Figure 2.16: False alarm rates of the tested versus the training arrays. Each line 
represents one trial of the cross-validation process, while each point on a line represents 
the false alarm rate of the tested and the training arrays at the same tuning parameter. 
 

The conclusion of the experiment is that, the sensitivity of the test-reference 

arrays is reasonably stable and it has similar values in different experiments. This result 

is not unexpected since the ratio between different levels of DCN is constant, and the 

tuning parameter is mostly related to the detected segment’s mean [26,36,46]. The log2 

ratio of one gained copy is approximately log2(1.33) ≈ 0.42 in several platforms [36]. 

We will explain that in details when we discuss the stationarity of the distribution of the 

microarrays in section 3.8. The variability of the false alarm rate can be justified 

because it is independent of the DCN variation and of the tuning parameters as well. It 

is not guaranteed to have the same false alarm rate even if the two arrays belong to the 

same individuals and were created at the same genotyping lab using the same platform 

and protocol. 

Although, the full ROC is not identical from one experiment to another, a 

specific range of it can be reproduced with reasonable accuracy. As shown in figure 

2.15, the deviation of the sensitivity from one experiment to another decays as the 

sensitivity reaches to 0 or 1. The same manner happens in the deviation of the false 

alarm rate as shown in figure 2.17. Therefore, the deviations of sensitivity and false 
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alarm rate are minimal at certain range of the tuning parameter. As an example, MIS 

with score = 1 has a false alarm rate bound to less than 7% with sensitivity values 

bound between 0.8 and 0.92 almost in all cases. The accuracy of reproducing the same 

ROC points decreases as the value of the score changes from 1. Table 2.3 presents the 

range of sensitivity and false alarm at selected tuning parameters for the four 

algorithms. 
 

 
Figure 2.17: The variability of the FPR versus the tuning parameter in MIS. The white 
circles represent the mean µ and the blue bars cover the distance from µ-σ to µ+σ, 
where σ is the standard deviation of the false alarm values at each tuning parameter. 

 

Algorithm Selected tuning parameter Range of TPR Range of FPR 

MIS score = 1 0.80-0.92 0-0.07 

UMM least state = ±0.6 0.62-0.72 0-0.05 

TLRT mean = ±1.9 0.76-0.92 0-0.08 

BPWT universal threshold = 2.5 0.82-0.94 0-0.09 
 

Table 2.3: Range of sensitivity and false alarm rate at selected tuning parameters. 
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2.8 Conclusions 
 

The main conclusion of the comprehensive comparison is that the problem of 

analyzing CGH arrays is fully suited for linear algorithms. Our simple algorithms MIS 

and TLRT outperformed all other algorithms in the comparison. Most of the existing 

algorithms are much more sophisticated in theory and much slower in processing than 

TLRT and MIS. 

The underlying solution of the DNA microarrays is very smooth with a very few 

transitions compared to the data size. And about one half of the solution’s segments are 

known to be on the baseline. The quadratic algorithms, which represent the vast 

majority of algorithms in the literature, are redundant to estimate smooth functions as it 

is shown in table 2.2. HMM is widely considered in pattern recognition problems where 

the model switches more frequently among the hidden states as opposed to the data of 

CGH microarrays where the transitions are extremely sparse. Also the clustering 

algorithms are pivotal in machine learning and image processing applications. But 

employing such complicated and time-consuming algorithms in analyzing the DNA 

microarrays is overemphasizing the problem and does not necessarily provide good 

solutions. 

The ROC curves are different from one experiment to another even when the same 

test is applied with the same parameters at another data from the same individuals. 

Luckily, the deviation of ROC is concentrated at non-interesting regions where the 

sensitivity is low or the false alarm rate is high. The deviation of the ROC curves at 

high sensitivity and low false alarm rate is fairly low which guarantees that the ROC 

curves can be reproduced with a reasonable accuracy. 
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  Experiments	
  

 

 

3.1 Introduction 
 

The genomic hybridization experiment is a very popular tool to read the DNA copy 

number or the gene expression in normal or abnormal cells. Thousands of experiments 

are conducted every year to accumulate the knowledge about the human genome. Over 

the years, many algorithms were developed to identify the variation of the DNA copy 

number using the conventional two-channel approach. A crucial aspect of the analysis is 

to develop a deterministic model that fits the distribution of the data accurately. The 

developed model is the foundation that drives the process of all methods. The power of 

detection and the limitations of any method are all dependent on the assumed model. 

Although the model identification is very critical to the performance, it has not gained 

the attention it needs. Commonly, the two-channel methods consider the independent 

and identically distributed Gaussian model and start the analysis based on that 

assumption [5-25]. Several other models were proposed [46-72] but their main focus 

was on modeling the comparative profile (log2 ratios) instead of modeling the raw 
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intensities of each channel per se. They present their single-channel models just to 

explain how to address the analysis of the log2 ratios. The problem of finding an 

accurate model that fits the distribution of single-channel microarrays has yet to be 

satisfactorily explored.  

 

In a real genomic hybridization experiment, several sources contribute to the final 

measurement of the intensity of each probe. Some of these sources are biological and 

some of them are systematic. The biological sources include, but not limited to, perfect 

hybridization, cross hybridization, missing targets, and GC contents. The systematic 

sources include, but also not limited to, background effect, scanner’s bias, and fragment 

length through the performance of the PCR. A robust model should take most or all 

these factors into consideration. 

 

The main contributions of this chapter are 1) a novel Quantile-based Perfectly 

Isolated model (QPI) which isolates the desired distribution from a mixture of non-

homogenous distributions using the observations’ quartiles, 2) a Universal Threshold 

Adjustment model (UTA) to remove the bias of the imperfect scanner, 3) GCNORM, a 

normalization model for the GC content, 4) FLNORM, a novel source-based 

normalization model for the fragment length’s bias, and 5) a proof of the stationarity of 

the microarrays and its impact on the computations. 

In section 3.2, we give an introduction to the Genome-Wide Human SNP Array 6.0 

produced by Affymetrix and state the problem. In section 3.3, we discuss several 

models of the distribution and present the QPI model. In section 3.4-3.6, we present 

UTA, GCNORM, and FLNORM to remove the bias of scanner, GC content, and 

fragment length. In section 3.7, we verify the QPI model and show results using real-

world data from the international Hapmap project. In section 3.8, we demonstrate that 

the genomic hybridization process is stationary and we emphasize the impact of that 

result on the model’s accuracy and computational burden. 
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3.2 Genome-Wide Human SNP Array 6.0 - Affymetrix 
 

Here we give a detailed description of the design and layout of genome-wide human 

SNP 6.0 arrays manufactured by Affymetrix. The experiment is conducted on a chip 

which is ½ inch × ½ inches (1.28cm x 1.28cm) comprising 6,892,960 probes sorted in 

2572 rows and 2680 columns. Each probe consists of millions of identical short 

sequences complementary to their targets’ sequences. The 6,892,960 probes target a 

total of 1,856,069 sites on the human genome. The total number of probes is higher than 

the total number of designated targets on the genome. The targets of each genomic site 

are captured by one probe, six probes, or eight probes.  

After scanning the chip, an image is created to provide the raw intensity of each 

probe. Each probe of the chip is represented by one pixel in the image. The intensity 

measurements and the (x,y) coordinates of each pixel are embedded in a CEL file. The 

scheme that maps the image coordinates into their 1,856,069 genomic sites is embedded 

in an SPF file. The only explanation provided by Affymetrix for the reason of not 

combining all the information in one single file is the size limitation. 

The 1,856,069 genomic sites of the genomic profile are divided into three main 

groups. The first group consists of 906,600 single nucleotide polymorphism (SNPs) 

sites: 869,481 of them are located at chromosomes 1 to 22 (autosomes), 36,862 sites are 

located at chromosome X, and 257 sites are located at chromosome Y. 796,045 of the 

SNP sites are represented by 6 probes on the chip (3 for each allele) and 110,555 SNP 

sites are represented by 8 probes (4 for each allele).  

In the literature and the software packages, the intensity of each SNP site is calculated 

as the average of the intensities of the corresponding 6 or 8 replicate probes. Several 

linear and nonlinear averaging tools are used to calculate the needed intensity. 

Averaging the replicate probes is not accurate because it makes the average intensity of 

a SNP probe equal to one sixth or one eighth of the average intensity of a CN probe. 

And since the CN and SNP sites are contiguous along the genome, the distribution of 

any segment of the genomic profile will be a mixture of three different populations.  
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Furthermore, the distribution of the SNP probes is not homogenous because of the 

homozygosity and the heterozygosity of the alleles. The homozygous targets bind to 

one allele probe-set while the heterozygous targets bind to the two replicate sets 

equally. Figure 3.1 illustrates the distribution of all SNP probes and specifies its 

components. 

 
 

Figure 3.1: The intensity distribution of SNP probes 

 

Therefore, the sum of the intensity of the replicate probes of each SNP site is 

supposed to be used instead of any other averaged measurement. Using non-linear 

averaging measurements of the SNP probes is a very common mistake in the software 

packages. 

The second group of the genomic profile consists of 945,826 non-polymorphic sites 

called “copy number” CN sites. 888,043 of them are located at chromosomes 1 to 22, 

49,201 sites are located at chromosome X, and 8,582 are located at chromosome Y. 

Each CN site is represented by a single probe on the chip. 
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The third group of the genomic profile consists of 3,469 sites that are used to verify 

the sample’s identity. The 3,469 markers are represented non-uniformly by 81,744 

probes on the chip. The rest of the probes on the chip do not have targets in the assay. 

These 204,680 are meant to capture the background effect to be used in the analysis. All 

statistics are presented in table 3.1. 

In general, the probes are distributed on the chip according to their target’s types. The 

CN probes form a plus sign (+) in the middle of the chip and divide the rest of it into 

four rectangular shapes as illustrated in figure 3.2. The CN probes occupy the columns 

from 1245 to 1436 and the rows from 1193 to 1380. The SNP probes and the majority 

of the non-targeting probes are distributed almost uniformly in the upper and the lower 

right and left sides of the image. The intensities of CN probes are, in general, greater 

than the intensities of SNP probes since all CN targets bind to single probes while the 

targets of SNP probes are distributed among 6 or 8 replicates. 

Each probe on the chip has an identifier (probe ID) and a serial number. The serial 

numbers count from 1 to 6,892,960 starting from the upper left corner and increasing as 

they go to the right side. When the counter reaches the end of a row, it continues from 

the left side of the next row. The probe-IDs are chosen arbitrarily without following a 

specific sequence. The replicate probes that capture targets from the same SNP genomic 

  

Chr

. 

CN 
SNPs 

Non-targeting 
Rep. by 6-probes Rep. by 8-probes 

Array Chip Array Chip Array Chip Array Chip 

1-22 888,043 888,043 766,210 4,597,260 103,271 826,168 

3,469 286,424 X 49,201 49,201 29,578 177,468 7,284 58,272 

Y 8,582 8,582 257 1,542 0 0 

total 945,826 945,826 796,045 4,776,270 110,555 884,440 3,469 286,424 

 

Table 3.1: Statistics of CN and SNP probes on the GWS6. 
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site share the same probe ID but not the same serial numbers. The serial number is used 

to localize the probe on the chip while the probe ID is used to map the image intensities 

into the genomic sites. The length of all probes is 33-mer with 16 bps on each side of 

the center. The center of the SNP probes is different according to the allele. The length 

of targeted fragments ranges from 0 to 50,000bp but it concentrates mainly in the range 

from 200 to 2000bps. The GC content of each probe is measured as the percentage of G 

and C bases in a 500,001bp window centered at the genomic site targeted by that probe. 
 

 
Figure 3.2: The probes’ layout on a typical GWS6 chips. Black pixels are SNP probes, 
gray pixels are CN probes, and white pixels are non-targeting probes. 

 

For clarity, we will be referring to the group of CN probes by the notation C and the 

group of SNPs by S. The notations are followed by either A, X, or Y to refer to the 

chromosome’s type: autosomes, X or Y, respectively. For example, CX is the group of 

CN probes whose targets are located in the X-chromosome, whereas SA is the group of 

SNP probes whose targets are located in the 22 autosomes. We will add a sub-notation 6 

or 8 to separate the SNP probes based on the number of the replicate probes allocated 

for every site. We also will refer to the intensities in the image as “I” while the 

intensities on the genomic profile sites are referred to as Y. I(x,y) is the intensity at the 

point (x,y) in the image and Yi is the intensity at the site i on the genome. 
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3.3 Quantile-based Perfectly-Isolated model (QPI) 
 

One of the central steps in the detection process of any particular method is to infer 

the probability distribution function of the observations if it is not given. The detection 

criteria using the likelihood test under the Bayesian formulation or Neyman-Pearson 

theory are fully dependent on the inferred distribution. Accurate estimation of the 

distribution is very essential for accurate detection performance. Furthermore, accurate 

knowledge of the distribution gives insight into the limitation of the detection 

performance and whether the solution is realistic or not. In this section, we present the 

QPI model which precisely fits the distribution of the DNA microarrays. The model will 

be the cornerstone of the analysis in chapter 4. 

 

3.3.1 related work 

 Several models were proposed in the literature to fit the distribution of the 

microarrays intensities [26,36,46-72]. These several attempts emphasize the importance 

of using an accurate model of the distribution since it is the main basis of the analysis. 

We will briefly discuss the existing models and show the deviation between them and 

the actual distribution. We will highlight a few points before starting the discussion. 

First, there is a consensus in all references that the probe’s intensity level is 

proportional to the amount of DNA targets that bind to it. The total number of targets 

depends on the total number of DNA molecules and on the copy number level. The 

effect of the copy number variation on the intensity can easily be demonstrated by 

comparing the intensity mean of a male X-chromosome with the intensity mean of other 

autosome. In several references, [26,36,46-49], the relationship is specifically linear. In 

[48], the authors conducted a wide experiment to compare the intensity mean of several 

known levels of the X-chromosome where the copy number ranges from 0 to 1000. The 

authors concluded that the relationship between the intensities and the copy number fits 

a straight line not passing through the origin. The effect of the number of molecules is 

proven in [50] and the intensity depends on it linearly as well. 
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Second, all microarrays have similar distributions. The distribution is un-modal with a 

short tail on the left side and a very long tail on the right side as shown in figure 3.3. 
 

 
Figure 3.3: CN intensities histogram of sample NA18488 

 

Third, the binding process is affinity-based which means that a target only binds to a 

probe if they have a partial or a full complementary sequence. Each probe attracts 

specific targets from the assay where some of them match its sequence perfectly and 

some of them match its sequence partially. The latter is widely known as the “cross 

hybridization”. The affinity base implies that, the cross hybridization component is 

dependent on the sequence [51],[52]. In other words, the cross hybridization component 

is specific rather than stochastic. This component emerges from poorly designed probes 

because of the low specificity that the probes might have. The conclusion is that, the 

cross hybridization (the noise) is highly correlated to the probes’ design. That can be 

demonstrated by measuring the cross correlation among independent samples. Figure 

3.4 illustrates the cross-correlation of group “EPODE” from the International Hapmap 

Project. The values of the cross correlation range from 0.75 to 0.95 and that indicates a 

significant correlation among samples. 
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Figure 3.4: Cross correlation among “EPODE” sample of the IHP 

 

Fourth, there is a debate in the literature about which component is stronger: the 

specific hybridization or the cross hybridization components. The authors in [53] 

assume that the power of the specific hybridization component is much stronger than 

the cross hybridization component whereas the authors in [54] contradict that 

conclusion by adopting the opposite result. We will show that the specific hybridization 

in the autosomes is twice stronger than the cross hybridization component. 

Finally, there are some factors that occur during the kinetic of the experiment and 

they only effect the duration of the hybridization process. Some of these factors are: 

binding rate, target concentration [58], detachment rate, gas constant, and the 

temperature [59]. We will not explore any of these factors since the targets of any 

experiment are usually given enough time to hybridize and that allows each probe to 

reach to its steady state intensity. 

 

Most of the proposed models in the literature consider additive noise components and 

some consider multiplicative components. The multiplicative components convert to 

additive components in the log2 space.  
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The early models [46,47] were limited to specifying the relationship between the 

intensity mean and the number of DNA copies in a specific genomic site. All models 

agree that the relationship fits a straight line not passing through the origin. The model 

in [47] suggests that the slope of the straight line is controlled by the specific 

hybridization while the intercept is controlled by the cross hybridization component. 

The model in [46] specifies that the intensity mean corresponding to n DNA copies is 

equal to: 

In = 0.27 + 0.37.n 

The slope in the ideal case is 0.5 since the human genome has two copies at each site. 

But the slope deviates from that value because of the cross hybridization which reduces 

the slope to less than 0.5. Slopes that are close to 0.5 correspond to less error. The 

model does not provide any more details about the distribution’s statistics other than the 

mean. The ratio between the specific and cross hybridization components in this model 

is (0.27/0.37)≈0.73.  

A similar model is presented in [26] using a similar experiment. Their result defines 

the intensity mean as: 

In = 0.44 + 0.28n 

The slope is also not equal to 0.5 and they used the same explanation in [46] to justify 

the deviation. 

Following the same approach, a wide comparison is conducted in [36] to measure the 

slope in different platforms. In all cases, the slope is bound between 0.22 and 0.42 with 

a mean of 0.38. 

The author of [60] proposes a multiplicative model of the intensity level as: 
 

𝐼 𝑖 =   𝛼   𝛾  ×  𝐴 𝑖   ×  𝐶 𝑖 +   𝛽  
 

Where α is a multiplicative system noise, γ is labeling noise with mean = 1. A is a 

performing factor for the probe, C is the copy number divided by 2, and β is an additive 

background noise. The model in [61] suggests that the intensity is measured as: 
 

I = µ × A × T × e 
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Where µ is the expected value of the intensity, A and T are the effect of the chip’s 

design and the effect of the sample, respectively. The term e is a correlated noise. 

Similar approaches are presented in [62], [63], and [64]. 

The previous models reveal only the relationship between the intensity mean and the 

copy number, but they don’t provide more details about other statistics of the intensity 

distribution or how to estimate them. The following models shed more light on these 

regards. 

The model PDDN in [65] and [66] consists of two components and it determines the 

intensity as: 

I =   
N

1+ exp  (E)+
N∗

1+ exp  (E∗)+ B 

Where N is the population of the perfect matching targets, and N* is the population of 

the cross hybridization targets. E and E* are factors representing the free energy for 

formation of the specific and cross hybridization targets, respectively. B is a uniform 

background. The model is interesting since the sum of the two components is uni-modal 

even though each one of them is a monotonically decreasing function. Intuitively, this 

assumption can not be true since the distribution of the perfect hybridization is not 

monotonic. Rather, it includes a local maximum value closer to the left side of its 

domain. Furthermore, we will prove that the distribution of the cross hybridization 

component is not monotonic either. 

The model in [49] assumed that the distribution of a single specific target is binomial. 

And since the number of targets is usually large, the distribution of the specific 

hybridization tends to be Gaussian. Another Gaussian component is assumed to 

represent the intensity of the cross hybridization. This model is not realistic since the 

distribution, as illustrated in figure 3.3, is far from being symmetric. 

A very interesting model in [67] suggests the following distribution to fit the 

distribution 

I = α + µ.exp(η) + ε 

Which implies that               log[I - α] ≈ log(µ) + η 
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µ is the mean intensity value, α is a small constant to represent the mean background 

intensity, ε and η are Gaussians random variables with ε << η. Therefore, the 

distribution of this model is almost Gaussian in the log space and that is the main 

concept of the widely accepted Gaussian model for the log2 ratios. However, the 

Gaussian model is not precise to fit the distribution of a single channel. The distribution 

of a single channel decays slower than the Gaussian distribution on their left sides as 

shown in figure 3.5. A similar model is suggested in [68] also. 

 
Figure 3.5: Histogram of log2 ratios and normal distribution 

 

In [53], the distribution of the raw intensities is modeled as the sum of two 

components: significant Gaussian component to represent the specific hybridization and 

a slight exponential component to represent the cross hybridization. The two 

components can not fit the distribution of the microarrays unless the cross hybridization 

component is at least ten times stronger than the perfect hybridization. And that 

requirement never exists in any known platform and it also contradicts the first 

assumption of the model which assumes the cross hybridization component to be 

relatively smaller than the perfect hybridization.  
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3.3.2 The QPI model 

There is a common fault in most existing models where the noise is assumed to be 

homogenous. The models assume that the observations are drawn from the same 

distribution while, in fact, they are not.  

The main biological source of intensity is the actual amount of copy number in the 

interrogate sites. The intensity distribution of probes that have n DNA copies in the 

assay is different than the distribution of probes that have m DNA copies where m≠n. 

That means the observations are drawn from n different distributions, each one of them 

represents a different level of copy number with one highly dominating component 

representing the diploid event (two copies in an ideal DNA sequence). 

Another aspect in the analysis is the heavy tail on the right side of the distribution 

which generates significant amounts of outliers. Some outliers reach to the saturation 

level (65,536) and they are responsible of generating many false calls. More than 3% of 

the observations fall beyond a span of 3 standard deviations from the mode compared to 

0.27% in the Gaussian distribution. That means the raw observations of the mixture are 

not compatible to be used directly to estimate the mean and the standard deviation of 

the diploid distribution because of the existing duplications and deletions. Therefore, we 

need to create a model that is insusceptible to the outliers and to the variation of the 

copy number. 

By inspecting the observations, we see that all intensities are strictly greater than zero 

and they have an upper bound, 65,536. The upper bound guarantees that the 

observations’ mean is bound. The strict lower bound guarantees that the mean is strictly 

positive. And the two bounds guarantee that the log values and their mean are bound as 

well. We also find out that the distribution is uni-modal and positively skewed. All 

these characteristics exist in the gamma distribution. 

The selection of the gamma distribution to model the observation is a very reasonable 

choice for two reasons. First, the gamma distribution exhibits the highest entropy of any 

non-uniform distribution of strictly positive values [41]. It is preferred to use the 

distribution that conveys the least amount of certainty about the data. Second, the 
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gamma distribution involves several famous distributions as special cases such as the 

Gaussian, exponential, and Erlang distributions. Furthermore, the gamma distribution is 

similar to some heavy tailed distributions such as beta and lognormal distributions. 

Therefore, we will start with the assumption of having a gamma distribution and will 

check if any special cases exist or not. 

The gamma distribution is defined by two parameters: a shape parameter, k, and a 

scale parameter, θ. And the probability density function is: 
 

𝑓 𝑥, 𝑘,𝜃 =
1

Γ(𝑘)𝜃! 𝑥
!!!𝑒!

!
! 

 

Where Γ(k) is gamma function and it is defined as: 
 

Γ 𝑧 = 𝑒!!𝑡!!!𝑑𝑡
!

!
 

 

Several approaches have been presented in the literature to estimate the Gamma 

distribution’s parameters using the maximum likelihood [44]. However, the maximum 

likelihood estimators are not accurate to estimate the parameters in the microarrays 

since the distribution is not homogenous. We suggest using the quantiles because they 

are statistically robust against the outliers and are less affected by the copy number 

variation if one of the mixture’s components is highly dominating the others. Here we 

suggest using the quartiles Q1, Q2, and Q3, of the Gamma probability function f(x,k,θ) 

which are defined as: 

 𝑓 𝑥, 𝑘,𝜃 𝑑𝑥 = 0.25!!
!    

 𝑓 𝑥, 𝑘,𝜃 𝑑𝑥 = 0.5  !!
!            (3.1) 

 𝑓 𝑥, 𝑘,𝜃 𝑑𝑥 = 0.75!!
!  

 

Hence, Q2 is equivalent to the median. We will present approximated closed form 

equations of the quartiles based on the parameters. The quartiles can be inferred from 

the observations and then, the parameters can be inversely estimated using the closed 

form equations. 
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Before deriving the closed forms, a constant bias existing in all arrays needs to be 

considered as well. The bias Δ causes a linear shift to the intensities and it must be 

estimated to correctly extract the parameters. 

 

QPI model: 

The scaling property of the gamma distribution states that: Γ(k,θ) = θ.Γ(k,1). That 

means the quartiles of any gamma distribution are equal to the quartiles of Γ(k,1) 

multiplied by θ. i.e. Qi(k,θ) = θ.Qi(k,1). Therefore, it is sufficient to derive an 

approximation of the closed forms of Γ(k,1) and it can be scaled to fit any other 

distribution. We suggest the following approximated closed forms of the quartiles. 
 

𝑄! 𝑘, 1   =   0.2875  +     0.6746 𝑘 − 1 !.!"# 

   𝑄! 𝑘, 1   =   0.6930  +     0.9853 𝑘 − 1 !.!!"              (3.2) 

𝑄! 𝑘, 1   =   1.3861  +     1.3056 𝑘 − 1 !.!"# 
 

Considering the scaling and the shift, the final approximation is: 
 

          
𝑄! 𝑘,𝜃   =   ∆+      0.2875  +     0.6746 𝑘 − 1 !.!"#   .𝜃
𝑄! 𝑘,𝜃   =   ∆+      0.6930  +     0.9853 𝑘 − 1 !.!!"   .𝜃
𝑄! 𝑘,𝜃   =   ∆+      1.3861  +     1.3056 𝑘 − 1 !.!"#   .𝜃

                    (3.3) 

 

The relative error of this estimator is shown in figure 3.6. The relative error for 𝑄! is 

defined as: 

𝐸𝑟𝑟𝑜𝑟% =     100 ∗
𝑄 − 𝑄!
𝑄  

The plot also presents the relative error of Banneheka closed form of the median [69] 

which is equivalent to Q2 in (3.2). The relative error is less than 0.5% for 1.5 ≤ k ≤ 6.5. 

We will show that, the shape parameter in the microarrays distribution always falls 

within this range. 
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Figure 3.6: Relative error of the closed forms of the quantiles. The dashed line is the 
relative error of the closed form of [69]. 

 

The group of equations in (3.3) can used inversely to estimate the shape and scale 

parameters and the constant shift. Q1, Q2, and Q3 are obtained directly from the 

observations as defined in (3.1). The solution of the shape parameter, k, can be obtained 

by solving the following polynomial whose exponents are not integers. The solution of 

the polynomial can be obtained numerically using any choice of the household’s 

methods. 
 

0.6746 𝑄! − 𝑄! 𝑘 − 1
!.!"#

− 0.9853 𝑄! − 𝑄! 𝑘 − 1
!.!!"

+   1.3056 𝑄! − 𝑄! 𝑘 − 1
!.!"#

 

                                                                                             = 0.4055𝑄!   −     1.0986𝑄! + 0.6931𝑄!  (3.4) 
 

And the scaling factor can be estimated as: 

 

𝜃 = !!!!!
!.!"##  !  !.!"#$ !!!

!.!!"
!  !.!"!" !!!

!.!"#
  
          (3.5) 

 

And finally, the constant shift is estimated as: 

 

∆  =   𝑄! 𝑘,𝜃 −      0.2875  +     0.6746 𝑘 − 1
!.!"#

   .𝜃       (3.6) 
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3.3.3 Modeling the intensity distribution of gains and losses: 

As we mentioned earlier, the distribution of the diploid fragments consists of two 

major components and two minor components. The major components are the true 

specific hybridization and the false cross hybridization. The minor components are the 

background effect, which is random in nature, and a constant bias. The background 

effect is relatively smaller than the cross hybridization component. The constant bias Δ 

is just a linear shift to the intensities and we explained how to estimate its value in the 

QPI model. Intuitively, the value of Δ is the same for all distributions within the same 

array (Δdiploid = Δgain = Δloss = ΔCA = ΔSA = ΔCX = ΔSX = Δ). In the rest of this section, we 

will assume that the constant bias Δ has been subtracted from the raw intensities. We 

also will define F as the sum of the cross hybridization and the background effect (FH = 

CH + BC) and define TH as the true specific hybridization. TH and FH are independent 

random variables with non-identical distributions. We will use the subscript i to refer to 

the copy number that the intensities correspond to. The ideal case is when i = 2. 
 

1 copy loss (single copy detected): 𝐻! = 𝑇𝐻! + 𝐹𝐻      ~      Γ(𝑘!,𝜃!) 

No variation (two copies detected): 𝐻! = 𝑇𝐻! + 𝐹𝐻      ~      Γ(𝑘!,𝜃!) 

1 copy gain (three copies detected): 𝐻! = 𝑇𝐻! + 𝐹𝐻      ~      Γ(𝑘!,𝜃!) 
 

The distribution of FH is supposedly identical in all events (Hi, i = 0,1,2,…), since it 

only depends on the chip’s design. The events are only different in their specific 

hybridization components THi which depends on the actual amount of DNA copy 

number. TH0 is equal to zero since there are no targets available in the assay because 

the two copies are already lost. The total number of targets from a single genomic site 

with i copies is equal to (i/2) multiplied by the total number of targets from the same 

site if it was diploid. Therefore, all THi‘s components belongs to the same family of 

TH1 with scaling factors i. Using the scaling property of the gamma distribution: if TH1 

~ Γ(k,θ) then THi ~ Γ(k, iθ). Clearly from the equations, the mean of H1 is not equal to 

0.5 of the mean of H2 due to the existence of FH. This attribution was mentioned non-

definitively in [46] and we assure its validity. 
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1 copy loss (single copy):  𝐻! = 𝑇𝐻! + 𝐹𝐻      ~      Γ(𝑘!,𝜃!) 

No variation (two copies):  𝐻! = 2𝑇𝐻! + 𝐹𝐻      ~      Γ(𝑘!,𝜃!)          (3.7) 

1 copy gain (three copies):  𝐻! = 3𝑇𝐻! + 𝐹𝐻      ~      Γ(𝑘!,𝜃!) 

 

And so on. The parameters k2 and θ2 can be estimated using the data of the autosomes 

as explained in the QPI model. And k1 and θ1 can be estimated from the X and Y-

chromosomes for male samples. We will continue this section considering only male 

samples and will generalize the model in section 3.8 to include female samples. 

From the equations 3.7, we can infer the following statistics: 

 

𝐸 𝑇𝐻!   = 𝐸 𝐻! − 𝐸 𝐻! = 𝑘!𝜃! − 𝑘!𝜃! 

𝐸 𝐹𝐻   = 𝐸 𝐻! − 𝐸 𝑇𝐻! = 2𝑘!𝜃! − 𝑘!𝜃! 

⇒ 𝐸 𝐻!    = 𝐸 𝑇𝐻! + 𝐸 𝐹𝐻  

                       = 𝑖 − 1 𝑘!𝜃! + 2− 𝑖 𝑘!𝜃! 

 

Also: 

 

𝑉𝑎𝑟 𝐻! = 𝑉𝑎𝑟 𝑇𝐻! + 𝑉𝑎𝑟 𝐹𝐻 = 𝑘!𝜃!! 

𝑉𝑎𝑟 𝐻! = 4.𝑉𝑎𝑟 𝑇𝐻! + 𝑉𝑎𝑟 𝐹𝐻 = 𝑘!𝜃!! 

 

Therefore, 

 

𝑉𝑎𝑟 𝑇𝐻!   = 𝑘!𝜃!! − 𝑘!𝜃!! /3 

𝑉𝑎𝑟 𝑇𝐻!   = 𝑖! 𝑘!𝜃!! − 𝑘!𝜃!! /3 

𝑉𝑎𝑟 𝐹𝐻   = 4𝑘!𝜃!! −   𝑘!𝜃!! /3 

⇒ 𝑉𝑎𝑟 𝐻!    = 𝑉𝑎𝑟 𝑇𝐻! + 𝑉𝑎𝑟 𝐹𝐻  

            = 𝑖! − 1 𝑘!𝜃!! + 4− 𝑖! 𝑘!𝜃!! /3 
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And finally, the shape and scale parameters for any event Hi can be estimated as: 

 

𝑘! =   3  
𝑖 − 1 𝑘!𝜃! + 2− 𝑖 𝑘!𝜃! !

𝑖! − 1 𝑘!𝜃!! + 4− 𝑖! 𝑘!𝜃!!  

𝜃! =
𝑖! − 1 𝑘!𝜃!! + 4− 𝑖! 𝑘!𝜃!!

3 𝑖 − 1 𝑘!𝜃! + 2− 𝑖 𝑘!𝜃!

                      (3.8) 

 

By finding the values of ki’s and θi’s, the distributions of all events are known and the 

model is complete. The remaining is to employ this information into the detection 

technique of chapter 4 to infer the real statuses. 

 

 

3.4 Removal of Systematic Bias 
 

In this and the following two sections, we will discuss three sources of bias in the 

DNA microarrays: imperfect scanner, GC contents, and fragment lengths. These 

sources are totally independent of the biological status (gain, loss, or normal) of the 

DNA copy number. Each source of bias requires a different normalization process to be 

removed. The existing normalization models are mainly developed for the two-channel 

approaches. These models either normalize the arrays to each other or normalize their 

log2 ratios with respect to the source of bias. The models we present here follow the 

other direction where each array is normalized within itself. We chose the single-

channel approach because the normalization process can be applied directly into the 

observations. In the two-channel approaches, the normalization process is applied onto 

normalized log2 ratios instead of the original values.  

As we mentioned before, the mean intensity of a probe is directly proportional to the 

number of its targets in the assay and inversely proportional to the number of the 

identical replicate probes. Therefor, the mean intensities of CA, CX, CY, SA6, SA8, SX, 

and SY are different from each other. And other statistical measurements such as 
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median, mode, and standard deviation are directly proportionate to the mean of each 

population. Therefore, the first step in the process is to scale all these groups to have the 

same arithmetic mean. Figure 3.7 depicts a typical microarray image before and after 

the mean-normalization step. We chose the mean of CA to be the reference: 

 

                

𝑆A!   →   SA!  ×  E CA /E[SA!]
𝑆A!   →   SA!  ×  E CA /E[SA!]
𝑆X   →   SX  ×  E CA /E[SX]
𝑆Y   →   SY  ×  E CA /E[SY]
CX   →   CX  ×  E CA /E[CX]
CY   →   CY  ×  E CA /E[CY]

                             (3.9) 

 

 

  
          (a)            (b) 

Figure 3.7: Typical images of Affymetrix 6.0 arrays. (a) before and (b) after  
mean normalization. 

 

 

3.4.1 Introduction to Scanner bias 

Figure 3.7 depicts the output image of a male individual’s DNA sample. As 

mentioned earlier, the pixels that form a large “+” sign in the middle of the image 

represent the CN probes which are supposed to have higher intensities in any sample. 

The contrast between the CN and the SNP probes becomes vague after the mean 

normalization step.  
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In both images, it is easy to notice bright and dark areas across the image and these 

areas extend vertically. The image appears like it consists of non-homogenous vertical 

stripes. There is no biological meaning behind this phenomenon and it exists with high 

amounts of correlation. Most of the bright (and the dark) spots remain bright (or dark) 

in all images. The process of normalizing one image to another does not remove this 

noticeable bias since the bias exists in both images. That is one of multiple pitfalls of 

the two-channel approach which we try to avoid in this work. The source of the contrast 

is certainly the scanner since each stripe contains uniform mixtures regarding all 

physical and biological features such as chromosome’s type, position, fragment length, 

GC content, enzyme’s type, etc. The only difference among stripe is their spatial 

locations on the chip. 

 

3.4.2 Related work 

The normalizing methods, whether they are applied at the 1-D genomic profile or at 

the 2-D image, consist of two main steps: detecting the bias, and removing it. The first 

step can be performed using a 2-D moving average window. The window needs to be 

large enough to reduce the noise and small enough to preserve the change and not over-

smoothen it. Moving mean and moving median windows are frequently used [70] in the 

literature. The moving median window is more robust to the outliers but it terminates at 

the boarders between the CN and the SNP probes because the CN and SNP observations 

belong to different distributions even if they share the same mean intensity. 

Another method, which is widely used as well, is Loess regression. It is not robust 

against the outliers and it is very strenuous in terms of computations. Loess requires 5.8 

hours to analyze one image of GWS6 compared to 4 minutes required by the moving 

median (about 90 folds), and 2.5 minutes by the moving average window (about 135 

folds). The computation times were measured using Matlab on a 2.66GHz machine with 

48G random access memory (RAM). It is clear that Loess is not properly suited for 

huge data sets. The Turkey’s Weight averaging window is also very expensive in 

computations and inefficient to be used at large data sets. 
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The averaged image carries information about the local bias at each pixel [70]. Some 

methods classify the local biases using unsupervised clustering algorithms where each 

cluster indicates regional bias for the included pixels [71]. In both ways, the bias is 

reduced by dividing the pixels’ intensities on their local or regional bias. For more 

details, we refer the reader to [70]. 
 

 

3.4.3 Universal-Threshold Adjustment (UTA) Algorithm 

By looking at figure 3.7, it is clear to notice the discontinuity of the bias between the 

bright and the dark areas. The contrast of the intensities occurs abruptly, not gradually, 

and that supports the regional bias approaches over the local bias ones. The main 

question in the analysis is: into how many clusters should the local bias values be 

classified? The unsupervised clustering methods seem to over-segregate the results 

because of the heavy tailed distribution. We found out that considering two distinct 

clusters is adequate to eliminate the scanner’s bias and remove the contrast among the 

intensities. Therefore, the clustering process must be supervised by forcing the data to 

cluster into only two clusters: dark and bright. The model consists of three steps.  

 

[step 1]: Outliers elimination 

Since the arithmetic mean is not robust to outliers, an additional step to eliminate the 

effect of the outliers is certainly needed. Here we use a coarse threshold defined as τ 

multiplied by the standard deviation of the observations where τ is a real number. Any 

intensity I(x,y) >  τ is replaced by the image’s mean. 

 

[step 2]: Image smoothing and edge detector 

A square moving average window is applied at the raw intensities I(x,y) to generate a 

smoothened image S. S(x,y) is equal to the arithmetic mean of the intensities included in 

a square window centered at (x,y). The window is trimmed near the edges because the 

intensities are not defined beyond the image’s boundaries.  
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The distributions of the dark and bright clusters are unknown and hence, there is no 

applicable likelihood function to separate the observations. Therefore, the smoothened 

pixels are declared Dark or Bright according to the rational test: 

 

 
𝐷𝑎𝑟𝑘

𝑆 !,!       ≶     𝜂              
𝐵𝑟𝑖𝑔ℎ𝑡

    (3.10) 

 

Where η is a universal threshold for the image. 

 

 

[step 3]: Calculating the universal threshold 

The universal threshold can be estimated as the best threshold that segregates the 

intensities into the most two distinctive groups. And that step can be performed using 

the student t-test with a very large degree of freedom. The test score of a threshold T 

applied at two sets of intensities I1 and I2 is defined as: 

 

𝑆𝑐𝑜𝑟𝑒 =    ! !! !! !!
!"#(!!)
!!

!!"#(!!)!!

    (3.11) 

 

I1 and I2 represent the observations I(x,y) whose averages S(x,y) are greater and smaller 

than the universal threshold, respectively, and n1 and n2 are the size of each group. The 

threshold with the highest score is chosen to be the universal threshold between the dark 

and the bright regions. The bias can be removed by scaling the mean of the smaller 

cluster to the mean of the bigger one. 
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The normalizing steps are summarized in the following algorithm: 
 

 
Given the raw image I(x,y): 
 
define outliers = I(x,y) s.t I(x,y)> 30×std(I(x,y)) 
eliminate the outliers 
 
for all (x,y) 

define a window, W, centered at (x,y) 
S(x,y) = mean(I(x,y) ∈ W) 

 
for T = min(S) to max(S) 

I1 = I(x,y) such that S(x,y) <= T 
I2 = I(x,y) such that S(x,y) > T 
Score(I1,I2) as defined in Eq.(3.11) 

Tuniversal = argMaxT(Score) 
 
I1 = I(x,y)  such that S(x,y)  <= Tuniversal 
I2 = I(x,y)  such that S(x,y)  > Tuniversal 
n1 = size(I1),   n2 = size(I2) 
µ1 = mean(I1),   µ2 = mean(I2) 
 
Iuniversal = Iraw 
if n1 > n2 
 I2 = µ1/µ2*I2 
else if n1 < n2 
 I1 = µ2/µ1*I1 

 
 

We will show in the results section that, this algorithm preserves approximately 65% 

of the intensities and only corrects 35% of them or less. 

 

3.5 Removal of GC-Content Bias 
 

3.5.1 Introduction and related work 

The GC content in a fragment is the percentage of the bases G and C that are included 

in the fragment divided on the fragment’s length. GC% = (G+C)/(G+C+A+T). The GC 

content of a base is equal to the GC% of a 500,001bp fragment centered at the inquired 

base. The GC-content of 99% of the bases of the human genome is within the range 

from 0.34 to 0.54.  
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The difference between the AT and the GC content is that the GC nucleotides contain 

3 hydrogen bonds whereas the AT nucleotides contain only 2. That affects the stability 

of the binding between the target and the probe. During the hybridization process, 

targets with higher GC-content are less likely to release their probe after binding to it 

and they are more resistant to be flushed in the washing step. Also, the extra hydrogen 

bond increases the fragment’s florescence and the probe’s intensity as well. The result 

of that is a strong correlation between the probe’s intensity and the percentage of the 

GC-content in its target. It is reported in some studies [55] that the GC-content is a good 

predictor to estimator the raw intensity itself with a correlation coefficient of 0.994. 

Several studies [55],[72],[73],[74],[75] have investigated the GC content bias in the 

two-channel approach. The effect is observed as “waves” across the log2 ratios 

correlated to the GC contents [55]. Different statistical tools are used to remove the bias 

such as linear transformation [75], median absolute deviation [55], student t-test 

followed by a scaling step [73]. For more details, we refer to [75]. 

 

3.5.2 GCNORM model 

Here we investigate the correlation between the GC content and probes’ intensities in 

single channels. We present GCNORM, a new normalization model which is performed 

within-array not between arrays. GCNORM is a nonlinear regression model based on 

the GC-content percentiles, P1, P2, .. P100. We define GCavg and Iavg as: 

 

 GCavg i   =  E GC-­‐content/Pi-­‐1  <  GC-­‐content  <  Pi       

             Iavg i   =  E I/Pi-­‐1  <  GC-­‐content  <  Pi      

 

Where P0 = 0. The GCNORM model estimates the average intensities Iavg with 

respect to the average GC-content GCavg. Figure 3.8 depicts the relationship between 

GCPerc and IPerc. Clearly, the intensity mean is directly proportional to the GC content. 
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Figure 3.8: The effect of the GC-content on the intensity level. 

 

The given range of GC-content is limited to values from 0.34 to 0.56. No 

measurements are given outside this interval but we can assume that the relationship is 

monotonically increasing and the intensity means are strictly positive. The GCNORM 

model defines the relationship as: 

 

𝐼!"# =
!

!!!"# !!(  !"!"#!∆  )
             (3.12) 

 

Where α, β, and Δ are real values. The last equation can rearrange as: 

 

𝑙𝑜𝑔 !
!"#

− 1 =   −𝛽(𝐺𝐶!"# − ∆)              (3.13) 

 

The right-hand-side of equation (3.13) forms a straight line with respect to GCavg. 

Therefore, α on the left-hand-side can be used as a tuning parameter to fit the LHS of 

the equation in a straight line with respect to GCavg. To estimate the parameters for a 

given value of α: 
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𝐿𝐻𝑆 =   𝑙𝑜𝑔
𝛼
𝐼!"#

− 1  

𝑇 =    𝐺𝐶!"#        𝟏  

         
−𝛽

𝛽∆
=    𝑇! ∗ 𝑇 !!(𝑇! ∗ 𝐿𝐻𝑆)      (3.14) 

𝑅𝐻𝑆 =   −𝛽(𝐺𝐶!"#$ − ∆)   

 

And the autocorrelation is measured as: 
 

𝐴𝐶 =    !"#!![!"#]
!"#(!"#)

. !"#!![!"#]
!"#(!"#)

       (3.15) 

𝛼 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐴𝐶) 

 

Where the operator (.) is the inner product. The parameter 𝛼 that yields the greatest 

autocorrelation measurement is selected, and then 𝛽 and ∆ are estimated using equation 

3.14. The GC-content bias can be normalized using the following multiplicative 

operation: 
 

𝐼 𝑖 !"#$%&'()* = 𝐼 𝑖 !"# ∗ 1 + 𝑒𝑥𝑝 −𝛽   𝐺𝐶!"# − ∆               (3.16) 

 

 

3.6 Removal of Fragment Length Bias 
 

3.6.1 Introduction and related work 

The bias of the fragment length on the intensity level is the most prominent and the 

most non-consistent source of bias in the genomic hybridization process. It occurs 

during the amplification process in the Polymerase Chain Reactor, PCR, which is very 

sensitive and prone to distortion. The PCR process is conducted in a rigorously purified 
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environment and under high levels of cautiousness. During the experiment, the operator 

is advised not to leave and re-enter the purified lab without first showering and 

changing into freshly laundered clothes! The accuracy of the result is very sensitive to 

contamination. The most likely source of contamination during the process is the 

residual DNA from previous experiments. A new set of instruments and proper isolation 

tools are strongly recommended for every new experiment. 

 

To conduct the experiment, two identical DNA samples from the same subject are 

analyzed (250ng each). The two samples are fragmented using two different restriction 

enzymes, Sty I and Nsp I, and they are amplified separately. The result of the digestion 

process is short DNA fragments where 77% of them are shorter than 2000bps and 99% 

of them are shorter than 20,000bps. The PCR preferentially amplifies the fragments in 

the range 200-1000bps. The fragments are ligated to 4bps sequence that can be 

recognized by the PCR. The ligated fragments of each restriction enzyme are amplified 

separately. After that, the two amplified samples are combined and purified, 

denaturized, and finally hybridized to the chip. The fragments that fall within the 

preferred range (200-1000bps) in both channels are the fragments that are amplified the 

most, and thus, they have the strongest intensities. 

It is widely assumed in the literature that the fragments whose lengths exceed 

2000bps are not amplified in the PCR and therefore, they are ignored in the analysis. 

However, the PCR does amplify fragments of length up to 15,000bps. The source of the 

misleading information is the annotation files provided by Affymetrix. Fragments 

longer than 2000pbs are ignored in the annotation files and not even reported. Almost 

50% of all targets fall within fragments shorter than 2000bps in both channels at the 

same time while the other 50% of targets fall within fragments shorter than 2000bps in 

one channel and longer than 2000bps in the other channel. Fragments from both 

channels contribute to the final reading of the intensity. That means, the fragment length 

bias depends on the fragment length in both channels not only on the shortest as 

reported by Affymetrix.  
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(a)       (b) 

Figure 3.9: Intensity mean with respect to fragment length in StyI and NspI channels 

 

Figure 3.9 illustrates the relationship between the intensity mean and the fragment 

length for channel StyI and NspI. For each channel’s plot, the length of the other 

channel’s fragments was limited to the range 200-800bps to guarantee that their 

contribution into the intensity is optimized. In this sample, the highest intensity mean 

occurs at 1200bps which means that each channel contributes 600. But as the fragment 

length increases, the total intensity-mean remains well above the value of 600. That 

assures that the amplification of the PCR is not limited to fragment lengths of less than 

2000bps. In this example, the amplification of fragment longer than 2000bps is 50-60% 

of the optimal amplification but not zero. 

Several attempts have been proposed to normalize the fragment length bias [69, 73, 

76, 77, 78, 79]. Linear regression [76], cubic regression [77], quadratic regression [79], 

and Partek Genomic Suite [80] are some approaches used to model the bias. The effect 

of fragments > 2000bps is not considered in any of these attempts except the latter. 

 

3.6.2 FLNORM model 

Figure 3.10 illustrates the fragment length digested by StyI and NspI restriction 

enzymes. The highest intensities are concentrated from 200 to 1000bps, and then from 

1000 to 1400bps in both channels. Also, the figure illustrates that the intensities of 

fragments shorter than 2000bps are higher than longer fragments. 



	
   68	
  

The 2-D model that fits the observations as illustrated in figure 3.10 must be 

piecewise because of the singularities of the intensities at lengths 100bps, 1000bps, 

1400bps, and 2000bps. And such a model, which consists of at least 15 pieces, is 

tedious to determine and to handle. Therefore, we will use a non-parametric model, 

FLNORM, to remove the bias. The model is extracted from the observations according 

to their fragment lengths as: 

 

I!"#!,!(x,y)  =    E I X,Y x-­‐
w
2   ≤  X  <  x+

w
2 ,  y-­‐

w
2   ≤  Y<  y+

w
2          3.17   

 

Where w is a length unit. The created image can be used to normalize the raw 

intensities according to their lengths in StyI and NspI channels. 

 

3.7 Results and Discussion 
 

3.7.1 The Data of Hapmap project 

The Hapmap project is an international effort to map the genetic variation in the 

human genomes. Its latest version (III) was released in 2010 and it contains DNA copy 

number microarrays of 1258 individuals from 19 different populations from various 

 

 
	
  

	
  

Figure 3.10: Intensity mean as a function of StyI and NspI channels. 
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locations on the world. For detailed information about the samples, we refer to Coriell 

Institute’s website (http://ccr.coriell.org/Sections/Collections/NHGRI/?SsId=11). The 

Hapmap microarrays are publicly available on the National Center for Biotechnology 

Information’s website (www.ncbi.nlm.nih.gov). The samples were generated using 

Genome-Wide Human SNP Array 6.0 of Affymetrix as CEL files. We will perform the 

normalization methods from section 3.4-3.6 at some samples from the project. We will 

compare our results with the commercial software package, Partek Genomic Suite. 

 

3.7.2 Results of the UTA algorithm 

Figure 3.11 depicts the image of three randomly selected samples. A visual 

observation proves the existence of a spatial bias as vertical stripes of dark and bright 

regions. It also shows the correlation of the bias among the images. As mentioned 

earlier, this spatially related bias has no biological relevance and thus it is imputed to 

the effect of the non-ideal scanner. 

 

The bias was localized using the edge detector in equation (3.10). A moving average 

window of size 21×21 was used to assign the local bias of each pixel. And the universal 

threshold was obtained using equation (3.11). 

 

Figure 3.12 presents a comparison between the mean and the median moving 

windows in removing the bias. Because CN and SNP probes belong to different 

distributions, the local bias of the CN pixels is always greater than the universal 

threshold. Therefore, the median window is not able to normalize the bias in the CN 

areas. On the other side, the mean window does not discriminate between the probe 

groups and can normalize the bias wherever it exists. 

 

The universal threshold segregates the observations into two groups: dark and bright. 

The two groups distributions are distinct which can be expected since the discontinuities 
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Figure 3.11: Three randomly selected samples from the Hapmap project. All 
samples show significant bias as dark and bright vertical stripes. 
 

 

    
Figure 3.12: Edge detector using moving mean (left) and moving median 
windows (right) 
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between the dark and the bright regions occur abruptly. In the results: µdark = 952, µbright 

= 1258, σdark = 811, and σbright = 1037. (µbright/µdark) = 1.32 ≈ 1.28 = σbright/σdark. Same 

result holds in all image and it is an evidence that the two distributions are just scaled 

from each other and thus, the bias can be removed by a basic multiplier to unify their 

means and standard deviations. This is further illustrated in figure 3.13 which shows the 

intensity distributions of the dark and bright areas in the log2 space. The multiplicative 

factor in the actual space is equivalent to a spatial shift in the log2 space. The two 

distributions are similar and the shift between them is 0.38 which is equal to 

log2(µbright/µdark) = log2(1.3). 

 

The result of UTA is presented in figure 3.14. The figure shows the image as well as 

the intensity means of the columns and the row before and after the normalization. Only 

34% of the pixels were modified in this example. This is the main advantage of using a 

universal threshold rather than a local threshold where all intensities are modified. 

 

 

  
Figure 3.13: Distributions of the dark and bright areas (left) before and (right) 
after the normalization. 
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           (a)            (b) 

   
        (c)              (d) 

 

     
        (e)              (f) 

Figure 3.14: Comparison of the image’s distributions before and after the normalization. 
(a) the original image. (b) the image after the global scaling normalization. (c) and (d) 
the intensity mean of the columns before and after the normalization. (e) and (f) the 
intensity mean of the row before and after the normalization, respectively. 

 



	
   73	
  

3.7.3 Results of GCNORM 

The parameters of the model in equation (3.12) were estimated by maximizing the 

autocorrelation quantity in equations (3.14) and (3.15). The model that determines the 

relationship between the intensity bias and the GC-content is: 
 

𝐼!"# =
1640

1+ 𝑒𝑥𝑝 — 10.5(  𝐺𝐶!"# − 0.3  )
 

 

Then, the bias can be removed by modifying the intensities as: 

 

𝐼   → 𝐼.   1+ 𝑒𝑥𝑝—!".!   !"!!.!       

 

 
Figure 3.15: Intensity bias versus the GC-content before (left) and after 
(right) the normalization. The solid line is the GCNORM model of the bias. 

 

The result of GCNORM forms a horizontal straight line as illustrated in figure 3.15. 

We compare the performance of GCNOMR with the normalization method embedded 

on Partek Genomic Suite which is a commercial package to analyze the microarrays. No 

details are given about the model of PGS but as illustrated in figure, 3.16, the result is 

not uniform. The relationship is concave downwards with its highest values centered 

around GC = 0.475 and it decays on both sides of its that value. 
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Figure 3.16: Result of GC-content normalizer in Partek Genomic Suite software. 

 

 

 

 

 

	
   	
  

Figure 3.17: Normalized intensity mean using FLNORM. 

	
  

	
  
Figure 3.18: Normalized intensity mean using PGS. 
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3.7.4 Results of FLNORM 

We choose a length unit w = 20.  The model was estimated as defined in equation 

(3.17) and used to normalize the observations. Figures 3.17 and 3.18 illustrate the 

results of FLNORM and the PGS package. The results appear to be identical but we will 

show in section 3.8 the advantage of innovating FLNORM and its impact of reducing 

the computational load. 

 

3.8 Microarrays Stationarity 
We analyzed the 1258 samples of the latest release of the Hapmap project. All 

samples were normalized using UTA, GCNORM, and FLNORM. Also, the 

distributions of all samples were estimated using the QPI model. The parameters of 

each one of the four models converge to certain values and fluctuate around it. Figures 

3.16 illustrate the ranges of the universal threshold and the scaling factor in the UTA 

model, the shift Δ and the rate parameter β in GCNORM, and relative mean and 

variance of X-chromosomes with respect to the mean and the variance of the 

autosomes. 

From the results in figure 3.19 (a), the universal threshold in equation (3.10) is equal 

to:  

𝜂 = 0.963𝜇!""!#            (3.18) 
 

This direct result is much cheaper to compute than searching for the optimal threshold 

as defined in equation (3.10). To test 100 thresholds, equation (3.11) requires 2×109 

additions and 680×106 multiplications. On the other hand, equation (3.18) requires 

6.9×106 additions and 1 division. The reduction in the computational load is very 

significant. 

 

The scaling parameter to modify the dark areas of the image is 1.225.  

 

𝐼 𝑑𝑎𝑟𝑘   → 1.225×𝐼 𝑑𝑎𝑟𝑘           (3.19) 
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(a)              (b) 

 

      
(c)              (d) 

 

      
(e)              (f) 

 

Figure 3.19: Histograms to extract (a) the universal threshold, (b) scaling factor, 
(c) shift Δ (d) rate parameter β, (e) relative mean, and (f) relative variance. 

 



	
   77	
  

The GCNORM model in equation (3.12) is: 

 

𝐼!"# ≈
!

!!!"# !!".!(  !"!!.!"#$  )
             (3.20) 

 

And the bias can be removed by modifying the intensities to: 

 

𝐼 𝑖 !"#$%&'()* = 𝐼 𝑖 !"! ∗ 1+ 𝑒𝑥𝑝 −12.5   𝐺𝐶!"# − 0.2975               (3.21) 

 

The FLNORM model is not parametric. But we created a normalizing template which 

is equal to the median of the bias in the 1258 samples. The template is capable of 

analyzing any GWS6 sample without computing the FLNORM model for the studied 

sample. 

Figure 3.19 (e) provides a useful relationship between the intensity mean of the X-

chromosome E[H1] and the 22 autosomes E[H2]. The relationship specifies that: 

 

                               E H! ≈   0.64E H!  

VAR H! ≈   0.4VAR[H!] 

 

Which can be generalized to: 

 

 E H! ≈   0.28+ 0.36E H!    

       VAR H! ≈   0.2VAR H! +   0.2i!VAR H!                                 (3.22) 

 

 

The last equation determines the intensity power of the perfect hybridization of a 

single DNA copy and the cross hybridization components. The means and the variances 

of the two components are almost equal which indicates that they have the same effect 

on the intensities. The intensity power of the perfect hybridization of 2 DNA copies is 

four times stronger than the cross hybridization. 
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Finally, the relationships in (3.22) can be substituted in equation (3.8) to be updated 

to: 

𝑘! =     
5 0.28+ 0.36𝑖 !

1+ 𝑖!  
  𝑘!      

𝜃! =
1+ 𝑖!

1.4+ 1.8𝑖
𝜃!                                    

                      (3.23) 

 

For any sample, the parameters of the distribution that corresponds to the normal state 

k2 and θ2 can be estimated using equations (3.4) and (3.5). And the parameters of any 

other level of DCN are estimated using equations (3.23). The parameters k and θ 

determine the mean, mode, median, and the variance of each distribution. According to 

(3.23): k1 ≈ 1.024k2, k3 ≈ 0.925k2, θ1 ≈ 0.625θ2, and θ3 ≈ 1.471θ2. 

 

3.9 Conclusions 

 
In this chapter, we presented a novel model for the distribution of the DNA 

microarrays. The QPI model is robust to the outliers and to the non-homogeneity of the 

distribution. The model indicates that each level of the DNA copy number has its own 

unique distribution and all the distributions are gamma with different shape and scale 

parameters. We proved the stationarity of the process and the connectedness among the 

distributions. Knowing the quartiles of the distribution is sufficient to reveal the 

distribution of any level of DNA copy in the mixture. 

We also presented three normalizing models: UTA, GCNORM, and FLNORM. And 

we showed the impact of the startionarity in  reducing the computational load of the 

three models. 
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Chapter	
  4	
  
	
  
	
  
Sensor	
   Network	
   Approach	
   for	
  
DNA	
  Copy	
  Number	
  Microarrays	
  

 

 

Sensor network is a collection of independent sensor nodes monitoring an observation 

and collecting independent measurements. The network can be of any size, from 3-4 

nodes to thousands or millions of nodes. The measurements of all nodes are quantized 

using local T-scalar quantizers, which can be identical or non-identical, and uniform or 

non-uniform. The input to quantizer i is a real measurement yi and its output is a real 

discrete random variable U[i] ∈ {u1,u2,…,uM} where M = T+1. See figure 4.1. All 

quantizers send their information to a common fusion center where it declares one of 

two decisions, H0 or H1. The efficiency of the network depends on the design of the 

local scalar quantizers and the performance of the fusion center. The efficiency is 

evaluated by calculating the average probability-of-error which depends on the network 

size N and the scalar quantizer’s size M. This measurement becomes drastically 

complicated as N and M increase. 

 

The saddle-point approximation is a powerful tool to calculate the probability of 
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error. Several approximations have been presented in the literature for homogenous 

environment. Here, we discuss the validity of the Lugannani-Rice approximation [80] in 

heterogeneous environments, like the DNA copy number microarrays, and we prove its 

accuracy using numerical results. The scalar quantizer is uniform in homogeneous 

environments and non-uniform in heterogeneous environments. The complexity of 

optimizing a uniform quantizer is linear while it is quadratic for non-uniform 

quantizers. We present the Log-Lattice Lemma to optimize the performance of the 

scalar quantizers in heterogeneous environments with low complexity. The saddle-point 

approximation and the log-lattice lemma are used to design the globally optimal fusion 

rule. 

In chapter 3, we introduced the QPI model to estimate the distribution of the DNA 

microarrays. In this chapter, we introduce the sensor network approach to analyze the 

microarrays using the optimal fusion rule. The approach employs the results of the 

previous chapter and reveals the actual quantity of the copy number at each genomic 

site. The existing detection methods reveal only the variation status of duplications or 

deletions without quantification. 

 The main contributions of this chapter are: 1) a new approach of analyzing and 

quantifying the DNA copy number microarrays which is based on the concept of sensor 

networks, 2) A proof of the accuracy of the saddle-point approximation in non-

homogeneous environments, 3) the Log-Lattice Lemma (LLL) to optimize the 

performance of non-uniform local quantizers, and 4) a comprehensive study of the 

variation in the human genome using 1258 samples of the International Hapmap 

Project.  

In this work, we will not discuss the optimization of the network’s bandwidth, 

capacity, energy consumption, memory, or any other physical aspects of the network. 

We will rather focus our attention on optimizing the performance with respect to the 

total error of the detection process. That includes the false positive rate (false alarm) 

and the false negative rate (missing) of making a decision. 
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Figure 4.1: Parallel fusion network 

	
  

4.1 Sensor Networks for DNA microarrays 
 

Here we apply the sensor network model at the DNA microarrays where each probe 

represents a sensor node in the network. A physical network of N nodes is equivalent to 

a segment of the genome that consists of N probes. The analysis is performed using a 

moving window of size N to make a decision about the status of each genomic site, (i.e., 

probe). The main advantage of using the sensor network approach is that it is immune to 

the heavy tailed distribution of the microarray data. The heavy tails generate large 

amounts of outliers which have a great impact on the performance. The effect of the 

outliers is totally aborted by the scalar quantizers in the sensor networks. The outliers 

are not isolated from the rest of the observations, and therefore, they can not be 

eliminated using a scalar threshold.  

The measurements y’s belong to more than two distributions. The distributions belong 

to the gamma family with different shape and scale parameters. Each distribution 

corresponds to a different level of DNA copy number and we described how to estimate 

their parameters using the QPI model in chapter 3. And since the fusion rule acts in an 

environment of only two states H1/H0, the test is repeated between every two sequent 

events Hi/Hi+1 to declare one of them and classify the observations into two states Hi 

and Hi+1. For example, the test can be conducted between the states H4/H3 to detect the 

genomic sites that have 4 DNA copies or more and the genomic sites that have 3 DNA 
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copies or less. All the duplications can be detected at once by applying the test H3/H2 

while all the deletions can be detected by applying the test: H2/H1. The test needs to be 

repeated J-1 times to quantify the results into J levels of copy number. 

Following the notations of [77], if we consider a T-scalar quantizer λ = (λ1, λ2, … λT) 

and the probability density functions of the observations, f1(y) = f(y/H1) and f0(y) = 

f(y/H0) as explained in chapter 3, the output of the quantizer takes one of M possible 

values under H1 and one of M different set of values under H0. Its probability mass 

functions are: 
 

	
   	
   	
   	
   𝑃!! = 𝑃(𝐮/𝐻!) = 𝑓! 𝑦 𝑑𝑦                      !!
!!!!

	
  	
  	
  	
  	
  	
  	
  

	
   	
   	
   	
   𝑃!! = 𝑃(𝐮/𝐻!) = 𝑓! 𝑦 𝑑𝑦                      !!
!!!!

,	
  m	
  =	
  1,	
  2,	
  ..,	
  T	
  

	
  

Where λ1 = -∞, λM = +∞. The log likelihood ratio test for a network (window) of size 

N: u = (u1, u2, …, uN) is: 
 

ℓ𝓁! ≷ 𝑙𝑜𝑔
𝜋!
𝜋!
= 𝜈

!

!!!

	
  

 

Where 
  

	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ℓ𝓁! = 𝑙𝑜𝑔 !(𝐮!/!!)
!(𝐮!/!!)

	
  

	
  	
  

The	
  quantity	
  ℓ𝓁! is a discrete random variable and it takes one of T+1 possible values: 

Lm = log(Pm1/Pm0). In this work, we will assume that π1 = π0 = 0.5, which means the 

fusion threshold ν = 0. 

The optimal performance corresponds to the minimum average probability of error   

Pe = (Pe0 + Pe1)/2. Pe0 is the probability of the false alarm = P(H1/H0) whereas Pe1 is the 

probability of missing = P(H0/H1). According to [77], Pei can be computed as: 
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𝑃!" = 𝑃!" !!

!

!!!!!,!!,…,!!

𝑁 − 𝑁!

!!!

!!!
𝑁!

!

!!!

	
  

    Such that N!!
!!! = N and  N!L! ≷ 0!

!!!               (4.1) 

     

The last function is the exact formula of computing the probability of error and it 

contains approximately NM-1 terms. This is not impossible to compute if the optimal 

quantizer is given and it consists of 4 or less. But the problem gets tedious as the 

quantizer’s size increases. Furthermore, if the variances of H1 and H0 are not equal 

(heterogeneous), which is the case in all microarrays, then the optimal quantizer is non-

uniform and it requires approximately NM-1 operations to compute. That makes the total 

complexity of minimizing the average error in the order of N2M-2, which makes the 

optimization problem infeasible. As an example, the complexity to minimize the error 

for a small network of 25 nodes with a 4-ary quantizer is 244×106 and 3.7×1019 with an 

8-ary quantizer. To overcome this obstacle, we present two methods: the Lugannani-

Rice formula of the saddle-point approximation to reduce the complexity of computing 

the average error, and the Log-Lattice Lemma to reduce the complexity of finding the 

optimal T-scalar quantizer. 

 

4.2 Saddle-point approximation 

 
The saddle-point is a popular method to compute the tail probability of the sum of 

independent and identically distributed random variables. Many approximation of the 

exact formula have been derived using the cumulative generic function and its 

derivatives. The Lugannani-Rice approximation is one of the easiest and most efficient 

approximations [80]. It is based only on the first and the second derivatives of the 

cumulant generic function. The moment generating function of ℓ𝓁! is: 
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𝐺 𝜃 = 𝑃!!𝑒!"!
!

!!!

= 𝑃!!𝑒!"!
!

!!!

	
  

	
  

And the cumulant generating function and its first and second derivatives are: 

	
  

𝐾 𝜃 = 𝑙𝑜𝑔𝐺(𝜃)	
  

𝐾! 𝜃 = 𝜕𝐾(𝜃)/𝜕𝜃   =     𝑊!(𝜃)/𝐺(𝜃)            	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (4.2)	
  

𝐾′′ 𝜃 = 𝜕!𝐾(𝜃)/𝜕𝜃!   =      𝐺 𝜃 𝑊! 𝜃 −𝑊!(𝜃)! /𝐺(𝜃)            	
  

 

Where   

 

	
   	
   	
   	
  	
  𝑊! 𝜃 = 𝑃!"(𝐿!)!
!!!

! 𝑒!!! 	
  

	
  

The saddle point θ, is obtained by solving the equation: 

 

𝐾! 𝜃 =     𝑊!(𝜃)/𝐺(𝜃) = 𝜐/𝑁 = 0	
  

	
  

Since we assumed π1 = π0 = 0.5. The last equation implies that: 

	
  

𝑊! 𝜃 = 𝑃!" . 𝐿!. 𝑒!!!
!

!!!

= 0	
  

 

This equation can be solved using any method of the household’s methods. By 

solving the equation and obtaining the saddle point θ, K(θ) and K′′(θ) can be obtained 

directly from equation (4.2). And then: 

	
  

𝑃!! = Φ r + 𝜑(𝑟) 𝑞!! − 𝑟!! 	
  

𝑃!! = Φ r − 𝜑(𝑟) 𝑞!! − 𝑟!! 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (4.3)	
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Where           

𝑟 = 𝑆𝑔𝑛(𝜃) −2𝑁𝐾(𝜃)	
  	
  	
  	
  	
  	
  	
  	
  (4.4)	
  

𝑞 = 𝜃 𝑁𝐾′′(𝜃)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (4.5)	
  

	
  

The Lugannani-Rice approximation in [80] is well established to compute the average 

probability of error for the sum of continuous random variables. It is proved in [77] that 

the approximation is accurate for the discrete random variables in homogenous 

environments. And here we prove its accuracy for the sum of discrete random variables 

in non-homogenous environments. We will present numerical results in section 4.4 but 

first we need to address the problem of optimizing the local quantizer.  
	
  

	
  

4.3 Log-lattice quantizer 
 

The process of finding the optimal design of the T-scalar quantizer in microarrays 

environments is substantially different than the physical sensor networks. The physical 

sensor networks are subject to identical additive noise while the microarrays are subject 

to additive and multiplicative noise. The only effect to H1 and H0 under the additive 

noise is a shift in the mean value while the variance is identical under the two states. If 

the noise is multiplicative, both the mean and the variance are affected, and that has a 

remarkable impact on finding the optimal T-scalar. 

In the case of identical variances, the scalar quantizer is lattice and its middle term is 

equal to the mid-point between µ1 and µ0 where µi = E[Hi]. A variable is lattice when 

the difference between any two of its terms is equal to nβ where β is the lattice span β 

and n is an integer. The most basic representation of a uniform lattice scalar is: 
 
 

𝛌 =    …   ,      
𝜇! + 𝜇!

2
− 2𝛽,      

𝜇! + 𝜇!
2

− 𝛽,      
𝜇! + 𝜇!

2
,      

𝜇! + 𝜇!
2

+ 𝛽,      
𝜇! + 𝜇!

2
+ 2𝛽,… 	
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This quantizer is uni-variate and it depends only on β. The optimal quantizer can be 

found by applying an exhaustive search over the space of β. The complexity of the 

process is in the order of O(n). Combining this step with the Lugannani-Rice 

approximation makes the problem of minimizing the fusion rule’s average error in the 

order of O(n2). 

If the variances are not equal, then the optimal quantizer is not lattice. The problem of 

finding the optimal T-scalar quantizer is multivariate in T variables and its complexity 

is in the order of O(nT), which is extremely tedious for T > 4. As a numerical example, 

if T = 7 (8-ary quantizer) and the quantizer’s domain is divided into 100-point grid, then 

finding the optimal quantizers requires computing the saddle-point approximation 
100
7  ~ 1.6*1010 times. This is infeasible and the solution must be acquired in a more 

applicable approach. Here we present the log-lattice lemma to solve the problem of 

obtaining the optimal non-uniform quantizer efficiently.  

 

Log-lattice Lemma (LLL) 

If the variances of H1 and H0 are not equal (σ!! ≠ σ!!) and the log likelihood function 

ℓ𝓁! = log !(!!/!!)
!(!!/!!)

 is monotonic, then the following T-scalar quantizer converges 

asymptotically to the optimal quantizer as T → ∞. 
 

𝜆! =   𝜇𝛽
!! !!!

!   , i = 1,2,…                   (4.6) 
	
  

Where µμ is defined as the point where P(y/H!) = P(y/H!): 
	
  

P(Y = 𝜇/H!) = P(Y = 𝜇/H!)	
  
 

Another form of the log-lattice quantizer is: 
	
  

𝛌 =    …   ,      𝜇𝛽!!,      𝜇𝛽!!,      𝜇,      𝜇𝛽!!,      𝜇𝛽!!,… 	
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We called it log-lattice quantizer because the vector log(λ) per se is lattice. The 

problem of finding the optimal quantizer using the log-lattice lemma can be solved 

using an exhaustive search over the span of β, and its complexity is reduced to O(n). 

	
  

	
  

4.4 The accuracy of the saddle-point approximation in 

non-homogenous mixtures 
	
  

The accuracy of the saddle-point approximation in sensor network is well proved and 

discussed in many literatures. However, the work has been limited to the homogenous 

case where the difference between the distributions of H1 and H0 is just a spatial 

displacement. Here we present numerical results to prove the accuracy of the saddle-

point approximation for the non-homogenous mixtures. Later, we will employ the 

saddle-point approximation in detecting the variation in the DNA copy number arrays in 

one-channel and two-channel approaches. 

 

We ran three experiments: 

 
Exp1: H0 ~ Γ(3,1000), H1 ~ Γ(4,1500)  ⇒ SNR = -4.3dB  with  λ  = (-∞, 1994, 3390, 5763, ∞) 

Exp2: H0 ~ Γ(3,1000), H1 ~ Γ(4,1250)    ⇒ SNR = -6.7dB  with λ  = (-∞, 2106, 3580, 6086, ∞) 

Exp3: H0 ~ Γ(3,1000), H1 ~ Γ(3.5,1250) ⇒ SNR = -9.5dB  with λ  = (-∞, 2353, 4000, 6800, ∞) 

 

 In all cases, π1 = π0 = 0.5. We adopt the following definition of the signal-to-noise 

ratio for the non-homogenous mixtures of gamma distributions: 

 

𝑆𝑁𝑅 =   10. 𝑙𝑜𝑔!"        !!!!!!!!!
!

! !!!!!!  !!!!!
      dB 
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We used the formula in (4.1) to measure the exact average probability of error. The 

difference between the saddle-point approximation and the exact formula in measuring 

the average probability of error is presented in figure 4.2. Both values decay 

asymptotically as well as the difference between them. However, the relative error 

100× 𝑃!"#$% − 𝑃!"##$% /𝑃!"#$%  reaches its steady state for N>30 and at that range 

lim!→! 𝑃!"##$%/𝑃!"#$%   ≈  (1+ε) where ε is a small positive real number. The 

approximated average probability error converges asymptotically to the exact value in 

the homogenous environments [43] but not in the heterogeneous environments. 

It is interesting to notice that the saddle-point approximation in the experiment with 

the lowest SNR is the closest to the exact value of the probability of error. The relative 

error is 2% for SNR = -9.5dB compared to 10% for SNR = -4.3dB. Although the 

measurement of the approximated value is not 100% accurate, it is still practical for use 

for two reasons. First, the approximated value is still convergent to the exact value and 

the difference between the two measurements is decaying asymptotically. And second, 

the approximated value is much more efficient in the computational load. Our machine 

spent about 5 minutes to generate the exact value of the average probability of error for 

networks of N sensor where N = 1, 2, 3, …, 70. The same machine spent about 1 second 

to generate the approximated results.  The number of operations required to obtain the 

approximated value is 3M+7, and that amount is required for each iteration of the 

household’s method. And since the method requires usually 10 iterations, that makes 

the total number of operations less than 200. It is much less than 703 = 343,000 

operations required by the exact formula. 

 

4.5 The accuracy of the log-lattice lemma 
 

We will employ the measurement of the asymptotic relative efficiency (ARE) to 

evaluate the accuracy of the LLL in equation (4.6). The ARE is a useful measurement to 

compare the results of using the scalar quantizer with the results of using the real un-

quantized values. It is defined as: 
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Figure 4.2: The average probability of error versus the number of nodes. 

	
  

	
  

Figure 4.3: Relative error of the Pe versus the number of nodes. 
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𝐴𝑅𝐸 =   
𝐶!
𝐶!

 

 

CM is always less than 𝐶! and they are defined as: 
 

𝐶! =     𝑎𝑟𝑔𝑚𝑎𝑥!!!!!   − 𝑙𝑜𝑔 𝑓(𝑦/𝐻!)! . 𝑓(𝑦/𝐻!)(!!!)  𝑑𝑦
!

!!
    

𝐶! =     𝑎𝑟𝑔𝑚𝑎𝑥!!!!!   − 𝑙𝑜𝑔 𝑃!! ! . 𝑃!! !!!
!

!!!
      

	
  

As the number of the quantizer’s tabs increases, the value of the ARE converges to 

𝐶!and the accuracy improves. ARE → 1 as M → ∞. We calculated the ARE values for 

the three experiments mentioned in section 4.4 using a network of 25 sensors, N = 25. 

We changed the size of the scalar quantizers gradually from 4-ary quantizer to 50-ary. 

The results are illustrated in figure (4.4). The ARE curves are identical in all 

experiments regardless the fact that they have different levels of SNR. The value of the 

ARE exceeds 0.995 with M = 32 and exceeds 0.987 with M = 16. That means the loss 

of the quantizers is less 1.5% using a quantizer of 16 tabs or more. It also proves that 

the log-lattice quantizer is optimal. 
 

	
  
Figure 4.4: The asymptotic relative efficiency versus the number of nodes. 



	
   91	
  

4.6 Experimental results of the sensor networks approach 

 
4.6.1 Two-channel approach 

We tested the same data that we used in our comprehensive analysis in section 2.5. 

We used the sensor network approach with the saddle-point approximation as described 

in section 4.2 since the two-channel approaches are assumed to be homogeneous. The 

sensitivity was measured by comparing the results of the sensor networks approach with 

the results of the QPCR while the false alarm was measured using the self-self arrays.  

We normalized the 7 arrays to have σ2 = 1. The performed test is:  
 

H0 ~ N(0,1)      and      H1 ~ N(u,1). 
 

Where u ranges from 0 to +∞ to detect the duplications and it ranges from 0 to -∞ to 

detect the deletions. We used quadratic quantizer, T=3 and M=T+1 = 4. The optimal 

quantizer for each u is computed using the saddle-point approximation.  The quantizer 

is centered at +u to detect the duplication and centered at –u to detect the deletions, and 

hence, the process is done twice. After mapping the observations using the optimal 

quantizer, a moving average window of size 25 is applied. The moving average window 

is an analogy of the actual sensor network which consists of 25 sensors. The ROC curve 

of the results is shown in figure (4.5). The figure also shows the performance of TLRT 

and MIS. We showed in section 2.5 that the TLRT and the MIS outperform 26 different 

methods available in the publications and software packages. And here we compare the 

performance of the sensor networks approach with the two methods. 

The optimal quantizer is λ = (-∞, -1.38, 0, 1.38, +∞) and u = 1. The likelihood vector 

is: (-3.706, -1.183, +1.183, +3.706) as shown in figure (4.6). The performance of the 

sensor network approach, which is based on the likelihood test, outperforms the TLRT 

at Pf < 5%. It almost matches the curve of the MIS method where the false positive rate 

at the edges decays 𝑁 times faster than the likelihood tests.  
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Figure 4.5: ROC curves of TLRT, MIS, and the saddle-point approximation 

	
  

	
  

	
  
Figure 4.6: Optimal quantizer to detect the CNV in the two-channel microarrays 
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The model in figure (4.7) is capable of analyzing any sample of the two-channel 

microarrays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Optimized model to analyze two-channel arrays 

 

 

In the ideal case, the average probability of error of Gaussian distributions with 

distance = 2 between their mean is equal to 3.66x10-6, well smaller than the values we 

are getting in the results. That proves the model of the observations is not perfectly 

Gaussian, and another model could be better in fitting the data. It also proves that, the 

outliers are not isolated or disconnected from the rest of the observations. The optimal 

quantizer indicates that, the outliers effect at least the top 15% of each side of the 

distribution, and that requires more awareness during the analysis. 
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4.6.2 The effect of the number of molecules and the network size 

We ran several experiments using simulated data to study the effect of several 

parameters. The distributions of the test’s states are: 
 

H1 ~ Γ(0.925k,588),  H0 ~ Γ(k,400),  to detect the duplications 

H1 ~ Γ(1.024k,250),  H0 ~ Γ(k,400),  to detect the deletions 
 

The data consists of 200 segments of duplication separated by non-variant segments. 

Each segment of duplication has a unique length ranging from 26 to 225 points. The 

separating normal segments have a common length of 500 points. There are also 200 

segments of deletion with lengths from 26 to 225 and separated by normal segments of 

length 500 points. The test was repeated for several values of k = 2, 2.5, 3, 3.5, and 4. 

For each case, the network size N was changed from 5 to 301. We applied the sensor 

network approach on the simulated data and we measured the sensitivity and the false 

alarm for each size of the network. The sensitivity = P(H=H1/H1) while the false alarm 

= P(H=H1/H0). The results are shown in figure 4.8. 

 

 
 

Figure 4.8: ROC curves for several values of shape parameter and network size 
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The results show that, the performance is optimal when the network size is within the 

range from 45 to 65. They also show that the performance gets better as the shape 

parameter k increases. The shape parameter depends on the intensity mean which 

depends on the total number of targets in the assay which includes the targets from n 

molecules of DNA. The conclusion is that, it is preferred to increase the shape 

parameter to optimize the performance. That can be done by using bigger samples than 

the 250 ng of DNA specified by Affymetrix or by adding more amplifying cycles to the 

PCR. 

 

 

4.6.3 The stability and variability of the human genome 

We analyzed the 1258 samples of the International Hapmap Project in its third 

release. The samples are analyzed using Affymetrix GWS6 arrays and they are publicly 

available at: http://hapmap.ncbi.nlm.nih.gov/downloads/raw_data/hapmap3_affy6.0/. 

The main goal of our analysis is to assess the stability and variability of the human 

genome. We will not consider the differences in gender, age, race, global location, or 

any other discriminative factors in this work. We will only consider the common 

variations in the whole genome or in a specific chromosome. 

All samples were normalized using the UTA, GCNORM, and FLNORM models as 

described in section 3.4, 3.5 and 3.6. Then the distribution of the result was estimated 

using the QPI model as described in section 3.3. Then the variation was detected using 

the sensor network approach as described in sections 4.2 and 4.3. The optimal size of 

the network was obtained using the simulated experiment in section 4.6.2. The false 

alarm rate is within the range from 2% to 5%. 

The novelty of the sensor network approach is not only its high accuracy and low 

complexity, but it extends to the type of its results. While the existing methods detect 

only the variation of the copy number, the sensor network approach detects and 

quantifies the level of variation. The importance of quantifying the variation emanates 

from the direct effect of the copy number amount on the gene’s dosage [2]. A gain of 
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one copy might increase the gene’s production by up to 50% while a gain of 3 copies 

might increase the production by up to 150% and the difference between the two cases 

is very significant. We found in our results that, the detected copy number ranges from 

0 to 6. i.e., two-copy loss to four-copy gain. The high-copy-repeat sequences are usually 

avoided in the hybridization experiments and not considered in chip’s design. 

Figure 4.9 illustrates the rate of total duplication and total deletion according to their 

frequencies in the samples. There different criteria to express the results according to 

the frequency of the variation. We will adopt 4 criteria: 25%, 50%, 75%, and 95%. 25% 

means that the variation exists at least in 25% of the tested samples. Considering the 

50% criteria, the results indicate that 11.7% of the human genome is not diploid. That 

includes 2.5% of deletion and 9.2% of duplication common at least in 50% of the 

samples. This percentage is significantly larger than the percentage reported in [1] 

where 12% of the genome is not diploid using less than 1% criterion. The results also 

indicate that about 30% of the genome is stable in all samples. 
 

 
Figure 4.9: Duplication and deletion rates in normal human genome. 
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Figure 4.10 illustrates the population of different DNA copy number quantities in the 

samples. The total sum of these variations accounts for about 1-2% of the genome using 

any criterion. As expected, the frequency of the duplication decreases as the variation 

level increases. Using the 50% criterion, about 0.02% of the genome has 4 DNA copies 

and almost zero percentage of the genome has a copy number above 4 or less than 1. 

 

 
Figure 4.10: Quantified duplication and deletion rates in normal human genome. 

 

The frequency of duplications and deletions based on the chromosome are presented 

in in figure 4.11 using three criteria 25%, 50%, and 75%. In general, the duplication rate 

is about 3 times the deletion rate in each chromosome and over the whole genome. 

Chromosomes 16, 17, 19, and 20 exhibit the highest rate of duplication while 

chromosomes 4, 13, and 18 exhibit the lowest rate of duplication. There is a visible 

pattern between the duplications and the deletions on chromosomes level at 25% 

criterion. Each chromosome has a tendency to have more duplication or more deletion, 

but not both. The pattern gradually decays until it disappears at 95% criterion as shown 

in figure 4.12. 
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Figure 4.11: Chromosomal duplications (up) and deletion (down) rates  
using 25% (left bar) 50% (middle bar) and 75% criteria (right bar) 
 
 
 
 
 

 
 

  Figure 4.12: Chromosomal duplications (long bars) and deletion (short bars)  
rates using 95% criterion 
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Finally, the stability of each chromosome is measured using 1% criterion. In other 

words, the stability is measured as the percentage of the chromosome that is diploid in 

at least 99% of the population. Slightly more than 50% of chromosomes 4, 13, and 18 

are stable while the stability is around 35% of chromosomes 16, 17, 19, and 20. Other 

chromosomes have a stability between 40% and 50% as shown in figure 4.13. 
 

 

Figure 4.13: Chromosomes stability using 1% criteria 
 

 

4.7 Conclusions 
We proved the accuracy of the saddle-point approximation and the log-lattice lemma 

for heterogeneous environments. The two techniques were employed in the sensor 

network approach to analyze single-channel DNA microarrays with high accuracy and 

low computational load. 

The noise in the microarrays is multiplicative and the signal-to-noise ratio increases 

as the total number of targets increases. It is recommended to use bigger samples of 

DNA or apply more amplification cycles of the PCR to boost the accuracy. 

The stability and variability of the human genome is not fully evaluated yet. We 

presented results of the copy number variation in 1258 samples using different criteria. 

We showed that about 40% of the genome is diploid in all people while 11.7% is 

variant in at least 50% of all people. 
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Chapter	
  5	
  
	
  
	
  
Correlation	
  Between	
  Copy	
  Number	
  
Variation	
  and	
  Human	
  Diseases	
  

 

The methods in the previous chapters provide different tools to detect the variation 

the alteration of DNA copy number but they don’t explore the connection of the 

variation from one result to another. The question is: is there a correlation or certain 

patterns of DNA copy number variation that can lead to a better understanding of the 

genome’s functions and can be used as a biomarker to detect a disease or the person’s 

susceptibility to it? We will explore several clustering algorithms to find the answer. 

 

The main contributions of the this chapter are 1) Segregation-Based Subspace-

Clustering algorithm SBC to reveal patterns of similarity among special objects, and 2) 

we present results of two experiments to show the correlation of the DCV with autism 

and the activity of the androgen depletion for advanced prostate cancer. 
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5.1 Introduction 
 

The goal of the conventional clustering algorithms is to classify objects based on a 

measurement of similarity. Several measurements of the similarity were proposed in the 

literature to enhance the clustering quality. The objects in each cluster must share 

specific and unique characteristics which isolate them from objects in other clusters, 

intruders, and noise. 

The measurement of similarity tends to be uniform as the space dimensionality 

increases. In this case, all objects become equally-spaced which makes each object 

similar to all other objects, and thus, no proper clustering can be done. This behavior is 

known as “curse of dimensionality” and unfortunately, it is the case in most real-world 

datasets. However, it is possible that a group of objects have more similarity in one 

dimension or in a smaller subspace than their similarity in the whole space. This leads 

to the subspace clustering methods which search for subspaces where the objects are 

similar and distinguishable in some sense. 

Many methods were proposed during the last decade. These methods consist mainly 

of two steps: first, they test all one dimensional features to determine their ability to 

cluster the objects in distinct groups. The capable features are then selected to form the 

set of “candidate features”. Second, all different combinations of the candidate features 

are tested to build up the sought-after subspace sequentially. 

The complexity of the second step, in most methods, depends exponentially on the 

number of selected features. This number grows linearly with dimensionality of the 

space and that makes the problem very ill-conditioned for most real-world datasets. The 

number of the selected features can be controlled by the level of the similarity 

measurements that is used in the first step. Requiring a rigid similarity measurement 

yields smaller sets of candidate feature but also, it discards some significant features. 

On the other hand, allowing lenient measurement of similarity selects all or most of the 

significant features at the expense of the set’s size. The trade-off between less 
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complexity and higher accuracy favors the reduction of the complexity since the process 

becomes infeasible if the size of the candidate features’ set exceeds a certain limit. The 

size of the candidate features’ set must be reduced, and in the same time all significant 

features must be maintained in order to have an effective clustering method. 

 

 

5.2 Related Work 
 

Six methods are extensively used in the literature [82-87]. The first published method 

in subspace clustering criteria is CLIQUE [82]. Each dimension is portioned into 

equally spaced non-overlapping intervals. The measurement of density is used to 

evaluate the features. The number of objects that fall in each interval determines the 

density. An interval is declared dense if its density exceeds a minimum threshold, and a 

feature is considered as a candidate if it includes at least one dense interval. ENCLUS  

[83] selects the candidate features based on their entropy. It measures the entropy of 

each feature and adds it to the candidate set if its entropy is less than a threshold. The 

feature whose entries carry the same value must be excluded since the entropy is equal 

to zero whereas its result is meaningless. MAFIA [84] represents a more significant 

improvement to CLIQUE by suggesting an unequally-spaced grid for each feature. It 

starts by checking the histogram of the entries of each feature in a very fine grid. Then it 

combines successive intervals if the difference between the values of their populations 

is less than a threshold.  

Other methods extend the density concept by introducing the density-connected 

approaches like SUBCLU [85]. It requires a minimum threshold of objects to form a 

dense unit and a maximum distance threshold to guarantee the connectedness. If an 

entry point has enough points in its proximity, it will be declared a core point, and the 

feature will be selected. Any feature that does not include at least on core point will be 

excluded. PreDeCon [86] is a modified version of SUBCLU which requires the 

variance of the entries that fall in the neighborhood of an entry to be less than a 
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maximum threshold. K-mean is suggested by FIRES [87] as well as any other practical 

measurement of similarity to be used. After clustering the entries of all features, the 

average number of entries in each cluster is calculated. Any cluster that includes entries 

less than 25% of their mean is excluded. Finally the T-test was used in [88] to cluster 

the same data that we will be testing at this work. 

 

5.3 Segregated-Based Clustering Algorithm SBC 
 

We got the data set ζ from [87]. ζ is a set a arrays that are processed by MIS as 

described in chapter 2. It includes samples from 142 individuals where 71 of them are 

autistic (AU) and 71 are typically developing (TD). The data covers 384,432 positions 

of the genome, (ζ ⊆ ℜ384,432). The set of all features is F = {F1,…,F384,432}. 

Presumably, there is at least one hidden subspaces comprising k features (k << 384,432) 

where the objects cluster in it in a meaningful way. We are seeking the subspace that 

clusters the objects into the purest possible clusters of AU or TD labels.  

We present SBC, which follows the customary bottom-up approach to build up the 

hidden discriminative subspace. It allows using any of the similarity measurements 

presented in the previous section. It employs a quality factor to remove insignificant 

features from the candidate features set. The quality factor is a percentage value 

representing the purity of labels in each cluster. The conventional clustering analyses 

are driven by the similarity measurement whereas SBC is driven by the similarity 

measurement that provides semi-pure clusters. The reduction of the complexity is 

considerable while the accuracy is maintained. 

 

After acquiring the candidate features set, which should be the smallest efficient 

possible set, a conventional forward-feature-selection approach is applied to build up 

the required subspace. It tests all possible cubic subspaces to choose one feature to be 

added to the required subspace. The same quality factor of segregating purity is applied 

at each step. 
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We applied the methods in [82-87] on our data to create the candidate features set. 

We then added the segregation quality factor to show the large reduction of the size of 

the candidate features’ sets. Then, we recursively built up a 13-D subspace which 

provided the purest possible segregation we achieved. Finally, we generated random 

data and mapped it to the formed subspace to assure the result’s validity, and we also 

applied the “leave-one-out” approach to test its stability. 

SBC assumes that the number of clusters, η, in the hidden subspace is known a priori. 

This number should be large enough to cover the heterogeneity in the object’s groups 

and the centroids are allowed to overlap at some features. SBC also assumes that all 

clusters have the same dimensionality, k, which is unknown at the beginning. The 

customary two-step approach is represented in the following sections. 

 

5.3.1 Collecting the set of candidate features: 

SBC allows using any of the techniques mentioned in section 5.2 to assemble the 

candidate features set. Then, it tests every selected feature to decide whether to save it 

or to ignore it. This test measures the purity of the labels AU and TD in each dense 

interval, unit, or cluster found in any 1-D feature using any of the previously mentioned 

methods. The purity is measured as: 

 

∑
=

=
η

1
),max(

142
1

i
ii AUTDpurity

            (5.1) 

     TDi: the number of TD labels in cluster i 

     AUi: the number of AU labels in cluster i 

 

Any feature that does not satisfy the purity requirement is excluded regardless of how 

dense it is. It is of note that the maximum value of purity is 1 and the minimum value is 

0.5. The number of clusters was varied from 3 to 12 and all mentioned methods were 

tested. We chose a supervised k-mean criterion in our test. 
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5.3.2 Bottom-up approach: 

 

After selecting the candidate features, SBC works as the following: It starts with 

Purity = 0.5 and with an empty subspace. Then, it tests all possible 3-D subspaces to 

create a promising features’ set of size 3. For each 3-D subspace, SBC projects the data 

into k clusters and computes the segregation purity as explained in Eq. 5.1. The 3 

features that exhibit the highest purity are named F1, F2, and F3. 

To add one more dimension to the synthesized subspace, SBC tests all 4-D subspaces 

that consist of the union of F1, F2, or F3 with any additional 3-D subspace from the set 

of the left candidates. The segregation purity is measured at each permutation. When 

the 4-D subspace that exhibits the highest purity is found, and if the purity level of this 

4-D subspace is higher than the purity level provided by the previous 3-D subspace, 

then the corresponding feature, Fi (i = 1,2, or 3), is added to the synthesized subspace. 

The other three features that form this 4-D subspace with Fi will be named F1, F2, and 

F3, and the same step will be repeated again. The technique continues repeating this step 

until the purity saturates or starts to decrease, then it adds the set of {F1, F2, F3}/{Fi} to 

the synthesized subspace and stops. Figure 5.1 illustrates the flowchart SBC. 

The computational cost of finding the candidate features’ set is always linearly 

proportionate to the whole space dimensionality and to the number of objects. But the 

complexity of building the required subspace is proportionate to the size of the 

candidate features’ set exponentially or cubically as shown in table 5.1. 

 

5.4 Experimental Results of Autism 
 

The 142 objects are located in a 384,432-dimension space. We applied the methods 

[82-87] to generate different sets of candidate features. The size of all candidate 

features’ sets for all methods was reduced to ~25% after considering the purity 

restriction. Any feature whose purity is less than 0.56 was excluded. 
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Figure 5.1: Flowchart of SBC  

 

 

Technique Complexity Remarks 

CLIQUE O(mk + Ck) 

  m: number of object 
  k: hidden subspace size 
  C: is a constant > 1 
  d: the whole space dimension 
      d >>> k 

ENCLUS O(mk + Ck) 
MAFIA O(mk + Ck) 

SUBCLU O(mk + Ck) 
FIRES O(mk + Ck) 

PreDeCon O(d.k2) 
SBC O(k3)	
  

 
Table 5.1: Complexity of different techniques 

 

 
 
 
 
 
 

    Snxk: the candidate features’ set 
    H: the synthesized hidden subspace. Start with H = []; 
    Pri: the promising features. Start with Pr1 = Pr2 = Pr3 = [];                     Start 
    M: size of H. Start with M = 0; 
    Ti: any arbitrary features ∈ S.   i = 1,2,3,…,9 
 
 
 
 
 
 
 
 
 
 

                      Purity = 0.5 
 

 
 
 

                           M = M + 1 
 
 
 
 
 
 
 
 
 
 

 
                       Test purity of all subspaces                    Test purity of all subspaces                 Test purity of all subspaces 
                           H ∪Pr1∪{T1,T2,T3}                                 H ∪Pr2∪{T4,T5,T6}            H ∪Pr3∪{T7,T8,T9} 
        
 
 
 
 
 
 
 
 
 
 
 

                             P1 = the highest purity of                       P2 = the highest purity of                    P3 = the highest purity of             
                                H ∪Pr1∪{T1,T2,T3}                 H ∪Pr2∪{T4,T5,T6}            H ∪Pr3∪{T7,T8,T9} 
 
 

 
Pmax: max(P1,P2,P3) 
Padd: Pri which yields Pmax 
R: {Pr1,Pr2,Pr3}/{Padd} 
Tmaxi: the three features {Tj,Tj+1,Tj+2} that yield Pmax. i = 1,2,3 

     i.e. Tmax1 = T1, T2, or T3. Tmax2 = T4, T5, or T6. Tmax3 = T7, T8, or T9 
 
 
 

                                      Purity = Pmax 
 

                      Remove Padd from S                Yes                                         No 
                                      Add Padd to H                                           Pmax > Purity                       H = H∪R                stop 
                                      Pr1 = Tmax1, Pr2 = Tmax2 
                                      Pr3 = Tmax3 
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For SBC, an unsupervised k-mean clustering algorithm was implemented for each 

feature. The number of clusters, k, was ranged from 3 to 12 with a fixed value of k for 

all features in every implementation. After finding the centroids of k-clusters, all 142 

data points are mapped into the nearest clusters using the Euclidian distance. Cluster’s 

purity was measured for each feature and the same restriction was applied. The results 

of all methods before and after considering the purity restriction are shown in table 5.2.  

 
 

Technique Size before purity 
restriction 

Size after purity 
restriction 

Complexity 
order 

CLIQUE 1202 339 O(10100) 

ENCLUS 2241 - → ∞ 
MAFIA 2332 577 O(10167) 

SUBCLU 1082 312 O(1093) 
FIRES 713 241 O(1072) 

PreDeCon 5478 1432 O(1010) 

SBC - 41 O(105) 
 

Table 5.2: The size of the candidate features’ set of different tecniques 
 

 

 

Cluster T-test Technique SBC 

 TD/AU status TD/AU status 
1 35/6 85%TD 66/16 80.5% TD 
2 9 /38 80% AU 3/5 62.5% AU 
3 5/16 76% AU 0/24 100% AU 
4 21/12 64% TD 0/11 100% AU 
5 - - 2/15 88.2% AU 

Purity 77% 85% 
 

Table 5.3: Comparative clustering results 
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It is clear from table 5.2 that the second step of the bottom-up approach of all 

methods, except SBC, can not be carried out at the given dataset due to the huge 

dimensionality. The exponential complexity for selecting 41 candidate features blows 

up to infinity. It is also noticeable that k-mean provides the smallest set. Under cubical 

growth of complexity, the computational cost increases 200-fold when the candidate 

features’ set’s size increases from 41 to 241 which is the minimum size any other 

method can provide. The same data were tested in [88] and a comparison with their 

results is presented in table 5.3. 

 

5.4.1 Results and Conclusion 

The choice of using 5-clusters was found to be the best. The synthesized subspace 

consists of 13-dimensions and it is found to be the most discriminative subspace with 4 

AU clusters and one TD cluster. The purity is 85.2% (121 individuals are classified 

correctly) with two 100% pure clusters containing only autistic individuals. See table 

5.3. It is of note that the TD cluster has the least norm which corresponds to the least 

variation of DNA copy number as shown in figure 5.2. 

More interesting, it is found that the objects were clustered based on the source of 

their DNA samples! All DNA samples in the fifth cluster were obtained from blood 

cells except one individual whose sample was obtained from transformed cells. All AU 

individuals in cluster # 2 and 3 were obtained from transformed cells except 2 

individuals in cluster # 3 were obtained from the whole blood cells. Cluster # 4 is a mix 

with 7 AU individuals from the whole blood cells and 4 from transformed cells. The 

information about the source of the DNA was unknown during the process and it proves 

the robustness of our method as it can capture the slight differences of the readings of 

the same population to divide them into two groups without misidentifying them. 

80% of the individuals that are classified as TD are typically developing in real. 92% 

of individuals that are classified as autistic are autistic in real. 77.5% of the AU 

individuals were classified AU, and 93% of TD individuals were classified TD. 
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Figure 5.2: Centroids of 5 Clusters in 13-D sup-space 

 
 

It is important to emphasize that the result of SBC is not unique. It provides multiple 

synthesized subspaces and they share the same purity and the majority of their features 

but they are different in their stability and validity. The “leave-1-out” test was applied 

to measure the controids’ stability. The subspace whose centroids have the least norm of 

variations was chosen. We also created a set of 1000 13-D arrays with completely 

random values to test the validity of our subspace. The arrays’ random values are 

independent and they vary uniformly from the minimum to the maximum values of the 

range at each dimension. A Euclidian distance = 1 is used as a maximum threshold to 

permit a point to belong to a cluster. All true labels fell into their clusters with the 

required distance whereas no random data points were close enough to be accepted by 

any cluster.  
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5.5 The Association of DNA Copy Number Variations 

with Prostate Cancer Therapy 
 

Healthy prostate tissue is stabilized by specific required androgens that bind to 

specific receptors known as androgen receptors AR [89].  The locus of AR covers about 

110kkDa of the male X-chromosome. The growth of prostate cancer is contingent to the 

normal activity of the AR locus, and therefor, it can be controlled by using androgen 

depletion [90]. Androgen depletion restrains the normal activities of the AR which is 

needed for the growth of the disease.  

A new phenomenon has been noticed recently where the disease becomes out of 

control even with the continuation of using the same androgen depletion. We 

investigated the copy number variation on the AR locus in two groups of male 

individuals. The datasets are publicly available at http://www.ncbi.nlm.nih.gov/geo/ 

with GEO accession numbers GSE18333 and GSE14996. The first group responds to 

the therapy (CWR22Pc cells) while the second group does not (CRPCa cells). Large 

copy number variations are detection solely in the AR locus of the individuals of the 

second group. We concluded in [92] that the excessive duplication (>50 folds) in the 

CRPCa cells altered the sequence of the AR locus and created AR isoforms which do 

not respond to the therapy and at the same time enhances the growth of the disease. 

 

5.6 Conclusion 
  

We presented a novel algorithm to data-mine in huge dimensional datasets to discover 

patterns of similarities among different objects in an efficient time. We applied the 

algorithm at autistic samples and advanced prostate cancer patients. We discovered 

patterns of copy number variation that can indicate or predict the existence of the 

phenotype in any other sample. 
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Chapter 6 
 
Conclusion and Future Work 
	
  

The field of analyzing the human genome and detecting the abnormalities in its 

structure remains one of the most promising areas in the way to a full understanding of 

the human genome and its functions. Several diseases and phenotypes have been proven 

to be directly effected by certain types of variation of the genome whether in its 

structure as copy number or in its production as genes and protein. The field is certainly 

very promising and it has a great deal of potential in the treatment and diagnosis of 

several diseases. We hope that this work will provide a useful contribution to the field 

and we hope that it will inspire researchers to accumulate the knowledge necessary to 

complete the human genetic map. 

We discussed three main areas in this work and we provide here some potential work 

that may improve them. 

 

6.1 Two Channel Approaches 
We presented a comprehensive experiment of the two-channel approaches. We 

presented four models based on the Band-Pass Wavelet Transform, Uncovered Markov 

Model, Truncated Likelihood Ratio Test, and Minimum Interval Score. We also 

discussed the reproducibility of the receiver operating characteristic curves (ROC). We 

ran an experiment to test the stability of the ROC curves and we proved that they are 

stable at a relatively narrow band where the sensitivity is high and the false alarm rate is 

low. This band is the preferred band for any experiment and the only band that provides 

acceptable results. 
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Several parts of the two-channel approaches need to be addressed: 

1. The distribution of the observations is still not exactly known. Almost all the 

existing algorithms, as well as our models, assume the Gaussian process. However, 

the exact distribution of the microarrays observations carries a slightly heavier tails 

than the Gaussian distribution and that generates an amount of false rate much 

higher than what is expected based on the theory. We specifically emphasized in the 

sensor network’s results that the last 15% of each side of the distribution do not fit 

with the Gaussian model. The closest model to the distribution, other than the 

Gaussian, is the Logistic distribution. However, it also does not fit the observations 

perfectly. A new model for the distribution may provide a significant improvement 

to the field to reduce the generated error. 

2. The reproducibility of the ROC curves using different data is an intriguing subject 

that needs to be addressed fully and thoroughly. We ran an experiment of a cross-

validation approach to prove it, but we believe that the topic can be addressed better 

if more datasets from different labs and platforms are used. 

 

6.2 Single-Channel Approach 
We presented the first single-channel approach in the field. It analyzes the array 

entirely within itself without using a reference to make a comparison. Its results are 

quantified in numbers of DNA copies as opposed to the two-channel approaches where 

the results are comparative which only indicates if the test has more or less copies than 

the reference. We believe some parts of the model can be improved: 

3. The Universal Threshold Adjustment to remove the bias of the imperfect scanner 

still requires some improvement. This bias is significant and persistent in all 

microarrays and it is shocking that a very little effort has been dedicated to address 

this matter in the literature. We showed that Local Adjustment is better in removing 

the bias but it alters the real variation of the DNA copy number. The UTA removes 

approximately 80% of the bias while preserving the real variation without alteration. 

An improvement to this performance is definitely desired.  
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4. We investigated the saddle-point approximation under the Bayesian criteria and 

we proved its accuracy and efficiency in analyzing the non-homogenous 

environment of the microarrays. The approximation is also applicable under the 

Neyman-Pearson theory but we have not explored this part yet. Neyman-Pearson 

theory provides the Uniformly Most Powerful Test to analyze the microarrays. 

Employing the saddle-point approximation in the analysis will provide a strong 

tool that is accurate, reliable, and time efficient. 

5. We explored the variability and the stability of the human genome. We analyzed 

1258 samples of 19 different populations from several parts of earth. However, 

this number is infinitesimal to generalize conclusions about the 6.97 billion 

humans alive now. The margin of error is considerably higher than reaching 

reliable conclusions that can fit all human beings.  More samples are needed to 

get results with a narrow margin of error with a higher level of confidence about 

the validity of the conclusion. 

 

 

6.3 Subspace-Clustering Algorithms 
We presented a new model for data-mining the human genome. The signals of the 

human genome have an extremely high dimensionality which require a significant 

reduction of the computational load to be analyzed. The goal of this model is to reveal 

certain patterns of copy number variation in special groups. We detected highly 

correlated variant regions in autistic and prostate cancer samples. The applications of 

this model are countless especially with the availability of tens of thousands of DNA 

samples on the National Center for Biotechnology Information’s website. Applying the 

model to a special group whose individuals share a certain phenotype might provide a 

biological signature of that studies phenotype. The biological signature can be 

employed to detect the existence of a disease or the susceptibility of endorsing it in the 

future. It also will be very crucial in preventive healthcare and early treatments. 
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