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ABSTRACT 

Although our knowledge of neuronal function and regional activity has been tremendously 

enriched in the past decades, coordination of these neurons to form the complex behaviors has yet 

to be understood. The neuronal pathways (also named connectome) form the structural 

foundation of the dynamic circuits in the brain. The recent interests in connectome and brainwide 

database have imposed a pressing need for high-resolution imaging techniques that allows large 

coverage. This dissertation develops a novel multi-contrast optical coherence tomography (MC-

OCT) technique for the application of brainwide imaging and architectural mapping in 3D at high 

spatiotemporal resolution, with an emphasis on the connective tracts. The image contrasts 

originate from intrinsic optical properties of the brain tissues in which light propagates, back-

scatters, attenuates, and changes its polarization state. Due to a birefringence property of the 

myelin sheath, MC-OCT specially targets the white matter, with qualitative architecture and 

quantitative orientation maps produced. The fiber tracts with diameters of a few tens of 

micrometers are visualized and tracked in 3D. As a further advance, a serial optical coherence 

scanner (SOCS) integrating the MC-OCT and a Vibratome slicer is realized for large-scale brain 

imaging and mapping at high resolution. The 3D fiber architecture and fiber orientation in rat 

brain are reconstructed at a resolution of 15 x 15 x 5.5 µm3. SOCS enables systematic validations 

of diffusion magnetic resonance imaging (dMRI) at microscopic resolution. A cross-validation in 

a postmortem human medulla sample shows remarkably good agreement on fiber structures and 

orientations between the two techniques. In addition, SOCS resolves intricate fiber patterns that 

are not captured by the dMRI. Taken together, the serial MC-OCT technique has the potential to 

bridge cross-scale investigations for a hierarchical view of neuroanatomical connections, thus 

opening intriguing applications in brain mapping and neural disorders.    
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Figure 6.3 Evaluation of the effectiveness of filtering during ST computation. (A) The ST-

orientation maps are compared in three filtering conditions: left – no filtering, middle – with 

nonlinear anisotropic diffusion filter on the SOCS image, right – with nonlinear anisotropic 
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fiber orientations within each ROI are plotted with two Gaussian kernels: 𝐾10,2 and𝐾20,4. Blue: 
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orientation difference in the white matter (with a retardance threshold of 25°) is shown on the 
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right. The color-coded difference image is overlaid on the en-face retardance image for a better 

presentation of the anatomy. Scale of the colorbar: 0 – 35; unit: degree. 113 
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±0.5 x FWHM of the histograms are plotted from top to bottom for ROI groups 1 – 5, 
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value which highlights the white matter. Directions are labeled on the orthogonal planes as well. 
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Figure 6.7 3D ST-orientation constructed from comprehensive optical sections of SOCS. (A) 

Orthogonal views of the fiber orientation map. The orientation is color-coded as indicated by the 
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(parallel to the illumination beam of SOCS) are masked out on the images, because of the lower 

signal intensity compared to the surrounding gray matter. The fibers in the putamen on the 

coronal section are separated into three groups with different preferable directions. (B) Volume 

rending of the 3D orientation map provides a perspective view. 119 

Figure 6.8 Verification of 3D ST-orientation on the en-face plane. The 3D ST-orientation is 

projected onto the xy-plane, transformed into an en-face ST-orientation by using a histogram 

approach within one optical scan (left), and correlated with the en-face optic axis orientation 

(middle). The color represents fiber orientation as indicated by the color wheel, and the brightness 
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is manipulated by the en-face retardance. The absolute orientation difference of computation and 

measurement in the white matter (with a retardance threshold of 25°) is shown on the right. The 

en-face retardance image is overlaid for a better understanding of the anatomy. Scale of the 

colorbar: 0 – 35; unit: degree. 119 

Figure 6.9 Tractography of 3D SOCS images. The tracks are computed from the structure tensor 

applied on the stitched optical sections of the whole sample. The directional information of the 

tracks is color-coded in every segment according to the cube at the right-bottom corner. For a 

better visualization purpose, only 2% of the tracks are presented. 121 

Figure 6.10 Tractography of SOCS en-face stack of retardance. The directional information of the 

tracks is color-coded in every segment according to the cube at the right-bottom corner. The 
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14% of the tracks are presented. Fibers passing through specific ROIs are shown in B and C. 

(B)The ROI is placed at the junction between the ac and the fornix (gray sphere, indicated by the 

black arrow). (C) The ROI is placed on the ac (blue sphere). 122 

Figure 7.1 Flow chart of cross-validation between dMRI and SOCS. A brain sample is scanned 

by dMRI and then by SOCS. Spatial co-registration between the two modalities are completed 

first, and then the orientation vectors are re-oriented accordingly. With the success of 3D co-

registration, the fiber architectures and orientations are compared between dMRI and SOCS. 129 

Figure 7.2 SOCS scan schemes. A. Eight optical scans covering the whole surface were applied 
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Figure 7.4 En-face reflectivity and retardance images of the medulla oblongata. Left: A slice 
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Figure 7.6 Spatial co-registration of SOCS and DTI images. Retardance (left column) and FA 
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Figure 7.11 Fiber orientations in ROIs. A. Four ROIs are shown on SOCS (left) and DTI (right) 
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CHAPTER 1  INTRODUCTION 

1.1 OVERVIEW 

The nervous system is a network of billions of neurons and supporting cells communicating with 

each other through trillions of synapses. Groups of neurons reside in specific nodes, and construct 

intricate connections with others located near and far [1]. Since the pioneering work of Santiago 

Ramón y Cajal who began to describe the anatomical pathways that link different areas of the 

brain into functional networks, the endeavors on advanced neuroimaging techniques have never 

been stopped. Single-neuron recording [2] and molecular phenotyping in animal models have 

indicated that characteristic firing properties and biochemical markers are associated with 

neuronal functions. On the other hand, system-level functional brain imaging techniques such as 

electroencephalography [3], magnetoencephalography [4], positron emission tomography [5, 6], 

functional magnetic resonance imaging [7] and near-infrared spectroscopy [8] have been linking 

regional brain activity with a wide range of cognitive functions in humans. The recent focus on 

systematic generation of whole-brain datasets, for example, the Allen Mouse Brain Atlas for gene 

expression [9] and the ongoing Mouse Brain Architecture Project [10], has created a pressing 

need for the development of new instrumentation viable for high-throughput whole-brain 

imaging. 

Parallel to the “node” studies within the network, the “path” explorations called neuronal 

connectivity or connectome have been attracting vast attentions more recently. A fundamentally 

unsolved question in neuroscience is how the neurons are coordinated and communicated with 

architectural pathways and dynamic circuits to form perception, thought, emotion and motion. To 
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reach these answers, understanding the neuronal connectivity becomes crucial, as the connectome 

forms the structural foundation underlying neural circuits, and bridges genotypes and behavioral 

phenotypes [11, 12].  

Neuronal connectivity exists at multiple levels: macro-, meso- or micro-scale. At the macroscale, 

long-range, and regional connections can be inferred from imaging white matter fiber bundles 

through diffusion MRI [12] and computational techniques based on correlations in measured time 

series in living brain [14-16]. The Human Connectome Project has paved such a framework 

during the past five years [17, 18]. The regional-based connectivity revealed by diffusion MRI 

studies is relatively with low resolution (~mm) and necessarily require validation. At the 

microscale, connectivity is described in terms of individual synapses, primarily through electron 

microscopy with nanometer-scale resolution [19]. So far, C. elegans is the only species whose 

wiring diagram of the 302 neurons is completely reconstructed [20]. The enormous time and 

resources required for this approach makes it best suited for relatively small volumes of tissue (<1 

mm3).  

The meso-scale is between the micro- and macro-scales, where both local connections and long-

range projections can be established. Histological tracing studies have generated a rich yet 

scattered knowledge of brain architecture in a wide range of animal species. Neural tracers were 

injected into certain brain regions and the circuitry starting from or terminating at those neuronal 

populations were visualized in later dissected brains, each of which contribute to an 

extraordinarily sparse matrix of high dimensions. The Brain Architecture Management System 

database [21] and Collations of Connectivity data on the Macaque Brain database [22] are two 

examples of ongoing efforts in mapping mammal brains. To date, our knowledge of whole brain 

connectivity is fragmented, lacking of a comprehensive apprehension in any single vertebrate 

species. With recent advances in both computing power and optical imaging techniques, it is now 

feasible to systematically map connectivity throughout the entire brain [23]. However, 
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considering the time and resources the tracer studies take for a full reconstruction of brain 

connectivity in any single species, new techniques that allow dense sampling and reconstruction 

with reasonable computational costs are striking at the mesoscale.  

Understanding human brain connectivity is extremely challenging at the meso- and micro-scale. 

Much of our theoretical knowledge stems from very old sources or gets inferred from other 

species. Burgel and colleagues [24] developed a probabilistic atlas localizing major fiber bundles 

based on myelin stain of postmortem human brains, but those maps are rather coarse. The neural 

tracers, on the other hand, cannot be injected to living human brains, which make this otherwise 

widely adopted approach exclusively inappropriate for human studies. New staining method 

permeable to postmortem human brains is required. From another perspective, innovative 

imaging techniques that do not require exogenous labeling to reconstruct the connective maps 

would be a great desire.    

1.2 MOTIVATION 

The goal of this dissertation is to build up a high-resolution optical imaging system that is viable 

for large-scale brain imaging with an emphasis on the neuroanatomical tracts and connectivity, 

and that could significantly contribute to the realizations of a full connectome in mammalian 

brains. Such an optical imaging system should preferably have the following attributes: 1) It 

probes diverse structures in the brain, while unveiling a signature characteristic of the fiber tracts 

at the same time; 2) It has a brainwide coverage, and the full reconstruction is approachable with 

a reasonable time frame. 3) The imaging and reconstruction procedures are reliably conducted 

with high throughputs and easily scalable for various species including human; 4) The technique 

can be validated and is compatible with established neuroanatomical methods. 
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The emergence of optical coherence tomography (OCT) [25] offers a viable solution for 3D 

reconstruction of biological tissues with high spatiotemporal resolution. OCT, analogous to 

ultrasound imaging, makes use of an optical interferometry technique to provide cross-sectional 

images of tissues up to a few millimeters. The signal is intrinsically generated by the light back-

scattered from the sample, thus enabling non-invasive or minimally invasive in-vivo studies and 

also facilitating ex-vivo investigations with minimal requirements for sample preparations.  

OCT has proved to be a useful tool in a wide range of applications in neuroscience and 

neuroimaging [26]. Since invention, OCT has been most widely established in the clinical 

applications of ophthalmology, especially for evaluating the conditions of age-related macular 

degeneration [27]. The capabilities of visualization and quantification of the multiple neuronal 

layers in retina have provided an easily accessible window for central nervous system diseases 

such as multiple sclerosis [28]. Early studies have made noticeable efforts on brain tumor 

detections. OCT has been used for differentiating normal cortex from experimentally induced 

cortical dysgenesis in the adult rat neocortex [29] and imaging a metastatic melanoma in-vitro 

human cortex [30].  Unlike conventional histology, OCT can perform in-vivo imaging on a single 

specimen over time. In developmental neurobiology, studies have been performed on a few 

animal models including Xenopus central nervous system [31] and zebra fish embryos and eggs 

[32]. More recently, feasibility of OCT probe guiding neurosurgical interventions such as deep 

brain stimulation has been discussed [33]. Capabilities of OCT in localizing nerves and blood 

vessels have been investigated in peripheral nerves on rabbit [34].  Catheter OCT has been 

reported and tested for in-vitro human brain [35] and in-vivo rat brains [36]. In functional studies, 

OCT combined with other optical imaging modalities has been successful in the studies of 

vasculature and hemodynamics of the brain in disease models, such as stroke and addiction [37-

39]. Intrinsic optical signal changes in OCT have been found in isolated nerves during cellular 

physiological events, which have been directly correlated with changes in membrane potentials 
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[40]. Transient structure deformations have been suggested during nerve excitations by a phase 

sensitive optical low-coherence reflectometry [41].  

Despite the diversity of applications, systematic investigation on brainwide neuroimaging and 

neuronal connectivity using OCT is in scarcity. During the past several years, we have made 

efforts to extend the OCT applications into the regime of brain imaging and mapping through 

technical innovations. The rationales to use OCT on brain imaging and mapping are based on the 

following facts: 1) OCT provides 3D imaging with high spatial-temporal resolution, thus provides 

a solution for microstructure delineation and also substantial spatial coverage with a tractable 

time period; 2) The signal of OCT originates from local optical properties in the tissue, thus 

produces dense sampling and reconstruction; 3) The application of OCT can be extended with 

contrast-enhancing methods such as nano-probe and incorporated with various microscopy 

techniques that allows molecular phenotyping.  

However, the application of OCT in brainwide neuroimaging also faces great challenges that 

remain to be solved. These challenges cause uncertainties and concerns that may compromise the 

potentials the technique would possibly bring to neuroscience fields. For a brief summary of the 

most critical challenges in this regard, we ask the following questions: What are the optical 

signals within the brain that give rise to the delineation of microstructures and the global 

organizations? What are the contrasts available for visualization and quantification of connective 

tracts? How should we design the system that is suitable to reveal as much information as 

possible? How can the whole-brain imaging be realized in a reasonable time frame? How 

complex are the 3D reconstruction algorithms? Can this method be validated by standard 

histology approaches? Can this method be incorporated with other conncectivity studies and 

provide important perspectives? 
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This dissertation addresses the aforementioned questions in the context of a novel multi-contrast 

(MC) OCT system tailored for imaging large-scale complex brains. A central focus is given on 

neuroanatomical pathways and connectivity. Strategies on comprehensive imaging of rat brains 

and a portion of human brain are established in details. To the end, we show that an integrated 

framework of multi-modality imaging and cross-scale validation could potentially approach the 

complete wiring diagrams in complex brains in the future. 

1.3 ORGANIZATION OF THE DISSERTATION 

The organization of the thesis is described as follows. 

Chapter 2 reviews the principle and basic operations of OCT. Varieties of optical setups are 

introduced with their pros and cons. The extensions of OCT techniques with particular 

applications are discussed at the end. 

Chapter 3 presents the MC-OCT system based on the polarization-maintaining fiber technique. 

With a single acquisition, the system is able to generate different perspectives of tissue 

microstructure and function. The system performance is characterized and biological sample 

images are demonstrated. 

Chapter 4 uses the MC-OCT system to image ex-vivo rat brains. The system is capable of 

differentiating the gray and white matter, and especially target the white matter with the 

polarization contrasts. Spatial organizations and quantitative orientations of fiber tracts are 

shown. Fiber maps at micrometer scale resolution are created from the 3D optical sections. 

Chapter 5 develops a serial optical coherence scanner (SOCS) for large-scale brain imaging. 

SOCS integrates the MC-OCT that was developed in Chapter 3 with a vibratome slicer to achieve 

both high resolution and large spatial coverage of macroscopic brains. This technique enables 3D 
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reconstruction of whole-brain without necessity of complicated registration algorithms. Fiber 

maps of ex-vivo rat brain with a spatial resolution of 15 x 15 x 5.5 µm3 are illustrated.   

Chapter 6 develops a quantitative analysis on the optical images to realize 3D fiber orientation 

and tractography in the brain. A structure tensor algorithm is implemented on the SOCS images 

described in Chapter 5, which it is also applicable to conventional OCT images. The algorithm 

performance is evaluated by optical measures in SOCS. Tractography is readily achieved with the 

tools developed for diffusion MRI techniques. The computational model provides a 

complementary approach to optical measures to achieve quantitative investigations.  

Chapter 7 conducts a cross-validation study of SOCS and diffusion MRI on a postmortem human 

brain tissue. A strategy to achieve co-registration between the two imaging modalities has been 

established. Images of SOCS and dMRI from the same sample illustrate remarkable agreements 

in fiber architectures and orientations. In addition, SOCS reveals complicated fiber patterns that 

are not resolved by dMRI. This study shows great potential for cross-modality investigation in 

normal and diseased brains.  

Chapter 8 concludes the dissertation with an outlook. 
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CHAPTER 2  OPTICAL COHERENCE TOMOGRAPHY 

2.1 INTRODUCTION 

This chapter reviews the basics of the optical coherence tomography (OCT) techniques. OCT was 

firstly introduced in 1991 [25] as a high-resolution imaging technique that supports non-invasive 

biomedical studies with 3D perspective. Distinguished from previous optical imaging techniques, 

several characteristics are outstanding in OCT. 1) The axial resolution is independent of the 

lateral resolution; therefore, high axial and lateral resolution can be simultaneously achieved in a 

system. The resolution of OCT approaches that of a histological image. 2) The interferometric 

technique supports high dynamic range and sensitivity (>100 dB); therefore, imaging of weakly 

scattered structures in a highly scattering medium is possible. 3) The non-contact property 

provides a solution for non-invasive or minimally-invasive imaging in in-vivo studies and clinical 

applications. Inspired by both technical enhancements and application demands, diversity of OCT 

systems that extends the morphological measures to more complex structural and functional 

aspects were developed later on, and have proved to convey important clinical and pre-clinical 

values. Among those, the polarization-sensitive (PS) OCT and Doppler OCT have been most 

widely used. In this chapter, the basic principles of OCT and its technical implementations are 

reviewed. The concept of multi-contrast OCT is paved at the end along with the introduction of 

various OCT systems.  

2.2 PRINCIPLE OF OPTICAL COHERENCE TOMOGRAPHY (OCT) 
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OCT is built upon the technique of low temporal coherence interferometry (LCI). Majority of 

OCT setups recruit a Michelson interferometer based scheme (Figure 2.1). The light from low 

temporal coherence light source is split into a reference field Er and a sample field Es. The sample 

field is focused to the inside of tissue (some point beneath the surface) through an objective lens. 

Light back scattered from the tissue enters into the interferometer and mixed with the reference 

field, which is acquired by the photodetector. The OCT signal is generated by single backscatters 

from the tissue. Although the multiple scattered light does not contribute to the OCT signal, it 

adds up the background noise, which causes the reduction of imaging contrast, resolution and 

penetration depth.  

 

Figure 2.1 Basic schematic of OCT setup.  

Constructive interference occurs when the mismatch between the optical path lengths of the 

sample and reference arms is within one coherence length. Otherwise, there is no interference 

fringe observed. The mutual coherence function of light waves from sample and reference arms 

are added up in the interferometer, and the interference of light waves is usually described as a 

second-order cross-correlation event. The averaged intensity exiting the interferometer is 
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𝑰̅𝒅(𝝉) = 𝟎. 𝟓(〈𝑰𝒔(𝒕)〉 + 〈𝑰𝒓(𝒕)〉) + 𝑮𝒔𝒓(𝝉) 2.1 

𝐼𝑠 and 𝐼𝑟 are the mean intensities reteruning from the reference and sample arms of the 

interferometer. They contribute to the dc signal at the detector. The third term, dependent on the 

time delay 𝜏 = ∆𝑧 𝑐⁄  between the two beams, where where ∆𝑧 is the path difference between the 

beams and c the speed of light, represents the amplitude of the interference fringes that carry the 

information about tissue structures. Assuming that the tissue behaves as an ideal mirror without 

altering the sample field, the correlation amplitude then depends on the temporal coherence of the 

source. The inteferogram 𝐺𝑠𝑟(𝜏) is the real part of the cross-correlation of the two interfering 

beams, given by 

𝑮𝒔𝒓(𝝉) = 𝑹𝒆{〈𝑬𝒔
∗(𝒕 + 𝝉)𝑬𝒓(𝒕)〉} = |𝜞(𝝉)|𝒄𝒐𝒔[𝟐𝝅𝒗𝟎𝝉 + ∅(𝝉)] 2.2 

𝛾𝑠𝑡(𝜏) is the complex temporal-coherence function of the source with argument ∅(𝜏), 2𝜋𝑣0𝜏 is 

the phase delay between them, with 𝑣0 = 𝑐 𝜆0⁄  being the central frequency of the source.  

The complex cross-correlation function of 𝛤(𝜏) can be obtained from its real part by 

𝜞(𝝉) =
𝟏

𝟐
𝑮(𝝉) +

𝒊

𝟐
𝑯𝑻{𝑮(𝝉)} 2.3 

where HT denotes the Hilbert transform. The envelope of the coherence function in the form of 

𝛤𝑠𝑟(𝜏) = 𝐴𝑠𝑟(𝜏)𝑒
𝑖∅𝑠𝑟(𝜏) is  

𝑨𝒔𝒓(𝝉) =
𝟏

𝟐
√(𝑮𝒔𝒓(𝝉))

𝟐
+ (𝑯𝑻{𝑮𝒔𝒓(𝝉)})

𝟐 2.4 

And the phase is given by 

∅𝒔𝒓(𝝉) = 𝒂𝒓𝒄𝒕𝒂𝒏 [
𝑯𝑻{𝑮𝒔𝒓(𝝉)}

𝑮𝒔𝒓(𝝉)
] 2.5 

According to the Wiener-Khinchin theorem, the power spectral density 𝑆(𝑣) of the wave is 

related to the temporal correlation of the source 𝛤(𝜏) as a Fourier transform (FT), 
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𝑺(𝒗) = 𝑭𝑻{𝜞(𝝉)} 2.6 

And the cross-spectral density function of the sample and reference beams is derived by the FT of 

the cross-correlation function. The following equation forms the basis of the Fourier domain 

OCT. 

𝑺𝒔𝒓(𝒗) = 𝑭𝑻{𝜞𝒔𝒓(𝝉)} 2.7 

A simple tissue scattering model treats the interference signal as a convolution of the sample 

response function or backscattering profile ℎ(𝜏) with the temporal coherence of light source 

𝛤𝑠𝑜𝑢𝑟𝑐𝑒(𝜏) [42]. By combining Eq. 2.2, the detected interference signal is given by 

𝑮𝒔𝒓(𝝉) = 𝑹𝒆{𝜞𝒔𝒓(𝝉)) = 𝑹𝒆{𝜞𝒔𝒐𝒖𝒓𝒄𝒆(𝝉) ∗ 𝒉(𝝉)} 2.8 

The Fresnel-reflecting interfaces sample model associates the amplitude reflectivity √𝑅(𝜏) with 

the backscattering profile ℎ(𝜏) [43]. When multiple scatters come from different layers in the 

sample, Eq. 2.8 can be rewritten as 

𝑰𝒅(𝝉) = √𝑰𝒔𝑰𝒓√𝑹(𝝉) ∗ |𝜞𝒔𝒐𝒖𝒓𝒄𝒆(𝝉)| 𝒄𝒐𝒔[𝟐𝝅𝒗𝟎𝝉] 2.9 

This convolution model has been used in many studies [44-47] to measure the locations and 

reflectivity of tissue layers in a manner analogous to pulse echo ultrasound, with |𝐼𝑑(𝜏)|
2 

interpreted as a reflectivity profile analogous to an A-mode ultrasound scan. 

2.3 OCT PARAMETERS 

2.3.1. Resolution 

The axial resolution of OCT is determined by the size of round trip coherence length (lc). 

𝒍𝒄 =
𝟐𝒍𝒏𝟐

𝝅

𝝀𝟎
𝟐

∆𝝀
≈ 𝟎. 𝟒𝟒

𝝀𝟎
𝟐

∆𝝀
 2.10 

where 𝜆0 is the central wavelength and ∆𝜆 is the bandwidth (full width at half maximum, 

FWHM) of the source.  
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As in conventional microscopy, the lateral resolution ∆𝑥 is related to the wavelength and the 

sample path optics that focuses the beam on a sample, and is given by 

∆𝒙 =
𝟒𝝀𝟎
𝝅

𝒇

𝒅
 2.11 

where d is the spot size on the objective lens and f is its focal length.A specific problem in high-

resolution OCT is the depth dependence of the lateral resolution. The depth of focus (DOF) is 

defined as the distance between the planes where the width of beam size becomes √2𝜔0 (Figure 

2.2). 

𝑫𝑶𝑭 =
𝟐𝝅𝝎𝟎

𝟐

𝝀𝟎
 2.12 

 

 

Figure 2.2 Lateral resolution and depth of focus 

2.3.2. Depth  

The typical light penetration of OCT is up to a few millimeters in tissue. With increasing depths, 

the number of photons detected by the photodetector contains more from multiple-scattering 

event. These photons can have their trajectories outside of the probing beam. The multiple 

scattering events will reduce time-coherence as well as space-coherence of these photons. 

Eventually, incoherent diffuse photons will dominate as light propagates through. The probing 

depth in OCT is defined as the depth at which double scattered photons begin to dominate. 
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The transition from single scattering to diffuse scattering has been experimentally studied [48, 

49]. Gandjbakhche et al [50] showed that in the case of anisotropic random walks, the probability 

of a photon experiencing n scattering events and then returning to the surface is proportional to 

n(1 − g)/(1 + g). Hence, the relative number of multi-scattering photons detected decreases with 

increasing scattering anisotropy g. On the other hand, increasing the NA causes detection of 

photons with a higher number of scattering events [48]. This dependence, however, is not as 

pronounced as the dependence on the optical anisotropy.  

Since scattering and absorption in tissue monotonically diminishes with increasing wavelength at 

the near visible spectrum, the red end and the near-infrared (NIR) wavelength range is preferred 

in OCT. In this range, biological tissues have a scattering anisotropy around 0.9 [51], and hence 

the forward scattering photons dominate the detection.  

Penetration depth is a critical parameter for in-vivo biomedical imaging studies. Since scattering 

is the major limitation of light penetration, there have been attempts to reduce that effect by 

matching the refractive indices of tissue with optical clearance. By applying anhydrous glycerol 

on the skin, a 50% increase of transmittance was achieved in OCT [52]. Tuchin et al [53] 

discussed index matching to enhance the optical penetration depth of blood. 

2.3.3. Sensitivity 

The sensitivity of OCT is referred to the weakest sample reflectivity RS,min yielding a signal power 

equal to the noise of the system. Sensitivity S can be defined as the ratio of the signal power 

generated by a perfectly reflecting mirror (R = 1) and that generated by RS,min. Since these signal 

powers are proportional to the corresponding reflectivitiy we have: 

𝑺 =
𝟏

𝑹𝑺,𝒎𝒊𝒏
 2.13 

The dominating noise sources in OCT system are shot noise 〈∆𝑖𝑠ℎ
2 〉, excess intensity noise 〈∆𝑖𝑒𝑥

2 〉, 

and receiver noise 〈∆𝑖𝑟𝑒
2 〉. The receiver noise can be calculated from manufacturer’s specifications 
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or modeled as thermal noise. In the case of broadband light source the photocurrent noise comes 

from two factors: shot noise due to photocurrent variance and excess noise due to self-beating of 

the broadband light waves [54]. The signal-to-noise ratio (SNR) is the ratio of the mean signal 

power and the noise power: 

𝑺𝑵𝑹 =
𝟐𝜶𝟐𝑷𝒔𝑷𝒓

〈∆𝒊𝒔𝒉
𝟐 〉 + 〈∆𝒊𝒆𝒙

𝟐 〉 + 〈∆𝒊𝒓𝒆
𝟐 〉

 2.14 

𝛼 is related to the quantum efficiency 𝜂 of the receiver with 𝛼 = 𝑞𝑒𝜂 𝐸𝑣⁄ .  

In an optimized OCT system, the shot noise dominates the total noise power, and the sensitivity 

linearly depends on the source power. At lower power the receiver noise would limit the 

sensitivity, and at higher power no additional sensitivity could be gained due to the restraint of 

excess noise. In shot-noise limited regime, sensitivity of S = 1011 and higher have been reported. 

Figure 2.3 illustrates the sensitivity of an OCT system as a function of reference reflectivity for 

different wavelength bandwidths. In a similar plot, Rollins and Izatt [55] applied the parameters 

of tissue scattering in OCT. Podoleanu [56] discussed the unbalanced versus balanced operation 

in OCT, indicating that the balanced OCT configuration has SNR benefit in high-speed OCT 

systems, in addition to the attenuation of mechanical noise and the avoidance of auto-correlation. 

 

Figure 2.3 Sensitivity curves of an OCT system as a function of logarithm reflectivity R from reference arm. 

Psource = 1.5 mW, mean wavelength 𝝀𝟎 = 𝟖𝟑𝟎 𝒏𝒎; quantum efficiency 𝜼 = 𝟎. 𝟖. The corresponding sensitivity 

curves due to individual noise sources are shown as well. Reprinted from Fercher et al (2003) with permission. 
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2.3.4. Phase noise 

Noise on the phase of the interference pattern is related to the intensity SNR [57]. The phase 

noise, 𝜎𝜑
2, in radians is inversely proportional to the SNR in linear scale as follows 

𝝈𝝋
𝟐 =

𝟏

𝟐𝑺𝑵𝑹
 2.15 

 

 

Phase noise is largely influenced by mechanical and thermal vibrations too; Eq. 2.15 does not 

account for these environmental perturbations. 

2.4 IMPLEMENTATIONS IN TIME AND FOURIER DOMAINS 

2.4.1. Time domain optical coherence tomography (TD-OCT) 

The time domain (TD) OCT employs a depth-scan mechanism in the reference arm. It makes use 

of LCIs with different path length in the reference to detect depth localization of scatters where 

light re-emits in the sample. As the optical path in the reference arm cycles between shortest and 

longest possible lengths, a so-called depth profile or A-line is acquired. A broadband light source 

is used with an optical isolator that protects the source from back reflection of the interferometer. 

The light coupled into the interferometer is split between the sample and reference arms. The 

reference arm mainly consists of a mirror with an actuator that rapidly modulates the optical path 

length of the arm. It may also include a dispersion compensation mechanism, such as a rapid 

scanning delay line [58], or glass prisms with different indices of refraction [59]. The sample arm 

composes of a set of beam scanning component and a lens that focuses that the light on the tissue. 

By laterally scanning the position of the beam in the sample arm in 1D, a 2D cross-sectional or B-

scan are realized. A second lateral axis in the sample arm can be used to construct a 3D volume. 

The returning light from the sample and reference arms interferes and the interference light is 

split at the beam splitter between source and detection arms. An optical detector is used in the 
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detection arm to acquire the signal from the interferometer. The acquired data is stored on a PC 

and can be analyzed in real time or with post-processing.  

Figure 2.4 shows a sample of three reflectors and the corresponding A-line. The reflectivities of 

the three reflectors from left to right are 0.5, 0.5, and 0.8. Because 𝐼𝑖 𝛼√𝑅, and because light 

intensity after each reflector is attenuated, the maximum intensities measured at the same location 

of the reflectors are 0.25, 0.125, and 0.16. 

 

Figure 2.4 (a) Simulation of a sample of three reflecting surfaces, where τ = 0 is at the top of the sample. (b) The 

TD OCT A-line of the sample. The A-line shows a coherence function corresponding to each reflector in the 

sample. The axial resolution, ρa, and the modulation interval 2π/f are indicated. 

The first OCT system uses a 50/50 splitter where 50% of the power is directed to the sample arm 

and the other 50% to the reference. As a result, only 25% of the source power is utilized in the 

detection. The efficiency of the imaging system can be improved by using a different splitting 

ratio. A 70/30 splitter which directs 30% of the light into the sample collects 70% of the light 

returning from the tissue in the detection arm improved the efficiency of light collected from the 

sample arm. The efficiency of OCT can be further improved in a fiber-based system. For 
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example, an optical circulator can be combined with a fiber coupler in the systems operating at 

1300 nm [60].  

Since the introduction of the first TD-OCT system, advanced mechanical scanning mechanisms 

were presented to increase imaging speed [58]. However, faster scanning also requires broader 

bandwidth of the modulation frequency [61]. The degraded sensitivity at higher acquisition 

speeds was observed [62].  

 

2.4.2. Fourier domain optical coherence tomography (FD-OCT) 

As opposed to TD-OCT which requires both axial and lateral scans in the system, the Fourier 

doman (FD) OCT only uses the lateral scan to construct a cross-sectional image. Spectral 

interference of light exiting the interferometer is acquired, and the depth information is encoded 

in such interference. FD-OCT is realized either by employing a spectrometer in the detection arm, 

called Spectral-Domain (SD) OCT [63-65], or by sweeping a wavelength-tuning light source, 

called Swept-Source (SS) OCT, or sometimes Optical Frequency Domain Imaging (OFDI) [66-

68]. The speed of FD-OCT is limited by the acquisition rate of the spectrometer in SD-OCT, or 

by the source scanning speed in SS-OCT. Typical FD-OCT systems are an order of magnitude 

faster than the state of the art TD-OCT, and are more sensitive than TD-OCT systems [69-71]. 

Details about SD-OCT design will be discussed in Chapter 3. 

As the Fourier components As(K) of the scattering potential Fs(z) cannot be measured directly, 

the FD-OCT derives a cross-correlation with acquired spectral power density function based on 

the Wiener-Khinchin theorem as described in Eq. 2.6. The measured spectral intensity 𝐼(𝑘) at the 

interferometer exit is the Fourier transform of the cross-correlation of the sample and reference 

waves, and is given by [72] 
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𝑰(𝒌) = 𝑰𝒓(𝒌) + 𝟐√𝑰𝒔(𝒌)𝑰𝒓(𝒌)∑√𝑹𝒏𝒄𝒐𝒔𝒌𝒛𝒏
𝒏

+ 𝑰𝒔(𝒌) 2.16 

with k = 2π/λ, the intensity in the sample arm Is(k) and reference arm Ir(k). 𝑅𝑛 is the at different 

depths 𝑧𝑛 in the sample. A Fourier transformation links z and k space. Because of the nonlinear 

relation between k and λ, the spectra need to be interpolated first to create evenly spaced entities 

in the k-domain [65]. The middle term is superimposed by the spectral modulations of source at 

different frequencies. As a simplest case, a single mirror in the sample arm yields a modulation of 

the spectrum at one frequency. This frequency increases when the path length difference between 

sample and reference arms increases (Figure 2.5). Since additional surfaces will add more 

modulations, the so-called cross-spectral density function contains all spectral modulations 

caused by reflections from all the depths in the sample.  

 

Figure 2.5 Spectral modulations and the coherence functions (amplitude of depth profiles) in FD-OCT 

The depth profile is reconstructed by an inverse Fourier transform of the spectra, yielding the 

following convolution [72, 64] 

𝑭𝑻−𝟏(𝑰(𝒌)) = 𝜞(𝒛)⊗ (𝟏 +∑𝜶𝒏𝜹(𝒛 − 𝒛𝒏)

𝒏

+∑𝜶𝒏𝜹(𝒛 + 𝒛𝒏
𝒏

) + 𝑶[𝑰𝒔(𝒌)]) 2.17 

With the coherence function of the source is represented by 𝛤(𝑧); the second and the third terms 

yield conjugate pairs of sample scattering at different depth z=zn. The last term represents the 

autocorrelation due to the interference of the sample centered at z = 0 and is usually ignored in 
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the representation of OCT images. After taking the absolute value of the Fourier transform, an A-

line is created with reflected intensities encoded as a function of z.  

 

2.5 POLARIZATION-SENSITIVE OCT 

In this and the next section, we will focus on two specific types: polarization sensitive (PS) OCT 

and Doppler OCT, which will be jointly developed in later chapters of this thesis by using a novel 

fiber optics technique. Other specialized OCT techniques including spectral OCT, optical 

coherence elastography and thermal OCT have all proved to contribute to the pathological 

studies. 

2.5.1. Light polarization 

Light polarization describes the direction of wave oscillation. The light wave that propagates in 

the z-direction oscillates in the x-y plane; and the electric field of any polarization state can be 

described by the x and y components. For a low-coherence light wave with Δν ≪ νo, the electric 

field of the wave can be written as  

𝑬(𝒕) = 𝑬𝒙(𝒕)𝒙̂ + 𝑬𝒚(𝒕)𝒚̂ 2.18 

 

 

where 𝐸𝑥(𝑡) = 𝐸𝑜𝑥(𝑡) cos[2𝜋𝜈𝑜𝑡] , 𝐸𝑦(𝑡) = 𝐸𝑜𝑦(𝑡) cos[2𝜋𝜈𝑜𝑡 − Δ𝜑] , and Δφ is the phase 

difference between of the electric field components in the x and y directions. 

When either of Eox or Eoy is equal to zero, light is said to be linearly polarized in the y or x 

direction, respectively. When Eox and Eoy bear a phase difference of nπ (n = 0, 1, 2…), the 

polarization is linear and oriented on x-y plane with an angle that depends on the ratio between 

Eox and Eoy. For other phase differences, the polarization state is elliptical. A special case is that 
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with Δφ = ±nπ/2 and Eox = Eoy, the polarization state is circular. If an optical media alter the 

polarization state of propagating light, properties of the tissue may be inferred by the polarization 

alterations. 

2.5.2. Birefringence 

Birefringence is an optical property in tissue that can be caused by two mechanisms: intrinsic 

birefringence as a consequence of anisotropic properties of the molecules; and form birefringence 

originated from regularly arranged structures surrounded by another isotropic medium. When the 

period of the aligned molecules is shorter than the wavelength of the light, an electric field is 

induced across the structure. As a result, the speed of oscillating wave parallel to the axis of the 

structure is different from that perpendicular to the axis, resulting two orthogonal refractive 

indices (an ordinary refractive index 𝑛𝑜 and an extraoridinary refractive index 𝑛𝑒) in the medium 

(Figure 2.6). Birefringence (∆𝑛) is defined as the difference between the two refractive indices.  

∆𝑛 = 𝑛𝑒 − 𝑛𝑜 2.19 

 

 

Figure 2.6 Light propagation in a medium with aligned inclusions generates an induced electrical field Ei. The 

induced field alters the propagation speed of the polarization state parallel to it, resulting in form-birefringence. 
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Birefringence also results in a single axis of optical anisotropy in the medium. Light passing 

through tissue with birefringence experiences a phase shift between the orthogonal oscillating 

waves parallel and perpendicular to the optic axis, called retardance (𝛿), which linearly 

accumulates with propagating distance (z) (Figure 2.7). 

𝛿(𝑧) =
2𝜋 ∙ ∆𝑛 ∙ 𝑧

𝜆
 

2.20 

Intrinsic birefringence can be found in dental enamel which consists of birefringent 

hydroxyapatite crystals. Form birefringence resulting from the spatial arrangement can be found 

in many tissues, such as collagen, muscle, tendon and nerve fibers. 

 

Figure 2.7 Phase retardance linearly rises with depth as a result of birefringence. 

2.5.3. Polarization-sensitive OCT 

The first polarization sensitive LCI technique was reported by Hee et al. [73], in which the phase 

retardance between orthogonal polarization modes backscattered from a birefringent sample was 

characterized. Later, de Boer et al. [74-75] developed a PS-OCT system for imaging thermally 

damaged tissue. Everett et al [76] and Schoenenberger et al [77] used PS-OCT to measure 

birefringence and generate birefringence maps of porcine myocardium. Hitzenberger et al. [78] 

reported PS-OCT images describing phase retardance and fast axis orientation in chicken 

myocardium. Since then, technical advances and biomedical applications of PS-OCT have been 

continuously developed. 

 The Jones formalism provides a convenient mathematical description of polarized light and 
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polarization effects [79] and has been commonly used in PS-OCT implementations. The first PS-

LCI relies on the Jones formalism to measure the retardance independent of the sample axis 

orientation. The basic scheme based on a low-coherence Michelson interferometer is shown in 

Figure 2.8. A dual channel PS detection unit and polarization components are employed. A Jones 

matrix method has been proposed as well to describe the polarization properties of tissue [80]. 

 

Figure 2.8 Basic schematic of PS-OCT setup based on Hee et al (1992). 

The intensity at interferometer exit of each polarization channel can be described by a vector I as 

shown in Eq. 2.21, with the two elements representing the horizontal (h) and vertical (v) 

polarization states.  

〈𝑰(∆𝒛)〉 = 〈𝑰𝒓〉 + 〈𝑰𝒓〉 + 〈
𝑬𝒓,𝒉
∗ 𝑬𝒔,𝒉(∆𝒛)

𝑬𝒓,𝒗
∗ 𝑬𝒔,𝒗(∆𝒛)

〉 + 〈
𝑬𝒓,𝒉𝑬𝒔,𝒉

∗ (∆𝒛)

𝑬𝒓,𝒉𝑬𝒔,𝒉
∗ (∆𝒛)

〉 = 〈𝑰𝒓〉 + 〈𝑰𝒓〉 + 〈
𝑨𝒉(∆𝒛)
𝑨𝒗(∆𝒛)

〉 2.21 

Source light passing through the polarizer is horizontally polarized and described by the Jones 

vector as 

𝑬(𝑧) = 𝐸(𝑧) (
1
0
) 2.22 

A 50/50 beam splitter splits the light into the reference and sample arms with equal amplitude, so 

the Jones vector representing light entering the sample and reference arms is expressed as 
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𝑬𝑠𝑖(𝑧) = 𝑬𝑟𝑖(𝑧) =
𝐸(𝑧)

√2
(
1
0
) 2.23 

The polarization properties of any non-depolarizing optical components can be described by a 

Jones matrix J, which transforms the incident polarization state E to a transmitted sate E’, given 

by 

𝑬′ = 𝑱𝑬 2.24 

The Jones matrix for a birefringent material which induces a phase retardance 𝛿 between the 

electric field components parallel and orthogonal to a polarization state characterized by an 

orientation angle 𝜃 [81] 

𝑱𝑏 = [
𝑒𝑖𝛿 2⁄ 𝑐𝑜𝑠𝜃

2 + 𝑒−𝑖𝛿 2⁄ 𝑠𝑖𝑛𝜃
2 (𝑒𝑖𝛿 2⁄ − 𝑒−𝑖𝛿 2⁄ )𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

(𝑒𝑖𝛿 2⁄ − 𝑒−𝑖𝛿 2⁄ )𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑒𝑖𝛿 2⁄ 𝑠𝑖𝑛𝜃
2 + 𝑒−𝑖𝛿 2⁄ 𝑐𝑜𝑠𝜃

2
] 2.25 

The polarization state of light returning from the reference arm is given by 

𝑬𝑟(𝑧𝑟) = 𝑱𝑄𝑊𝑃(22.5) ∙ 𝑱𝑄𝑊𝑃(22.5)𝑬𝑟𝑖 =
1

2
𝐸(2𝑧𝑟) (

1
1
) 2.26 

The measurable Jones matrix for a linearly birefringent sample is 𝑱𝑠 =

√𝑅(𝑧)𝑒−𝑖2𝑘𝑧𝑛̅𝑱𝑏(2𝑘𝑧∆𝑛, 𝜃), with 𝑅(𝑧)𝑎𝑛𝑑 𝑘𝑧𝑛̅ representing the reflectivity and average phase 

delay of a wave propagating to depth 𝑧, 𝑛̅ being the average refractive index and ∆𝑛 the 

birefringence of the sample with an optic axis of 𝜃. The polarization state of light returning from 

the sample arm is given by 

𝑬𝑠(𝑧𝑠 + 𝑧) = 𝑱𝑄𝑊𝑃(45) ∙ 𝑱𝑠 ∙ 𝑱𝑄𝑊𝑃(45)𝑬𝑠𝑖 

∝ √𝑅(𝑧)∫ 𝑒̂(𝑘) 𝑒−𝑖2𝑘(𝑧𝑠+𝑧𝑛̅) [
𝑒𝑖2𝜃sin (𝑘𝑧∆𝑛)
cos (𝑘𝑧∆𝑛)

] 𝑑𝑘 

2.27 

where 𝑧𝑠 is the optical path length of the arm up to the sample surface. Using the Wiener-

Kintchine theorem [Eq. 2.6], the interference terms in the horizontal and vertical polarization 

channels are given by 
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𝐴ℎ(𝑧, ∆𝑧) ∝ √𝑅(𝑧)∫ sin(𝑘𝑧∆𝑛) cos(2𝑘∆𝑧 + 2𝜃)𝑆(𝑘)𝑑𝑘 

𝐴𝑣(𝑧, ∆𝑧) ∝ √𝑅(𝑧)∫cos(𝑘𝑧∆𝑛) cos(2𝑘∆𝑧) 𝑆(𝑘)𝑑𝑘 

2.28 

where 𝑧 is the depth of the light propagating in the tissue and ∆𝑧 is the optical path length 

difference between the sample and reference arms. Under the assumption of Gaussian power 

spectral density for the source 

𝑆(𝑘) ∝ 𝑒𝑥𝑝 [−(
𝑘 − 𝑘0
𝜅

)2] 2.29 

Where the FWHM spectral bandwidth of the source is 𝜅2√𝑙𝑛2. The intensity on the two 

polarization channels can be simplified as follows, with the FWHM of the interference fringe 

envelope given by ∆𝑙2√𝑙𝑛2. 

𝐴ℎ(𝑧, ∆𝑧) ∝ √𝑅(𝑧) sin(𝑘𝑧∆𝑛) cos(2𝑘∆𝑧 + 2𝜃) 𝑒
−(∆𝑧 ∆𝑙⁄ )2 

𝐴𝑣(𝑧, ∆𝑧) ∝ √𝑅(𝑧) cos(𝑘𝑧∆𝑛) cos(2𝑘∆𝑧) 𝑒
−(∆𝑧 ∆𝑙⁄ )2 

2.30 

It should be noticed that layered samples yield depth cumulated retardance and optic axis 

orientation, so that the measured information may not be accurate for deeper layers without the 

depth-dependent correction. 

The Stokes parameters and Mueller matrices provide a more complete description of the 

polarization properties of light passing through a turbid media. As both birefringence and 

scattering change the polarization state of light, the degree of polarization may degenerate during 

light propagation. In addition, the optic axis is typically variable in complex tissues. The Stokes 

parameters can be written as a real 4-vector S = [I, Q, U, V ]T. The Mueller matrix M is a 4 by 4 

matrix which linearly relates the Stokes vector of the backscattered light S’ with the Stokes vector 

S of the illuminating light [82] 𝑺′ = 𝑴𝑺. 

The PS-OCT systems capable of yielding the full 4 x 4 Mueller matrix images have been 

presented [83, 84]. de Boer et al [85] presented an approach to realize depth resolved Stokes 
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parameters. The events of multiple scattering and speckle also affect the polarization 

measurement [86]. As polarization states in single-mode fibers alters due to the imperfect 

symmetry of the fiber core, translation of PS-OCT in fiber optics techniques demands more 

hardware components. Multiple polarization states and rapid modulations were introduced in 

single-mode fiber based PS-OCT system to achieve the immunity to the polarization variations in 

the fibers [87, 88].  

 

2.6 DOPPLER OCT 

Optical Doppler techniques describe a frequency shift arising from the motion in a sample 

relative to a reference, are based on interferometry technique when the light scattered by the 

moving particles interferes with a reference beam. The success of laser optical Doppler 

techniques has led to vast clinical applications in disease screening and diagnosis. The 

development of LCI and OCT further extends the optical Doppler techniques, by virtue of their 

depth localization capability. Doppler OCT provides quantitative information on 3D flow rates in 

vivo [89-94]. 

Wang et al [95] first demonstrated the velocity data in a LCI experiment. The power spectrum of 

the interference intensity was acquired with a spectrum analyzer, and a velocity profile of 

microspheres suspended in the fluid was derived using the centroid of the Doppler-shifted 

spectrum at each position in the conduit [96, 89]. Another approach to obtain the Doppler shift is 

to use a phase-sensitive measurement [97]. The phase change (∆∅) calculated from multiple A-

lines collected at the same position of the sample is related to the flow velocity (𝑣) with a 

refractive index 𝑛, a collection time 𝑇 and the angle of incidence of the probe beam relative to the 

moving scatter 𝛼.  

𝑣 =
∆∅ ∙ 𝜆0

4𝜋 ∙ 𝑇 ∙ 𝑛 ∙ 𝑐𝑜𝑠𝛼
 

2.31 
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Chen et al [98] applied sequential lateral scans to detect the flow information. Zhao et al [99] 

applied a short-time fast Fourier transform algorithm to reconstruct the structure and the depth 

localized Doppler signal with demodulated depth-scan of interference. Depth resolution of the 

velocity estimate is related to the STFT window length by the Fourier uncertainty relation. Figure 

2.9 presents an example obtained by a color DOCT technique in which the detected velocity is 

color coded to indicate the magnitude and the direction of flow.  Such imaging can be used for 

studying the pathogenesis of vascular diseases in ophthalmology and cardiology.  In contrast to 

angiography, Doppler OCT is non-invasive.  

 

Figure 2.9 Doppler OCT images of bidirectional blood flow in retina. Reprinted from Yazdanfar et al (2000) 

with permission. 

In FD-OCT, the depth distribution of the Doppler frequency can be obtained from two spectral 

records of the scattered spectrum laterally. An important advantage of Doppler OCT in Fourier 

domain is the high phase stability and the speed [100]. Leitgeb et al [101] have shown that 

longitudinal velocity components from ∼10 µm/s to 2 mm/s can be measured at a rate of 104 A-

lines per second without readjusting the instrumental parameters. Continuous hardware and 

algorithm developments for more sensitive and more robust Doppler OCT techniques have been 

seen in recent years [102-108].  
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CHAPTER 3  POLARIZATION-MAINTAINING FIBER 

BASED MULTI-CONTRAST OPTICAL COHERENCE 

TOMOGRAPHY 

3.1 INTRODUCTION 

The multi-contrast (MC) OCT incorporates multiple functional variations of OCT into a single 

system that enables multi-parametric acquisition at the same time, including conventional, phase-

sensitive, polarization-sensitive and Doppler OCT imaging. As opposed to individual OCT setups 

that may obtain the multi-angle information through separate sessions, the MC-OCT provides 

unique opportunities in several aspects.  From temporal perspective, it can provide the interaction 

of different signals revealing physiological processes through simultaneous data collection. From 

spatial perspective, it allows for interrogation of structural architectures probed by different 

contrasts through automatically aligned framework. Those merits are particularly beneficial for 

answering some important neuroscience questions such as neurovascular coupling, brain 

mapping, and brain-wide wiring diagram and their topological relationship with cell types. In 

addition, the integrated system is more time efficient in data acquisition and potentially cost 

efficient as multiple OCT setups commonly share essential hardware components. Previous 

studies have built up multi-functional OCT using single mode fibers, where PS and Doppler 

signals are obtained in a single set of measurements.  

There are several reasons for incorporating PS and Doppler measures in a MC-OCT. Among the 

functional variations of OCT techniques, which provides additional information relevant to 

physical or physiological parameters of biological tissues, PS-OCT and Doppler flow OCT are 



28 
 

two of the most commonly used. On the other hand, the analysis of light polarization in PS-OCT 

often requires the phase information of the optical signals, which naturally supports the feasibility 

of the Doppler measures as well.  

PS-OCT focuses on tissue birefringence, and characterizes the structural anisotropy and the angle 

of axis. Two approaches have been parallel seen in PS-COT setups (see examples in Figure 3.1). 

The bulk system [74, 76, 109, 110] operates the polarized light in free space. It has the 

advantages of simple optics and computational inexpensive algorithms, and the polarization states 

are stably kept in air. However, the stability of the interferometer may not be guaranteed when the 

system is transferred from bench-top to bed-side, and it’s not easy to be incorporated into 

endoscopy. The single-mode fiber setup [87, 88, 111], on the other hand, has more flexibility in 

clinics. However, sophisticated polarization manipulation such as polarization modulator has to 

been employed to ensure the polarization states immune from external disturbance, and multiple 

measurements are usually required. Those complications results in highly demanding 

computations, and may lead to compromised reliability of transient polarization measures.  

 

Figure 3.1 Two illustrative schematics of bulk (A) and single-mode fiber based (B) PS-OCT systems. 

The introduction of polarization-maintaining fiber (PMF) based technique into PS-OCT has made 

efforts in untangling the complications in PS-OCT setups and shown promises for vast 
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biomedical applications [112, 113]. The PMF technique is able to maintain the orthogonal linear-

polarization states in a specially designed single-mode fiber core, and thus combines the 

advantage of flexibility in fiber-based system, and design and computation efficiency in bulk 

system, thus provides a viable solution for clinical translations. As earlier discussed, the Fourier 

domain OCT is superior in sensitivity and acquisition speed, the goal of this chapter is to design a 

PMF based OCT system in spectral domain. Because the phase information is simultaneously 

available with the spectral domain design, this PMF based PS-OCT system supports the phase-

sensitive and Doppler flow measurements as well. To this end, a PMF based MC-OCT system is 

constructed for high-resolution tissue imaging and characterization. The major challenges are to 

design a spectrometer that allows simultaneous acquisition of two polarization channels with 

equally high performance, and to eliminate any ghost lines and ghost images. This chapter will 

discuss the optical design and implementation of PMF based multi-contrast OCT system. System 

characterization is provided and several biological applications are demonstrated at the end.   

3.2 SYSTEM DESCRIPTION 

3.2.1. Polarization-maintaining fiber  

Polarization-maintaining fiber is a special type of single-mode fiber that preserves the 

polarization states during light propagation within the fiber. The polarization-maintaining fibers 

have been successfully demonstrated with bow-tie fibers [114], flat depressed-cladding fibers 

[115], and PANDA fibers [116], by a stress effect to induce differed refractive indices between 

the orthogonal modes. In this type of design, stress-applying parts were applied to the fiber core 

through a buffer layer in between. The PMF can also be fabricated using the geometrical effect of 

core and stress around the core, such as elliptical core fibers [117-122], a dumbbell core fiber 

[123], a four-section fiber [124], a side pit fiber [125], and a side tunnel fiber [126]. However, 

this type of PM fibers generally bears high optical loss.  
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In PM fiber selection, there are two parameters that are taken consideration, the mode-coupling 

parameter and transmission loss. The first parameter characterizes the polarization-maintaining 

ability and crosstalk as follows: 

𝑪𝑻 = 𝟏𝟎𝒍𝒐𝒈
𝑷𝒚

𝑷𝒙
 3.1 

where Px and Py are the powers of the input mode and the coupled mode in an ensemble of fiber 

length. 

A PANDA PM fiber with a PM coupler is selected for the MC-OCT design. Figure 3.2 shows a 

diagram of the cross section of the PMF. The stress rods yield a fast axis and a slow axis on the 

orthogonal channels. Light in the fast axis experience a lower index of refraction and propagates 

faster than the slow axis. PMF maintains the orthogonal linear polarization states despite external 

perturbations. Typical polarization isolation in PMF is 40 dB per 4 m for PANDA fibers1. 

 

Figure 3.2 Cross section of the PMF. The two stress elements create a uniaxial stress on the core and generate 

constant birefringence in the fiber.  

3.2.2. Optical setup 

The light source is a 25 mW superluminescent diode centered at 840 nm with a full-width-half-

maximum bandwidth of 50 nm. Light from the source is linearly polarized by a polarizer in a 

fiber bench, and coupled into one of the orthogonal channels of the PMF. A 2x2 PM coupler 

splits the light into the reference (70%) and sample (30%) arms. In the reference arm, collimated 

                                                           
1 From Corning datasheet 
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light travels through a quarter-wave plate (QWP) oriented at 22.5° with respect to the incoming 

polarization state, and is reflected by a mirror. After passing the QWP twice, the linear 

polarization state is oriented at 45°; thus, light returning from the reference arm is coupled back 

into the fast and slow channels of the PMF with equal power. In the sample arm, light passes 

through a QWP oriented at 45°, which ensures circularly polarized light incident on a sample. 

Since tissue birefringence alters the polarization state, the back-scattered light couples into the 

PMF channels after passing through the QWP again. An OCT scan lens (focal length: 36 mm) is 

mounted in the sample arm to ensure high quality over large scan area. During imaging, the light 

beam is scanned by xy-galvo mirrors over the tissue.   

In the detection arm, a custom-built polarization-sensitive spectrometer records the spectra for 

interferences. The spectrometer contains a collimating lens, a grating to split the wavelength of 

light source, a prism to divide the polarization channels, focusing lens and a camera to acquire the 

spectra. The specifications of each component need to be design complying with the available 

products and the performance requirements.   

a) Imaging depth 

The camera is a 2048-pixel line scan camera (Basler, Germany). Each polarization channel 

occupies 1024 pixels (N). Given a light source with the bandwidth ∆𝜆 = 𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛, the 

spectral resolution 𝛿𝜆  is given by         

   

𝜹𝝀 =
∆𝝀

𝑵
 3.2 

The imaging depth 𝑧𝑚𝑎𝑥 is inversely proportional the spectral resolution and expressed as 

𝒛𝒎𝒂𝒙 =
𝝀𝟎
𝟐

𝟒𝒏𝜹𝝀
 3.3 

where λ0 is the central wavelength of the light source, n is the refractive index. With a central 

wavelength of 840 nm, 𝜆𝑚𝑎𝑥 of 876.83 nm and 𝜆𝑚𝑖𝑛 of 805.79 nm, the imaging depth is 2.54 mm 

in air.  
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b) The focal length of the collimator in the detection 

Resolvance (R) of the grating is defined by 𝑅 =
𝜆0

𝛿𝜆
, where λ0 is the central wavelength and 𝛿𝜆 is 

the spectral resolution. Then the spot size (A) on the grating is calculated to be A=R/1200 

(line/mm). 

As the NA of the fiber is 0.13, NA = n∙sinα, where n is the refractive index, the focal length (f2) is 

given by 

𝒇𝟐 =
𝑨

𝒕𝒂𝒏𝜶
 3.4 

c) The focal length of the focusing lens in front of the camera 

Dispersion of the source with bandwidth ∆𝜆 is given by 𝑠 =
∆𝜆

𝐷
. As the total length (L) of the 

sensor on the camera is 𝐿 = 𝑁 × ∆𝑙, given the individual sensor size (∆𝑙) to be 10 µm, the focal 

length of the lens (f1) is given by 

𝒇𝟏 =
𝑳

𝒕𝒂𝒏 𝒔
 3.5 

d) Split angle of the prism 

The split angle of the prism is customized so that the spectra on the two polarization channels are 

completely separated side by side and occupy the full pixels on the camera. Figure 3.3 gives an 

illustrative schematic of the optical path. 

 

Figure 3.3 Design of the prism split angle (𝜶𝟎) optimized for the spectrometer in the MC-OCT. 

Assuming the central wavelength of the light source is directed to the middle of left and right half 

of the camera pixels for each polarization state, given individual sensor size ∆𝑙, the number of 
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pixels (N) each polarization channel occupies, and the focal length of the lens f, the split angle α0 

is expressed as 

𝜶𝟎 = 𝟐𝒂𝒕𝒂𝒏(
𝒙𝟏 − 𝒙𝟎
𝒇

) = 𝟐𝒂𝒕𝒂𝒏 (
𝑵∆𝒍

𝟐𝒇
) 3.6 

Based on the desired parameters discussed above, the spectrometer implementation includes a 50 

mm achromatic collimating lens directs the light exiting the interferometer to a 1200 lines/mm 

transmission grating. A Wollaston prism with splitting angle of 6° separates the orthogonal 

polarization channels. Then, a 200 mm achromatic lens focuses the optical spectra from two 

channels onto a single line scan camera (Basler sprint 140k) which contains 2048 pixels (1024 

pixels for each channel). The schematic of the optical setup is shown in Figure 3.4.  

 

Figure 3.4 (a) Schematic of multi-contrast OCT. SLD: superluminscent diode, C: collimator, P: polarizer, QWP: 

quarter-wave plate, L: lens, M: mirror, GM: galvo mirror, G: grating, W: Wollaston prism, LSC: line scan 

camera. 

When the path difference between the reference and sample arms is within the imaging depth, 

spectral modulations related to depth information occur. Images are reconstructed by following 

steps: data in wavelength-space are remapped and interpolated in k-space [127], dispersion 

imbalance is compensated [128], the background from reference arm is subtracted [69], and an 

inverse Fourier transform algorithm is applied. The algorithms for individual steps are discussed 

in the following sub-sessions. Figure 3.5 illustrates the spectral modulations on the orthogonal 

polarization channels (a), and corresponding coherence functions (b). 
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Figure 3.5 Data acquisition and reconstruction in the spectral domain MC-OCT. Left: spectral modulations on 

the two polarization channels; Right: their corresponding coherence functions. 

The system has an axial resolution of 7.7 µm in air, and 5.5 µm in tissue (refractive index: 1.4). 

The lateral resolution estimates to be ~15 µm. 

3.2.3. Spectrometer characterization  

The spectrometer needs to be calibrated to obtain the pixel-wavelength correspondence of 

the two polarization channels on the camera. This relationship can be deduced theoretically by 

grating equations.    

𝒅(𝒔𝒊𝒏𝝑𝒊 + 𝒔𝒊𝒏𝝑𝒅) = 𝝀 3.7 

where 𝜗𝑖  and 𝜗𝑑  are the incident angle and the diffracted angle with respect to the grating’s 

normal vector, 𝜆 is the wavelength, and 𝑑 is the slit width of the grating.  

For a light source with central wavelength λc, we would like to direct it to the center of the 

camera sensor without polarization splitting. Therefore, the grating equation is given by 

𝒅(𝒔𝒊𝒏𝝑𝒊 + 𝒔𝒊𝒏 𝝑𝒄) = 𝝀𝒄 3.8 

thus 

𝝑𝒄 = 𝒔𝒊𝒏−𝟏(𝝀𝒄 𝒅⁄ − 𝒔𝒊𝒏𝝑𝒊) 3.9 

For other wavelengths diffracted with an angle α with respect to the optical axis of the lens, 

𝝑𝒅 = 𝝑𝒄 − 𝜶 3.10 

And 
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𝒕𝒂𝒏𝜶 =
𝒙 − 𝒙𝟎
𝒇

 3.11 

We get the wavelength corresponding to the pixel index i on the camera 

𝝀𝒊 = 𝒅{𝒔𝒊𝒏𝝑𝒊 + 𝐬𝐢𝐧 [𝐬𝐢𝐧
−𝟏(

𝝀𝒄
𝒅
− 𝒔𝒊𝒏𝝑𝒊) − 𝐭𝐚𝐧

−𝟏 (
𝒙𝒊 − 𝒙𝟎
𝒇

)]} 3.12 

Considering an extra small angle 𝛼0 due to polarization separation by the Wollaston prism, the 

wavelength correspondence is modified as 

𝝀𝒊 = 𝒅{𝒔𝒊𝒏𝝑𝒊 + 𝐬𝐢𝐧 [𝐬𝐢𝐧
−𝟏 (

𝝀𝒄
𝒅
− 𝒔𝒊𝒏𝝑𝒊) − 𝐭𝐚𝐧

−𝟏 (
𝒙𝒊 − 𝒙𝟎
𝒇

) ± 𝜶𝟎 𝟐⁄ ]} 3.13 

As the practical spectra alignments may be slightly off from the theoretical design, the calibration 

was conducted experimentally. Two approaches are proposed here. In the first method, a 

wavelength tunable Ti-Sapph laser is included. The laser replaces the SLD and a commercial 

spectrometer was used with the customized spectrometer together. The laser was tuned to specific 

wavelengths that can be accurately read by the commercial spectrometer. At the same time, the 

pixel numbers on the camera were recorded. The pixel numbers on the camera for 14 wavelengths 

were identified, and second-order interpolation was applied to find wavelengths of all pixels for 

both polarization channels (Figure 3.6A). In the second method, a grating is included to 

selectively direct the wavelength of SLD to the OCT spectrometer and a calibration spectrometer. 

The grating is placed in the reference arm. The spectral component, whose optical axis is 

orthogonal to an end mirror, is coupled back into the PMF; hence, selection of a single 

wavelength is realized by adjusting the mirror.  The pixel numbers on the camera are identified. 

At the same time, the zero-order component of the transmission grating from the detection arm of 

the MC-OCT is coupled to the multimode fiber of the commercial spectrometer for actual reading 

of the wavelength (Figure 3.6B).  
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Figure 3.6 Two setups for spectrometer calibration (wavelength v.s. pixel number on the camera) in the MC-

OCT. SLD: superluminscent diode, C: collimator, P: polarizer, QWP: quarter-wave plate, L: lens, M: mirror, 

GM: galvo mirror, G: grating, W: Wollaston prism, LSC: line scan camera.  

 

3.3 IMAGE RECONSTRUCTION 

3.3.1. Dispersion compensation  

Chronic dispersion occurs when broadband light passes through multiple optics components. The 

refractive index differs between the spectral components of light passing through a medium, and 

thus influences the speed of achromatic light with different impacts. When the optical path 

lengths of reference and sample arms are different, the dispersion mismatch could significantly 

broaden the width of coherence function in OCT [130]. Dispersion can be compensated by 

hardware such as using a rapid scanning optical delay [58] in the reference arm, or adding glass 

or fused silica prism with adjustable thickness [59]. However, software based compensation 

algorithms would be more convenient to implement [132].    
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A dispersion mismatch introduces a phase shift ei(k) in the complex cross-spectral density I(k) as a 

function of wave vector k. The relation between the phase θ(k) and the dispersions can best be 

described by a Taylor series expansion [133]:  

𝜽(𝒌) = 𝜽(𝒌𝟎) + 𝜽
(𝟏)(𝒌𝟎)(𝒌 − 𝒌𝟎) +

𝟏

𝟐
𝜽(𝟐)(𝒌𝟎)(𝒌 − 𝒌𝟎)

𝟐 +⋯

+
𝟏

𝒏!
𝜽(𝒏)(𝒌𝟎)(𝒌 − 𝒌𝟎)

𝒏 

3.14 

where k0 is the wave number corresponding to the central wavelength λ0 (k0 = 2π/λ0). Dispersion 

can be compensated by multiplying the dispersed cross-spectral density function I(k) with  a  

phase  term  e-i𝜃(k) [128]. To determine the phase term, the spectrum with respect to k-space is 

Fourier transformed to z-space, and the coherence function is shifted to the origin.  Then a 

complex spectrum I’(k) is obtained with an inverse Fourier transform. The phase θ(k) is obtained 

from the real and imaginary components of I’(k) by 

𝜽(𝒌) = 𝐭𝐚𝐧−𝟏
𝒊𝒎𝒂𝒈(𝑰′(𝒌))

𝒓𝒆𝒂𝒍(𝑰′(𝒌))
  3.15 

The curve of θ(k) was fit to a 9th order polynomial function, yielding a set of coefficients. The last 

seven coefficients are used for compensation. 

 

3.3.2. Contrasts 

Polarized light and optical components can be described by Jones calculus. Interferometric 

signals on the orthogonal polarization channels are expressed as: 

 )(exp)()(
~

2,12,12,1 zizAzA   3.16 

where A and Φ denote the amplitude and phase of the interference signal, respectively along the 

depth z, and subscripts 1 and 2 correspond to the cross-coupled and main polarization channels. 

In SD-OCT, an inverse Fourier transform is applied to the measured spectral intensities to obtain 
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the depth profiles of the sample as shown in Eq. 3.16 [64]. The reflectivity )(zR  and phase 

retardance )(z  information are extracted from the magnitudes of the complex signals on each 

channel as [134] 

2

2

2

1 )()()( zAzAzR   3.17 

))()(arctan()( 21 zAzAz   3.18 

The optic axis orientation is derived from the phase information of the complex depth profiles 

and expressed as below [134]. Due to an arbitrary phase delay between the PM-fiber channels, 

our system yields a relative optic axis orientation )(' z  across lateral scans. 

 
2

)()(
)(' 21 zz

z





  3.19 

However, the absolute axis orientation can be realized by using a reference retarder with a known 

axis. The calibration procedure and the signal reconstruction is discussed in Chapter 4.4.  

Sequential processing approach is implemented to get the flow information, in which the phase 

difference between successive depth scans is used to determine flow velocity [99]. Bi-directional 

flow (ω) under PS-OCT configurations can be calculated as [127]: 

)()(

)()()()(1
)(

2

2

2

1

2

2

21

2

1

zAzA

zzAzzA

T
z




  3.20 

where ΔΦ1,2(z)= Φ(n)
1,2(z)- Φ(n-1)

n-1(z), n and n-1 denoting sequential A-lines, and T is the time 

interval between two A-lines. 

 

3.4 SYSTEM CHARACTERIZATION 

3.4.1. Noise 

The photon collection in the spectrometer of spectral domain OCT is obtained by a charge-

coupled device (CCD) of a line array. To facilitate the noise analysis in the case of CCD 
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detections, the signal and noise terms will be expressed in charge squared (𝑞𝑒
2). As only the real 

part of the complex cross-spectral density is detected in spectral domain PS-OCT, the resulting 

signal S is given by 

𝑺 =
𝟐𝜼𝟐𝒒𝒆

𝟐𝑷𝒓𝒆𝒇𝑷𝒔𝒂𝒎𝒑𝒍𝒆𝝉𝒊
𝟐

𝑬𝒗
𝟐

 3.21 

Where qe is the electron charge, 𝑃𝑟𝑒𝑓 and 𝑃𝑠𝑎𝑚𝑝𝑙𝑒, respectively, are the reference and sample 

power per detector element at the detection arm fiber tip, τi is the integration time, and Ev is the 

photon energy.  

The read out and dark noise 𝜎𝑟+𝑑
2 , shot noise 𝜎𝑠ℎ

2  and relative intensity noise (RIN) 

𝜎𝑅𝐼𝑁
2  contribute to the overall noise per read out cycle and per detector elements, and the overall 

noise is given by 

𝑵 = 𝝈𝒓+𝒅
𝟐 + 𝝈𝒔𝒉

𝟐 + 𝝈𝑹𝑰𝑵
𝟐 = 𝝈𝒓+𝒅

𝟐 +
𝟐𝜼𝒒𝒆

𝟐𝑷𝒓𝒆𝒇𝝉𝒊

𝑬𝒗
+
𝟐𝜼𝟐𝒒𝒆

𝟐𝑷𝒓𝒆𝒇
𝟐𝝉𝒊𝝉𝒄𝒐𝒉

𝑬𝒗
𝟐

 3.22 

Where 𝜏𝑐𝑜ℎ is the coherence time given by 𝜏𝑐𝑜ℎ = √2𝑙𝑖𝑛2 𝜋⁄ 𝜆0
2 𝑐∆𝜆⁄ , and c is the speed of light. 

The optimal signal to noise performance is achieved when shot noise dominates the read-out 

noise and the RIN. The optimal reference power is found when read-out noise and dark noise are 

equal to the RIN. Thus, the optimal reference power is found to be 

𝑷𝒓𝒆𝒇 =
𝝈𝒓+𝒅𝑬𝒗

𝜼𝒒𝒆√𝟐𝝉𝒊𝝉𝒄𝒐𝒉
 3.23 

For a shot noise dominated system, we have 𝜎𝑠ℎ
2 > 𝜎𝑅𝐼𝑁

2  and 𝜎𝑠ℎ
2 > 𝜎𝑟+𝑑

2 , resulting a prerequisite 

for the reference power of 𝑃𝑟𝑒𝑓 < 12.7µ𝑊 directed to the camera. 

We characterize the noises of the MC-OCT system as shown in Figure 3.7. The readout and dark 

noises are recorded by the CCD sensors without incident light, and the measured noise is the 

variance of the light source spectrum. The measured noise is significantly greater than the readout 

and dark noises, and the reference power to the detection arm as discussed in the later section of 

sensitivity analysis is significantly less the maximum requirement for shot-noise dominance. 
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Therefore, we conclude that the MC-OCT system is shot-noise dominant. Treating the shot noise 

as a Poisson process, the theoretical noise is calculated by 

𝝈𝟐 = 〈(𝑰𝒆(𝝀) − 𝑰𝒆(𝝀)̅̅ ̅̅ ̅̅ ̅)
𝟐
〉 =

𝑰𝒆(𝝀)̅̅ ̅̅ ̅̅ ̅

∆𝒏𝒆
 3.24 

where ∆𝑛𝑒 is the number of electrons required for 1 unit of intensity increment on the CCD 

sensors. 

 

Figure 3.7 Noise characterization of the MC-OCT system. The green curve shows the noise of the source 

spectrum. The curve in red is the simulated theoretical noise. The blue line indicates the noise from the detecting 

device without incident light on the camera. 

3.4.2. Sensitivity 

In the shot-noise limit, the signal to noise ratio (SNR) in the spectral domain system is 

𝑺𝑵𝑹 =
𝜼𝑷𝒔𝒂𝒎𝒑𝒍𝒆𝝉𝒊

𝑬𝒗
 3.25 

To test the system sensitivity for reflectivity measurement as a function of ranging depth, a mirror 

with an attenuator (neutral density filter) in the path was used as a sample. With a power of 2 mW 

coupled to the sample arm, the reflected power from the sample (Ps) was 110 nW (1.12 μW for 

the reference light), measured at the fiber tip of the detection arm. Spectra were acquired at a rate 

of 25 kHz (40 μs/A-line) for 8 different locations of the sample separated from each other by 250 

μm. Dispersion imbalance between the interferometer arms was compensated in software as 
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described in the previous section. In Figure 3.8, the reflectivity signals {10 log(R(z))} are shown 

for 8 locations. The ratio of the peak at the depth of 250 μm and the noise level resulted in a 

dynamic range of 59.8 dB. Without attenuation in the sample arm, the measured power returning 

to the detection arm (P’
s) was 827 μW. Therefore, sum of the dynamic range and the attenuation 

contribution {10 log(P’
s/Ps)=38.8 dB} yields a sensitivity of 98.6 dB. The peak at zero is due to 

the autocorrelation of the source spectrum. The peak drops by 16.1 dB at a depth of 2 mm 

because of the finite size of the CCD pixels. Small peaks at 1.3 to 1.5 mm indicate a fixed noise 

pattern that can be removed by subtraction of the reference arm signal. Cross coupling in the PM 

coupler and imperfect splicing of the PM fiber segments if axes are not aligned carefully may 

cause ghost lines. However, these are displaced from the imaging depth by using longer PMF 

segments (~15 m) in the reference and sample arms. The leakage between the PMF channels, on 

the other hand, may contribute to the noise floor. With a quantum efficiency 𝜂  of 28%, the 

sample-arm power directed to the detection of 110nW, and an integration time 𝜏𝑖 of 40µs, the 

theoretical SNR is 67.2 dB.  

 

Figure 3.8 Dynamic range and depth-dependent decay in reflectivity. (A) The coherence functions (in dB) at 

eight different depths. (B) The decay of the SNR with depth up to 2 mm. 

The phase sensitivity determines the minimal phase change that can be measured in a phase-

sensitive OCT system. Since the optic axis orientation and Doppler flow contrasts in MC-OCT 
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are obtained from the phase information, and differential phase quantity is often used in 

functional measurement [41], the phase sensitivity is a critical factor in MC-OCT. We 

characterize the phase sensitivity in two polarization setups. In the first setup, 45° linearly 

polarized light is launched into the input arm of the MC-OCT, and no wave-plate is used 

elsewhere. A reflector is placed under the sample arm for the characterization. In the second 

setup, 0° linearly polarized light is launched, the setup is the same as that used for PS imaging 

(see Section 3.2). A quarter-wave plate is placed under the sample arm and used as a birefringent 

sample for the characterization. The phase sensitivity is defined as the standard deviation of the 

differential phase from two polarization channels in 1000 A-lines. Figure 3.11 shows the phase 

sensitivity at different depths along with the variation from single polarization channels. The 

differential phase measurements demonstrate a significant superiority, with a sensitivity less than 

10-4 degree. The performance is comparable in the two setups.   

 

Figure 3.9 Phase sensitivity curves of the MC-OCT in two polarization setups. Blue: standard deviation of phase 

measurement on polarization channel 1, green: standard deviation of phase measurement on polarization 
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channel 2, red: standard deviation of the differential phase between two channels. The differential phase 

sensitivity (red) on top panels are zoomed in on the bottom. 

 

3.4.3. Retardance and optic axis orientation 

To characterize the retardance measurement, a voltage-controlled liquid crystal variable 

retarder (LCVR) was inserted into the sample arm between the QWP and the back reflector. Data 

were recorded when voltage applied to the LCVR was changed from 0 to 10 V stepping by 10 

mV (Figure 3.9A). Figure 3.9B shows the retardance measurement as a function of voltage (solid 

line) together with the manufacturer’s test data (dashed line). The two curves are in good 

agreement. Small deviations may result from misalignments, mismatch between our (840 nm) and 

manufacturer’s test (848.7 nm) wavelengths, and temperature dependence of the LCVR. 

 

Figure 3.10 (A) Phase retardance measurement using a voltage driven LCVR; (B) Retardance after correcting 

the phase anomaly and the manufacturer’s test data. 

Measurement of relative optical axis orientation was examined by using a known retarder 

(QWP at 633 nm) as the sample. Data were recorded in steps of 10° rotation of the retarder, over 

a range of 180°. Figure 3.10A shows the relative axis orientation measurements (circles) with the 

expectation (solid line). The mean value of the error is 2.64°. Figure 3.10B shows the phase 
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retardance measurements (square) with a mean value of 68.38°, and a standard deviation of 0.83°. 

Errors, which are negligible, may arise from misalignments and imperfect polarization 

components.  

 

Figure 3.11 (A) Relative optical axis orientation measurement (circle) for a known retarder with expected slope 

(line), (B) and the corresponding phase retardance. 

3.5 MULTI-CONTRAST IMAGING  

3.5.1. In-vivo human finger imaging 

Imaging performance of our SDPS-OCT system was demonstrated by stacking multiple 

A-lines while a galvanometer-controlled mirror scanned the beam (~2.5 mW) over a human 

finger nail and skin. Cross-sectional images containing 1000 A-lines were acquired and saved at 

20 fps (50 μs/A-line). The real-time display for the reflectivity and retardance images was about 

1.5 fps. Figure 3.12 show the reflectivity, phase retardance and relative axis orientation images, 

reflectively. The measured axial resolution is about 5.5 μm in tissue. The reflectivity image, 

which has a dynamic range of 30 dB, is relatively uniform across the tissue. High-contrast 

banding patterns can be seen in the retardance image. The banding patterns are not the same for 

the nail plate and the skin, because birefringence values for these tissues are different. More 

iterations of banding pattern indicate that the nail in this sample is more birefringent than the 
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skin. The relative axis orientation image is fairly uniform across the transverse direction of nail; 

however, different orientations indicated by red, yellow and light green spots are observed in the 

skin portion. 

 

Figure 3.12 SDPS-OCT’s reflectivity, phase retardance (dark: 0°; light: 90°) and relative axis orientation (blue: -

90°; red: 90°) images of the nail and skin of a human finger. 

 

3.5.2. In-vitro flow imaging 

Here, we also demonstrate the feasibility of MC-OCT for flow imaging using a U-shaped tube 

with an Intralipid solution flowing inside (Figure 3.13). These findings suggest that MC-OCT can 

detect bi-directional blood flow, allowing for the localization of blood vessels in living brain, 

which could minimize the risk of intracranial hemorrhage— a significant risk in neurosurgical 
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procedures. Thus, development of an endoscopic MC-OCT technology could provide real-time 

intraoperative visualization and monitoring, making it potentially useful in clinical applications. 

 

Figure 3.13 Doppler flow images of a U-shaped tube with Intralipid perfusion. A. Bi-directional flow is 

demonstrated as the white and black circles, and the gray shells surrounding them are the tube. B. The 

corresponding reflectivity image. C. Multiple flow images are shown with different velocities. Flow speed is 

increasing from top to bottom. The external diameter of the tube is 1 mm. 

3.5.3. Multi-contrast images of in-vivo human retina  

To evaluate the system capability of multi-contrast imaging, a healthy human’s retina is imaged. 

Experimental setup is similar to that used for finger imaging, except that an additional lens was 

employed in the sample arm to allow pivoting the collimated beam at the pupil. Since the cornea 

and lens focus the beam onto the retina, imaging retinal layers and blood vessels is achieved. 

Cross-sectional images of reflectivity, Doppler flow, retardance and optic axis orientation 
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contrasts were generated from a single optical scan (Figure 3.14). The black and white clusters in 

(b) suggesting the flows at different depths can be visualized using the Doppler image, which can 

be used to indicate blood vessels in tissue. The range of the lateral scan is about 6 mm, starting 

from the fovea and covering the optic nerve head. If a smaller region of tissue is scanned, flow in 

small blood vessels may be visualized. 

 

Figure 3.14 MC-OCT images of a health human’s retina in-vivo: (a) reflectivity, (b) Doppler flow, (c) 

retardance, and (d) optic axis orientation. 

3.6 DISCUSSIONS AND CONCLUSION 

In conclusion, we demonstrated a high-speed MC-OCT system for imaging tissue reflectivity, 

birefringence, relative axis orientation and Doppler flow with a single optical scan. This PMF 

based approach is unique in the fiber based PS-OCT implementations because it is capable of 

generating birefringence information along a depth profile with a single measurement. The 

retardance measurement does not require compensation for polarization transformations known in 

non-PM single-mode fibers. The axis orientation image, which is calculated from the phase 

difference, is sensitive to external perturbations. As a result, most of the PM fiber-based 

components of the MC-OCT are kept in polystyrene enclosure. By virtue of the high speed in 

spectral domain OCT system, the phase disturbances were not observed on axis orientation and 

Doppler flow images (Figure 3.12-3.14) within one optical scan. Although PMF setups require 
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careful implementation, simple design and operation of the PMF-based system make it attractive 

for real time physiological studies and clinical applications. 

Another concern in PMF is the unequal transmission loss of the orthogonal modes in the PMF, 

which might be due to even transmission efficiencies of the polarization splitter/combiner or 

caused by splicing. This is not observed in the current PMF system. However, for more 

sophisticated fiber based design, this uneven transmission loss may manifest which can be 

corrected by rescaling the intensity of polarization channels in software [113].   

Birefringence of the PMF yields a phase lag between the polarization states in the slow and fast 

axes. If the phase difference is matched in reference and sample arms, the coherence functions of 

the two polarization channels will exactly overlap in depth. Otherwise, an axial shift between the 

coherence functions of the two channels is observed, which causes a degradation in the axial 

resolution. We ensure the spatial overlap of the coherence functions by precisely matching the 

fiber lengths in the sample and reference arms. A length mismatch of one beat length leads to a λ0 

shift between the coherence functions on the two channels, an order of magnitude smaller than 

the axial resolution. However, if not taken care of, a mismatch of several beat lengths can easily 

induce a noticeable spatial shift between the coherence functions. Phases of the coherence 

functions, on the other hand, cannot be matched using this method. Hence, as opposed to the bulk 

PS-OCT which yields absolute axis orientation [134], the optical axis orientation images in PMF 

based system are relative due to a phase offset. Absolute orientation images can be obtained by 

removing the offset using a retarder with known axis. In case of unmatched fiber lengths in 

sample and reference arms, a numerical compensation based on Fourier analysis can be applied to 

realign the two channels [135]. 

Polarization-maintaining fiber has high isolation between its orthogonal channels. However, any 

small amount of leakage between the polarization channels could lead to interferences with the 

sample or reference light, and the problem is not negligible due to the extremely high sensitivity 

of OCT. The cross-coupling in the PM coupler and the PM fiber splices, for example, can 
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generate considerable ghost images. The separation between the ghost and main images is 

attributed to the length of the PMF segment after the leaking point. Therefore, this problem can 

be fixed by extending the length of PMF in the interferometer (or adding other birefringent 

materials) to displace the ghost images beyond the imaging range. In this MC-OCT, we used 15 

meters PMF in the sample and reference arms to remove the artifacts. For a beat length B, and 

PMF length l, the displacement is given by l × λ0/2B considering the double pass length. With B = 

1 to 2 mm for the Corning’s PM fiber, the ghost line due to leakage in the PM coupler should be 

displaced by an amount of 6.3 to 12.6 mm away from the main line; we measured a displacement 

of about 8.5 mm. Leakage in either of the detection or input portions of the interferometer gives 

rise to fixed lines. These lines are minimized by optimizing the optical. Residuals, if any, can be 

eliminated by software algorithms of reference subtraction. 

Light in the orthogonal PMF axes travel different optical paths. As a result, the dispersion 

imbalances between the reference and sample arms may not be identical for the two polarization 

channels. With the superluminescent diode with a bandwidth of 50 nm, we computed that 

coherence lengths deviate 0.8 µm from the theoretical value. Therefore, the effect was negligible. 

However, for ultra-resolution design with broader bandwidth light source, the system needs to be 

implemented with additional care. Numerical dispersion compensation may not be sufficient 

alone and combination of hardware compensation may be more appropriate.  
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CHAPTER 4  MULTI-CONTRAST OPTICAL 

COHERENCE TOMOGRAPHY FOR BRAIN IMAGING AND 

OPTICAL TRACTOGRAPHY 

4.1 INTRODUCTION 

The brain is composed of roughly 100 billion neurons that contain trillions of connective tracts. 

Despite the progress in understanding operations of single neurons and their functions at the 

system level, the communicative and cooperative pathways in the axonal networks of the brain 

remains elusive. Considerable research has been directed toward identifying the pathways of 

axonal connections between nuclei and cortical layers in recent years. Histological methods have 

contributed in the microscopic anatomy and local tracing of myelinated nerve fibers [136-138]; 

however, majority of those studies are limited on 2D plane [167]. Diffusion magnetic resonance 

imaging (MRI) techniques such as diffusion tensor imaging and high angular resolution diffusion 

imaging utilizing the anisotropic diffusion of water molecules along the fiber tracts have been 

developed recently to noninvasively study brain connectivity [139-141]. However, the diffusion 

imaging approach suffers from relatively low spatial resolution (in millimeters), and the nature of 

probability-based analysis may lead to spurious interpretations of rel fiber structures in the brain 

[142]. Comprehensive understanding of structural connections in the brain requires 3D 

visualization of fiber tracts with high spatial resolution.          

The capability of OCT in depth-resolved imaging with micrometer scale resolution of [25] 

provides a perspective to look into the question. The feasibility of using OCT to image the brain 

has already been demonstrated [35]. Traditional OCT utilizes the scattering properties of light 
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from the white and gray matter. However, there is an optical property of the myelin sheath of 

nerve fibers, known as birefringence (∆n), which may be probed by PS-OCT and provide 

additional benefit to determine the spatial organization and orientations of fiber tracts. 

Birefringence, which is a consequence of the alignment of macromolecular arrays of lipids and 

proteins contained in myelin [143] results in a single axis of optical anisotropy in each fiber. 

Birefringence can be quantified by a phase shift, known as phase retardance, between the 

orthogonal polarization states of polarized light passing through the tissue, and the axis of optical 

anisotropy which is parallel to the fiber axis can be obtained as well. Birefringence images of 

neuronal architectures have been reported by polarized light microscopy [144].  Fiber tract maps 

in human postmortem brains have also been constructed using polarized light imaging [145].  In 

this method, spatial resolution was defined by the pixel size of the imaging camera and the 

section thickness of the brain slice. Nakaji et al. [146] reported a free-space PS-OCT with 

multiple measurements to differentiate white and gray matter and determine fiber orientations in 

brain slices.  

To date, systematical studies of OCT in brain imaging and mapping are still sparse. The big 

challenge is how to make use of the high resolution (both axial and lateral) of OCT to construct 

the 3D brain maps with interpretable anatomy and structure-specific information. In this chapter, 

we use the PMF based MC-OCT system developed in the previous chapter to realize 3D imaging 

and fiber tractography in ex-vivo rat brain. The capability of the reflectivity, retardance and optic 

axis orientation contrasts in revealing brain microstructures and especially depicting the white 

matter tracts will be systematically investigated. The strategies of constructing 3D fiber maps 

within one optical section will be established using these MC-OCT contrasts. We will show that 

the micrometer scale resolution of MC-OCT enables visualization of fiber tract architecture with 

an unprecedented level of detail. 

4.2 EXPERIMENTAL PROCEDURES  
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4.2.1. MC-OCT data acquisition 

The MC-OCT developed in Chapter 3 is used for brain imaging in this Chapter. The experimental 

setup is illustrated in Figure 4.1. Briefly, light from the source (a near-infrared superluminescent 

diode, λ0 = 840 nm, Δλ = 50 nm) is linearly polarized and coupled into one of the orthogonal 

channels of the PMF. Then, a PMF-based 2 × 2 coupler splits the light into the reference and 

sample arms of the interferometer. In the reference arm, 45° linearly polarized light is coupled 

back into PMF. In the sample arm, circularly polarized light is incident on the sample. Light 

interacts with anisotropic tissues and the polarization state is altered to an elliptical state due to 

tissue birefringence. The light back scattered from the sample is coupled into the PMF channels. 

The waves from the sample and reference arms are then combined in the 2 × 2 coupler and their 

interference is acquired in the detection arm of the interferometer. Oscillations on the spectra 

yield information along the depth (z-axis) profile. During the experiment, the incident beam is 

laterally scanned over the sample in two dimensions (xy plane) allowing for 3D reconstruction of 

the tissue sample. The depth resolution is about 5.4 µm in tissue (with a refractive index of 1.4), 

and the lateral resolution is about 15 µm.  

 

Figure 4.1 MC-OCT setup for brain imaging. (A) System schematic diagram. SLD, superluminscent diode; FB, 

fiber bench; P, polarizer; C, collimator; QWP, quarter-wave plate; L, lens; M: mirror; GM, galvo mirror; G, 

grating; W, Wollaston prism. (B) Experimental configuration under sample arm. The brain sample is mounted 

on a Vibratome slicer, which is placed under the sample arm optics that scans the beam over the tissue. 
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Two healthy adult rat brains were obtained from the Tissue Sharing Program after approval by 

the Research Animal Resources at the University of Minnesota. One brain was fixed in 10% 

buffered formalin for 48 hours prior to imaging. Myelin sheath integrity in postmortem brain 

tissue is not affected by proper fixation [143]. Another brain was immediately translated to the 

imaging stage after dissection. During the imaging, one hemisphere of the brain was glued to a 

metal plate with the sagittal plane (xy plane) facing upward, and submerged in saline. The 

preparation was then mounted on a Vibratome (Leica Microsystems, Bannockburn, IL), which 

was placed under the sample arm of MC-OCT for imaging (Figure 4.1B). The incident power on 

the sample was 3.9 mW. With an optical scanning angle of ±6°, the imaging area covered a field 

of view of 6.25 × 6.25 mm2. Each cross-sectional image contained 1000 A-lines, and 250 cross-

sections (frames) were acquired at 20 fps for 3D imaging. Each A-line contained 512 points with 

3.4 µm spacing. Therefore, each voxel spanned a tissue volume of 6.25 x 25 x 3.4 µm3.  After one 

volume scan, a 500-µm brain section was removed using the Vibratome, allowing deeper regions 

to be imaged for a new section. A total of twelve scans were performed over the hemisphere. 

Afterwards, the brain slices were imaged using a conventional microscope for comparison.  

4.2.2. Image reconstruction 

The contrasts of reflectivity )(zR , phase retardance )(z and optic axis orientation )(z are used 

in ex-vivo brain imaging and are extracted by the amplitude and the phase information of the 

complex depth profiles on the two polarization channels (Eq. 3.17 - 3.19). Reflectivity represents 

the scattering properties of the brain. Phase retardance indicates the presence of anisotropic tissue 

with an optic axis. Optic axis orientation, also called in-plane orientation, represents the angle of 

the axis of tissue anisotropy on the oscillation plane of the incident wave with respect to a 

reference axis. Due to an arbitrary phase delay between the PMF channels, our system determines 

a relative optic axis orientation across lateral scans. Cross-sectional images are generated by 

stacking 1000 A-lines acquired during lateral scanning (x-axis). 



54 
 

Phase retardance is a cumulative phase shift between the orthogonal polarization states when 

polarized propagates in a tissue with birefringence n , and is given by 

𝜹(𝒛) = ∫𝟐𝝅 𝝀⁄ ∙ ∆𝒏(𝒛)𝒅𝒛 4.1 

Birefringence n can be characterized by the derivative of retardance along the axial (z) direction 

as   
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Figure 4.2 Relationship between phase retardance and birefringence.

 

The relationship of phase retardance and birefringence is illustrated in Figure 4.2. A fiber bundle 

is located inside an isotropic medium. The retardance accumulates linearly with depth where light 

passes through the fiber. It should be noted that the measured retardance is also dependent on the 

inclination angle between the tissue axis and the wave oscillation plane [147]. The measured 

birefringence is   
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∆𝒏 = 𝒏𝟏 − (𝒏𝟏
−𝟐𝒔𝒊𝒏𝟐𝜶+ 𝒏𝟐

−𝟐𝒄𝒐𝒔𝟐𝜶)−𝟏 𝟐⁄  4.3 

where 𝛼 is the angle between the fiber axis and the projection of the axis onto the section plane, 

called the inclination angle. With approximation, the simpler form can be expressed as  

   

∆𝒏 ≈ (𝒏𝟏 − 𝒏𝟏) 𝒄𝒐𝒔
𝟐𝜶 4.4 

Therefore, the value calculated from Eq. 4.2 is apparent birefringence. 

4.3 GRAY MATTER AND WHITE MATTER DIFFERENTIATION  

White matter and gray matter exhibit distinct optical properties on the images. In this section, we 

examine the capability of MC-OCT in structure distinction. To differentiate the white matter and 

gray matter in the brain, features were extracted from the MC-OCT images first. Then a classifier 

was run on the features to assess the differentiability performance of the MC-OCT contrasts.  

4.3.1. Boundary detection of the tissue-air interface 

The cross sectional images typically contains data that is air-tissue interface at the top. As a 

result, prior to parameter extraction, the data must be automatically parsed to determine the 

segment of the top surface of tissue reflectivity. Since the signal decays exponentially with depth, 

it is necessary to exclude the data from the bottom part with low SNR. And there might be extra 

noise peaks or ghost lines that need to be eliminated as well. Here, we use cluster algorithm to 

extract the tissue boundaries in each cross sectional image. First, all data points with a SNR 

below 6 dB are set to floor value. Next, we apply an algorithm that detects the maximum cluster 

whose signals are significantly above the floor value, and assigned the starting and ending points 

as the boundaries of the tissue. By doing this, patterns of non-tissue artifacts such as water surface 

were removed. To avoid error from specular reflection at the air-sample interface, the starting 

point was shifted 4 pixels (~20 µm) beyond the first peak. After that, a classical edge detection 
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algorithm was applied to further remove the small disturbance on the surface. These routines 

were automatically applied to all the scans to determine the data range over which to compute the 

feature parameters. The average depth over which the signal was analyzed was about 600 µm. 

4.3.2. Feature extraction 

Signal parameters were extracted for each A-line, and the mean value of each parameter was used 

to represent the sample. Each parameter was calculated using an automated MATLAB script. 

Noise reduction was implemented for preprocessing. Each parameter is listed as µ ± σ, where µ is 

the mean, and σ is the standard deviation. The p-values were calculated using a two-sided 

unpaired t-test to determine if the difference in sample means between parameters representing 

the white matter and gray matter were statistically significant. 

Attenuation coefficient 

Collimated light attenuates exponentially with depth according to the Beer-Lambert law. The 

light attenuation in tissue can be quantified by the slope of the logarithmic reflectivity in the axial 

direction (A-line), provided that the beam is not tightly focused. A high slope indicates more 

attenuation and a larger attenuation coefficient, whereas, a low slope indicates a smaller 

attenuation coefficient. The slope was calculated by a first-order polynomial fit over the region of 

interest. 

Reflective variation 

The variation of scattering within one A-line depth profile can be used as another parameter for 

classifying tissue type. One way to assess the scattering variance is to measure the slope-

subtracted standard deviation of the axial depth profile. If the scattering fluctuates significantly, 

the reflection profile will have high scattering peaks interspersed with low signal, and the 

standard deviation will be high. Conversely, if the scattering is relatively homogeneous, the signal 
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will be more uniform, and the standard deviation will be low. To remove the effect of the bulk 

averaged scattering coefficient, the residual of the linear fit was used to compute the standard 

deviation. 

Birefringence 

Anisotropic tissue with single optics axis will display the property of birefringence when the light 

passes through the tissue. Birefringence is defined as refractive indices difference between two 

polarization states parallel and perpendicular to optics axis respectively, and can be calculated 

from phase retardance between the two channels. The slope of the phase retardance is 

proportional to birefringence. A slope of zero means the tissue is isotropic, and there’s no 

birefringence for the tissue. On the contrary, a high slope indicates the tissue is highly 

birefringent. The slope was calculated by a first-order polynomial fit over the region of interest. 

4.3.3. Classification 

A multivariate Gaussian model was used for classification. Three out of four scan sessions were 

used as the training set for feature extraction and the remaining was used for validation. A pooled 

estimate of the covariance matrix was used for the training set. The Bayesian detection method 

was applied to test the probabilities of white matters versus gray matter, and a threshold was 

adjusted to achieve the best performance. The accuracy of the algorithm for brain tissue 

classification was assessed by comparing the results to other standard method. 

4.3.4. Results 

Figure 4.3A illustrates a microscopy sagittal section of the right hemisphere, in which white 

matter appears bright white. The dashed red lines indicate two B-lines (i and ii), where cross-

sections are displayed by MC-OCT contrasts in Figure 4.3B-D. The reflectivity images in Figure 

4.3B suggest that white matter, in general, has a higher peak scattering signal (bright colors) than 
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gray matter, and a sharp decay with depth due to increased attenuation of light.  On the other 

hand, the gray color regions indicate that gray matter has a deeper penetration and slower 

attenuation. The left side of the cross-section (i) with highly scattering spots in the reflectivity 

image represents small fiber branches running perpendicular to the viewing plane, which can also 

be seen in the corresponding microscopy image. The phase retardance images in Figure 4.3C 

indicate that retardance dramatically increases with depth in the white matter, whereas retardance 

remains low in gray matter. This distinction is more evident in large fiber bundles as shown on 

the right side of the cross-section (ii), where banding patterns start to appear due to phase 

wrapping. From visual inspection, the location of peak reflectivity and the position where 

retardance starts to rise are roughly matched on the same A-line. Figure 4.3D illustrates the axis 

orientation images that provide additional information to locate the fiber tracts and distinguish 

fiber directions in the white matter. Note that phase wrapping in the large fiber tract also alters the 

axis orientation color in the deeper region, which can be corrected by the software.  

The identification of white matter can be more complicated due to its axis-dependent optical 

characteristics [148]. Figure 4.3E demonstrates a comparison of reflectivity profiles for three 

distinct neighboring brain regions (left), which are marked by the color-coded arrows on the 

cross-sectional images. The internal capsule, indicated by the blue arrow, exhibits the strongest 

signal in the superficial layer due to the parallel alignment of its component nerve fibers with 

respect to the viewing plane. On the other hand, the reflectivity profile of the optic tract, in green, 

is even smaller than that of the gray matter (in red). Therefore, determination of whether a 

structure is gray or white matter based on the reflectivity information alone from conventional 

OCT can be misleading. The retardance information provided by the MC-OCT provides a more 

robust differentiation of the white matter from the gray matter on the corresponding retardance 

curves for these three regions (left). It is clear that the slope of retardance curves representing the 

birefringence can be a main indicator of the myelinated nerve fiber tracts.  
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Figure 4.3 Microscopy and cross-sectional MC-OCT images of an ex-vivo rat brain. Microscopy image (A) 

demonstrates a sagittal section of the right hemisphere. Cross-sectional MC-OCT images of reflectivity, phase 

retardance and optic axis orientation are shown in panel B, C and D, respectively, for two cross-sections (i and 

ii) indicated by the dashed lines on A (scale bars: 100 µm axial, 500 µm lateral). White and gray matter regions 

are marked by orange and pink bars on top of the reflectivity images. Color-coded arrows on cross-section ii 

indicate white matter regions with small (blue) and large (green) inclination angles, and the adjacent gray 

matter region (red). Reflectivity and phase retardance profiles of six A-line averages for these regions are shown 

in E (scale bar: 50 µm). 

Figure 4.4A shows a zoomed-in region of white matter (left) and gray matter (right) on the cross-

sectional image. Representative A-lines of reflectivity and retardance with their 1st order 

polynomial fitting were shown on Figure 4.4B. 
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Figure 4.4 (A) A zoomed-in region of white matter and gray matter on the cross-sectional image. Gray scaled 

images on top are logarithmic reflectivity, and dark indicates higher reflectivity; Color scaled images at bottom 

are phase retardance, and light color indicates higher value of retardance. (B) Reflectivity (top) and phase 

retardance  (bottom) of one A-line along depth, a: white matter, b: gray matter. 

The attenuation and birefringence are extracted from each A-line for white matter and gray matter 

regions, and the statistical results are provided in Figure 4.5. The reflectivity signal attenuates at 

(8.48 ± 1.46) × 10-2 dB/µm in white matter, and (6.14 ± 0.88) × 10-2 dB/µm in gray matter. 
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Therefore, for conventional OCT images, attenuation may be a better indicator to differentiate the 

white and gray matter than the peak reflectivity discussed above.  The slopes of phase retardance 

were found to be 0.33 ± 0.10°/µm for white matter and 0.03 ± 0.01 °/µm for gray matter, 

representing the birefringence of (7.78 ± 0.61) × 10-4 and (0.21 ± 0.068) × 10-4, respectively. The 

values for attenuation and birefringence features are significantly higher for white matter 

compared to gray matter. However, the differentiation is more pronounced in the birefringence 

contrast. Thus, birefringence provides a more reliable means of distinguishing myelinated fiber 

tracts in the brain.  

 

Figure 4.5 Mean and standard deviations of attenuation and birefringence for white and gray matter. 

Using three features, the comparisons between white and gray matter from the training set are 

listed in Table 4.1. Each parameter has a significant p-value. The average magnitude of the 

reflectivity slope was higher for white matter, which indicates a higher scattering coefficient 

compared with gray matter in the brain. White matter has a higher reflective variation because of 

high scattering nerve bundles of white matter tracks. The birefringence of white matter is 

significantly greater than zero. However there’s no detectable birefringence in gray matter.  
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Table 4.1 Statistics of features (with arbitrary units) from training set.  

Parameter White matter Gray matter p 

Scattering coefficient 3.64 ± 0.66 2.84 ± 0.59 < 0.0001 

Reflective variation -0.18 ± 0.03 -0.12 ± 0.03 < 0.0001 

Birefringence  0.22 ± 0.11 0.04 ± 0.06 < 0.0001 

 

A region of interest (ROI) chosen from the enface image of the scan session was used for 

validation. The result from the detection algorithm was compared to other identification method 

for the accuracy evaluation. Classification results using all three parameters are listed in Table 

4.2. The goal was set to detect the white matter in the brain. Therefore, the correct classification 

of white matter is a true positive (TP), and the correct classification of gray matter can be viewed 

as a true negative (TN). In this way, the sensitivity, as defined by TP/(TP+FN) (FN = false 

negative) is equivalent to the accuracy of detecting white matter. The specificity, as defined by 

TN/(TN+FP) (FP = false positive) is equivalent to the accuracy of detecting gray matter. The 

sensitivity and specificity of the validation set are 82.8% and 76.3%, respectively.  

Table 4.2 Classification of white and gray matter using two-parameter and three-parameter 

models. 

 Three-parameter model Two-parameter model 

Sensitivity 82.8% 86.3% 

Specificity 76.3% 55.5% 

 

In order to compare the classification performance acquired from PS-OCT system with that got 

from conventional OCT (polarization-insensitive OCT) and evaluate the significance of 

parameter of polarization information (birefringence), classification results only using the first 
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two parameters listed in Table 4.1 (scattering coefficient and reflective variation) are also listed in 

Table 4.2. The results indicate that sensitivities to detect white matter based on three parameters 

(82.8%) and two parameters (86.3%) are both good in this detection algorithm. However, 

specificity is much higher from the three parameter based detection (76.3%) than that tested by 

two parameters (55.5%). Overall, detection performance is better in the three-parameter system 

including polarization information. Therefore, PS-OCT provides important tissue features that 

improve the system capability in classification of white matter and gray matter for brain imaging. 

 

Figure 4.6 A region of interest for detection from an enface image of the rat brain, the dataset used for 

validation are labeled by the rectangle in red. 

4.4 MULTI-CONTRAST EN-FACE IMAGES 

4.4.1. Reconstruction methods 

To resemble the view of block-face microscopy, the volumetric data from an optical scan were 

projected onto the xy-plane for each optical section, forming the en-face images. In such a way, 

surface and subsurface features are unveiled on the images. We reconstructed en-face images for 

each MC-OCT contrast, and correlated the results with the bright field images of the brain slice 

from the microscope. Four pre-processing steps are performed on each cross-sectional image to 

improve the image quality. First, the reflectivity image is used to exclude the low signal-to-noise 

ratio (SNR) (< 6) areas. Then, a median filter is applied to reduce the speckle noise. Next, 

segmentation is used to identify the tissue region. This enables removal of artifacts (e.g. water-air 

interface and auto-correlation terms) located outside the imaging area. Finally, an edge detector 
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[149] is used to determine the tissue surface. The pixel intensity Ī(i, j) of the en-face images is 

calculated from these processed/masked images by taking the mean value on each A-line, and is 

expressed as 
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where S(i, j, k) represents a 3D data set for reflectivity, retardance or axis orientation, i and j are 

the indices for lateral coordinates and k is the index for axial direction, and Ni, j is the number of 

unmasked (non-zero) elements along depth at the specified (i, j) location. Data was interpolated 

along the y-axis to maintain the aspect ratio of the 2D image. As a result, en-face images of 

reflectivity, phase retardance and optic axis orientation are reconstructed to facilitate the structure 

identification and perform comparisons with standard microscope images. Finally, 2D 

tractography is built up by combining the en-face phase retardance and the axis orientation maps, 

and is displayed in HSV color space. Orientation and retardance maps are encoded as hue and 

brightness, respectively, as seen in the color scheme given in Figure 4J. 

4.4.2. En-face images of reflectivity, retardance and optic axis orientation 

En-face images of a rat brain were reconstructed to produce the sagittal view. Figure 4.7A shows 

the microscopy image with labeled structures and the reconstructed MC-OCT images. The en-

face maps of reflectivity, phase retardance and optic axis orientation reveal various features, some 

of which are apparent only in one map. In addition, sub-surface structures, are visible in en-face 

MC-OCT images, and if desired, the specific structures can be localized in depth using the cross-

sectional images. The en-face reflectivity map (in Figure 4.7B) provides clear contour delineation 

and differentiation of gross structures in the brain which correlate well with the microscope 

image. In general, the white matter appears brighter than the gray. The dark appearance of the 

fimbria and the optic tract may be due to the large inclination angle of the fiber axis at the 
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specific location against the viewing plane as discussed in the previous section. As shown in 

Figure 4.7C, the phase retardance map highlights the fiber tracts further because the presence of 

gray matter is suppressed due to a lack of birefringence. The brightness of the tracts qualitatively 

provides a sense of axis alignment to the plane. In the internal capsule, small fiber tracts, 

measuring tens of micrometers in diameter, are clearly visible. Inclined fibers, which might be 

misinterpreted in the reflectivity map due to their dark appearance, can also be identified.  

Multiple fiber tracts in the midbrain are visible, and the structural feature of the white matter 

embedded in the thalamus emerges.  

 

Figure 4.7 Microscopy image (A) and reconstructed MC-OCT en-face images (B-D) of a sagittal rat brain 

section, with comparison of anatomy (F). Structures are labeled on the microscope image (A):  cp- cerebral 

peduncle; CPu- caudate putamen; fi- fimbria; GP- globus pallidus; HIPP- hippocampus; ic- internal capsule; 

ml- medial lemniscus; opt- optic tract; SN- substania nigra; TH- thalamus; ZI- zona incerta. Leftward arrow: 

cranial; upward arrow: dorsal. Reconstructed brain maps of reflectivity (B), phase retardance (C), optic axis 

orientation (D) and combined image for tractography (E) are shown. The color map of (E) is illustrated in 

Figure 4J. The arrows in (D) indicate three groups of fiber bundles with different orientations. The image in (F) 

is modified from The Rat Brain in Stereotaxic Coordinates [164] with permission. Abbreviations of structures: 
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bic- brachium of the inferior colliculus; bsc- brachium of the superior colliculus; cp- cerebral peduncle; eml- 

external medullary lamina; fi- fimbria; ic- internal capsule; ml- medial lemniscus; opt- optic tract; st- stria 

terminalis; str- superior thalamic radiation. 

The optic axis orientation map in Figure 4.7D provides further information about the in-plane 

angle and alignment of the fiber axes. The arrows indicate three groups of fiber tracts with 

different orientations around the zona incerta. Such detail is not distinguishable in reflectivity and 

phase retardance maps and is barely detectable using bright-field microscopy. The use of axis 

orientation information enhances the identification of intermingled fiber tracts running across the 

viewing plane. An excellent illustration of this feature is the differentiation of internal capsule 

and optic tract, seen in Figure 4.7D. Moreover, the MC-OCT contrasts can be combined in order 

to facilitate better tractography. Figure 4.7E shows the implementation of 2D tractography by 

utilizing phase retardance and orientation maps. The axis orientation and the retardance of fibers 

are encoded by color and brightness of the colors, respectively. The detailed color scheme is 

illustrated Figure 4.7J. The spatial organization of the fibers in tractgraphy is in good agreement 

with the anatomy (4.7F). Based on the brightness and the color of the en-face maps, the spatial 

orientation vector of fibers in the brain may be interpreted.   

Multiple sagittal sections illustrating the course of fiber tracts on 2D tractography (top panels) 

and microscopy images of the corresponding slices (bottom panels) were shown in Figure 4.8. 

The HSV color scheme for 2D tractography images is shown in Figure 4.7J. The en-face 

orientation (𝜃̅) and retardance (𝛿̅) images were used to determine colors and brightness of the 

colors, respectively. The cyan color represents a reference direction (0°) for fiber orientations. 

Since 𝜃̅ is average axis-orientation along depth, its value may not reach the actual value due to 

noise and filtering effects. For instance, the maximum deviation (𝜃̅𝑚𝑎𝑥) from the reference 

direction was calculated to be 68°, instead of reaching 90°. Therefore, the colors on the wheel are 

scaled accordingly. We used en-face retardance 𝛿̅ images to adjust the brightness of colors. As 

seen along the radial direction of the color wheel, the minimum retardance (𝛿̅ = 0°) yields black 
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and the maximum retardance (𝛿̅ = 60°) represents the full color. For each row panel, the positions 

of the imaging sections from left to right are indicated by the dashed lines (1-4) on the rat brain 

(I). The details of fiber tracts are well appreciated in these MC-OCT images. By incorporating 

optical slices of all sections, white matter distribution and orientation from the lateral to medial 

sections of the brain may be continuously tracked. More importantly, it is possible to use depth-

resolved images to localize the nerve fibers precisely, and track the fibers in 3D. 

 

Figure 4.8 2D tractography of the right hemisphere of the rat brain for four sagittal sections (A, B, C, D) and 

corresponding microscope images (E, F, G, H). The four locations of the images from left to right are lateral 3.9 

mm, 3.4 mm, 2.4 mm and 1.13 mm, which are indicated by the dashed lines (1-4) on the right hemisphere of rat 

brain (I), respectively. The color scheme of tractography images is shown in (J).  The en-face orientation 𝜽̅ and 

retardance 𝜹 of fiber tracts determine the color and brightness of the images, respectively. 
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Using fresh rat brain, the MC-OCT is also able to produce high-quality images. Figure 4.9 

demonstrates the en-face reflectivity, retardance and axis orientation images of a sagittal view 

close to the midline of the brain. The hippocampus, thalamus, callosum and midbrain portion 

were shown. The optical contrasts from fresh brain and fixed brain (Figure 4.7) are comparable, 

indicating that fixation does not influence the images created by MC-OCT. The major problem of 

using fresh tissue is that the vibratome cannot cut an ultra-flat surface especially in the white 

matter fibers with high myelination, thus inducing artifact on the en-face images (see the arrow 

indication on the reflectivity map). As OCT is a depth-resolved technique with high axial 

resolution, the surface flatness is an essential factor in undistorted 3D reconstruction. Therefore, 

in the following sections and chapters, we all use fixed brain tissue for imaging. However, with 

technical advance in microtome slicer, reconstruction of fresh brain by MC-OCT is possible and 

preferential.  

 

Figure 4.9 En-face images of unfixed rat brain (sagittal view). A, reflectivity; B, retardance; C, axis orientation. 

4.5 OPTICAL TRACTOGRAPHY 

The 3D localization of fiber bundles is obtained by utilizing the cross-sectional phase retardance 

images. The presence of fibers is revealed by an accumulative phase retardance, which increases 
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with depth when light passes through the white matter, compared with no detectable or negligible 

change in the gray matter. Therefore, the depth localization of the nerve fibers can be achieved by 

using the birefringence contrast. The local slope of phase retardance is quantified by taking the 

numerical difference between two neighboring retardance values along depth [150]. Since speckle 

noise significantly affects the differential calculation, we eliminated the speckle through three 

steps. First, a 4 × 4 moving average filter is applied over the lateral (xy) plane. Then an adaptive 

nonlinear diffusion filter [151, 152] was performed on cross-sectional images. The purpose of the 

nonlinear diffusion filter is to further reduce the speckle noise while preserving the edge of the 

features. Finally, a “spline” smoothing algorithm was applied to eliminate the local fluctuations 

on the A-lines. After the speckle de-noising, the numerical difference of retardance along the 

depth profile was computed, and a birefringence threshold was set to mask the gray matter areas. 

In addition, we used histogram equilibrium and binary conversion algorithm on the en-face phase 

retardance image to identify A-lines that do not exhibit birefringence. Masking those A-lines 

further improved the result. We combined the birefringence and axis orientation information for 

locating and tracking fibers in 3D space. The 3D tractography is constructed in HSV color space, 

where axis orientation and birefringence of the fiber tracts are used. 

4.5.1. Birefringence image 

Three dimensional tractography is created from a single section dataset for a 3D brain volume. 

Two types of information are encoded in the reconstructed tractography:  fiber localization 

implied by birefringence, and its axis orientation. Figure 4.10 demonstrates depth localization of 

fiber tracts in the internal capsule region. The cross-sectional images in A and B show phase 

retardance image before and after elimination of speckle noise. The birefringence is derived by 

taking the pixel-wise slope of the phase retardance. As shown in Fig. 4.10C, the birefringence 

image allows depth localization of individual fiber bundles within the internal capsule.  

Considering the discrepancy of the slope values, which may be due primarily to diversity of the 
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fiber inclinations, the fiber bundles are identified as highlighted dots and bands in red, yellow, 

cyan and light blue. Gray matter is masked in the dark blue background due to the lack of 

birefringence. 

 

Figure 4.10 Depth localization of fiber tracts in the internal capsule of the rat brain. A. Original phase 

retardance image. B. Cross-sectional phase retardance image after speckle reduction. The image in B is used to 

obtain the birefringence image (C) that shows nerve fibers at particular depths. White matter is illustrated in 

red, yellow, cyan and light blue in C, and gray matter is masked in the dark blue background due to the lack of 

birefringence. 

4.5.2. 3D fiber maps and tractography 

By combining multiple cross-sections, visualization of nerve fibers is achieved in 3D. Volume 

rendering of the 3D dataset is constructed by the software V3D [153]. Figure 6 shows optical 

tractography for a brain volume of 6 × 6 × 0.45 mm3. HSV color scheme for 3D tractography is 

shown on the lower right corner of Figure 4.11. The axis orientation (θ) and birefringence (n) of 
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fiber tracts are encoded by colors and brightness of the colors, respectively. Due to noise and 

filtering effects, the maximum orientation angle (θmax) with respect to the reference direction was 

80°, and the θ values on the wheel were scaled accordingly. The brightness of the colors, from 

black to full color, is controlled by the value of n. A white background is selected for better 

visualization. The nerve fiber tracts are identified by their spatial connections and color.  

 

Figure 4.11 3D optical tractography of a rat brain section (brain volume: 6 × 6 × 0.45 mm3). The color scheme is 

given on the lower right corner. Nerve fibers are continuously tracked and presented in different colors which 

indicate their axis orientations θ, and the brightness of colors is controlled by the birefringence ∆n (See also a 

movie in the supplemental material). 

The architecture of tightly packed fiber bundles and the diverse directions of small fiber branches 

in the internal capsule are visible. The course of small fibers of the commissural stria terminalis 
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are accurately tracked throughout the slice. In addition, some fiber tracts are visible in the deeper 

regions within the thalamus. The color for a single tract may vary spatially due to change in axis 

orientation. The color also helps to distinguish neighboring tracts. For example, the oval-shaped 

optic tract rising from the inferior-posterior brain is clearly differentiated by the color-coded 

orientation. The fragmented patterns located in the deeper, low SNR regions will likely be 

visualized better by using more advanced signal processing approaches or a MC-OCT operating 

at longer wavelength.  

Figure 4.12 shows three sagittal sections of optical tractography images from medial to lateral. 

The continuity and spatial extension of large fiber bundles are indicated, and small features are 

uniquely visualized in particular sections. By stacking the optical sections together, whole-brain 

tractography can be realized with micrometer scale resolution. 

 

Figure 4.12 Optical tractography of three sagittal sections from median to lateral positions. The color space is 

coded the same as in Figure 4.11. 

4.6 DISCUSSION AND CONCLUSION 
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We used a PMF-based MC-OCT to generate high-resolution 3D images of microstructures and 

nerve fiber tracking in ex-vivo rat brain. We have demonstrated here that MC-OCT imaging with 

retardance and optic axis orientation contrasts, is a  valuable method for distinguishing between 

white and gray matter, based on the birefringence property of myelinated axons. This technology 

enables visualization of nerve fiber tracts that are as small as a few tens of micrometers, and 

provides comprehensive 3D optical tractography in which unprecedented detail of brain spatial 

architecture is clearly visible.  

MC-OCT exhibits a distinctive ability to differentiate the white and gray matter. The feasibility of 

using OCT to distinguish the two structures has been shown by Jeon et al. [35] with parameters of 

penetration and scattering peaks. However, we showed that the scatter peaks may cause miss 

identification of white matter due to a fiber orientation dependency of the light intensity. 

Attenuation coefficient is a more reliable parameter in the differentiation. Taking advantage of 

the PS-OCT technology, birefringence supports the unique probe on the white matter tracts. We 

compare the classification with and without polarization information, and indicate improvement 

of the algorithm performance with PS information available. Other qualitative and quantitative 

features have been identified in OCT images [154]. Texture analysis using speckle properties has 

been proposed. Classification algorithms such as Mahalanobis distance, ANOVA and decision 

tree have been investigated for distinguish different tissues. Recently, feature grouping and 

machine learning based approaches have been investigated. Those quantifications are especially 

important in pathological detections. Two types of skin cancers have been classified with 

reasonable accuracies (81%, and 73%) using Support Vector Machine (SVM) model [155]; and 

breast tumor has been identified using clustering and correlation model [156]. The development 

of computational analysis, which provide automatic and objective measures, and real-time or 

post-acquisition classifications, will eventually benefit scientist and physicians in basic research 

and clinical diagnosis. 



74 
 

Speckle noise, the dominant noise in coherence imaging, needs to be carefully removed in order 

to enhance image quality. The spatial average of A-lines was commonly adopted in conventional 

OCT based retinal imaging for speckle reduction. In addition, various digital signal processing 

algorithms have been demonstrated, including enhanced Lee filter, median filter, symmetric 

nearest neighbor filter and adaptive Wiener filter [157].  More sophisticated approaches have 

been proposed for performing filtering in a transform domain, such as wavelet [158] and curvelet 

[159]. In polarization-sensitive OCT, the effect of speckle noise can be more severe in the 

retardance and birefringence images. The phase retardance information is typically illustrated in 

the image; whereas, depth resolved birefringence images which may provide better localization 

and delineation of anisotropic tissues were rarely utilized, in spite of the fact that it can be 

calculated from the derivative of retardance. The result, based on the differential operation, is 

severely degraded by speckle noise. Recently, a coherence-enhancing diffusion filter has been 

applied to reduce speckle noise in phase retardance images with multiple banding patterns to 

obtain a stress-induced birefringence distribution [150]. Here we used a modified nonlinear 

diffusion filter to minimize speckle effect in the phase retardance images for localizing nerve 

fibers in the reconstructed birefringence images. The goal of the nonlinear diffusion filter is to 

preserve the critical edges of features in the image while reducing speckle noise. As our results 

indicated, fiber localization in unprecedented detail is realized in 3D, with significantly 

suppressed speckle effect. One potential problem in the 3D visualization presented here is that 

some fragmented patches at deeper locations are unrecognized, which might be small fibers 

running into the gray matter structures. Advanced signal processing approaches may show these 

low SNR regions better. Moreover, a swept source based imaging system operating at 1300 nm 

wavelength [160] may allow for improved imaging due to better depth penetration in turbid 

tissues.  
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A limitation of MC-OCT is that currently axis orientation of fibers beneath fibers with different 

orientations is not quantitatively available and phase retardance would not be accurate where 

multiple layers of fibers are crossing in diverse directions. As discussed in Chapter 2.5, using 

Jones calculus layered samples yield depth cumulated retardance and optic axis orientation, so the 

measured information may not be accurate for deeper layers without the depth-dependent 

correction. Figure 4.13 shows a simulation of orientation quantification using Eq. 3.19 in the two-

layer fiber architecture. Relative orientation in the second layer with respect to the first was set 

between 0° and 75° with a 15° increment in the six panels. The x-axis is the retardance in the 

second layer representing retardance accumulation with depth. In each panel, the measured 

orientation of the second layer with respect to the first were shown for different retardance for the 

first layer representing low to high birefringent medium. It is indicated that the relative 

orientation monotonically changes with depth. At the surface of the second layer, the relative 

orientation is always zero. Along with depth, the orientation approaches the set value, but never 

reaches the true orientation. This problem is especially severe when the first layer is highly 

birefringent and the relative orientation between the two layers is large. Considering the complex 

scenario in the brain with multi-fiber crossing along depth, this problem needs to be fixed for 

depth-resolved orientation quantification. A quaternion based algorithm has been proposed to 

distinguish multi-layered local birefringence and optic axis orientations in PS-OCT [161]. 

Quantification of depth-resolved axis orientation and birefringence has also been demonstrated in 

a bulk PS-OCT setup [162].  Using the PMF-based MC-OCT technology, more sophisticated 

models need to be established to achieve better visualization and quantification of depth-

dependent axis orientation and phase retardance of fiber tracts in the brain. 
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Figure 4.13 Simulation of fiber orientation in two layer architecture. The relative orientation between the two 

layers was set 0°, 15°, 30°, 45°, 60° and 75°, respectively in the six panels. The x-axis is the retardance in the 

second layer. From left to right, the retardance is linearly increasing, representing the increasing path light 

passes through. The y-axis is the simulated orientation value between the two layers. In each panel, the seven 

curves describe the scinerios with different retardance values by the end of layer one. 

As a measure of MC-OCT technique, birefringence can potentially be used as an early indication 

of pathological changes [163, 164] in white matter disease, allowing for the detection of fiber 

atrophy or myelin loss before any morphological deformation is detectable on diffusion MRI. 

Quantification of birefringence can be obtained from phase retardance acquired by the MC-OCT. 

However, it should be noted that the influence of inclination angle on phase retardance may 

confound the interpretation of birefringence changes in the current measures, resulting in an 

apparent birefringence. A possible solution was proposed using a variable incident angle based 

polarization-sensitive OCT approach [165], in which both tissue birefringence and 3D optic axis 

orientation can be quantitatively evaluated with series measurements. MC-OCT technology, by 

providing accurate birefringence data, might be useful for the analysis of neuropathological 

processes.  
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The development of technology that can distinguish white matter, gray matter, and blood vessels 

via an endoscope would be of significant utility to the neurosurgeon. An endoscopic OCT setup 

has been proposed for neurosurgical guidance where conventional contrast of scattering was used 

to differentiate white matter and gray matter [33, 36]. In spite of some successful identification, it 

was suggested that the subthalamic nucleus, a primary target for deep brain stimulation (DBS) 

surgery, was difficult to differentiate from adjacent structures. This difficulty might be overcome 

by multiple contrasts provided by an endoscopic MC-OCT.  Preliminary findings suggest that 

MC-OCT can detect bi-directional blood flow (data not shown), allowing for the localization of 

blood vessels in living brain, which could minimize the risk of intracranial hemorrhage— a 

significant risk in neurosurgical procedures. Thus, development of an endoscopic MC-OCT 

technology could provide real-time intraoperative visualization and monitoring, making it 

potentially useful in clinical applications.  
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CHAPTER 5  SERIAL OPTICAL COHERENCE SCANNER 

FOR LARGE-SCALE BRAIN IMAGING AND MAPPING 

5.1 INTRODUCTION 

Light microscopy has made tremendous contributions to our knowledge in neuroanatomy 

including conformation and function of neural cells in the brain over the past century. In recent 

years, more consensuses arise to realize the role communication pathways play in brain disorders 

such as autism and schizophrenia. Comprehensive navigation of the white matter routes imposes 

great challenges to current imaging technologies. Histology bears serious limitation as single 

axonal tract can extend up to centimeters long, and the structures of the axonal networks are 

extremely complicated. Inevitable distortion caused by tissue processing and embedding makes 

the alignment of sequential microscopy images extremely difficult and laborious [168, 169]. To 

overcome the problem, plane illumination microscopy [170] and ultramicroscopy in combination 

with optical clearance technique [171, 172] eliminate mechanical sectioning and produce entire 

brain imaging of young mice with comparable resolution. Nevertheless, better optical clearance 

has yet to be developed for large scale reconstruction of the axonal networks in adult brain [173, 

174]. Neural tracers in combination with fluorescent microscopy contribute to sensitive 

identification of local neural circuits. However, the timeline imposes a formidable obstacle to 

establish the full connection map in a brain template, considering systematic characterization of 

hundreds of injection sites on multiple samples [10, 23].  

Firstly introduced in light microscopy [175], block-face imaging with electron microscopy [19], 

confocal microscopy [176] and two-photon microscopy [177, 178] targets large scale synaptic 
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connections or axonal networks in 3D space. The entire tissue block was mounted on a slicer and 

thin slices were removed between consecutive scans, the procedure of which yields automatically 

aligned image stacks in 3D. However, due to the high density of slicing and the point-scan 

scheme, complete reconstruction of complicated mammalian brains remains challenging.  

The OCT technique with its 3D capability shines a light to overcome with the difficulties. The 

development of Fourier domain OCT [63] has dramatically improved the imaging speed by 

capturing the information at all imaging depths with a single measurement. Since invention, its 

application in peripheral nervous system such as retina has been rapidly translated to clinical 

studies with continuous support of technical advances [179, 180]. In contrast, the applications of 

OCT in central nervous system have been sparsely reported until very recently (see early review 

by Boppart [26]) [146, 181, 201, 202]. After demonstrating the feasibility to differentiate the gray 

and white matter in the brain [203, 35], development of OCT probes to guide neurosurgical 

interventions has been presented [33, 36, 183]. However, the utilization on large-scale brain 

structures and white matter organizations have not been reported.  

As a step forward, based on the brain imaging described in the previous chapter, we develop a 

serial optical coherence scanner (SOCS) for large-scale volumetric imaging of ex-vivo brain in 

this chapter. The objective is to reconstruct the comprehensive neuronal pathways in 3D brain 

space. The optical system is the PMF based MC-OCT described in Chapter 3 and 4 [184, 185]. 

We have shown that the multiple contrasts provide the anatomical information, the differentiation 

between the gray and the white matter, and the fiber architectures. In this chapter, we will add the 

information of light attenuation and cross-polarization, and compare the contrast images of brain 

structure and fiber delineation. In addition, we correct the relative measurement problem of optic 

axis orientation introduced in Chapter 3 and 4, and achieve quantification of absolute fiber 

orientations in the brain. With integrated tissue sectioning between serial scans, to this end we 
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show that SOCS reconstructs a rat brain with axial resolution of 5.5 µm and transverse resolution 

of ~15 µm. The axonal networks are visualized and fiber tracts can be traced at various scales.  

5.2 SERIAL OPTICAL COHERENCE SCANNER 

5.2.1. Serial optical coherence scanner 

SOCS integrates a tissue slicer into a MC-OCT system for reconstructing large-scale biological 

tissues in 3D. Schematic diagram of SOCS is demonstrated in Figure 5.1. The MC-OCT 

combines a PMF technique [113] and the spectral domain measurement to provide morphological 

and polarization sensitive imaging with high spatial-temporal resolution [184]. The light source is 

a broadband superluminescent diode operating at the center wavelength of 840 nm with a 50 nm 

bandwidth, yielding an axial resolution (z) of 5.5 µm in tissue (refractive index: ~1.4). Polarized 

light is directed through PMF coupler into the sample and reference arms. A scan lens (f = 36 

mm) in the sample arm ensures consistent imaging quality over a large area. The lateral resolution 

estimates ~15 µm (xy). Interferometric signals carrying the optical delay gate between reference 

light and back-scattered light from sample are detected by a customized spectrometer, which 

consists of a grating to disperse spectral components, a Wollaston prism to separate the PMF 

channels, and a lens to focus the spectra on a 2 x 4096 pixel line-scan camera (Basler sprint 

140k). Vertical and horizontal binning was applied on the camera to enhance photon collection. 

The spectra on the two polarization channels are acquired simultaneously at a rate of 25 kHz. An 

inverse Fourier transform of the spectral modulations (in k-space) produces a complex depth 

profile (A-line) for each channel A1,2(z)exp{iΦ1,2(z)}, where A and Φ denote the amplitude and 

phase, respectively, along the depth z, and 1 and 2 correspond to the cross-coupled and main 

polarization channels. The imaging contrasts are derived from amplitudes and phases of the depth 

profiles: reflectivity (Eq. 3.17), the traditional OCT contrast, is the addition of intensity on the 

two channels; cross polarization (
2

1 )()( zAzC  ) only takes the intensity of the cross-coupled 
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channel; retardance (Eq. 3.18) and optic axis orientation (Eq. 3.19) are computed based on the 

Jones analysis [109].  

A volumetric scan (optical section) contains 300 cross-sectional frames (B-line) with 1000 A-

lines in each frame, covering a field of view of 7x7x1.78 mm3 in xyz. The voxel size is 7x23x3.47 

µm3, correspondingly. The pixel anisotropy in xy-plane is caused by the limitation of maximum 

B-lines that the current system can save in one optical scan.  

A vibratome (Leica Microsystems, Bannockburn, IL) is mounted under the sample path optics. 

The brain is glued on the slicer and immersed in water. After imaging one optical section, a slice 

is removed by the vibratome, allowing deeper regions to be imaged. The procedure is repeated 

until the whole block is imaged. The thickness of the slice is less than the penetration depth of 

light, and it is optimally selected to ensure satisfactory SNR for high-quality 3D reconstruction of 

the entire sample (see Figure 5.4B). The water level and the imaging surface are controlled at 

constant heights during the scans. 

 

Figure 5.1 SOCS schematic diagram. SLD, superluminscent diode; P, polarizer; C, collimator; QWP, quarter-

wave plate; L, lens; M: mirror; GM, galvo mirror; SL, scan lens; G, grating; W, Wollaston prism; LSC, line 

scan camera. 
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5.2.2. Imaging procedures 

Euthanized adult rats were obtained from the tissue sharing program with approval by the 

Research Animal Resources at the University of Minnesota. Brain was dissected and kept in 10% 

buffered formalin for 72 h before imaging.  

Three brains were imaged in the current study, one sectioned in sagittal planes and two in coronal 

planes. The sagittal sections consist of 28 slices of 200 µm each, and compose the left hemisphere 

of the brain. The coronal sections in one brain consist of 66 100-µm slices, and cover the regions 

between frontal cortex and the middle portion of thalamus in the left hemisphere. To achieve 

reconstruction of entire coronal sections, for the third brain, two scans are performed between 

sequential slices. The optical scan head is laterally translated between the two scans. A 15% 

overlap is reserved for image registration. 

5.2.3. Calibration of axis orientation 

The optic axis orientation quantifies the in-plane orientation of neuronal tracts as a relative 

measure, because it bears a time-variant offset induced by environmental factors such as 

temperature change and movement of the optical fiber [184]. To resolve this issue and obtain an 

absolute axis orientation measure, a retarder film was included as an active calibrating reference. 

The film was placed next to the brain and imaged together with the brain sections. The offset in 

the orientation measurement is hence determined as the optic axis of the retarder is known 

(Figure 5.2). Another issue is that large-scale lateral scans may affect the orientation measure by 

inducing polarization effects. By scanning a retarder at the same field of view as used for brain 

imaging, trends of the axis orientation in xy-plane are extracted prior to brain imaging and 

removed afterwards. 
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Figure 5.2 Correction of relative optic axis orientation. A reference retarder is placed next to the sample and 

imaged with it together. The orientation offset is obtained from the measured orientation of the retarder and 

used to derive the absolute orientation. 

5.3 RECONSTRUCTION METHODOLOGY 

With the depth profiles computed and saved from the raw spectra, the processing routines work as 

follows. Top surface of the tissue in cross sections is extracted from reflectivity contrast by an 

edge detection algorithm. The inclusion of viable data starts 35 µm below the surface to avoid a 

potential distortion caused by mechanical slicing. A tissue mask was created with a threshold of 

SNR > 6 dB. Image creation and quantitative analysis are conducted in the next based on the pre-

processed frames. Unless otherwise stated, image processing and quantification algorithms were 

implemented in Matlab. 

5.3.1. Reconstruction from en-face images 

En-face image is the 2D projection of a 3D dataset on the xy-plane. The pixel values represent 

characteristic of the depth profiles. The contrast specific algorithms for image creation are 

described below. 
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Reflectivity. A 2x2 median filter was applied to the cross-sectional reflectivity images. The pixel 

values on the en-face were derived by the mean of the depth profiles. The depth range included in 

the computation matches the physical thickness of the slice.  

Attenuation. Due to scatter and absorption, the intensity of light propagating in tissues 

exponentially decays with a medium-specific attenuation coefficient. We performed least-squares 

first-order polynomial fit on logarithmic reflectivity profiles, which present linear decreases along 

the axial direction. The slope of the linear function was used to form the en-face attenuation 

image. Data points up to 200 µm below surface were included in the fitting. The thickness was 

selected to minimize the effect of noise on the fit while keeping an optimal illustration of the 

microstructures. 

Retardance. A 2x2 median filter was applied to the cross-sectional retardance images. Then, the 

en-face value was calculated by taking the mean of the retardance profile. The depth range used 

in calculation matches the physical slice thickness.  

Axis orientation. A histogram based approach was developed to compute the en-face orientation. 

Histogram of the axis orientation for each A-line was computed at 5⁰ intervals and fitted by a 

Gaussian function. The mean of the Gaussian function was used for the en-face orientation. When 

histogram presented two peaks centering at about ±90⁰, the lower and upper limits of 

measurement, circular shift was applied to form a continuous distribution before fitting. The 

depth range used in the histogram matches the physical slice thickness. Unless otherwise stated, 

representative orientation along a line or in a region of interest (ROI) was computed this way.  

The en-face images generated from serial scans are stacked to form the 3D space of rat brain, 

without the necessity of additional registration between slices. The resolution along z-axis in this 

case is determined by the depth range used in the image calculation, and it matches the thickness 

of physical sections. Such constructions facilitate quick identification and global assessment of 
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large-scale brain structures at a mesoscopic resolution. The volumetric data was visualized in 

Vaa3D [153]. The process of reconstruction at this meso-scale resolution is illustrated in Figure 

5.3. The 3D reconstruction can be accomplished at higher resolution by z-stacking the cross 

sections as well, which is discussed in the following section.  

 

Figure 5.3 3D reconstruction at meso-scale resolution by stacking the en-face images. 

To construct a complete coronal plane from two lateral scans in the third brain, we applied a 

pairwise stitching algorithm [186] on en-face reflectivity images using Fiji software. The 

algorithm computed the overlap between the scans which was then linearly blended to compose a 

full section. The registration parameters were saved and applied to all other contrast images of the 

same brain section. Orientation offset of the first scan (left hemisphere) was corrected with the 

reference retarder; however, the second scan (right hemisphere) utilized the white matter, 

typically the commissural fibers, in the overlapping region as a reference to compute and correct 

for the orientation offset. Another reference retarder could have been added for the second scan, 

but we decided to develop the serial correction method that uses internal references in the overlap 

between adjacent scans. More importantly, the method allows for reconstruction of larger 

samples, in which multi-grid scans are required and inclusion of external references in the center 

zone is problematic. 
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5.3.2. Reconstruction at the natural resolution of SOCS 

Successful fusion of serial volumetric scans forms the basis of 3D reconstruction of the entire 

brain at the natural resolution of SOCS (15 x 15 x 5.5 um3). Cross polarization was utilized for 

this purpose. Carrying the properties of reflectivity and birefringence, the cross polarized light 

describes the nerve fibers and preserves decent signal intensity in deeper regions. The depth range 

of the optical section matches the physical slice thickness, but the starting point along depth is 

adjustable for optimal fusing outcome. 

To achieve smooth transition between serial scans, trends along depth direction z were minimized 

by multiplying each A-line with a regularization function L(z),  

 

5.1 

where N is the number of points in each A-line, i is the slice index, ai and bi are local averages of 

intensities for the start and the end of A-lines in slice i. The operation minimizes the intensity 

mismatch across stitching borders, while maintaining the intensity at the central locations. 

Residual trends may be removed by advanced image processing algorithms. The 3D 

reconstruction process by SOCS is summarized in Figure 5.4.  

 

Figure 5.4 Flow chart of large-scale reconstruction process by SOCS. 

5.3.3. Histology of brain slices 



87 
 

Brain slices were sent for histological validation after OCT imaging. Cresyl violet and Weil’s 

myelin stains were performed on selective coronal slices for labeling cell bodies and fiber tracts, 

respectively. We didn’t stain the sagittal sections because 200 µm slices are too thick for 

histological processing.   

5.4 RESULTS 

The following sections demonstrate the results of SOCS imaging from three rat brains. Serial 

scans of coronal sections, and those of sagittal sections are presented. 

5.4.1. SOCS based brain atlas 

SOCS provides morphology of tissue structures in a volumetric scan. As a representative optical 

section in Figure 5.5A shows, the most visible nerve fibers manifest as bright spots or strips 

followed by fast attenuation in axial (z) direction. The transverse (xy) plane resembles a coronal 

section resolving the microscopic anatomy. The top ~35 µm section is not included in the image. 

To evaluate the light penetration in brain tissues, an ROI (black box in Figure 5.5C) containing 

the hippocampus and the corpus callosum (cc) is selected, and the averaged reflectivity profiles in 

the ROI are plotted for the two structures (circles in Figure 5.5B). Light propagating through cc 

undergoes faster decay with shallower penetration comparing to that through hippocampus. With 

a polynomial fit (solid curves) and a 6 dB intensity threshold, the imaging depths in the 

hippocampus and the cc are estimated as 330 µm and 298 µm, respectively. The physical slice 

thickness can be determined by a criterion that ensures sufficient SNR (e.g. 12 dB) for successful 

stitching of optical sections, while minimizing the load of slicing. Indicated by the gray lines in 

the plot, a thickness of 100-200 µm was favorable as described in the Method section. 

The en-face reflectivity image generated from the optical section is presented in Figure 5.5C. By 

stacking sequential en-face images, the left hemisphere of a rat brain is assembled in Figure 5.5D. 

The coronal section representing the en-face plane starts at Bregma -2.2 mm in front, and reaches 
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Bregma 4.3 mm towards anterior direction. The dimension of the reconstructed brain in z-

direction is currently limited by the maximum elevating distance of the mounting stage on the 

vibratome. Complete coverage can be achieved with a longer traveling distance of the stage. The 

en-face (xy) plane with a resolution of ~15 µm delineates the anatomy and preserves decent 

features of nerve fibers which exhibit intricate organizations. The resolution on z-axis is 100 µm 

for this sample. For smooth visualization, data was interpolated five times yielding a sampling 

pitch comparable to the resolution on xy-plane. Trajectories of long axonal tracts are visible on 

orthogonal planes (Figure 5.5D). The size and the geometry of brain structures are better 

apprehended in 3D. The continuity and smoothness of fiber bundles on xz- and yz-planes 

confirms the quality of automatic alignment, which relieves the load of inter-slice registration and 

remarkably accelerates the reconstruction speed compared to conventional histology. 

Comprehensive 3D atlas of the brain supports high-level structural identification and 

quantifications such as segmentation, and also forms the basis for further investigations on the 

progress of neurological and psychiatric diseases.   

 

Figure 5.5 SOCS reconstruction of rat brain images. (A) Volumetric scan of an optical section. xz-plane 

represents the cross section, and xy-plane assembles the coronal section. (B) Depth profiles of reflectivity in 



89 
 

hippocampus (red circles) and corpus callosum (blue circles). The plots present an average of 400 A-lines for 

each structure within the ROI in (C). Fifth-order polynomial fits were applied for the estimates of light 

penetration (solid lines). The horizontal line sets the intensity threshold at SNR > 6 dB for the estimation. The 

vertical lines indicate the slice thickness used in the current studies. (C) En-face image created from the optical 

section in (A) resembles the coronal view. The black rectangular box indicates the ROI used for the plots in (B). 

Scale bar: 500 µm. (D) Large scale brain imaging (7 x 7 x 5.5 mm3) is presented by stacking sequential en-face 

images (see also supplemental video 1). xy: coronal plane; yz: sagittal plane; xz: axial plane. 

5.4.2. Brain maps by en-face images at mesoresolution 

Extracted from single dataset, the contrasts of SOCS provide multidimensional depiction of brain 

anatomy from different perspectives. En-face reflectivity distinguishes the gross structures with 

altered intensity, and keeps track of the small features by virtue of the superior sensitivity and 

dynamic range (Figure 5.6A, D). Small features might not be easily recognized on global images 

due to the high dynamic range. For better visualization, local contrast enhancement was applied 

to selected ROIs with Fiji (Figure 5.6, i, ii and iv). Retardance map targets the white matter and 

yields an integral delineation of the fiber routes (Figure 5.6B, E). Attenuation image enriches the 

anatomical information by sustaining subdivision of a local structure with clear borders (Figure 

5.6C, F).  

It is known that the reflective intensity of the white matter relies on the orientation of fiber tracts 

with respect to the illumination plane [148, 185]. For coronal sections, the brightest regions on 

the reflectivity images are seen among the inter-hemispheric bundles such as cc when the fiber 

tracts travel parallel to the plane (Figure 5.6D); and the intensity becomes minimum for the fibers 

running perpendicularly through the plane, observed as dark dots in the striatum (Figure 5.6A, D). 

The variation of reflectivity brightness exposes the complexity of fiber organization in 3D space, 

but also reflects detailed in-plane architectures of the white matter. For example, within cc, 

irregular fiber patterns are visible against a dim medium (upper ROI in Figure 5.6A, and i), 

indicating sharp turn and cross between the en-face plane and the orthogonal direction. Another 

demonstration is in the lower ROI that reflects interweaving fiber patterns at the lower border of 
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anterior commissure (ac) (Figure 5.6A, and ii). The regular pattern and direction of fibers in the 

fimbria of the hippocampus (fi) (ROI in Figure 5.6D, and iv) is verified by myelin staining at 

higher magnification (x40) (Figure 5.6D, v).  

En-face retardance images clearly identify the fiber bundles and delineate the fiber paths. The 

intricacy of white matter in reflectivity images was released by retardance, where white matter 

consistently presents a positive contrast over gray matter regardless of the orientation (Figure 

5.6B, E). For example, fibers in the striatum which are dark in the reflective images are 

highlighted across coronal sections. The only exception would occur for fibers running about 90° 

throughout the en-face plane. In contrast to reflectivity, the consistent expression of birefringence 

leads to a more uniform portrait of the cc as shown in the ROI of Figure 5.6B. 

 

Figure 5.6 En-face images of reflectivity (A, D), retardance (B, E) and attenuation (C, F) for two coronal 

sections. Details of the ROIs in the reflectivity images manifest in i, ii and iv with local contrast enhancement 

implemented in Fiji. The spatial patterns of small fiber tracts are clearly visible. Fiber directions in iv 

demonstrate consistent result with the myelin stain in v (objective: 40x). The attenuation maps own a different 

signature. The cortical layers in somatosensory cortex are visible in the ROI on C. The attenuation values in the 

ROI were averaged along the vertical direction, the plot is then rotated clockwise by 90° (trace in iii), and 

displayed on top of the cresyl violet stain in the ROI (objective: 10x). Scale bars: 500 µm for coronal sections (A-

F), 200 µm for ROIs (i, ii, iii and iv), and 30 µm for histology (v). 
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Attenuation maps favor the subdivision of local structures, facilitating the comprehension of 

spatial organizations and functional implications of fiber pathways (Figure 5.6C & F). The layers 

of somatosensory cortex are distinguishable with alternating brightness (ROI in Figure 5.6C), and 

the alternations are well correlated with the results from cresyl violet stain (Figure 5.6C, iii). The 

morphology changes in the insular cortex below. In addition, the boundary between globus 

pallidus and striatum is clearly visible (Figure 5.6F). The attenuation image also provides the 

capability to identify the white matter, most of which highly correlates with the retardance.  

 

Figure 5.7 Correlation and comparison between contrasts. Reflectivity (A), retardance (B), and attenuation (C) 

are color coded (A, red; B, green; C, blue), and merged in a composite image (D). Scale bar: 500 µm. Cross 

sectional images in E demonstrate the case that for deeply embedded fiber bundles (blue and green arrows), en-

face attenuation might miss the identification (dark region of ROI in C); the bundle is positively detected by 

retardance. Scale bars: horizontal, 200 µm; vertical, 100 µm. Averaged depth profiles for the regions under the 

horizontal bars (blue and red) on E are plotted in F (blue circles and red dots) together with the linear fits (solid 

lines). The slope in the embedded bundle region (>100 µm) is large, but the overall slope appears smaller than 

that of the gray matter region. 
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To correlate and compare the contrasts, we used color channels to fuse en-face images (Figure 

5.7A-C) of reflectivity (red), retardance (green), and attenuation (blue) into a composite image 

(Figure 5.7D). The brightest region represents the fiber bundles lying parallel to the plane, while 

the fibers with large inclination angle are shown in blue-green color with missing identity of 

reflectivity. The myelinated fibers in layer V/VI of cortex extended from the cc are implied by the 

attenuation contrast in blue. The attenuation map could miss fiber routes highlighted by 

retardance (ROI in Figure 5.7B & C). Cross sectional image indicates that those fibers are deeply 

located in the optical section (blue arrow in Figure 5.7E), hence resulting in an irregular depth 

profile and a lower attenuation from a linear fit comparing with the adjacent gray matter (Figure 

5.7F). In contrast, retardance reliably captures the existence of the fiber bundle on the cross 

section (green arrow in Figure 5.7E).  

 

Figure 5.8 Global identity of 3D neuronal roadmaps in rat brain at the mesoscopic resolution (15 x 15 x 100 µm) 

is achieved by stacking en-face retardance images of the entire sample. (A) Orthogonal viewing planes: xy, 

coronal view; xz, axial view; yz, sagittal view. Scale bars: xy, 500 µm; z, 1 mm. (B) Volume rendering of the 3D 

dataset (7 x 7 x 5.5 mm3, see also supplemental video 2). Maximum projection illustrates the spatial organization 

of major fiber tracts in the brain. 

Taken all the aspects together, en-face retardance offers the most robust detection for global 

description of the neuronal fibers at mesoscopic resolution. We use stacks of en-face retardance 
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to portray the major fiber roadmap in 3D. Geometry and spatial organizations of neural pathways 

are captured on the orthogonal viewing planes (Figure 5.8A). Maximum intensity projection of 

volume rendering provides a perspective view and discloses the complex configurations of the 

white matter in the brain (Figure 5.8B).  

Optic axis orientation offers quantitative assessment of fiber orientations in the illumination 

plane. Figure 5.9A demonstrates the en-face orientation map (left) of a sagittal section around the 

midline of the brain along with the anatomical (en-face reflectivity) image on the right. The 

orientations of neuronal tracts generally agree with the geometry and directional features as 

revealed by the anatomical image. Gradually changing directions in the stria medullaris of 

thalamus are expressed as smooth color transitions according to the color wheel. The fibers of 

outer layer of cc align parallel to the plane, and the orientation change at the tail of genu of the cc 

(rectangular ROI in Figure 5.9A) is clearly shown in the magnified image. The orientation map is 

also capable of uncovering groups of axonal bundles by differentiated directions such as fiber 

clusters within the thalamic area (round ROI in Figure 5.9A), whereas the fiber tracts are hardly 

distinguishable in the anatomical image. The quantification of fiber orientation is better 

visualized by a vector field. Figure 5.9B shows a similar brain slice with the orientation vectors 

superimposed on the retardance image. The direction of the vectors is well aligned with the 

geometry of fiber bundles where the fiber architecture is clearly depicted with bright retardance 

(black arrows), indicating the accuracy of orientation measurement is high there. However, more 

noise is observed in the regions where retardance is relatively low probably due to the large 

inclination of the fibers such as in the region of cc and fornix (white arrows).  
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Figure 5.9 En-face orientation maps of sagittal sections show the in-plane orientation of fiber tracts. (A) 

Orientation image of a sagittal section around the midline is shown on the left with the magnified images of two 

ROIs. The anterior side is on the right, and the posterior is on the left. The value of orientation is color coded in 

HSV space according to the color wheel, and the brightness is controlled by the retardance which masks the 

gray matter. The associated anatomy (reflectivity image) is shown on the right. (B) The vector map of fiber 

orientations in a similar slice. The red lines indicating the fiber orientations obtained by the optic axis 

orientation are superimposed on the retardance image. The arrows in black indicate the fibers where orientation 

vector high higher accuracy, while those in white indicate the regions where more noise is observed. 

The orientation map of an entire coronal section is achieved by stitching the images of two scans 

(Figure 5.10). The orientation offset of the second scan with respect to the first was estimated in 

the overlap region: the difference in the commissural fibers (i - ii) was plotted in histogram and 

fitted by a Gaussian function, the mean of which represents the estimate of the offset. After 

stitching, the orientation map of the entire coronal section was demonstrated with the anatomy 

(bottom panels). As expected, orientations of cc, fi and fornix on contralateral sides exhibit 

symmetric colors with respect to the vertical line on the color wheel. The consistency of colors on 
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the commissural fibers (cc and ac) at the inter-hemispheric region indicates a good match 

between the two scans. With this successful fusion, investigation of fiber orientations in large 

samples is plausible.  

 

Figure 5.10 Reconstruction of an entire coronal section. Overlap of the left and right scans is used to estimate 

the orientation offset of the second scan. Histogram and Gaussian fitting of the orientation difference are 

demonstrated. Stitching results for the entire coronal section are shown in the orientation and anatomy maps at 

the bottom. Scale bars: 500 µm. 

5.4.3. High resolution reconstruction by serial optical sections 

3D reconstruction of fiber maps in rat brain 

Cross sectional images take advantage of depth resolved capability of the system (5.5 µm) to 

unveil microstructures that are not exhibited by en-face stacks. To achieve 3D reconstruction at 

the natural resolution of the SOCS, it is ideal to stack depth-resolved optical sections of the 

sequential scans. Three types of contrasts are viable to depict localized fiber tracts. These are 

reflectivity, cross polarization and birefringence as illustrated in Figure 5.11A. The blended 

image of cross polarization (red) and reflectivity (green) shows that reflectivity loses the strength 

to elucidate fibers in deeper regions (red domination), and is inferior in suppressing the gray 
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matter (green in non-fiber regions), albeit the equivalent expression of the fiber tracts in yellow at 

shallower locations. Color merged image of cross polarization (red) and birefringence (blue) 

exhibits co-identification of large fibers in magenta. However, the advantage of depth-localized 

identification by birefringence is compromised for small fibers. This is due to the extensive noise-

reduction processing on retardance image for birefringence calculation, which smoothes the sharp 

features, leads to lower birefringence values and worsens the effective spatial resolution. Based 

on these comparisons, we utilized cross polarization to conduct inter-section stitching.  We also 

examined cross polarization images on xy-plane at various depths. As shown in Figure 5.11B, 

deterioration of image quality was not observed within the depth of consideration.    

 

Figure 5.11 (A) Reflectivity, cross polarization and birefringence images are available to reveal localized fiber 

tracts on cross sections. For contrast comparison, color blended images are shown on the right. The co-

expression of cross-polarization (red) and reflectivity (green) is illustrated in yellow, and that of cross-

polarization (red) and birefringence (blue) is in magenta.  Scale bars: horizontal, 500 µm; vertical, 150 µm. (B) 

En-face cross polarization images are reconstructed at various depths (35, 85, 135 and 185 µm) to demonstrate 

consistent image quality within an optical section (a volume scan). Scale bar: 500 µm. 
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Stitching consecutive volume scans requires careful alignment. Figure 5.12A shows two cross-

sections from consecutive volume scans (section 13 and 14). The rectangular boxes indicate the 

same region, whose landmarks are used to examine the stitching quality. After connected along z-

axis, the color blended image of the two scans demonstrates a decent overlap of the small and 

large fiber tracts. Moreover, the fused image after removing the trend of depth-dependent 

intensity exhibits a smooth transition. These images suggest that mechanical distortion due to 

slicing is negligible and additional registration is not in need for the preservation of lateral 

coordinates. For further confirmation, we constructed en-face images from the overlap region of 

the adjacent scans. For scan 13, data is located between 200 µm and 250 µm below surface; while 

for scan 14, data is selected from the top 50 µm. Figure 5.12B shows that the two images are 

highly alike, despite the slight difference in lateral resolutions due to depth dependence of beam 

width within the depth of focus. Cross-correlation of the images peaks at the origin, indicating 

that no lateral displacement was induced by slicing. These results demonstrate that the sequential 

images produced by serial scans can be successfully connected to reconstruct large tissues at high 

spatial resolution. Specifically, continuity of fiber tracts across the stitching border demonstrates 

the feasibility of tracing long axonal fiber bundles in the brain.  
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Figure 5.12 Stitching cross sections of consecutive volume scans (13 and 14). Same regions are covered in both 

scans, as exampled by the yellow boxes. The connected image is color coded (13 in red, and 14 in green), and 

fused image, after removal of depth-dependent trend, is in gray scale. Scale bars: horizontal, 500 µm; vertical, 

150 µm. (D) En-face cross polarization images from the overlap region for each scan. Scale bar: 500 µm. The 

cross-correlation peaks at the origin. 

The results of stitched cross-section from all the serial scans are shown in Figure 5.13. Images on 

the horizontal planes sensitively catch the fiber tracts (Figure 5.13A, D), although residual 

stitching effect is still visible due to imperfect compensation of the depth-dependent trend. The 

tiny dots in the rectangular ROI (Figure 5.13A) are intersected fiber tracts on the sagittal view in 

the midbrain region (arrow in Figure 5.13E). The dots are better visualized by a 3D surface plot 

(Figure 5.13B) and intensity profile of a representative line (Figure 5.13C). Estimated from full 

width at half maxima, the mean size of the tracts in the ROI is found to be about 23 µm. 

Trajectories of small fibers are recognized on the high resolution images as well. In Figure 5.13F, 

fiber tracts emerging from the border of globus pallidus and running through striatum to cc are 

shown on sequential horizontal planes from ventral to dorsal direction. The images are separated 

by 25 µm and presented in two groups. The first group (0-100 µm) starts with the square ROI of 

Figure 5.13D, and the second group is 500 µm away from the ROI.  



99 
 

 

Figure 5.13 Stitched optical sections. (A) and (D) are two representative horizontal planes constructed by 

stitching the cross sectional images of serial scans. Most of the neuronal tracts appear bright, whereas the fibers 

oriented perpendicular to the illumination plane may appear rather dim. The rectangular ROI in (A) represents 

crossing fibers in the midbrain region which are visualized on the sagittal plane in C (indicated by the arrow). 

Surface plot (B) and intensity profile along a vertical line (C) clearly illustrate individual fiber tracts. (F) 

Trajectories of small fibers are shown on sequential sections along y-axis towards superior direction. The first 

image specifies the square ROI of B. Pixel sizes: 7 x 3.47 µm2 for B and F, and 7 x 7 µm2 (interpolated) for C. 

Scale bars: 500 µm in A and E, and 250 µm in F. 

Full reconstruction of the rat brain in 3D at the natural resolution of SOCS is visualized in 

orthogonal planes by using the cross-polarization contrast (Figure 5.14). The sagittal view 

denotes the en-face plane with an isotropic resolution of 15 µm, and horizontal and coronal 

sections compose of stacks of cross-sectional images owning the resolution of 5.5 x 15 µm2. 
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Although features in the commissural fibers like cc are not distinctive owing to the fiber 

orientation dependence of light intensity, geometry of the fiber bundles can be predicted. Overall, 

the integration of serial volumetric scans enables the multi-perspective and multi-scale 

inspections of the intricate neuronal roadmaps in the brain. 

 

Figure 5.14 Reconstruction of rat brain at natural resolution of SOCS. (A) orthogonal views with 3 

representative planes. (B) Visualization of 3D reconstruction, 1: horizontal, 2: sagittal, 3: coronal. 

5.5 DISCUSSION 

We demonstrated a novel approach of SOCS to reconstruct large-scale neuroanatomical circuitry 

of brain at microscopic scale resolution. The imaging modality takes advantage of intrinsic 

optical properties of tissues to depict the anatomy of brain, especially the architectures of white 
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matter within and between local structures, and the orientation of constituting fiber tracts. We 

described global fiber organizations by en-face image stacks, and inspected fiber tracts of various 

sizes at the natural resolution of SOCS by stacking serial scans.  

The multiple contrasts generated from a single measurement of SOCS enlighten the exploration 

of neural pathways from different perspectives. The reflectivity highlights different types of 

scatters and their interface; hence, it unveils the fine features in a fiber bundle which are typically 

reported in histological images [187]. On the other hand, the reflectivity contrast loses the 

depiction of fibers with large inclination angle. The attenuation contrast holds the general 

property of photon propagation in tissue. The characteristic is affected by cell type, density and 

alignment. Therefore, the attenuation images reveal the structures in gray matter such as cortex 

and subcortical regions in addition to fiber delineation. For white matter identification, the 

attenuation has a weaker dependence on the direction of fiber axis.  Due to the limitation of first 

order fit on logarithmic depth profile, attenuation does not reflect the structure change in depth, 

resulting in miss identification of fiber tracts that occupy the lower portion of the imaging depth. 

Local attenuation image can be generated based on the derivative of depth profiles, but 

considerable noise-reduction procedures needs to be investigated in the future. Retardance 

provides a reliable identification of fiber tracts due to the birefringence property of myelination. 

Unlike histological images which merely describe the superficial features of a tissue slice, the 

retardance contrast enables deep fiber tracts emerge on the en-face images as well. Quantification 

of fiber orientation has been obtained through texture analysis on digital images [187, 188]. The 

optic axis orientation contrast of SOCS offers a direct access to in-plane fiber orientations, and 

3D orientation could be realized with geometrical analysis on volumetric data. Owing to the 

unique merit of each contrast, an important future work is to translate and integrate the multi-

contrast images into quantitative representations for the physical properties of neuronal networks 
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such as fiber density and anisotropy, which will enable comparisons across various imaging 

modalities. 

Complete reconstruction of neuronal connectivity maps has been prohibited in conventional 

histology because of the failure to track long fibers throughout the brain. Currently, diffusion 

magnetic resonance imaging [139] serves as the unique approach to sketch the fiber maps of in-

vivo human brains at a resolution of ~2 mm. While pushing the resolution to submillimeter 

regime for distinguishing crossing fibers [189], the scanning time greatly increases up to tens of 

hours making it only available for ex-vivo studies [190]. In addition, the technique needs to be 

validated which turns out to be another challenge [191].  

To address the issue of full-scale brain imaging at microscopic resolution, speed of SOCS 

becomes a most appealing attribute. By adopting serial block-face design, SOCS automatically 

enables spatial alignment of the optical sections. Comparing to serial confocal [176] and two 

photon microscopy [178], SOCS is superior in light penetration, which alleviates the slicing load. 

Besides, SOCS acquires features along a depth profile simultaneously without requiring a 

mechanical scan, which shortens the imaging time further. Currently, the total time required for 

serial scans is limited by manual operations and speed of the vibratome. However, time for data 

acquisition alone for an entire rat brain is estimated to be ~1.5 hours with a voxel size of 6 x 6 

x3.5µm3 and the sectioning thickness of 200 µm. Future enhancement of optical resolution will 

necessitate finer grids and longer acquisition, but the speed of acquisition can be improved by a 

shorter integration time of the camera. Alternatively, imaging can be performed with swept-

source technology, which can enhance the acquisition speed up to 50 times using a VCSEL 

source [192, 193]. We envision that implementation of an automated serial scanner and 

development of post-processing tools will eventually lead comprehensive reconstruction of 

primate and human brains in a manageable time. 
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There are technical issues to be resolved for drawing comprehensive wiring diagrams in the brain. 

First of all, the dependence of reflectivity on fiber orientations causes missing identity of fiber 

tracts with large inclination angles. Similar observations have been reported in collagen networks 

with reflective confocal microscopy [194]. To have a full viewing angle of the fiber tracts, multi-

directional illuminative beams are appealing [195, 196]. Another related issue is to measure the 

inclination angle, which will allow quantification of the 3D orientation of fiber tracts and the true 

birefringence. Variable-incidence angle has been incorporated to polarization-sensitive OCT to 

quantify the 3D axis orientation of a tendon sample [165, 197]. In addition, current computations 

of retardance and axis orientation assume that in-plane axis does not change along depth in one 

optical section; however, this condition would not be satisfied in the regions where fiber crossing 

is widely observed. Quantification of depth-resolved true birefringence and 3D axis orientation is 

indispensible. Local birefringence and axis orientation in layered structures have been obtained 

by modified polarization-sensitive OCT setups and numerical analysis [161, 162, 198]. However, 

the capability to unveil more complex and heterogeneous patterns of the white matter in the brain 

has yet to be investigated. 

The big challenge of obtaining comprehensive connectivity in the complex brain would be 

whether intrinsic contrasts are sufficient to visualize trajectory of distinctive fiber tracts within 

large bundles, including the commissural fibers, the association fibers and crossing fiber regions. 

The features on the fiber maps demonstrated the ability of SOCS to visualize interweaving fibers 

(Fig. 7C); however, the resolution must be improved to visualize individual axonal tracts at a 

fiber scale.  Electron microscopy of corpus callosum reveals a dense package of axons with 

separations of 1-2 um [199]. The axial and lateral resolutions of SOCS can be improved by 

incorporating a broader bandwidth light source and a high numerical aperture lens, respectively. 

Using an optical coherence microscopy (OCM) system at 1300 nm wavelength, neurons and 

axonal fibers in different cortical layers were characterized [200], and myofibers are visualized in 
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different tissues [188]. The progressive development of plaques was observed in a mouse model 

of Alzheimer’s diseases using an extended-focus OCM setup [201]. With a full-field OCT setup, 

myelinated fiber tracts were visualized in central and peripheral nervous systems [181]. However, 

systematic characterizations of white matter in the brain using ultrahigh resolution OCT have not 

been reported. The contrasts of SOCS can be utilized and investigated for brain imaging at the 

OCM resolution.  

SOCS and its future advances open up intriguing applications in neurological and psychiatric 

disorders. As a new tool that offers multi-scale images and multi-parametric quantitative analysis, 

SOCS may lead to unprecedented discoveries of anatomical changes in population neurons and 

fiber networks of pathological brains, building up our current knowledge in multiple sclerosis, 

Parkinson’s, Alzheimer’s, autism and schizophrenia. 
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CHAPTER 6  STRUCTURE TENSOR ANALYSIS FOR 

FIBER ORIENTATION AND TRACTOGRAPHY 

6.1 INTRODUCTION 

Quantitative neuronal imaging and connectome (human connectome project) in the nervous 

system are important both in basic neuroscience research and clinical diagnosis. It is believed 

now that many brain diseases are associated with abnormity in the white matter, including 

changes in fiber architecture, orientation and connections within or between distinct regions [202, 

203]. Despite of the crucial role of the communication pathways in brain function, the knowledge 

we possess on the wiring system is in great scarcity.  

Diffusion magnetic resonance imaging (dMRI) [139] technique provides a unique solution to 

non-invasively target the white matter in living human brain at millimeter scale resolution. 

Clinical applications have indicated changes in white matter organization in patients with 

traumatic and ischemic brain injury and brain tumor, and abnormal connectivity patterns are 

accompanied in addition to volume change of gray matter in patients with autism or 

schizophrenia [204, 205]. Based on those observations, it is reasonable to hypothesize that 

alteration in fiber orientations would be a sensitive indicator of brain conditions, but it has not 

been under finer scrutiny due to limitations of current imaging techniques. Advances in dMRI, 

such as high resolution diffusion tensor imaging (DTI), high angular resolution diffusion imaging 

(HARDI) [141] or diffusion spectrum imaging (DSI) [207], enable investigations at submillimeter 

resolution and/or with over hundred directions.  
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At a finer spatial scale, light microscopy enlightens single axon visualization. Quantification of 

fiber orientations and tract tracing have been obtained by digital signal processing on the images. 

For example, Bock et al. [208] and Jespersen et al. [209] performed digital reconstructions of 

stained neurons and conducted fiber tracking based on reconstructed binary images. Budde et al. 

[210] applied a Fourier transform algorithm to obtain fiber orientation maps in normal and tumor 

induced rat brains. Choe et al. [211] recruited a filter matching algorithm to compare the fiber 

orientations computed from light microscopy images with diffusion tensor MRI. So far, majority 

of studies have been performed on 2D space or restricted to a small spatial coverage of the tissue. 

Global explorations on fiber orientation maps remain exclusively unsolved and thus leave a gap 

with the system-level reconstruction by dMRI.  

The serial optical coherence scanner (SOCS) developed in Chapter 5 could potentially bridge the 

gap due to its capability of multi-scale and high-resolution in brain imaging with particular target 

of the white matter. However, one of the remaining issues is that the axis orientation measure is 

restricted on 2D plane, thus 3D tractography is prohibited under the current setup. This could be 

resolved with enhanced optical setups as discussed at the end of Chapter 5. The alternative 

approach is to achieve the orientation quantification on 3D structural images by computational 

analysis.  

In this chapter, we use a structure tensor (ST) analysis on SOCS images to construct quantitative 

fiber orientation maps in 2D and 3D space. ST is a computational analysis to extract features on 

digital images or volumetric data. It takes the neighboring gradients of a pixel into account and 

describes the anisotropy and directionality of local textures on the images [212]. The approach 

has been widely used in image or video processing for edge detection and motion tracking [213, 

214]. Biomedical applications of ST include quantitative analysis of anisotropic elements, such as 

collagen networks [215], myocardial fibers [216] and human brain cortex [217, 218]. Budde and 

Frank [187] applied ST on histological slices of rat brain to examine the fiber orientation in 2D. 

Our work extends the previous studies to interrogate 3D fiber orientations in rat brain. We will 
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evaluate the accuracy and the reliability of ST based orientation by comparing the computational 

results with the optical measures in SOCS. In addition, because of the analogy of ST with the 

tensor matrices in DTI, we can implement the tractography and the connectivity analysis using 

the software tools developed for dMRI techniques. The pipeline of this computational model to 

be developed in this chapter is shown in Figure 6.1. 

 

Figure 6.1 Processing pipeline of structure tensor analysis in SOCS. The volumetric data of multiple contrasts 

are generated for each optical scan. En-face images of reflectivity, attenuation, retardance and cross-

polarization are created for 2D ST computation. En-face stack of retardance and cross-sectional stitch of cross-

polarization are obtained for 3D ST computation. Structure tensor metrics are constructed, and the structure 

and orientation maps of fibers are derived from the eigenvalues and eigenvectors, respectively. The ST-

orientation maps are validated by the en-face optic axis orientation measures. Tractography is conducted based 

on the structure tensor. 

6.2 METHODOLOGY OF STRUCTURE TENSOR ANALYSIS 

Structure tensor describes the features of the dataset by taking the neighboring profiles into 

account. The features of the white matter in the brain are mainly line or tube like structures in 

SOCS images because of the advantageous resolution. Densely packed fibers such as corpus 

callosum may present a sheet-like geometry in 3D space. As we are especially interested in fiber 

delineation and orientation quantification, the anisotropy and directionality related information 
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from the structure tensor is the major focus. The computational processes are described as 

follows. 

1. The gradient (∇𝐼𝜎) of the image data (𝐼) is computed. To avoid the singularity in discrete 

digital images, we use theconvolution of the first-order derivative Gaussian kernel with 

the original image to compute the partial derivatives of the image data. 

𝛁𝑰𝝈 = 𝛁𝑲𝝈 ∗ 𝑰 6.1 

2. The structure tensor (𝐽) is constructed by the outer product of the gradient vectors as 

follows. 

𝑱 = 𝛁𝑰𝝈𝛁𝑰𝝈
𝑻 =

{
  
 

  
 (

𝑰𝝈𝒙
𝟐 𝑰𝝈𝒙𝒚

𝑰𝝈𝒚𝒙 𝑰𝝈𝒚
𝟐 ) 𝒇𝒐𝒓 𝟐𝑫 𝒅𝒂𝒕𝒂

(

𝑰𝝈𝒙
𝟐 𝑰𝝈𝒙𝒚 𝑰𝝈𝒙𝒛

𝑰𝝈𝒚𝒙 𝑰𝝈𝒚
𝟐 𝑰𝝈𝒚𝒛

𝑰𝝈𝒛𝒙 𝑰𝝈𝒛𝒚 𝑰𝝈𝒛
𝟐

) 𝒇𝒐𝒓 𝟑𝑫 𝒅𝒂𝒕𝒂

 6.2 

3. The components of the tensor matrix are smoothed through a convolution with a 

Gaussian kernel 𝐾𝑛,𝜌., where n represents the number of neighboring points included, and 

ρ –standard deviation of the Gaussian kernel – controls the weights of the neighbors take 

in smoothing.  

𝑱𝒏,𝝆 = 𝑲𝒏,𝝆 ∗ 𝑱 6.3 

4. Eigen-decomposition is performed on the tensor matrices, and the eigenvalues and 

eigenvectors are extracted. The fiber orientation is represented by the eigenvector 

corresponding to the smallest eigenvalue.  

Noise especially speckle is a non-trivial problem in SOCS imaging. Because of the high-contrast 

property of the speckle pattern, it is sensitively captured by the ST and treated as image features. 

Therefore, appropriate filter is important for ST computation. We adopted a nonlinear anisotropic 

diffusion filter described by Kroon and Slump [219] 
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(http://www.mathworks.com/matlabcentral/fileexchange/25449-image-edge-enhancing-

coherence-filter-toolbox) on SOCS data and for ST calculation. The filter has been applied in a 

ST incorporated model of MRI and diffusion weighted imaging for tractography construction 

[220]. We will evaluate the effectiveness of filtering in Results. 

6.3 FIBER ORIENTATIONS BY STRUCTURE TENSOR AND VERIFICATIONS 

The structure tensor analysis is applied on the fiber architecture maps that are established in the 

previous chapter. The data acquisition and reconstruction algorithms are described in Chapter 5.2 

and 5.3. ST-orientation is verified by the optic axis orientation measurement. The 2D ST-

orientation map is directly correlated with the en-face optic axis orientation image. Quantitative 

comparisons are performed in selected ROIs. The orientation difference (in degree) between 

computation and measurement in a specific ROI is presented in histogram. The mean difference 

estimates as the angle with highest appearance frequency, and the width of the difference 

distribution is counted by FWHM of the histogram.  

Direct validation of 3D ST-orientation is not available with the current SOCS setup. Instead, we 

constructed an en-face ST-orientation map and correlate it with the en-face optic axis orientation 

on the xy-plane. The en-face ST-orientation is derived as follows: the 3D orientation vector is 

projected onto the xy-plane, and a depth integrated orientation map is obtained for each optical 

scan by applying a histogram approach that has been used for the en-face optic axis orientation. 

The ST-orientation on z-axis can be linked with prior knowledge of anatomy and diffusion MRI 

techniques. Future improvement of the optical setup in the imaging system could support direct 

comparisons as described in the Discussion. 

6.3.1. 2D structure tensor on en-face images and verification 

Structure tensor on multi-contrast SOCS images  



110 
 

SOCS produces multi-contrast en-face images which reveal the anatomical information from 

different perspectives (Figure 6.2A).The reflectivity describes gross structures, but the white 

matter can be either brighter or darker than the gray matter depending on the fiber orientation 

with respect to the illumination beam. The attenuation not only distinguishes local structures but 

also preserves fiber identification given that big fiber bundles are not deeply embedded below the 

sectioning surface. The cross-polarization and the retardance especially target on the white matter 

where birefringence is present.  

 

Figure 6.2 Structure tensor on the multi-contrast en-face images of SOCS. (A) Structure tensors are applied on 

the en-face images of multiple contrasts in SOCS, including reflectivity, attenuation, cross-polarization and 

retardance. The images are normalized in each contrast for a desirable dynamic range. (B) The ST-orientation 

maps corresponding to individual contrast images are shown. The orientation values are color coded by the 

color wheel, and the brightness comes from the intensity of each en-face image. The larger (C) and smaller (D) 
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eigenvalue images of the structure tensor represent fiber identification and are shown for each contrast. The 

eigenvalues are normalized in each image for an optimized visualization. 

We applied the structure tensor on each contrast and evaluate the performance of fiber 

identification and orientation quantification. The ST-orientation maps are shown in Figure 6.2B. 

The orientation of the four images shares the same color-coding based on the color wheel, but 

image brightness is determined by the individual contrast. The ST-orientation exhibits great 

similarity in the white matter among the multiple contrasts. Best agreements are found in the 

bundles aligned parallel to the plane where fiber identities are highlighted on all the contrasts, 

such as the fiber groups around the medial thalamus region. In the fiber clusters caudal to the 

thalamus, some discrepancies are seen depending on the characteristics of each contrast. The 

eigenvalues of the structure tensor represent feature identification in the images (Figure 6.2C & 

6.2D). The greater eigenvalue (Figure 6.2C) catches the edges of the major features, and depicts 

the skeleton of fiber architectures. The smaller eigenvalue (Figure 6.2D) provides secondary 

identification in the fibers, whereas it bears more noise. The overall capability of fiber delineation 

by eigenvalues is inferior to the optical contrasts, due to degraded resolution and background 

noise contamination. We will use the ST-orientation and the optical contrast for fiber-map 

delineation hereafter. As the retardance provides the most robust identification of the white matter 

on the en-face plane, 2D ST-orientation maps shown later are computed based on this contrast 

otherwise stated.   

Filter effect on the structure tensor 

Filtering plays a significant role in obtaining smooth orientation agreeable with the physical 

alignment of fiber bundles, as structure tensor is sensitive to abrupt changes in image intensity. 

The noise in SOCS, especially the speckle with high contrast, severely influences the orientation 

estimation of true features. We tested the structure tensor on original data and data smoothed by 

nonlinear anisotropic diffusion filters with varied sizes of Gaussian kernel. Figure 6.3A displays 

the ST-orientation maps accompanied by the histograms of fiber orientation in a selected ROI. 
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Two kernel sizes are used on the structure tensor metrics: 𝐾10,2 (top) and 𝐾20,4 (bottom). In 

general, increasing the size of Gaussian kernel enhances the consistency of orientation 

representation; however, without filtering, the orientation image is hardly immune from noise 

even when more neighboring points are involved and given higher weights during smoothing (left 

column). The nonlinear anisotropic diffusion filter dramatically diminishes the noise (middle and 

right columns). The filter applied on the tensor data (right column) is more advantageous than on 

the SOCS image (middle column), as it allows less contaminated orientation description with 

smaller size of smooth kernel, and hence impairing the averaging effect. The standard deviations 

of the ROI orientations are plotted in Figure 6.3B.  

 

Figure 6.3 Evaluation of the effectiveness of filtering during ST computation. (A) The ST-orientation maps are 

compared in three filtering conditions: left – no filtering, middle – with nonlinear anisotropic diffusion filter on 

the SOCS image, right – with nonlinear anisotropic diffusion filter on the structure tensor; and the structure 

tensors are smoothed with two sizes of Gaussian kernels: top – 𝑲𝟏𝟎,𝟐, bottom – 𝑲𝟐𝟎,𝟒. The images use the same 

color space as described by Figure 6.2B. The histogram represents the distribution of fiber orientations in the 

ROI. The range of the distribution (x-axis) is between -90° and 90°, and the range of the appearance frequency is 

set the same for all the six histograms. (B) The standard deviations of fiber orientations within each ROI are 

plotted with two Gaussian kernels: 𝑲𝟏𝟎,𝟐  and𝑲𝟐𝟎,𝟒 . Blue: no filtering; green: with nonlinear anisotropic 

diffusion filter on the intensity image; red: with nonlinear anisotropic diffusion filter on the structure tensor. 

Verification by optic axis orientation  

To verify the accuracy and the robustness of the structure tensor approach, we correlate the ST-

orientation with the optical contrast of optic axis orientation. Figure 6.4 compares the orientation 
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maps in two sagittal sections. The computed (left column) and measured (middle column) 

orientations use the same color coding according to the color wheel at the bottom, and the 

brightness is uniquely controlled by the en-face retardance.  The absolute difference of the two 

orientation maps (in degree) is shown on the right. The ST-orientation and optic axis orientation 

reach a remarkable agreement with less than 10° difference in well delineated fibers where higher 

brightness is usually seen, such as, the internal capsule (top), the stria medullaris thalamus (sm), 

the cingulum (bottom), and the fiber tracts in caudate putamen (top and bottom).More deviations 

are seen in the white matter regions where intensity becomes dimmer, such as the corpus 

callosum and the fimbria of the hippocampus (top and bottom). This observation may be 

attributed to two factors: 1) less effective features are seen on the en-face plane where the 

intensity is weaker, and 2) the geometry on the en-face plane may mislead the computation of 

fiber orientation which would be different in 3D space, such as a sheet-like structure running 

through the plane. Histogram of the pixel-wise orientation difference in the white matter (with a 

en-face retardance threshold > 25°) indicate that the computational approach and the optical 

measure have a difference (mean ± 0.5 x FWHM) of A and B, respectively, on the two sections.  

 

Figure 6.4 Comparison of 2D ST-orientation and en-face optic axis orientation. The ST-orientation (left) and the 

optic axis orientation (middle) are shown in HSV color space, where the orientation is coded according to the 
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color wheel, and the brightness is controlled by the en-face retardance. The ST-orientation is constructed based 

on the retardance image. The absolute orientation difference in the white matter (with a retardance threshold of 

25°) is shown on the right. The color-coded difference image is overlaid on the en-face retardance image for a 

better presentation of the anatomy. Scale of the colorbar: 0 – 35; unit: degree. 

 

Figure 6.5 Quantitative comparison between 2D ST-orientation and optic axis orientation in selected ROIs. (A) 

The ROIs are located on fibers or fiber groups with diversity of architectures, and across multiple slices (x-axis 

in B). (B) Fiber orientation difference (with the retardance threshold of 25°) between computation and 

measurement in each ROI is calculated, and the mean ±0.5 x FWHM of the histograms are plotted from top to 

bottom for ROI groups 1 – 5, respectively. The x-axis represents the index of the slice in SOCS, and the y-axis 

represents the orientation difference in degree. 

We then interrogate the robustness of the ST-orientation in specific architectures of the white 

matter. Five ROIs are selected to compare with the optical measurements. The four ROIs on 

Figure 6.5A (left) include small fiber tracts in the caudate putamen, dense fiber package in the 
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internal capsule, extension of fibers from dorsal putamen into corpus callosum, and local fiber 

tracts in the lateral thalamus. The fifth ROI (Figure 6.5A, right) contains multiple fiber bundles 

around the medialthalamic region, including the stria medullaris thalamus (sm), the fornix, the 

mammillothalamic tract (mt), and the fasciculus retroflexus (fr). The ROIs are across multiple 

slices where the selected architectures are clearly visible.  

The difference between the computed and the measured fiber orientations are examined. Figure 

6.5B shows the mean and the FWHM of the histogram of the difference in all the ROIs. The 

differences between computations and measurements are fairly small (<10°) across various fiber 

architectures and consistent among multiple slices in ROI 1-3 and 5. Consistent with Figure 6.4, 

the ST- and optic axis orientations have the best match in ROI 1 and 5, with smallest mean 

differences and narrowest FWHMs, where individual fiber tracts are clearly identified. In 

addition, the ST-orientation is viable in the dense white matter pack where small features inside 

can be captured (ROI 2 and 3). The orientations are less comparable with more variations 

observed in the lateral thalamus (ROI 4) where the intensity becomes significantly weaker.  

 

6.3.2. 3D structure tensor on fiber maps 

The ST analysis are further extended to compute the fiber orientations in 3D. The datasets of 3D 

fiber maps can be generated by stacking the en-face images or stitching the optical sections from 

sequential slices.  Figure 6.6 demonstrates the 3D structure tensor based on the en-face retardance 

stack of the coronal sections. One advantage of using this mesoscopic resolution dataset is that it 

provides a global view of fiber organization with multi-angular information, as the retardance 

reliably identifies the white matter with less dependency on the fiber orientation comparing to 

other SOCS contrasts. Therefore, neural fibers running through the xy-plane with an inclination 

angle can be captured by the structure tensor. Figure 6.6A demonstrates the 3D orientation maps 

from the orthogonal views. The direction of fiber orientation are indicated by the color-coded 
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axes, and the brightness of the map is controlled by the retardance value. The orientations on the 

coronal section are clearly distinguished into three groups: the anterior commissure (ac) 

connecting the two hemispheres is going left-right, the fornix is aligned in superior-inferior 

direction, and the fibers in the putamen are running in rostral-caudal direction through the coronal 

section. Color transitions are seen in the fimbria of the hippocampus and the posterior branch of 

the ac which are tilted with respect to the xyz-axes. Fiber orientations consistent with the 

geometry and the anatomy are seen on the sagittal and horizontal sections as well. The orientation 

in the large white matter regions such as corpus callosum exhibits less coherence. Two reasons 

may explain this observation: first, the orientations of small fibers in the dense white matter 

package are not uniform from microscopic view; second, the noise may contaminate the 

consistency on the intensity images. The anatomical maps of the retardance and the eigenvalues 

of ST are shown on the coronal section in Figure 6.6B. The greatest eigenvalue catches the most 

appealing features including the edges of large bundles, the small tracts in the putamen, and the 

trends of fibers in the fimbria. The second eigenvalue provides a similar identification of small 

fibers and edges with some indicative information inside the fiber, but suffers from greater noise. 

The smallest eigenvalue preserves the gross contrast of the white matter, but loses the detailed 

structures of fiber architecture.  
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Figure 6.6 3D ST computation at mesoscopic resolution provides a global quantification of neural fiber maps. 

The structure tensor is applied on the en-face stack of retardance, and eigen-decomposition is performed. (A) 

The orthogonal views of 3D ST-orientation map. The color represents fiber orientation indicated by the color 

sphere at the bottom (red: left-right, green: superior-inferior, blue: anterior-posterior), and the image intensity 

is masked by the retardance value which highlights the white matter. Directions are labeled on the orthogonal 

planes as well. (B) The original retardance image and the eigenvalue images (from largest to smallest) of the 

coronal section in A are shown respectively. The eigenvalue images are normalized separately to get an 

optimized visualization. 

Structure tensor applied on 3D optical sections of SOCS provides a favorable solution for large-

scale orientation quantification and comprehensive connectivity investigations. Figure 6.7 shows 

a 3D ST-orientation map of the right hemisphere of a rat brain. The structure tensor is computed 

on the optical sections of cross-polarization contrast in SOCS, which are fused from the serial 

scans of saggital sections. The colors represent the orientation in 3D (red: rostral-caudal, green: 

left-right, blue: superior-inferior), and the brightness represents the cross-polarization contrast of 

SOCS. Orthogonal views of the 3D maps demonstrate fiber tracts with varieties of preferable 

directions (Figure 6.7A). Fiber orientation in left-right direction is less visible, because the SOCS 

signal barely picks up the fibers parallel to the illumination beam. Therefore, the intensity masks 

suppressed the expression of those fibers. However, directional changes of small fiber tracts can 

still be sensitively apprehended. On the coronal plane, the neural tracts through the putamen are 

tilted more horizontally in the lateral region (ROI 1) and vertically in the upper region (ROI 2). 

Similar color transitions are also shown on the horizontal and sagittal planes. 3D ST-orientation 

clarifies the ambiguity of fiber alignments on 2D images. For example, the orientation map on the 

horizontal plane elucidates that the fiber bundles in the internal capsule are along the superior-

inferior direction rather than the left-right which would be the apparent intuition on the 2D plane. 

Volume rendering of the 3D orientation map is implemented in V33D [153] and shown in Figure 

6.7B.  
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Figure 6.7 3D ST-orientation constructed from comprehensive optical sections of SOCS. (A) Orthogonal views of 

the fiber orientation map. The orientation is color-coded as indicated by the color sphere at the bottom (red: 

anterior-posterior, green: left-right, blue: superior-inferior), and the brightness is manipulated by the cross-

polarization contrast of the SOCS data. Directions are labeled on the orthogonal planes as well. Some of the 

fiber bundles going in left-right direction (parallel to the illumination beam of SOCS) are masked out on the 

images, because of the lower signal intensity compared to the surrounding gray matter. The fibers in the 

putamen on the coronal section are separated into three groups with different preferable directions. (B) Volume 

rending of the 3D orientation map provides a perspective view. 

The 3D ST-orientation is difficult to validate in current SOCS setup, as the optical measure of 

fiber orientation is restricted to 2D. Instead we project the 3D ST-orientation vectors onto the xy-

plane, obtain an en-face ST-orientation image and compare with the en-face optic axis 

orientation. The sagittal sections of en-face ST- and optic axis orientation maps are shown in 

Figure 6.8 (left and middle panels, respectively).The computation and the measurement are well 

correlated in most of the white matter. The absolute difference between the two images is shown 

on the right. Fiber orientations obtained by the two approaches closely match with the differences 

less than 10° in most regions where the image intensity is high and neural fibers are clearly 

traceable, such as the internal capsule, the tracts in the putamen, the optic tract, the superior 

thalamic radiation, and the local fibers within thamalus. More deviations are seen in the fiber 

bundles going through the plane, including the corpus callosum and the fimbria, and the stria 

terminalis, where the intensity on the image becomes weaker. The histogram of the pixelwise 

difference in the white matter peaks around 0° with 0.5 x FWHM of 15°.  

 

Figure 6.8 Verification of 3D ST-orientation on the en-face plane. The 3D ST-orientation is projected onto the 

xy-plane, transformed into an en-face ST-orientation by using a histogram approach within one optical scan 
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(left), and correlated with the en-face optic axis orientation (middle). The color represents fiber orientation as 

indicated by the color wheel, and the brightness is manipulated by the en-face retardance. The absolute 

orientation difference of computation and measurement in the white matter (with a retardance threshold of 25°) 

is shown on the right. The en-face retardance image is overlaid for a better understanding of the anatomy. Scale 

of the colorbar: 0 – 35; unit: degree. 

6.4 TRACTOGRAPHY 

As the structure tensor metric holds the same pattern as the tensor data in diffusion tensor 

imaging (DTI), tractography that has been developed for the diffusion MRI technique can be 

easily applied. The ST and SOCS metrics are transformed into NIFTI format using an open 

source tool of FreeSurfer [221]. Tractography is performed on 3D structure tensor using a 

deterministic tracking algorithm in Diffusion Toolkit [222], with normalized SOCS data as the 

intensity mask. The tracks are visualized in TrackVis [222]. For detailed exploration, ROIs are 

selected and fibers passing through the nodes are examined. 

Tractography with high resolution is desired for connectivity studies. The ST applied on stitched 

optical sections preserves the natural resolution of SOCS thus bearing the most enriched 

information of fiber traces. Figure 6.9 shows the tractography of rat brain on 3D ST described in 

Figure 6.7. The tracks are color-coded by their orientations in each segment, with the direction 

indicated by the tube on the bottom-right corner. Primarily the sagittal view shows the dense fiber 

bundles extending from the cerebral peduncle to the frontal cortex. Other fiber tracts around the 

thalamus and in the midbrain region are visualized as well. The Fiber Assignment by Continuous 

Tracking (FACT) algorithm [223] was used to conduct tracking shown in Figure 6.9. However, 

we don’t find substantial differences using variety of other tracking algorithms including 

streamline, Runge-Kutta second order [224] and tensor deflection method [225] with the ST 

matrices. 
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Figure 6.9 Tractography of 3D SOCS images. The tracks are computed from the structure tensor applied on the 

stitched optical sections of the whole sample. The directional information of the tracks is color-coded in every 

segment according to the cube at the right-bottom corner. For a better visualization purpose, only 2% of the 

tracks are presented. 

Figure 6.10 shows a representative tractography of the en-face stack of retardance. The tracks are 

color-coded by their orientations in each segment, with the direction indicated by the tube on the 

bottom-right corner. The intensity images are overlaid for a better interpretation of the anatomy. 

Figure 6.10A illustrates the tracks beneath the corpus callosum (14%). Major directions of the 

tracks are consistent with the prior knowledge of brain anatomy and complies with DTI 

results.Tracks of corpus callosum are excluded here for two reasons: 1) the cc forms like a shell 

on the image which blocks the visualization of most structures inside, and 2) features of 

individual fiber tracts may not be captured because of the high density in the fiber packs, 

therefore, the tractography may not reveal the true alignment of the fiber components. To explore 

the fibers passing through a specific region, a sphere ROI (indicated by the black arrow on Figure 

6.10B) is placed at the conjunction of fornix and anterior commissure. The tracks on Figure 

6.10B indicate that the fibers passing through this region primarily include fornix, fimbria of the 

hippocampus (fi), and ac. The ac is further branched in anterior and posterior directions (aca and 

acp).Tracking of the ac is better visualized when the ROI is moved more laterally (Figure 6.10C). 
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Figure 6.10 Tractography of SOCS en-face stack of retardance. The directional information of the tracks is 

color-coded in every segment according to the cube at the right-bottom corner. The intensity images (en-face 

stack of retardance) are overlaid on the tracks. The tracks of the entire sample excluding the corpus callosum 

are shown in A. For a better visualization purpose, only 14% of the tracks are presented. Fibers passing through 

specific ROIs are shown in B and C. (B)The ROI is placed at the junction between the ac and the fornix (gray 

sphere, indicated by the black arrow). (C) The ROI is placed on the ac (blue sphere). 
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6.5 DISCUSSION 

Abnormalities of structure, orientation and connectivity in the white matter have been linked to 

many brain diseases; however the capability of current techniques to explore those factors is 

either limited by the spatial resolution, or prohibited by 2D information with a restricted spatial 

coverage. In this paper, we proposed a structure tensor approach to establish comprehensive fiber 

orientation maps and the structural connectivity in rat brain based on 3D SOCS imaging. This 

data-driven model offers a viable solution for 3D quantification of fiber orientation at high 

resolution in complex brain which can be linked to the diffusion MRI, and can also serve as a 

complement to the microscopy imaging where quantitative orientation measurement is not 

available. Especially, the SOCS based ST analysis builds up the dimensions of the imaging 

capability, leading to a cross-scale investigation on brain structure and its connections to 

functionality. 

The eigenvectors of the structure tensor sensitively catches the directionality of image features. 

Structure tensor can be applied to multiple contrasts of the en-face images in SOCS and generate 

similar results in the orientation assessment. In this study, we use the retardance image for 2D ST 

computation because the contrast provides a robust identification in the white matter [185, 226]. 

However, the approach is easily extended to other modalities such as conventional OCT to 

facilitate quantitative evaluation where direct access is not supported. Moreover, it is worthwhile 

exploring the quantities on various contrasts where image characteristics may reveal certain 

perspectives of the microstructures. The structure tensor has been applied on histological sections 

of rat brains to reveal 2D fiber orientation, and fiber identity has been correlated with DTI images 

[187].  

In our work, we directly validate the computation approach by SOCS measurement of the fiber 

orientation. The ST-orientation maps have decent concordance with the optic axis orientation on 

the en-face plane of SOCS. Quantitative comparisons between computation and measurement 
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discloses that precise agreements (with angular difference between 0° and 10°) arise in the well 

delineated fiber tracts regardless of the size and the surrounding medium, including the internal 

capsule, the striamedullaris thalamus (sm), the fornix, the mammillothalamic tract (mt), and the 

fasciculus retroflexus (fr) on the sagittal plane. Verification of 3D ST-orientation on the en-face 

plane declares similar observation as well. With the evidences shown in accuracy and 

consistency, the ST method is capable of offering an objective assessment in disease models 

where microstructure changes on the image may occur [202].  

The binding of 3D ST-orientation on SOCS imaging distinctly strengthens the capability of 

optical neuroimaging. Quantification of fiber orientation in complex brain has imposed 

tremendous challenges in light microscopy. The polarized light imaging (PLI) technique has been 

developed for 3D characterization of fiber orientations in histological slices [145]; however, 

registration of histological sections in 3D proves to be extremely difficult, and thereby fiber 

tracking in comprehensive brain space is prohibited. Recently, the PS-OCT technique has been 

advanced to support 3D orientation estimation [197] which has potential to achieve the whole 

brain mapping; however, the intricate crossing fibers at microscopic scale induces great 

complications and the differentiability of depth-resolved orientation measures in the complex 

wiring system needs to be evaluated. SOCS makes use of the multi-contrast OCT techniques to 

unveil 3D microstructures especially fiber architectures in the brain. By integrating a serial-scan 

scheme, SOCS establishes a descriptive neural roadmap of the entire brain sample with high 

resolution. This comprehensive dataset sets the basis for the quantitative formation of the 3D 

orientation map. The 3D ST-orientation based on comprehensive optical sections of cross-

polarization contrast provides unprecedented details on the directions of fiber alignments, 

especially benefitting the orientation quantification in small fibers with a resolution that 

conventional diffusion MRI technique cannot achieve.  The computation analysis also provides a 

viable tool for validating the micro-MRI technique, in which improved spatial resolution has been 

achieved by using large 3D arrays with high magnetic field [227]. 
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The formation of the structure tensor establishes a seamless connection to the tractography tools 

developed in diffusion MRI to investigate fiber tracking and structural connectivity. For proof of 

principle purpose, we construct a tractography based on the en-face stack of retardance images. 

The data albeit bearing a compromised resolution on z-axis, presents a robust detection of the 

fiber tracts with diversity of alignments in brain coordinates, and hence supports a full-angle 

perspective of the fiber maps. The tracks comply with the prior knowledge of anatomy and 

demonstrate a high resemblance with the results from DTI technique. Although a simple 

deterministic approach was used here for the tractography construction, the ST formation can be 

easily extended by a probabilistic model like fiber orientation distribution analysis to examine 

multi-fiber crossing within a local neighborhood, provided that the features support the 

distinction. In such case, the structure tensor can be recruited to validate more sophisticated 

diffusion MRI techniques such as high angular resolution diffusion imaging (HARDI) [141] or 

diffusion spectrum imaging (DSI) [207]. It is also noticed that we could use the data of 

comprehensive optical sections with higher isotropic resolution to create the tractography as well, 

but considering the weaker identification of fibers along z-axis, the track map could miss certain 

directionality and induce a biased connectivity analysis. The full-angle feature expression needs 

to be investigated in the imaging system for a more comprehensive texture analysis.  

There are several limitations in the current structure tensor analysis. First of all, the eigenvalues 

of the structure tensor, which are expected to represent image features, have overall inferior 

capabilities in fiber architecture description, comparing to the optical contrasts of SOCS. The 

greatest eigenvalue is mostly immune from the noise influence and decently preserves the identity 

of small tracts and the edges of big bundles, but the subtle features with dimmer intensity inside 

the white matter regions were not captured; on the other hand, smaller eigenvalues keeps the 

gross identification, whereas bears more severe background noise contamination. Because of the 

characterisitcs of SOCS imaging, the noise inevitably coming from every undesired intensity 

mismatch in local neighborhood – uneliminated speckles, small creatures or contaminators on 
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tissue surface and the vessels passing through brain sections – may also present considerable 

contrast. The nonlinear anisotropic diffusion filter, which improves the directional representation 

of orientation, does not appreciably benefit the effective feature identification by the eigenvalues. 

The edge-preservation characteristic of the filter rather underlines the unwanted patterns in the 

background which influences overall image quality. As a result, we did not use filtering for the 

eigenvalue representation. The concept of fractional anisotropy in DTI [206] and coherence index 

in ST [215] could be introduced for anisotropic characterization; however, regularization has to 

be taken care of to eliminate the noise in the background.  

We also found greater discrepancies of orientation between computation and measurements in the 

white matter where the retardance signal on SOCS image becomes weaker and the architectures 

are less visible. The low retardance typically implies the presence of fibers with low 

birefriengence, running through the plane or crossing with each other. In either scenario, the optic 

axis orientation bears more noise, and the computation is prone to error due to lack of effective 

features. Strategies to enhance feature visibility are the key but also have substantial 

complications. Improving spatial resolution increases feature discrimination [228], but sufficient 

photon collection has to be guaranteed which imposes another challenge in anisotropic 

microstructure imaging by using intrinsic optical properties [185]. As a result, angle-resolved 

imaging technique needs to be developed for a realization of full-angle description of fiber maps 

in the complex brain [229, 230]. 

In summary, the incorporation of the structure tensor analysis and the SOCS imaging provides an 

insight of brain-wide orientation mapping and connectome exploration. In future work, 

continuous advances of SOCS technique will be parallel to the evolvement of computational 

models for a better understanding of the wiring system and an objective assessment in 

pathological conditions. We anticipate that the convergence of computational analysis on SOCS 

and other modalities, including histology and MRI will lead to multi-scale investigations in 

comprehensive brain mapping.   



127 
 

CHAPTER 7  CROSS-VALIDATION OF SERIAL 

OPTICAL COHERENCE SCANNING AND DIFFUSION MRI 

7.1 INTRODUCTION 

Diffusion magnetic resonance imaging (dMRI) has revolutionized our understanding of structural 

connections in humans. The technique provides a unique solution to noninvasively visualize 

white matter fiber bundles over macroscopic distances in the living brain. dMRI captures the 

anisotropic diffusion of water molecules in the brain which run preferentially along the direction 

parallel to the axonal axes, and can be used to infer fiber organization and orientation. Recent 

technical developments have improved the spatial resolution to sub-millimeter scale and enabled 

high angular resolution imaging which describes the human brain with unprecedented details. 

dMRI has been proven to be valuable in clinical neuroscience [202, 203], with studies showing 

that an array of disorders may have corresponding connectional components, including 

Alzheimer’s disease [231, 232], schizophrenia [233-236], autism spectrum disorders [237, 238], 

major depression [239], and dyslexia [240-242]. 

While there have been a number of neuroscientific and clinical applications of dMRI, the 

systematic validation of the dMRI technique for evaluating microstructural properties and 

connectivity in the human brain remains incomplete. Although light microscopy is able to 

visualize single axons, axonal tracking is extremely labor intensive, and cannot realistically be 

carried out for multiple fascicles traversing many centimeters of brain tissue through the white 

matter. Traditional validations by histology are divided into two realms: 1) neural tract tracers 

have been injected into local regions, and compared with selected tracks by dMRI tractography 
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[243-245]; and 2) quantitative information have been derived by digital signal processing of 

myelin stained images and compared with dMRI orientation [210, 211, 246, 247]. Those studies 

are predominantly performed on 2D slices.  Early three-dimensional (3D) histological validation 

has proven to be difficult and has resulted in a relatively low correlation with dMRI tracks [248]. 

Using multi-step registrations, Jbabdi et al. [249] reported both agreements and dissociations 

between neural tracing trajectories and dMRI tractography on the organizations of ventral 

prefrontal fibers in macaque monkey. Polarized light imaging [145] has recently been proposed as 

an alternative technique for imaging fiber orientation, as it provides 3D orientation information 

with a voxel size of approximately 100 µm isotropic. However, the technique requires tissue 

slicing before the imaging, which makes inter-slice tracking of fiber bundles difficult and is prone 

to registration errors due to distortions intrinsic to cutting and mounting of large tissue sections. 

The development of optical coherence tomography (OCT) has shown promises to depict the fiber 

tracts in central and peripheral nervous system [181, 185]. OCT is a depth-resolved imaging 

technique that generates cross-sectional images of tissue microstructures with micrometer-scale 

resolution [25]. By integrating a tissue slicer with a multi-contrast OCT, serial optical coherence 

scanner (SOCS) provides an insight into large-scale brain imaging with microscopic resolution 

[226]. SOCS enables a comprehensive 3D reconstruction of the brain and supports quantitative 

assessments of fiber architecture and orientation with optical contrasts. The fast acquisition speed 

becomes an appeal factor for macroscopic tissue imaging such as primate and human brains.  

With 3D visualization of fiber connection and orientation available, optical tractography has the 

potential to provide the assessment of diffusion MR images.  

In this chapter, we present cross-validation of SOCS and diffusion tensor imaging (DTI), which is 

a dMRI technique, on a postmortem human medulla sample. This validation process includes data 

acquisition and image reconstruction by individual imaging modalities, two-step co-registrations 

and comparison between DTI and SOCS (see Figure 7.1 for a flow chart), and discussed step-by-
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step in the following sections. To the end, we establish a strategy that allows registration between 

3D datasets of DTI and SOCS at high resolution. The white matter structures in the medulla are 

correlated on co-registered images. The fiber orientation maps produced by these modalities are 

compared. The results indicate a successful cross-validation. This co-validation process paves a 

path for a cross-modality investigation on structure connectivity and brain mapping in normal and 

pathological conditions. 

 

Figure 7.1 Flow chart of cross-validation between dMRI and SOCS. A brain sample is scanned by dMRI and 

then by SOCS. Spatial co-registration between the two modalities are completed first, and then the orientation 

vectors are re-oriented accordingly. With the success of 3D co-registration, the fiber architectures and 

orientations are compared between dMRI and SOCS. 

 

7.2 DATA ACQUISITION AND POST-PROCESSING 

7.2.1. Tissue 

Tissue sample was taken from the right hemisphere of a 60 year old male initially fixed in 10 % 

buffered formalin beginning 14 hours postmortem for 2 months, and then subsequently stored in 

4% periodate-lysine-paraformaldehyde (PLP) prior to and during data collection.  Brain tissue 

was obtained from the Neuropathology Department at the Massachusetts General Hospital and is 

considered to be cognitively normal.  A block of tissue, with an approximate size of 
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11x15x30mm, containing the medula oblongata was removed from the right brainstem which fit 

within a 28mm inner diameter (ID) plastic cylinder.  MRI human brain tissue experiments were 

approved by an Institutional Review Board at Massachusetts General Hospital. After scanned by 

diffusion MRI, the sample is transferred to University of Minnesota for optical imaging. 

7.2.2. DTI data acquisition and post-processing 

Diffusion Tensor imaging (DTI) data was acquired using a Bruker Biospec Avance system 

(4.7T/40 magnet, 12cm bore, 40 G/cm gradients) at a 300 μm isotropic spatial resolution.  The 

acquisition employed a 3D spin-echo sequence (TR/TE = 320/28, δ = 7 ms, Δ = 10.4 ms, matrix 

size = 256x96x96) with a maximum b-value of 4032 s/mm^2 for 20 non-collinear directions plus 

two additional scans with a b-value of 0.  Total scan time was 18 hours. 

Radio Frequency coil 

A custom-built transmit/receive solenoid coil was designed to minimize the distance between the 

blocked sample in the plastic cylinder container and the surrounding coil, with an inner diameter 

of 30 mm and active length of 70 mm resulting in 5 turns of the copper coil element. 

Diffusion MRI post-processing 

Diffusion tensor estimation and data reconstruction was performed using Diffusion Toolkit 

(Ruopeng Wang, Van J. Wedeen, TrackVis.org, Martinos Center for Biomedical Imaging, 

Massachusetts General Hospital) using the Fiber Assignment by Continuous Tracking (FACT) 

algorithm [223] and an angle threshold of 35 degrees.  The tensor maps were used to estimate the 

apparent diffusion coefficient, fractional anisotropy (FA), and fiber orientations. 

7.2.3. SOCS data acquisition and post-processing 
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SOCS integrates a multi-contrast (MC) OCT and a Vibratome tissue slicer [226]. The MC-OCT 

is a spectral-domain polarization-maintaining-fiber (PMF) based technique [184] that is capable 

of making intensity, phase and polarization sensitive measurements. In addition to the 

conventional reflectivity contrast, polarization-sensitive OCT imaging [74] has been shown to be 

useful for characterizing anisotropic/birefringent tissues. The applications in brain include 

differentiation of white matter and gray matter, and delineation of myelinated axons [185]. 

The light source was a super-luminescence diode (central wavelength: 840 nm; bandwidth: 50 

nm) yielding an axial (z-axis) resolution of 5.5 μm in tissue. A scan lens (focal length: ~36 mm) 

providing an estimated lateral (x/y- axis) resolution of ~15 µm was employed in the sample arm 

for consistent imaging quality over a large area. The acquisition speed for a depth profile (A-line) 

was 25 kHz. This is determined by a line scan camera recording interference related spectral 

oscillations on the orthogonal PMF channels. Inverse Fourier transform of the spectra in k (wave 

number) space yields the complex depth profiles, where the subscripts represent the polarization 

channels. The reflectivity, phase retardance  
 
and relative axis orientation along depth z are 

extracted from the magnitudes and phases of the complex depth profiles (Eq. 3.17 – 3.19). 

Constructional and operational details of the imaging system can be found in Chapter 3 and 5.  

The medulla sample was cropped into a 2 x 1 x 0.7 cm3 block (in xyz) and mounted on a 

vibratome slicer (Leica Microsystems, Bannockburn, IL) positioned under the scanner. One 

volumetric scan (optical section) contained 300 cross-sectional frames with 1000 A-lines in each 

frame. Each scan covered a 3D volume of 7 x 7 x 1.78 mm3 and produced images with a voxel 

size of 7 x 23 x 3.47 µm3. Eight scans were performed to cover the entire sample surface. The 

scan head was repositioned between the adjacent sections, which had a 15% overlap to aid post-

processing. One of these scans was also used for calibrating the axis orientation contrast, since a 

retarder with a known axis was placed next to and imaged together with the medulla sample 

(Figure 7.2A). After imaging the superficial region, a 150 µm thick tissue slice was removed 
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from the top surface, allowing for deeper regions to be exposed to light. The physical slice 

thickness was less than the useful imaging depth to ensure 3D reconstruction of the whole sample 

with satisfactory signal-to-noise ratio (SNR) at all depths. The sections of consecutive slices were 

imaged in reverse order to minimize the lateral repositioning of the scan head, which also 

facilitates successful stacking of the slices (Figure 7.2B). The imaging and then slicing procedure 

was repeated 45 times until the entire tissue block was scanned. Correspondingly, a total of 360 

optical sections were recorded. 

 

Figure 7.2 SOCS scan schemes. A. Eight optical scans covering the whole surface were applied for each slices. A 

reference retarder was imaged with the tissue for scan 1 and 8. B. Serial slices were imaged in reversed order. 

SOCS image reconstruction and post-processing 

En-face images are created by projecting the volumetric data onto the xy-plane. The pixel 

intensity in en-face reflectivity and retardance images was computed by taking the corresponding 

mean value along the depth direction. The pixel intensity in en-face orientation images was 

determined by the peak of a histogram formed by binning the orientation values along depth into 

2° intervals.  

En-face views of eight optical sections were stitched to construct a slice. The en-face retardance 

images were chosen as those display the most remarkable features in the medulla with high 

contrast.  An algorithm based on Fourier shift theorem computed the translations between all 

image pairs, found the best overlaps and produced a globally optimized configuration for the 



133 
 

whole image [186]. The operation was performed by Fiji software (http://pacific.mpi-cbg.de/). 

The same registration was then applied to stitch the en-face reflectivity and axis orientation 

images.  

The 3D reconstruction of the medulla sample was achieved by stacking the en-face images of the 

slices. The imaging procedure allows for precise alignment of the slices without further 

registration. However, lateral positions of the slices can be fine-tuned by referencing the sections 

that were imaged without the lateral repositioning of the scan head. 

The optic axis orientation represents the axis of anisotropy in the plane perpendicular to the 

illuminative beam. This measure indicates the in-plane orientation of nerve fibers; however, it 

bears an offset that needs to be removed to achieve physical fiber orientation. The offset 

originates from an arbitrary delay between the optical paths of the two PMF channels, which 

varies with environmental factors such as movement of reference or sample arm fibers and 

temperature change. To obtain the absolute orientation of nerve fibers, a retarder film was placed 

next to the tissue, and a small portion of it was covered in one of the eight scans. The offset was 

derived by subtracting the measured and set orientations of the film axis, and removed from the 

measured axis orientation of the tissue in that section.  Other sections of the slice were corrected 

serially by matching the fiber orientations within the overlap regions.  

7.3 CO-REGISTRATION BETWEEN SOCS AND DTI 

7.3.1. Co-registration methods 

As the coordinate space of SOCS imaging was determined independent of DTI coordinate 

system, coregistration between the two imaging modalities is crucial, especially for the accuracy 

of orientation comparison. We used two registration phases in the study: (1) spatial (scalar) 

http://pacific.mpi-cbg.de/
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registration that ensures alignment of the anatomical images, and (2) orientation (vector) 

registration for direct comparison of fiber orientations.  

The spatial registration was performed by using DTI FA and SOCS retardance images, as most 

features including the gray and white matter boundary and the architectures of the white matter 

fiber tracts are captured in the two contrasts. The DTI dataset was mapped into the SOCS space 

and interpolated to match the voxel size of SOCS. After an initial manual rotation and cropping 

on the 3D dataset of FA, first a rigid transformation (translation and rotation) followed by an 

affine alignment (translation, rotation, scaling and shearing) was estimated and applied to the FA 

block. The rigid registration allows rotation and translation and has 6 degrees of freedom (DOF). 

For a small rotation angle, the displacement 𝑑6 for a location 𝑥⃗ is expressed as   

        

𝒅⃗⃗⃗𝟔 = (

𝒑𝟏
𝒑𝟐
𝒑𝟑
) +(

𝒑𝟒
𝒑𝟓
𝒑𝟔
) × 𝒙⃗⃗⃗ 7.1 

The affine registration has 12 DOF, and the displacement 𝑑12 is a combination of a translation 

and a 3 x 3 matrix:         

𝒅⃗⃗⃗𝟏𝟐 = (

𝒑𝟏
𝒑𝟐
𝒑𝟑
) +(

𝒑𝟒 𝒑𝟓 𝒑𝟔
𝒑𝟕 𝒑𝟖 𝒑𝟗
𝒑𝟏𝟎 𝒑𝟏𝟏 𝒑𝟏𝟐

) 𝒙⃗⃗⃗ 7.2 

The registration algorithm is based on a symmetric registration procedure described in Reuter et 

al. [249]. The symmetric registration constructs a robust simultaneous alignment of two set of 

images into an unbiased common space. Therefore, instead of understanding the registration as a 

local shift of intensity values at specific locations from the source to the target space, both sets of 

images are transformed: the source 𝐼𝑆 half way to the target 𝐼𝑇 and the target half way in the 

opposite direction to the source with symmetric transformations. The residual at each voxel is  
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𝒓(𝒑⃗⃗⃗) ≔ 𝑰𝑻 (𝒙⃗⃗⃗ −
𝟏

𝟐
𝒅⃗⃗⃗(𝒑⃗⃗⃗)) − 𝑰𝑺 (𝒙⃗⃗⃗ +

𝟏

𝟐
𝒅⃗⃗⃗(𝒑⃗⃗⃗)) 7.3 

The objective is minimize the residual with normalized mutual information as the cost function. 

The registration process is implemented under the FreeSurfer [221] platform. 

Vector registration is built upon the spatial registration. First, the same registration as done in FA 

was applied to the tensor images to achieve spatial alignment with SOCS orientation images. 

Second, tensor matrix was rotated accordingly by a rotation matrix extracted from the registration 

transform. The orientation vector was extracted from registered diffusion tensor and projected 

onto the en-face plane of SOCS.  The unique advantage of this registration strategy is that it 

enables a voxelwise co-evaluation of the entire sample with high resolution. 

7.3.2. Evaluation of co-registration results 

DTI images 

The diffusion tensor provides quantification of 3D fiber orientation with the strength of diffusion 

anisotropy. As water molecules diffuse along the axonal tracts, the anisotropy is high in the white 

matter, and the eigenvector corresponding to the greatest eigenvalue indicates the primary fiber 

orientation within that voxel. In contrast, the diffusion is more isotropic in the gray matter which 

leads to a weak FA signal. Figure 7.3 shows the DTI images of the human medulla with a 

photograph of the sample on the upper left corner. The colors represent the orientation vector in 

3D (red: left-right, green: anterior-posterior, blue: superior-inferior) and the brightness is coded 

by the FA values. There are relatively uniform color patches in local regions, as well as complex 

color patterns both on the 3D view and the orthogonal planes, which indicate the presence of 

sophisticated fiber architectures in the human medulla. Due the resolution limit, the DTI is not 

able to catch the detailed features in the fiber bundles. Figure 7.3 also shows that the sample 

orientation in the scanner is arbitrary and not aligned with the RAS coordinates; therefore, spatial 

co-registration with SOCS needs more attention.     
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Figure 7.3 DTI images of the human medulla sample showing fiber orientations in 3D. The colors represent the 

orientation vectors, and the brightness is controlled by the FA signal. A photograph of the sample is shown on 

the upper left corner of the first panel. 

En-face SOCS images 

Figure 7.4 displays the en-face SOCS images of a medulla slice composed of eight (2x4) laterally 

scanned optical sections roughly parallel to the coronal plane. The en-face reflectivity image 

emphasizes the layer of inferior olivary nucleus with high scatters, which may contain high-

density of cell bodies. The accessory olivary nuclei are also recognized. Those nuclei appear dark 

on the retardance images with no indicative birefringence. The intensity of the white matter varies 

on the reflectivity images, depending on the fiber orientation with respect to the direction of the 

illuminative beam. However, textures within gross white matter are distinguishable, which are 

highlighted in the magnified region on right. The en-face retardance image emphasizes the white 

matter fiber bundles with detectable birefringence. The brightest regions are seen where fiber 

tracts are densely packed in a uniform direction and aligned parallel to the en-face plane. 

Crossing fibers are identifiable with lower retardance values yet distinct features, such as the 
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reticularis alba and fiber clusters at the pyramid decussation.  Fiber tracts running through the 

plane with an inclined angle also appear dim, but the orientation effect is less severe than that on 

the reflectivity image. Small fibers traversing the olivary nuclei (pointed by the arrows) are 

observed on the magnified region on right. The size of the individual tracts estimates about 20 – 

30 µm. By using color-coded channels, reflectivity and retardance images are overlaid for a better 

visualization of the structure layout and spatial interactions. The stacking order is reversed in the 

zoomed-in region to unveil the pattern of fiber tracts crossing with each other and running 

through the nuclei region. The retardance images are selected for spatial registration with the DTI 

data, because of its advantageous capability of targeting the white matter tracts and revealing 

decent features in their architecture. 

 

Figure 7.4 En-face reflectivity and retardance images of the medulla oblongata. Left: A slice composed of eight 

(2x4) lateral scans. Reflectivity highlights the inferior olivary nucleus layer and the accessory olivary nuclei. 
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Retardance probes the white matter region. The overlay is merged by color channels (red: retardance; green: 

reflectivity). Right: Images elaborate the details in the dotted box. Arrows on the retardance image indicate 

small fiber tracts transverse the inferior olive nucleus. The colors of the overlay are switched to underscore the 

spatial interactions within fiber tracts and between the tracts and the nuclei. 

The en-face optic axis orientation maps in Figure 7.5 show fiber orientations on the coronal 

plane. The colors represent the fiber directions as shown on the color wheel. The brightness of 

colors is determined by the en-face retardance values. As expected from anatomy, the majority of 

white matter bundles in the maps are aligned along the superior-inferior direction. However, there 

are greater complications at the pyramid decussations and in the inferior olive. Small fiber groups 

with vast diversity of orientations are seen spatially interacting with each other (top row, Figure 

7.5). The optic axis orientation accurately traces the directional trajectory of small tracts of tens 

of micrometers, and detects the individual directions of the intricate networks. The high-

resolution quantitative assessment sets the basis for a direct correlation with the DTI contrasts. 

 

Figure 7.5 En-face optic axis orientation maps produced by SOCS quantitatively depict in-plane fiber 

orientations in the medulla. Each map is composed of eight (2x4) serial scans. The color wheal shows the 

orientation values ranging between -90° and 90°. The brightness of colors in the images is determined by the en-

face retardance values. 

Co-registration of DTI and SOCS images 
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Spatial alignment between the images of the two modalities was performed by transforming the 

DTI data into the SOCS coordinate space. The co-registered retardance and FA images of the 

medulla sample are shown in Supplemental Video 1 on the xy-plane. Figure 7.6 demonstrates a 

representative co-registration result on orthogonal views. Both FA and retardance images 

highlight the white matter with greater brightness. The registered images exhibit appreciated 

affinity on all the orthogonal planes. The fiber structures in the inferior olive are less distinctive 

on FA images (top) due to a limited spatial resolution of DTI. These fiber tracts, as estimated 

from the retardance images, are less than 500 µm in diameter, which is comparable to the DTI 

voxel size. Figure 7.6 also shows color-merged binary images that are obtained by applying 

thresholds on retardance (22.5°) and FA (0.15) images. Tissue boundaries on the blended images 

present a close match, attesting minimal distortion due to serial sectioning of SOCS. Small 

misalignments are seen on the inferior and superior edges, which might be attributed to an 

excessive shear transformation during registration. These images also indicate a general 

agreement between the white matter borders. Discrepancies exist in detailed structures (e.g. the 

inferior olive), which might originate from slicing artifacts, registration errors and a mismatch in 

the spatial resolutions.  

 

Figure 7.6 Spatial co-registration of SOCS and DTI images. Retardance (left column) and FA (middle column) 

images are shown on axial (top row), sagittal (middle row) and coronal (bottom row) views. Color-coded binary 

images of the white matter regions indicate the quality of registration (green: retardance; red: FA; yellow: the 

overlap). 
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To assess the quality of co-registration, we computed the correlations of the 3D datasets of FA 

and retardance using three measures: Pearson’s correlation coefficient, Dice’s coefficient of the 

tissue masks, and Dice’s coefficient of the white matter masks. All three measures suggest 

successful co-registration of the images from the two modalities. The Dice’s coefficient on tissue 

mask was 0.96, indicating a nearly perfect overlap of the co-registered datasets. Dice’s coefficient 

of the white matter masks and Pearson’s coefficient were both 0.90, signifying appreciable 

agreements in the co-registered white matter structures. Because the voxel size of SOCS en-face 

stack is anisotropic, we further examined whether this anisotropy along lateral and axial axes 

could unevenly affect the registration quality. We calculated the Pearson’s correlation coefficients 

in every section on individual viewing planes across the whole sample. Figure 7.7 shows that the 

average correlation coefficients all range between 0.8 and 0.9 and are comparable on xy-, xz- and 

yz-planes despite the anisotropy in voxel size. 

 

Figure 7.7 Pearson’s correlation coefficients between co-registered FA and retardance data on the orthogonal 

planes. The average values are 0.89 (n = 45), 0.91 (n = 1690), and 0.81 (n = 610) for xy, xz and yz planes, 

respectively. 

7.4 STRUCTURE CORRELATION BETWEEN SOCS AND DTI 
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Although both FA and retardance highlight the white matter, the underlying physics of the signals 

are different: FA represents the anisotropy of water diffusion in tissue, while retardance originates 

from the birefringence (anisotropy of refractive index). As the nerve fiber tracts influence both 

measures greatly, further comparison of the FA and retardance images is of interest. Figure 7.8A 

shows the co-registered retardance and FA images in four slices. We selected five regions of 

interest (ROIs) within the white matter regions, and compared the features across the two imaging 

contrasts. ROI-1 is located in dense fiber bundles of pyramid which owns high brightness albeit 

lack of detailed features. ROI-2 is placed in the reticularis alba with meshing patterns visible on 

the retardance. ROI-3 is on the fiber tracts beside the olive with less density. ROI-4 contains 

small fibers in the inferior olive with complicated interacting orientations. ROI-5 is located at the 

median fissures between the left and right medulla. The ROIs are included in multiple slices 

where individual structures are clearly visible. 

The mean values of retardance and FA are plotted against each other for all selected ROIs in 

Figure 7.8B. The data follow a linear trend in general with a positive slope for ROIs 1-4. This 

indicates that greater anisotropy in DTI correlates with higher birefringence due to nerve fibers 

running parallel with each other. The lower anisotropy might be explained by less density, fiber 

crossing or intricately spatial interactions within fiber networks or with surrounding nuclei. The 

correspondence discloses a deviation in ROI5, where FA is significantly brighter than the 

retardance. Therefore, the anisotropy of water diffusion can be outstanding without the necessity 

of running along myelinated fiber bundles. It should also be mentioned that, the inclination angle 

of fibers with respect to xy-plane could reduce the apparent birefringence and measured 

retardance, which is not an issue for FA relying on multi-angular scans. 
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Figure 7.8 Correlation between retardance and FA images. A. Representative retardance (left) and FA (right) 

images on the xy-plane are shown. Five ROIs are selected on varied structures. The ROIs are across multiple 

slices where specific structures are clearly visible. B. The scatter plot relates the mean values of retardance and 

FA in the ROIs. ROI 1 – 4 exhibit a similar linear relationship between the retardance and FA values. The 

correspondence in ROI 5 is deviated. The ROIs and the corresponding data points are color coded. 

 

7.5 FIBER ORIENTATION CORRELATION BETWEEN SOCS AND DTI 

7.5.1. Fiber orientations for cross-validation of DTI and SOCS 

The quantitative assessment of fiber orientation in SOCS enables a direct comparison with DTI 

orientation. The DTI orientation vectors were interpolated, mapped onto SOCS coordinates, and 

projected onto the en-face plane. Figure 7.9 demonstrates the co-registered orientation maps for 

four representative medulla slices. The orientation maps share the same color coding given in the 

color wheel. The brightness of colors on SOCS and DTI images was controlled by the retardance 

and FA values, respectively. The color patterns hold substantial similarity between the co-

registered images. This also suggests successful registration. Precise matches are seen in gross 

white matter regions bearing uniform directions, regularly grouped fiber bundles in the pyramid 

running at the decussation, and large fiber tracts located in the inferior olive. In contrast, 

discrepancy is observed where small fiber bundle regions introduce noisy patterns on DTI maps. 
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This is apparent in the olive region where the size of fiber bundles is comparable to the DTI 

resolution.  

 

Figure 7.9 Co-registered SOCS (left) and DTI (right) fiber orientation maps on the xy-plane. The color wheel 

indicates the orientations of fiber tracts. The brightness on SOCS and DTI maps is controlled by retardance and 

FA values, respectively. 

7.5.2. Fiber orientations comparison 

Pixel-wise subtraction of the DTI and SOCS orientation maps yields the mismatch between the 

measurements of these imaging modalities. Three sets of FA and retardance thresholds were 

applied to select the white matter regions for comparisons. Figure 7.10A shows the orientation 

mismatches on two representative sections of the medulla sample, whose structure is given by 

gray-scale retardance images. In general, convergence of co-registered orientations is seen in 



144 
 

majority of areas, indicating a concordance between DTI and OCT measures. The lowest 

threshold pair (FA > 0.15 and retardance > 22.5°) covers almost all white matter in the medulla, 

and exposes areas with discrepancy in the orientation with distributed patches of hot colors. This 

includes borders of the white matter where registration errors may play an important role. 

Discrepancies gradually diminish with increasing thresholds, as the DTI and SOCS better 

describe the white matter regions better and their orientation measurements become closer. The 

highest threshold pair (FA > 0.35; retardance > 35°) tends to select unidirectional fiber bundles 

that are aligned parallel to the SOCS en-face plane. As shown, this reveals the smallest difference 

between the orientation maps.  

 

Figure 7.10 Pixel-wise comparison of the DTI and SOCS orientation maps. A. The orientation mismatch 

(absolute values) is overlaid on gray-scale retardance images for two representative slices. Fiber bundles in 

white matter regions are selected by three sets of thresholds (top: FA > 0.15, retardance > 22.5°; middle: FA > 

0.25, retardance > 30°; bottom: FA > 0.35, retardance > 35°). Color bar: 0° – 90°. B. Normalized histograms of 

the pixel-wise orientation difference (bin width: 2°). The pixels are selected from all slides by applying the 

thresholds. The mean differences are at 5.4°, 3.3° and 0.1°, and the standard deviations are 32.5°, 26.3° and 

22.6°, for increasing thresholds, respectively. 

Figure 7.10B shows the normalized histograms of the pixel-wise orientation differences, which 

were obtained from all slices for each threshold pair. The bin-width was 2°. The mean values of 

the orientation difference are small for the three threshold pairs (5.4°, 3.3° and 0.1° from low to 
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high thresholds°). Similarly, the standard deviations of the distributions are decreased with the 

threshold increase (32.5°, 26.3° and 22.6°) as the width of distributions becomes narrower. 

Fiber orientations are further compared in selected ROIs with varied architectures. Figure 7.11A 

shows four ROIs on the co-registered orientation maps. ROI 1 contains densely packed fibers 

exhibiting high FA and retardance values. ROI 2 is a transition area where small fiber tracts with 

lower density are visible on retardance image and FA image bears lower intensity. ROI 3 is above 

the inferior olive where FA indicates greater anisotropy and retardance image shows clustered 

fiber bundles aligned along a preferred direction on xy-plane. ROI 4 is in the pyramid at the 

decussation where two groups of fiber bundles with differed orientations are found. The ROIs are 

across multiple slices where specific structures are recognizable. Figure 7.11B shows histograms 

of fiber orientations measured by SOCS and DTI (bin width: 5°). Fiber orientations in ROI 1 

present highest affinity, where SOCS orientation peaks at -35° and DTI orientation peaks at -30°. 

The histograms also have the narrowest width, indicating that the fiber bundles are aligned 

parallel with each other. Although fiber density gets lower in ROI 2, the comparison still supports 

a good concordance, with SOCS peaking at -10°and DTI at -15°. DTI and SOCS mismatch 

becomes greater on the histograms of ROI 3 and ROI 4, yet fairly comparable with a difference 

within 20°. Broader distributions may suggest complex patterns within the ROIs. For instance, 

ROI 4 exhibits a bimodal distribution that arises from distinct fiber bundles in a larger volume. 

The distribution of SOCS orientation is generally broader than the DTI in selected ROIs. This 

might be due to high resolution enabling SOCS to reveal subtle orientation variations.  
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Figure 7.11 Fiber orientations in ROIs. A. Four ROIs are shown on SOCS (left) and DTI (right) images. The 

color chart is the same as in Figure 7.9. The ROIs are across multiple slices containing the specific features. B. 

Histograms of the orientations in the ROIs for SOCS (top) and DTI (bottom). Bin width is 5°. 

Despite the affirmative correlations between DTI and SOCS measures, there are yet complicated 

fiber patterns that the DTI techniques cannot resolve. Figure 7.12A provides two examples which 

are magnified ROIs marked on Figure 7.12B. The top panels on Figure 7.12A (ROI 1 in B) 

contains small fiber tracts less than 100 µm in diameter.  The superior resolution of SOCS 

supports the description of individual fiber traces accompanied by altered orientations, whereas 

pixelated color patches are observed on DTI orientation image without interpretable structures. 

For example, SOCS orientation in ROI 1-1 demonstrates three major groups present at the 

intersections, centered at 30°, -60° and 90°; whereas, the DTI orientation loses the differentiation 

of the crossing fibers. Moreover, delicate patterns of fiber crossing are visible by SOCS at the 

lower-right corner of ROI 1-2, where the anisotropy on DTI gets low and suppresses the 

expression of orientation. Fiber-crossing problem in DTI is more apparent on the bottom panels 

of Figure 7.12A (ROI 2 in B) which composed of fibers in the pyramid decussation. Although the 

low-resolution estimation preserves the parallel orientation in small fibers (yellow-orange 

patterns), it completely loses the indication of crossing features with multiple angles in the round 
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shaped fiber groups, which are captured on SOCS orientation image. Figure 7.12 (ROI 3 in B) 

shows another example of inter-weaving fibers in SOCS orientation, a branch of which might be 

an extension from the vertical tracts in the upper region.  In order to achieve a quantitative 

evaluation, fiber orientations in the crossing region (ROI 3-1) are analyzed by histograms. 

Supporting the crossing pattern on SOCS, the histogram shows a side lobe at an angle of 70° 

intersecting with the primary peak. In contrast, the distribution of fiber orientation on DTI only 

specifies a single peak. 

 

Figure 7.12 Crossing fibers on SOCS and DTI orientation maps. A. Two magnified ROIs (ROI 1 and 2 in B) 

demonstrate complicated crossing patterns of fiber networks. SOCS images (left) clearly delineate individual 

fiber bundles with altered colors, while pixelated DTI images (right) lose track of subtle variations. B. SOCS and 

DTI orientation maps of the medulla slice showing the ROIs. C. Reticular patterns of crossing fibers by SOCS, 

and more homogeneous DTI representation. Histograms of orientations in ROI 3-1 (top: SOCS, bottom: DTI, 

bin width: 5°). 

7.6 DISCUSSION 
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This work presents covalidation of SOCS and DTI measurements using neural fiber pathways on 

a postmortem human medulla oblongata sample. We established a registration strategy that 

supports precise alignments of the 3D data from the two modalities, and accomplished direct 

comparison of white matter structures and fiber orientations at high resolution. 

The multiple contrasts of SOCS describe the fiber tracts and the nuclei in the medulla from 

different perspectives. The polarization measures especially target at the white matter fiber tracts 

due to the birefringence property of axons. The en-face retardance stack delineates the 

architecture of fiber networks, which forms an analogy with the FA in DTI and sets the basis for 

cross-modality registration. 3D construction of macroscopic sample is accomplished by stitching 

and stacking multiple optical scans. Unlike validation with histology that requires complicated 

tissue processing and inter-slice registration, the registration procedure is rather straightforward 

and mechanical distortions are not observed. The quality of co-registration between 3D datasets 

of FA and retardance was remarkable as indicated by Dice’s coefficients of 0.96 and 0.90 for 

tissue and white matter masks, respectively. As a result, SOCS shows a prominent merit in 

comprehensive studies on macroscopic brains.    

Although underlying origins of FA and retardance signals are different, the co-registered images 

of the entire sample exhibit remarkable similarities with a Pearson’s correlation coefficient of 

0.90. The microscopic resolution of SOCS enables a closer inspection on the neuro-anatomical 

factors affecting the FA values. We found that high FA corresponds to high retardance where 

parallel fibers are densely packed (Figure 7.8). Reduction in FA could be due to lower fiber 

density, reticular formations, and small fiber tracts crossing with each other or interacting with 

nuclei. These factors as well as the lack of myelination and inclination angles of fibers with 

respect to the xy plane could reduce the measured retardance. We noticed high diffusion 

anisotropy (FA) and low retardance in median fissure (Figure 7.8, ROI 5). This might be 

contributed to high anisotropy of water diffusion in fibrous structures and low birefringence.  
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The optic axis orientation contrast yields the axis of tissue anisotropy in the plane perpendicular 

to the illumination beam. By projecting the DTI orientations onto the en-face (xy) plane, we 

obtained a good agreement between the orientation measurements of SOCS and DTI. Pixel-wise 

orientation mismatch in the white matter estimates 5.4° with a standard deviation of 32.5°. The 

mismatch is further reduced to 0.1° with a standard deviation of 22.6° when the thresholds of FA 

and retardance are elevated to include only the densely packed parallel fibers in the analysis.  The 

ROI analyses reveal a fair comparability in multiple sites where unambiguous fiber axes are 

defined by DTI (Figure 7.11). The results are in consistency with previous reports in which the 

accuracy of local fiber orientations in DTI was examined by histological images. Leergaard et al. 

[246] performed manual trace on myelin stained mouse brain slices to validate DTI and q-space 

diffusion imaging (QSI) orientations, and found a correlation greater than 0.9 in parallel fiber 

tracts with DTI and an average of 5 – 6 degree deviation from QSI in crossing regions. Using a 

Fourier analysis, Choe et al. [211] declared a within 10 degree difference between DTI 

orientations and the axonal directions revealed on microscopy images. Similar agreements of 

fiber orientations were also discovered between histology images and DT microscopy on human 

spinal cord slices [247]. 

The orientation validation reported here has two distinct merits that were not paralleled in 

previous studies. Compared to validation with myelin stained histology that quantifies ROI based 

orientation using image processing [210, 211, 246, 247], the axis orientation contrast of SOCS 

allows for direct and pixel-wise correlation to DTI orientation. Compared to neural tracer labeled 

connective tracts [208, 243, 245, 248], the orientation verification by SOCS sets a more 

fundamental evaluation of dMRI results, a step preceding connectivity tracking that relies on 

orientation vectors and reconstruction algorithms [251].  

Apart from the positive correlations discussed above, complications stand out for crossing fiber 

regions. SOCS is capable of catching the orientation variations in smaller fiber tracts in the 
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pyramid decussation and inferior olive; however, DTI orientation loses the track of those intricate 

fibers, left with a noise pattern or an average effect (Figure 7.12). Spatial resolution is a major 

factor limiting the distinction in DTI. Orientation comparability becomes less reliable for fiber 

tracts smaller than ~500 µm. The partial volume sampling effect and the incapability to resolve 

intra-voxel multi-directions increase the deviations of orientation estimation in DTI [252]. The 

latter issue is untangled in more sophisticated techniques of dMRI, such as high angular 

resolution diffusion imaging [141], q-ball imaging [253] and diffusion spectrum imaging [207]. 

The optic axis orientation contrast of SOCS is currently not able to resolve multiple axes within a 

depth of an optical section, thus en-face orientation values may have a bias towards the 

orientation of superficial fibers. Although the optic axis orientation is restricted on the xy-plane, 

information about the orientation in third dimension is implied in the retardance measure [147]. 

Further discussion on retardance and orientation measurements can be found in Chapter 4 and 5. 

Overall, SOCS serves as an appealing tool for validating DTI orientations and can be readily 

applied to interrogate other dMRI techniques resolving complex orientations within a voxel by 

borrowing the established strategies in present study.   

In this study, we targeted the myelinated fibers. However, the method can be adapted to visualize 

the unmyelinated fibers, dendrites and cell bodies by increasing the lateral resolution to the level 

of optical coherence microscopy (OCM). The OCM was used to image individual axons and 

unveil the myeloarchitecture in the cortex [200, 254]. Previous studies on brain and peripheral 

nerves using OCM have reported close correlations with histology [181, 201, 228]. Therefore, the 

method we propose (SOCS) has potential to bridge multi-modality investigations on the central 

and peripheral nervous systems to construct a hierarchal view of neuro-anatomical connections 

from molecular to system levels, thus opening vast opportunities for systematic studies on brain 

mapping and neural disorders. 
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CHAPTER 8  CONCLUSION AND OUTLOOK 

8.1 CONCLUSION 

This dissertation is written at a time coincide with the Brain Research through Advancing 

Innovative Neurotechnologies (BRAIN) Initiative project newly launched [257], that the new 

technologies for understanding of the human brain is so eagerly to be revolutionized than ever 

before. Under the current focus of systematic mapping of brainwide architectures and circuits, 

development of large-scale brain imaging at microscopic resolution with emphasis on the 

connective tracts is in great need.  

The work makes progresses in overcoming this challenge by proposing a novel technique of serial 

multi-contrast OCT. To the end, several critical issues have been addressed through the 

developed chapters: 1) With a novel MC-OCT technique, the intrinsic optical contrasts based on 

back-scattering, light attenuation, and light polarization serve as reliable and multi-perspective 

views of brain. 2) Among these, the retardance, cross-polarization and optic axis orientation have 

been shown to be useful for quantitatively mapping its neural pathways. 3) Using a serial optical 

coherence scanner, 3D reconstruction can be accomplished to a spatial extent of brainwide 

coverage at a level of microscopic details. 4) This technique is well correlated with histological 

methods and can be used to cross-validate the diffusion MRI techniques, with which a 

hierarchical and cross-modality framework for systematic investigations of brain connectomics 

may be achieved.  
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Birefringence of the white matter tracts is the key property that supports delineation and 

quantification of the brain maps with MC-OCT. For white matter tracing, the PMF based system 

can be changed to other PS-OCT setups that are capable of retardance and optic axis orientation 

measurements. The bulk PS-OCT system which operates in the absence of optic fibers and fiber 

couplers, is able to produce the absolute optic axis orientation without extra calibrations as did for 

the PMF based system. For future standardization of serial PS-OCT in brain imaging, portability 

and translatability between varieties of experimental platforms needs more caution. In addition to 

PMF based system, PS-OCT generating the Stokes parameters in free space or with single-mode 

fibers and a polarization modulator [84, 111] also provides polarization information, and other 

contrasts derived from polarization alone or in combination, might be useful in characterization 

and classification of specific groups of neurons. This could include alternation in degree of 

polarization uniformity, which has been found useful for delineation of the eye’s retinal pigment 

epithelium layer [255].   

Current limitations of MC-OCT techniques in revealing full-angle neuronal networks require 

dedicated theoretical work as well as technical innovations. As discussed in Chapter 4 and 5, 

scattering directionality from the fiber bundles blocks the visibility of a range of viewing angles 

when the fibers are tilted through the plane with large inclination. This inclination angle not only 

in itself is a parameter of interest in 3D orientation, but also is related to the concern of a true 

birefringence derivation from the measured retardance. To solve these problems, multi-angular 

illumination and detection could be introduced, and a mathematical model to isolate the 

inclination angle from the true birefringence needs to be established. Another issue is that depth 

localized quantification in complex neuronal netoworks such as crossing fiber patterns and 

orientations which require additional computations and modified optics needs to be built.  

With MC-OCT, the intrinsic contrasts are well correlated with histological methods as discussed 

in Chapter 5. The cortical layers shown on the en-face attenuation maps are quantitatively linked 
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to those observed by the Nissl stain images. The fiber organizations portrayed by the retardance 

have high affinity to the myelin stain results. With the thriving of OCT in high-resolution brain 

imaging in recent years, such validation and correlation work have been more frequently reported 

in normal and pathological brains, consolidating the evidences of its validity and reliability in 

neuroscience studies. Magnain et al. [228] systematically studied the characteristics of OCT and 

Nissl stain in delineating the cortical layers with human brain slices. Assayag and colleagues 

compared the capability of ultrahigh-resolution OCT in brain tumor diagnosis with histology [256]. 

Using a living transgenic mouse model of Alzheimer’s disease, Bolmont and colleagues observed 

the cerebral A𝛽 amyloidosis with OCT that have been verified by immunohistochemical staining 

and well co-localized with fluorescence imaging [201].  

Apart from the histological validation, we also established a strategy for cross-validation with 

diffusion MRI techniques in Chapter 7, with the aim to bridge the gap between microscopic 

scrutiny and system-level views of connectomics, especially in human brains. Together with 

histological links, the efforts we have made here sets an anchor for future cross-modality 

investigations that have not been possible with such a comprehensive and coherent scale-span in 

the past. 

8.2 OUTLOOK 

The MC-OCT has pronounced advantage of creating dense reconstruction through intrinsic 

properties of diverse structures, but a fundamental miss is cellular specificity. This cellular 

specificity or molecular pheonotyping are usually achieved by bio-marker encoded fluorescence 

proteins, the detection of which is essentially incoherent that cannot be directly adopted by OCT. 

For example, immunohistochemistry has been widely used in targeting specific neuron 

populations. The neural tracers that express green fluorescent protein in either a pan-neuronal or 

cell-type-specific manner are commonly used to determine connective pathways with 
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directionality and terminal zones. This deficiency can be compensated with a combinational 

mode using multi-modality imaging. Ultrahigh-resolution OCT or OCM has been combined with 

confocal microscopy for various applications [258-260]. This combined system is relatively easy 

to implement because the two techniques typically operate at different wavelength band, which 

results in fairly separable subunits except for the common optical path on the sample [259, 260]. 

The OCT/OCM has also been combined with multiphoton microscopy to achieve more 

comparable probing depths. Although optimized light sources can be employed separately in 

individual units [261], a common Ti:Sapphire pulsed laser can serve as a common light source for 

both OCT/OCM and multiphoton imaging [262, 263]. This implementation improves the 

efficiency of hardware, but requires customized optical design and more careful alignment. After 

the proof-of-principle demonstration, the clinical applications of integrated OCM-multiphoton 

has come to horizons especially in dermatology [264]. Those combined cellular imaging systems 

bear similar resolution to that of single-photon or multiphoton microscopy; however, speckle 

noise that is inevitable in coherence imaging may significantly reduce the contrast information 

and thus hamper the interpretation of OCT/OCM images.  

The feasibility of OCM in cytoarchitecture and myeloarchitecture has been demonstrated [254]; 

however, the capability of systematically mapping of neuronal types and axonal connectivity 

need further investigation. The quantities of connectivity and connective strength have to be 

defined in an analytical way that is interpretable under other neuroanatomical contexts. We think 

a combined multi-contrast OCT/OCM and multiphoton imaging technique with genetically 

engineered cell-type-specific neural tracers could potentially be appealing for drawing the 

mesoscale circuitry in mammal brains. The OCT/OCM images may serve as a framework that the 

neural tracers refer to when the local circuitry is registered to a global template. 

The link of MC-OCT and diffusion MRI has great potentials as the birefringence measure in MC-

OCT has direct access to the white matter tracts, and moreover, the microscopic resolution of 
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OCT provides abounding architecture details that are prohibited in dMRI. As the spatial coverage 

of serial scanning is improved with acquisition speed, comprehensive studies by dMRI and MC-

OCT on the same sample can be conducted. This collaborative investigation is crucial in 

discovering the pathological pathways. The missing details of the altered diffusion-related 

parameters commonly found in brain disorders by dMRI may be uncovered optically. 

The brain imaging by MC-OCT requires minimal histological preparation of tissues. Therefore, 

the same sample scanned by MC-OCT may be reused for higher resolution imaging with targeted 

regions, such as the synaptic junctions revealed by electron microscopy. To this end, we envision 

that hierarchical architecture maps could be linked together to form a cross-scale wiring diagram.  

The MC-OCT favors the description of global fiber networks without pre-selecting neuronal 

types or spatial locations. This capability facilitates the acceleration of the whole-brain 

reconstruction process. The scalability of the SOCS technique to human and non-human primate 

brains will be dramatically enhanced by automated actuating procedures and post-processing 

tools. Mainly due to time needed for physical slicing and manual manipulations, SOCS currently 

takes 1~2 days for the entire data collection of a sample of 1-2 cm3. An automated scanner with 

programmable scanning and sectioning parameters will tremendously facilitate the image 

acquisition of both smaller and larger brains. Comparing to data acquisition, post-processing of 

big data takes even longer time. Stitching multiple en-face images can readily borrow the tools 

developed for microscopy; whereas, stitching serial optical sections with signal decay along depth 

would require more pre-processing steps and customized algorithms. In addition, objective 

assessment in brain architecture and connectomics would require automated feature selection, 

classification, segmentation and tracing. Therefore, dedicated package with routine pipelines and 

quantitative tools will greatly speed up the application of SOCS in neuroscience research. We 

envision that with an automated serial MC-OCT scanner and routine processing engines, data 

acquisition of a mouse or rat brain can be done in a few hours and reconstruction of its entire 
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neuronal pathways achieved in several days. Full reconstruction of primate and human brains is 

more challenging; however, it is not impossible with standardized procedures in the future.   
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