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Abstract

In just two decades, advances in the experimental mapping and computational anal-

ysis of DNA sequences have resulted in complete reference genomes for thousands of

different species. We therefore have a nearly complete “parts list” (that is, genes) for

each of these organisms, but the task remains to discover the individual function of each

of these genes, as well as characterize the organization and evolution of these individual

genes into the many sub-systems at work inside the cell. Perturbation analysis is a cru-

cial tool in identifying gene function and genetic relationships. In perturbation analysis,

genes are selectively deleted or mutated, and any change in the resulting phenotype—

for example, growth rate—can give an indication of gene function. We can then obtain

a more complete functional map by systematically changing or combining genetic per-

turbations, and/or varying the environment under which we observe the phenotype.

The focus of this dissertation is the development of computational methods to enable

genome-scale perturbation analyses in yeast.

We begin the dissertation with a discussion of the first computational analysis of

growth rate data for a comprehensive collection of deletion mutants in a wide variety

of truly minimal environments. This analysis revealed how sources of nitrogen and

carbon in the environment interact to determine growth rate, both in the context of

wild-type strains, and in the context of individual single-mutants. We also discuss

comparisons between experimental observation and in silico growth rate predictions

which serve as a benchmark for current constraint-based modeling methods. Secondly,

we discuss our efforts to map the complete genetic interaction network in yeast through

a comprehensive set of double-mutant experiments. We explore the ability of genetic

interactions and high-dimensional interaction profiles in to predict gene function, and

describe both local and global properties of the genetic interaction network, which may

reasonably be expected to be conserved to other organisms, such as humans. Lastly,

we describe local properties of the genetic interaction network surrounding genes which

have undergone ancient duplication. Using networks derived from both double- and

triple-mutant experiments, we explore the consequences of duplication, divergence, and

iv



retained common functionality, and speculate about the evolutionary process, and the

constraints on that process which govern the fates of duplicate gene pairs.

Functional capabilities of genes are conserved across species to a surprising extent.

Determining the functions of the remaining uncharacterized genes in yeast, will assist

in the functional characterization of the thousands of remaining uncharacterized genes

in human. Further, the mapping of the first complete eukaryotic genetic interaction

network has direct impact on the study of complex, multi-genic phenotypes, including

many human diseases. Meanwhile, the study of genetic interaction network structure,

yields fundamental insights into the nature of cellular robustness, redundancy, and the

evolutionary processes which give rise to them.
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Chapter 1

Introduction

Data generation is no longer a constraining factor in modern molecular biology. In

recent years, experimental methods and technologies have been scaled up to the ex-

tent that individual studies routinely contain millions of observations. The volume

and diversity of data has become so vast that the central challenge now lies in making

sense of it all. Computer scientists are responding to this challenge with new methods

for integrating, summarizing, and interrogating these diverse data. In close collabo-

ration with biologists, computer scientists not only work to address the technical and

conceptual challenges raised by these new methodologies, but also to exploit the new

opportunities they present. For example, computer science was integral to the success

of early “shotgun” sequencing technology [1, 2]. By solving the genome fragment as-

sembly problem, computer science empowered us to read an entire genome at once,

instead of crawling along one chromosome at a time for fear of losing our place. The

sequencing achievements of the late 1990’s and early 2000’s kicked off a revolution in

biological investigation and experimental technology in which computer science would

play a continually increasing role. New challenges in the post-genome era include the

integration and comprehension of this wealth of data, as well as technical and statistical

problems related to the reduced signal in the the data, and its sheer scale.

To exploit these opportunities, and to tackle the obstacles they present, we have a

myriad of tools at our disposal. Perhaps most importantly, we have complete genome

sequences. A complete listing of the genes in a given organism not only gives us a list of

potential actors when making specific biological hypotheses, but gives us a framework

1
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on which to organize all of our information and analyses. For a researcher such as me,

who began his career after many complete genomes had become available, this is easy

to take for granted. However, work on one particular project concerning Cryptococcus

neoformans gave me a new appreciation of the benefits of having a complete genome in

hand. While a C.n. reference sequence existed, it lacked the standardized nomenclature

and robust functional annotation scheme used in more studied organisms such as Sac-

charomyces cerevisiae (yeast). This hindered analysis and comparisons with previous

work and made communication of results much more difficult than I was accustomed to

after working with yeast. Indeed, much of the analysis I performed was done through

the lens of the yeast genome, leveraging the principle of evolutionary conservation of

function to borrow as much knowledge as I could (including even gene names) from a

better understood and annotated genome. Genes are the essential vocabulary of cellular

operation, and until the advent of whole-genome sequencing, reasoning and communi-

cating about cellular biology had to be done with an incomplete lexicon; the positive

impact of this standardizing force cannot be overstated.

Another essential tool in modern biological investigation is perturbation analysis.

While the study of mutants predates even the concept of the gene, the study of inten-

tional mutation is much more recent, and the systematic perturbation of every gene in

a genome in order to study each of their functions has only been possible for just under

two decades [3, 4]. Enabled by the revolution in sequencing and the complete “parts

list” it provided, systematic perturbation analysis has made an indispensable impact

on the field of functional genomics. Not only has systematic perturbation analysis re-

sulted in an explosion of gene-specific observations [5], but through new computational

approaches, these observations have coalesced, engendering more systematic views into

entire systems and organisms [6].

The study of biological networks is one such systematic view, and interest in the

mapping and construction of these biological networks has increased dramatically in

recent years. Network science abstracts a view of something, in this case cellular func-

tion, reducing it to a set of nodes and edges which can be interrogated computationally.

For example, nodes can represent biological actors, such as genes or proteins, while

edges might capture the relationships between them [7]. In many cases, such as protein-

protein interaction networks, these relationships represent tangible mechanisms such
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as the ability for one protein to physically bind to another, while in other cases edges

represent something more conceptual, such as similarity with respect to experimental

observations or the integration of many other heterogeneous data types [8, 9, 10]. Once

the data has been cast as a network, computer scientists can apply a standard set of

tools to study the architecture of the system. Sometimes network questions are simple,

such as asking which nodes are connected after conversion to a network, while other

questions are more complex, like asking how fragile the network is as a whole [11, 12],

or what types of processes could give rise to a network with similar aggregate properties

[13, 14], or which network sub-structures occur more often than expected [15, 16, 17].

Network-level characterization is one of the most important methods by which we

address complex biological systems as a whole. Life is an emergent property of all of

cellular components, which interact in complex ways, and must be studied in aggregate

to achieve anything approaching true comprehension. Cellular metabolism is probably

unrivaled in terms of large cellular processes we are able to model in silico, in large part

due to its amenability to abstract network. Metabolism provides an excellent example

of an instance where, after mapping the principle actors and their relationships, we

can simulate emergent systems-level properties and check agreement with experimental

observation. Mapping these networks is a huge challenge being addressed by modern

computer scientists in close collaboration with experimental biologists, as is learning to

integrate and interrogate networks to test hypotheses both broad and specific.

Paramount to the application of all of these tools is a model organism from which

we can collect the vast amount of data required to test the resulting hypotheses. S.

cerevisiae is such a model system and has played a key role in the development and

application of these tools.

1.1 S. cerevisiae as a model organism for computational

biology

S. cerevisiae has been used as a model organism for the study of biochemistry, genetics,

and cell biology for decades. Owing to its many important roles in human history (both

in and out of science), it is alternatively known as brewer’s yeast, baker’s yeast, or

budding yeast. Yeast belongs to the fungal kingdom, which has a close evolutionary
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relationship to animals. In its complex structure, functions, and organization, yeast

resembles many other eukaryotes, including humans, despite their roughly one billion

years of evolutionary divergence.

The S. cerevisiae genome contains roughly 12 million bases (Mb) of DNA that is

organized into approximately 6,000 protein-coding genes [18]. Using gene count as

a measure of complexity—albeit a notoriously unreliable one—this ranks well above

the smallest observed free-living genomes, such as the bacterial genome of Pelagibacter

ubique which has ∼1,354 genes (1.3 Mb) [19] and the genome of the eukaryotic parasite

Mycosporidium Nematocida parisii, which has ∼2,600 genes (4 Mb) [20]. The S.c.

genome is larger by half than the model prokaryote Escherichia coli which has ∼4,200

genes (4.6 Mb) [21]. Gene counts among eukaryotes vary widely; humans for example

have between 20,000 and 40,000 genes. The largest number of genes observed in a

eukaryote as of 2008 was about 60,000, belonging to a single-celled human-infecting

parasite called Trichomonas vaginalis [22]. S. cerevisiae was chosen as a model organism

for early sequencing efforts in part because of its position on the low end of this spectrum

relative to other well-studied eukaryotes [23].

Yeast cells propagate vegetatively in either the haploid or diploid form and double

themselves once every one and a half to eight hours. There is also a sexual cycle in

which haploids of opposite mating types (so-called MATa and MATα) can mate with

one another to form a diploid cell. Diploid cells can undergo meiosis to produce four

haploid spores, two with MATa and two carrying MATα. The ability of yeast to per-

sist vegetatively as either haploids or diploids allows us to grow isogenic colonies and

therefore conveniently attribute colony-level properties such as growth rate to a single

genotype. Meanwhile, their ability to reproduce sexually creates additional opportuni-

ties to construct those genotypes that we seek to test.

Another desirable feature found in yeast is the high frequency of homologous recom-

bination, which is a mechanism commonly invoked to repair double-stranded breaks

(DSBs) in DNA and also to produce novel genotypes during meiosis [24]. The DSB re-

pair process uses the second chromosomal copy as a template when fixing the damaged

region, and this process can be commandeered, allowing geneticists to replace or remove

genomic DNA at a specific location in the genome [25] provided they provide a carefully

crafted DNA sequence as an alternative template. In S. cerevisiae, the homologous
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recombination pathway is frequently invoked even in the absence of a DSB provided

the template is there. This feature allows yeast researchers to skip the laborious step

of additionally causing a break at the precise region of the genome targeted for change.

Recently, this technique, known as “gene targeting,” has been made more efficient in

organisms with lower rates of homologous recombination by the development of tech-

nologies which causes DSBs at the targeted locus, inducing homologous recombination

at a higher frequency [26, 27, 28, 29].

One other facet of yeast’s lifestyle is essential to mention here. In its role as a

free-living single-celled organism, yeast must manufacture many of the essential raw

materials needed to propagate. In fact, yeast metabolism is quite flexible; yeast can

subsist in very simple environments and generate energy by either respiration or fer-

mentation. This is in contrast to humans, which subsist by making comparatively few

metabolites directly and obtaining the majority of its nutritional requirements through

the consumption of other organisms. Yeast’s humble place on the food-chain ensures

that it has a metabolic toolbox that is well-equipped to teach us about basic cellular

metabolism.

Yeast is one of many different species that have been domesticated by humans,

and while the relationship does not quite predate the one with man’s supposed best

friend (dogs), evidence suggests that yeast domestication goes back several thousand

years. The first brewing activity is thought to have taken place in Sumeria nearly

6,000 years ago [30]. It is thought that S. cerevisiae in particular came into widespread

use for brewing some 1,000 years ago in the middle ages [31]. Since then, humans

have cultivated many yeast strains for many different purposes, exploiting both yeast’s

respiratory and fermentative capacities in the bakery and brewery, respectively. Yeast

ultimately found its way to the lab by 1940 [32]. Since then, perhaps no other species

has contributed as much to modern molecular biology and genomics, and therefore to

computational biology as well.

1.2 The impacts of whole-genome sequencing

The principle tool of the genomicist is a complete map of the genome itself. The first

genetic map of S. cerevisiae was published in 1949 by Carl Lindegren [33], and covered
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only four chromosomes. The very first complete DNA genome of any organism was not

sequenced until 1977 by Frederick Sanger [34]. That organism, a bacteriophage, Phage

Φ-X174, was quite simple with a genome of only around 6,000 bases (6Kb). It was not

until 1996 that the technology had progressed enough to directly sequence and assemble

a complete eukaryotic genome (yeast) [18]. In contrast to Sanger’s phage, the yeast

genome has 12.1Mb, over 2,000 times the amount of genetic material. A consortium

of 94 labs in 19 countries worked in concert to release the first version of its complete

sequence. This same period saw several other major sequencing milestones, including

the first complete bacterial genome in 1995 (H. influenzae [1]), the first archaeal genome

in 1996 (M. jannaschii [35]), and the first multi-cellular eukaryotic genome in 1998 (C.

elegans [36]). By the time the first human genome draft was completed in 2000 [37, 38],

it had become apparent that many genes and gene functions were conserved to a striking

degree across vast stretches of the tree of life. Several experiments showing the ability to

functionally complement human genes with the yeast homolog and vice versa highlighted

the possibility of using yeast to study processes important for human physiology. In

fact, gene function in one species so often mimics another that cases of interspecies

functional complementation can be now be referred to as “routine” [6, 39].

Today, complete genome sequences exist (to varying degrees of completion) for thou-

sands of species. These species include hundreds of eukaryotes, and among them, dozens

of species closely related to the original model yeast. The explosion of sequence data

gave rise to entirely new methods and analytical paradigms, ushering in the new field

of genomics. This field concerned the investigation of many genes at once and required

new computational methods to meet the challenge. In order to realize the promise

of translating knowledge from the genes of one organism to another, bioinformaticists

developed efficient methods for sequence alignment and ortholog recognition [40]. The

study of non-genic regions also received a boon from the flood of sequence information

as computational algorithms were refined. For example, transcription factor binding

sites, which are less regularly structured than protein coding regions, could be discov-

ered computationally by comparing the now large number of examples looking for subtly

conserved patterns. Once these patterns were sufficiently well characterized, computa-

tional biologists could apply the models to other regions or other genomes to predict

novel binding sites [41].
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Beyond even the level of individual genes and the regions surrounding them, compu-

tational biologists have begun to formulate hypotheses about entire genomes. Computa-

tional methods for sequence analyses have established the evolutionary-genomic history

of the entire yeast clade, revealing a great deal about the processes of gene duplication

and loss, as well as genome-scale rearrangements [42, 43, 23]. These yeast sequences

have also anchored even larger comparative studies, contributing much to what we know

about molecular diversity, divergence, and speciation, on many different branches of the

tree of life.

The collection and analysis of sequence data further spurred the development of other

whole-genome technologies, which again, demanded novel computational methods. As

one example, in 1997—a single year after the publication of the entire yeast genome—a

complete, genome-wide expression profile was published using microarrays [44]. DNA

microarrays can measure differential gene expression or detect known single-nucleotide

polymorphisms (SNPs) for thousands of genes simultaneously [45]. Methods originally

adapted to process and interpret microarrays, such as clustering in one or two dimensions

[46, 47], or principal components analysis [48], are now routinely applied to many diverse

data that are high-dimensional in nature [49, 50].

On a conceptual level, the lasting impacts of whole-genome sequencing on functional

genomics have been profound. While proteins are not the sole participants of cellular

function, they are responsible for most of the major structures and actions required for

life. A complete catalog of coding genes, and therefore a listing of proteins, gives us

a reasonable place to begin searching for the mutated gene responsible for any given

phenotype of interest. It also encourages a more systems-oriented view of the cell,

and provides a driving force behind systematic collaborative study. For example, the

nomenclature for systematic gene names in S. cerevisiae; which encodes a chromosome

number, arm identifier, gene number, and strand information; was conceived and re-

fined in the 1990’s as a product of the sequencing consortium [32]. As a result, even

genes without a known phenotype, or those which might not be genes at all, could be

identified, categorized, and annotated in a centralized and unambiguous way. Perhaps

most fundamentally, a complete listing of every gene stands as a challenge, turning a

classical genetics question on its head. Instead of asking “Which gene is responsible for

phenotype X?” functional genomics asks “Can we find a function for each possible gene
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Y?” Despite years of work, and much progress, this challenge remains relevant in even

the most highly characterized organisms [51].

1.3 Systematic perturbation collections for reverse genetic

screens

The idea of perturbing or deleting a specific gene and using the resulting observed

phenotypes to infer something about the gene’s function is known as “reverse genetics.”

It differs from “forward genetic” screens, which seek to isolate mutations responsible

for causing an existing phenotype. Perhaps no single event has had such a lasting

impact on reverse genetics (and therefore functional genomics) as the release of a near

complete yeast deletion collection around the year 2000 [52, 3]. In a characteristically

cooperative and coordinated fashion, the yeast genetics community constructed a set

of ∼4,800 strains, each lacking a single specific gene. The design of the strains in

the collection sought to facilitate experimentation and subsequent modification. As a

result, many unique derivatives of the collection exist, each specialized for particular

biochemical and genetic assays [5]. At the time of this writing, the deletion collection

study published in 1999 (Winzeler et al.) has been cited over 2,800 times [52].

Other model organism communities have since followed suit in the construction of

such collections. A collection for E. coli was released in 2006 [26], and a Saccharomyces

pombe collection was released in 2010 [53]. The technical hurdle for producing such

collections for each new organism is usually finding a mechanism for gene replacement

that can be applied at genome-scale. Homologous recombination can be used to gen-

erate targeted deletions in mouse [54], or in Caenorhabditis elegans [28]. In Drosophila

melanogaster, homologous recombination shows promise but cannot yet be applied at

genome-scale, though large random mutation collections exist [55]. Meanwhile zinc-

finger based mutation technology has produced made-to-order deletions in Arabidopsis

thaliana a reality and may form the bases for a comprehensive deletion collection in the

future [27]. New technologies such as CRISPR hold promise for the rapid production

of such collections as well [28, 29].

These deletion collections have been successful at eliminating the rate-limiting step

of mutant construction, making genome-wide screens a viable option for consideration



9

when planning any experiment. The have allowed researchers to use established assays

at larger scale, measuring numerous phenotypes, or measuring phenotypes in different

environments in search of additional sensitivities. In 2002, Giaever et al. not only

characterized (qualitatively) the growth of each yeast mutant, but did so on several

different types of media [3]. In the following years many studies leveraged the yeast

deletion collection to detect changes in growth phenotype in different environments,

many of them containing bioactive drugs with human therapeutic ends in mind [3, 56,

57, 58].

Among the important findings to emerge from this body of work was that for many

genes, but not all, there was at least one environment in which that gene was essential

for growth. This partially accounted for the surprising observation that in an organism

as supposedly efficient as yeast, only 20% of genes were required for growth in basal

conditions [3]. These experiments also provided the first unbiased measurements of

gene pleiotropy. While the idea of “one gene for one function” was by this time already

obsolete, it was unknown how many genes were pleiotropic or to how many different

phenotypes those genes might contribute [58]. To this day, the list of genes with no

apparent defect in any environment in yeast remains substantial, though it is much

shortened. Between 2011 and 2013 the number of ORFs listed as “Uncharacterized”

in the Saccharomyces Genome Database dropped from 897 to 846. At the time of this

writing, 722 ORFs still remain uncharacterized [59]. Meanwhile, so much perturbation

data exists that, instead of classifying gene function by the chemical to which it is

sensitive, it may soon be possible to classify unknown bioactive compounds by the set

of gene deletion mutants that sensitive to the chemical [60, 61]. Modeling the action of

known bioactive compounds in terms of their chemical structure and binding properties

has proven to be a significant computational challenge. Ultimately, our interest in

bioactive compounds extends beyond their specific targets to include downstream effects

as well as even a correct prediction of which gene product a putative drug candidate

targets will not inform us as to the consequences of that gene’s inactivation. Regulatory

responses, alternate pathways, and potential genetic interactions with secondary targets

all need to be considered, and perturbation studies can yield much of this information.

Computational modeling of these chemical properties will no doubt continue to improve,

meanwhile, perturbation-based analysis of these compounds allows us to begin facing
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this complex challenge immediately.

1.4 High dimensional data and genetic networks

As diverse phenotypic data became available for a large number of genes, dimensional-

ity reduction and data integration became a new computational focus. Methods that

leverage high-dimensional data frequently work by finding coherent patterns across pro-

files, often reducing the dimensionality to a single measurement of profile “similarity”

(or distance). The similarity of high-dimensional profiles has proven quite effective at

predicting known functional relationships between genes, and is therefore suitable for

making novel functional predictions for poorly characterized genes. Related methods

such as clustering in one or two dimensions [46, 47, 49], and principal components

analysis [48], provided alternative approaches to detecting common patterns, and ap-

plying them to inform us about the relationships between sets of genes or experimental

environments.

Another related approach is to build networks of pairwise similarity relationships.

Networks provide an important tool in conceptualizing the organization of cellular opera-

tion [7]. For example, gene-gene expression similarity measured across high-dimensional

microarray experiments can be used to generate coexpression networks, which have been

hugely influential in determining how genes respond (and respond together) in different

cell types or different environmental conditions [62]. When methods were needed to

aggregate the data from many heterogeneous experiments and present it in a useful

format, the network again proved a useful construct [9]. For example, functional link-

age networks integrate pairwise gene data from many different assays and summarizes

them in one single network. Most often, these network are constructed using a Bayesian

framework which is trained to predict a known—if incomplete—functional standard,

such as annotation to a common term in the Gene Ontology [8, 63, 64]. These networks

can be used to make predictions about particular gene functions and relationships and

in the process can be adapted to different prediction settings by marshaling the data

sets included, accounting for their relative usefulness or reliability given the task at

hand. For example, if a given dataset (such as gene-gene co-expression to salt-related

stress) boosts prediction of general functional relationships but is shown to provide no
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additional information to the specific task of predicting known protein-protein interac-

tions, it can be withheld to create a functional linkage network more suitable to the

prediction of novel protein-protein interactions.

In addition to computationally derived networks, there are a number of important

experimental technologies that measure specific types of gene-gene relationships and

give rise to their own networks. The most prominent of these technologies measure di-

rect physical interactions between proteins [65], interactions between proteins and DNA,

or logical relationships such as genetic interactions [66]. These individual networks have

demonstrated a number of interesting properties. For example, they are often scale-free,

or close to it, with a large majority of genes having very few connections, and a minority

of “hubs” having many connections [7]. These hubs tend to be centrally located in the

network and represent the most influential genes. Indeed, hub status in one type of net-

work frequently predicts status in another, suggesting that networks of complementary

types often portray the same underlying functional organization. For example, essential

genes are more likely to be hubs in both the protein-protein interaction network and the

genetic interaction network [11, 67], [Chapter 3]. Jeong et al suggested that their cen-

tral location in these cellular networks is what makes these genes essential, while others

contend that the observed relationship is the result of their increased degree influenc-

ing their probability of participating in certain essential interactions [68]. Still others

contend that a minority of highly connected protein complexes, many highly enriched

for essential genes, are causing the correlation, and that it is not a general phenomenon

[69].

Genetic interactions, by definition, measure the effects of multiple perturbations at

once in search of surprising phenotypes, and give rise to their own network structure.

For example, if two individual mutations show no apparent phenotype, yet prove to

be fatal in combination, they are said to have a “synthetic lethal” genetic interaction.

The yeast deletion collection, along with recent technological advances in robotics have

enabled the systematic construction of millions of double-mutant strains in an effort

to map the entire genetic interaction network. The scale of these experiments has

increased so rapidly that the number of genetic interactions in the BioGRID database

has already eclipsed the number of physical interactions by nearly a factor of two [70].

The information gained from genetic interaction mapping efforts is directly applicable
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to the study of complex phenotypes. Consider, for example the so-called “missing

heritability problem,” which refers to the fact that the effects we see as a result of

individual genes fail to account for the total heritability of many diseases and other

complex phenotypes [71, 72, 73]. Because individual genes are seldom responsible for

observed phenotypes, mapping the genetic architecture by which genes jointly affect

these complex phenotypes is essential to addressing current problems such as missing

heritabiltiy and complex genetic disorders in humans.

The exploration of fitness consequences in both gene-environment and gene-gene

space continues and the two can be related to one another with high-dimensional ob-

servations. For example, it was shown that correlation between the sensitivities of a

drug condition and a gene deletion, when measured across the same set of mutant back-

grounds, could indicate a targeting relationship between the drug and the deleted gene

[57, 66]. This is one example where the use of profiles can overcome the noise and

functional ambiguity of individual interactions. Lots of information, each bit of which

provides no real mechanistic information, can aggregate to provide real biological in-

sight. Mapping of the first comprehensive digenic network is nearly complete, however

there is no reason to suspect that genetic redundancies do not involve more than two

genes. And so, despite the incomprehensible number of possible triple-mutant combi-

nations in yeast (∼ 3.6× 1010), targeted explorations of the trigenic genetic interaction

space have begun.

1.5 Gene duplication and models of evolutionary processes

Gene duplication was recognized early on as a primary source of raw genetic material

and therefore key to the evolutionary process. This case was put forward most com-

pletely by Sumusu Ohno in his 1970 work Evolution by Gene Duplication [74]. His

argument was that a second copy of a gene relieves selection pressure on the first and

one or both of them are then able to mutate, perhaps dividing their common responsi-

bilities. Alternatively, one may assume the bulk of the ancestral function while the other

specializes or becomes useful in some novel capacity. This has been a very active area of

research since Ohno’s work but his central assertions are still accepted. Yeast provides

a platform on which we can come to understand these fundamental evolutionary forces.
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In addition to driving the evolutionary history of a genome, duplication is thought to

contribute to the observed robustness against null mutations in many organisms. For

example, if extant duplicate genes have retained common functionality, it may explain

the observed scarcity of essential duplicates, in yeast.

Many models, not all of which are mutually exclusive, have been proposed and re-

fined to explain the process by which duplicate genes might diverge [75]. One model,

known as duplication-mutation-complementation (DMC) is perhaps closest to Ohno’s

original idea. In this model duplication results in two fully functional redundant gene

copies, each of which then accumulates complementary mutations until they have com-

pletely partitioned ancestral function in a process called sub-functionalization. This

process has been applied in silico to network models, and has been shown to result in

network structures resembling the real protein-protein interaction network [13]. An-

other model, called escape from adaptive conflict (EAC) proposes a slightly different

model of sub-functionalization. In the EAC model, genes perform multiple functions

which are not discrete, but are subtly different. In cases such as this a gene cannot

converge to optimal performance for one function, without a corresponding sacrifice in

the performance of the other. The two functions are said to be in “adaptive-conflict”

and a duplication event can resolve this conflict, by allowing two distinct gene copies

to specialize. One example of this hypothesis was demonstrated by Voordeckers et al.

who compared the kinetic properties of the MALS gene family in several closely related

yeasts [76]. Through computational reconstruction of key pre-duplication versions of

the enzymes, and in vitro reaction velocity measurements on different substrates, cou-

pled with sequence and structural analysis, the authors show that the evolution of an

enzyme preferential to isomaltose-like sugars came at the expense of its ability to metab-

olize maltose. Thus, these two similar functions were in adaptive-conflict, and multiple

post-duplication copies were able to specialize for both of these competing roles, each

becoming more efficient than the ancestor for one particular task.

Previous work has shown that an ancestor of S. cerevisiae survived a duplication of

its entire genome [77, 42]. This whole-genome duplication (WGD) event is thought to

have taken place approximately 100 million years ago, and was followed by a period of

rapid reorganization and genome reduction. Several hundred duplicate pairs survived

the yeast WGD event, and together with many pairs from small-scale duplication events,
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make up the nearly 33% of the yeast genome [78]. Whole-genome duplication events are

traumatic, and we generally detect very few survived instances in most extant organisms.

On the other hand, small-scale duplication (SSD) events, in which a small number of

genes are duplicated, are common, and commonly survived. Sequence analyses have

revealed that most species retain a significant level of duplicated genes. To discover

the reason such a large amount of potentially redundant genetic material is retained

in such a wide variety of organisms, we must integrate the diverse functional data we

have for duplicated genes, as well as construct computational models of the processes by

which they are created or destroyed. Yeast is well equipped to answer many questions

about duplications and functional specialization through experiment, thanks in part to

its interesting evolutionary history. However, it is the creation of evolutionarily relevant

computational models, and their ability to make testable predictions in a wide range of

organisms, which will ultimately lead to a better understanding of these processes.

1.6 Dissertation focus and organization

The central challenge in modern computational biology lies in the integration and inter-

pretation of the vast amount of data now available. Computer scientists are responding

to these challenges, and in the process, shifting the focus of study from particular genes

to networks and network structures, and eventually, to the whole organism. This disser-

tation concerns three central issues, which are not mutually exclusive, and have arisen

as a natural consequence of the new era of functional genomics and systems biology.

These three issues can be characterized as the problems of scale, signal, and systems,

and the focus of my work has been to address these issues in the specific domain of

mutant growth-rate analysis in yeast.

The scale problem refers to the amount of data from which we must extract spe-

cific biological information. The number of data points in even rudimentary studies is

expanding with the advance of experimental technology, and shows no sign of slowing.

To accommodate this trend, we need efficient methods to process and summarize large

amounts of data. We need to formulate hypotheses about how entire distributions might

behave and test them accordingly. We also need to understand that these distributions

seldom conform to well understood theoretical models, so we must employ empirical and
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non-parametric methods to limit our assumptions. Growing along with the number of

data points in any given study is their dimensionality. Frequently, we must make sense

of thousands of different measurements for each of thousands of genes. Here we must

develop special methods to visualize the data, before we even begin to test hypotheses.

Dimensionality reduction is often the first step, but care needs to be taken to prevent

the loss of useful information. Furthermore, we have to distinguish which dimensions

carry useful information and discover their relationships to one another, which we can

do by applying techniques from the field of machine learning.

The signal problem is the price we pay for the scale of modern experimental tech-

nology. As a general rule, individual observations made in high throughput are not

as reliable as those made in comparatively smaller experiments, and we must adjust

our thinking accordingly. Much of the increased noise characteristic of genome-scale

assays comes in the form of systematic effects which can introduce spurious structures

in complex data. We can address these effects in our analyses by using computational

techniques which target known or unknown non-biological effects for removal. We can

also apply computational methods much earlier in the experimental design phase to

mitigate these effects. Often, reduced signal is only a minor problem because large

experiments can be exploratory in nature, narrowing the search space for a particu-

lar phenomenon. For example, high throughput experiments followed by small-scale

confirmation to eliminate false-positives, can be a cost effective strategy to search for

drug-target or protein-protein interactions, which are rare among millions possibilities.

Some of the same methods we employ to deal with the scale of the data (for exam-

ple, reducing high-dimensional profile pairs to similarity scores) also help us overcome

increased noise by lessening the reliance on any single observation. And, just as the

pooling observations in a single data set can increase functional signal, so too can inte-

grating data from many diverse experiments.

The third issue is that of systems. This refers to the opportunity we have, as a re-

sult of scale, to treat biology more holistically. We can now begin to assemble all of the

information collected with single-gene reductionism in mind, and compile it together

to build complex models involving many genes at once. For example, genome-wide

data may be used to infer the organization of an entire cellular subsystem, such as the

metabolic or regulatory network. Alternatively, it may be used to study how a common
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process affects genes in aggregate, such as mechanisms of evolution and functional di-

vergence. Or it may be used to inform notions of higher level organization, such as the

distribution of pathway lengths or branching factors, or the hierarchical organization

of modular subsystems. Each of these ends requires observations be made at scale and

each are reasonably tolerable to lower levels of signal. Taken together, these three in-

terrelated issues form the core set of challenges to modern biological investigation, and

provide the most interesting applications to today’s computational biologists, functional

genomicists, and/or bioinformaticists.

1.7 Remaining chapters

This dissertation’s remaining chapters each touch on issues raised in this section. Here

I present a brief outline of the remaining chapters and discuss how each of them relates

to particular issues regarding the study of mutant growth rates in S. cerevisiae.

Chapter 2 covers the study of single-mutant growth rates on a wide variety of media.

The scale of the study encompassed the entire non-essential genome and 28 different,

metabolically relevant environments. This was the first study of its kind conducted on

prototrophic mutants and uncovered many novel condition-specific sensitivities. Many

mutants showed novel effects in more than one environment, an indication of pleiotropy.

These novel sensitivities will help shorten the list of uncharacterized genes in the model

eukaryote, and therefore aid in cross-species research in matters of basic metabolic

function. Further, the scale of the project enabled us to answer questions concerning

the absolute number of genes with a such specific metabolic growth signatures. These

included genes with no direct involvement in metabolism such as transporters or tran-

scription factors. The relationship of the environments to one another, as well as the

number of mutants tested, allowed us to ascertain that carbon sources have a much

greater impact on the internal state of the yeast cells than do nitrogen sources. The

signal problem was addressed heavily in the preliminary data processing procedures, by

the application of methods that were robust to noise. The amount of available data al-

lowed us to measure false discovery characteristics, and disentangle robust carbon- and

nitrogen-based effects. I also demonstrate the use of high dimensional profile similarity

and guilt-by-association to predict gene function in spite of experimental noise. I also
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was able to leverage existing models of the complete metabolic system and simulate the

effects of systematic perturbations. Comparisons between these simulations and our

observations identified those environmental conditions which were not yet well suited

to simulation. Finally, I integrated the prototrophic growth data with the genetic in-

teraction network, finding correspondence between the number of sensitivities in our

study and node degree in the network. An integrated similarity score further allowed

us to search for correspondences between environmental and genetic perturbation, and

I speculated as to the biological underpinnings of such a correspondence.

Chapter 3 explores large-scale genetic interactions derived from double-mutant fit-

ness experiments. I give an overview of genetic interactions and use them as a tool

to compare and contrast the placement of essential and non-essential genes in yeast’s

genetic architecture. Here again, use of high-dimensional profiles as predictors of knock-

out consequence proves useful in determining gene function, and considerable attention

is paid to demonstrating the usefulness of genetic interactions despite the absence of

mechanistic information and increased noise. Computational analysis of genetic inter-

actions in related species has shown that properties associated with genetic interactions

can be conserved even when specific individual interactions are not [79]. I also explore

the genetic interaction network as a whole, demonstrating systematic properties which

might reasonably be expected to be conserved, such as its modular structure. The ten-

dency of genes to cooperate in physical modules has been demonstrated experimentally

by the characterization of protein complexes [65], we and others have used computa-

tional techniques to reveal a more logical modular structure, such as that found in gene

expression patterns [46, 47], or in genetic interaction networks [66]. I also examine the

organization of these modular structures in relation to one another. For example, much

previous work has uncovered hierarchical structure in the transcription factor network,

where the expression of specific groups of genes are controlled by transcription factors,

who are themselves controlled by transcription factors from a higher level [80, 81]. I

show that genetic interactions also have a hierarchical organizational structure, and

that this structure is useful for characterizing different relationships between cellular

processes. These hierarchical relationships are also helpful for distinguishing different

classes of genetic interactions, and will prove useful in their interpretation in yeast and

their mapping in other species.
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Chapter 4 again examines double-mutant genetic interactions, but focuses on the

specific case of duplicated genes. Many pairs of duplicated genes retain some measure

of functional overlap, and this property causes specific aberrations in the genetic inter-

action network. The genetic interaction network is particularly well suited to the study

of functional robustness and the interplay between gene duplication and genetic interac-

tion network structure can give us valuable insights into the mechanisms of evolutionary

divergence. In particular, I set out to explain an apparent contradiction whereby du-

plicate genes show reduced genetic interaction profile similarity, despite their obvious

signs of redundant function. I exploit the large number of duplicate pairs and their

comprehensive genetic interaction profiles to explore the nature and extent of this func-

tional redundancy, and I integrate diverse functional data to define classes of duplicate

pairs that I found to have different network properties. I also demonstrate the asym-

metric nature of duplicate evolution and use a computational model to establish which

biological assumptions are necessary to explain the observed asymmetry.

Chapter 5 follows predictions made in Chapter 4 to their logical conclusion with

another study of redundancy and divergence in duplicate gene evolution. Here I explore

triple-mutant genetic interactions, or trigenic interactions, which relate the retained

common function of duplicate pairs not apparent in the pairwise genetic interaction

network. I introduce a novel model for scoring trigenic interactions and show how

extra care must be taken in the design stages of trigenic experiments as the previously

acceptable level of experimental noise compounds itself. I also demonstrate several

different sub-classes of trigenic interactions, as well as the variation in the number of

trigenic interactions relative to digenic interactions. By integration of diverse genomic

data I discover physiological indicators of retained functional redundancy, and use these

indicators to inform an updated model of the process of gene duplication and divergence.

This model, which can make predictions about gene loss, functional asymmetry, and

retained common functionality, can generalized to the gene duplication in any organism.

Chapter 6 concludes the dissertation with reflection and suggested directions for

future work.



Chapter 2

Broad metabolic sensitivity

profiling of the yeast deletion

collection

2.1 Chapter Overview

This chapter covers an in-depth analysis of single-mutant data gathered for a pro-

totrophic derivative of the entire deletion collection. Genome-wide sensitivity screens in

yeast have been immensely popular following the construction of a collection of deletion

mutants of non-essential genes. The complete collection was grown in environments

consisting of one of four possible carbon sources paired with one of seven nitrogen

sources, for a total of 28 different well-defined metabolic environments. The relative

contributions to mutants’ fitness of each carbon and nitrogen source were determined

using multivariate statistical methods. The mutant profiling recovered known and novel

genes specific to the processing of nutrients and accurately predicted functional rela-

tionships, especially for metabolic functions. A benchmark of genome-scale metabolic

network modeling is also given to demonstrate the present level of agreement between

current in silico predictions and hitherto unavailable experimental data. These data

address a fundamental deficiency in our understanding of the model eukaryote Saccha-

romyces cerevisiae and its response to the most basic of environments. I demonstrate

19
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utility in characterizing genes of unknown function and illustrate how these data can be

integrated with other whole-genome screens to interpret similarities between seemingly

diverse perturbation types.

This chapter has been adapted from a previously published study entitled “Broad

metabolic sensitivity profiling of a prototrophic yeast deletion collection” [82], on which

I was a co-first author. The article version was published in 2014 in Genome Biology.

The statistical analysis in the paper was carried out by me. Specifically, I performed

the analysis of wild-type growth rates, the assessment of functional predictive power,

overlap with previous experiments and all analysis regarding data collected for validation

experiments. Additionally, I performed all cluster analysis, the multi-variate profile

decomposition, and conceived and interpreted the data from the flux balance analysis.

I also made all the figures and was principally responsible for the text of the paper.

The study was originally conceived by David Hess, Olga G Troyanskaya, my advisor

Chad L Myers, and Amy A Caudy. Drs. Caudy and Hess are experimental biologists

specializing in yeast metabolism and performed the experiments, they also helped write

the paper with special attention to any section requiring their metabolic expertise.

Corey Nislow provided us with access to lab equipment. Balázs Szappanos and Balázs

Papp are experts in flux balance analysis and provided crucial insight and guidance

over the course of the project and in the writing of the paper. Colin Pesyna and Tahin

Syed worked on the scoring pipeline which converted raw plate images into informative

growth scores. Elias W Krumholz generated flux balance analysis data and helped to

quantify the agreement between contraint-based model predictions and our experimental

observations.

2.2 Introduction

Large-scale gene deletion screens have become common in Saccharomyces cerevisiae due

to efforts in the yeast community to assemble a near complete collection of non-essential

single-mutant strains [3]. The subsequent refinement of mating-based high-throughput

strain construction techniques such as Synthetic Genetic Array (SGA) analysis [83] has

further driven the creation of customized yeast deletion arrays. While quantitative

single-mutant fitness assays have been performed [50], they are generally limited to
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a single growth medium. A few notable exceptions have begun to explore this space

[84, 57, 56, 58], but the conditions of interest are often chosen with human therapeutic

ends in mind and are limited to known drugs or small molecules of unknown biological

effect. A decade and a half after the sequencing of the best-studied eukaryote, a system-

atic exploration of mutant growth across basic nutrient environments is conspicuously

absent. These data would be valuable for metabolic researchers and computational biol-

ogists that attempt to model the metabolic network of the cell using methodologies such

as flux balance analysis (FBA) [85] because the defined growth conditions are amenable

to modeling.

Yeast strain collections used in previous high-throughput assays (that is, the dele-

tion collection) are auxotrophic [3], and therefore unable to survive in minimal media

unless provided additional nutrients. This requirement reflects the historical use of

auxotrophic markers for genetic selection. The resulting requirement for nutrient sup-

plementation precludes systematic testing of the yeast deletion collection on specific

combinations of carbon and nitrogen sources because the auxotrophic nutrient supple-

ments can also be used as carbon and nitrogen sources. Previous work has shown not

only that nutrient supplementation can have different physiological consequences from

genetic complementation [86] but also that auxotrophies can alter the expression of

many other genes [87].

To address this deficiency in genome-scale data on growth in other, defined media,

we constructed a prototrophic version of the yeast deletion collection and then screened

this collection of 4,772 mutants against 28 defined minimal media conditions. These

28 conditions were formed by using all pairwise combinations of four carbon sources

and seven nitrogen sources (Table 2.1, Fig. 2.1). These screens of the prototrophic

collection revealed numerous interactions between carbon and nitrogen sources with

respect to wild-type growth rate, underscoring the need to perform growth experiments

in a combinatorial fashion. Mutant data revealed condition-specific sensitivities across

all conditions, including many effects for uncharacterized genes and mutants that are

healthy under standard laboratory conditions. We show that the data have power to

predict functional relationships between genes and are otherwise validated via a separate

liquid assay as well as through comparison with previous studies involving galactose.

We also present a method for distinguishing carbon and nitrogen effects from their
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combined profiles and additionally provide a benchmark of current constraint-based

modeling techniques and their ability to predict our experimental data.

2.3 Results and Discussion

2.3.1 Prototrophic deletion set construction and profiling

Briefly, a MATα strain carrying the SGA marker [88, 89] was crossed to the MATa

yeast deletion set [3], selected for diploids, and sporulated. Prototrophic haploids were

selected using the SGA approach [88]. The final genotype of these 4,772 strains is

MATa yfg∆0::KanMX can1∆::STE2pr-SpHIS5 his3∆1 lyp1∆0. These strains were

then pinned out onto plates containing one of four different carbon sources along with

one of seven nitrogen sources. All 28 carbon:nitrogen combinations were included to

produce a broad set of well-defined metabolic conditions. The plates were imaged in

time course in order to estimate growth rates from measurements of colony size (Fig.

2.1; see Appendix A.1 for details).

2.3.2 Yeast wild-type growth suggests carbon/nitrogen interactions

The mean growth rate of all wild-type replicates was calculated in each condition, which

revealed extensive variation across the profiled conditions (Fig. 2.2; see Appendix A.2).

As expected, wild-type yeast grow substantially faster on glucose or galactose than on

glycerol or ribose. Similarly, urea is a consistently poor nitrogen source with glutamine

Fast / Slow Ammonium Proline Glutamate Glutamine Arginine Urea Allantoin

Glucose 41.5 / 41* 186 / 417 133 / 354 169 / 286 173 / 920 135 / 219 95 / 284

Galactose 132 / 461 276 / 658 400 / 906 270 / 877 452 / 530 154 / 216 124 / 545

Ribose 312 / 345 981 / 462 306 / 412 291 / 192 437 / 46 388 / 345 379 / 492

Glycerol NA NA NA NA NA NA NA

Table 2.1: Each condition is comprised of one carbon and one nitrogen source. For
each combination the number of mutants which had a significant z-scores (FDR 20%)
are reported here. Faster than expected growth (positive z-score) and slower than
expected growth (negative z-score) are reported separately (left and right respectively).
*Glucose:Ammonium numbers represent the mean count over six replicates. Growth
on glycerol was too noisy to confidently determine z-scores and so sensitivity counts are
not presented.
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Figure 2.1: Experimental overview.
A custom prototrophic strain is
mated to the entire deletion collec-
tion and haploids are selected via
SGA. The resulting prototrophic
deletion collection is plated out
onto 28 distinct metabolic media,
and time course growth rate data
are extracted from plate images.
Growth rates are normalized to
a glucose:ammonia reference (con-
structed from six replicates) and z-
scores are calculated for each dele-
tion, in each condition (except glyc-
erol). WT, wild-type
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and ammonium generally preferred. To systematically examine the interactions between

carbon and nitrogen sources over our entire dataset, a linear model was fit to the log-

arithm of wild-type growth rates under the assumption that independent contributions

to growth rate would combine multiplicatively (a multiplicative model fit better than

simple alternatives such as an additive formulation). Indeed, the model suggests that

pairs of nitrogen and carbon sources commonly interact to produce a wild-type growth

rate phenotype that is different from what might be predicted assuming independent

contributions, evidenced by the fact that the majority of the interaction terms in the

linear model were significant (Fig. 2.3). For example, consider the apparent increase

in growth rate observed under ribose:glutamate when compared to glucose:glutamate

(Fig. 2.2), observable as a positive interaction between ribose and glutamate (Fig. 2.3).

When paired with glucose, glutamate is the nitrogen source that yields the fourth fastest

growth rate. However, when paired with a much poorer carbon source (for example,

ribose or glycerol) glutamate becomes the nitrogen source that yields the fastest growth

rate. This interaction is likely caused by the ability of the cell to utilize glutamate not

only as a source of nitrogen, but as a secondary carbon source in the presence of a poor

primary carbon source. When glutamate is de-aminated for use as a nitrogen source,

alpha-ketoglutarate is produced and can be subsequently utilized for energy production

via the tricarboxylic acid cycle. This dual role is not specific to glutamate. For example,

glutamine is utilized in a similar manner, though the ratio of “free” carbon skeletons

per nitrogen produced is less efficient (1:2 as opposed to 1:1). Despite the fact that

many of the nitrogen sources share this property, we hereafter continue to refer to them

simply as “nitrogen sources” for simplicity. Our results show that the wild-type growth

rate can be predicted from independent contributions of carbon and nitrogen sources in

only 3 of our 28 conditions (Fig. 2.3). Significant interaction terms in all but three con-

ditions signify the complex interdependencies throughout the metabolic network, thus

underscoring the importance of testing each pair of sources systematically.
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error.
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2.3.3 Fitness determination of deletion mutants over the media con-

ditions

In an effort to identify mutant growth defects specific to particular conditions, we de-

rived a model designed to score growth rate for each deletion strain in a given con-

dition relative to its growth under a reference condition (glucose:ammonium). First,

the growth rate data were normalized from each experimental condition with respect

to the glucose:ammonium reference (see Appendix A.4). This controlled for the growth

rate differences observable in wild-type cells across the different conditions (Fig. 2.2)

and enabled us to focus on more subtle effects due only to the genetic perturbation. A

modified z-score was then calculated for each mutant strain (see Appendix A.9). This

measure is negative if the strain grew slower in the test condition than would be ex-

pected due to the nutrient environment alone, and positive if the strain grew faster than

expected. The distribution of growth rates in the 701 wild-type replicates was used to

assess the statistical significance of mutant effects in each condition and estimate a false

discovery rate (FDR) for any gene-environment interactions (see Appendix A.7). Table

2.1 shows the number of deletions that grew slower or faster than expected at an FDR

threshold of 20%, and thresholds can be found in Table A.1. While the large number

of wild-type replicates allowed for confidence in the small differences in reference strain

growth between various nitrogen sources when paired with glycerol, the mutant data

on glycerol proved to be too noisy due to extremely slow growth to call mutant effects.

Therefore, no growth rate (z-score) data are presented for mutant strains on glycerol.

2.3.4 Observations in galactose concur with previous auxotrophic stud-

ies

To build additional confidence in our high-throughput dataset, we compared lists of

mutants deficient for growth under galactose to data from several previous studies which

had tested the auxotrophic deletion collection in a variety of experimental conditions.

Giaever et al. [3]; Kuepfer et al. [90]; and Dudley et al. [58] each included a condition

in which galactose is the major source of carbon, and the overlap between the deletions

that we call as effects in our galactose conditions and sensitivities collected from these
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three experiments is highly significant (Fig. 2.4; Table 2.2). We define a galactose-

sensitive gene for this purpose as having a significant fitness defect in at least four

of our seven galactose conditions and we obtain a list of 565 such genes (using FDR

20%; Table A.1). This list covers approximately 50% of the sensitive genes identified in

each of the three previous auxotrophic screens (Giaever n=23, p < 1 × 10−11; Kuepfer

n=120, p < 2 × 10−16; Dudley n=16, p < 1 × 10−6; hypergeometric; Fig. 2.4; Table

2.2). Additionally, we discover 385 mutants sensitive under galactose not revealed in

any of these previous studies. For comparison, the overlap between two of the previous

genome-wide studies (Giaever et al. and Kuepfer et al.) was only 15 genes, 12 of which

are recovered in this study (Fig. 2.4). We suggest two primary reasons for the increased

number of galactose sensitive mutants discovered in our study. The first is that 47%

of these new galactose sensitive genes did not have a phenotype when the standard

laboratory nitrogen source (ammonium) was used. Thus, the testing of a wide-range of

nitrogen sources revealed additional galactose sensitive mutants. The second reason is

that previous studies used more stringent thresholds for galactose phenotypes. Smaller

quantitative measurements of fitness defects across multiple galactose:nitrogen source

combinations allow for increased sensitivity in detecting galactose phenotypes compared

with other studies.

Another possible explanation for differences between our galactose results and those

from the Dudley study is the absence of antimycin A in our media. Antimycin A inhibits

energy production from respiratory pathways and forces the strains to ferment galactose.

In our experiments, yeast had access to oxygen and could perform both respiration

and fermentation with galactose as carbon source, which is the natural metabolism of

galactose by S. cerevisiae [91].

2.3.5 Liquid validation of mutant fitness measurements

We independently validated our single-mutant fitness measurements by measuring the

growth rate of 40 mutants in a liquid growth assay performed across 20 of the exper-

imental conditions (excluding ribose:arginine and all glycerol pairings, see Appendix

A.10). The overall correlation between wild-type strain growth rates from these two

different approaches was 0.65 (p < 0.003; Pearson), suggesting general agreement be-

tween growth rates determined on solid and liquid media. We then adjusted the liquid
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Figure 2.4: Overlap between mutants sensitive on galactose from several different
studies. For this study, galactose sensitivity is defined as a significant z-score in four
or more of our seven galactose conditions. In each case, N denotes the total number of
genes the studies have in common. Venn diagram image is used with permission under
the terms of the Creative Commons Attribution-Share Alike 3.0 Unported license [92].

Study genes gal hits common genes common hits n1 n2 p-value

Giaever 2002 4743 42 4554 23 544 41 9.73× 10−12

Kuepfer 2005 4856 311 4585 135 552 255 < 1.11× 10−16

Dudley 2005 4992 41 4463 16 530 36 9.39× 10−7

Table 2.2: Overlap with previous whole-genome galactose sinsitivity screens. Compari-
son with three previous studies is shown, where hits in our study are comprised of genes
sensitive in at least 4 out of 7 galactose conditions. “genes” denotes the total number
of genes in the relevent external study, “n1” denotes the number of our “hits” which
were tested in the external study, and “n2” denotes the reverse. These values are used
to compute significance of the overlap according to the hypergeometric cummulative
distribution (p-value column).
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growth scores, controlling for the wild-type rate in the given condition and the rele-

vant mutant rate in glucose:ammonium so they would reflect condition-specific effects,

similar to our modified z-score derived from the agar experiment. The Spearman rank

correlation between the adjusted liquid growth score and our agar z-score (for 40 mu-

tant strains × 19 conditions) was 0.34 (p < 2.2 × 10−16). Further excluding glucose

conditions (which are generally sparser in the z-score data as a consequence of our use

of glucose:ammonium as a reference) increases this correlation to 0.38. Thus, we con-

clude that there is reasonable agreement between the high-throughput measures and a

lower-throughput liquid growth assay, including for condition-specific effects.

2.3.6 Number of environmental sensitivities is correlated with single-

mutant fitness and genetic interaction degree

We compared our growth measurements with other quantitative phenotypes measured

on the auxotrophic deletion collection. For example, genetic interaction mapping efforts

have measured the single-mutant fitness of all deletion strains from the auxotrophic

background on minimal complete media [50, 66] and found a correlation between the

magnitude of the fitness defect and the number of genetic interactions for each single

mutant (genetic interaction degree). The prevailing explanation for this correlation

is that genes that display a fitness defect represent the subset that are playing an

active role under the condition tested, are additionally not completely buffered by other

genes, and/or contribute to a wider variety of cellular processes. We observe a similar

correlation between the single-mutant fitness defect (as previously measured on minimal

complete media [50]) and the number of significant condition-specific sensitivities in our

study (r = 0.33, p < 5 × 10−100; Pearson). Additionally, there is a partial correlation

between the number of genetic interactions a gene has and the number of environments

with which it interacts, even after controlling for single-mutant fitness defect (r =

0.18, p < 5 × 10−31; Pearson). This echoes a previously observed correlation between

genetic interaction degree and sensitivities in more complex chemical environments (r =

0.4, p < 1 × 10−5) [56, 66]. These results confirm that our study is uncovering more

effects for genes known to be pleiotropic or central under a variety of environmental

backgrounds [58]. These findings also suggest that hubs are conserved across different

network types, with many of the same genes conferring robustness to genetic, chemical,
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and environmental perturbations.

2.3.7 Mutant sensitivity profiles are predictive of gene function

Previous genetic interaction studies have shown that high profile similarity for mu-

tant sensitivity across varied environmental conditions or diverse genetic backgrounds

(for example, genetic interaction profiles) is highly predictive of similar gene function

[58, 66, 57]. We applied an analogous logic to our data to see if similar environmental

sensitivity profiles would also be predictive of similar function. Using co-annotation to

an informative set of Gene Ontology (GO) terms [93, 94] as our standard for functional

similarity, we ranked all pairs of genes by their profile similarity (Pearson) and evaluated

these rankings with respect to known functional relationships. We measured a precision

of approximately 35% at a recall of 1,000 gene pairs (2-fold over a random baseline of

17%; Fig. 2.5). Additionally, when we restrict our predictions to those genes with a

known involvement in metabolism (663) we see a much higher precision (precision ∼
65% at recall = 100), though a similar performance over the increased background rate

(1.7-fold over 38%). The higher performance for metabolism related predictions is likely

due to the direct relevance of the environmental conditions chosen to the study of basic

metabolism. Thus, we have demonstrated an ability to predict general gene function

using the guilt-by-association principle, and the diverse yet minimal environments cho-

sen for this assay are well-suited to reveal sensitivities in the metabolic network of this

newly created prototrophic collection.

2.3.8 Metabolic network models show modest ability to predict ex-

perimental data

The prototroph growth data on minimal media presented here are uniquely suited to

bring experimental data to bear on theoretical predictions of constraint-based analysis

of metabolic networks. Constraint-based modeling is a widely used approach to study

the metabolic capacity of genome-scale biochemical networks in steady state without

requiring detailed enzyme kinetic parameters [85]. FBA is the most popular constraint-

based approach to computationally predict the phenotypes under environmental and

genetic perturbations and has been shown to successfully predict gene essentiality, and
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Figure 2.5: Precision-Recall analysis assessing the ability of gene-gene similarity to
predict co-annotation to an informative term in the Gene Ontology. Results for all gene
pairs are shown in blue, and results for a subset of metabolism related genes (included
in iMM904 model) is shown in red.

to a lesser extent, condition-specific essential status in yeast [90, 95]. We used our sensi-

tivity data to evaluate the ability of constraint-based models to predict subtler quanti-

tative sensitivities in a condition-specific manner. We predicted biomass yield, a proxy

for growth, in all conditions using two versions of the yeast metabolic network recon-

struction: the more recent Sourceforge Yeast Consensus Reconstruction v5.35 (hereafter

Yeast5) [96], and iMM904 [97]. Additionally, we applied two alternative algorithms to

predict mutant phenotypes, namely standard FBA [98] and minimization of metabolic

adjustment (MoMA) [99]. Predicted biomass production fluxes were normalized with

respect to every mutant’s predicted biomass production in glucose:ammonium and the

wild-type prediction in each condition to make scores analogous to our experimental

z-scores. The prediction of z-scores as opposed to raw growth rates was chosen to assess

the adaptability of each model’s performance in the face of varied environments, an ad-

mittedly more difficult scenario than predicting global or condition-specific essentiality.

Though the output of the models is quantitative, many conditions predict only a few

discrete levels of resulting biomass production and therefore yield identical predictions

for the majority of mutants. The mode of the output accounted for between 39% and

95% of the predictions, so we assessed model performance by comparing the predicted

set of slow mutants (below the mode biomass production) to our set of significant z-

scores in each condition. Three metrics were collected to assess the performance of
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each model-method combination: average precision (across all 20 predicted conditions),

average recall, and the number of conditions in which precision exceeded random ex-

pectation (at p < 0.05 hypergeometric; Fig. 2.6; Tables 2.3–2.4). Results for positive

z-score prediction (above the mode biomass) are also available in Tables 2.5–2.6 (see

Appendix A.12).

Prediction of condition-specific slow growth proved consistently above random ex-

pectation (Fig. 2.6), though values of precision are much lower than those previously

reported in predicting qualitative essentiality (>90% [95]). One key difference between

our study and Snitkin et al. [95] (as with Dudley et al. [58] in the section on galactose

sensitivity above) is the latter’s inclusion of antimycin A in the media, which inhibits

energy production from respiration, whereas our strains could naturally respire and fer-

ment. Our results show an advantage for the more recent Yeast5 model over the iMM904

model, as well as a slight advantage for standard FBA over MoMA. The Yeast5 model

was able to perform above random expectation in 14 out of 20 conditions with a mean

precision of 25% and a mean recall of 18% (Fig. 2.6; Table 2.4). Recall scores for MoMA

were generally higher than for FBA owing to a much smaller fraction of the predictions

equal to the mode, though this was generally associated with a loss of precision. Galac-

tose conditions appear to be well captured by the two models, and consistently perform

above random. By contrast, all three conditions for which no model-method achieved

significance involved glucose (glucose:allantoin, glucose:glutamine, glucose:urea). Thus,

while the overall performance demonstrates an above-random ability of these models to

predict quantitative and condition-specific perturbation effects, their modest precision

and recall scores (< 50%) suggest substantial room for improvement.

An examination of false positives (predicted sensitive by the model but not observed

in the data) and false negatives (observed sensitive, not predicted) showed some func-

tional coherency. Specifically, Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment of false positives in many conditions revealed connections to central car-

bon metabolism (for example, the tricarboxylic acid cycle), and half of the conditions

showed enrichment for the KEGG sulfur metabolism pathway in the model for false pos-

itives. This suggests potential pathways that may need attention for the development

of improved models.
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Figure 2.6:
(a) Assessment of constraint-based modeling predictions for slow growth. Precision
and recall (blue and green) were calculated for each model in each of 20 conditions
with glycerol:* and glucose:ammonium excluded—means are shown here. The fraction
of conditions in which predicted model mutants overlap significantly with significant
z-score effects is shown in purple. (See Tables 2.3, 2.4)
(b) Precision and recall scores as in (a) for each individual condition using the Source-
forge version 5.35 and standard FBA. (See Table 2.4)

We also attempted to leverage existing metabolic models to demonstrate the wide-

spread metabolic consequences of these common auxotrophies. To accomplish this,

we ran the models again using prototrophic and auxotrophic versions of the network

on glucose:ammonium and characterized each metabolite as either: i) produced in the

auxotroph and the prototroph; ii) produced in the prototroph only; or iii) included in

the model but not produced in an optimal solution (see Appendix A.12). The simu-

lations show that a significant proportion of producible metabolites (18% in iMM904

and 7% in Yeast5; Fig. 2.7) are unavailable in the auxotrophic network. This means

that consequences of using auxotrophic strains, even under supplementation for their

specific deficiencies, may have a broader impact than expected. It is our hope that the

collection and accompanying growth data presented here will prove invaluable to the

metabolic modeling community as it continues to refine the structure of its models as

well as their underlying biological assumptions.
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condition/model imm904FBA-P imm904FBA-R imm904MOMA-P imm904MOMA-R

glucose allantoin 0.073 0.059 0.093 0.49

glucose arginine 0.25 0.119 0.207 0.5

glucose glutamate 0.154 0.039 0.104 0.647

glucose glutamine 0.061 0.079 0.076 0.5

glucose proline 0.118 0.029 0.15 0.75

glucose urea 0.053 0.065 0.056 0.548

galactose ammonium 0.333 0.057 0.13 0.149

galactose allantoin 0.318 0.135 0.185 0.538

galactose arginine 0.295 0.217 0.114 0.422

galactose glutamate 0.438 0.048 0.29 0.32

galactose glutamine 0.554 0.221 0.23 0.436

galactose proline 0.333 0.068 0.189 0.602

galactose urea 0.205 0.191 0.073 0.468

ribose ammonium 0.154 0.051 0.094 0.114

ribose allantoin 0.293 0.109 0.177 0.482

ribose arginine 0.016 0.1 0.026 0.8

ribose glutamate 0.143 0.023 0.164 0.591

ribose glutamine 0.179 0.222 0.074 0.467

ribose proline 0.294 0.054 0.168 0.591

ribose urea 0.171 0.106 0.097 0.439

mean 0.22175 0.0996 0.13485 0.4927

Table 2.3: Performance of iMM904 when predicting slow-growth mutants. In each
condition the table gives the precision (P) and recall (R) for in silico mutant preditions
with below-the-mode flux using significant experimental z-scores as the standard for
true positives. Precision scores for prediction scenarios which performed better than
random expectation (hyper-geometric p < 0.05) are highlighted in bold.
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condition/model yeast535FBA-P yeast535FBA-R yeast535MOMA-P yeast535MOMA-R

glucose allantoin 0.114 0.163 0.108 0.143

glucose arginine 0.343 0.178 0.278 0.078

glucose glutamate 0.148 0.18 0.138 0.18

glucose glutamine 0.094 0.128 0.075 0.103

glucose proline 0.262 0.239 0.221 0.254

glucose urea 0.077 0.061 0.058 0.182

galactose ammonium 0.154 0.046 0.214 0.172

galactose allantoin 0.364 0.269 0.26 0.183

galactose arginine 0.217 0.183 0.22 0.11

galactose glutamate 0.554 0.212 0.472 0.233

galactose glutamine 0.429 0.171 0.317 0.143

galactose proline 0.397 0.245 0.302 0.284

galactose urea 0.105 0.087 0.095 0.609

ribose ammonium 0.227 0.197 0.149 0.632

ribose allantoin 0.406 0.255 0.3 0.191

ribose arginine 0.015 0.1 0.071 0.3

ribose glutamate 0.302 0.221 0.19 0.128

ribose glutamine 0.167 0.217 0.088 0.109

ribose proline 0.339 0.22 0.21 0.516

ribose urea 0.311 0.215 0.074 0.092

mean 0.25125 0.17935 0.192 0.2321

Table 2.4: Performance of Sourceforge 5.35 when predicting slow-growth mutants. In
each condition the table gives the precision (P) and recall (R) for in silico mutant pred-
itions with below-the-mode flux using significant experimental z-scores as the standard
for true positives. Precision scores for prediction scenarios which performed better than
random expectation (hyper-geometric p < 0.05) are highlighted in bold.
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condition/model imm904FBA-P imm904FBA-R imm904MOMA-P imm904MOMA-R

glucose allantoin 0 0 0.019 0.118

glucose arginine 0.333 0.069 0.055 0.138

glucose glutamate 0 0 0.02 0.059

glucose glutamine 0 0 0.016 0.091

glucose proline 0 0 0 0

glucose urea 0 0 0.028 0.105

galactose ammonium 0.167 0.034 0.059 0.138

galactose allantoin 0 0 0.027 0.111

galactose arginine 0.125 0.018 0.087 0.109

galactose glutamate 0 0 0.103 0.355

galactose glutamine 0 0 0.054 0.182

galactose proline 0 0 0.083 0.098

galactose urea 0 0 0.039 0.167

ribose ammonium 0 0 0.02 0.069

ribose allantoin 0.125 0.02 0.104 0.157

ribose arginine 0.333 0.027 0.068 0.068

ribose glutamate 0.118 0.047 0.091 0.116

ribose glutamine 0.333 0.03 0.042 0.121

ribose proline 0.25 0.035 0.143 0.049

ribose urea 0 0 0.064 0.086

mean 0.0892 0.014 0.0561 0.11685

Table 2.5: Performance of iMM904 when predicting fast-growth mutants. In each con-
dition the table gives the precision (P) and recall (R) for in silico mutant preditions
with above-the-mode flux using significant experimental z-scores as the standard for
true positives. Precision scores for prediction scenarios which performed better than
random expectation (hyper-geometric p < 0.05) are highlighted in bold.
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condition/model yeast535FBA-P yeast535FBA-R yeast535MOMA-P yeast535MOMA-R

glucose allantoin 0.087 0.118 0.028 0.529

glucose arginine 0.136 0.107 0.042 0.536

glucose glutamate 0.042 0.053 0.025 0.421

glucose glutamine 0.094 0.125 0.041 0.583

glucose proline 0.04 0.04 0.032 0.4

glucose urea 0.018 0.05 0.031 0.45

galactose ammonium 0.125 0.033 0.068 0.167

galactose allantoin 0.105 0.133 0.028 0.6

galactose arginine 0.13 0.055 0.091 0.582

galactose glutamate 0.25 0.136 0.088 0.475

galactose glutamine 0.156 0.143 0.064 0.6

galactose proline 0.148 0.095 0.071 0.5

galactose urea 0.021 0.062 0.031 0.188

ribose ammonium 0.067 0.032 0.116 0.258

ribose allantoin 0.125 0.061 0.069 0.449

ribose arginine 0.13 0.041 0.12 0.575

ribose glutamate 0.125 0.068 0.066 0.5

ribose glutamine 0.115 0.091 0.042 0.424

ribose proline 0.321 0.064 0.198 0.234

ribose urea 0.053 0.038 0.081 0.472

mean 0.1144 0.07725 0.0666 0.44715

Table 2.6: Performance of Sourceforge 5.35 when predicting fast-growth mutants. In
each condition the table gives the precision (P) and recall (R) for in silico mutant pred-
itions with above-the-mode flux using significant experimental z-scores as the standard
for true positives. Precision scores for prediction scenarios which performed better than
random expectation (hyper-geometric p < 0.05) are highlighted in bold.
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iMM904
864 producible
metabolites

82%
712

18%
152

93%
845

7%
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Yeast 5
907 producible
metabolites

produced in auxotroph or prototroph
produced in prototroph model only

Figure 2.7:
Number of producible metabolites for iMM905 and Yeast5 metabolic models. For each
model the total number of producible metabolites was counted based on simulation in
glucose:ammonium (see Appendix A.12). The procedure was repeated for a model in
which reactions involving auxotrophic marker genes (HIS3, URA3, LEU2, and MET15 )
were disabled. The chart shows the proportion of metabolites that the auxotrophic
model fails to produce in red.

2.3.9 Broad environmental surveys address incomplete gene annota-

tions

A primary motivation for measuring fitness across diverse environments is the discovery

of novel phenotypes for mutants that have near wild-type fitness under previously tested

conditions. The existence of such mutants in a eukaryotic genome with approximately

6,000 genes is driven by two main factors. The first is genetic redundancy, whereby

genes are performing vital functions within the cell, but their importance is not cap-

tured by single-mutant fitness because other genes are present that buffer the loss of

function. This occurs at both the level of individual genes buffering one another (e.g.

duplicate genes [78, 100]) and at the level of larger network structures (for example,

parallel pathways). These buffered functions are rapidly being mapped by genetic in-

teraction studies that delete multiple genes simultaneously [88, 83, 101, 84, 66, 102].

The remaining contributing factor is environmental robustness, whereby a gene pre-

sumably has an important function under some evolutionarily relevant circumstance

that is not reflected in a laboratory environment (for example, nutrients/media, tem-

perature, stress etc.). Thus, an important motivation for complete pairwise coverage of
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basic metabolic conditions is the detection of novel fitness defects for genes that become

necessary only as the condition space is more broadly surveyed. Interestingly, of the

729 remaining uncharacterized mutants in the auxotrophic collection for which we have

single-mutant fitness measurements in synthetic complete media, a significant fraction of

them (609) have a fitness greater than 99% of wild-type (hypergeometric p < 7×10−66)

[59]. Despite the ever-increasing availability of high-throughput genomic data for these

genes, the task of eliminating this set has seen only marginal success since 2007 [51]. It

is possible that these genes (many of which only have orthologs in other yeasts) may

be responsible for functions needed in the native environment of yeast but unnecessary

under standard laboratory conditions. Still others may be required in the lab, but only

after varying the nutrient conditions. The focus of recent chemical genomics work on

subjecting yeast to an extremely broad range of chemical environments is helping to

address these genes [57, 56], but auxotrophy in the deletion collection had precluded

measurements of growth on simple but directly relevant metabolic conditions. Here we

address the potential impact of these data on both uncharacterized genes and genes of

little phenotypic consequence in standard conditions.

2.3.10 Novel effects for genes with high fitness in standard conditions

As described earlier, we observed that the number of significant effects in our data can

be weakly predicted by single-mutant fitness in synthetic complete media. However,

nearly 40% of the S. cerevisiae genome shows little to no such effect. Of the genes in

this study with single-mutant fitness scores greater than 99% of wild-type under syn-

thetic complete media, more than 50% of them (1548/2745; Fig. 2.8) show at least one

significant slow-growth effect outside of glucose:ammonium. Multiple random assign-

ments of the number of expected false positives (20% of effect counts listed in Table 1),

demonstrate that only approximately 30% of genes should show an effect. Additionally,

5% (142/2745) show significant effects in five or more distinct non-glucose:ammonium

conditions compared to a random expectation of 2.6 × 10−5 (�1/2745). For exam-

ple, prs2∆0 (the PRS2 gene encodes one of the four phosphoribosyl-pyrophosphate

(PRPP) synthetases encoded in the genome; these synthetases are required for nu-

cleotide, histidine, and tryptophan biosynthesis); has a single-mutant fitness of 1.02 in
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Figure 2.8: Counting effects for under-characterized genes. Histograms show the total
number of mutants with at least x effects in our data from the set of uncharacterized
genes (left, orange), and genes with little to no fitness defect on synthetic complete
media (right, blue; single-mutant fitness > 0.98% of wild-type). As a control, the
expected number of false positives (20% of significant effects in each condition) were
randomly distributed among all genes, and the number of effects for each gene was
counted again. Gray bars show the mean of 1,000 such randomizations.

synthetic complete media [50] but shows significant growth defects in 14 different con-

ditions. These conditions are highly coherent, including all seven galactose conditions,

all ribose conditions (except ribose:arginine) and no conditions involving glucose except

glucose:proline. PRS2 is highly expressed under fermentative condititions [103]. An-

other example is ICL1, which facilitates a key reaction of the glyoxylate cycle, and shows

slow growth effects in nine (non-glucose:ammonium) conditions despite a single-mutant

fitness score slightly greater than that of wild-type under standard lab conditions (1.03)

[50].
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2.3.11 Novel phenotypes for uncharacterized ORFs

Approximately 13% of the S. cerevisiae deletion collection is composed of uncharacter-

ized ORFs [59], 692 of which are included in this study. Nearly 25% of these uncharac-

terized genes show a significant effect in two or more non-glucose:ammonia conditions

(172/692; Fig. 2.8) compared to the 4% expected given our FDR.

One such example with a very specific nitrogen sensitivity signature is FMP32.

The fmp32∆0 strain displays dramatically decreased fitness under arginine and proline

conditions. While the protein product of FMP32 has been detected in highly purified

mitochondria [104], the gene is otherwise uncharacterized. The fmp32∆0 strain was

included in our liquid confirmation assay and these sensitivities were confirmed in this

independent, small-scale assay (Fig. 2.9). This highly specific signature appears to be

completely unique to the fmp32∆0 strain, as no other mutant in the collection shows a

similar sensitivity profile.

The genes with the highest profile similarity to FMP32 are PUT1, PUT3, and

RRF1 which have been previously implicated in proline utilization (PUT1, PUT3 )

[105] and mitochondrial ribosome recycling/mitochondrial protein synthesis during res-

piration (RRF1 ) [106, 107]. PUT3 induces PUT1 transcription when proline is present

as the best available nitrogen source and the latter (along with PUT2 ) is responsible

for the conversion of proline into glutamate for further use as a nitrogen source. Our

analysis suggests that FMP32 is similarly involved in the respiratory response under

proline, though the reason for its additional sensitivity under arginine remains unclear.

These examples show the utility of interactions between genes and simple environments

in uncovering the function of both individual uncharacterized genes and genes without

a previously observed fitness defect in more complete media.

2.3.12 Clustering of metabolic conditions reveals carbon source as pri-

mary factor driving mutant profiles

Just as gene-gene correlation predicts functional similarities, we expect a high correla-

tion between condition pairs to reflect a substantial overlap in the cellular machinery

required to utilize the provided carbon and nitrogen sources. When our matrix of z-

scores is hierarchically clustered in both the gene and condition dimensions, a structure
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Figure 2.9: (a) z-score data show specific growth defects for the uncharacterized gene
FMP32 when grown on proline or arginine. (b) Liquid growth confirmations for effects
highlighted in (a). Two replicates of FMP32 mutants are shown (blue line) along
with six replicates of a wild-type strain (black dashed line) in two proline and two
arginine conditions. The effects are pronounced when compared to observations in
similar ammonium conditions.
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Figure 2.10: A clustergram of z-scores for the 500 mutants with the highest variance.
The data have been hierarchically clustered in both dimensions. Conditions organize
themselves primarily by carbon source, falling into three distinct clusters.

clearly driven by carbon sources emerges (Fig. 2.10). All of the glucose conditions clus-

ter together, as do both the galactose and ribose conditions. The sole exception to this

is glucose:proline, which falls in the galactose cluster. We attribute this observation to

the fact that the utilization of proline as a nitrogen source requires some respiration.

The glucose:proline signature reveals sensitivity in a number of respiratory deficient mu-

tants, which is atypical for glucose conditions in general since fermentation is generally

preferred over respiration when cells are grown on glucose. This respiration-dependent

signature is strong enough to place the glucose:proline profile in the galactose clus-

ter where one would expect a modest profile contribution from both respiration and

fermentation related processes (Fig. 2.10), as is observed in growth on galactose [91].
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2.3.13 Matrix factorization distinguishes carbon from nitrogen effects

Further examination of gene and environmental profiles after clustering revealed cases

where a gene (for example, FMP32 ) exhibited an effect in multiple instances of a par-

ticular nitrogen source (for example, proline or arginine), but without a specific pattern

with regard to carbon source (or vice versa). This is expected behavior for genes required

for the utilization of a particular carbon/nitrogen source regardless of the context. In

order to more formally extract a list of sensitivities for each source of carbon or ni-

trogen regardless of its partner, we employed a method known as Non-negative Matrix

Factorization (NMF) [108, 109] to decompose our experimental data into a collection

of characteristic source signatures. When a matrix of these source signatures is multi-

plied by a matrix describing the source composition in each of our conditions, the result

should approximate our experimental observations. NMF allows us to run this multi-

plication in reverse and fit the source signatures as an unknown factor. Many of these

source signatures demonstrate enrichment for related GO terms and KEGG pathways.

One example of a decomposed signature involves genes that are sensitive when glu-

tamate is chosen as a nitrogen source. These genes are enriched for annotations relat-

ing to endocytosis, endosome and vacuole related transport, and retrograde transport (

“GO:0007034 - vacuolar transport” p < 3×10−7, “GO:0016192 - vesicle-mediated trans-

port” p < 5 × 10−8, “GO:0016197 - endosome transport” p < 2 × 10−7). Extracellular

glutamate decreases cellular amino acid permease activity by redirecting intracellular

trafficking of the permease Gap1 from the plasma membrane to the vacuolar membrane

[110]. Many of the mutations in our glutamate signature increase Gap1 activity by

misdirecting the protein to the plasma membrane [111]. Although GAP1 is transcribed

at equal levels in cells grown on urea and glutamate, permease activity in urea grown

cells is 100 times higher than glutamate-grown cells [112]. Inappropriate Gap1 activity

is toxic in the context of high concentrations of single amino acids [113], and we spec-

ulate that the inappropriate trafficking in these mutants causes high levels of permease

activity that inhibit cell growth.

Many mutants (92) appear in both the galactose and ribose signatures, and over-

lapping GO enrichments in these conditions reveal many of these genes to have known

involvement in various aspects of respiration. For example, enrichment for GO terms

relating to mitochondrial organization and translation, as well as “aerobic respiration”
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appear highly significant in both of these signatures (galactose p < 4 × 10−6, ribose

p < 7−11). Exceptions include GAL pathway mutants that fall uniquely into the galac-

tose carbon signature (“galactose metabolic process” p < 1.3 × 10−4) and genes in-

volved in acetyl-CoA biosynthesis that appear to be specifically sensitive under ribose

(p < 1.4 × 10−6). As more complex environments are mapped, multivariate statistical

techniques will become increasingly important in determining which environmental con-

stituents are actually relevant to which experimental observations, and care should be

taken when designing experiments to ensure their successful application (for example,

complete combinatorial coverage of relevant environmental factors).

2.3.14 Environmental and genetic perturbations can provoke similar

cellular states

Beginning to test the immense space of possible environmental and chemical conditions

combined with experiments that have queried the space of genetic perturbations [66]

allows us to investigate how these spaces interrelate. For example, if mappings can be

found between them, we can apply knowledge from the already extensively mapped ge-

netic perturbation networks to the intractable space of environmental variation. While

the sensitivity profile for a given condition most certainly includes genes directly re-

quired for the processing of the provided raw materials (for example, the galactose

metabolism pathway under galactose conditions), it also contains information about

genes that, though not directly involved, are nonetheless indirectly required for opti-

mal cell growth. These profiles then reveal much more than the functions of genes

for which we measure a fitness defect, and in fact, give us a high dimensional finger-

print of the internal cellular state. We propose that genetic perturbations may put the

cell into a very similar state as would an alteration of the environment. For example,

the deletion of a gene that encodes a transporter may exhibit a profile that mimics

the wild-type profile in an environment where the corresponding substrate is absent.

Downstream consequences of the environment or genetic perturbation may cause subtle

and seemingly unexpected sensitivities. Thus, genetic perturbation experiments and

environmental perturbation experiments may both result in the same phenotypic pro-

file. A similar principle has been demonstrated through the observation that deletion

mutants with similar double-mutant sensitivity profiles tend to be functionally related
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[66]. Parsons et al. [57] first applied this principle to predict drug targets, reasoning

that a genetic sensitivity profile on a chemical that targets an individual gene would be

similar to a sensitivity profile of a strain with the corresponding gene deleted. When we

compared sensitivity profiles from our condition experiments to that of query-deletions

crossed into the auxotrophic deletion collection via SGA [66], we found several inter-

esting cases where genetic perturbation profiles significantly overlapped with sensitivity

profiles from our environmental perturbations (see Appendix A.14). For example, the

queries in the top 10% in terms of similarity to galactose:urea are enriched for members

of the threonine and methionine biosynthesis pathway (hom2, hom3, hom6, thr4 ; Fig.

2.11; GO:0006566 - “threonine metabolic process” p < 4.5 × 10−2; KEGG: “glycine,

serine and threonine metabolism” p < 2.9× 10−2). The strength and specificity of this

similarity is not driven by a handful of mutants in the collection, but instead by trends

across a much larger set of genes. We speculate that the profile similarity in this case

may be due to accumulation of aspartate, which is upstream of homoserine and thre-

onine biosynthesis, and is excreted in part through urea production. Growth on urea

in the setting of the respiratory growth of galactose may result in the accumulation of

aspartate.

The idea of comparing environmental and genetic perturbations can be generalized

to other genome-wide perturbation data as well. For example, we observe significant

correlations between our glutamate signature and a rapamycin sensitivity profile as

measured by two different chemical genomic screens (Hillenmyer et al. p < 1×10−18 [56]

Parsons et al. p < 1× 10−9 [57]). The enrichment for transport related terms observed

in the glutamate signature (above), and its similarity to a rapamycin profile make

sense given that rapamycin redirects trafficking of Gap1 from the plasma membrane to

the vacuole [114]. Thus, the same set of mutations in vesicle trafficking that lead to

inappropriate expression of Gap1 permease activity in cells grown on glutamate also

cause inappropriate permease activity following rapamycin treatment.
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Figure 2.11: High dimensional sensitivity information for mutants in threonine biosyn-
thetic pathway (circled in red) were obtained from SGA experiments [66]. These profiles
correlate with the sensitivity profile obtained in this study when strains are grown on
galactose:urea. This suggests a correspondence between the internal states of the cells
when grown in a specific environment, and when subjected to a specific genetic perturba-
tion. For example, hom2∆, hom3∆, hom6∆, and thr4∆ mutants would all be expected
to accumulate aspartate because these mutants shut down a major metabolic shunt for
aspartate. The phenotypic similarity in genetic interaction space between these mu-
tants and growth on galactose:urea suggests that growth on galactose:urea may cause
the internal accumulation of aspartate or some other metabolic intermediate unique to
the hom2∆, hom3∆, hom6∆, and thr4∆ mutants.
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2.4 Conclusions

The creation of the original yeast deletion collection has had a profound impact on

the way in which reverse genetic experiments are performed. Yet despite a staggering

number of successful studies, the inherent auxotrophies create a major blind-spot in

a fundamental area of cellular function, and previous reviews of the topic have called

for the creation and use of standardized prototrophic strains for metabolic experiments

[86]. Recently, Mülleder and colleagues [115], have addressed the deletion collection

auxotrophies by introducing a plasmid containing sequences for HIS3, URA3, LEU2,

and MET15. The resource used in this study differs in that URA3, LEU2, and MET15

are in their native genomic locations, with the exception of HIS3 which is provided by

Schizosaccharomyces pombe HIS5 under the SGA reporter [88]. Without the necessity

for plasmid selection, or possible effects on gene expression due to non-chromosomal

location, we anticipate that our deletion collection will see frequent use by experimen-

talists.

The use of a genome-wide prototrophic strain collection enables truly informative

sensitivity screening in metabolically controlled conditions. This represents a first step

in probing how nutrients in the environment jointly affect cellular response with or

without additional genetic perturbation. This study demonstrates that much work is

yet to be done to understand growth in even simple environments. A solid grasp of the

surprisingly complex responses to simple environments will add much needed context

to studies done in more complex environments.

This study has demonstrated the potential of this collection, when screened against

simple environments, to uncover phenotypes for hundreds of mutants that are pheno-

typically normal in standard lab conditions. We believe that the stock of simple experi-

ments that might reveal a phenotype for these mutants has not yet been exhausted and

expect that this whole-genome prototrophic collection will be an invaluable resource

to the community. The rising number of metabolomics studies, fueled in part by the

increasing accuracy of experimental mass-spectrometry, as well as the growing interest

in metabolism as central to many common ailments in humans, make it more important

than ever to properly design metabolically relevant experiments in the model eukary-

ote S. cerevisiae. Central to that goal is a version of the deletion collection that is
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unhindered by historical auxotrophic requirements.

For example, while central metabolism is unrivaled among cellular processes with

respect to our ability to make in silico predictions from constraint-based metabolic

models, it is far from a fully understood system. Our results show a generally weak

ability to predict condition-specific sensitivities, though performance is clearly above a

random baseline. The prediction of condition-specific sensitivities is admittedly more

difficult than the prediction of sensitivities in general, but it was our estimation that

FBA and MoMA would be well suited to approximate our observations given our simple

experimental setup. Their only moderate success in doing so demonstrates the current

limitations of constraint-based modeling and the difficulty of relating models built from

biomass predictions to quantitative growth rate data. There might be several possible

reasons for the discrepancy between in silico and in vivo results. First, the success

of predicting growth defects hinges on the proper formulation of biomass composition.

While a single biomass composition is used for all our simulations, it likely changes

across environmental conditions. Future studies could address this issue by measuring

the composition of yeast cells under different nutrient settings. A second limitation

of purely flux-based models is their inability to make predictions about components

that have an indirect effect on metabolism. Consider for example the enrichment for

transport related genes whose deletion confer glutamate-specific sensitivities. Their pu-

tative role in nutrient sensing and signaling reflect the fact that despite its constrained

nature, the metabolic network operates as part of a much larger and more dynamic

network. More generally, the basic constraint-based modeling approaches ignore regu-

latory mechanisms. Several attempts have been made to bridge this gap and they rely

either on “omic” data to constrain the activity of specific reactions [116, 117, 118] or on

integrating a mathematical representation of gene regulation with the metabolic model

[119, 120, 121]. We feel that the availability of this whole-genome collection and ac-

companying growth data well suited to studies of metabolism will help the community

to develop and test novel models and methods to better capture the operation of the

greater cellular network.

Central to the understanding of the network as a whole, is the idea that a whole-

genome screen reveals indirect as well as direct consequences of the perturbation tested.

Positive gene-environment interactions under ribose conditions may well illustrate this
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point. The median z-score for the 166 genes annotated to “chromosome segregation”

in the Gene Ontology is negative for all seven galactose conditions, yet positive for all

seven ribose conditions (binomial sign-test p < 6.2×10−5). We believe this shift may be

explained by fundamental cellular rate limitations. Failure to segregate chromosomes

in the midst of even moderate growth (for example, galactose) can have very severe

consequences, ultimately limiting growth rate, whereas comparatively slow growth (for

example, ribose) affords additional time for slowly segregating mutants to complete

segregation. These mutants grow faster than we expect despite no apparent link be-

tween carbon metabolism and chromosome segregation. Thus growth rates under one

condition disclose information about the interplay between a wide variety of cellular

sub-systems, giving us a readout of the internal cellular state. Similarly, a mutant pro-

file across many environments gives us information about how essential that gene may

be in any of those various cellular states, in addition to elucidating any direct role that

gene may have in direct utilization of the provided nutrients. Analysis of our growth

data recapitulated the role of vesicle trafficking in the regulation of the amino acid per-

mease Gap1, relating growth on glutamate to the drug rapamycin. This broader view of

whole-genome screen information then allows for integration of profiles across different

perturbation types (chemical, genetic, environmental), and should ultimately aid us in

applying knowledge gained in one arena to observations made in another.



Chapter 3

Essential and non-essential genes

in the complete genetic

interaction network

3.1 Chapter Overview

Altering the environment reveals fitness phenotypes for many genes that are not required

under standard conditions. However, extensive genetic redundancy may also contribute

to the lack of observed phenotypes for single-mutants. To compensate for this redun-

dancy, we must perturb multiple genes simultaneously. Multiple-perturbation studies

date back several decades to experiments in the fruit fly [122]. In these studies, it was

determined that mutations with no apparent effect could be lethal in combination, a

relationship which came to be termed “synthetic lethality.” In yeast, quantitative mea-

surements of growth at the colony level enable higher resolution of effects. Not limited to

just lethal and viable observations, we can characterize subtler faster-than-expected or

slower-than-expected phenotypes. Synthetic Genetic Array analysis (SGA) is a robotic

pinning procedure that automates the creation of yeast strains with two distinct genetic

perturbations, paired with plate-imaging software that measures the resulting double-

mutant fitness and identifies genetic interactions. This chapter presents analysis of the

genetic interaction network in yeast, which is now nearly completely mapped.

52
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When completed, the yeast genetic interaction map will be the only complete map of

a eukaryote, and will therefore serve as the definitive model genetic interaction network.

As such, we are interested in characterizing many of its general properties, which we

expect to be conserved in other eukaryotes, including humans. These properties include

basic measurements of how many genetic interactions there are in the yeast genome

and how they are distributed. We are additionally concerned with the quality and

informativeness of the data because of its definitive role representing an important and

increasingly popular class of experimental data.

The work in this chapter represents only a small part of a very large collaborative

effort. Because the included material represents only analyses for which I was primarily

responsible, it forms an incomplete, and slightly less cohesive picture of our genetic in-

teraction network mapping efforts. However, it will still serve to give a broad overview

of genetic interaction networks and provide the foundation for the remaining chapters,

which concern the genetic interactions of duplicated genes. My contributions to our

efforts include the principle responsibilities for scoring raw genetic interaction data,

and ensuring its technical and functional quality. This includes but is not limited to

the identification and mitigation of non-biological systematic effects, and integration

and normalization of data from different genetic interaction experiments or arrays. I

also performed much of the fundamental characterizations of the complete genetic in-

teraction network including drawing contrasts between its essential and non-essential

components. These analyses include examining the total numbers of genetic interactions

of various classes, their relative densities, and their ability to predict gene function both

as individual interactions and as aggregated into profiles. I performed module analysis,

examining the broad patterns within and between protein complexes, including specific

complexes such as the proteasome. I also performed the clustering and hierarchy anal-

ysis of genetic interaction similarity data I generated in collaboration with Anastasia

Baryshnikova.

My collaborators on the entire project are quite numerous. Principally among them

are the rest of the genetic interaction team in my lab, Elizabeth Koch, Carles Pons, and

Raamesh Deshpande. Anastasia Baryshnikova was also involved in many aspects of early

analyses and participated directly in the creation of several figures that I have adapted

for use in this chapter (Figs. 3.11, 3.13). This chapter has also been substantially
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influenced by discussions with Charles Boone, his lab manager Michael Costanzo, and

my advisor Chad Myers.

3.2 Introduction

3.2.1 Defining and interpreting genetic interactions

The term “genetic interaction” describes a relationship between two genes whereby the

effect of their simultanious perturbation is surprising given the effects of their individual

perturbations. This deviation from expectation indicates that the two genes have a

joint impact on the phenotype of interest, and perhaps participate in a common cellular

function. For example, one type of extreme genetic interaction, “synthetic-lethality”

was characterized a half-century ago by Dobzhansky et al. [122]. In their fruit-fly

experiments, Dobzhansky and others discovered that some mutations, while harmless

on their own, were lethal in combination. Taken together, these interactions form a

network that captures much of the of the cell’s complex functional architecture.

There are several competing models for defining genetic interactions that differ in

their theoretical and experimental properties [123]. The most widely used of these mod-

els agree that the effects of multiple independent perturbations will combine multiplica-

tively, but these models differ by whether they measure deviation from that expectation

as a difference or as a ratio. The SGA scoring procedure uses a multiplicative null model,

with the interaction term (ε) measured as a difference [50]. This definition can be seen

in Eq. 3.1, where εa,b represents the genetic interaction score between genes a and b, fa

and fb represent the single-mutant fitness scores of genes a and b respectively, and fab

represents their double-mutant fitness. The resulting sign on the interaction score indi-

cates the type of genetic interaction. Negative ε indicates a synthetic sick or synthetic

lethal phenotype, in which the double mutant grew more slowly than expected, whereas

a positive ε indicates a genetic interaction in which the double-mutant fitness exceeded

expectation. Fig. 3.1 demonstrates an example of how the fitness of the double-mutant

would determine a genetic interaction for a particular gene pair, according to Eq. 3.1.

εa,b = fab − (fafb) (3.1)
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The prevailing dogma of genetic interactions is that negative interactions (such as

Dobzhansky’s qualitative “synthetic-lethal” [122]) are thought to signify redundant rela-

tionships, such as those between genes in parallel pathways (Fig. 3.2). In this case, either

of the single-mutants still has one functional pathway leading to the common function

and the resulting single-mutants show (perhaps) no phenotype, but if both pathways

are disabled simultaneously, fitness is adversely affected. Alternatively, positive scores

reflect multiple perturbations to the same component, such as a protein complex or

a linear pathway (Fig. 3.2). While each individual mutation disables the component,

their coincidence doesn’t confer any additional effect because the component is already

non-functional.

There are many distinct mechanisms by which genes can be genetically related to

each other. Two genes may even share mechanistic relationships that change depending

on the phenotype being measured. These many classical genetic categories of interac-

tions are reduced to two in the course of the SGA process, negative and positive. This

reduction is one price of the scale of the experiment. However, the generality of the

measurement (non-independent contributions to fitness) means many of these relation-

ships can be captured in a single high-throughput assay that is relatively unbiased and

captures all major cellular processes. Though an interaction may tell us that genes

are related, we cannot know precisely how. This information is nonetheless informa-

tive. Genetic interactions show significant overlap with mechanistic information such

as protein-protein interactions, similarity of expression patterns, and co-annotation to

known functional processes. It has also been demonstrated that pairwise profile corre-

lations are better at predicting functional relationships than individual interactions are

[66]. This is in part because of the mechanistic uncertainty mentioned previously, but

also because of the amount of noise generally found in biological experiments of this

scale. Individual interactions are more sensitive to this noise than broad patterns are.

3.2.2 Generating genetic interactions in yeast

The robotic procedure by which SGA generates double mutants for genetic interactions

in yeast is inherently asymmetric [89]. A single MATα “query” strain is pinned out to

every location on a plate. Meanwhile, MATa “array” strains are pinned out to unique
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Figure 3.1:
Genetic interaction example. In this example a∆ and b∆ each have a single-mutant
fitness score (f) which is less than wild-type. The expected double mutant fitness is
derived from the multiplicative model shown in Eq. 3.1. Here, fa is 0.7 and fb is 0.5,

thus the expected double-mutant fitness is 0.35. Deviations from that expectation
result in either positive (green) or negative (red) genetic interactions.

Figure 3.2:
Genetic interaction interpretations. Parallel pathways (left) feeding into the same func-
tion are expected to give rise to negative genetic interactions (red). A single perturbation
(B) has no effect in the presence of an alternate route to the function. However, mul-
tiple complementary perturbations (B,F) cut all pathways feeding the function and we
observe a corresponding phenotype. In this example, all complementary combinations
should exhibit a negative interaction, forming a negative bi-clique.
Members of the same protein complex (right) give rise to positive genetic interactions
(green). For example, a single perturbation of a complex member (C) is enough to
compromise complex function. Additional perturbations (C,D) have no additional effect
on the already non-functional complex. Their combined fitness effects would then be
higher than a multiplicative expectation and the result is a positive genetic interaction.
All complex member pairs exhibit this relationship and form a positive clique.
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locations on a set of similar plates. An “array” is therefore an entire collection of

single-mutant strains, but the term is sometimes used for a single gene on the array, to

differentiate it from a single “query” gene. The query strains are then pinned on top of

every array plate and a mating step ensues, followed by several rounds of selection. The

result is a set of plates containing double-mutant colonies. The selection steps ensure

that every colony is composed of haploids, and that all have been deleted for the same

query gene. Additionally, each colony is deleted for a single array gene, depending on

its plate-position.

Non-essential genes are perturbed in SGA by total deletions, so-called null alleles,

where the entire open reading frame has been excised, and replaced by an appropriate

selectable marker. It is often the case that a single copy of an essential gene can

be deleted in a diploid, as long as one functional copy remains. However, the SGA

procedure generally requires haploids, which precludes the possibility of including null

alleles of essential genes. One approach to circumvent this problem is to alter the efficacy

of the essential gene, but not so much as to be fatal. This can be done, for example,

by perturbing its expression via mutations in regulatory DNA, by reducing translation

through RNA interference (though S.c., and many other organisms lack the requisite

RNA interference machinery) or by a mutation to the gene itself which is subtler than

an entire deletion.

In our SGA experiments, essential genes are represented by two alternative pertur-

bation types. Temperature-sensitive alleles (TS), are typically coding-region mutants

that show reduced growth at elevated temperatures. Recently, a collection of temper-

ature sensitive (TS) alleles of essential genes has been released [124]. Strains in this

collection have single mutations in essential genes are fatal at elevated temperatures.

Presumably, these mutations slightly alter the structure of essential proteins, making

them unstable when internal kinetic energy is high. Many of these mutants show reduced

(though viable) growth at normal temperatures and so we can reasonably assume the

function of the essential protein, or its stability has been at least slightly compromised.

Alternatively, some essential genes are present in the form of “Decreased Abundance

by mRNA Perturbation” (DAmP) alleles, in which untranslated 3’ regions of essential

have been disrupted, which results in functional proteins but at a theoretically reduced

dosage [125]. These strategies allows us to pivot the SGA approach, which has proven
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very successful in mapping the function of non-essential genes, toward the cells most

important genes.

Data from a large set of queries is generally represented as a matrix, with each row

corresponding to a query gene and each column corresponding to an array gene. Single

rows are easy to add to the matrix, by screening a new query against an established

array set, however to add columns, an entirely new array must be constructed, and all

queries must be re-screened. There are two such arrays, referred to in this Chapter,

the original FG array, comprised of deletions for the bulk of non-essential yeast genes,

and the TS array, which contains mainly TS alleles of essential genes. Different (but

highly overlapping) sets of queries have been screened against each of these arrays and

so they must often be regarded separately. As data from each of the two arrays is

initially slightly different, observations from the TS array are first normalized to match

the FG array so as to make fair comparisons at matching thresholds (see Sec. B.1.1). A

census of the number and type of query strains screened against each array, as well as

the composition of the two arrays themselves is given in Table 3.1. SGA technology was

originally developed to combine haploid mutants in the yeast deletion collection [88, 3].

This precluded the study of essential genes, which cannot be deleted in haploids. In

yeast, nearly 20% of genes are essential [3], and these essential genes code for some of

the cell’s most important proteins. They are central to many fundamental processes,

they tend to have more protein-protein interactions, and be more centrally located in

cellular networks [65, 11]. Essential genes tend to have originated in more ancient

common ancestors and so have higher rates of conservation between yeast and human.

[60]. These properties make them tantalizing objects of study, however their essential

nature presents a stumbling block to reverse genetics. By definition, the deletion of an

essential gene results in inviability, so deletion-based perturbation assays can help us

identify essential genes, but they often cannot give us insight into their specific function.

The inclusion of essential genes, opened up the possibility to map the entire yeast

genetic interaction network, a first for any eukaryote. Specifically, it allows us to con-

trast the network properties of essential genes (and the interactions between them) to

the non-essential genes, which was previously impossible. Because general properties

of genetic interactions such as degree and modularity tend to be conserved to other
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organisms [79], and because essential genes themselves are more often conserved, we ex-

pect the contrasting properties of essential and non-essential genes to be conserved also.

As we seek to transfer knowledge from the model genetic interaction network to other

organisms in an effort to understand how genes jointly affect complex phenotypes, in-

formation regarding this previously inaccessible segment of the interaction network will

become increasingly valuable.

Mapping and understanding this network is important for a number of reasons.

First, these networks give immediate insight into genes of unknown function. Genetic

interactions measure the consequence to fitness of deleting or mutating a gene, and are

therefore not dependent on any particular mechanism of gene function. This general-

izability is especially helpful for uncharacterized genes as they may be involved any of

the cell’s diverse processes or structures. Genetic interactions can aid in the generation

of specific functional hypotheses and appropriate assays can be used to follow up on

mechanism.

Perhaps more importantly, we are mapping the underlying structure of complex

phenotypes. Very few phenotypes are controlled by a single gene, and understanding

how genotypes combine to produce a phenotype has broad implications. For example,

the “missing heritability problem” refers to the fact that effects from individual genes

fail to account for the heritability of complex phenotypes in humans. For example, a

number of genome-wide association studies involving tens of thousands of people have

identified at least 40 loci which are associated with human height. The heritability

of this trait has been estimated to be about 80%, and yet these individual loci can

explain only about 5% of the observed variance [126]. As we seek to understand the

causes of ever more complex phenotypes, such as many heritable disorders in human,

information regarding how genes jointly affect phenotypic outcomes can only become

more important [71, 73, 72].

3.3 Results and Discussion

3.3.1 Overview of interactions discovered

We have screened approximately 16.6 million unique pairs of strains and discovered

roughly 885,000 unique genetic interactions. This represents a 4.8-fold increase over
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Query Strains Array Strains

Mutant type null TS DAmP Deletion TS

FG Array 3283 914 201 3827 0

TS Array 1194 865 762 176 788

Table 3.1: The section shows the allele type composition (perturbation) of each array
set as well as the collection of queries screened against them. A null mutation refers to
the complete deletion of a non-essential gene. TS strains carry alleles of essential genes
with point mutations that render them non-functional at high temperature, but allow
for partial functionality at nominal termperatures. DAmP strains carry mutations in
untranslated regions adjacent to an essential gene which causes a reduction in expression
(See Sec. 3.2.2).

previously available SGA data [66]. Out of the 5,959 genes in S. cerevisiae that are

not annotated as dubious ORFs, we have a profile for 5,174 (86.8%). These include TS

strains for 734 essential genes (69%), 585 of which are represented by multiple alleles

with distinct perturbations, for a total of 1,129 distinct strain profiles of essential genes

either screened as queries or on an array. Table 3.1 shows the number of strains in

each dataset by perturbation type. Applying standard thresholds (described in [66, 50])

to the resulting genetic interaction scores yields hundreds of thousands of interactions

between genes which are summarized by array set, and further by perturbation types

in Table 3.2.

The large number of strains included provides excellent coverage of genes annotated

to every major biological process in yeast, as well as a significant number of genes with

unknown function (Fig. B.1). Despite the immense number of genetic interactions, the

number of pairs tested means that interactions are still sparse. The inclusion of essential

genes (both as queries and on an array) addresses a long standing blind spot in genetic

interaction mapping, and the inclusion of multiple alleles of these essential genes may

help us better understand the sequence to function relationships for these genes.

3.3.2 Assessment of experimental reproducibility

In a previous SGA publication, the recall characteristics of individual genetic interac-

tions was estimated by measuring SGA’s ability to recover interactions published in

independent experiments [66]. However, as these data represent the vast majority of
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ε < −0.12 ε < −0.08 ε < 0 ε > 0 ε > 0.08 ε > 0.16

total 343236 565999 1359321 1215443 334679 47401

By Array FG array 210171 371120 1042900 945688 226029 30499

TS array 133065 194879 316421 269755 108650 16902

By Type Del-Del 139230 246682 747244 681247 144938 16023

Del-TS 38291 57409 97614 78785 29307 4703

TS-Del 82480 137458 291277 258302 87513 15992

TS-TS 45294 62697 93038 83512 37281 5747

DAMP-Del 14811 25407 65298 57922 15204 1970

DAMP-TS 21614 34291 62078 52812 18698 2631

Misc-All 1516 2055 2772 2863 1738 335

Table 3.2: The total number of negative and positive interactions is given using several
standard thresholds for ε. All interactions counted have an additional p-value threshold
of p < 0.05. The inner-most columns are then the most lenient and count supersets of
the outer columns. In most analyses, the intermediate threshold is used (|ε| > 0.08; p <
0.05)

available genetic interaction data we are without a complete “gold-standard” for com-

parison. The precision and recall of the SGA method is therefore difficult to estimate.

In this section, I evaluate the present genetic interaction data both by standards previ-

ously used, as well as through analysis of biological replicate screens created for such a

purpose.

The estimate of recall in this section is more biological than technical in nature.

That is, it gives a sense of the agreement of SGA interactions with other studies. By

contrast, the precision estimate presented here is more technical. It demonstrates how

often two SGA experiments agree with one another.

3.3.3 Correlation of reciprocal interactions

Each combination of one query and one array is performed in quadruplicate. However,

these four colonies are adjacent to one another on the plate, and though they are useful

in quality control procedures, they do not represent truly independent replicates. We

therefore leveraged the substantial overlap between the query and array strain collec-

tions to assess the agreement when strain combinations are observed twice indepen-

dently. On the FG array, we have 2,651 strains screened as both a query and an array

giving us ∼3.5M pairs of reciprocal observations, while on the TS array there were 713
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replicate level to assess (n) 1 2 3 4 5 6

observations made at this level 155 250 310 235 115 25

unique queries contributing at this level 31 31 31 31 23 5

Table 3.3: To assess the impact of multiple replicates on SGA scoring accuracy, 31
queries were selected for an increased number of replicates. Queries were scored mul-
tiple times, each time grouped with different subsets of the available replicates. The
table shows the number of observations within this set that are made after merging
n replicates, as well has how many unique queries, of a possible 31, contribute to our
observations at each level.

such strains and so ∼250K observation pairs. Correlations on these observations (after

applying a lenient filter on interactions, p < 0.05) appear quite good (r = 0.61, 0.77, Fig.

3.3). This technical reproducibility of genetic interaction scores increases our confidence

that significant effects called in our experiment are largely real, and form a legitimate

basis for the investigation of the true genetic interaction network.

3.3.4 Replicate screening to estimate SGA precision and recall

To assess the effect of an increased number of replicates on technical estimates of pre-

cision and recall for SGA data, a subset of 31 queries was selected to be screened N

times with N in (5. . . 7). The normal procedure for merging replicate data within the

SGA scoring pipeline is to use the mean over all replicates after all experimental effect

corrections have been applied. The processing of these replicates was structured such

that random groups of n = (1 . . . 4) replicates were treated as the same query (set A)

while the remaining N − n replicates were treated as a single separate query (set B).

This procedure was repeated 5 times, and so a query with N = 6 replicates would be

scored 10 times as random groups of 4 (with 5 from set A of n = 4, and 5 from set B of

n = 2). The total number of observations we have for merging n replicates is given in

Table 3.3.

Accurate measures of technical reproducibility are crucial, especially in experimen-

tal design stages (See Sec. 5.3.2). The estimates here are acceptable, given the high-

throughput nature of the assay, and rarity of genetic interactions, but must be kept in

mind when considering any individual genetic interaction.
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Figure 3.3: Correlation of AB - BA observations. ε scores gathered for pairs of inter-
action observations in which one gene (A) was screened as a “query” and crossed to
the other on an “array.” (B). These are plotted against the ε scores from the reciprocal
observation (B×A) where they exist. (top) Data for the FG array. r = 0.61 (Pearson)
(bottom) Data for TS array. r = 0.77 Left panels show a scatter plot of epsilon values,
with a red line along y = x for visual clarity. Right panels show the same data as a
2-dimensional histogram, with 50 bins along each axis.
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Figure 3.4: SGA precision and recall of biological replicates. 31 queries were selected
for an increased number of replicates. Queries are grouped together multiple times
and averaged as part of the normal SGA scoring pipeline. Results for queries are then
compared against an SGA derived “gold-standard” (see Sec. B.1.2) to estimate precision
and recall. Precision and recall estimates are aggregated for each query (median) and
the bar shows the median and standard-error over all the queries.
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3.3.5 Properties of the essential genetic interaction network

As the largest collection of genetic interactions to date, these data allow not only a

reassessment of global genetic interaction structure, but a detailed comparison between

essential and non-essential genes. Notably, this includes interactions between pairs of

essential genes, which have never been measured on this scale.

3.3.6 Variations in genetic interaction density

The average density of genetic interactions measures between pairs of non-essential genes

is slightly lower than previously reported (Fig. 3.5 NxN) [66]. This is likely due to the se-

lection strategy of the previous experiment, which correctly predicted that genes with a

single-mutant fitness defect would exhibit more genetic interactions and were prioritized

for screening. Our estimate for non- essential interaction density is 2.0% for negative

interactions and 1.2% for positive interactions. Strikingly, pairs of essential genes inter-

act at a rate nearly five times higher (9.9% negative, 5.7% positive, Fig. 3.5 ExE). This

suggests the essential genes tend to impinge upon a greater number of cellular func-

tions, or that their disruption makes the cell vulnerable to a greater number of specific

sensitivities. Essential genes tend to have more functional annotations, supporting a

correspondence between genetic interaction degree and multi-functionality However, it

is difficult to estimate the impact of investigation bias when comparing essential and

non- essential functional annotations because non-essential genes are frequently screened

in large genome-wide assays [3] whereas essential gene experiments must be targeted for

study in a much different manner (e.g. suppressor screens), though subtle mutations of

essential genes might be expected to show up for frequently in forward genetic screens.

Additionally, essential genes, with their easily detectable phenotype (inviability) face

an ascertainment bias regarding their inclusion in smaller scale studies, and large col-

lections of functionally compromised essential alleles are only just becoming available

[124].

3.3.7 Information content of essential genetic profiles

In addition to essential-gene genetic interactions being more numerous, they are more

informative as well. Fig. 3.6 shows the value of individual interactions in the prediction
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Figure 3.5: Genetic interaction network density. Each of three types of interactions are
considered: interactions between essential genes (ExE), interactions linking essential and
non-essential genes (ExN) and interactions between non-essential genes (NxN). Only
TS alleles (not DAmP alleles) are considered for essential gene interaction densities.
NxN and ExN data are taken from FG array, ExE data are taken from TS array, and
“Network Density” is measured as the number of significant (intermediate) positive or
negative interactions divided by the number of tested gene pairs. In cases where multiple
alleles of the same gene were available, a single one was chosen at random. Error bar
estimates were derived from multiple rounds of random allele selection.

of co-annotation to Gene Ontology terms, as well as in the prediction of protein-protein

interactions. Pairs of non-essential genes (NN) with strong negative genetic interactions

maintain a precision of 65% over the first 400 true positives, a 3.6-fold increase over

background. Essential interactions have a precision of 80% over the first 1,000 true pos-

itives, though the background rate of functional relation among essential pairs is much

higher (35%). In a surprising contrast to non-essential interactions, negative essential

interactions do a much better job at predicting functional annotations and protein in-

teractions, while positive interactions between essentials carry very little information at

all according to this measure.

Overlap between negative genetic interactions and protein-protein interactions pro-

vides an even starker contrast between essential and non-essential genes. The strongest

non-essential negative interactions (top 200) correctly predict a protein-protein interac-

tion around 10% of the time, a high enrichment over the background rate of protein-

protein interactions (0.18%), though their predictive power quickly falls off at higher
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Figure 3.6: Precision-Recall plots for essential and non-essential genetic interactions.
Negative interactions are shown in red, positive interactions in green. Interactions are
ordered for prediction by the magnitude of epsilon after an intermediate threshold is
applied (|ε| > 0.08, p < 0.5). Prediction of co-annotation to an informative subset of
the Gene Ontology is shown on the left, and prediction of protein-protein interactions
(see Methods B.1.3) is shown on the right. The top two panels (NN) consider only
interactions between pairs of non-essential genes, and the bottom two panels only con-
sider essential pairs (EE). In each panel the background rate of true positives among
all screened pairs is shown as a black dashed line.

values of recall (Fig. 3.6). Negative interactions for essential genes, by contrast, con-

tinue to be an excellent indicator for protein-protein interactions well into higher values

of recall, and at lower values of recall, the precision of negative-essential interactions

exceeds 40%, which is over 50 times the background rate of 0.73%.

3.3.8 Genetic interactions within and between functional modules

The inclusion of more essential genes as both queries and array genes allows us to

examine whether long-standing dogmas about the structure of genetic interactions hold

as true for essential interactions as they do for non-essential interactions. Previous work

has established an enrichment for positive interactions “within” functional modules,
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such as the fictional protein complex presented in the right panel of Fig. 3.2. Meanwhile,

portions of the genetic interaction network falling “between” functional modules show

a stronger enrichment for negative genetic interactions, resembling the parallel pathway

example in the left panel of Fig. 3.2.

We examined the genetic interactions within and between a curated set of 420 pro-

tein complexes [50]. This protein complex standard represents an assignment of genes to

specific functional modules of coherent function, which is independent of genetic inter-

action data, and 193 of these complexes include at least 4 gene pairs tested for genetic

interactions. We find that genes pairs drawn from a single complex tend to show either

negative or positive genetic interactions, and less commonly show both types (Fig. 3.7,

top). We also find that the tendency to exhibit negative interactions is strongly related

to the number of essential genes in the complex (Fig. 3.7, top). We further filtered the

set of protein complexes to 96 that had 5 genes or more, and were comprised of mostly

essential or mostly non-essential genes (≥ 80%). After filtering, the set was roughly

split between essential complexes (41) and non-essential complexes (55), and its segre-

gated nature allows us to cleanly analyze essential, non-essential, and mixed-essential

interactions within and between coherent functional modules.

We then examined each complex and determined how many of them are enriched

for negative and positive genetic interactions (Fig. 3.7, center). The addition of such a

huge number of genetic interactions to the network has impacted the average interaction

density between non-essential genes (Fig. 3.5), however, the prevalence for positive in-

teractions within non-essential modules remains, with 27.6% of non-essential complexes

showing positive interaction enrichment, almost 2-fold more than the number showing

enrichment for negative interactions (15.5%). These complexes are a subset of those

shown in the top panel of Fig. 3.7, where we can see that non-essential complexes with

an appreciable density of negative interactions have some positive interactions also (left

of center). Genetic interactions within essential complexes tell a different story: 79% of

essential complexes are enriched for negative interactions, while not one shows enrich-

ment for positive interactions. Thus, the dogma for genetic interactions is reversed for

essential genes, and is even more extreme. If the “negative-within” dogma for essential

genes generalizes beyond protein complexes as we suspect, it would no doubt contribute
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Figure 3.7: Genetic interactions and essential protein complexes. Top) The density of
negative (red) and positive (green) significant genetic interactions for the 193 protein
complexes with sufficient genetic interaction data. On the second Y -axis, the number
of essential genes in each complex is shown (%, black line). Complexes are sorted by es-
sential fraction, then negative density, then positive. Center) The fraction of complexes
enriched for negative and positive interactions with themselves, based on a degree-
controlling hyper-geometric test with a p-value threshold of p < 0.05. Results shown
separately for non-essential and essential complexes, consisting of < 20% and > 80%
essential genes respectively. Bottom) As in center, but considering interactions between
pairs of complexes, including mixed pairs. Only one random TS allele of each essential
genes was included, and error bars represent the standard error of each measure over
10 runs. Dotted lines show random expectation based on the same analysis performed
on the genetic interaction network after a degree-preserving edge randomization. These
lines were virtually indistinguishable from 0 in the center panel and removed for clarity.
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to the increased predictive performance of negative ExE interactions in Fig. 3.6. In sim-

ilar fashion, the near total absence of positive interactions within essential functional

modules contributes to the decrease in prediction performance for ExE positives.

We then examined the nearly 1,000 pairs of complexes for interaction enrichment to

test previous “between” module conceptions. We found that results for non-essential

modules on the complete network reflect expectations derived from earlier incomplete

networks (Fig. 3.7, bottom panel). Just under 7.5% of non-essential complex pairs are

enriched for negative interactions, a 6-fold increase over random expectation (dotted

line). While non-essential complex pairs also showed enrichment for positive interactions

(4.2%) the effect is not quite as strong (4.9-fold over background). As in the “within”

module analysis, essential modules show a striking contrast in characteristics. About

6% of essential complex pairs show enrichment for negative interactions, and the number

of pairs showing positive enrichment is only slightly higher (6.5%).

Interaction enrichments between mixed pairs of essential and non-essential complex

show a slight preference for negative enrichment, echoing the results for pairs of non-

essential complexes, yet the rates are much lower for mixed pairs than they are for pairs

of either other type.

These results have several important consequences and begin to paint a picture of

how essential and non-essential components of the genetic interaction network connect to

themselves and to each other. Most importantly, the previous rule of thumb: “positive-

within, negative-between”, already an over-simplification, is categorically reversed when

applied to essential genes.

Perhaps the near uniform behavior of essential complexes in this regard suggests

they have a more constrained or fragile structure. Let a “fragile” complex be a complex

that is is non-functionalized if a single constituent gene is deleted. A fragile complex

performing a non-essential function would exhibit positive interactions just as suggested

in Fig. 3.2. A fragile complex performing an essential function would not survive any

single deletion, and its members would all be labeled as essential genes. Our data sub-

stitutes temperature sensitive alleles for deletions in the case of essential genes, subject

to the constraint that such alleles cannot be found for every essential gene. These alleles

are selected in a procedure with viability as a prerequisite, and so a fragile complex of
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even essential function can sustain a single perturbation of this type almost by defi-

nition. However, nearly every possible combination of these perturbations in a single

complex is enough to result in cell death. While non-essential complexes have some

negative interactions within themselves, they never reach this fever pitch, suggesting

that essential complexes perform essential functions (obviously) but have a higher rate

of “fragility” than non-essential complexes.

On the other-hand a “robust” complex, perhaps with a less intricate structure, could

survive a single deletion. These complexes would not contain many essential genes

(by definition) regardless of the importance of their function. These complexes would

show some negative interactions when multiple perturbations are introduced. These

interactions would be severe if the complex function were essential, and more subtle

otherwise. Or they may show very few interactions at all, consistent with the major-

ity of non-essential complexes showing neither negative nor positive enrichment. This

reasoning unifies the contrasting patterns for essential and non-essential within com-

plex interactions and suggests the existence of three protein complex classes in the cell,

depending on the structural and functional characteristics: “fragile-essential”, “fragile-

non-essential”, and “robust-non-essential”, with a fourth class “robust-essential” being

a sort of contradiction-by-definition.

The contrast in complex-complex interaction also begs some speculation. The rel-

ative equity of positive and negative interaction between essential complex pairs com-

pared to non-essential complex pairs is especially surprising given the differences in

predictive performance of the different interaction types seen in Fig. 3.6. It suggests

that essential complexes often “communicate” by coherent sets of positive interactions,

yet because positive interactions so seldom capture local functional information, these

communications likely connect more distal cellular functions. Further, the decrease in

“communications” of either type between essential and non-essential complexes suggests

a sort of two-tiered network, where core functional processes communicate to carry out

essential cellular function amongst themselves while non-essential processes do the same

for less important functions with limited cross-talk between the two sectors.

There may be an evolutionary explanation at work. To draw an analogy to computer

science, “kernel” functions handle processes that are most crucial to operation, while

the implementation details differ, kernel responsibilities are largely the same from one
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platform to another, regardless of the application. Direct access to system memory

sectors is an example of a function which cannot be allowed to fail, and is entrusted only

to the kernel. These are differentiable from “shell” functions, which are more adaptable,

fault-tolerant, and specific to the application at hand. User applications such as an email

program are examples of shell functions. In a computer system, the distinction is explicit

and intentional, and this property allows great flexibility in the programs we use (and

create) every day, allowing them to quickly adapt to meet changing requirements without

running the risk of disrupting essential functions. Of course, operating systems do not

evolve in the strict biological sense, but decisions made in the design of modern operating

systems do reflect lessons learned from previous versions. Perhaps the slight schism we

see between the essential and non-essential segments of the genetic interaction network

reflects an evolutionary solution to a similar problem. It may be that the segment

of the network responsible for core cellular processes is kept isolated from segments

governing environmental responses so that the latter can evolve more quickly without

fatal disruptions.

3.3.9 The predictive power of essential profiles

Previous work has shown that the potential for gene function prediction of genetic

interaction profiles, even using very simple methods, far exceeds that of individual in-

teractions [66]. This has to do with many factors. First and foremost, it is directly

related to the precision of the genetic interactions we call. Our precision at determining

real interactions is only about 50% (See Sec. 3.6), and of course, not all real interac-

tions will belong to co-annotated genes. However, the coherent structures formed in the

genetic interaction network can help us filter out the excess noise. Fig. 3.8 shows an

example of how properties like those seen in Sec. 3.3.8, monochromaticity and consis-

tent module-module interactions, can lead to high similarity scores when measured over

a multi-dimensional profile. Profile similarity scores in the SGA network are based on

concordance of thousands of observations. Even real genetic interactions may sometimes

connect very distantly related processes by some unknown mechanism, yielding what

this type of analysis would consider a false positive. However, it is far less likely that

a pair will show the same pattern of mechanistic relationships (and therefore genetic

interactions) over a large number secondary genes unless the pair is much more closely
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Figure 3.8: Profile similarity example. The tendency of genetic interactions to form
modular structures (Fig. 3.2) makes genetic interaction profile similarity a powerful
predictor of modular function. In this example, two positive interaction cliques (A–C,
D–G) also form bi-cliques of negative interactions. As a result of this structure, genes A
and B have a very high similarity and can be inferred to be co-modular, whereas genes
C and D are in opposing modules and have a very low similarity score. A weighted
network of all pairwise similarities (below left) is easily constructed, and a simple layout
algorithm (such as a spring model) can be applied to reveal the modular structures in
the data (below right).

related, thus these coherent relationships within and between modular structures make

profile similarity highly accurate at function prediction via guilt-by-association. Addi-

tionally, by predicting relationships from thousands of observations instead of one or

two, the predictions become much more robust to even very high levels of experimental

noise [127].

We therefore set out to compare the predictive power of our essential vs non-essential

queries. However, as noted in Sec. 3.3.6, essential genes are co-annotated to functional

categories at a very high rate, so we classified each array gene and ran the experiment

separately for the essential and non-essential arrays. Classification was done using a

k-nearest neighbor (KNN) classifier to evaluate similarities between array-gene profiles.

We could then compare the predictive power of sets of query genes (matrix rows) by
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whether or not their inclusion had a positive impact on the similarity scores of array-

gene pairs (matrix columns, See Methods B.1.5).

Fig. 3.9 shows the results of these predictions. The best predictions for both array

gene function come from using our entire set of queries as features to correlate over, and

this holds true for both non-essential array genes on the FG array and essential array

genes on the TS array (black lines, left and right respectively). Functional predictions

are performed independently for each Gene Ontology term the plot summarizes the

performance by counting how many GO terms (X) achieve a precision of Y , at 25%

recall (See Methods). When using all queries together as features to predict non-essential

gene function, we can make predictions with 30% accuracy for more than 200 GO terms,

and when predicting essential gene annotations nearly 300 GO terms reach that level of

precision. However, using only 100 deletion queries those numbers drop to only about 50

and 125 GO terms respectively (Y = 0.3, blue lines). DAmP alleles of essential genes do

not provide any more information than deletion mutants by this measure (green lines).

100 temperature sensitive queries, on the other hand provide much more useful features

to correlate over, giving us 100 and 250 GO terms with 30% precision at 25% recall (red

lines, non-essential and essential array prediction respectively).

The results show that, regardless of whether you are predicting the function of essen-

tial or non-essential genes, genetic interaction profiles of essential genes give you more

predictive power than non-essential profiles per screen (Fig. 3.9) That is, data from

our temperature sensitive queries allow us to make more correct predictions, across a

larger set of functional categories than do an equivalent number of non-essential dele-

tions. By this same measure of comparison, our DAmP perturbations of essential genes

are no more informative than standard deletions, an observation that agrees with an

assessment of individual interaction quality for DAmP alleles (data not shown).

3.3.10 The proteasome as an essential hub

The ubiquitin-proteasome system helps maintain control over cellular function by reg-

ulating the degradation of hundreds of different proteins in a highly specific and time

dependent fashion. The proteasome is generally comprised of two subassemlies, the

regulatory particle (19S), and the core particle (20S), which can be found in the nucleus

and/or the cytoplasm of all eukaryotes, archaea, and some bacteria. The S. cerevisiae
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Figure 3.9: Left: Predicting non-essential co-function for genes on the FG array. Right:
Predicting essential array co-function on TS array. The number of GO Terms (X) that
have a median PR25 score (precision at 25% recall, Y) is shown when array-array profile
similarity is calculated using different sets of queries. For each perturbation type, 100
random queries are selected and used to predict the function of all array genes (see
Methods B.1.5). This procedure is repeated for 50 iterations and curves represent the
mean results. The performance when using all queries combined is shown in black for
comparison. The total number of queries available of each type, for each dataset can be
found in Table 3.1.
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Figure 3.10: Proteasome genetic interactions. The two subassemblies of the proteasome
show a significant enrichment for negative genetic interactions (red, solid), but also
show a few positive interactions (green, dashed). Negative interaction density within
the 19/22S, within the 20S, and between the two are all significantly above background
by Fisher’s exact test (p < 10−121, 10−63, 10−65 respectively). Diamonds represent
essential genes, and circles represent non-essential genes.

proteasome is comprised of over 30 distinct proteins, and by this measure is the most

complex protease known [128].

We have genetic interaction data for 28 of subunits annotated to the two main sub-

assemblies, shown in Fig. 3.10. These two subassemblies are comprised almost entirely of

essential genes, and each of them is highly enriched for negative interactions, consistent

with observations from Sec. 3.3.8. Furthermore, they are highly enriched for negative

interactions between them, consistent with their tightly cooperative role as pieces of the

proteasome as a whole.

The proteasome also shows itself to be an important hub in the genetic interac-

tion network. Consistent with its role as a major regulator of many diverse biological

processes, the proteasome shows enrichment for both positive and negative genetic inter-

actions with genes from almost every major category of cellular function. Furthermore,

many of these interactions form characteristically coherent patterns. Fig. 3.11 shows

the 25 complexes from our 430-complex standard with which the proteasome shows a
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Figure 3.11: Proteasome module-module genetic interactions. The proteasome (center)
is enriched for negative genetic interactions with many other annotated complexes. Each
of these are shown, with their own “within” genetic interactions inset, and sorted by
broad cellular process. Among them are representatives from every level of protein
homeostasis control.

significant enrichment for negative interactions. They are sorted loosely according to

high-level cellular processes and each is shown with its own genetic interactions inset.

Perhaps most notably among them are representatives from every major process that

(along with the proteasome itself) regulate protein homeostasis. These include com-

plexes involved in chromatin and transcription, RNA processing, ribosome processing

and biogenesis, translation, secretion, and protein folding.

Owing to its highly conserved nature, its important role in the process of protein

homeostasis, and its high degree of structured genetic interactions, the proteasome rep-

resents an important addition to the complete genetic interaction network. Thus aside

from interesting differences in the structural properties of essential genetic interactions

and their increased predictive performance, the inclusion of essential genes in genetic

interaction experiments yields a single huge advantage: the inclusion of processes with
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a high proportion of essential genes. That is, the inclusion of essential genes not only

allows us to contrast them with their non-essential counterparts, but provides a first

look at genetic interactions for structures that are comprised almost entirely of essential

genes, like the proteasome.

3.3.11 Hierarchical structure in the genetic interaction network

Protein complexes can give valuable insight into the modular structures of genetic in-

teractions. However, they constitute only a small fraction of the genome, and so give

only a limited view provided by direct physical interactions. Additionally, they cap-

ture functional modules at one fixed level of specificity, with no flexibility to examine

functional modules of various scope. In order to examine genetic interaction patterns

at various resolutions, we first calculated similarities between all pairs of array genes

using data from both the FG array and the TS array. We then hierarchically clustered

these similarity scores (i.e. calculating correlations of correlations) and thresholded the

linkages at several levels of resolution (See Table B.1). The result was 5 “levels” of

perfectly nested clusters.

Level 1 is the broadest cluster definition. It contains a single cluster to which all

genes belong. Level 2 clusters represent broad cellular processes, and are enriched

for genes belonging to similarly broad functional categories such as metabolism, RNA

processing, chromatin/transcription and ER-Golgi trafficking.

Fig. 3.12 shows a matrix of the similarity data after hierarchical clustering. Overlaid

along the diagonal are boxes (beginning at level 2 in red) showing the various levels of

cluster resolution. Fig. 3.13 shows an alternative network representation of the data in

which nodes (genes) have been colored according to their level 2 membership. This view

confirms that many of the structures visible in the hierarchically clustered version also

present themselves in a spring-layout network visualization, a common tool for exploring

network structure.

Fig. 3.12 also shows an enlarged view of one of the level 2 clusters which highlights

more specific levels and shows modular correlation structure (green blocks off the di-

agonal). There are hundreds of clusters at more specific levels. For example, level 5

clusters show enrichment for extremely specific GO terms, such as sister chromatid co-

hesion, and intracellular protein transmembrane transport, and frequently contain only
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Figure 3.12: Defining hierarchical clusters. Above) Data from both arrays was inte-
grated to produce a similarity matrix with all array genes on both axes. This matrix
was clustered and four nested “levels” were defined by thresholding linkages. Level 2 is
comprised of 11 large clusters (red boxes). Level 3 (blue) further partitions each into
smaller segments and so on to 4 (green). Colors show Pearson correlations between
pairs of array genes, though the data are organized by row-wise similarity (correlation
of correlations), which is symmetric. Below) A magnification of the upper-left red-box.
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Figure 3.13: A map of cellular function. Each gene in the genetic interaction network is
represented as a single node with edges connecting nodes with high genetic interaction
profile similarity. Nodes are then laid out using a spring embedded model, then colored
by their membership in one of 14 “Level 2” clusters (Red boxes in Fig. 3.12). These
clusters form clearly coherent structures in the spring model layout.
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two or three genes. To facilitate fair comparisons of interaction degree at different levels,

we designed filtering criteria and only included genes that participated in functionally

relevant clusters at every level (See Sec. B.1.6).

With functional modules characterized at regularly defined levels of functional speci-

ficity, we are equipped to answer questions about where individual interactions fall in

relation to modules at each level. We first asked what the density of genetic interac-

tions was within clusters at each level. Fig. 3.14-A shows a simplified diagram of the

hierarchical clustering concept. At each level, the figure shows the density within func-

tional modules. Densities are shown directly as a function of functional specificity in

panel B. Negative interactions for both essential and non-essential genes become more

frequent with increasing functional specificity, and do so at a relatively constant rate.

Results for positive interactions among non-essential genes behave similarly, though the

rate increases more quickly. Interestingly, positive interactions between essential genes

(green solid line), actually get sparser with an increase in functional specificity. These

results are consistent with the observations made in Sec. 3.3.8 where non-essential com-

plexes showed enrichment for both negative and positive genetic interactions within

themselves, but essential complexes only showed enrichment for negative interactions.

These results suggest that these properties are not confined to protein complexes, but

describe more general properties of functional modules which hold over both broad and

narrow definitions of functional modules. Put another way, structural properties of the

genetic interaction network are not solely the pervue of small, specific, sets of genes

with well-defined function. They are apparent at every level, and describe connections

within and between even broad functional neighborhoods.

Fig. 3.14 poses the question, if two genes fall into the same cluster at level X,

what is the probability of them having a genetic interaction? However, an equally

important question comes in the form of the converse question, if two genes share a

genetic interaction, how likely are they to belong to the same cluster at level X? Or,

put another way, what fraction of genetic interactions are actually functionally specific.

Fig. 3.15 answers the latter question for varying definitions of functional specificity

derived from our hierarchical clusters. It shows that even when using level 2, the

loosest definition of functional “locality,” less than half of all genetic interactions are

local, regardless of sign or essentiality of participants. At the levels of locality generally
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Figure 3.14: Interaction density at several levels of functional specificity. A) Conceptual
rendering of nested hierarchical structures, showing real values for genetic interaction
densities at levels 1, 2 and 5. Each interaction type is shown once at every level, and
edge width denotes density. B) Interaction density measurements for all hierarchy levels.

considered in these studies (such as those described by protein complexes; levels 4–5)

as many as 80–90% of interactions can go unaccounted for.

These observations have broad implications for the interpretations of genetic inter-

actions, which are often based on intuitions like those seen in Fig. 3.2 and developed

in Sec. 3.3.8. While those models are certainly useful, and in one sense correct, they

can be misleading because they actually account for a small fraction of the genetic

interaction network. Instead, the majority of genetic interactions connect genes “long-

distance.” Interestingly, some measure of this distance can be found in the strength of

genetic interactions. Fig. 3.15-B shows the fraction of genetic interactions falling within

functional clusters at levels 1–5, binned by the strength of the genetic interaction. The

relative number of screened pairs in each level form a baseline for random expectation

(bars labeled “rnd”). The figure shows that more than half of extremely strong negative

interactions (ε < 0.64) fall within a cluster at the highly specific level 5. This represents

a striking enrichment over expectation and demonstrates power in the quantitative na-

ture of genetic interactions obtained through SGA. The trend is quite smooth, with
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Figure 3.15:
Genetic interaction locality. A) Each level in the hierarchical scheme is in turn treated
as a definition of “local” and the plot shows the fraction of all mapped interactions
which are local by that definition. B) All significant genetic interactions are binned by
magnitude, and within each bin the fraction of genetic interactions falling within cluster
at each level is shown. The result demonstrates the extent to which the magnitude of a
genetic interaction has power to predict its own functional specificity.
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less and less information about the locality of both essential (ExE) and non-essential

(NxN) negative interactions until the interaction magnitude falls to insignificant levels.

Positive interactions between non-essential genes also show a trend between interaction

magnitude and locality, though the effect is truncated as a result of SGA’s reduced dy-

namic range for measuring positive interactions. Still, nearly a third of strong positive

genetic interactions (ε > 0.4) fall within a highly localized, level 5 cluster. Positive

interactions for essential genes once again prove the exception. Across a wide range of

values for ε, very little can be inferred about interaction locality. This is largely due

to the fact that such functionally specific positive interactions between essential genes

are so rare, exhibiting a decrease in density, even as that density is measured in smaller

and smaller volumes.

3.4 Conclusions

The mapping of the first eukaryotic genetic interaction network is almost complete.

This work represents not only a new scale in genetic interaction analysis, but also, for

the first time, the systematic mapping of genetic interactions between essential genes.

Analysis of these essential gene interactions has shown striking differences between the

essential and non-essential segments of the network. The inclusion of essential genes

now allows us to embed the study of some of the most important cellular components,

such as the proteasome, in with more established methods of analysis for non-essential

genetic interactions.

Essential genes were shown to have more interactions, and these interactions are

more informative than those provided by non-essential genes. This increased informa-

tiveness extends beyond individual interactions, as we have shown that essential-gene

profiles provide a boost to functional predictions of other essential and non-essential

genes alike. The character of these interactions is also quite different from that of

non-essential interactions, an observation which forces us to update well established

conceptual models about the meaning behind negative and positive interactions respec-

tively.

More broadly, the completion of the genetic interaction network allows us to study

its structural characteristics at the broadest levels. Here we use clustering analysis to
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demonstrate the hierarchical organization of cellular function, and describe the density

and locality of genetic interactions at multiple levels of resolution, again uncovering a

fundamental difference between essential and non-essential genetic interactions.



Chapter 4

Genetic interactions and the

evolutionary trajectories of

duplicate genes

4.1 Chapter Overview

This chapter continues the theme of the last chapter concerning genetic interactions

derived from fitness observations of double-mutant yeast strains. Whereas the last

chapter gave a broad overview of the entire genetic interaction network, this chapter

focuses in the genetic interactions of duplicated genes. The central theme is that a single

gene often has the capacity to compensate for the functions of a closely related duplicate

sister, and that this capacity has consequences in the genetic interaction network. This

buffering ability causes functions which are common to both duplicate copies not to

manifest as genetic interactions, causing their overall degree to be lower than expected

and reducing their genetic interaction profile similarity. Instead, genetic interactions

are best suited as indicators of which of the pairs functions have diverged. I show

this divergence to be asymmetric, that this asymmetry is correlated to asymmetries in

other evolutionarily relevant properties, and offer a computational model encoding the

minimal set of assumptions required to produce asymmetric divergence.

This chapter has been adapted from a previously published study entitled “Genetic

86
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interactions reveal the evolutionary trajectories of duplicate genes” [78], on which I was

the first author. The article version was published in 2010 in Molecular Systems Biology.

The statistical analysis in the paper was carried out by me, though discussions

regarding the development of the models and their refinements generally involved my

advisor, and my colleague Jeremy Bellay. Specifically, the buffering model as presented

was initially developed by myself. The model describing self sustaining asymmetry and

the discrete version of the accompanying proof were written by me, as was all of the

necessary simulation code performed all of the statistical analysis. Data was collected

in various forms from many previous publications, and most but not all, of that data

was collected by me. Exceptions to this generally represent contributions from other

lab members who are using the data for unrelated projects. First drafts of all biological

examples were written by me, then sent to corresponding experts for additions and

revisions.

Jeremy Bellay helped in the development of the models and with the writing in many

intermediate drafts. Gabriel Musso and Balazs Papp are two biologists with expertise

in the study of duplicate genes. They helped me form my early intuitions as I got up

to speed in the field of duplicate gene evolution, and they also provided insight about

potential directions of particular interest to scientists in relevant communities (e.g. the

evolutionary biologists, duplicate gene researchers, and the yeast community at large).

They also provided critical comments on the final draft, and a few of the intermediate

drafts. Franco Vizeacoumar is an expert in the field of chromosome segregation and was

brought on to help us develop one particular biological example (Cik1/Vik1), which was

moved into the supplementary material for the final draft. Anastasia Baryshnikova and

Michael Costanzo were the two principle authors on the SGA paper from which the

data was taken [66]. Their principle contributions to this paper came mainly in the

final stages before submission where Anastasia helped with aesthetic modifications to

figures, and Michael helped in the development of biological examples, and editing

the final draft. Charles Boone and Brenda Andrews are principle investigators at our

collaborating labs at the University of Toronto. They provided critical feedback on

the interpretation and presentation of the models we developed, and along with Chad

Myers, oversee many projects seeking to explore and understand genetic interactions.
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4.2 Introduction

Gene duplication is a primary mechanism for generating functional novelty, because

it allows for the relaxation of selective constraints and thus provides an opportunity

for functional innovation or specialization [74]. Genome sequencing studies in several

species have revealed that a sizable fraction of many genomes are duplicated and that

paralogous genes retain a relatively high degree of sequence similarity [42, 43]. In

addition to the similarity of nucleotide/amino-acid sequence, functional genomic studies

have identified significant overlap between duplicate genes in terms of their physical

interactions [129, 130, 131, 132], fitness effects [133], metabolic activity [134, 90] and

gene expression patterns [135], providing further evidence to suggest that functional

similarity among duplicate gene families has been actively retained for over millions of

years [42, 136].

Genetic interaction analysis offers another means to assess functional relationships

between duplicated genes. A genetic interaction refers to an unexpected phenotype not

easily explained by combining the effects of the individual genetic variants [137]. This

phenomenon is also generally referred to as epistasis by the statistical genetics and evo-

lution communities and can refer to phenotypes that are either aggravated (synergistic

combinations) or alleviated (antagonistic combinations) in combination with other vari-

ants. Synthetic lethality represents an extreme form of negative genetic interaction in

which mutation of a single gene, although having little or no effect on the organism,

results in cell death when combined with mutation of a second gene [122, 138]. Negative

genetic interactions are often taken as evidence of a functional relationship and, as a

result, can be used to directly assess the extent of functional redundancy between genes.

Indeed, a systematic survey identified negative interactions between 35% of gene pairs

arising from the whole-genome duplication (WGD) event [100]. This rate represents

an approximately 20-fold enrichment over random pairs and confirms that functional

redundancy is pervasive among duplicate pairs [139, 140, 100]. Despite this wealth of

data, we lack models that reconcile the long-term preservation of redundancy among

duplicate genes with their patterns of functional divergence.

Synthetic genetic array (SGA) methodology enables large-scale analysis of genetic

interactions in yeast [88, 83, 66], which can extend our view beyond individual duplicate



89

pair interactions to systematically examine the subsets of genetic interactions between

duplicate genes and the rest of the genome. Analogous to studies based on protein-

protein interactions (PPIs), the number of negative genetic interactions for a given

duplicate pair and the extent to which their interactions overlap should provide insight

into functional similarities and relationships between duplicate gene pairs. Furthermore,

genes belonging to the same biological pathway or protein complex often share similar

profiles or patterns of genetic interactions [83]. As a result, genes can be assigned into

specific pathways or complexes by virtue of their genetic interaction profile similarity,

as measured across a large fraction of the genome [83, 66]. This approach was adopted

to examine the interaction profiles for 90 duplicate genes within a functionally biased

subset of gene deletion mutants queried against itself [141]. This analysis showed that

even though duplicate genes display negative genetic interactions with each other, they

also appear to behave like singleton genes, in that they exhibit numerous unique genetic

interactions; the authors suggest that duplicates are functionally redundant but have

divergent roles because they often fail to provide a genuine backup when another gene

is deleted [141].

In the current work, we explore evidence for duplicate gene redundancy in their

genetic interaction profiles and further explain the previously observed lack of similar-

ity among the interaction profiles of duplicate gene pairs [141]. Specifically, we propose

that the established ability for many duplicate genes to buffer one another under certain

conditions should cause genetic interactions related to common functions to be hidden

from our experimental method. Furthermore, as duplicates evolve away from complete

redundancy, non-overlapping genetic interactions should appear, reflecting their diver-

gent roles. We find evidence to support these hypotheses in a genome-wide collection

of quantitative genetic interactions in Saccharomyces cerevisiae [66]. We show that ex-

ceptions to the model provide insight into evolutionary mechanisms of duplicate gene

retention by distinguishing partially redundant genes maintained because of their func-

tional divergence [74, 142, 143, 144, 145] from those pairs retained because increased

gene dosage is beneficial to the organism [146, 147, 141]. Finally, we provide evidence

based on genetic interaction profiles supporting an asymmetric model of divergence, and

show a connection between genetic interaction asymmetry and other physiological and

phylogenetic properties.
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4.3 Results and Discussion

4.3.1 A hypothesis about the buffering of genetic interactions after

gene duplication

We hypothesize that immediately after a duplication event, duplicate genes are identical

and presumably redundant, and thus, the only genetic interaction that either paralog

exhibits should be with its sister gene (Fig. 4.1A and B). Such a scenario cannot persist

without selection pressure to maintain the now redundant copies [148]. As the pair

diverges, the selective pressures that maintained the ancestral gene will begin to act

on each duplicate copy individually, creating unique genetic interactions (Fig. 4.1C).

Implicit in this hypothesis is the fact that genetic interactions are buffered and un-

detectable immediately after a duplication event, and then are gradually revealed in

one sister duplicate or the other as the pair diverges (Fig. 4.1C). The interactions that

emerge after duplication may include the original ancestral genetic interactions that

were buffered by the duplication or they may reflect a new function unique to one mem-

ber of the pair, instances of sub- or neo-functionalization, respectively.On the basis of

this hypothesis in which common functions are buffered, genetic interactions should re-

veal how paralogs have diverged, but seldom reveal their common functions. Requisite

to this reduction in common interactions is the ability of a duplicate gene to partially

compensate for the loss of its sister, which has been well established in previous studies

(Fig. C.1A; [133, 141, 139, 140, 100].

4.3.2 Large-scale SGA data confirms an enrichment of negative ge-

netic interactions among duplicates

To first affirm previous evidence for duplicate redundancy, we extracted genetic in-

teractions for 576 duplicated S. cerevisae gene pairs (461 WGDs and 115 small-scale

duplicates (SSD); see Materials and Methods C.6) from our recent quantitative and

genome-scale SGA analysis [66]. This study captures both negative interactions, those

in which the double mutant was less fit than expected (synergism of mutation effects),

and positive interactions, those in which the double mutant was more fit than expected

(antagonism of mutation effects). Because our SGA study focused on only genetic in-

teractions involving two genes, we restricted our analysis to two-gene duplicate families.
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Figure 4.1: A model for the buffering of genetic interactions by partially redundant
genes. The figure illustrates the relationship between a functional membership network,
the observable genetic interaction network and the corresponding genetic interaction
profiles, over the course of a duplication event and subsequent divergence. (A) Gene
A has no redundant partner and its set of functional relationships is revealed through
negative genetic interactions. The interaction profile for gene A is complete. (B)
Immediately after duplication, genes A’ and A” are fully redundant and their functional
relationships are shared. Because each is capable of performing their common functions
without the other, the deletion of A’ and A” have negligible effects and do not exhibit
negative interactions with any other genes. However, the simultaneous deletion of A’
and A” reveals the original phenotype of their ancestor, and thus shows a negative
genetic interaction. (C) A’ and A” diverge, the redundancy becomes incomplete and
unique deletion consequences emerge for each duplicate. Some of the negative genetic
interactions observed for the ancestor gene A are not observed following duplication and
divergence; for example, despite the functional relationship between A’ and A” and Z,
negative interactions are not observed with Z. A” has evolved a new relationship with
function 4(+). A’ lacks this ability and thus we see a genetic interaction between A”
and V.
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A primary requisite of the duplicate buffering hypothesis is that sister duplicates

should show negative genetic interactions with each other, indicating at least partial

redundancy among paralogs (Fig. 4.1C). We found a striking enrichment for negative

genetic interactions between sister duplicates (67/205 pairs; 33%; Fig. 4.2A; Table 4.1),

which was consistent with previous findings (35% [100]; 34% [140]; 55% [139]). This is

substantially higher than the negative genetic interaction rate among randomly selected

gene pairs (1.8%; [66], as well as the corresponding rate between physically interacting

pairs (7%; p < 5 × 10−23; Fig. 4.2A; see Materials and Methods C.6) or pairs sharing

specific functional annotations (4%; [94]). Although enrichment was observed for both

WGD and SSD paralogs, the genetic interaction rate was significantly higher among

WGD pairs (p < 5 × 10−2; Fig. 4.2B; see Materials and Methods C.6), supporting the

greater retained functional overlap observed in general among WGD paralogs [130, 149].

However, when ribosomal duplicates are removed from consideration, the difference

between WGD and SSD is no longer significant (See Appendix C.1 for more information

on ribosomal duplicates).

4.3.3 Genetic redundancy between duplicates causes disparate inter-

action profiles

Our hypothesis about duplicate gene buffering suggests that duplicate genes will show

fewer genetic interactions with other genes, because they functionally buffer one another

(Fig. 4.1). Indeed, we found that duplicate genes, on average, exhibit 34 interactions

compared with 55 interactions observed for singletons when assayed against a set of ∼
1,700 functionally diverse query mutant strains (p < 6× 10−16; Fig. 4.2C). Notably, the

decrease in negative genetic interactions is more apparent on gene families consisting

of more than two members. Only 5% (29/554; p < 1 × 10−27; see Materials and

Methods C.6) of duplicates belonging to large gene families exhibit negative genetic

interactions with each other, illustrating the impact of higher-order buffering and/or

condition-specificity among repeatedly duplicated genes. To control for the tendency of

certain classes of genes toward duplication [150, 151], we examined the number of genetic

interactions (union) across a range of double-mutant fitness values, and confirmed that

the deficit in genetic interactions is not due to a bias in duplicates toward gene pairs

that are not important under the experimental conditions studied (Fig. C.1B).
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Figure 4.2: The distribution of genetic interactions supports the duplicate buffering
hypothesis. (A) The proportion of negative interactions among screened pairs for du-
plicate pairs, singleton pairs with a protein-protein interaction (Materials and Methods
C.6) and random singleton pairs. Error bars represent the error on a binomial proportion
(p < 5× 10−23; Binomial proportion test). (B) The proportion of negative interactions
among duplicate pairs differs between modes of duplication. Whole- genome duplicates
(WGD) exhibit a slightly higher rate of negative interaction than their small-scale du-
plication (SSD) counterparts (p < 5× 10−2; Wilcoxon rank-sum). The rate of negative
interactions within SSD pairs is still much higher than related singletons (Fig. 4.2A), in-
dicating that the functional overlap observed within duplicate pairs is not solely driven
by WGD pairs. (C) The number of genetic interactions (both positive and negative)
is plotted for all non-essential duplicates and singletons. Genes shown represent those
found on the SGA deletion array and thus the counts represent the number of query
genes with which a given array gene shows an interaction (see Materials and Methods
C.6). Means are shown and error bars represent one standard deviation of the mean over
1000 bootstrapped samples of the distribution. (p < 6 × 10−16; Wilcoxon rank-sum)
(D) Although duplicate genes show far greater profile similarity than random pairs,
they show significantly less similarity than physically interacting pairs (p < 5 × 10−6;
Wilcoxon rank-sum). Median cosine similarity is shown (Materials and Methods C.6).
Error bars represent the standard deviation of the median over 1000 bootstrapped sam-
ples.
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In addition to fewer genetic interactions, our hypothesis suggests that sister dupli-

cates should not share many interactions in common despite common function (Fig.

4.1C). Indeed, we found that sister duplicates share an average of 1.2 negative genetic

interaction partners, whereas genes encoding physically interacting proteins (a proxy for

functionally related genes) share an average of 7.2 negative interactions (see Materials

and Methods C.6). This trend extends beyond the counting of discrete interactions

to more continuous measures of genetic interaction profile similarity. Duplicate pairs

exhibit lower interaction profile similarity than functionally related gene pairs or genes

encoding physically interacting proteins (p < 5 × 10−6; Fig. 4.2D; C.6). The lack of

genetic interaction profile similarity among a number of partially redundant duplicate

pairs was previously observed in Ihmels et al. [141], in which the authors attribute the

phenomenon to incomplete buffering, that is, divergence. Differing genetic interactions

certainly convey differentiation of function; however, our updated model (Fig. 4.1) al-

lows us to additionally explain how profile dissimilarity can also be a consequence of

retained functional overlap. Thus, genetic interaction profiles for duplicate pairs are

dissimilar, both for reasons of functional redundancy and divergence.

4.3.4 Dosage duplicates are exceptions to the buffering model

Assuming duplicate redundancy, our hypothesis about duplicate gene buffering suggests

that only genetic interactions resulting from functional divergence will be observable.

However, this reasoning should not apply to an important class of duplicate genes,

namely, those selected for increased protein product [74, 141]. For example, Ihmels et al.,

noted that duplicates expressed in high abundance have retained very similar expression

profiles, indicating the cell’s need for both copies simultaneously. In general, if the cell

benefits from higher gene dosage immediately on duplication, then the overlapping

function of the duplicate copies is not truly redundant and should induce interactions

in both sisters’ profiles. Indeed Ihmels et al. [141], noted several examples of high-

abundance duplicates with significantly correlated genetic interaction profiles. Thus,

dosage duplicates appear to behave differently in the genetic interaction network than

duplicates retained because of functional divergence.

To determine whether genetic interaction profiles could generally distinguish dupli-

cates under dosage selection, we first compiled a set of likely dosage-related duplicates
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based on independent phylogenetic and genomic data (see Materials and Methods C.6).

Using a combination of sequence and gene expression- related metrics, we defined a

class of 80 putative “dosage” duplicate pairs. Importantly, this class was enriched

for known dosage-mediated paralogs [146, 147, 141]. For example, 23 of the 80 pairs

were ribosomal duplicates, which represents a significant enrichment (“Translation” GO

term; p < 3 × 10−5; hypergeometric cdf). Furthermore, deletion of one of the dosage

paralogs resulted in a more severe fitness defect than other paralogs, suggesting that

the dosage duplicates tend to lack the redundancy exhibited by other duplicates (Figs.

C.2B,C). The overall proportion of dosage pairs in our set is relatively low (∼ 14%), but

this is likely a conservative estimate for duplicates in general (Fig. C.2A). Indeed, we

found that dosage duplicates exhibit strikingly different characteristics in the genetic

interaction network. Specifically, dosage duplicates show significantly greater genetic

interaction profile similarity than other duplicates (Fig. 4.3A). In fact, dosage dupli-

cates are statistically indistinguishable from highly correlated singleton gene pairs that

encode physically interacting proteins (Fig. 4.3A; p > 0.4; Wilcoxon rank-sum test;

Materials and Methods C.6).

We speculated that the buffered interactions of non-dosage duplicates (for example,

A’–Z and A”–Z in Fig. 4.1C) could be present in the genetic interaction profiles of

functionally related genes that lack a duplicated partner. To identify these function-

ally related “proxy” genes, we focused on genes encoding proteins that exhibit physical

interaction with both protein products of a duplicate gene pair (Fig. 4.3B; Materials

and Methods C.6). We reasoned that these proxy proteins may have physically inter-

acted with the ancestor of the duplicates and, thus, have a genetic interaction profile

resembling that of the ancestor gene. Subsequent to duplication, either these interac-

tions were distributed uniquely between the modern copies (sub-functionalization) or

new functions arose (neo-functionalization) as the pair diverged. Comparing the genetic

interaction profiles of the duplicate genes with their corresponding proxy, we found that

the large majority of divergent duplicate gene profiles are more similar to the proxy

gene profile than to their corresponding sister’s profile (Fig. 4.3C). In contrast, dosage-

mediated duplicates more often show higher profile similarity to each other than they

do to the proxy gene (Fig. 4.3C), suggesting that these genes tend not to buffer one

another. Thus, genetic interaction profile similarity appears to be an effective way to
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separated into dosage and non-dosage (divergent) classes (Materials and Methods C.6).
Divergent duplicates show significantly less profile similarity than either dosage dupli-
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rank-sum test). Dosage duplicates are not statistically distinguishable from physically
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duplicate pair (A’/A”). A proxy gene (P) is identified by finding a protein that shares
protein-protein interactions with both duplicates (see Materials and Methods C.6), and
P is used to approximate the genetic interaction profile of the common ancestor (that is,
A). The number of times a duplicate’s similarity with its sister exceeded its similarity
with P is shown as a percentage, and error bars represent error on a binomial propor-
tion. Dosage and divergent pairs are counted separately. In terms of genetic interaction
profiles, divergent pairs more closely resemble their common neighbor than they do each
other. In contrast, dosage pairs more closely resemble each other. The probability that
these two classes come from the same binomial distribution is small (p < 9× 10−5).

distinguish dosage duplicates from duplicates undergoing functional divergence.

4.3.5 Duplicates exhibit asymmetric genetic interaction patterns

On the basis of the buffering model, genetic interaction profiles should reflect the unique

roles of duplicate genes undergoing functional divergence. Ohno [74] hypothesized that

once a duplicate begins to accumulate mutations, the selection pressure will focus on the

duplicate retaining the ancestral function and, therefore, most of the divergent changes

should be confined to one copy. Although controversial [152, 153, 154, 155], evidence

supporting such asymmetric divergence has been extracted from duplicate sequence data

[156, 157, 42, 158], PPIs [152, 159], and expression patterns [135, 160].
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The distribution of genetic interactions within each duplicate pair strongly supports

a model of asymmetric evolution. We examined the ratio of unique negative genetic

interactions for each pair of duplicates (max:min, see Materials and Methods C.6) and

found that the ratio exceeds 4:1 for 430% of gene pairs surveyed (109/351), and more

than 17% (60/351) of duplicate pairs exhibit a ratio greater than 7:1 (Fig. 4.4A). The

observed interaction ratios are significantly greater than expected under a null model

of symmetric interaction (p < 1 × 10−100; Wilcoxon rank-sum test; see Materials and

Methods C.6), suggesting that genetic interactions tend to appear preferentially in one

member of each duplicate pair.

We suspected that the asymmetric distribution of genetic interactions could be par-

tially explained by asymmetric rates of sequence evolution, which provide an indepen-

dent measure of selection pressure. Previous work showed a correlation between protein

dispensability and evolutionary rate among duplicate genes [161]. A recent study of

WGD pairs has also shown that both sisters undergo a period of accelerated change,

but while one of them evolves much slower and is preferentially retained across different

yeast species, the other evolves much faster and is preferentially lost [155, 158]. In-

terestingly, we found a related trend in which the rapidly evolving member had fewer

genetic interactions than the more slowly evolving partner in 34/51 of previously defined

asymmetric duplicate pairs ([42]; p < 0.02; binomial). The bias was more pronounced

for pairs whose unique genetic interaction degree ratio exceeded 7:1. In this case, the

rapidly evolving member was associated with a lower interaction degree for 27/38 pairs

belonging to this group (Fig. 4.4B; p < 7× 10−3). Furthermore, there was a significant

correlation between the disparity in sequence evolution rates and the asymmetry of in-

teraction degree (r = 0.318, p < 0.03), suggesting that the magnitude of asymmetry in

genetic interaction degree was predictive of asymmetry in selection pressure acting on

duplicate gene sequences. Interestingly, the set of duplicates with asymmetric evolution

rates is significantly depleted for dosage-mediated pairs (p < 2× 10−3; hypergeometric

cdf; See Appendix C.2).

In searching for physiological evidence to corroborate the marked asymmetry in

interaction degree, we examined PPIs involving gene pairs with the most extreme ratio

of genetic interactions (7:1). Of these, 35 pairs exhibit at least one PPI for each member,

and for 25/35 (71%) of these pairs, the partner with more genetic interactions also



98

tended to have retained or gained more physical interactions (p < 9 × 10−3; binomial;

Fig. 4.4B). Genetic interaction degree asymmetry as a measure of selection pressure

is also predictive of measurements of single-mutant fitness, wherein we observed that

the partner with more genetic interactions has a larger impact on fitness when deleted

(p < 2 × 10−8; binomial; Fig. 4.4B). We observed a similar trend with the number of

chemical environments in which each duplicate sister displays a phenotype [56], wherein

the duplicate sister with the higher genetic interaction degree generally had a higher

chemical-genetic degree (p < 3× 10−5; binomial; Fig. 4.4B; see Materials and Methods

C.6). Interestingly, these trends between duplicate sisters mirror similar trends related

to genetic interaction degree across the whole genome [66, 162].

We also found that WGD sisters with more genetic interactions tend to have higher

sequence similarity to the remaining member of the pair in other WGD species (S.

castellii, p < 2×10−3; Candida glabrata, p < 1×10−2; binomial; Fig. 4.4B; see Materials

and Methods C.6). Specifically, in 11 of 13 instances in S. castellii and in 12 of 16 such

cases in C. glabrata, the higher degree sister showed higher sequence identity to the single

remaining WGD sister. Additionally, the duplicate sister with more genetic interactions

tended to have a greater mRNAexpression level [163] for 32 out of the 51 pairs (63%;

p < 0.046; binomial), although this difference was not significant in an independent

expression level study [164]. Interestingly, we found that the rate of negative interactions

between sisters in the asymmetric set was 46%, which is no less than the background

rate for duplicates (Fig. C.3A), indicating retained functional overlap for even these

highly skewed pairs.

The asymmetric distribution of genetic interactions among duplicate pairs motivated

us to question whether the overall deficit of genetic interactions among duplicate genes

is a result of buffered interactions distributed in both duplicate copies evenly or rather

in only one paralog. Strikingly, we found that, on average, one of the two duplicates

had a comparable or larger number of interactions than singletons while the sister has

significantly fewer interactions (Fig. 4.4C). The slightly higher number of interactions

for the high-degree duplicate gene appears to be a result of an important bias among the

ancestors of the duplicates, as they became statistically indistinguishable from singleton

genes after controlling for gene importance (Fig. C.3B). Thus, the overall deficiency of

duplicate genes for genetic interactions (Fig. 4.2C) as well as the asymmetric distribution
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of modern interactions (Fig. 4.4A) suggests that the majority of the interactions of the

common ancestor are associated with a single member of the pair.

4.3.6 Dissecting the divergent functions of duplicates through genetic

interaction profiles

Genes belonging to the same biological pathway or protein complex tend to share similar

patterns of genetic interactions, and similarity between genetic interaction profiles has

proven effective for predicting gene function and defining pathway and complex mem-

bership [66]. In this study, we exploited genome-wide genetic interaction profiles along

with specific interactions to identify the functional differences that distinguish divergent

gene pairs. For example, SSO1 and SSO2 encode SNARE proteins, core components

critical for the specificity of membrane fusion and intracellular transport in eukaryotic

cells [165, 166]. Although vesicle fusion with the plasma membrane is dependent on

either SSO1 or SSO2 gene function, previous studies have shown an SSO1 -specific re-

quirement for prospore membrane formation during sporulation [167, 166]. We noticed

that genes involved in chitin biosynthesis (CHS3, CHS5 and SKT5 ) and polarized cell

growth (BUD6, BEM3, and AXL2 ) shared genetic interactions in common with SSO1

(r > 0.14; Table 4.1; see Materials and Methods C.6) but not with SSO2 (r < 0.04),

suggesting a specific role for SSO1 in these processes during vegetative growth. These

genetic interaction profile similarities support previous observations from high-content

screening experiments, indicating that SSO1 is important for normal actin localization,

and deletion of SSO1 results in more severe actin mislocalization (21%) compared with

a sso2∆ mutant strain ([168] 4%; Fig. C.4).

We found that SSO1 and SSO2 also varied extensively in terms of their interaction

degree. In fact, the ratio of SSO1:SSO2 interactions was among the most asymmetric,

with 149 negative interactions for SSO2 compared with only 15 negative interactions

involving SSO1. Consistent with evolution of a condition-specialized function, previous

studies suggest that functional divergence has led to a more prominent sporulation-

specific function for SSO1 [167, 166]. The reduced number of interactions observed for

SSO1 may reflect its specialized function, in part, because genetic interactions were
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with a unique interaction ratio exceeding 7:1 (60 pairs) are compared across several
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low interaction degree bin by comparison with its sister. Each pair was then examined
for agreement in directionality with the indicated data set. For example, in 27 out of 38
pairs, the sister with higher genetic interaction degree also has a lower rate of sequence
change. Comparisons with < 60 pairs reflect missing pairs in the secondary data set.
Also shown are p-values resulting from a binomial test in which genetic interaction
degree is assumed independent of the other data type. (C) The number of negative
genetic interactions for singletons and duplicates. Each duplicate pair was sorted by
genetic interaction degree and means are shown. Dotted lines represent the same process
applied to the simulated distribution from Fig. 4.4A. The difference between high-degree
duplicates and singletons is significant (34.9 versus 37.2; p < 5× 10−8; Wilcoxon rank-
sum); however, the mean number of singleton interactions is reduced by a large portion
of singletons with no measurable deletion effect, and the significant difference presented
here subsides when controlling for gene importance (Fig. C.3B).
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Figure 4.5: Functional analysis of duplicate pair CIK1–VIK1 (A) Genetic interaction
profile similarity. Similarity scores were taken from Costanzo et al. [66] and represent
a combination of array side and query side correlations (Materials and Methods C.6).
Nodes shown include all first neighbors of the three primary genes of interest (CIK1,
VIK1 and KAR3 ). A threshold of 0.2 was used as in Costanzo et al. [66] and edges
between first neighbors of genes of interest have been removed for clarity. (B) Genetic
interactions. SGA genetic interaction scores from Costanzo et al. [66] highlight differ-
ences between CIK1 and VIK1. Green lines represent positive interactions, whereas
red lines represent negative interactions. The opacity of the line is proportional to the
strength of the interaction.
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CHS3 CHS5 SKT5 BUD6 BEM3 AXL2

SSO1 0.212 0.200 0.245 0.288 0.144 0.194

SSO2 -0.016 -0.060 -0.001 0.032 -0.082 -0.001

Table 4.1: Select profile correlations for duplicates SSO1 and SSO2 This table shows
differences in composite profile correlations which highlight functional differences be-
tween SSO1 and SSO2. Scores shown reflect both array side and query side interactions
and are taken from Costanzo et al. 2010[66]. SSO1 shows high profile similarity with
genes involved in chitin biosynthesis (CHS3, CHS5, SKT5 ) and polarized cell growth
(BUD6, BEM3, AXL2 ), suggesting a specific role for SSO1 in these processes during
vegetative growth. SSO2 lacks genetic interactions in common with these genes and
thus exhibits very poor similarity. Genetic profile similarities reported here support
previous observations from high-content screening experiments indicating SSO1 is im-
portant for normal actin localization and deletion of SSO1 results in more severe actin
mis-localization (21%) compared to a sso2∆ mutant strain (4%, Fig. C.4)

mapped under vegetative conditions when sporulation is not required. In a similar ex-

ample, highly asymmetric genetic interaction degree may reflect sporulation or meiosis-

specialized function for cell wall assembly duplicates GAS1 and GAS2, suggesting that

this may be a common basis for imbalances in genetic interaction degree (See Appendix

C.3).

Genetic interaction profile examination yielded another interesting example in dupli-

cate pair CIK1/VIK1. Comparison of profile similarity and interaction degree of CIK1

and VIK1 demonstrates the ability of genetic interaction analysis to distinguish subtle

functional differences between paralogous genes. CIK1 and VIK1, which arose from the

WGD event, encode kinesin-associated proteins that form separate heterodimeric com-

plexes with Kar3, a minus-end-directed microtubule motor protein, to mediate a diverse

set of microtubule-dependent processes [169]. Despite strong sequence and structural

similarities, CIK1 and VIK1 exhibit different genetic interaction profiles, suggesting

that these proteins have specialized functional roles. Although both proteins depend on

physical interaction with Kar3 for proper function, CIK1 has more genetic interactions

in common and is more closely correlated to the KAR3 interaction profile (CIK1–

KAR3 ; r = 0.5; see Materials and Methods C.6) compared with its duplicate VIK1

(VIK1–KAR3 ; r = 0.3). Consistent with closely related interaction profiles (Fig. 4.5A),

kar3∆ and cik1∆ deletion mutants share several phenotypes including abnormally short

spindles, chromosome loss and delayed cell cycle progression [170, 169]. In contrast, a
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vik1∆ mutant strain does not exhibit any overt phenotype [169].

In addition, VIK1 and CIK1 differ in their gene expression and protein localiza-

tion [169]. Interestingly, we found that CIK1 and KAR3 interaction profiles more

closely resemble the profiles of genes involved in chromosome cohesion and segregation

(GO:0000070; p < 8 × 10−8; hyper-geometric cdf; Fig. 4.5A), whereas VIK1 was more

correlated to genes involved in microtubule assembly and stabilization (GO:0007017;

p < 2 × 10−8; Fig. 4.5A). Our findings support a previous hypothesis [169] and sug-

gest that the Cik1–Kar3 and Vik1–Kar3 heterodimers serve distinct, yet related, roles

during cell division. In addition to profile similarity, examination of individual genetic

interactions also highlight potential functional differences between these microtubule

motor-associated proteins. We noticed strong asymmetry in the ratio of CIK1:VIK1

interaction degree and, consistent with a more severe deletion phenotype, we found

that CIK1 has 4.5-fold more negative genetic interactions than VIK1. Interestingly,

several genetic interactions connecting VIK1 and CIK1 to common partners differ in

their type. In particular, the plus-end microtubule motor encoding gene, CIN8, shares

a modest positive genetic interaction with VIK1, whereas a cik1∆–cin8∆ double mu-

tant displayed a synthetic sick/lethal phenotype (Fig. 4.5B). Findings derived from our

large-scale survey of genetic interactions support previous observations that disruption

of VIK1, but not CIK1, partially suppresses the temperature-sensitive growth defect

of a cin8–3 kip1∆ double mutant [169]. One role for the Kar3 microtubule motor dur-

ing vegetative growth is thought to involve opposing the action of the Cin8 and Kip1

motor proteins. The VIK1 -specific positive genetic interactions reported here and else-

where [169] suggest that a CIN8 and KIP1 antagonistic function may be unique to the

Vik1–Kar3 heterodimer, thus distinguishing between Vik1–Kar3 and Cik1–Kar3-related

functions. In another example, we found that BIM1 shared a positive interaction with

CIK1 (bim1∆ suppressed the cik1∆ growth defect) and a negative interaction with

VIK1 (Fig. 4.5B). Bim1 is a microtubule-binding protein that localizes to the plus end

of the microtubules where it is required for proper positioning of the nucleus during

nuclear migration [171, 172]. Recent studies have shown that Bim1 also localizes to the

spindle midzone to stabilize microtubules during anaphase [173]. Interestingly, Kar3

also exhibits different sub-cellular localization patterns that are dependent on physi-

cal interaction with Vik1 or Cik1. During vegetative growth, Kar3 associates with the
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spindle midzone in a Cik1-dependent manner [174], whereas the Kar3–Vik1 heterodimer

localizes to the spindle poles [169, 175]. Although the nature of the genetic interactions

is unclear, the negative interaction between BIM1 and VIK1 might reflect the failure

in nuclear positioning due to unstable microtubules while positive interaction observed

between BIM1 and CIK1 might reflect opposing functions involved in stabilizing and

destabilizing the microtubules [174, 173].

In both pairs of duplicates we investigated in detail (SSO1–SSO2 and CIK1–VIK1 ),

the duplicate genes exhibited a strong negative interaction between sisters. This suggests

that despite evidence for functional specialization and dramatic asymmetry in their

overall interaction degree, sister duplicates retain the ability to partially compensate

for the loss of one another, and this trend appears to be relatively common across

duplicates in yeast (Fig. C.3A). We also noted that, although genetic interactions can

resolve functional differences between sisters, in these cases, the differences appear to be

relatively subtle: context or conditional specialization in the case of SSO1–SSO2 and

localization specialization in the case of CIK1–VIK1.

4.4 Conclusions

We examined how partial redundancy and the functional divergence of duplicate gene

pairs relates to their genetic interaction profiles.We found evidence for the hypothesis

that immediately after duplication, duplicated gene pairs will mask each other’s in-

teractions with other genes, and that as the pair evolves apart, interactions reappear,

highlighting functional differences between them.We have also shown that genome-wide

genetic interaction profiles provide insight into the mechanisms of duplicate gene evo-

lution by distinguishing duplicate pairs maintained for gene dosage effects from those

retained because of functional divergence. These findings clarify previous observations

about the surprising prevalence of genetic interactions for apparently redundant dupli-

cate genes [141], and provide evidence that they do indeed reflect functional redundancy

as well as functional divergence. Finally, we also showed that a disproportionate dis-

tribution of genetic interactions among gene pairs supports the asymmetric evolution

of duplicate genes whereby one member of a duplicate pair is under stronger selective
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Figure 4.6: Updated model of asymmetric duplicate genetic interaction evolution.
Asymmetry is rapidly established through the absence of purifying selection on a du-
plicate pair, but in rare cases, the quickly evolving duplicate confers a fitness advan-
tage through functional or context specialization (Function 3). Subsequent selection
on Function 3, however, also maintains a limited capacity of duplicate A” to carry out
Function 2 (dotted lines). In this scenario, there is overlap in function, but the efficacy
of the duplicate pair with respect to a particular function differs, and so the buffer-
ing is asymmetric. Fewer genetic interactions are observed for A” either because of its
less constrained function or because of its role in other environmental or developmental
contexts.

pressure. The skewed distribution is correlated with differences in rates of sequence evo-

lution, PPI degree, single-mutant fitness defects and sensitivity to a variety of chemical

environments, suggesting that one member of the gene pair assumes a predominant role

under standard vegetative growth conditions.

Previous studies suggest that the asymmetric accumulation of loss-of-function muta-

tions in many duplicate pairs is established quickly based on sequence evidence from the

WGD event that indicates that the identity of the quickly evolving sister is consistent

across several yeast species [154, 155, 158]. On the basis of these observations combined

with results from this study, we propose a refined model of duplicate evolution (Fig. 4.6).

Following a duplication event that does not provide a dosate-dependent fitness advan-

tage, we argue that one member of a duplicate pair should accumulate loss-of-function

mutations more quickly due to relaxed purifying selection alone (See Appendix C.4;

Figs. C.5,C.6). In essence, a degenerate paralog is more accommodating of mutations

and stands a higher chance of sustaining a mutation affecting any remaining redun-

dant functions (See Appendix C.4). In many cases, the fast evolving duplicate meets

the common fate of non-functionality and eventual gene loss. If early function loss is

complementary, the pair is put on a path toward functional partition. Gene properties
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that are necessary for multiple functions may be preserved in both copies if previous

mutations caused these functions to fall to different sisters. Such an arrangement would

render a complete functional divergence impossible. We note that this natural pro-

gression of asymmetry should occur for any duplication event, either whole-genome or

small-scale, although the means of preservation of a duplicate pair might be distinct

depending on the context. Presumably, in some cases, sister duplicates simply main-

tain complementary but essential roles despite their asymmetry, whereas in other cases,

the asymmetric configuration provides some fitness advantage that ultimately enables

a selective sweep.

We cannot rule out the possibility that neo-functionalization may have a role in the

preservation of some duplicate pairs and their subsequent asymmetric evolution, but if

that is the case, the quickly evolving duplicate appears to take on a more inconspicuous

functional role in most pairs. Our data argues against dramatic neo-functionalization

and instead suggests that the rapidly evolving duplicate retains a subset of the an-

cestral function for which it has become optimized (Fig. 4.6). Importantly, despite

specialization, the high rate of negative genetic interactions observed between asym-

metric duplicate pairs (Fig. C.3A) indicates that the lower degree sister often retains

some ability to compensate for the loss of the more constrained sister. We do not in-

terpret this as evidence for selection on their redundancy, rather that the function or

context for which the quickly evolving duplicate has been specialized allows or requires

it to at least partially maintain the ancestral role (Fig. C.5).

Our observations are consistent with previously proposed models of sub-function-

alization, including the Duplication-Degeneration-Complementation and Escape from

Adaptive Conflict models [142, 176, 75]. Both these schemes describe ancestral func-

tions being split between duplicates, the latter allowing for optimizations previously

constrained by other functions. Indeed, we identified several gene pairs in the yeast ge-

netic interaction network that support specialization driven by adaptation to different

environmental or developmental conditions, leading us to speculate at a special case

of the Escape from Adaptive Conflict or Duplication-Degeneration-Complementation

models may apply to a large fraction of duplicates in S. cerevisiae, in which this special-

ization is driven by adaptation to different environmental or developmental conditions.
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For example, several of the most asymmetric pairs involve a gene specialized for sporu-

lation or meiosis. Sporulation requires formation of a membrane structure known as the

prospore membrane, which is dependent on the Sso1–Spo20 t-SNARE complex.

Although in vitro experiments indicate that both Sso1 and Sso2 can bind to Spo20 to

form a functional t-SNARE, the Sso2–Spo20 complex exhibits much weaker membrane-

fusion capacity and, thus, may explain why only Sso1 is able to support sporulation [177].

Furthermore, studies have shown that Sso1 can interact with phosphatidic acid, which

is necessary for Spo20 localization and function [177]. Although the exact cause of func-

tional divergence remains unclear, it is possible that the SSO1 gene product acquired

a specialized role after duplication, which is important for modulating SPO21 function

in non-dividing cells. This example supports our model illustrating that changes in pro-

tein function are often relatively subtle, and condition or developmental specialization

may instead be the driving force behind duplicate gene retention. Although genome

sequences provide a wealth of information about gene ancestry, they fail to address

the functional efficacy of genes on which selection ultimately acts. Network analysis

of PPIs [13] provide a complementary view, but common physical interactions shared

by a duplicate pair still do not reveal whether interaction with a specific member of

a duplicate pair has a functional consequence to the cell under a given experimental

condition. Genetic interactions address both of these shortcomings by revealing exactly

which relationships have an impact on fitness, and which do not, and thus provide a

powerful perspective for understanding duplicate gene evolution.



Chapter 5

Complete functional profiles of

paralogs revealed through

trigenic genetic interactions

5.1 Chapter Overview

Like the two previous chapters, this chapter considers genetic interactions, which result

from surprising combinations of lower order phenotypes. Here I follow the previous

chapter’s focus on duplicate genes, and their missing genetic interactions to its natural

conclusion by exploring triple-mutant combinations involving many of the same dupli-

cate pairs. The resulting three-gene (or trigenic) genetic interactions have not yet been

studied at scale and shed additional light on the processes of duplicate evolution and

divergence.

The experiments in this section were in large part conceived by me, and grew out of

my previous work from the preceding chapter. The experimental design is the product

of joint work between Elena Kuzmin and myself. I also developed the trigenic scoring

model and was principally responsible for processing the trigenic interaction data and

relevant control data. I performed all of the statistical analysis and functional pre-

dictions in this chapter, and developed the tools for computational simulation of sub-

functionalization.

108
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Elena Kuzmin served as the project’s lead biologist in Toronto. She constructed

all of the novel strains used in the project, and oversaw their progress through the

SGA procedure. She was also heavily involved in the conception and design of the

experiment, including the fundamental adaptations of SGA protocols to triple mutants.

Additionally, she performed all of the validation experiments in this chapter. Raamesh

Deshpande developed the tool which was used to select informative genes for inclusion

in the mini-array. Justin Nelson developed a visual screening system for reviewing

colony images during initial design stages. Michael Costanzo, Charlie Boone, and my

advisor—Chad Myers—provided crucial input and direction throughout the project.

5.2 Introduction

Gene duplication has long been recognized as one of the primary sources of new genetic

material in many genomes [74]. The processes by which genes come to have duplicate

copies are reasonably well understood, but the longterm consequences of gene dupli-

cation, and the rules governing the retention and divergence of pairs that survive the

process are not. Many duplicate pairs (or paralogs) show evidence of substantial levels

of retained functional overlap despite millions of years of opportunity for divergence.

For example, all genes in an ancestor of yeast were duplicated in what is called a whole-

genome duplication event (WGD). Despite the approximately 100 million years since

the WGD event in yeast, nearly 35% of WGD pairs show a synthetic lethal relationship

(negative genetic interaction See Fig. 4.2). The level of retained sequence conservation,

common protein-protein interactions, metabolic activity, gene expression patterns, and

conserved sub-cellular localization patterns also suggest a surprising level of functional

overlap between extant sister paralogs.

In contrast to these potential mechanisms of functional overlap (or divergence),

genetic interactions give us an indication of the actual functional consequence of genetic

perturbations, without the mechanistic underpinning. In the previous chapter, I laid

out evidence for retained functional overlap between paralogs in the genetic interaction

network. In addition to the high rate of synthetic lethality, these included an above-

average single-mutant fitness for paralogs, a reduced genetic interaction degree, and

a lower than expected profile similarity. These observations were consistent with the
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expectation that functions that were retained in both members of a paralog pair, would

fail to exhibit genetic interactions, and that genetic interactions instead would inform

us only about divergent functions in each pair.

If functions carried out by both members of a duplicate pair fail to show interactions

because of buffering, we can recover them by removing the buffer. By deleting both

paralogs simultaneously, we can recover genetic interactions between the pair (as a single

functional unit) and any third gene of interest. We have termed these three-gene genetic

interactions as “trigenic” (as opposed to double-mutant or “digenic” interactions), and

here present the first attempt to discover them in high-throughput. Only two studies

have previously attempted to characterize the trigenic interactions of duplicate pairs,

and between them they address only three duplicate pairs. This study attempts to map

the trigenic interaction for over 200 pairs, including every pair of WGD duplicates for

which the double mutant is not already inviable. To accomplish this feat, we required

not only new experimental procedures, but a new model to remove the pairwise, or

“digenic,” components from each of our triple-mutant observations.

Not only are frameworks for the generation of trigenic data scarce, but systems for

their interpretation are also only just emerging. Here we show that different classes of

trigenic interactions exist, and they have different relative frequencies. Each of them

has different possible interpretations, a property they have in common with recent

differential digenic interaction studies but that has thus far gone under-appreciated.

Additionally, I showed in Chapter 5, that duplicate pairs that show a high degree of

divergence tend to diverge asymmetrically. This asymmetry is much more pronounced

than expected and the directionality of genetic interaction asymmetry between sisters

agrees with other physiological and evolutionary measures, such as protein-protein in-

teraction degree and sequence similarity with an non-duplicated ortholog in a related

species of yeast (See Fig. 4.4). I go on to show that asymmetry is the result of multiple

gene functions overlapping in the regions of gene sequence which carry them out.

Some computational models of duplicate divergence are sufficient to explain asym-

metric divergence while others do not. Additionally, some of these models have difficulty

in explaining the amount of retained common function in many duplicate pairs. The ad-

dition of trigenic interaction data to the genetic interaction profiles of duplicate genes

fills in the missing information about ancestral function. Now when considering the
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functional divergence of a paralog pair, we have all of the functions in hand, and can

obtain a true estimate of functional divergence versus retained common function. In this

chapter, I explore the relationship between divergence and common function in an at-

tempt to unify these models and explain why some duplicate pairs diverge completely,

while others retain such a pronounced level of common functionality (and therefore

buffering ability).

5.3 Results and Discussion

5.3.1 Trigenic scoring model

Previous work

Low throughput triple mutant analysis has been used previously to reveal buffered

functions with respect to various phenotypes in S. cerevisiae (e.g. [178, 179]), including

cases involving duplicate pairs (e.g. [180, 181]). These examples have all targeted

individual gene triads with respect to a qualitative phenotype of interest such as invasive

growth or viability. More recently, attempts have been made to increase the throughput

of triple mutant analysis by fixing two members of the triad and considering many

possible candidates for the third [83, 182, 183]. These studies have examined a small

number of pairs (3, 8, and 2 respectively), mostly focusing on duplicate partners, and

the analysis of triple mutants has been either qualitative or semi-quantitative. Just as

the power of double-mutant analysis has been greatly improved by a shift to quantitative

measurements [50], so too will the power of triple-mutant experiments, but first we need

a theoretically sound model for trigenic interactions.

Two earlier studies have extended quantitative systems designed for digenic inter-

actions to gene triads. In his PhD dissertation [182], Musso used an SGA approach

to construct genome-wide array screens for 8 pairs and scored the results by subtract-

ing the two corresponding single-mutant control profiles. Thus, the trigenic interaction

score (which we denote by τ) between query genes i, j and array gene k would be:

τi,j,k = εij,k − εi,k − εj,k (5.1)
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where εij,k, εi,k, and εj,k scores come from the established digenic SGA scoring pro-

cedure applied to a double-mutant query and two single-mutant control queries respec-

tively. As we are concerned with finding interactions which are not easily explained

by any of the constitutive double mutants, and the contribution from an interaction

between the two query genes has been removed as part of normal scoring, it remains to

remove significant effects appearing in the other two double mutants. A similar intuitive

approach was applied by Haber et al. [183] to E-Map derived S-scores [184] (roughly

analogous to SGA ε) by subtracting the stronger (more negative) of the two digenic

interactions:

Si,j,k = Sij,k −min(Si,k − Sj,k) (5.2)

Updated extension of digenic methodology

While each of these approaches does a reasonable job in removing the strongest digenic

effects, neither of them use the same quantitative framework upon which the digenic

models are built when extending consideration to the third gene. As a result, while the

strongest effects are likely to be correctly identified, the trigenic score itself does not

correctly capture differences in the same way as the digenic score does. As an example,

consider the definition of ε under SGA methodology:

εi,j = fij − (fifj) (5.3)

Here the expected double-mutant fitness of genes i and j is defined as the product

of their single-mutant fitnesses (fifj) and ε is defined as the difference between the

observed double-mutant fitness (fij) and that expectation. In other words, ε has a

precise definition as a deviation from expectation with respect to fitness. For the same

to be true of trigenic interaction scores, We have to redefine our trigenic equation to

fit this same definition. Expectations are defined as multiplicative combinations in

fitness (relative to wild-type), which are generally observed to be the case for pairs of

unrelated genes. The expected fitness for a triple mutant deleted for three completely

independent genes is therefore straightforward: fijk expected = fifjfk. However, we wish

to remove influence from cases where two of the genes are not independent (say i and
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j). In this case, the expected fitness of the triple mutant would not be the product of all

three single mutants, but instead the product of the interacting double mutant and the

unrelated single mutant: fijk expected = fijfk. By solving Eq. 5.3 for the double-mutant

fitness term, and subsequent substitution, we can rewrite this using only single-mutant

fitnesses and pairwise epsilons:

fijk expected = (fifj + εi,j)fk (5.4)

Thus we can see that as a result of our choice of a subtractive model in digenic space

(Eq. 5.3), digenic interaction effects are scaled by the fitness of non-interacting genes

when determining expectation. A trigenic interaction term for genes i, j and k, after

removing a possible digenic influence would then be:

τi,j,k = observed− expected = fijk − (fifj + εi,j)fk (5.5)

By invoking a symmetric argument for the other two possible digenic contributions,

and rearranging the terms for clarity, we arrive at the following equation for trigenic

interactions:

τi,j,k = fijk − fifjfk − εj,kfi − εi,kfj − εi,jfk (5.6)

Two issues remain. First, it would be convenient for our equation to deal with epsilon

scores and single-mutant fitnesses, as opposed to double- and triple-mutant fitnesses,

easily accomplished as these quantities are trivially related to one another. And second,

we must rearrange terms such that all of the quantities are either a single-mutant fitness,

or an epsilon included in the trigenic experiment. So, assuming that there is a double-

mutant query ij as well as two single-mutant control queries i, and j, along with gene k

on the array, then all three single-mutant fitnesses are available as well as three epsilons

(εi,k, εj,k, and εij,k). The last of these (εij,k) is defined as an interaction between mutant

ij and mutant k as in Eq. 5.3:

εij,k = fijk − fijfk (5.7)
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Then, by solving Eqs. 5.6 and 5.7 for fijk, and setting them equal to each other, we

can solve for our trigenic interaction term (τi,j,k) from known quantities.

τi,j,k = εij,k − εi,kfj − εj,kfi (5.8)

The final result, Eq. 5.8, is very similar to Eq. 5.1. Indeed, as single-mutant fitnesses

approach 1, as in the case of fully redundant duplicates, the two estimates converge.

The difference stems from the distribution of the fitness parameter introduced in Eq.

5.4, and is a result of our choice of subtraction for capturing the final difference from

expectation. Other models for quantifying digenic interactions provide alternatives to

Eq. 5.3, and each of these models has some benefit in terms of its biological, experimen-

tal, or theoretical properties [123]. Each of these models extends to trigenic interactions

in different manners, with some more or less suited to the transition. Regardless, of

the merits of each model in digenic space, a trigenic extension should be derived in a

fashion consistent with its source. Eq. 5.8 represents a model for trigenic interactions

which follows directly from our definition of digenic interactions, and therefore provides

the best framework for our analysis.

5.3.2 Experimental Approach

Dual survey design

To accommodate the increased cost stemming from the need for additional replicates

and controls, we adopted a two-pronged approach. First, a small number of duplicate

pairs from diverse functional categories, were screened as double-mutant queries against

the whole genome. The resulting “pilot-study” survey gave very detailed profiles for a

small set of duplicate pairs, and is better suited for specific functional inquiries because

nearly all possible interactions for those pairs are tested. Secondly, a much larger set

of pairs was screened as double-mutant queries against a smaller array (∼ 18% of the

genome, See Sec. D.1). This “mini-array” is better suited to making generalizations

about trigenic interactions and the buffering capacity of duplicate pairs because many
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more duplicate pairs have been tested (though at a lower resolution).

The pilot-study consisted of 14 paralog pairs which were initially selected to try and

cover the spectrum of trigenic interaction behavior. They consist of pairs with varying

levels of sequence similarity, varying inter-paralog genetic interaction scores, and the

majority of them were well characterized functionally. Notably, they contained the

pair CLN1/CLN2, which had been previously tested for qualitative trigenic interactions

and would serve as a benchmark of our scoring method. These 14 pairs were screened

against both available SGA arrays (4,632 total array genes, See Sec. 3.2.2). Screening

these pairs and their controls against all available SGA array genes means their profiles

can be integrated with existing digenic interaction data and correlated with 1,346 single-

mutant queries screened against the same array set.

The mini-array survey consists of 203 paralog pairs. All whole-genome duplicate

(WGD) pairs or genetically interacting small-scale duplicate (SSD) pairs were consid-

ered for screening. Many duplicate pairs exhibit a strong synthetic-lethal genetic in-

teraction, meaning that their double-mutant fitness is often quite low. Pairs with a

measureed double-mutant fitness less than 0.7 were deemed too sick for the scoring pro-

cedure. These 203 double-mutant queries were screened against a custom mini-array,

which contained a mix of essential and non-essential genes (temperature-sensitive and

null mutations, respectively) from the two larger full-genome arrays. In total, we crossed

these 203 double-mutant query pairs to 1,178 functionally informative array strains, test-

ing for approximately 240,000 trigenic interactions. Additionally, each double-mutant

query pair required two single-mutant control queries (406 in all), and each of these 609

query screens was performed in at least two replicates.

This dual approach allows us to demonstrate the power of trigenic interactions as

a tool for functional investigation using complete profiles from the pilot study, while

simultaneously conducing a broad survey of the trigenic interaction space for a large

number of duplicate pairs using the mini-array survey.

Quality control and additional replicates

To discover trigenic interactions in the context of SGA, we have to screen three separate

query strains. The first is the double-mutant query in which both paralogs have been

deleted. Then we must screen each paralog again as its own single-mutant control.
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To obtain final trigenic interaction scores (τ) we first scale each single-mutant control

profile by the single-mutant fitness of the reciprocal paralog, then subtract both of

them from the double-mutant query profile per Eq. 5.8. In effect, each observation in

the final trigenic interaction profile is a composite of three experiments. This multiple

observation paradigm presents potential problems with regard to the expected accuracy

of each SGA profile. For example, to confidently call a specific interaction observed

in the double-mutant query profile “trigenic”, we have to be confident that the triple-

mutant observation was not a false positive, but we also need to be confident that the

double-mutant observations in the control profiles did not produce a false negative. As

a consequence of this reliance on multiple observations we cannot say that reliability

estimates for digenic interactions are accurate for trigenic interactions. Although the

observations and the scoring model are quantitative, it is instructive to see how multiple

observations impact coarser estimates of accuracy such as qualitative true positive and

false positive rates.

If we assume that a double-mutant query profile, before adjustment, has similar

characteristics as a double-mutant query profile, then we can calculate our expected

trigenic interaction precision after adjusting for observations in the control queries.

For example, let us assume that a double-mutant query profile has approximately the

same sensitivity and specificity for real effects, both digenic and trigenic, as a single-

mutant query. Let us assume also that they have approximately the same number of

false positives. In this case, the double-mutant query profile, before removing digenics

observed in the controls, will be composed of: i) real trigenic interactions, ii) real digenic

interactions that were false negatives in the control screens, iii) real digenic interactions

that were true positives in the control screens, and iv) false positives.

The size of class i, true trigenic interactions, depends on the real number of trigenic

interactions (T ), and the recall of a single screen (R). The size of class ii, digenic

interactions that were recovered in the double-mutant query profile but missed in the

single-mutant controls, is dependent on the number of digenic interactions, (D), and

recall (R). Class iii represents the number of digenic interactions that were recovered

in both the single- and double-mutant screens, and so is a function of R2.
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(Real trigenic) i = R · T
(Digenic, missed in controls) ii = R ·D · (1−R)

(Digenic, seen in controls) iii = R2 ·D
(False positives) iv = (i+ ii+ iii) · (1−P )

P

(5.9)

Since classes i, ii, and iii, all represent real effects of various types, so the precision

in a technical sense follows Eq. 5.10. However, the measure we are most interested

in is the precision after removing any digenic interactions seen in the single-mutant

query controls. After removing interactions recovered from the controls, the precision

of trigenic interactions can be expressed as in Eq. 5.11

technical screen precision (P ) =
i+ ii+ iii

i+ ii+ iii+ iv
(5.10)

trigenic interaction precision =
i

i+ ii+ iv
(5.11)

If we assume that the number of trigenic interactions (T ) is on the same order as

the number of digenic interactions (D), then we can use Eqs. 5.9 to rewrite Eq. 5.11 as

a function of the precision and recall of individual screens.

trigenic interaction precision =
P

P (2−R) + 2(1− P )
(5.12)

From our previous digenic experiments, we have empirical estimates for the technical

precision and recall of an SGA screen as a function of the number of replicates (See Fig.

3.4). Using the values of technical precision and recall for a single replicate (P1 = 50%

and R1 = 40% for negative interactions) we estimate our precision for identifying true

trigenic interactions is only 28%. So our reliance on multiple observations for trigenic

interactions has reduced our performance (in terms of precision) by almost half. Fig. 3.4

shows that screening additional replicates can greatly increase our technical precision,

at little cost to recall. If we use estimates for screens with two replicates (P2 = 80%,

R2 = 37%) our trigenic interaction precision increases to 47%, representing about the

same level of quality as our previous digenic experiments which are conducted with one

replicate of each query. A third replicate for each query would bring this overall measure
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up to 50%, a marginal return in data quality for substantial increase in cost.

To summarize, as a consequence of defining trigenic interactions in terms of a combi-

nation of multiple SGA query screens (one double-mutant query, and two single-mutant

query controls) the we see a reduction in data quality as the errors from each screen

compound. To offset this reduction in quality of the screen combination, we must boost

the quality of each individual screen by adding more replicates. Based on previous em-

pirical estimates of precision and recall as function of replicate quantity, we conclude

that two replicates of each query are required to make the quality of trigenic interactions

in this study comparable to the quality of digenic interactions in previous studies. To

that end, we have screened each query twice; bringing the total number of screens for

each paralog pair to six.

Replicate data and reproducibility

The addition of a third perturbation represented a non-trivial change to the SGA exper-

imental protocol, and because the bulk of the data was collected on a new array config-

uration, we used our replicate screens to assess the reproducibility of the method. Each

double-mutant query, as well its two accompanying single-mutant controls was screened

twice (See Sec. 5.3.2), and Fig. 5.1 shows the aggregate correlation between replicates,

separately for single- and double-mutant queries. Single-mutant control screens have

a strong Pearson correlation of 0.38, while double-mutant query screens are even more

reproducible with a replicate correlation of 0.57. This likely reflects the fact that double-

mutant queries show more interactions than single-mutant controls, both as a result of

new trigenic interactions as well as a higher density of digenic interactions recovered

from multiple perturbations, as epsilon scores for double-mutant queries in Fig. 5.1 have

not yet been adjusted to remove digenic interactions seen in the controls. Similarly, we

assessed the average replicate correlation on a per-query basis. Fig. 5.2 shows histograms

for average pairwise replicate correlation scores, and here again we see a high degree

of reproducibility. The higher average pairwise correlation for double-mutant queries

in Fig. 5.2 agrees with the higher overall correlation shown in Fig. 5.1. However, the

histograms show the contrast between single- and double-mutant query reproducibil-

ities more directly. This difference is likely due to the increased amount of signal in

double-mutant queries, as a result of more digenic and trigenic actions being present in
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Figure 5.1: Replicate data from trigenic mini-array. For each query screened against
the mini-array two replicates were selected at random. Epsilon scores tend to agree very
well from one replicate to another.

the profile. The agreement between replicate screens demonstrates that the changes in

the SGA protocol to accommodate a third genetic perturbation have been successful in

that they are reliably producing genetic interaction data.

5.3.3 Double-mutant query profile includes digenic interactions

Central to our model of trigenic interactions is the assertion that a double-mutant query

will show the same interactions as its two constituent single-mutant queries, with the

addition of novel trigenic interactions. Given the significant error rates observed even

in triplicate screens, we set out to demonstrate this property before we could justify

applying the model laid out in Eq. 5.8. We measured how many digenic interactions

in the two single-mutant controls were recovered in the profile of the double-mutant

query. Fig. 5.3 shows the results of this analysis. In over a third of the double-mutant

query screens, we recovered 43% of the digenic interactions observed in either of the

two single-mutant query controls. Estimates for the precision of negative interactions

in SGA screens with three replicates are just over 80% (See Fig. 3.4). If only 80% of the

observed digenic interactions are real, that should be our upper-bound for recall in a
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Figure 5.2: Per query replicate correlations. For each query, Pearson correlation coeffi-
cients were calculated for all available replicate pairs, and a histogram of the means is
shown.

second (in this case, triple-mutant screen. This assumes that false positives are rare and

their coincidental overlap is rarer still, which is justifiable given that all interactions,

both genuine and spurious, comprise less than 5% of the data. The similarly derived

recall estimates for a three-replicate screen is just under 40%. So if our hypothesis about

digenic interaction re-occurrence in the triple-mutant screen is true, our expected recall

would be 80%×40% = 32%. The mean recall for negative digenic interactions in a triple-

mutant profile is 31%, very close to our expectation. Following another calculation using

estimated parameters for positive interactions we see an expected recall of just under

10%, yet we observe a mean recall of 21%. These observations are consistent with the

hypothesis that digenic interactions from both paralogs appear in the double-mutant

query profile before adjustment, and that we can recover these interactions subject to

the known reliability of individual SGA screens.

CLN1+CLN2 validation

After confirming that the raw digenic interaction scores (ε) were sufficiently repro-

ducible, and of high enough quality to determine the presence of trigenic interactions
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Figure 5.3: Double-mutant query recovers digenic interactions. For each of the 203
double-mutant queries in the mini-array survey, we compiled a union profile of digenic
interactions from the two single-mutant control queries and assessed the ability of the
double-mutant query to recover that set. The figure shows a normalized histogram
for positive and negative interactions separately. For example, nearly 60% of trigenic
screens recover over 20% of digenic interactions observed in the two separate single-
mutant control screens.

(τ), we applied the model laid out in Eq. 5.8 to obtain trigenic interactions for the

double-mutant query CLN1+CLN2. As stated above, CLN1 and CLN2 were specifi-

cally chosen for inclusion because they had previously been screened qualitatively for

negative trigenic interactions by Zou et al. [185]. Using the pilot study set to maximize

the overlap with previous work, we were able to re-test 29 of the 36 CLN1+CLN2 tri-

genic interactions reported in Zou et al. That study was interested in genes required for

optimal growth in the absence of CLN1 and CLN2, but did not differentiate between

digenic and trigenic effects. Indeed, our examination of colonies grown from spores

isolated via tetrad dissection found six of these previously reported interactions were

the result of single- or double-mutant effects and were not truly trigenic. Several others

were untestable in SGA for technical reasons, for example their proximity to a locus

containing a selection marker required for SGA. The remaining 18 negative genetic in-

teractions formed our gold-standard for CLN1+CLN2 and we were able to recover 12

of them with our automated scoring pipeline, which makes the best available estimate

of trigenic interaction recall for our method 66%. This is higher than estimates for SGA
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recall of digenic interactions in single replicate studies (See Fig. 3.3.4, bottom-left), how-

ever it should be noted that those results were based on an SGA-derived gold standard

instead of a smaller qualitative set of the strongest interactions and so are only loosely

comparable.

We also conducted a series of confirmation experiments to estimate the precision

of our trigenic screen. Of the 57 strongest interactions measured for CLN1+CLN2 on

the FG array (τ / −0.2), 82% of them were confirmed by random spore analysis. This

estimate is only slightly below precision estimates reported for the strongest digenic

interactions (89% for ε < −0.12; [66]). Taken together, these results indicate that we

can successfully recover known trigenic interactions using our novel experimental and

computational pipeline, and that those interactions recovered are of a very high quality.

5.3.4 Summary of trigenic interactions discovered

In all, we screened for approximately 272,000 possible trigenic interactions between a

diverse set of 203 double-mutant queries and the rest of the genome. In that space we

discovered approximately 8,500 novel trigenic interactions, and 55% of them were neg-

ative. The total number of trigenic interactions discovered at a standard intermediate

threshold of |τ | > 0.08; p < 0.05 is shown in Table 5.1.

Estimates of trigenic interaction density vary slightly between the two collections.

Negative density in the pilot-study is 1.65% whereas density in the mini-array is slightly

higher (1.72%). However, the array genes chosen for the mini-array tended to show more

interactions than the genome average, as did the 14 queries chosen for the pilot-study,

and these biases are unlikely to offset one another exactly. For example the same

density measure for the higher degree queries (from the pilot-study) when measured

by themselves on the mini-array is 4.48% while those same queries from the pilot-study

measured against only arrays in both collections is 2.97%, indicating there are moderate

differences between the two experiments. Given these biases, the most conservative

estimate of trigenic interaction density is under 2%, which is below estimates of digenic

interaction density between all pairs of non-essential genes (See Chapter 3 Fig. 3.5).

Also the true trigenic interaction density considers all possible triads of candidate genes,

whereas here we are forcing two of them to be related (duplicates), so values for unrelated

triads may be even lower yet.
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Previous work has shown that number of interactions for each gene (its degree)

can vary dramatically, and while genetic interaction networks are not exactly scale-free

(with degrees following a power-law distribution) they none the less have a few nodes

with high degree (many interactions) and a majority of nodes with few interactions

[66]. While duplicate genes have fewer digenic interactions on average [66, 78], their

degrees are nonetheless distributed in the same manner. The degree distribution of

negative trigenic interactions is also very similar to that of negative digenic interactions

with a small number of hubs and a large number of relatively unconnected genes. (See

Fig. 5.4). Also, the two measures are related in that duplicate pairs that show more

digenic interactions, tend to show more trigenic interactions (p < 5 × 10−8, Pearson).

This may indicate that the number of digenic interactions we observe for a given pair

may be a good indicator of the level of activity or importance of that pair under our

experimental conditions. Keeping in mind that trigenic interactions (by definition of

Eq. 5.8) have had the influence of digenic interactions removed, this means that the

dominant factor in how many interactions we observe (trigenic or digenic) is the activity

or importance of the pair, while their buffering potential has a second-order effect.

However, there are many pairs which appear to exhibit predominately digenic or trigenic

interactions. If paralog sisters show many digenic interactions but few trigenics, it

would suggest that most of their function was already revealed in the digenic study,

and that the two do not buffer each other. Conversely, if the pair show many trigenic

interactions instead, it suggests that their functions significantly overlap and both must

be perturbed to see an effect. Three diverse examples are shown in Fig. 5.4. The

first pair, OAF1+PIP2 (bottom left), show very few trigenic interactions in relation to

their number of digenics. They also show a modest overlap in their digenic interaction

profiles, which is rare for paralog pairs. This may suggest they are retained for reasons of

dosage amplification. As explained in Chapter 4, pairs retained for dosage amplification

may not be expected to buffer one another strongly despite their functional overlap.

Oaf1p and Pip2p are transcription factors that regulate genes involved in peroxisome

organization and biogenesis [186]. Normally they bind to form a heterodimer, but

Oaf1p has been shown to form a functional homodimer in the absence of Pip2p [187].

On the other end of the spectrum is the familiar pair of cyclins CLN1+CLN2 (bottom

right), which show a very large number of trigenic interactions and almost no digenic
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Queries Pos Pos Ess Pos NonEss Neg Neg Ess Neg NonEss

mini-array survey 203 3043 738 2305 3718 982 2736

mini-array query average 15 3.6 11.4 18.3 4.8 13.5

pilot study 14 796 547 249 919 444 475

pilot study query average 56.9 39.1 17.8 65.6 31.7 33.9

Table 5.1: The total number of discovered negative and positive trigenic interactions,
given seperately for the mini-array survey and the pilot study for the standard thresholds
of |τ | > 0.08; p < 0.05. See Sec. 5.3.2 for details including the number of array genes
tested in each set. Pos and Neg refer to the total number of positive and negative
interactions. Ess and NonEss displays how that total breaks down when only essential
and non-essential array genes are considered. Query average rows give the mean number
of interactions for each double mutant query in each set.

interactions, which is consistent with their near complete ability to compensate for one

another. The pair displayed in the middle show a relatively modest number of trigenic

interactions and a few shared digenic interactions, indicating some retained functional

overlap, but a great deal of divergence as well.

These examples illustrate a broad variation in trigenic interaction behavior relative

to digenic interactions. If we consider all observed interactions as a complete represen-

tation of pair function, then the trigenic proportion of those interactions reflects the

ability of paralogs to functionally buffer each other. We will return to this measure to

assess evolutionary divergence below(See Sec. 5.3.8).

5.3.5 Functional validation of novel trigenic interactions

To ascertain if trigenic interactions are as functionally relevant as digenic interactions

at the same threshold, we used them to predict functional relationships as captured in

the Gene Ontology (See Fig. 5.5). The differences for negative interactions in the pilot

study are not very pronounced, both are hugely informative and in this case, it can

be said that their performance is about equal. The excellent performance of digenic

interactions in the pilot study is in part due to our selection bias toward well-annotated

queries which were known to behave well in SGA. The functional information in the

resulting pilot study trigenic interactions therefore meets a very high standard. The

blue line shows the typical performance for paralog digenic interactions, functionally

informative but at a rate less than two fold over background. In this more general case,
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Figure 5.4: Trigenic degree distribution from the mini-array survey. (Left top) A
histogram of the (negative) digenic degree distribution of all 406 single- mutant (SM)
control queries. The Y -axis (number of queries in each bin) has been log2 transformed.
(Left middle) A similar histogram showing the (negative) trigenic degree distribution
of 203 double-mutant (DM) queries. (Right top) A scatter plot showing the trigenic
degree of each double-mutant query and the corresponding digenic degree (mean) of
its two single-mutant control queries. The Pearson correlation between the two is 0.37
(p < 5×10−8). A similar plot for all 14 pairs in the pilot study can be found in Fig. D.1
(Bottom) Trigenic/Digenic degrees for three duplicate pairs. For each pair the number
of trigenic interactions for the double mutant is shown in orange, the number of digenic
interaction unique to each single-mutant control is shown in light blue, and the number
of digenic interactions which appear in both controls in dark blue.
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Figure 5.5: Novel trigenic interactions predict gene function. Precision and recall are
shown for trigenic interactions (τ) and digenic interactions (ε) in each survey. The
prediction standard is based on co-annotation a functionally informative subset of “pro-
cess” terms in the Gene Ontology. A trigenic interaction is considered a true positive
if the array gene is co-annotated with both query paralogs, though in practice this is
not much more stringent that requiring only one. The background expectations for
co-annotation differ between the two surveys and are shown as dotted horizontal lines.

negative trigenic interactions (red line) again do exceedingly well at predicting known

associations.

Positive trigenic interactions are not as informative as negative interactions, but

still perform above random expectation (Fig. 5.5, right). This observation is consistent

with digenic interactions in this and previous studies (See Fig. 3.6) [66]. For positive

interactions in the general case (mini-array) trigenic interactions are about as informa-

tive as digenic interactions. Both are about 1.5-fold over background expectation, and

the relatively flat slope of the precision-recall plots indicates that the magnitude of the

interactions does not carry much additional information, in stark contrast to negative

interactions, but again consistent with previous digenic studies. Interestingly, positive

trigenic interactions for the pilot study have a precision of nearly 50% (right, green), or

more than two-fold over expectation. Some of these positive trigenic interactions align

with negative digenic interactions (left, purple) and represent cases where array associ-

ations could be observed in digenic interactions but these interactions did not combine

as expected when an additional paralog was deleted (See Sec. D.2). In other words,
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because the sign and magnitude of a trigenic interaction are dependent on digenic inter-

actions between pairwise triad members, the interpretation of the trigenic interaction

must be as well.

5.3.6 Different sub-types of trigenic interactions

When measuring digenic interactions, many different types of biological relationships

get summarized by a single number and then reduced to three classes: negative in-

teractions, positive interactions, and non-interactions. For example, consider positive

digenic interactions, where the double mutant grows faster than expected given the sin-

gle mutants. It may be that both single-mutants show a phenotype, but their combined

phenotype is not any stronger; this is the relationship suggested by Fig. 3.2. In classical

terminology, one phenotype is said to “mask” the other. Another positive interaction

may result from two slow-growth phenotypes that combine with a result that grows at

the wild-type rate. These phenotypes are said to “suppress” one another. Moreover,

these two cases may result in equivalent ε scores, thus their interpretation may require

additional comparisons of wild-type, single- and double-mutant fitness scores.

Similar questions arise in the case of a triple mutant. To examine the interplay

between our observations in the digenic and trigenic spaces, we plotted the components

of the trigenic scoring equation (Eq. 5.8) against one another, and defined 14 regions in

the resulting two dimensional space which may have different biological properties. Fig.

5.6 shows a map of these regions and the distribution of data among them from mini-

array survey, as well as their overall ability to predict co-annotation to Gene Ontology

terms. The total number of negative trigenic interactions listed in Table 5.1 for the

mini-array survey is equal to the total number of points above and to the left of the red

line (τ = X−Y < −0.08). This single class (negative trigenics) can thus be partitioned

into six sub-types of interactions (regions A, B, C, F, G, & J). The X-axis gives the

strength of the triple-mutant score before we apply control data to adjust for digenic

components, and the Y -axis gives the magnitude of that digenic interaction adjustment.

For example, if a duplicate pair shows no digenic interactions with a particular array

gene, the score will fall near Y = 0; if then their double mutants shows a strong negative

interaction with that array gene, the point will be fall to the left and be classified in

region F. Since the strength of the trigenic interaction depends on both of these factors
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(τ = X − Y ), a similar trigenic score can be obtained, for example, when a weaker

triple-mutant score is paired with a positive digenic interaction between one paralog and

the array gene (which would fall into region A), though these scenarios have different

biological implications. When viewed in this way, several classes of region stand out as

potentially interesting.

For example, region F represents the most intuitive negative trigenic interactions,

such as CLN1-CLN2-CLN3, where the total digenic adjustment is small because neither

paralog shows a digenic interaction with the array gene yet the triple-mutant score is

substantially negative. Thus region F, and its mirror region for positives (H) represent

qualitative trigenic interactions of the type that have been discovered by eye in Zou et

al. [185]. This is the most populous class of trigenics in our study and cases of complete

three-way redundancy would fall here. Notably, as most of these relationships actually

require a triple-perturbation to see, it would be surprising if they did not have a lower

rate of annotation.

In contrast to the qualitative class, region J indicates combinations where the di-

genic contribution was negative, but not strong enough to account for the triple-mutant

score. Region J (and it’s reflection region E) represent a class of quantitative-agreement

interactions which all of the digenic and trigenic signs agree, but the digenic magnitudes

alone can not account for the triple-mutant phenotype. This type of interaction does

very well at predicting co-annotation relationships (Fig. 5.6), as well as PPI relation-

ships. Interestingly, the negative cases of quantitative-agreement interactions (J) are

very enriched for cases where the array gene has a physical interaction with one, but

not both paralogs, while the positive version (E) shows the opposite trend (Fig. D.3).

This class of interaction suggests cases where paralogs have the ability to partially

buffer a particular genetic interaction. Perhaps, these interactions represent functions

where dosage plays a role, thus while both paralogs can perform the common func-

tion in question, neither of them can fully compensate if the other is totally deleted.

Quantitative-agreement is the second most populous class of trigenic interactions. A

related class, and the next most numerous, is quantitative-disagreement. This class is

comprised of regions C and L, and made up of cases where the digenic interaction scores

were in agreement, but the resulting trigenic score had an opposing sign. For example,
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Figure 5.6: Map of trigenic interaction sub-types. (Top left) A map labeling various
interesting regions in trigenic interaction space. The X-axis shows raw triple-mutant
ε scores, before their trigenic adjustment according to Eq. 5.8. The Y -axis shows the
adjustment value, which is the the sum of digenic influences. The red and green lines
show the thresholds for trigenic interactions τ = X − Y . (Top right) All trigenic
interaction data with a significant p-value (p < 0.05) for all regions labeled. (Middle) A
summary of the number of data points shown in each labeled region. (Bottom) Sorted
precision of each region in prediction co-annotation between the array gene and both
query genes. The expected co-annotation rate (derived from unlabeled regions) is shown
as a dotted line. Similar results for PPI data are shown in Fig. D.3.
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in region L, the digenic contribution is extremely negative, and the unadjusted triple-

mutant ε score was also negative, but not as negative as expected and so a positive

trigenic interaction results. Three of these four quantitative regions (J, E, L, but not

C) do extremely well at predicting co-annotation in the gene ontology.

The final, and rarest, class of trigenic interactions are contradictory, and fall into

either region A or N. In these regions, both the single- and double-mutant query screens

give strong interactions but they oppose one another in direction. The curious cases

which were alluded to in Sec. 5.3.5 and confirmed in Sec. D.2 fall into region A, where

the digenic screens indicated a positive component, but a negative triple-mutant ε was

measured, with an extremely negative trigenic interaction (τ) as a result. Interestingly,

the cases in region A who reverse their sign, although not terribly numerous, appear to

carry the highest functional signal. The sign reversal may be an indicator of exception-

ally complex relationships between the three genes. A hypothetical example is shown

in Fig. 5.7. In this example, we must reconcile the fact that gene b interacts with each

individual paralog positively, but shows a negative (trigenic) interaction with them as

a unit. If all three genes participate in some common essential function but only one is

required, we would expect a negative trigenic interaction. Furthermore, if the paralogs

regulate each other with positive feedback, and b suppressed them both in balance, we

might expect positive interactions between b and each paralog as the deletion of the

suppressor offsets the effects of breaking the feedback loop.

Importantly, many of the classes which outperform the classical interactions found

in regions F and H represent relationships which could already be inferred from digenic

studies (e.g. A, J, E, L), and while they represent some of the most intriguing examples,

they may reveal more mechanistic information than novel functional relationships. Also,

there are other ways these interactions might be partitioned, and even this scheme could

be fine tuned, for example by incorporating single mutant scores or treating double-

mutant scores individually instead of summing them.

The problem of differential interaction interpretation has previously been largely

ignored even in differential digenic studies. However, the consideration of multiple

observational combinations which may result in the same overall score will become

increasingly important as the number of simultaneous experimental perturbations (and

therefore phenotype combinations) increases. Frameworks for the exploration of these
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Figure 5.7:
A hypothetical arrangement for trigenic interactions in region A. Suppose a’ and a” are
paralogs and perform a redundant function with gene b such that one of the three is
required for some essential function, giving rise to a trigenic interaction. In this case a
regulatory relationship such as the one shown on the left my give rise to the apparently
contradictory genetic interaction shown on the right.
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possible combinations, and their potential biological significance, such as that presented

in this section may become crucial if we are to learn as much from trigenic interactions

(or indeed from differential interactions) as we have from digenic interactions.

5.3.7 Trigenic proportion as indicative of buffering capacity

The existence of trigenic interactions and their functional relevance is established, so

aside from elucidating previously hidden relationships, what can they tell us about

duplicate pairs? We reasoned in the previous chapter that the duplicate sisters that

were most adept at compensating for one another, would be missing the most digenic

interactions, and would therefore have the most trigenic interactions. To characterize

this property for the duplicate pairs in this study we devised a simple measure, trigenic

proportion (Eq. 5.13), which captures the fraction of all of the pair’s interactions that

are digenic. If the union of the two digenic profiles along with their shared digenic

profile captures the ancestral profile, and common retained functions are buffered in the

digenic profiles but are revealed in the trigenic profile, then this measure also reflects

the fraction of retained functional overlap, capturing the variation observed in Fig. 5.4

in a single continuous measure.

trigenic proportion =
|τij |

|τij ∪ εi ∪ εj |
(5.13)

A histogram of this measure for all 203 pairs in the mini-array survey is shown in Fig.

5.8. The measure does indeed show a great amount of variation, with just under half of

pairs showing a small trigenic proportion (< 30%), but a substantial tail with the other

half of pairs displaying profiles that are least 30% trigenic or more. In the next several

sections we will focus on this property and its potential physiological determinants.

5.3.8 Properties which correlate with trigenic proportion

We first filtered our pairs to include only those for which we can be confident in the

measured proportion. To accomplish this, we removed any pair which showed less than
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Figure 5.8: Distribution of trigenic proportion for 203 pairs in the mini-array survey
(top), and for a subset of 77 pairs that show > 10 trigenic interactions (bottom).
Trigenic proportion (Eq. 5.13) measures the fraction of total interactions displayed by
a pair that are trigenic. Members of pairs with a high trigenic proportion are expected
to have increased ability to buffer the loss of their partner.
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Trigenic interactions > 10 (77 pairs) Spearman ρ p-value

Digenic negative path length -0.51 4.6× 10−3

Total unique GO “function” annotations -0.41 2.9× 10−4

Divergence asymmetry (Kellis 2004) -0.40 1.9× 10−3

Paralog digenic ε -0.38 2.8× 10−3

Divergence asymmetry (ANNG, AMM*) -0.36 2.5× 10−3

Double-mutant fitness -0.33 1.1× 10−2

Total unique INTERPRO domains -0.26 2.4× 10−2

Digenic degree asymmetry > 7 : 1 (VanderSluis 2010) -0.23 4.7× 10−2

Similar localization (Marques 2008) 0.32 5.8× 10−3

SGA profile similarity (array) 0.36 7.7× 10−3

Table 5.2: A selection of paralog-pair features that show significant correlations with
trigenic proportion as defined in Eq. 5.13. Results shown are for a high-confidence
subset of 77 pairs which show at least 10 trigenic interactions. Similar correlations for
all pairs are shown in Table D.1. *: Personal communication.

10 trigenic interactions, ensuring that both the numerator and denominator in the pro-

portion would have sufficient signal. The 77 resulting pairs show a slightly more uniform

distribution of trigenic proportions (see Fig. 5.8), which can be advantageous in correla-

tion analysis. We then assembled a database of features curated from high throughput

studies which might be relevant to evolutionary divergence. Table 5.2 shows those fea-

tures that have a significant correlation with this measure. Our measure is derived from

genetic interactions, and we see several other genetic interaction measures in agreement.

Each of these genetic interaction measures are derived from an independent experiment

(data from Chapter 3), performed by the same lab.

A digenic interaction score between the paralogs themselves is the best single indica-

tor of trigenic proportion, one of the strongest correlations over the filtered mini-array

survey pairs (ρ = −0.38, p = 2.8× 10−3; Spearman), supporting the hypothesis that a

strong negative interaction score is an excellent predictor of retained functional overlap,

and that this functional overlap does indeed translate to an increase in the number

of trigenic interactions (relative to digenic). Indeed, the high rate of synthetic sick-

ness/lethality among duplicate pairs observed in the previous chapters was one of the

motivations for this study and this result supports the central hypothesis of Chapters

4 & 5. A highly related measure, the double-mutant fitness of each pair, yields an-

other significant correlation (ρ = −0.33). Pairs with a low double-mutant fitness also
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commonly have a genetic interaction (that is, when the single mutants are healthy), so

again, this supports the idea that a digenic interaction provides direct evidence of func-

tional overlap which then manifests more specifically in the trigenic interaction network.

Furthermore, correlation between double-mutant fitness and trigenic interaction degree

(r = −0.47, p = 1.3 × 10−4; Pearson) echoes previous results relating single-mutant

fitness to digenic interaction degree [66]. Another correlate derived from separate SGA

data is profile similarity as measured between paralog array profiles (ρ = 0.36; Table

5.2). This result makes sense given the known relationship between genetic interaction

profile similarity and functional overlap which applies broadly to all genes pairs [66].

However, we previously predicted this correlation to have the opposite sign for paralog

sisters, reasoning that very closely related paralog sisters would buffer common interac-

tions completely, and their profile similarities would consequently be greatly reduced.

This was an attempt to explain why profile similarity for duplicate pairs seemed lower

than expected, and very few pairs having many significant interactions in common [78].

Surprisingly, we instead see more trigenic interactions for paralogs with a higher pro-

file similarity (relative to other paralogs). This indicates that the interactions which

are buffered as the result of functional overlap are not masked completely, but instead

are quantitatively reduced, often to the point of insignificance. This unexpected result

underscores the importance of not only measuring interactions quantitatively, but that

reasoning about them only qualitatively can be misleading.

The final, and strongest, SGA-derived measure to appear is shortest path-length

on the negative genetic interaction network (ρ = −0.51). This measure describes the

number of digenic interactions in previously observed data are needed to connect the

sister paralogs to one another, and is a convenient short-hand for a combination of

other features. By definition, duplicate pairs with a direct genetic interaction (i.e.

“digenic ε”) have a path-length of 1; pairs without a direct interaction, but who share

common interactions with one or more third-parties have a path-length of two (having

many common interaction partners also means profile similarity will be high). Path-

lengths are seldom longer than 3 due to the small-world nature of the genetic interaction

network.
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Other properties which appear in Table 5.2 also support the hypothesis that func-

tionally divergent pairs show a low proportion of trigenic interactions whereas func-

tionally similar pairs show a higher proportion of trigenics. For example, a measure of

sub-cellular localization pattern conservation developed by Marques et al. [145] shows a

positive correlation with trigenic proportion (ρ = 0.32; Table 5.2). Localization can be a

key factor in paralog specialization, and because a paralogous protein cannot buffer the

functions of a deleted sister unless it is in the right compartment, it makes sense that

conserved localization profiles would be a requisite for conserved function or buffering

ability. Another relevant functional measure of divergence can be taken from protein

sequences directly. Two similar measures of sequence divergence asymmetry give signif-

icant correlations with trigenic proportion. The first was published by Kellis et al. in

2004 [42], and captures the rates of evolution of each paralog using information from the

non-WGD species Kluyveromyces waltii. Kellis et al. then divided the rate of one sister

by the other to detect cases where one paralog was evolving much more quickly than

the other. The correlation between this measure and trigenic proportion is negative

(ρ = −0.4, p = 1.9 × 10−3) indicating that pairs which have diverged asymmetrically

have a low trigenic proportion, and hence a limited capacity to buffer one another. A

similar measure, devised by Alex Nguyen and Alan Moses, uses sequence from a number

of closely related yeasts to calibrate the expectation of evolutionary rates for protein

binding domains within each paralog, then measures deviations in these rates for each

sister against one another (see D.1). This measure is similarly designed to capture

asymmetric instances of sequence evolution and also shows a negative correlation with

trigenic proportion (ρ = −0.36, p = 2.5−3).

We also observed a relationship with one Gene Ontology-based measure: the to-

tal number of annotations to the GO “Molecular function” ontology from both sisters

(union) shows a strong negative correlation (ρ = −0.41) with trigenic proportion. This

may indicate that pairs that can no longer buffer one another have diverged by gaining

new functions. However, an alternative, and in our opinion more likely hypothesis, is

that pairs with a larger number of ancestral functions have had more opportunity to

sub-functionalize via common degenerative mutations. This latter hypothesis seems bet-

ter in line with the observation that the paralog that is evolving more quickly tends to
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have fewer genetic interactions, fewer protein-protein interactions, and fewer chemical-

genetic interactions [78]. Notably absent from the list of correlations is any significant

relationship with the number of GO “Biological process” annotations. If GO “Molecular

function” annotations indeed capture physical mechanism, whereas “Biological process”

annotations captures physiological consequences, these results would suggest that the

number of cellular processes that a pair impinges upon is less important for its evolu-

tionary trajectory than the number of physical mechanisms by which it participates in

those processes. Although selective pressure is applied based on how well a gene fulfills

a role in one or more processes, genetic mutations ultimately occur in a more tangible,

mechanistic way. For example, a newly duplicated pair that performs two duties via

two discrete binding domains, may have a higher probability of sub-functionalization

(and therefore, long-term pair retention) than a pair that performs two duties via a

single, highly constrained, binding domain. In the former case, the two processes are

mechanistically separable, but in the latter, they are entangled.

In other words, typical measures of multi-functionality and pleiotropy are insufficient

as a measure of a pair’s ability to sub-functionalize. In order to partition two roles to

separate paralog copies, the roles themselves must be separable, and a measure that

summarizes potentially separable mechanisms, (e.g. GO “Molecular function”) will be

more successful at capturing the opportunity for divergence of a pair than a measure

that counts the downstream consequences of those mechanisms (e.g. GO “Biological

process” annotations). This mechanistic interpretation is in agreement with the negative

correlation between trigenic proportion and the total number of protein domains (union)

a paralog pair has. We counted the number of unique domains annotated to either

member of a pair using predictions from the INTERPRO database, and this count

has a significant negative correlation with trigenic proportion (ρ = −0.26), which is

consistent with the expectation that paralog pairs with ample opportunity to partition

mechanistic functions via sub-functionalization will do so, while those with fewer avenues

for divergence will either retain more functional overlap or lose one sister to eventual

degeneration.

Taken together, these results begin to form a picture of which pairs of paralogs will

tend to diverge via sub-functionalization, and therefore be retained, if they have the

potential. The amount of this potential depends on whether the functions they perform
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can be partitioned as a result of sequence mutations. A pair with many responsibilities,

all carried out by the same crucial sequence segment, has no opportunity to survive as

a sub-functionalized pair, unless those responsibilities can be partitioned temporally or

spatially instead, for example through divergence in localization patterns.

In Chapter 4, I laid out a mechanistic model predicting that duplicates will diverge

asymmetrically given a set of assumptions that very much resemble the GO properties of

pairs with the lowest trigenic proportion (See Secs. C.5, C.6). This model explains why

paralog sequence divergence is asymmetric, and how, once established, this asymmetry

perpetuates itself in support of this model. Digenic interaction degree asymmetry, which

is a boolean measure described in Chapter 4, also shows a significantly negative corre-

lation (ρ = −023) with trigenic proportion. In Chapter 4, I also showed a connection

between this interaction degree asymmetry (as measured for paralogs on the array in

a separate experiment) and several other physiological measures that could be viewed

as constraints on evolutionary divergence. Two of those measures were sequence-based,

and suggest that the member of an asymmetric pair with more genetic interactions,

tends to evolve (or degrade) more slowly than the other member (See Fig. 4.4). The

other measures (protein-protein interaction degree, single-mutant fitness, and chemical-

genetic degree), all give some measure of evolutionary constraint or consequence, and

show that the direction of these asymmetries in evolutionary constraint agree with the

direction of asymmetries in genetic interaction degree.

5.3.9 Modeling evolutionary divergence

Several observations from the previous section suggest that physiological properties can

predict the evolutionary trajectory of a duplicate pair. These include the number of

functions a gene carries out, which provide opportunities for sub-functionalization, and

whether those functions are entangled with one another, which presents a potential ob-

stacle to divergence. In this section, we present a computational framework for simulat-

ing the evolutionary divergence of paralog pairs, and explore the requirements for dupli-

cate pair fates. The framework is based on the Duplication-Mutation-Complementation

model (DMC) [143]. In the DMC model, sisters are functionally identical immediately

after duplications, and begin to acquire degenerative mutations, which disable one or
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more of the now-buffered ancestral functions. The sister only survive as a pair if muta-

tions accumulate in both sisters in a complementary fashion, such that each performs a

subset of ancestral functions, and both are required for complete functionality. However,

the generality of the framework presented here, specifically the pliable definition used

for individual gene functions, allows us to incorporate elements from another model,

Escape from Adaptive Conflict (EAC) [176]. The EAC model describes a potential

scenario where a gene that performs multiple functions is prevented from acquiring mu-

tations that would be beneficial to one function, because they would negatively affect

the other. The two functions are said to be in adaptive conflict with one another, and

a duplication event can resolve this conflict by enabling the two copies to specialize to

one of the related functions. The source of this conflict may be, for example, an overlap

in sequence regions crucial to the performance of each function. Our abstract represen-

tation of the sequence-to-function relationship described below can capture aspects of

either of these models and is therefore able to explain a wide range of post-duplication

outcomes.

Duplicate representation and evolution

The framework generates and evolves genes pairs in the following way. First, it creates a

gene with a fixed length. Length here refers to the number of positions that can suffer a

potentially debilitating mutation and is analogous to the sequence length of a real gene.

Then the framework assigns hypothetical functions to contiguous regions of the gene.

Each region is necessary for the gene to carry out that function. Since each position in

a hypothetical gene is independent of every other, these functional regions need not be

contiguous but here are represented as contiguous to speed computation and simplify

visualization. More importantly, positional independence allows a contiguous region to

represent functional regions of actual genes or proteins which are often not contiguous.

The number of functions assigned to a new gene is a parameter, and the length of each

functional region, as well as its position within the gene, are chosen at random. At this

point the gene is duplicated resulting in a “left” and a “right” paralog. Fig. 5.9 shows

two examples of duplicate pairs, each with seven functions. They are shown immediately

after duplication, with all functions initially in-tact for both paralogs, as well as after

evolutionary divergence.
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Figure 5.9: Divergence modeling examples. A) An example of a paralog pair with 7
functions (rows), all carried out by variously sized, potentially overlapping, regions of
sequence (dark bands). Initially after duplication, both the “left” and “right” paralogs
are intact, and can carry out all functions. The pair is left to evolve through random
mutations, until it reaches an evolutionarily stable-steady state, which can sustain no
further mutations without loss of function. In this case, one paralog has completely
degenerated, and the other has reverted to singleton status.
B) Another paralog pair example generated with the same parameters as in A). In this
case the pair achieves a more equitable division of labor with each paralog carrying
out several unique functions after reaching steady-state. Additionally, the members of
this pair have retained a common function (blue box, sixth row). Though displayed
here as a distinct function, this may represent a type core functionality common to the
functions in the first, third, and seventh rows. For example, the sequence region covered
by the common function may be a the catalytic site, while the other “functions” are
responsible for different targeting that site to catalyze specific reactions.



141

Simulated paralogs are computationally evolved by degenerative mutations at a con-

stant rate. First, either the right or left paralog is selected with equal probability. Then

a uniformly random position along that paralogs sequence is randomly chosen for mu-

tation. If the mutation falls within one or more functional regions, those functions are

considered to be disabled for that paralog, and the regions are removed. Each muta-

tion then has three possible outcomes. A mutation is “silent” if it falls in a position

which is not involved in any functions. These mutations are evolutionarily neutral and

result in no changes. A mutation is “divergent” if it disables a function that can still be

performed by the other paralog. In these cases, the affected function is removed from

the mutated paralog, and the role is assumed by its sister. The result of a “divergent”

mutation is therefore an increased level of functional divergence between the two sis-

ters. A mutation is “deleterious” if it would disable a function that is not covered by

the other sister. The framework assumes that a duplicate pair is expected to retain all

ancestral functions, so any loss of a function that cannot be performed by the other

sister is deleterious. Lineages harboring these mutations would be out-competed in a

population and therefore have no effect on long-term pair evolution. These mutations

can then safely be discarded. A pair has reached “steady-state” when there exists no re-

maining possible “divergent” mutations, and therefore no further possibility of change.

Fig. 5.9 shows the evolutionarily stable, steady-states for two paralog pairs generated

by the model with identical parameters.

Asymmetry confirmed

We applied this model to see if it would generate the type of asymmetries we observed

in genetic interactions in the previous chapter, and whether initial functional overlap

would again be the requisite factor in determining the level of asymmetry. Fig. 5.10

shows the results for 50,000 simulated duplicate pairs, each of which began with 20

functions. A separate 50,000 pair control group was generated in which functional

regions were not allowed to overlap. Each group was evolved to steady-state, and

we counted the number of functions that each paralog could still perform. Both sets

distributed functions equitably between left and right paralogs as expected (left, median

bias = 0.5), however the group with overlapping functional regions had a broader bias

distribution, indicating that extreme asymmetries were more common. If functions do
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Figure 5.10:
Divergence model confirms asymmetry. Left) the distribution of functions between “left”
and “right” paralogs after reaching steady-state. The peak at 0.5 indicates that each
function is as likely to sub-functionalize to one paralog as to the other, while the breadth
of the distribution describes the degree to which asymmetries occur. The blue line
indicates results from a model which allowed functional regions to overlap one another,
while the yellow line describes a model where such overlaps are explicitly forbidden.
Moderate asymmetry is expected according to a binomial distribution; extreme cases
become more common when overlap in functional regions are allowed. Right) A log-log
histogram of function ratios for the same set as in (left). The ratio of functions remaining
after steady-state (max/min) is log2-scaled and binned, and the number of pairs in
each bin is also log2-scaled. The yellow bars form a straight line in agreement with the
corresponding distribution in the left panel being a simple binomial. In contrast, the
blue bars show a much heavier skew toward higher asymmetric ratios.

not overlap with one another in sequence space, they get partitioned to each paralog

with equal probability, and the number of functions each paralog can perform relative to

its sister follows a perfect binomial distribution. Conversely, if functions are entangled

with one another, they get partitioned in groups. The right panel of Fig. 5.10 shows

the distribution of function ratios on a log-log plot, where the no-overlap cases follow

a straight line, and the cases with functional entanglement have a tail in the more

extreme ratios. This model therefore agrees with our previous work, demonstrating

initial functional entanglement as required for asymmetric divergence.
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Requirements for sustained functional overlap

We have established the ability of paralog sisters to share functional ability despite their

millions of years of opportunity to diverge. We reasoned that the initial complexity of

functional region overlap for newly duplicated pairs would constrain steady-state solu-

tions, and govern the possible degrees of functional overlap after divergence had run its

course. In the trivial case, with functions forbidden from overlapping in sequence space,

complete sub-functionalization is inevitable. This fact can be deduced directly from the

rules of the model. With no overlap, each mutation can disable at most one function.

If both paralogs can still perform a common function, then any mutation affecting that

function is by definition “divergent,” and the presence of a “divergent” mutation indi-

cates that further evolution toward the steady-state is possible. The amount of initial

functional entanglement therefore governs the potential number of retained common

functions.

This gives rise to an apparent contradiction. Multi-functionality is positively corre-

lated with asymmetry because asymmetry is self-perpetuated and upper-bounded only

by the total number of functions (Sec. C.4). Retained overlap is positively correlated

with structural entanglement for the reasons discussed in the previous paragraph. Fur-

ther, multi-functionality and entanglement are trivially related to each other, as adding

more functions to a fixed length gene can only increase the entanglements. However,

our functional data suggest that retained common function (trigenic proportion) and

asymmetric divergence (as measured by sequence or genetic interaction degree) are, in

fact, negatively correlated. To reconcile these observations, we propose that the evo-

lutionary fate of a duplicate pair is not governed by multi-functionality or structural

entanglement in isolation, but instead by these two factors in relation to one another,

and we illustrate this idea in Fig. 5.11-A.

Because of the inherent relationship between the number of functions, and their

overlap in sequence space, gene pairs will tend to fall along a diagonal (of unknown

positive slope) in panel A of Fig. 5.11-A. It is each pair’s unique functional properties

which cause deviations from that diagonal and describe their post-duplication diver-

gence. If a pair has many functions, and those functions are all easily partitioned by

degenerative mutations, then the pair will sub-functionalize completely, and symmetri-

cally, retaining no functions in common. A slight increase in functional entanglement is
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Figure 5.11: Hypothetical map of duplicate divergence space. A) A two-dimensional
map of the relationship between paralog multi-functionality, and structural entangle-
ment. Here, structural entanglement refers to inseparability of functions in sequence
space, captured in our model by the degree of functional region overlap in the pre-
duplication singleton. The map also shows various familiar post-duplication outcomes
which form a single axis of divergence.
B) The axis of divergence reduces multi-functionality and structural entanglement to a
single feature according to their relative quantities, as they jointly affect the evolutionary
outcome.
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sufficient for asymmetry to take hold and simultaneously introduces a chance the pair

will retain common functions. At the other extreme, if a pair has only a few functions

that are very entangled, they will quickly become the responsibility of one sister while

the other becomes completely non-functional, reverting the pair back to a singleton.

However if the amount of entanglement is slightly lower, or the number of functions

sufficiently high, the pair will find some functions it can partition some functions and

retain many others in both copies. Measuring these quantities relative to one another

thus provides a single informative axis describing the divergence potential of a paralog

pair (Fig. 5.11-B).

The model is able to simulate paralog pairs and place them on this map. Using the

number of simulated functions as the measure of multi-functionality, and the percent-

age of sequence positions participating in more than one functional region as a measure

of structural entanglement, we can test our hypotheses about asymmetry and retained

common function. For a range of multi-functionality parameters (3–30) we simulated

the evolution of 5,000 paralog pairs, and binned them by their initial structural entan-

glement, thus generating a two-dimensional grid of binned samples over the space. We

could then calculate the fraction of pairs that revert to singletons, measure the average

asymmetry, or count the average number of retained functions in each bin. Fig. 5.12

shows these measures for each bin, plotted against the bin’s location on the divergence

axis. Fig. 5.11-A predicts that pairs with a high score on the divergence axis (that is

down and to the right) will more commonly end up as singletons because they have few

functions that are difficult to separate. Indeed, we find that the average rate of pairs

converting to singletons is much higher for those regions of the map. The map also

predicts that retained common functions should likewise be more frequent for higher

divergence axis scores, and again simulations bare that out. Further, the map shows

lower divergence axis scores being associated with asymmetry, and the simulations show

this property to be true also.

Modeling conclusions

If we attempt to apply our real trigenic interaction data to the map shown in Fig. 5.11,

the results are encouraging. Using GO function annotations to asses multi-functionality,

and GO component annotations to represent structural entanglement as a constraint
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Figure 5.12: Modeling the axis of divergence. Paralogs were generated and evolved to
cover as much of the space in the divergence map as possible. The space was then
binned in two dimensions, and summary statistics were gathered for each bin, and
plotted against the bins score on the axis of divergence. Left) Axis score versus gene
loss / reversion to singleton status. The plot confirms that the rate at which paralogs
are converted back into singletons, is much higher for pairs with high divergence-axis
scores (that is pairs with fewer, highly entangled functions).
Center) Axis score versus retained common functions. The plot confirms that pairs with
a higher axis score result in a broader range of retained common function. Notably, the
increase in the potential for retained common function begins at about -2, which is left
of the position where gene loss becomes increasingly common.
Right) Axis score versus asymmetry. The plot confirms that the average functional
asymmetry is higher for simulated pairs with a lower axis scores. Pairs with functions
that are numerous, or easily sub-functionalized to one paralog are prone to asymmetric
divergence.
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to sub-functionalization, we can achieve correlations between divergence axis scores

and trigenic proportion (ρ > 0.27, p < 0.021, Spearman), and divergence asymmetry

(ρ > 0.38, p < 10−3, (AN)). We also find a significant relationship between divergence

axis score, and the “dosage” pair classification used in Chapter 4 (ρ > 0.31, p < 0.007,

Spearman), suggesting that perhaps the divergence axis may be more predictive of pairs

retained for dosage sensitivities than the absence of trigenic interactions, as we predicted

earlier.

Gene duplication events have several possible outcomes. For any particular paralog

pair, which of these comes to pass is a result of their functional properties and, to a large

extent, chance. Understanding the relative impact of different functional properties and

the role of chance in duplicate evolution and divergence will bring new insight to an

old evolutionary problem. In this section we tried to understand the interplay between

opportunities for, and obstacles to, divergence via sub-functionalization. Importantly,

we demonstrated that a key component in retained common functions of the sort that

might give rise to trigenic interactions was the amount of structural entanglement rela-

tive to multi-functionality. More generally we developed a framework to study how the

sequence-function relationships of a paralog pair affect their evolutionary trajectory.

5.4 Conclusions

In this study, we have conducted systematic analysis of triple-mutant perturbations in

yeast at an unprecedented scale. We developed the experimental and theoretical systems

with which the trigenic interaction network can be mapped, and discovered nearly 8,500

novel trigenic interactions in the process. These interactions were shown to have a high

overlap with what little trigenic interaction data exists, and were otherwise shown to

be of a quality similar to previous digenic interaction studies.

We explored novel types of trigenic interactions, which arise due to the combinatoric

nature of higher order perturbations, and speculate as to their biological interpretations.

Additionally, we demonstrated broad variation in trigenic proportion, which captures

the extent to which a duplicate pair has retained common functions, and gave several

examples of physiological properties that correlate with trigenic proportion in support

of that hypothesis.
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Finally, we developed an updated framework to explore paralog evolution as it re-

lates to the evolutionary stability of retained common functions, and asymmetric di-

vergence, and concluded that paralogs will follow an evolutionary path which depends

on both their opportunities to diverge, as well as their freedom to do so. Our model

and simulation results suggest that sub-functionalization will tend to partition ancestral

function asymmetrically, unless the sequence-function relationship is sufficiently com-

plex, in which case common functions can be retained in both paralogs giving rise to

trigenic interactions.



Chapter 6

Conclusion and Discussion

In this dissertation, I have outlined several different projects with one single goal: to

build a complete map of gene functions in a model organism through perturbation anal-

ysis. These efforts have combined several perturbation approaches, varying both the

number of simultaneous perturbations as well as the environment under which they

are tested. In Chapter 2, I described the first whole-genome survey of single-mutants

in a truly minimal environment, where yeast are forced to exercise their full range of

metabolic potential. In Chapter 3, I covered our efforts to construct a complete map

of genetic interactions from double-mutant perturbations. In Chapter 4, I examined a

specific segment of that genetic interaction network for insights into the mechanisms of

duplicate gene evolution and divergence, while in Chapter 5, I extended the work on

duplicate genetic interactions with the first genome-scale maps of triple-mutant inter-

actions.

There is still much experimental and computational work to be done in pursuit of

our goal: a complete understanding of a single model organism. The single-mutant

study in Chapter 2 represents an important contribution to the study of perturbations

in truly minimal environments. While simple environments are not likely to garner as

much attention as more complex environments (i.e. drug treatments), it is essential to

examine them for a more complete understanding of basic cellular operation. Our effort

to disentangle the effects of multiple environmental factors, observed simultaneously,

represents an important contribution, but additional computational work will be needed

to scale these methods to more complex environments.

149
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Of course, network models of metabolism are not yet complete in yeast. I observed

that despite their supposed dominance as in silico models of cellular processes, current

metabolic networks have difficulty predicting the real world consequences of even sim-

ple perturbations in basic environments. Despite their shortcomings, these metabolic

models do produce impressive results, and have made tremendous progress since their

inception. What is required for these models to fulfill their purpose—aside from more ex-

perimental data in absolutely minimal environments—is a better understanding of how

environmental elements interact in the metabolic network. Such interactions include

those mediated by genes not currently represented in flux-based models such a trans-

porters, transcription factors, and genes responsible for nutrient sensing and signaling.

Work in this area has begun, however, methods for the incorporation of the necessary

experimental observations into computational models requires additional attention.

The completion of digenic interaction mapping efforts in yeast has opened many new

doors for computational discovery. These directions chiefly concern the structure of net-

work interactions beyond simple local associations. My work shows that long-distance

interactions comprise the majority of the edges of the genetic interaction network. Fun-

damental to the problem of unraveling complex phenotypes in humans and other organ-

isms is an understanding of how influence aggregates over the entire network. Still, our

work shows that even these long-distance functional interactions contain some structure

and that they connect across broad functional processes in meaningful ways. Notably,

the work in Chapter 3 describes meaningful network properties of essential genes. While

their prominence in terms of network degree is unsurprising, given their essential na-

ture, the character of their interactions is very different from that of non-essential genes.

Whether or not these differences are conserved to other organisms requires further ex-

perimentation and computational analysis. If the properties are found to be universal, it

will validate the necessity of including essential genes in experimental interaction maps

of model organisms.

Similarly the analysis of gene duplication and its effects in the genetic interaction

networks provides insights that extent beyond one organism. Much is still not under-

stood about how these networks become so robust, and how they maintain robustness

in the face of evolutionary pressure to simplify. The genetic interaction network does

an excellent job at characterizing this robustness at the level of functional modules and
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pathways, but is poorly suited to capture the most specific example of robustness: nodes

of identical redundant function. For that task, we must counter gene-level redundancy

with higher-order perturbations, such as the triple-mutant perturbations we use in the

definition of trigenic interactions.

While mapping of the digenic interaction network is nearly complete, mapping of

the trigenic interaction network is just beginning. The combinatorial explosion of high-

order perturbations makes it unlikely that the trigenic network will be systematically

mapped in any organism. However, an efficient sampling of trigenic interaction space

may prove informative about how many trigenic interactions to expect, where to expect

them, and how their structure differs from digenic interactions. Paralog pairs, with their

known capacity for buffering, provide a natural subset of trigenic interaction space for

systematic mapping, and while many of the pairs in this study showed numerous trigenic

interactions (77/203), many showed few or none. This study will help researchers who

wish to map trigenic interactions in other model organisms do so more efficiently by

targeting pairs with characteristics outlined here. It will be interesting to see which of

those properties are conserved, and to what extent.

The interpretation of different types of trigenic interaction, and also of differential

digenic interactions, is another interesting direction worthy of further study. Knowing

whether these sub-types correspond to distinct biological mechanisms, and do so re-

liably, would be preferable to simply applying intuitions and models built for digenic

interactions.

Models for evolutionary divergence and retention provide many opportunities for

both the simulation of data, and its comparison with real-world observations. In my

estimation, the principle obstacle here is our inability to directly relate sequence to

functional ability. Individual studies exist, with specific functional readouts such as

enzyme catalytic activity, but a more generalized approach could prove very useful. For

example, genetic interactions derived from point mutants may provide relevant data for

such an approach, but current genetic interaction data is limited to mutants that have

not yet been sequenced to determine exact genotype. Further, while we progress in our

understanding of how sequence mediates function in many ways (for example, protein

folding, binding, RNA splicing, post-translational modifications, chromatin organiza-

tion, and so on), integrating genome-scale information concerning all of these processes
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together in a meaningful way is only just becoming a possibility. A complete model

of paralog evolution would need to account for each of these potential mechanisms of

divergence and understanding their interactions will be important to making such a

model successful.

The data in these study will prove useful both to researchers studying particular

duplicate pairs, as well as those studying the general effects of duplication. Duplicated

genes have been, and will continue to be, an important area of study, both for the insights

they yield into the characteristic robustness of biological networks, as well as the light

they shed on the evolutionary histories of those networks. A complete functional profile

for each of these pairs represents an important step in the understanding of both of

these areas, and should enable many future directions in the study of historical and

extant networks.

The wealth of data available for model organisms such as S. cerevisiae brings exciting

computational opportunities, but it also brings significant challenges. Complete func-

tional characterization from individual genes, to functional modules, to entire cellular

sub-systems continuously demands new computational methods such as those included

here. Ultimately, these tools may help us to understand, not only how all the compo-

nents come together to form a whole organism, but the processes by which evolution

has shaped these components in relation to one another.
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Appendix A

Appendix for Chapter 2

A.1 Construction of a prototrophic delection collection

As recently described [188], the strains in the standard MATa deletion collection (MATa

yfg∆0::KanMX his3∆1 leu2∆0 met15∆0 ura3∆0 ) [3] were mated to a MATα can1∆

::STE2pr–SpHIS5 his3∆1 lyp1∆0 strain, creating diploids (selection on minimal media

+ his + G418). These were sporulated and successive pinnings on selective media

were used to select prototrophic MATa strains carrying each deletion allele. These

prototrophic strains were organized into an array of 16 plates including one entire plate

of the wild-type strain (ho∆::KanMX ), with additional wild-type replicates in each row

and column of every plate (701 in all). The entire prototrophic collection is available

upon request, as is the individual SGA-ready prototroph strain for crossing into other

collections.

A.2 Media preparation

Minimal growth media were prepared using yeast nitrogen base (BD Difco, Sparks,

Maryland, USA) with the specified carbon and nitrogen sources. Carbon sources in-

cluded glucose, galactose, ribose, and glycerol. Nitrogen sources included ammonium,

allantoin, arginine, glutamate, glutamine, proline, and urea. Carbon sources were pro-

vided at a concentration of 2%; nitrogen sources were 3.8 mM with respect to nitrogen.

183



184

A.3 Calculation of growth rate data

Sixteen 16×24 well plates were grown in 28 chemical conditions for 24–48 hours. Pictures

were taken at 0, 5, 10, 24 and, in the case of glycerol, 48 hours. Each condition is

composed of one carbon source and one nitrogen source. In total, 4,772 mutants were

grown, and colony areas were extracted from tiff images by CellProfiler [189] and precise

time points were take from EXIF data in the digital images. These values were used

to compute an estimate of the growth rate of each colony equal to the slope of the

least-squares linear fit of area (pixels) to time (seconds). Colonies with insufficient data

were given a growth rate of NaN, colonies with a negative calculated growth rate were

defined to have a growth rate of 0.

A.4 Definition and construction of a reference condition

Six replicates of the glucose:ammonium combination were merged to form a reference

condition, establishing a baseline score for each deletion. The six replicates were first

normalized to each other to control for differences in the overall scale of growth rates,

then averaged together according to the following procedure. For each array plate

(p) the glucose:ammonium replicate with the fewest missing data points was held out

(PlateA ) and the remaining five replicates were LOWESS smoothed (window size =

50% of available data) and normalized by:

GA : plate′p = GA : platep × PlateA
lowess(GA:platep)

The result of this approach is quite robust to the choice of PlateA, and so we used

whichever replicate had the fewest number of missing values and would therefore provide

the most complete LOWESS fit. After normalizing five replicates to the sixth, all six

were averaged together to create one reference plate, and this procedure is repeated 16

times to create a glucose:ammonium reference for each array plate.

A.5 Normalization of experimental rates against reference

In every experimental condition(y), each plate was LOWESS smoothed (window size =

50% of available data) against the constructed glucose:ammonium reference plate, then
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normalized:

Condy : plate′p = Condy : platep × GAref :platep
lowess(Condy :platep)

A.6 Recovery of missing data

In certain cases a growth rate of NaN was assigned to a colony due to insufficient data

being collected by CellProfiler[189]. In an effort to recover any good data, these cases

were visually inspected by five researchers operating independently and a vote was taken

to determine whether to leave it as missing data (NaN) or assign it a growth rate of

0, indicating that the colony appeared to be correctly plated but non-viable. In total

1,362 of 2,601 colonies were recovered this way.

A.7 Transformation from normalized rates to z-scores

For each array plate, at each position, a strain-wise standard deviation is calculated

across the residuals of the six glucose:ammonium (GA) replicates. Similarly, a plate-

wise standard deviation is calculated that accounts for the general growth variation

on the plate, separately for each condition. These are then combined, and a z-score

measure is calculated for each strain on each experimental plate:

z =
Condy :plate′p−GAref :platep√
stddev(strain)2+stddev(plate)2

These z-scores are an expression of the difference in magnitude and direction between

the growth observed at each position of a plate under a given condition from the same

position (and hence deletion) under the reference GA model.

A.8 Spatial smoothing procedure

The plate level spatial smoothing filter is similar to that found in [50]. First, temporarily

replace any extreme values (top and bottom 5%) along with NaNs with the plate mean.

Second, replace previous NaN positions with values from a two-dimensional symmetric

gaussian filter. Third, compute and subtract the residual between the two-dimensional

smoothed plate and its mean.
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A.9 Choosing effect thresholds

Each condition had 701 wild-type replicates. The mean and standard deviation of the

set of wild-type z-scores were used to define a normal distribution against which p-

values for the experimental z-scores could be calculated. This information allowed the

use of Benjamini-Hochberg procedure to establish condition-specific effect thresholds as

a function of a desired FDR. See Table A.1
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Condition slow fast

glucose ammonium01 -1.390896 1.247624

glucose ammonium02 -1.533445 1.541672

glucose ammonium03 -1.657256 1.651313

glucose ammonium04 -2.096102 NaN

glucose ammonium05 -1.104211 1.095158

glucose ammonium06 NaN 2.094176

glucose proline -1.199736 1.235451

glucose glutamate -1.069737 1.242443

glucose glutamine -1.126722 1.231199

glucose arginine -0.688915 1.167267

glucose urea -1.389899 1.572141

glucose allantoin -1.232272 1.33048

galactose ammonium -1.078656 1.180252

galactose proline -0.814656 0.923763

galactose glutamate -0.616518 0.783427

galactose glutamine -0.626531 0.862998

galactose arginine -1.024493 1.047379

galactose urea -1.452546 1.678125

galactose allantoin -1.066719 1.290977

ribose ammonium -1.18146 1.12634

ribose proline -1.051107 0.671917

ribose glutamate -1.113968 1.113366

ribose glutamine -1.384957 1.268024

ribose arginine -1.582742 1.444913

ribose urea -1.227792 1.164294

ribose allantoin -1.067669 1.025517

Table A.1: FDR 20% thresholds for z-score data. For each condition the z-score values
at which a growth deviation was deemed significant are shown here.
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A.10 Liquid growth confimation assay

The growth rate of 40 mutants in a liquid growth assay was measured across 20 of

the experimental conditions excluding ribose:arginine and all glycerol pairings. Liquid

culture assays were not performed for the ribose:arginine conditions because the combi-

nation of these carbon and nitrogen sources did not allow arginine to maintain adequate

solubility over the duration of the experiment. The precipitation of arginine prevented

accurate optical density readings from being obtained and thus these data were excluded

from our subsequent analyses. Six replicate wells contained the wild-type strain and

each mutant strain was represented twice. Cells were pre-grown on glucose:ammonia

medium and diluted at a low density into the growth medium of interest. Growth rates

were determined as the maximum optical density (saturation) divided by the time to

saturation. A simple model was favored in order to robustly accommodate drastic dif-

ferences in curve characteristics between fast growth and slow growth conditions (for

example, galactose versus ribose).

We adjusted the liquid growth scores by dividing the mean of mutant growth slopes

by the mean of wild-type growth slopes in the relevant condition. We further nor-

malized these scores by dividing them by the corresponding adjusted mutant score in

glucose:ammonium so they would reflect condition-specific effects, similar to our modi-

fied z-score derived from the agar experiment.

A.11 Gene Ontology and KEGG annotations

GO [93] and KEGG [190] annotations were downloaded in January 2011.

A.12 Constraint-based metabolic modeling (FBA/MoMA)

Two S. cerevisiae metabolic models were used for mutant biomass prediction. The Yeast

Consensus Reconstruction version 5.35 (Yeast5) [96] and iMM904 [97]. Yeast5 consisted

of 898 ORFs, 2,031 reactions and 1,594 metabolites and the iMM904 model contained

901 ORFs, 1,597 reactions and 1,234 metabolites. Default biomass descriptions were

used for both models.
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Wild-type biomass production flux for each condition was obtained using FBA [98] in

MATLAB with the COBRA Toolbox [191], which assumes optimal biomass production

(that is, maximum biomass yield). Mutant biomass flux was predicted using both FBA

[98] in MATLAB with the COBRA Toolbox [191] and MoMA [99] in MATLAB with the

ILOG CPLEX optimization suite. MoMA was formulated as a quadratic programming

problem, whereby mutant fluxes were selected that minimized the Euclidean distance

from an optimal wild-type flux distribution. The yeast wild-type flux distribution was

calculated as a network flux solution producing maximal biomass flux, determined by

FBA, with minimal total fluxes [192].

FBA and MoMA biomass fluxes were correlated with both raw and normalized

(z-score) experimental growth rates using the Spearman rank correlation. Predicted

biomass fluxes were also normalized for comparison to experimental growth rate z-scores

(separately in each condition Y):

MutantF luxnormY = MutantF luxrawY
MutantF luxrawGlu:Amm×WildTypeF luxraw Glu:Amm

Prediction of positive z-scores was also carried out, though performance was gen-

erally below random expectation (Tables 2.5–2.6). This is likely due to the fact that

many positive z-scores corresponded to raw growth rates for mutants that were faster

than wild-type under the same condition, a consequence that FBA- and MoMA-based

methods would find difficult or impossible to predict.

To calculate the effect of gene deletions on the metabolic network (Fig. 2.7), sets of

producible metabolites were calculated for the complete model, and for a mutant with

all four auxotrophic marker genes deleted. Producible metabolites were calculated for

both iMM904 and Yeast5 model in the glucose:ammonium media condition by adding a

special exchange reaction for each metabolite and iteratively optimizing flux exported

through that reaction. If the export flux for a given metabolite exceeded 0.001 (with

an upper and lower bound on internal reactions set to ± 1,000), it was classified as

“producible.” A non-zero threshold is required to limit false positives as a result of

numerical errors. The threshold was determined to be robust by scaling the upper and

lower bounds, as well as the threshold by a large constant and counting the number

of producible metabolites. Obtaining consistent results in these experiments led us to

conclude that numerical errors are an order of magnitude smaller than contributions
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from stoichiometry.

A.13 Source signature decomposition via modified non-

negative matrix factorization

Growth data was decomposed using a variant of NMF [108]. Following transformation to

z-scores, the data were made binary using condition-specific FDR estimates as thresholds

(20% FDR; Tables 2.1,A.1). The resulting boolean Data matrix was treated as numeric

and served as the target for decomposition. Genes without any significant z-scores in

any condition (empty rows) were removed, as were the columns involving growth on

glycerol. We then defined a Coefficient matrix that related Condition rows in the data

to their component Sources. This matrix then had C columns and S rows. For example,

the glucose-urea column has a 1 in the glucose row and a 1 in the urea row. Our task

is then to find a Signatures matrix (Genes × Sources) such that the difference between

the Data matrix and the Sigantures-Coefficients product is minimized:

Data(G,C) ≈ Signatures(G,S)× Coefficients(S,C)

To ensure linear independence among the columns of the Coefficient matrix, we re-

moved all but one glucose:ammonium column (glucose:ammonium01), removing the

same columns in the Data matrix. Traditional NMF would use a multiplicative update

algorithm applied to both the Signature and the Coefficient matrix to find the best fit

to the data; however, we chose to fix the Coefficient matrix at the initial defined values

(0 or 1). This gives each Signature column equal weight and prevents over-fitting caused

by the sparsity of the Data matrix and the dramatically different number of non-zero

elements from one column to the next. The multiplicative update was applied for 20

iterations, though in practice the results converged in fewer than 10, and repeated trials

from different random initializations of the Signature matrix showed the results to be

quite stable. Genes were considered part of a signature if their value exceeded 0.4.

A.14 Comparison to SGA data

For the comparison to auxotrophic SGA data represented in Fig. 2.11, the SGA data

were taken from [66]. The SGA data and the z-score data were independently normalized
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so that row and column vectors had a euclidean length approximately equal to 1, and

missing values were set to 0. Inner product was then used to measure the similarity

between SGA “queries” and environmental profiles. The top 10% of queries in each

condition were checked for enrichment for GO terms and KEGG pathway annotations,

and the resulting p-values were Bonferonni corrected to account for the number of

terms/pathways tested against.

A.15 Abbreviations

FBA, flux balance analysis; FDR, false discovery rate; GO, Gene Ontology; KEGG,

Kyoto Encyclopedia of Genes and Genomes; MoMA, minimization of metabolic ad-

justment; NMF, non-negative matrix factorization; ORF, open reading frame; SGA,

synthetic genetic array.



Appendix B

Appendix for Chapter 3

B.1 Supplementary materials and methods

B.1.1 SGA array normalization

In order to combine SGA data from each of our two array experiments in a meaningful

way, we used the following procedure to adjust ε scores from the TS array to resemble

scores from the FG array. The two datasets were intersected on their common set of

1,931 queries and 175 array genes. The result is approximately 316,000 pairs of matching

ε observations. Direct scaling of one set of data to match the other via least-squares

fit produced unsatisfactory results due to the high variance of the data relative to its

correlation. We therefore decided to scale the data to minimize the differences in the

distribution of common ε scores. We used quantile normalization on the common set

of scores, and in the process built a table of quantile normalization values, which then

could be applied to the remaining TS array interactions. This procedure ensures an

identical distribution of common scores, without constraining the entire distribution of

TS array scores. These two goals must be achieved in order to use the same threshold

on both datasets, and to compare the resulting total number of interactions at a given

threshold.
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B.1.2 SGA gold standard definition

For queries that were screened at least 5 times, we created a gold-standard for both

positive and negative interactions. Any interaction seen twice, at the intermediate

threshold, is included in the standard. For queries with more than five replicates, the

five replicates with the fewest missing values were chosen.

B.1.3 Protein-protein interaction data

For the purposes of this chapter, protein protein interaction data is taken from Bi-

oGrid [70] and represents the union of five high-throuput studies: Gavin et al. (PMID:

16429126 [193]), Babu et al. (PMID: 22940862 [194]), Krogan et al. (PMID: 16554755

[65]), Tarassov et al. (PMID: 18467557 [195]), Yu et al. (PMID: 18719252 [196]).

B.1.4 Gene Ontology terms for functional prediction

In order to make predictions across many diverse processes in a non-redundant way, we

used a subset of the Gene Ontology referred to as the “fringe” set. GO terms in the fringe

set (119) span the entire GO “process” tree and were selected to be specific enough to

be functionally informative, yet large enough to be useful in prediction scenarios. They

were also selected so as to be as non-overlapping as possible [94].

B.1.5 Array gene function prediction via KNN

Deletion array genes were classified into functional categories using a variation of k-

nearest neighbors with leave one out cross-validation. Functional categories for classifi-

cation were taken from a subset of the Gene Ontology (See Sec. B.1.4), and classifica-

tion on each GO term was performed separately to accommodate multiple annotations.

Terms with fewer than 10 participating genes were removed leaving 132 GO terms for

prediction. Array genes with no annotations were deemed useless for prediction as these

would provide no information for classification of other genes and would be impossible

to correctly classify themselves. These array genes were therefore removed.

Each gene received a score for every GO term in following way. The K (=5) largest

similarity scores between the gene in question and members of the term in question are

summed. Similarity scores are calculated as inner products between array gene profiles,
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using a subset of queries. Genes are then ranked within each term according to this

summed similarity with known term participants. This process was then repeated using

different subsets of SGA queries to calculate similarities between array genes. No more

than one allele of each gene was used in either the DAmP or TS analysis, and one allele

of each was selected at random.

To control for the number of available features of each respective query type, we

selected 100 queries of each type at random. There are approximately 100 DAmP queries

in the collection, so this represents the largest number of features at which performance

can be measured fairly. Results shown in Fig. 3.9 represent means, bootstrapped over

50 iterations of random query-feature selection.

B.1.6 Hierarchical cluster filtering

The bounds on correlation coefficients which were used to define clusters at each level

can be seen in Table B.1. Hierarchical clustering inevitably puts every gene in a cluster,

however this can lead to clusters which are driven by noise in screens with little genetic

signal and therefore carry no functional information. To mitigate the impact of these

clusters on the overall analysis we filtered out genes based on two criteria: i genes must

participate in at least one functionally informative and specific cluster. That is, they

must belong to a cluster at level 3 or deeper with significant enrichment for annotations

to a GO term. ii genes must be included in a cluster at level 5. A number of low-signal

individual genes joined the only at relatively high linkage bounds, because they did

not significantly correlate to any other genes. Mandating cluster membership at level 5

(and therefore at levels 1–4) ensures that we are always using the same set of genes, and

therefore degree distributions, when making comparisons from one level to another.
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Level Linkage bound Pearson equivalent Clusters Average size

1 2.00–0.95 -1.00–0.05 1 925

2 0.95–0.80 0.05–0.20 10 93

3 0.80–0.60 0.20–0.40 50 19

4 0.60–0.40 0.40–0.60 112 8

5 0.40–0.20 0.60–0.80 231 4

Table B.1: Hierarchical clusters after filtereing. The table shows the linkage thresholds
used to determine each “level,” as well as the number of clusters that result at each
level, and their average size. Because genes which did not fall into any cluster at level
5 were filtered out, and each cluster contains all gene-members of its children clusters,
the total number of genes included is the same at every level (401 essential genes, and
524 non-essential genes).

B.2 Supplementary figures
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Figure B.1:
The proportion of non-dubious genes included as either a query or array (on either array)
is shown for each of 14 broad functional categories. Also included is the proportion of
genes with no functional annotation according to this scheme. The fraction is shown
separately for essential and non-essential genes.The vast majority of genes from every
major biological process are included in the experiment as are ∼90% of unannotated
genes.
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Appendix for Chapter 4

C.1 Ribosomal Duplicates

Ribosomal duplicates constitute a sizable fraction of whole-genome duplicates, and their

direct impact on growth rate means they present a very strong signature within the

genetic interaction network. They also (reassuringly) represent a significant portion of

our defined dosage class. To ensure that our results are not overly influenced by this

characteristic signature, we here present a summary of statistics which are affected by

the removal of ribosomal duplicates from consideration. Statistical tests were repeated

as in the main text with any duplicate pair with an annotation in the “Translation”

Gene Ontology term being removed. First, the direction and significance of most of the

core statistical results was maintained after removing the ribosomal duplicates: Fig.

4.2A: genetic interaction rate among duplicates; Fig. 4.2C: evidence for fewer genetic

interactions among duplicates; Fig. 4.2D: evidence for lower profile similarity among

duplicate pairs than protein- protein interaction pairs; Fig. 4.3B: the shared protein-

protein interaction partner dosage/divergent selection analysis; Fig. 4.4A: asymmetry

of duplicate pairs interaction degree; Fig. 4.4B: relationship between genetic interaction

asymmetry and other functional data; and 4.4C: the relation between the high/low

degree sister and the singleton average.

For Fig. 4.3A, which showed the difference in profile similarity between dosage and

divergent pairs, the medians trend in the same direction, but the difference between

dosage and divergent pairs is not significant after removal of the ribosomal pairs due

197
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to a loss of many pairs in the dosage class. All other distinctions on that figure (e.g.

the PPI/divergent difference) remain significant, and notably, Fig. 4.3B demonstrates a

similar conclusion using a different approach and is statistically significant after remov-

ing the ribosome. Interestingly, the result from Fig. 4.2B, the difference in synthetic

sick/lethal interaction rates between WGD and SSD pairs, appears to be explained by

the ribosomal duplicates as this difference is no longer significant after removing the

ribosome: 17 out of 23 (74%) screened ribosomal WGD pairs are synthetic sick/lethal,

which is much higher than the rate for non-ribosomal WGD pairs (28%). Finally, the

difference in the synthetic lethality rate for symmetric vs. asymmetric duplicates pre-

sented in Fig. C.3A becomes significant (p < 1× 10−2) as many of the (often synthetic

lethal) ribosomal duplicates fall into the symmetric class. Our conclusions based on this

result (i.e. that asymmetric duplicates show negative interactions at least as frequently

as symmetrically diverged duplicates) remain unchanged.

C.2 Sequence evolution rates support selection class dis-

tinction

Cross-referencing our dosage-mediated and divergent duplicate sets with slowly and

quickly evolving pairs from Kellis et al. [42] revealed another connection in principle.

Selecting pairs whose sequences appear to be diverging very slowly, we found an enrich-

ment for paralogs in the dosage set. Specifically, out of the 372 pairs that existed in

the referenced study and had appropriate classification data, 41 were classified as slowly

diverging, and 45 were annotated as dosage. The overlap between these two sets (14

pairs) proved to be significant (p < 7×10−5; hypergeometric cdf). A similar comparison

showed that all but three pairs from the quickly evolving set (totaling 89 pairs) belonged

to the functionally divergent set (p < 2× 10−3; hypergeometric cdf), again supporting

the distinction between the two sets. Duplicate pairs that are performing the same

functions, and therefore must be retained to maintain dosage levels, would be under

equal and symmetric selection against change, and therefore exhibit a very slow rate

of divergence. Meanwhile, pairs which are maintained because they are upholding even

slightly different responsibilities would be under far less sequence preservation pressure

and are therefore far less constrained.
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C.3 Genetic interactions highlight the divergence of GAS1

and GAS2

GAS1 and GAS2, are extremely asymmetric in the number of interactions they exhibit.

Both of these genes are involved in the maintenance of the cell wall, but appear to be

utilized under very different contexts [197]. GAS1 has 139 negative genetic interactions,

and the genes with which it interacts are enriched for annotations to GO processes

relating to cellular structure and morphogenesis (GO:0032989; p < 6 × 10−4). It is

required for cell wall assembly, and expressed during normal vegetative growth. GAS2,

by contrast, has only 7 negative genetic interactions and is expressed exclusively during

sporulation, where it is required for spore wall assembly [198]. These two genes may

be performing very similar tasks in the construction of similar cellular structures, and

yet they share only one negative genetic interaction with YIH1, which affects gene

expression in response to starvation [199]. Presumably, starvation triggers the cellular

switch from a context where GAS1 is used in the construction and maintenance of

normal cell and bud wall material, to a context where GAS2 is instead used in the

construction of spore wall. Before the small scale duplication event from which this pair

arose, it is conceivable that these roles were upheld by a single ancestral GAS gene, and

one modern copy now carries the burden of the responsibilities while the other operates

on a very specific subset.

C.4 Self-reinforcing model of duplicate divergence.

We propose a model for self-reinforcing asymmetric divergence of duplicate genes which

relies only on the relaxation of negative selective pressure resulting from genetic redun-

dancy and loss-of-function mutations. The key observation of the model in comparison

to previous attempts at explaining asymmetric divergence is that while mutations oc-

cur in sequence space, selection ultimately acts on function space, and thus, a single

change at the amino acid level may affect multiple functions of a given protein. Sim-

ilarly, a given function may have been lost due to any one of a number of mutations

(Fig. C.5). Thus, we developed a simple discrete formulation of this model, assuming

multiple functions (> 1) per protein, and that random mutations in sequence space may
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have K (> 1) effects in function space. This represents an update of a previous model

that attempted to show asymmetry as a result of only negative selection pressure and

loss-of-function mutations [152].

However, this previous model assumed that either duplicate gene had an equal prob-

ability of acquiring an additional loss-of-function mutation, which is not realistic in the

case that one gene has already lost much of its function due to degenerating mutations.

Our assumption allowing single sequence mutations to affect more than one function pre-

dicts asymmetry without requiring the assumption of equally probable loss-of-function

mutations. Consider two divergent duplicate genes with N functions. These N functions

belong 3 different categories. Those lost in duplicate 1 (l1), those lost in duplicate 2 (l2),

and those redundant functions, which are lost in neither (R)(Fig. C.6A). We assume

that a mutation resulting in the loss of a function which has already been compromised

in the sister duplicate will be deleterious and unsustainable. Given this formulation,

the probability that the region l1 increases via a sustainable mutation (with k out of K

effects in region R) increases with l1 itself (Fig. C.6B).

P (l1 increase) =
K∑
k=1

(
R
k

)
∗
(

l1
K−k

)(
N
K

)
We can further generalize this model beyond this discrete formulation by formal-

izing the relationship between mutations at the sequence level and their consequences

at the functional level. If we have a duplicate pair G1 and G2, either may accumulate

mutations freely immediately after duplication due redundancy provided by the sister

gene. However, if one gene has a mutation that seriously impinges on one of its major

functions (F1), any mutation in the sequence regions that support F1 that would lead

to a similar loss of function in G2 is selected against because the cell presumably would

incur a fitness penalty if the function F1 is lost in both sisters. At the same time, G1 can

have mutations in sequence regions that only effect F1 or any remaining redundant func-

tions shared by G1 and G1 (call this FR). In this manner, G1 continues to accumulate

mutations that reduce it’s functionality until it is completely non- functional, or until

G1 has a mutation that impinges on a different function F2, causing the corresponding

sequence that supports F2 to be conserved in G1.

If we let S1, S2, and SR be the parts of the sequence that correspond to functions

F1, F2 and FR respectively, and assume that mutations happen with equal probability



201

at any point of the sequence, we can find the probability of having a mutation in G1

that incurs an additional loss of function for G1 without impinging on any functions

already lost to G2:

P(SR ∩ Sc
2) = P(SR ∩ (S1 ∪ S2)c) [A] + P((SR ∩ S1) ∩ Sc

2) [B]

The key point is that while A (the sequence regions that support only FR but not

F1 or F2) is the same for G1 and G2, B (the sequence regions that support FR or F1

but not F2) is likely larger for G1 than the equivalent term for G2 (P((SR ∩ S1) ∩ Sc
2))

if S1 > S2. Therefore a gene that has already lost more functionality is likely to

have more sustainable mutations that result in an even greater loss of function. Yet the

sequence-function relationship structure may forbid particular redundant functions from

falling to one duplicate or the other (Fig. C.5). This framework then not only explains

the asymmetry observed between duplicate pairs in function-based and sequence based

studies, but also accounts for the high degree of retained functional overlap among even

the most asymmetric duplicate pairs.

C.5 Supplementary figures
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Figure C.1: (A) Duplicate deletion has less impact on cell fitness. Around 17% of
all genes in the yeast genome are annotated as essential. The essential rate of dupli-
cates in the small family (n = 2) set is much lower (5%). When deleted, small-family
non-essential duplicates have less of an impact on cell fitness than do their singleton
counterparts (ranksum p = 6 × 10−5). (B) Duplicate genetic interactions cannot ac-
count for their double-mutant fitness. In previous work we found a strong correlation
(r = 0.7, [66] between the single-mutant fitness defect of a gene and its genetic interac-
tion degree. We used this idea to control for the importance of each duplicate pair by
fitting a linear model of the pair’s double-mutant fitness (DMF) to the union of their ge-
netic interaction degree. We then did the same for functionally related pairs and found
that after controlling for the DMF, duplicate pairs had fewer interactions than expected
(shown here). For example, the transcription factors STP1 and STP2 both activate
the transcription of amino acid permease genes in response to extra-cellular stimuli, and
exhibit an SSL interaction with each other. Their double-mutant fitness (0.48) would
predict they show some 220 interactions. However, their combined profile contains only
103 SSL interactions (and they share only 6). Taking the DMF of a duplicate pair to
approximate the SMF of the pair’s ancestor [139], this result suggests that the union of
their interactions (an approximation of the ancestor’s interactions) is missing interac-
tions supposedly possessed by the ancestor. We submit that these missing interactions
are buffered due to retained redundancy, but represent real functional consequence as
evidenced by their effect on double-mutant fitness.
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Figure C.2: (A) Proportion of Duplicates in “Dosage” class. Approximately 14% of
duplicate pairs in this study fall into the dosage category. However, if we apply the
threshold criteria derived from the small-family set (Methods) to duplicates in general,
we see that about 21% of duplicates would belong to the dosage class. The difference
between these two proportions is significant (p = 3 ∗ 10−5) as the inclusion of larger
gene families naturally picks up many genes which have higher phylogenetic volatility
scores. These are canonical dosage-mediated pairs, and may have been duplicated for
the sole purpose of increasing product quantity. However, the thresholds determined
on the small family set may not be appropriate for duplicates in general. Interest-
ingly, SSD paralogs appear to have a higher proportion of dosage- mediated pairs than
WGD pairs (22% vs 12%, p < 5 × 10−3, see Methods C.6). We speculate that this
difference may stem in part from the unique balance opportunities that a whole-genome
duplication event might provide, possibly allowing greater tendency towards functional
specialization. (B) Dosage and Divergent genes show fitness differences in haploid dele-
tion assays. The buffering model predicts dosage genes will have more of an impact
than divergent genes when deleted individually. Means are shown and error bars repre-
sent the standard deviation on the mean over 1000 bootstrapped samples. Duplicates
classified as “Dosage”(Methods C.6) have a significantly higher fitness impact than do
other (Divergent) duplicates when deleted. (* p < 6 × 10−4; Wilcoxon rank-sum test)
Duplicates retained for partial divergence show much less of an impact on fitness than
do non-duplicates. (** p < 2 × 10−9) The difference in single-mutant fitness between
Dosage duplicates and singletons is not significant. (p > 0.3) (C) Independent data con-
firms difference in deletion fitness for dosage and divergent genes The buffering model
here presented predicts dosage genes will have more of an impact than divergent genes
when deleted individually. We turned to an independent study [200] and found that
this hypothesis is upheld in diploid yeast when deleting either one copy or both copies
of a particular duplicate gene. Means are shown, and error bars represent the standard
error on the mean over 1000 bootstrapped samples of the distribution. (* pvalues for
significance shown are p < 4×10−2, p < 1×10−3 respectively; Wilcoxon rank-sum test)
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Figure C.3: (A) Asymmetric pairs show retained shared functionality. Proportion of
synthetic sick duplicates by degree ratio is shown. Highly asymmetric duplicate pairs
are no less functionally related than less asymmetric pairs. In fact, the rate of negative
genetic interaction between pair members is slightly higher than for duplicates with
a more balanced distribution of interactions, though the difference is not significant
(See Sec C.1). Error bars represent the error on a binomial proportion and details for
the binomial proportion significance test can be found in section C.6. (B) High degree
sisters are statistically indistinguishable from singletons after controlling for importance.
This plot differs from Fig. 4.4C only in that duplicate pairs were first restricted to those
with a double-mutant fitness defect (DMF <1), and singletons were restricted to those
with a single-mutant fitness defect (SMF <1). Each duplicate pair was then sorted by
genetic interaction degree and aggregates are shown. Dotted lines represent the same
process applied to a simulated distribution as in Fig. 4.4A. The difference between high
degree duplicates and singletons is not significant (56.4 vs 53.9; p > 0.2; Wilcoxon rank-
sum). The difference between singleton and duplicate interaction degree (Fig. 4.2C) is
then generally attributable to one member of each pair.
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Figure C.4: Differences in SSO1/SSO2 interaction profiles agree with localization pat-
terns. SSO1 shows high profile similarity to genes involved in chitin biosynthesis and
polarized cell growth, which SSO2 does not (Table 4.1). Actin localization patterns
[168] support a unique roll for SSO1 during polarized cell growth.
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Figure C.5: A simplified model of how the functions of two duplicate genes evolve
through time. The figure shows which regions of a sequence are essential for the per-
formance of certain functions. At time 1 (the top-most panel) there is no selection
pressure on the sequence of either of the duplicates. At time 2 however, duplicate 1 has
lost function 3 by a mutation at B while duplicate 2 has lost function 1 by a mutation
at K. Duplicate 1 now has selection pressure on E–L because these sequence regions
support function 1 and the cell would lose function 1 if duplicate 1 has a mutation at
any of these positions. Because duplicate 1 has less selection pressure, the probability
of it having another sustainable mutation is higher than for duplicate 2, and it receives
one at H at time 3. Now duplicate 1 supports functions 1,2, and 4, while duplicate
2 supports functions 3, 4 and no other loss of function mutations can occur for either
duplicate. Note that function 4 is supported by both duplicates causing a negative
genetic interaction if both are deleted.
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Figure C.6: (A) Asymmetric divergence model. The figure shows two duplicate genes,
each of which has lost some of their once redundant functions. Mutations to sequence
(not shown) cause the loss of multiple functions (red X). Functions must be maintained
in one duplicate or the other to be sustainable. Shown are 3 possible arrangements for
the loss of function affects of a single sequence mutation(K = 3). The duplicate with
greater loss has more possible sustainable arrangements in which loss is increased. In
essence, the less functional copy is more accommodating to loss-of-function mutations
in general, and stands a greater chance of losing further redundant function. (B) Prob-
abilistic simulation of discrete asymmetric duplicate divergence. Probability of further
loss in duplicate 1 (given a mutation in duplicate 1) as a function of duplicate 1’s propor-
tion of total loss, for various values of K. The line increases monotonically, indicating
that the duplicate with greater proportional loss, has a higher probability of sustaining
a mutation which increases loss. For this example N = 60 and R = 35, though the
always increases property holds for any N,R,K > 1. The special case K = 1 illustrates
the probabilities of an earlier model [152] in which a mutation only affects functions
within R, in which case the probability depends only on R (equal for both duplicates),
and thus the total proportion of loss has no effect.
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C.6 Supplementary materials and methods

C.6.1 Definition of duplicates and singletons

The full list of duplicate pairs consists of those identified as the result of the WGD

event, as reconciled from several sources [43]. Additionally, any pair of genes fulfilling

established similarity requirements [201] was reasoned to be a duplicate pair resulting

from a SSD event. Specifically, the gene pair must have a sufficient sequence similarity

score (FASTA Blast, E = 10) and sufficient protein alignment length(>80% of the longer

protein). The pair must also have an amino-acid level identity of at least 30%for proteins

with aligned regions longer than 150 amino acid, and for shorter proteins, the identity

must exceed 0.01n+ 4.8L−0.32(1+exp(−L/1000))), where L is the aligned length and n = 6

[202, 201]. After combining pairs from theWGD event, with pairs determined through

sequence alone (SSD), families with more than two members as a result of multiple

pairings were completely removed from analysis to control for potential buffering from

a third member affecting the interactions of the first two, and any gene not involved in

any pairings was deemed an unambiguous singleton.

C.6.2 Functionally related pairs

As a proxy for non-duplicated yet functionally related gene pairs, we have used pairs

that exhibited a PPI in at least one of two high-throughput TAP-MS studies [193, 65].

To increase the number of duplicate pairs considered in the analysis relating sistersister

profile similarity to sisterproxy similarity,we did not limit PPI interactions to TAP-

MS (see section C.6.3). Interactions for this analysis were included from BioGrid if

they fell into one of the following categories: affinity capture-RNA, affinity capture-

Western, two-hybrid, PCA, affinity capture-MS, co-fractionation, biochemical activity,

co-crystal structure, co-purification, far western, FRET, proteinpeptide, proteinRNA or

reconstituted complex.

C.6.3 Significance of binomial proportions

Synthetic sick/lethal proportion rates were tested under using the following normally

distributed random variable:
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Z0 = P1−P2√
P̂ (1−P̂ )

(
1
n1

+ 1
n2

)
where P1 and P2 are the binomial proportions in the respective classes and P̂ is the

binomial proportion of the combined set.

C.6.4 Genetic interaction data and profile similarity calculations

Genetic interaction data were taken from a recent global genetic interaction study [66].

For the presence or absence of individual interactions, such as calculating the propor-

tion of synthetic lethal duplicates, or counting interaction degree for a given gene the

following magnitude, and p-value thresholds were used (|ε| > 0.08 and p < 0.05). When

counting discrete interactions, column degree was used. Thus, only genes in the dele-

tion array (3,885 genes) have valid degrees. This dimension was chosen to maximize

the number of covered genes, as fewergenes (1,712) have been screened as queries. For

assessing profile similarity, we first normalized the (unthresholded) data along both

rows and columns and then used inner product between any pair of array genes as their

profile similarity [202, 201].

C.6.5 Definition of dosage class

A duplicate pair was labeled as a dosage pair if it met two of the following three

conditions: (1) The pair’s representative ortho-group had a volatility score [132] in

the top quartile. (2) The pair had a scaled difference in transcript quantity in the

bottom quartile. Absolute expression data is taken from Holstege et al. [163] and

scaled expression difference is defined as in Ihmels et al. [141]:

Scaled difference (a, b) = |a−b|
a+b

(3) The pair had a scaled difference in expression stability in the bottom quartile,

wherein stability for each gene is defined as the number of data sets out of a possible

127 from Hibbs et al. [203]) in which the expression of the given gene is in the bottom

2% for variance.



210

C.6.6 Ancestral proxies on the PPI network

To find suitable proxy genes for a given duplicate pair, we isolated the common interac-

tion partners on the expanded physical PPI network for each pair with the assumption

that interactions common to both paralogs are not likely to have evolved independently,

and are therefore tied to one or more of the pairs ancestral functions. We then measured

genetic interaction profile similarity between each paralog and the neighbor for compar-

ison with profile similarity between the duplicates themselves. Results were averaged

across all common partners for a given duplicate pair.

C.6.7 Genetic interaction degree asymmetry

To compare genetic interaction degree and rates of evolution, we used the original rates

provided in the supplement to Kellis et al. [42]. This ratio was defined as the rate of

the quickly evolving or derived function member divided by that of the slowly evolving

or ancestral function member. To test for bias in which member of the pair had more

interactions, we assumed a null model in which either gene was equally probable to have

the most interactions.We obtained a P-value for this hypothesis using MATLAB’s bino-

mial cumulative distribution function binocdf(). The proposed ancestral gene generally

has a higher degree; hence, the genetic interaction ratio for the pair was calculated with

the ancestral function members property in the numerator.

C.6.8 Chemical-genetic degree

To ascertain the number of chemical environments under which a gene displayed a sig-

nificant phenotype, we used the original data from Hillenmeyer et al. [56]. We counted

the number of conditions in which the homozygous deletion displayed a significant p-

value (p < 0.05) out of a possible 1,144. As above, we then used a binomial cumulative

distribution to test whether the correspondence between the two data sets (the number

of times the gene with more genetic interactions also had more chemical interactions)

could be attributed to chance.
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C.6.9 Phylogenetic comparison for asymmetric pairs

We compared the sequence similarity of the WGD pairs in S. cerevisiae with orthologs

in other post-WGD species (S. castellii, C. glabrata and S. bayanus) in which one WGD

copy had been lost as annotated in the Yeast Genome Order Browser [43]. For each

such case, we produced an amino-acid sequence alignment between each S. cerevisiae

gene and the out-group ortholog using the BLAST algorithm [40]. We then compared

the percent identity score for each duplicate with the out-group ortholog. For every

pair identified as asymmetric, we used a binomial test to ascertain whether the gene

with more interactions was more similar to the orthologous gene, the null hypothesis

being that the lower degree and higher degree genes have equal chance of a higher

percent identity score with the orthologous gene. In S. bayanus, we found only three

single orthologs to asymmetric WGD pairs in S. cerevisiae, and as such that data is not

included.

C.6.10 Biological example profile similarity

Profile correlations for specific biological examples, SSO1:SSO2, GAS1:GAS2, and

CIK1:VIK1 were taken from the supplement to Costanzo et al. [66]. It represents a

composite score using information from both array and query profiles in an attempt to

give a uniform similarity score across all pairs of genes. Fig. 4.5A shows edges from this

composite network involving CIK1, VIK1 and KAR3 using a correlation threshold of

r > 0.2.



Appendix D

Appendix for Chapter 5

D.1 Supplementary methods

Smaller array justification and design

In order to generate representative profiles for the largest possible set of duplicate pairs

for the APS, we designed a smaller “mini-array” which reduced the number of plates

per query (and thus the cost) by a factor of ∼4.5. Strains included on the array were

selected from two existing arrays. A total of 986 non-essential and 192 essential genes

were selected based on their usefulness in predicting known functional annotations as

assessed from existing genetic interaction data by a greedy algorithm [61].

To mitigate experimental effects related to the proximity of sick strains on the plate

[50] I designed the array to keep apart strains with fitness defects, as well as those

deleted for genes with overlapping linkage regions, which would be simultaneously sick

for certain queries. For each of these I developed a score, and then examined the scores

over 10,000 random configurations of the 1,178 genes.

linkage penalty =
∑

chr=1−16,L&R

[ ∑
i,j⊂strains on arm chr

(
1

di,j
for d < 4

0 for d ≥ 4

)]

fitness penalty =
∑ |(1−fi)(1−fj)|

di,j
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where di,j is the Manhattan distance on the plate between strains i and j, while fi

denotes the single-mutant fitness of strain i. The linkage penalty discourages genes on

the same arm of the same chromosome from being placed near each other. The fitness

penalty discourages strains with fitnesses much lower than wild-type (1.0) from being

placed near one another. Many random layouts were able to achieve a near zero linkage

penalty score and from them we chose one with the lowest fitness penalty.

Domain divergence rates

Two domain divergence asymmetry measures are referenced in Table 5.2. The first is

from Supplemental Online Materials from Kellis et al. 2004 [42].

The second, similar measure was devised by Alex Nguyen, in the lab of Alan Moses,

and obtained via personal communication. Calculation of these relative rates was per-

formed according to the following procedure:

First, obtain the rate of evolution for the domains (number of substitutions per site),

subtracting the value of each sister from the other in order to gauge them independently.

Each sister may have a slightly different set of species in the yeast clade with available

sequence, so these values are not yet directly comparable, because the more species the

clade has, the more substitutions will arise per site. So we normalize the number of

substitutions per site by the expected number, which is basically the phylogenetic tree of

the yeast species. This expected value is the relative expected rate of substitutions per

site. These values require one further normalization step to ensure that the number of

substitutions on the species before the duplication is equal for each sister. Normalization

by this factor gives absolute expected rates for each paralog (without the influence of

the other). Each observed rate is divided by the corresponding expected rate, and the

final measure is the absolute difference in the two ratios.

A high value means that the two sisters are evolving differently, and our hypothesis

is that they must have different function and therefore low trigenic proportion. A low

value means either both sisters evolve equivalently, either faster or more slowly than

expectation.



214

0 50 100 150 200 250
0

50

100

150

200

250

Trigenic Degree

D
ig

en
ic

 D
eg

re
e 

(m
ea

n)

MLP1+MLP2

CLN1+CLN2

CIK1+VIK1

RPL40A+RPL40B

VID22+ENV11

VPS64+FAR10

SKI7+HBS1

BCH2+CHS6

MSA2+MSA1

IOC3+ESC8
DPB3+DLS1

GPB2+GPB1

SBE22+SBE2

ARE1+ARE2

r = 0.20
p > 0.5

Figure D.1: Pilot study degree scatterplot. Trigenic degree for each double-mutant
query in the pilot study is plotted against the mean of the two single-mutant controls.

D.2 Supplemental figures and tables for Chapter 5

Precision recall and digenic/trigenic overlap

Fig. 5.5 shows a relatively high precision for positive trigenic interactions on the WGS

(right, green). This is in part due to an overlap between positive trigenic interactions

and negative digenic interactions. The left panel of Fig. 5.5 shows an excellent preci-

sion for these negative digenics (left purple). This overlap may also exist in the APS

trigenics without boosting positive precision (right, red) because the negative digenics

are much poorer predictors (left, blue). Fig. D.2 shows the corresponding results if

digenic/trigenic overlaps are explicitly forbidden.
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Figure D.2: Precision and digenic/trigenic overlap. The same as Fig. 5.5 with the
exception that any significant digenic interaction causes the corresponding trigenic in-
teraction, which by definition will oppose in sign, to be invalidated. Differences between
the two figures are negligible, with the exception of positive trigenic precision in the pilot
study (right, green).
Fig. 5.5 shows a relatively high precision for positive trigenic interactions on the pi-
lot study (right, green). This is in part due to an overlap between positive trigenic
interactions and negative digenic interactions. The left panel of Fig. 5.5 shows an ex-
cellent precision for these negative digenics (left purple). This overlap may also exist in
the mini-array survey trigenics without boosting positive precision (right, red) because
the negative digenics are much poorer predictors (left, blue). This figure shows the
corresponding results if digenic/trigenic overlaps are explicitly forbidden.

No Trigenic Filter (203 pairs) Spearman ρ p-value

Paralog digenic ε -0.37 1.2× 10−6

Double-mutant fitness -0.33 1.5× 10−5

Digenic negative path length -0.25 2.2× 10−2

Single-mutant fitness (mean) -0.19 7.2× 10−3

Expression level (difference) -0.18 2.1× 10−2

Divergent localization (Marques 2008) -0.15 2.8× 10−2

Expression stability (mean) 0.18 1.1× 10−2

SGA profile similarity (array) 0.21 8.0× 10−3

Similar localization (Marques 2008) 0.25 3.6× 10−4

Table D.1: A selection of paralog-pair features that show significant correlations with
trigenic proportion as defined in Eq. 5.13. Results shown are for all 203 pairs in the
mini-array survey. Similar correlations for high-confidence pairs are shown in Fig. 5.2.
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Figure D.3:
Trigenic interaction predict protein-protein interactions. The top plot shows the number
of observations in each category (as in Fig. 5.6). The bottom two plots show enrichment
for protein- proein interactions in each region. In the middle plot a data point was
considered a true positive if the array gene shared a ppi interacion with both paralog
sisters (AND model). This resulted in very sparse data, with a background rate for
paralog-array interactions on the order of 10−3. In the bottom plot, a data point was
considered a true positive if the array gene shared a ppi interaction with either paralog
sister (OR model), resulting in an order of magnitude increase in the expected rate, and
several interesting differences in regional enrichments. Bars in each plot are sorted by
precision using the (OR) model.
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