Introduction
Rapid tumor imaging is essential in the early detection, patient classification, and determining treatment effectiveness for tumors. One aim of the Hackel Lab is to identify an optimal balance between rapid clearance from background tissue and the extent of tumor targeting. Albumin is a protein with a relatively long half-life compared to other proteins within the body, leading to the hypothesis that if a protein binds to the albumin it will stay in the body for a slightly longer, yet still brief, period of time before being cleared from the bloodstream, which would allow for better imaging.

• The EGFR-target-binding protein clone D fibronectin with albumin-binding peptides (DABP, or ABP) identified though DNA sequencing as candidate of interest for albumin-binding experimentation.

• Overall goal: produce 0.3 - 1.0 mg of ABP clones for in vivo trials on mice.

Materials and methods
Three variations of DABP were compared: high affinity (H), low affinity (L), and no affinity (X) for albumin binding. Proteins were created through DNA encoding the proteins of interest that were transformed in E. coli. Cells were cultured in lysis-broth (LB) to extract the desired protein at large (1 L) and small scale (100 mL) levels. The cultures were induced for a varying amount of time and at different temperatures to determine the optimal conditions for ABP protein production.

Production haste was purifed using the protein’s characteristic tag of six histidines (His6) to bind to nickel spin or cobalt gravity columns.

Measurements of A280 predicted the amount of ABP from the production. High A280 measurement readings were further purifed with high-pressure liquid chromatography (HPLC). Purifed protein identity was confirmed through SDS-PAGE and mass spectrometer (MALDI) data. Correctly purifed ABP were lyophilized and reconstituted in DMSO to be conjugated with near infrared fluorophore for in vivo detection.

Conclusion
Production data for the clones DABP H, X, and L in the form of post-HPLC A280 measurements, HPLC area under the curve calculations, and post-lyophilization A280 measurements were analyzed. After preliminary productions of the clones, the high affinity clone had produced enough to move on to the next stage of experimentation - fluorophore conjugation - while low and no affinity clones produced poorly.

The fluorophore Dylight-800 was attempted to be conjugated to the collected sample of DABPH. To determine if the conjugation was successful the sample was analyzed via mass spectrometer. Complete fluorophore conjugation was not evident based on molecular weight analysis. The next step would have been to add more fluorophore and repeat the process until conjugation was ensured, and the protein would be prepred for use in vivo mice trials. This course of action was put on hold until low and no affinity binders could definitively be produced for controls.

To increase protein production yields DABPH production characteristics were varied. An induction time of 0.5 hours at 37 degrees Celsius was determined to be optimal, and yet production yields of DABP and L were low. Small scale productions of these clones were performed to determine if this would vary the amount produced, and HPLC area under the curve values increased. This introduced the question of whether purification via spin or gravity columns had better protein yields. Initially a larger area under the curve for HPLC plots of spin-purified proteins lent to the conclusion that spin purification would yield much higher amounts, but upon SDS-PAGE analysis it was shown that the readings were a false positive caused by a contaminant (affibody protein).

Spin and gravity columns were concluded to purify with approximately equivalent effectiveness.

Based on the inability to produce high yields of low- and no-binding affinity to albumin clones, the decision was made to halt work on the experiment. DABPH production ceased, and DABPH fluorophore conjugation was not revisited in the mindset to save time and materials from being wasted on an objective that is essentially unattainable through the proposed mechanism.

Acknowledgments
This project was supported by the University of Minnesota Undergraduate Research Opportunity Program (UROP)

Hackel Laboratory Supported by:

Special Thanks to Brock Matter and the Masonic Cancer Center for use of mass spectrometry facilities.

Further information: © Copyright Colin Purrington.