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Quenching Profiles for One-Dimensional Semilinear Heat Equations

StATHIS FILIPPASt and JONG-SHENQ GUO}

Abstract. We are interested in the local behavior, near a quenching point, of a solution of a semilinear
heat equation with singular powerlike absorption. Using the method of Herrero and Velazquez, we obtain
a precise description of the spatial profile of the solution in a neighborhood of a quenching point at the
quenching time, under certain assumptions on the initial data.

1. Introduction. In this paper, we consider the problem

(1.1) Up =uge —u ? in (=1,1)x(0,T),
(1.2) u(z,0) = uo(x), €[],
(1.3) wlt)=1, telo,T),

where 8 > 0,1 > 0,7 > 0, and uo(x) is smooth and such that 0 < ug(z) < 1 and
ug(£l) = 1. For any B > 0 fixed, it is well known [18] that there is a finite time T' such
that the minimum of the solution u(z,t) reaches zero as t T T for certain choices of I and
ug. This phenomenon, which is called quenching, has been studied by many authors for
the past two decades (see, for example, [10, 18, 19] and references cited therein).

Hereafter we assume that u quenches at finite time T. A point z( is said to be
a quenching point if there is a sequence {(z,,t,)} such that z, — o, t, T T, and
u(Tp,t,) — 0 as n — oo.

It has been shown [10, 13] that the set of points at which the solution quenches (at
the same time T') is a finite set and stays a positive distance away from the boundary

|z| = £I. Moreover, concerning the rate at which the solution approaches zero, under the
assumption that ug(z) is such that

(H) ug - uo—ﬁ <0,
the following estimate has been shown [10, 2, 12] for all values of 8 > 0

(1.4) liTrfITl(T — 1)V By (g, ¢) = (B + 1)1/ B+
t

tIMA, University of Minnesota, 206 Church Street SE, Minneapolis, MN 55455

{Institute of Applied Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043, R.O.C.
The major part of this work was done while the second author was visiting the Institute for Mathematics
and its Applications, University of Minnesota. He thanks the staff of IMA for their hospitality. The
research of the second author was partially supported by the National Science Council, Republic of China.



uniformly for |z — z¢| < C(T — t)!/? for any positive constant C. For the corresponding
results in higher dimensions, we refer the interested reader to [3, 11].

The above estimate, besides giving the quenching rate, provides us with some infor-
mation about the asymptotic behavior of u in a space-time parabola (with its vertex at
the quenching point) as ¢ approaches T. But since the domain of validity of this estimate,
tends to zero as we approach the quenching time, any information about the space struc-
ture of the solution at the quenching time T' is lost. In this work we are interested in
learning more about the behavior of u near a quenching point at time T.

The similarity between quenching and blowup problems is well known. A typical
example of the latter is the following equation

(1.5) U = Uz +uP, —0c0<zT <00, t>0, p>1,

with continuous, nonnegative and bounded initial conditions. The above equation has been
studied extensively in recent years (see for instance, [5-9, 14-17, 20]). Solutions of (1.5),
under certain assumptions on the initial data become infinite in finite time. Moreover, an
estimate similar to (1.4) holds for the blowup rate.

In a recent series of papers, Herrero and Velazquez [14-17, 20] were able to obtain a

precise description of the space structure of the solution in a neighborhood of a blowup

point. In this work we shall employ these ideas in the study of the quenching problem.
Our main result is the following

Theorem A. Let u(z,t) be the solution of (1.1)-(1.3) which quenches at the point z,
at time T. Moreover we assume that:

(i) uo(z) satisfies (H),
(i1) 0 < up(x) < 1,

(iii) uo(z) has a single minimum.
Then we have that

(16) oo 1) = [ CEE] (=l ) o),

as |z — xg| — 0; here y = 1/(8 + 1).

A few remarks are in order. Assumption (i) is essential in our analysis, since the
quencing rate estimate (1.4), of which we make strong use, is known under hypothesis
(H). In contrast, assumption (ii) (that is, the upper bound) is rather an assumption of

technical convenience. We could remove it at the expence of making things slightly more
complicated.

To explain the relevance of (iii) we first have to recall certain facts from [14-17]. It
has been shown there, that the space structure near a blowup point at the blowup time
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T, depends on whether there is a single maximum of u(z,t) (for times prior to T') which
becomes infinite at time T', or whether two or more maxima coalesce at exactly the blowup
time T. Moreover, they prove the existence of initial data for which the second possibility
happens [15] and they show that such a behavior is of unstable character [17] - the generic
one being blowup originating from a single maximum. Returning now to our problem,
we expect that a similar situation will hold. The role of assumption (iii) should now be
clear: since uo(z) has a single minimum, by standard results (cf. for instance [1]) u(z,t)
will have no more than a minimum (in fact exactly one, since we know that it quenches),
and therefore the possibility of two or more minima coalescing at time T is ruled out. In
analogy with the blowup problem we expect that the coalescence of two or more minima
at exactly the quenching time T will result to a behavior different to the one described in
(1.6).

One should notice in (1.6) that u(z,T) develops a cusp if # > 1 whereas it is smooth
if 0 < B < 1. This result is not altogether new. It has been shown in [4], under certain
assumptions on the initial data, that u, tends to infinity for 8 > 1 whereas u, tends to
zeroif 0 < B < 1.

Our analysis depends heavily on the ideas of [5, 14-16, 20]. Many of the results there
are applicable in problem (1.1)—(1.3), either in a straightforward way or after minor mod-
ifications. To keep this work at a reasonable size, we simply quote them. On the other

hand, several differences appear at the technical level. The relevant arguments then, are
presented in detail.

The method can be roughly divided into three steps. In the first step, one obtains more
information about the asymptotic behavior of the solution in space-time parabolas, as the
quenching time is approached (essentially, by adding one more term in the right hand side
of (1.4)). In the second step, one computes the asymptotic behavior of the solution in
slightly larger regions (namely, |v — zq| < C\/(T — t)|In(T — t)| ). These information are
then used in the last step where the final time profiles are computed. These steps are

presented in Sections 3, 4, 5 respectively, whereas in Section 2 some preparatory material
is presented.

2. Preliminaries. In this section we will establish some preliminary results and we
will introduce some notation.

At first we note that without loss of generality — as far as the analysis of the present
work is concerned — we may assume that [ = 1. As a second step we will replace equation
(1.1) by an “extended” one, defined on the whole real line, which of course, admits the
same solutions with (1.1) when confined in the initial interval [—1,1]. This step is of a
purely technical character since our main result is clearly of a local nature.

Following [20] we set;:

Vie.t) — 1 z? Wiz t) = —Z z?
(:E, )_ mexp _E ) (CL', )_ 2mexp _Zt_ .
3




Clearly V, = —W, V; = Vi, and Wy = Wy, forz e R, t > 0.
To extend (1.1) to the right we define

t
(2.1) a(z,t) = (¢ — 1)/ Wz —1,t —T)ug(l,7)dr +1, z2>1
0
One can verify that
Up — Ugg = g(l"t)a T > 1’ t> 07
where
t
(2.2) g(z,t) = 2u.(1,0)V(z — 1,t) + 2/ V(z —1,t — T)ugr(1,7)dr.
0

Also, we have at z = 1:

u(1l,t) =1, 0<t<T,
uy(1,t) = uy(1,t), 0<t<T.

A similar extension can be performed to the left so that finally we get the equation:
(2.3) Uy — Uge = f(z,t), z€R, 0<t<T
with

u(z,t), |z| <1
u(z,t), |z|>1

(2.4) i(z,t) = {

and
—uP(z,t), |z|<1

g(z,t), |z|>1.

)= {

Notice that % is continuously differentiable at * = +1, whereas f(x,t) has a jump disconti-
nuity at z = £1. Since the quenching points stay away from the boundary we have (from
standard regularity theory) that u,(1,t) and u,(1,¢) are uniformly bounded, whereas un-
der the assumptions of Theorem A they are nonnegative as well. It then follows from (2.1)

and (2.2) that for |z| > 1:

(2.5) 1<u(z,t) < e < o0, 0<g(z,t)<cp<+oo

for suitable constands ¢y, cy. In particular there are no quenching points for || > 1. From

now on we will study the extended equation (2.3).

Assuming that zo = 0 is a quenching point we next introduce similarity variables:
(2.6) w(y,s) = (T —t) Yiu(z,t), y=z/VT —t, s=—-In(T-1t),
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where ¥ = 1/(8 + 1). Then w(y, s) exists for all time s and solves the equation
(2.7) Wy = Wyy — %wy +~yw — F(y,s) in RxRT,

where wb, ly| < e%/2,
F(y,s) = {
with g(y,s) = g(ye™*/%,T — ™).

It has been shown that, under the monotonicity assumption (H), for any 8 > 0

_e(‘i—l)Sg(y’S)’ Iyl > 63/23

(2.8) w(y,8) > k=477 as s— oo, uniformlyfor |y|<C.
Moreover, for any 8 > 0 there exists a positive constant B such that
(2.9) w(y,s)>B in W={ly <e’?s>—-InT}.

Concerning the growth properties of w and its space derivative we have that

o for 3> 1, |w| < ¢1|y| + ¢z and |wy| < ¢3 in W,

o for B =1, |w| < c4ly|*> + c5s in W,

o for 0< B <1, |w| < csly|* + ¢r and |wy| < cgw?=A)/2 in W,
for suitable positive constants ¢y, ..., cg. Thus, in all cases, w can grow at most quadrati-
cally in y. One can easily check that this property is preserved if we replace W by Rx Rt.

To obtain more information about the way w approaches x we next linearize equation
(2.7) about k. Setting

(210) v(y,s) = w(ya 'S) - K,

we observe that v(y, s) solves the equation

(2.11) Vs :vyy—%vy+v—f(v)5£v—f(v) in R xR,

where

(1= —7yk+(v+ k)P, ly| < e*/?,
(1=7)o =y — e Vg(y,s), |yl >e/2

(2.12) s ={

In the remaining of this section we will discuss some general properties of the equation
(2.11). At first we note that the linear operator in (2.11) can be written as Lv = %(pvy)y

with p = e~¥’/4, Let us denote by Lf, the (Hilbert) space of functions v for which [v2p <
oo. The operator L is easily seen to be a self-adjoint operator in L;",. Concerning its
spectral properties we have the following.



LEMMA 2.1. The eigenvalues of L are:

k
—1-=, k=0,1,2,...
Ae=1-7,

The associated orthonormal eigenfunctions are
hi(y) = arHi(y/2), k=0,1,2,...
where Hy, is the kth standard Hermite polynomial and ay, = (w'/22k+1E)~1/2,
For a proof see for instance [5]. Concerning the nonlinear term of (2.11) we have:

LEMMA 2.2. Let f(v) be given by (2.12). Then for s large enough
(2.13a) 0 < f(v) < Cyv?,
(2.13b) f(v) < Calol,
for suitable constants C;,C, depending only on B and (.

Proof. Suppose first that |y| < e*/2. Expanding (v + &) ™% we get

(2.14) (v+8)77 =577 = Byo+ %ﬂ(ﬂ + (e + )77,

for some ¢ between 0 and v. Therefore
1 —B—
f) =clp, B)o*, (e, B) = 5B(B+1)(p + k) .

If v > 0 then 0 < ¢(p,B) < (B/2)(B+ 1)k =% = B/(2x). If v < 0, recalling that
B < v+ k< ¢+ k we obtain 0 < ¢(p,8) < (8/2)(8+ 1)B~P~2. Thus (2.13a) has been
established. To show (2.13b) we observe that if v < k then (2.13b) follows from (2.13a)
with C; = kCy. If v > & then from (2.12) and the lower bound of v we get that:

f) <1 —y)v—yc+ B P < Cyv,
for some constant Cs.

Consider now the case where |y| > e*/2. Then v(y,s) > e — & (cf. (2.5), (2.6))
whereas ¢(y, s) is bounded and (2.13a,b) follow trivially from (2.12). ]

For future reference we note that by keeping one more term in the expansion (2.14)
one can show in a similar way that

(2.15) F0) = 2% +g(v), lg(o)] < el

We finally introduce some notations that we are going to use in the next sections. We

denote by ||v|| the L2 norm of v, i.e., [|v]| = (f vzp)ln. We also denote by vy the “unstable”
part of v, i.e., the projection of v onto the first two eigenfunctions of £ (corresponding to
positive eigenvalues), and similarly for vy and v_.

3. Refined asymptotics in space-time parabolas. In this section we will study
in more details the large time behavior of v(y, s). More precisely we will show:
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PROPOSITION 3.1. Given any C > 0, for s large enough, either

(3.1) o(y, s) = 2—;; (% 2 _ 1) +o G) ,

or else, for some m > 3 and some constant ¢ # 0
(32) v(y,s) = ce! "B hu(y) + o H),
where convergence takes place in C*(|y| < C) for any k > 0.
We note that for the blowup problem (1.5) the corresponding v-equation is
(3.3a) vs = Lv + fi(v)

where L is the same linear operator as in (2.11) and
(3.3b) fo(v) =0(w?) asv -0 and |v(y,s)|< M in RxR™ .

The large time behavior of the solutions of (3.3a,b) has been studied in [5] and in a
more complete way in [14] where the above Proposition has been established. The main
difference between the present situation and problem (3.3a,b) is the fact that for problem
(3.3a,b) v(y,s) is uniformly bounded in space-time whereas here v may grow (at most)
quadratically in y. But it turns out that all the arguments used in [5, 14] are applicable
with minor changes. To avoid repetition we will briefly sketch them. We begin by recalling
some results from [14]:

LEMMA 3.1. For any r > 1,q > 1, and L > 0O there exists s§ = s§(q,r) and C =

C(r,q,L) such that:
1/r 1/q
(frosen)"se(foin)”

for any s > 0 and any s* € [s§, s + L].

LEMMA 3.2. Fix s; > 0, A > 0. If for some b > 0 we have that ||v4| + ||v=] < b||vol|
for s € [s1,81 + A], then there exists § = 6(b, A) such that

[oC, sOI* < Bllo:, 51+ A%

LEMMA 3.3. If for any M > 0, there exists C = C(M) > 0 such that |jv|| < Ce~M?*
for s > 0, then v(y,s) = 0.

These are Lemmas 2.3, 3.1 and 3.5 respectively in [14]. All of them have been proved
under the additional assumption that v(y,s) is uniformly bounded. One can check in [14]
that this assumption is only used for the derivation of the estimate |fy(v)| < c|v|, which
in our case is true (cf. (2.13b)).

As a next step one can show:



LEMMA 3.4. Either ||v]| tends to zero exponentially fast, or else for s large enough:
(3.4) [o [l + [lo- [l = o([lvol})-

This can be proved as in [5] (Theorem A there). Again, the condition that v is bounded
is to be replaced by (2.13b), the rest of the arguments there staying the same.

We next show:

LEMMA 3.5. Assume that (3.4) holds. Then:

(3.5) ow9) = 55 (37 -1) +o(5).

in the Lf, sense.

Proof. We present an argument which is simpler than that of [5] or [14]. Let

(3.6) w0y, 8) = a(s)ha(y), haly) = cz (gy'-’—l), o = 2,

We will work with the equation in the form (2.15). Projecting the equation onto hq(y) we
get:

i(s) = —3- [v*hap+ [ o)y

— =g [bao+ 4 [0F = Pheot [o(hap

—%'462'0124-%81 + &,.

We next estimate &;,&,;. Recalling that v = vy + vy + v_ we write:

& S/|v++v—|'|v+vo| Ihalp
1/2 1/2 1/2
(st ()" ()
1/2 1/2
Se(/vép) {c</v4p>”4+c(/v3p) }

where we used (3.4) and standard inequalities. Moreover from Lemmas 3.1, and 3.2 we
have:

o0 [orze( [t en) <o fi0) <o o) -
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so that we get |£1| < ea®?. By an argument similar to that used in (3.7) we get that
|€2] < ca®. So finally we have:

K

a =
Solving the above ODE and using (3.6) we obtain

n(w:9) = 31+ o) (52 -1).

and (3.5) follows since ||v — vo]| < ||v4]| + |lv=|| = o(||ve]|) = o(1/s). O

To deal with the case where ||v|| decays exponentially fast one can show:

LEMMA 3.6. Assume that ||v|| decays exponentially fast. Then either there exists
m > 3 and C # 0 such that

v(y,s) = Ce' " hm(y) + 0 (e(l'%”,)
in the Lf, sense, or else v = 0.

This is Proposition 5.8 in [14]. The same proof carries over here with no changes. We
remark that the case v = 0 is easily ruled out since it implies that a(z,t) = (T —t)7«
(cf. (2.6), (2.10)). Such a solution of (1.1) clearly violates the boundary conditions (1.3).

We finally note that once we have obtained convergence in the Lf, norm one can improve
the mode of convergence by using standard interior regularity theory.

4. Asymptotics beyond parabolas. In this section we will show the following;:

PROPOSITION 4.1. Under the assumptions of Theorem A, if z is the (unique) quench-
ing point of (1.1) then, for any R > 0

: —y B B+1 ,]7
(4.1) ltlTI;I(T — ) Yu(n\(T — )| In(T = t)| + 20, t) = & [1 + TUZ] ’

uniformly for |n| < R.

To begin with, we notice that since ug(z) has a single minimum so do w(y,s) and
v(y, s) for all times s. It then follows from Proposition 3.1 that the large time behavior
of v is described by (3.1), since any other possibility would imply that v has at least two
minima.

The proof of Proposition 4.1 will be a consequence of a number of lemmas stated and
proved below. As a first step we establish the upper bound for the expression in the left
hand side of (4.1). Assuming for simplicity that zo = 0 we show:
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LEMMA 4.1. Under the assumptions of Theorem A, we have:

42 @) VTR a) o <x (14 550 o)

as t — T, uniformly for In| < R.
Proof. Let
(4.3) ex(m,8) = (T =N Yu(npVT =X, A+s(T - X)), A€ (0,T), se(0,1).
Set Ry = (T—X)~"!/2 and let ux(n, s) be the solution of the initial boundary value problem:

uUxs —Uxngp =0 in Qgr, =[—Rx,Ria] x[0,1],
u)‘(:]:R,\,S) = (T — /\)_‘7 + (T — /\)1_7,
ux(n,0) = @a(n,0) + (T — A)' 7.

Consider the function:

‘7 .
(44) ®s(n,5) = {ul" (n,5) = (B+1)s} in Qn,.
Straightforward calculations show that:

Bro—Brny > —2,° in Qg,,
‘I)/\(U,O) > 99,\(77’0) in [—R/\, Rz\])
®\(£Rx,8) > pa(£Ryr,s) for s€]0,1].

We conclude by comparison that

(4.5) ®x(n,5) > pa(n,s) in Qr,,

for A fixed.

From the definitions of uy and ¢, it follows that |ux(n,0)] < C(T — A)~7 for some C
positive. Arguing as in [20, Lemma 3.7] we get that

(4.6) ua(n,8) = 5(s) {wa(m,0) + (T - X'} + 0 (e-l/[m(T—W) ,

uniformly for |p| < 8 < Rx/2, 0 < s < 1, where S(s) denotes the heat semigroup on the
whole real axis.

From (3.1) it follows that

®0 om0 =rt 2ﬂ|in(; ] (n? - 1) o (nrl(_Tl—A_)l) AT
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uniformly on compact sets in 7. We next choose s = s(A) as follows
1=(1-$)In[(T — A)(1 - s)],

so that

1
— N — A T.
1-s |1n(T-/\)| as —

Arguing now as in [14, Lemma 6.1] we obtain:
ux(n,s) = n+— 21-s)+o0o(1l—s) as s—1".
Using (4.4) we have that

-
®5(n,s) = 1+%n +o(1)] (1—38)Y as s—17.

Finally, from (4.5) we get that:
B+1 7 _
(T =XM1 =3)]""u(nvVT — X, A +s(T - X)) < +F 240(1)] ass—17,
and (4.2) follows by setting T'— ¢t = (T — A)(1 — s). O

We next show:

LEMMA 4.2. Under the assumptions of Theorem A, for any R > 0, there exists C > 0
such that

C
(4.8) lwy(nVs,8)| < —= as s — oo,
Y Vs
uniformly on |n| < R.
Proof. At first we will show that
(4.9) wly,s) > k- 2,

for s large enough and some positive constant C. In view of (2.10) this is equivalent to
v(y,s) > —C/s. From (3.1) and for large enough s we have that

v(:l:2,s)—ﬁ+o(1>>0, v(0,s) = —ﬁ+o(1)<0.

We conclude that the (unique) minimum of v(y, s) lies in the interval (—2,2) and (4.9)
follows from (3.1).
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Once we have obtained (4.9), the proof can be completed in the same way as in [20,
Lemma 3.9], that is, by differentiating (2.7) with respect to y, multiplying it by sign(w,),
using Kato’s inequality and then the variation of constants formula. [J

We next set:

(4.10) G(y,s) = w*(y,s) = (B+1).

G(y, s) is easily seen to satisfy the equation:

(4.11) G, =Gy — %Gy +G - L(y, s),
with
+ 1 B—-1 2’ S s/2
(4.12) L(y,s) = { o v ﬁ—ul)y 2 B.(v—1) ‘y| 63/2
(B+1) {Bwfwl —1—wler=Deg(y,s)}, |yl > e*/2

In the remaining of this section we will show that

(B +1)?

: _ 2
(4.13) Jim, G(1v/s,8) = == =",

uniformly for || < C. Notice that (4.13) is the same as (4.1) when restated in the original

variables. At first we show a preliminary estimate.

LEMMA 4.3. For s large enough there is a positive constant C such that
C
(419) ¢l < .

Proof. For all y,s we know that w(y,s) > B. If it were true that w(y,s) < ¢ < +o0
then we would have

|G| = [w™*! — (8 +1)] < clw - k| = clo],

for some c positive, and (4.14) would follow at once from (3.1). But from Lemma 4.1 we
have that w(y,s) < ¢ < +o0o0 when |y| < §y/s. We may thus write:

IGC, )" = / Pt — (B + 1) dy +/ WPt — (B + D)2 /dy.
ly|<é+/3 ly|>6/5

By the same reasoning as above we deduce that the first integral is less than or equal to

(C/s)?, whereas the second one can be easily estimated using the fact that w(y,s) can
grow at most quadratically in y. []
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To prove (4.13) we now use the variation of constants formula in (4.11), to obtain

G(y,s) = El(S,So)/ Ea(y,s;X,80)G(A, s0)dA
R

(4.15) _ / Ey(s,0) / Ey(y, 5\, 0)L(\, 0)dAdo

S0 R

= J] — Jz,
where
68—0

4.16 E\(s,0) = )
(4.162) 1(s9) 471 — e~(s-09)]

' B [ye—(s—tr)/2 _ )‘]2
(4.16b) EZ(y, 83 >‘7 U) = exp { 4[1 _ e—(s—a)] ’

and s, sq are related with
(4.17) s=e""°%,

We next show:

LEMMA 4.4. There holds

(4.18) lim Ji(nvs,s) = g—%ﬁlﬁnz,

uniformly for |n| < C.

Proof. 1t consists in a slight modification of the proof in [14, Lemma 6.4]. We fix R > 0
and we split J; into two integrals J{¥, and JF, to be performed in the regions |\| < R and
IA| > R respectively. Using (4.14) and standard inequalities one shows that J%(n/s,s)
tends to 0 as s, R — co uniformly for |n| < C. To estimate J{¥, we observe from (3.1) that:

(4.19) G(y,s) = (ﬂ;;j) (y> = 2) + gr(y, ),

with gr(y,s) = o(1/s) as s — oo uniformly for |y| < R. Using now (4.19) it can be shown
that

2
']11?1(77\/';33) - (—@_i-ﬂirﬂ as S,R — 00,

uniformly for || < C, and (4.18) follows. [
To complete the proof of (4.13) we finally have:

13



LEMMA 4.5. There holds
(4.20) lim Jo(nv/s,8) = 0,

uniformly for |n| < C.

Proof. Again, minor modifications are required in the proof of [14, Lemma 6.5]. We
first break the integral J, into four parts:

so+A so+A
Jg(y,s)=/ El/ EngAdU—{—/ El/ E;Ld)\do
20 R<|A\|<6/55 s IAI<R

+/ E]/ EzLd/\dO'-{-/ E]/ EzLd/\dO'
sotA  JIN<8VES so JA65

= Jo1 + Joz + Ja3 + Jog,

where A is such that s + A < s — 1. Since E;, E; are known functions (cf. (4.16)) we only
need to find estimates for the nonlinear term L(A, o) in the various regions above. Let C
denote a positive constant not necessarily the same in each occurrence.

(a) For Ja3 recalling (4.12) we have that

L(\ o) =p(f+ 1)wﬂ_1w?\.

For all 8 > 0 we have from Lemma 4.2 that |wy(}\,0)] < C/\/o for |\| < 6,/30.
e For § > 1, from Lemma 4.1 we have that |w(A,o)| < C.

e For 0 < # <1, since w > B > 0 we get that w?~1 < Bf-1,
Thus, is all cases |L()\,0)| < C/o < C/sg, and one can show that

(4.21) |Jas(nV/5,8)] < Ce™  for |n| < C.
(b) For Jy, as in (a) we have that |L(),0)| < C/sy. Moreover |ye=(*=9)/2| < CeA/? (for
In| < C), |E1| < Csq and |E,| < exp{CeA}e=>*/8. It then follows

(4.22) |J21(nV/s,8)| < C'A<3)<p{(3’<2’4}e_32/8R_1 for |n| < C.

(c) For Ja2, we can use Proposition 3.1 to get that |wa| < C/o (for |\| < C) and therefore
|IL(X\,0)| < C/a?. 1t then follows that

(4.23) |Ja2(n/s,8)| < ¢ for |n| <C,

S0
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for some C = C(R, A,6) > 0.
(d) Finally, for J,4 we note that from (4.12) it follows that for || > e?/2, |L(),0)| < C <

+00, whereas for |A| < e?/? we have (see Section 2):

e For 3> 1, |wy| is bounded and |w| < C(|A| + 1) therefore |L(\, a)| < C(|A| + 1)1

e For # =1, we claim that
(cl) |L(A,0)| < Co.

(Let us accept this at the moment and continue.)

e For 0 < 8 < 1, wP~1w? is bounded therefore |L(),0)| < C' < +oo0.
In all cases, by arguments similar to these in [14] it can be shown:

(4.24) |J24(nV/s,8)] = 0 as sg — oo, for |n|<C.

In view of (4.21)-(4.24) and by taking s — 00, R — oo, and A — oo in this order,
(4.20) follows. [

We still have to substantiate our claim (cl). In view of (4.12) this is equivalent to
(4.25) |wy| < CV/s.

Let t, be close enough to T and u, = min|; < u(z,t.). Set

J(z,t) = =u? — In— in Q. = (—1,1) x (0,1,).

1
2 Uy

By a standard argument (quite similar for instance to that in [10, Lemma 3.4]) we get that

lug| < 2ln-1i§‘/21n-1— in Qy,.
V Us U

Returning now to similarity variables and taking into account (2.9) the result follows.

5. The Quenching Profiles. In this section we will give the proof of the main
theorem. We begin by presenting an auxiliary result that we are going to use later.

For a given R > 0, let

9(s) = (k —€)(1 = s)7,
hy) = { (k + pe) if ye[-R/2,R/2],
71 (k-e if ye[-R —R/2)U(R/2,R];

where p and € are two positive constants to be specified later. By slightly adapting the
arguments in [15, Proposition 3.1] we get
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LEMMA 5.1. Suppose z(y,s) satisfies equation (1.1) in Qr = (=R, R) x (0,1) with
z(y,s) > g(s) in Qg and 2(y,0) > h(y) in [—R, R]. Then there exists a p > 0 such that
for any € > 0 small enough 2(y, s) quenches at most at y = R at time 1. More precisely,
there exists function F(y) = F(y, R, pu,€) which is bounded away from zero on compact
subsets of (—R, R), there exists lim,112(y, s) = 2(y, 1) fory € (—R, R), and 2(y,s) < F(y)
in (—R, R) x (0,1].

We are now ready to give the proof of Theorem A.

Proof of Theorem A. Assuming for simplicity that zo = 0 we will show

(5.1) u(z, T) = [(ﬂ ;BI)T (llle:;ly“ +o(1)),

as |z| — 0.

Consider the family of functions

(5.2) dy(y,s) = (T —t) "u(A(t) + yvVT — t,t + s(T — t)),

where 0 <t < T,0 < s <1, M(t) = /(T — t)|In(T — t)|, with n # 0, and
lyvT — ] < [A()]/2.

Notice that @) satisfies
¢(t)s = ¢(t)yy - ¢(_t)ﬂ»
for any fixed t € (0,T). By (4.9), we have

C C
53 )2 s - g | -7 2 5 | - o
Moreover, it follows from Proposition 4.1 that

f+1 ak
(54) b0 = {1+( 4ﬁ) e } o(T—1)

as t T T. We now claim that for any positive integer n there exist positive constants c,,
and C, (depending only on n) such that

(5.5) 0 < cn < dy(y,8) < Cr < o0,

in [-n/2,n/2] x [0,1], uniformly as ¢ T T. The lower bound in (5.5) follows from (5.3),
(5.4) and Lemma 5.1. To see the upper bound we observe that because of assumption (H),
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us(z,t) is nonpositive for all t € (0,T). Consequently u(z,t) (as well as ¢(;)(y,s), for ¢
fixed) is decreasing with time; therefore

d1)(y,8) < dy(y,0),
and @(4)(y,0) is bounded above by (5.4).

By a compactness argument and then a diagonal process we see that there is a function

q?(y, s) such that

(5.6) o) (y,s) = #(y,s) as t1T,

uniformly on compact subsets of R x [0,1]. Moreover, ¢ satisfies

(5.7) bs=¢yy—6 % in Rx(0,1),

and

(5.8) <1~5(y,0)=f€[1+ (5(;;1)172]7’ y € R.

It follows that

(59) )= |-+ (EE1) 2]
Now, set

(5.10) z = /(T —t)|In(T — t)|.

Then we have

In |2|| ~ %Iln(T—t)l as t17T,

and
/(T —t)\/2|ln|z|| as t1T.
Therefore,
2
(5.11) T—tn—L as t1T.

~ 2 fal]

From (5.6) and (5.9) it follows that

¥
¢1(0,1) =« [(i—;l) 772] +0(1) as t1T.

On the other hand, by (5.2),
900, 1) = (T = ) "u(ny/(T = )| In(T - )|, T),
and (5.1) follows from (5.10) and (5.11). 00
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