CONTENTS

STAFF MEETING REPORTS

The Generalized Shwartzman Phenomenon in Rats
 BY John A. Gronvall AND Joel G. Brunson, M.D. 214

The Effect of Hyaluronidase on Experimental Urinary Lithiasis
 BY Kenneth S. Helenbolt, M.D., AND C. D. Creevy, M.D. 219

MINNESOTA MEDICAL FOUNDATION 224

POSTGRADUATE EDUCATION 228

COMING EVENTS ... 229

FACULTY PUBLICATIONS 230

Published semi-monthly from October 15 to June 15 at Minneapolis, Minnesota.
The Generalized Shwartzman Phenomenon in Rats

John A. Gronvall and Joel G. Brunson, M.D.

Lesions of the generalized Shwartzman reaction are regularly produced in rabbits by two properly spaced intravenous injections of gram-negative bacterial endotoxin. The characteristic and identifying change is bilateral renal cortical necrosis, due to blockage of glomerular capillaries by a hyaline substance with the morphologic and staining properties of fibrinoid. Similar lesions are caused by intravenous doses of certain acidic polymers with high molecular weights, such as Liquoid (sodium polyanethol sulfonate), given either with endotoxin or alone in sufficiently large amounts.

Data reported by several investigators strongly suggest that fibrinogen is involved in formation of fibrinoid; for example, the fact that fibrinogen is altered in rabbits given endotoxin. Moreover, the renal lesion is prevented by large doses of heparin.

These reports, however, have dealt exclusively with changes in rabbits. Endotoxins have produced hemorrhagic skin reactions in mice, but resistance of rats is often mentioned. Piel and associates, describing renal lesions produced in rats by heterologous hyperimmune antiserum, noted occasional renal changes like those of the generalized Shwartzman phenomenon, but it was emphasized that this response had never been regularly evoked in the rat.

Because of the apparent limitation of this phenomenon to the rabbit, which is notoriously hyperreactive in many ways, the possible relation of the Shwartzman response to human disease has been questioned.

We, therefore, investigated the effects of gram-negative bacterial endotoxins and Liquoid in rats.

*This is an abstract of a report given at the Staff Meeting of the University of Minnesota Hospitals on March 23, 1956. A copy of the complete report, including tables and references, may be obtained by writing to the Editor, UNIVERSITY OF MINNESOTA MEDICAL BULLETIN, 1342 Mayo Memorial, Minneapolis 14, Minn.

1 Senior Medical Student.

2 Instructor, Department of Pathology.

† These studies were aided by grants from the Minnesota Heart Association and the American Heart Association.

‡ Part of this work was done while Mr. Gronvall held a National Science Foundation Research Fellowship.
The generalized Shwartzman phenomenon was produced in a high percentage of animals by intraperitoneal injection of endotoxin with Liquoid or of Liquoid alone, in large quantities. Lesions resembled those observed in rabbits but developed more slowly, and the incidence in various organs varied from that in rabbits. The route of injection apparently accounted for these differences.

Morphologic similarity of the lesions in rats and rabbits, modification of the reaction by heparin, and changes in the heparin-precipitable protein fraction of plasma as lesions develop imply that similar basic mechanisms underlie the phenomenon in both animals.

Materials and Methods

Subjects were 298 albino rats of the Sprague-Dawley strain of both sexes and varying weights.

Meningococcal endotoxin was prepared as described by Thomas and Good. *Escherichia coli* toxin, prepared by a modified Boivin technic, was obtained from Dr. R. T. Smith. Liquoid was furnished by Hoffmann-LaRoche, Inc. These materials were dissolved in isotonic saline in such concentrations that 1 cc. was injected at each dosage. From 5 to 20 mg. of Liquoid and from 0.025 to 0.1 cc. of toxin were administered in single injections.

Heparin was supplied by the Upjohn Company. The heparin-precipitable protein fraction in plasma was determined by adding 0.1 cc. (1 mg.) of heparin to 5 cc. of blood. This was centrifuged at 1,800 r.p.m. for 20 minutes, and the plasma was drawn off and refrigerated at 4°C for two hours.

All injections were given intraperitoneally.

The animals died or were killed 24 to 48 hours after the last injection. Postmortem examination was done, and tissue sections were prepared. In addition to routine staining with hematoxylin and eosin, certain specimens were processed with Mallory’s phosphotungstic acid hematoxylin, toluidine blue, and the periodic acid-Schiff method.

Results: Morphologic Changes

More animals died within 24 hours after simultaneous injection of toxin and Liquoid than after a single dose of either substance alone. Pathologic changes in each group of animals were similar, but incidence of the different lesions varied somewhat from group to group. The kidneys, liver, and adrenals were most often involved. No lesions were found in the brain, pancreas, and testes.

About 20% of all subjects had gross bilateral renal cortical necrosis. It was not seen after a dose of endotoxin alone but occurred in
60% of those given 20 mg. of Liquoid alone and in 40 to 50% of those given toxin and Liquoid together in the largest dosage used. The liver was grossly congested and enlarged; microscopically, focal hemorrhage and necrosis were often noted. At times, the whole adrenal appeared hemorrhagic.

Influence of Heparin on Lesions

Because large amounts of heparin prevent development of fibrinoid lesions in rabbits given only two injections of endotoxin and/or Liquoid, three intraperitoneal injections of heparin in doses of 5 or 10 mg. each were given to rats. The first was administered an hour before injection of toxin and Liquoid, the second at the same time as these agents, and the third an hour later.

The animals receiving 10 mg. of heparin at each injection had fewer glomerular lesions than those given 5 mg. of heparin or none. Neither of the two groups protected by heparin had gross renal cortical necrosis.

The lethal effects of toxin and Liquoid were not counteracted by heparin. In 16 of 20 rats, however, considerable blood was found in the peritoneal cavity, indicating that hemorrhage may have contributed to death.

In the kidneys of nine rats given heparin, small amounts of fibrinoid were seen in the glomerular capillaries, and in six it was associated with increased cellularity, rather like that of acute proliferative glomerulonephritis.

Heparin-Precipitable Fraction and Development of Lesions

In a final test, the relation of the heparin-precipitable fraction (HPF) in plasma to the appearance of fibrinoid lesions was observed. This protein fraction was found in slightly varied quantities in each of 30 normal control rats. Cold precipitability and heat lability were similar to those of HPF occurring in rabbits after intravenous injection of endotoxin.

Then, three groups of rats were given intraperitoneal endotoxin and Liquoid and were killed four, eight, and twelve hours later. As the period before death lengthened, the number of animals having this precipitable plasma fraction gradually declined, and the drop correlated with increasing deposition of fibrinoid material in renal glomerular capillaries. Of the eight rats killed after 12 hours, only one had HPF but six had typical fibrinoid in glomeruli.
Discussion

Results of the experiments indicate that rats and rabbits react in much the same way to Liquoid and gram-negative bacterial endotoxin. Although the rat tends to resist large doses of endotoxin alone, addition of Liquoid greatly enhances the lethal effects and the rate of morphologic changes. Comparable synergistic action has been observed in rabbits.

Renal lesions of the generalized Shwartzman phenomenon are produced in rabbits by two intravenous injections of gram-negative endotoxin, by endotoxin with small amounts of Liquoid, or by large doses of Liquoid.

We have demonstrated that a similar kidney lesion is caused in rats by intraperitoneal endotoxin and Liquoid combined or by large quantities of Liquoid alone. With appropriate dosage, lesions are equally numerous in the two animals. In rats, however, kidney changes apparently develop more slowly; the earliest detectable fibrinoid deposits are seldom noted until six to eight hours after administration of toxin and Liquoid. In some rats, moreover, fibrinoid material is deposited in large renal arteries, an effect not observed in rabbits.

Cardiac, pulmonary, and splenic fibrinoid lesions are decidedly fewer in rats than in rabbits, but the incidence of hepatic fibrinoid and necrosis is appreciably higher. These differences may be explained by methods of injection, since the intraperitoneal route may allow more gradual absorption and direct access to the liver.

Prevention or modification of the renal lesion by heparin is further evidence of parallel reactions and also indicates that some change in the blood-clotting mechanism may influence the development of fibrinoid or its precursors.

Glomerular cellular proliferation with minimal fibrinoid deposits in rats given heparin with toxin and Liquoid is of interest, in view of Piel's statement that occasional rats receiving heterologous hyperimmune serum had renal lesions of the Shwartzman type. These findings suggest that minimal or controlled deposition of fibrinoid in the glomeruli, acting over a longer time, may be associated with a proliferative cellular reaction, in contrast to the capillary occlusion and necrosis produced by large uncontrolled fibrinoid deposits in animals not given heparin.

The cold-precipitable protein fraction is not normally found in plasma of healthy rabbits but is present after one injection of endo-
toxin. After injection of Liquoid, it disappears rapidly from the plasma, and its fall corresponds with the occurrence of diffuse fibrinoid lesions.

In contrast to the behavior of this fraction in rabbits, the substance was found to occur naturally in rats. Though disappearance after toxin and Liquoid injection is slower than in rabbits, it agrees with the slower development of fibrinoid compound in rats. These studies suggest that the heparin-precipitable fraction of plasma is involved in the formation of fibrinoid in both rats and rabbits.
The Effect of Hyaluronidase on Experimental Urinary Lithiasis

Kenneth S. Helenbolt, M.D.,1 and C. D. Creevy, M.D.2

No urologic disease offers a more varied pattern of interest than lithiasis. It is accepted that calculi result from an imbalance of crystalloids and colloids formed naturally or abnormally in the urinary tract. Crystalloids are bound together in the stone by a colloidal matrix. The literature abounds with information concerning crystalloids, but the relative lack of data on urinary colloids is noteworthy.

Not until 1861 was the foundation laid for colloidal chemistry. Later, the ultramicroscope showed brownian movement of colloidal solutions, or sols. The protective action of urinary colloids was demonstrated in 1919, and organic components of calculi were found to be colloidal in 1945.

Because colloid particles are between microscopic and molecular systems, with size less than the wave length of visible light, they must be viewed by reflected light. To date, colloids obtained from normal urine are mucin, nucleic acid, chondroitin-sulfuric acid, glycogen, and a complex carbohydrate containing nitrogen.

Urinary colloids are influential in keeping insoluble compounds in a hypersaturated solution. Therefore, at least two early investigators attempted to augment natural constituents. Goldberg (1932-34) found that intramuscular injections of chondroitic sulfuric acid were effective, despite reactions at the injection site. In human subjects with phosphaturia, Snapper (1936) cleared urine in two days, without change of urinary pH, by giving 2 gm. of sodium benzoate three times a day plus dietary supplements of glycocoll.

In 1950, Butt championed urinary protective colloids. Renal lithiasis appeared to be less common in Negroes than in the white

1Medical Fellow, Division of Urology.
2Professor and Director, Division of Urology.
†Wydase used in this investigation was supplied by Wyeth Laboratories, Inc., Philadelphia.

*This is an abstract of a report given at the Staff Meeting of the University of Minnesota Hospitals on April 6, 1956. A copy of the complete report, including references, may be obtained by writing to the Editor, UNIVERSITY OF MINNESOTA MEDICAL BULLETIN, 1342 Mayo Memorial, Minneapolis 14, Minnesota.
race, in females than in males, and in gestating than in nonpregnant women. Among 680 Pacific Theater natives observed during World War II, the incidence of stone was almost inversely proportional to the amount of protective colloid in the urine.

Butt, Hauser, and Seifter determined urinary colloids by several methods: (1) ultramicroscopic gradation of colloidal activity, first with the darkfield attachment and later with the Leitz Ultropak microscope; (2) electrophoretic studies of noncentrifuged urine, on the principle that lyophilic colloids prevent crystalloid deposition; (3) determination of surface tension on ultracentrifuged urine by the pendant-drop technic, the criterion being that tension is inversely proportional to the quantity of beneficial colloid; and (4) photo-ultramicrographic recordings.

Subsequently, Butt attempted to increase protective colloids with hyaluronidase because of its spreading properties. He noted that 150 turbidity-reducing units in 1 cc. of isotonic sodium chloride solution, injected subcutaneously, often cleared urinary clouding and sediment. Results were manifest in 30 minutes and lasted 24 to 48 hours.

Hyaluronidase is a lyophilic enzyme with an estimated molecular weight of 60,000 to 70,000. Its substrate, hyaluronic acid, is a strongly peptizing polymer with a weight of 200,000 to 2,000,000, and it is a viscous mucopolysaccharide with units of acetylglucosamine and glucuronic acid.

Hyaluronidase depolymerizes hyaluronic acid in the skin and subcutaneous tissues. After this action dissipates locally, the acid reconstitutes itself, and part of the excess formed is excreted in the urine as glucuronides.

Except for righting some metabolic disorders, previous measures against renal lithiasis had been unsatisfactory. These have included improving causative states, reducing stone-forming urinary crystalloids, increasing their solubility through changes in pH, preventing absorption of dietary phosphorus, and preventing aggregation of crystalline particles in the urine.

Of 30 patients with recurrent calculi, 28 were treated successfully by hyaluronidase alone; 150 to 300 units were given every one to three days for six to fourteen months. Stones did not grow nor did new ones form.

In 1954, Butt stated that therapeutic effects are best observed with uncentrifuged aseptic urine allowed to settle for an hour at
room temperature. Another dose is indicated when turbidity increases in successive four-hour samples.

As an alternative, one may note comparative deposition on glass tips attached to indwelling catheters. When pretreatment urine is free of turbidity and sediment, measurements of surface tension are useful; values should drop 8 to 14 dynes per centimeter one-half hour to two hours after injection. Finally, long-term results are best shown by serial radiography every 60 to 90 days.

For subcutaneous injection, 5 to 10 cc. of isotonic saline solution is added to 1,500 units of hyaluronidase, which remains stable for two weeks without refrigeration. Dosage is regulated to keep the urine clear for 16 to 24 hours after injection. From 300 to 600 units is required daily in 80% of cases, but up to 2,400 units per day may be needed with infections.

Contraindications to hyaluronidase are (1) renal dysfunction, (2) rare hypersensitivity to the drug, (3) sensitization reactions from inadequate dosage, (4) lack of urinary clearing six to eight hours after reception of 1,800 units, (5) relative inefficiency against vesical stones, and (6) excessive cost. Retail prices are currently $1.25 per 150 units and $3.30 for 1,500 units.

In contrast to earlier reports, hyaluronidase is now provided as an adjunct to all customary measures for renal lithiasis.

From 311 patients, 36 aged 13 months to 78 years were chosen for therapy because of a strong tendency toward rapidly growing concretions. Certain subjects had many small stones, and the rest harbored large calculi with or without small ones.

During and after publication of Butt's work, hyaluronidase was enthusiastically employed in clinics and laboratories. Ravich, using the new Urotensiometer (Clay-Adams Co.) which gives direct readings of urinary surface tension, stated in 1954 that hyaluronidase lowered values but not to normal levels.

Smiddy used a Stalagmometer, which readily shows surface tension by a drop-weight method. Data indicated that surface tension may vary in a given individual, that tension and specific gravity are inversely related, and that subcutaneous doses do not affect urinary surface tension.

Dingley and Badenoch, after giving 1,000 units every day or two for three to ten months in eight cases, concluded that the results scarcely justified prolonged treatment.
Prien noted a possible sensitization reaction in a man taking 150 units daily for ten days, then 15 units every other day for two months with sodium bicarbonate to keep urine alkaline.

Flocks noted in 1955 that hyaluronidase did not protect urinary calcium salts, as measured by the calcium precipitability method.

In laboratories, three investigations of hyaluronidase and bladder stones in rats showed little or no value in therapy.

However, Puntriano, who employed Butt's technic in sheep and cattle, advocated implantation of hyaluronidase pellets in these animals in autumn to avoid economic loss from urinary stones.

In this institution, lyophilized hyaluronidase (Wydase) was tried on guinea pigs, whose dietary requirement of vitamin C makes their metabolism comparable to that of man.

An open suprapubic cystotomy was performed under pentobarbital anesthesia, and a coil of copper wire was anchored to the bladder dome with nylon thread. The incision was closed with absorbable suture, and each animal was given a prophylactic dose of penicillin.

Beginning on the seventh postoperative day, 0.2 cc. of saline solution containing 30 turbidity-reducing units of Wydase was injected subcutaneously. This is comparable to 2,400 units in human adults, the maximum used by Butt. The controls received similar doses of boiled hyaluronidase.

Animals were either killed or died of peritonitis or obstruction of the bladder neck by wire. Weight of the dried calculus found about the foreign body was determined in 31 experimental animals and 15 controls. In many cases, urine cultures were taken, oven-dried slides of urinary film were graded for colloidal activity using a medical microscope, and pH of urine was determined. All analyzed stones contained calcium and magnesium phosphates, as well as calcium carbonates and oxalates.

Apparently, size of the induced calculus and infected and/or alkaline urine were positively correlated. No relation was noted between the size of stone and colloidal activity twenty-four hours after hyaluronidase injection. Finally, weights of calculi in experimental and control animals were compared. Apparently, stone was less likely to develop in the experimental group.

Other lines of investigation being pursued in this country are (1) suppression of urinary calcium and magnesium excretion by oral doses of sodium phytate, (2) studies on the mechanism of biologic calcification and interpretation of urinary biocolloids, and (3) greater ex-
cretion of urinary glucuronides which secondarily increase solubility of calcium phosphate in urine; for this purpose, salicylamide and acetylsalicylic acid therapy have been suggested.

Obviously, no definite conclusions can be drawn from our paper. However, as experimental and clinical data accumulate, our material may be of value in defining the true place of hyaluronidase in treatment of urinary lithiasis.
Minnesota Medical Foundation

Annual Members (continued)

Murray P. Ensfeld
Gordon M. Erskine
H. E. Essex
Robert D. Estrem
Gerald T. Evans
E. Frank Everett
O. J. Farness
K. R. Fawcett
John G. Fee
J. Y. Feinstein
David A. Felder
Oscar M. Felland
Donald J. Ferguson
Otto B. Fesennlaier
David L. Fink
William A. Fischer
I. Fisher
H. Fisketti
David M. Flett
Flin Flon Clinic
Edmund B. Flink
J. E. Flynn
Frederic E. B. Foley
A. L. Forsgren
G. M. A. Fortier
Captain Quincy E. Fortier
C. A. Fosmark
Mrs. Alvina Wangensteen
Fossum
David W. Francis
Donald B. Frane
Harold C. Freedman
Richard J. Frey
Robert E. Fricke
Louis A. Fried
Aaron Friedell
Howard M. Flykman
Kenneth E. Gamm
George L. Garske
N. L. Gault, Jr.
Ernst Gellhorn
J. T. Gericko, Jr.
R. K. Ghormley
D. P. Gibson
Mary E. Giffin
Maurice Gilbert
Delmar R. Gillespie
Louis Gillman
Lloyd C. Gilman
Robert J. Goldish
Theodore I. Goldman
Meyer Z. Goldner
Leslie R. Grams
Hendrie W. Grant
John C. Grant
Suzanne Grant
Frank R. Gratzek
James H. Graves
Howard K. Gray
Robert A. Green
Albert Greenberg
H. Harvey Greene
William H. Grohs
John K. Grotting
R. I. Grusy
D. E. Guernsey
H. A. Gull
John M. Gunsonius
Helen Haberer
Frederick J. Hafiz
John D. Hagen
Paul S. Hagen
Wayne S. Hagen
Samuel F. Haines
Erick Y. Hakanson
Harry B. Hall
W. W. Hall
R. P. Hallin
Bernard Halper
David J. Halpern
Richard Halpern
D. K. Halvorsen
Lynn M. Hammerstad
R. D. Hanover
Cyrus O. Hansen
Robert E. Hansen
Curtis M. Hanson
Mark C. L. Hanson
Reuel Harmon
B. D. Harrington
Leon D. Harris
William F. Hartshel
S. A. Hartman
J. Francis Hartmann
Grant F. Hartnegel
Richard L. Hartzell
J. C. Hathaway
Louis A. Hauser
Lyle J. Hay
Fordyce R. Heilman
Edward D. Henderson
Myron J. Hertz
Earl Hill
Louis W. and Maud Hill
Family Foundation
Claude R. Hitchcock
R. V. Hodapp
H. O. Hoff
F. W. Hoffbauer
Roy G. Holly
C. H. Holmstrom
E. G. Holmstrom
J. E. Holt
Howard L. Horns
Richard C. Horns
R. J. Houle
C. E. Howard
Elna M. Howard
Robert B. Howard
Carter W. Howell
L. J. Hoyer
E. J. Hueckens
H. L. Huffington
R. E. Hultkrans
W. R. Humphrey
John Hurly
Milton M. Hurwitz
F. R. Huxley
Charles Hymes
Kano Ikeda
Rolf M. Iverson
Jay Jacoby
Harriet D. James
Allen G. Janecky
Joseph M. Janes
Herman H. Jensen
Nathan K. Jensen
J. E. Jensen
Bourne Jerome
W. G. Johnson
C. Lawrence Johnson
Einer Wesley Johnson, Jr.
John A. Johnson
Marvin W. Johnson
Norman P. Johnson
Victor Johnson
Luverne W. Johnsrud
George T. Joyce III
E. S. Judd, Jr.
Manley F. Juergens
Laurel J. Kaasa
Leonard L. Kallestad
Earl R. Kanne
Bernard J. Kaplan
J. Jacob Kaplan
C. I. Karleen
E. M. Kasper
Herschel J. Kaufman
Jerome E. Kaufman
Donald L. Kegaries
Paul J. Keith
Vincent C. Kelley
Ralph Kernkamp
Ilmar O. Kiesel
Lyndon M. King, Jr.
Z. P. King
Edward H. Kirschbaum
Frank R. Klune
W. A. Knight, Jr.
Herman J. Kooiker
THE MEDICAL BULLETIN

Annual Members (continued)

Henry A. Korda
Albert L. Koskela
Frederic J. Kottke
R. J. Kotval
Monte H. Kowall
Walter E. Krafft
Arnold J. Kremen
V. C. Kremser
Larry Kruger
Frank H. Krusen
S. T. Kuera
David B. Kuris
William A. Lange
B. G. Lannin
Walter F. Larrabee, Jr.
Lawrence M. Larson
L. W. Larson
Leighton W. Larson
Oliver E. H. Larson
K. E. Latterrell
Morris H. Lax
Arnold Lazarow
Gordon E. Lee
Hubert W. Lee
R. E. Leigh
M. E. Lenander
Gilbert Gordon Lenz
Mrs. Clara Leslie
Edward H. Leveroos
Alfred G. Levin
Jules D. Levin
F. John Lewis
Herman C. Lichstein
Dagfinn Lie
C. Walton Lillehei
Ludvig Lima, Jr.
Charles E. Lindemann
M. C. O. Lindert
H. P. Linner
John H. Linner
Paul W. Linner
E. S. Lipman
Neil N. Litman
Robert E. Litman
M. B. Llewellyn
Robert C. Lofgren
Dennis E. Lofstrom
E. A. Loomis
Victor Lorber
Frederick H. Lott
E. R. Lowe
Thomas Lowry
Karl R. Lundeborg
C. W. Lundquist
Virgil J. P. Lundquist
R. A. MacDonald
D. C. MacKinnon
Gordon C. MacRae
A. E. Magnuson
Morris Malin
Davis S. Malen
William F. Maloney
J. C. Mankey
George H. Marking
George R. Martin
Gordon M. Martin
Webster C. Martin
William B. Martin
Elmer J. Martinson
L. D. Massey
A. D. Mattson
Hamlin Mattson
Manfred Maurus
R. A. Maves
Charles W. Mayo
Donovan L. McCain
Francis M. McCarten
A. M. McCarthy
J. M. McCarthy
D. P. McCormick
John D. McGovern
Brian J. McGroarty
Frank F. McKeen
F. S. McKinney
Charles E. McLennan
John W. McLinden
B. J. Mears
Frederick B. Mears
Medical Center, Little Falls
Harry Medovy
Benedick Melby
N. M. Menasha
Robert L. Merrick
R. W. Merrill
P. F. Meyer
Robert J. Meyer
R. P. Michels
L. F. Mitchell
A. S. Midtbune
Arden L. Miller
H. A. Miller, Jr.
Harry Arthur Miller
D. Keith Millett
Frank J. Minar
John E. Minekler
John R. Miner
Raymond K. Minge
B. D. Mitchell
Louis A. Mitchell
A. S. Moe
Thomas Moe
Johannes K. Moen
George E. Moore
Irvin H. Moore
L. A. Moren
Donn G. Mosser
A. Eugene Muller
Edward S. Murphy
Jack T. Murphy
Oscar B. Murray
Thomas T. Myers
James Myhre
H. B. Nachtigall
Arnold E. Naegeli
Donald E. Nealy
W. S. Neff
D. R. Nelismark
Carl Gilbert Nelson
K. L. Nelson
Maxine O. Nelson
Maynard C. Nelson
Paul A. Nelson
Curtis B. Ness
H. L. Neuenschwander
Charles M. Nice, Jr.
J. Roger Nickerson
Donald J. Nollet
Robert E. Nord
Martin Nordland
W. F. Nordman
Irwin L. V. Norman
Stanley R. Norquist
N. T. Norris
William F. Nuessel
A. W. Nuetzman
Katherine A. Nye
Lillian L. Nye
William T. Nygren
C. G. Ochsner
Howard M. Odell
J. Ochag
John B. O'Leary
Jack C. Olsen
Alton C. Olson
C. A. Olson
C. Kent Olson
Duane C. Olson
Eldon C. Olson
Gregory M. Olson
Ruth E. Olson
S. A. Olson
C. P. O'Neill
E. G. Oppen
Harry W. Orme
Alan L. Orvis
Edward W. Ostergren
Burton C. Osting
Charles A. Owen, Jr.
Ben Owens
R. L. Page
B. J. Palen
Enrique Sanchez Palomera
F. J. Pankratz
Robert L. Parker
Hugh D. Patterson
Donald L. Paulson
Eric R. Paulson
B. F. Pearson
Louis Pelner
Leonard F. Peltier
John R. Perkins
J. C. L. Peteler
Donald H. Petersen
Glenn L. Petersen
Robert T. Petersen
A. O. Peterson
W. E. Peterson
Julien V. Petit
Thomas C. Petrick
Annual Members (continued)

Edward Schons
N. B. Schoonmaker
Hugo F. Schroechenstern
Albert J. Schroeder
Irwin Schulz
Elmer S. Schutz
E. Robert Schwartz
Samuel Schwartz
Horace G. Scott
Rosel T. Seashore
Howard R. Seidenstein
Milton H. Seldert
Otto J. Seifert
Herman Seltz
M. J. Shapiro
Howard A. Shaw
Andrew W. Shea
Abraham Shedlov
J. A. Sheinkopf
C. G. Sheppard
Lloyd F. Sherman
John S. Siegel
L. O. Simenstad
Daniel Simon
John B. Simons
George P. Sims
Melvin B. Sinsky
David Siperstein
Rudolph B. Skogerboe
Ralph E. Smiley
E. A. Smisek
Adam M. Smith
Archie M. Smith
Baxter A. Smith
Graham G. Smith
Scott M. Smith
Suzanne A. Snively
R. T. Soderlind
Juan Solari
Nels N. Sannesyn
Ernest J. Sowada
E. V. Spackman
J. P. Spano
Mitchell W. Spellman
George V. Squire
Clifford J. Stadem
A. C. Stahr
C. R. Stanley
Milton D. Starekow
David State
Herbert M. Stauffer
H. L. Stermsrud
N. Wells Stewart
J. M. Stickney
Albert V. Stoesser
Robert C. Strand
Everett L. Strangell
John J. Stransky
Theodore W. Stransky
Edward L. Streem
J. H. Strickler
J. W. Stuhr
Rodney F. Sturley
Marvin Sukov
R. Dorothy Sundberg
N. J. Sundet
Janet B. Sutton
Harry A. Swedlund
Orvie J. Swenson
Jerome T. Syvertsen
George M. Tangen
W. G. L. Tanglin
E. J. Tanquist
Gerald J. Taylor
Kenneth W. Teich
J. E. Teisberg
Robert J. Teoner
William S. Terry
Gordon H. Tesch
Arthur Thompson
Stewart C. Thomson
R. G. Tinkham
Leonard O. Titrud
John D. Tobin
Donald G. Tolleson
Wesley Tomhave
Lyle A. Tongen
R. R. Tracht
Bertram L. Treistad
Richard G. Tucker
Robert B. Tudor
Alfred Ulhlein
U. R. Ulferts
A. L. Vadheim
Fred H. Van Bergen
Donald J. Van Ryzin
A. E. Venables
Richard P. Virniig
Jean J. Vivino
Howard A. Vogel
Charles W. Waas
Newton F. Walker
George W. Waldron
Martin O. Wallace
Ira O. Wallin
Francis M. Walsh
Percy A. Ward
Alex M. Watson
Dennis W. Watson
S. W. Watson
John J. Maugh
M. M. Weaver
Ruscoe C. Webb
Richard J. Webber
Lowell W. Weber
Harry Weiner
James F. Weir
B. A. Weiss
J. H. Weissberg
Lewis J. Weller
Arthur H. Wells
W. B. Wells
Stanley P. Wesolowska
Robert K. West
M. Westby
M. L. Whalen
Annual Members (continued)

Joseph L. Whelan
Richard A. Whitney
Francis M. Whittaker
John J. Wild
B. H. Williams
J. A. Williams
M. R. Williams
W. Lane Williams

Harold A. Williamson
Louis Winer
Winona Clinic
A. Cabot Wohlrabe
Donald E. Wohlrabe
Earl H. Wood
Thomas D. Wright
Merrill B. Yeomans

Lauritz S. Ylvisaker
Milo A. Ypuel
C. B. Young
Nelson A. Young
S. F. Yugend
H. B. Zimmermann
Thomas Ziskin
Postgraduate Education

Proctology for General Physicians

The University of Minnesota announces a continuation course in Proctology for General Physicians which will be held at the Center for Continuation Study from May 14 to 19, 1956. All aspects of rectal and colonic disorders will be taken up during the week long session. Guest speaker will be Dr. Hyrum R. Reichman, Head of the Proctologic Clinic at the University of Utah Medical School. The program will be presented under the direction of Dr. Walter A. Fansler, Clinical Professor and Director, Division of Proctology.

Surgery for General Surgeons

The University of Minnesota, in cooperation with the American College of Surgeons, is offering a continuation course in Surgery for General Surgeons from May 24 to 26, 1956. Half-day sessions will be devoted to preoperative and postoperative care, cardiovascular surgery, and abdominal surgery including ulcer and gallbladder surgery. One session will be devoted to informal case presentations and a surgical pathological conference. Registrants will also have an opportunity to attend operative clinics or, alternatively, to attend a session devoted to advances in surgical research. This year’s guest speaker will be Dr. Robert M. Zollinger, Professor and Chairman, Department of Surgery, Ohio State University College of Medicine, who in addition to participating in the course will also deliver the Annual E. Starr Judd Lecture on Thursday evening, May 24, to which all course registrants will be invited. The course will be presented under the direction of Dr. Owen H. Wangensteen, Professor and Chairman, Department of Surgery.

Notice

All continuation courses presented by the University of Minnesota are approved for formal postgraduate credit by the American Academy of General Practice. Attendance certificates will be furnished on request.

Further information concerning the above programs or others to be presented may be obtained by writing to Dr. Robert B. Howard, 1342 Mayo Memorial, University of Minnesota, Minneapolis 14.
Coming Events

April 26 Student-Faculty Coffee Hour; Foyer, Mayo Auditorium; 3:30 to 5:30 P.M.

May 7-12 Continuation Course in Electrocardiography for General Physicians

May 10 Student-Faculty Coffee Hour; Foyer, Mayo Auditorium; 3:30 to 5:30 P.M.

May 14-19 Continuation Course in Proctology for General Physicians

May 15 DULUTH CLINIC LECTURE; “Experimental Hepatic Injury in its Relation to Hepatic Disease in Man”; Dr. Paul Gyorgy, Professor, Department of Pediatrics, Hospital of the University of Pennsylvania, Philadelphia; Mayo Memorial Auditorium; 8:00 P.M.

May 22 MINNESOTA MEDICAL FOUNDATION LECTURE; “The Patient Who Won’t Get Well”; Dr. Donald W. Hastings, Professor and Director, Division of Psychiatry, University of Minnesota Medical School; 4:30 P.M. (During 103rd Annual Meeting, Minnesota State Medical Association, Rochester, Minnesota)

May 24 E. STARR JUDD LECTURE; “Clinical and Experimental Observations on the Pancreas”; Dr. Robert M. Zollinger, Professor and Chairman, Department of Surgery, Ohio State University College of Medicine; Mayo Memorial Auditorium; 8:00 P.M.

May 24 Student-Faculty Coffee Hour; Foyer, Mayo Auditorium; 3:30 to 5:30 P.M.

May 24-26 Continuation Course in Surgery for Surgeons

WEEKLY CONFERENCES OF GENERAL INTEREST

Physicians Welcome

Monday, 9:00 to 10:50 A.M. Obstetrics and Gynecology
Old Nursery, Station 57
University Hospitals

12:30 to 1:30 P.M. Physiology-
Physiological Chemistry
214 Millard Hall

4:00 to 6:00 P.M. Anesthesiology
Todd Amphitheater,
University Hospitals

Tuesday, 12:30 to 1:20 P.M. Pathology
104 Jackson Hall

Friday, 8:00 to 10:00 A.M. Neurology
Station 50, University Hospitals

9:00 to 10:00 A.M. Medicine
Todd Amphitheater,
University Hospitals

1:30 to 2:30 P.M. Dermatology
Eustis Amphitheater,
University Hospitals

Saturday, 7:45 to 9:00 A.M. Orthopedics
Powell Hall Amphitheater

9:15 to 11:30 A.M. Surgery
Todd Amphitheater,
University Hospitals

For detailed information concerning all conferences, seminars and ward rounds at University Hospitals, Ancker Hospital, Minneapolis General Hospital and the Minneapolis Veterans Administration Hospital, write to the Editor of the BULLETIN, 1342 Mayo Memorial, University of Minnesota, Minneapolis 14.