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Abstract

Efficient transportation management requires good understanding of people’s travel

behavior. Most transportation planning models assume travelers are perfectly rational

in decision-making. However, much of the empirical evidence from psychology, eco-

nomics, and transportation has shown that perfect rationality is not realistic in mod-

eling travelers’ decision-making process. Thus existing transportation planning models

may provide inaccurate predictions to transportation planners.

Motivated by travelers’ route choice changes in response to the reopening of the I-

35W Bridge in Minneapolis, this dissertation shows that travelers are boundedly rational

(BR) in making route choices. Though the BR travel behavioral model was proposed in

the 1980’s, empirical validation of such behavioral principle using real-world data along

with a theoretical framework was non-existent. This study is dedicated to bridging

these gaps from both empirical and theoretical perspectives.

The first contribution of this dissertation is the empirical verification and estimation

of boundedly rational route choice behavior. By analyzing recorded GPS trajectories

from 143 commuters before and after the reopening of the I-35W Bridge in Minneapolis,

we employ a probit model to estimate the bounded rationality parameters in Twin Cities.

Despite the behavioral appeal of bounded rationality, a rigorous study of boundedly

rational user equilibria (BRUE) solution has been lacking, partly due to its mathe-

matical complexity. This research offers a systematic approach of deriving the BRUE

solutions analytically on networks with fixed travel demands. Based on the definition of

ε-BRUE, where ε is the indifference band for perceived travel times, we formulate the

ε-BRUE problem as a nonlinear complementarity problem (NCP). With the increase of

the indifference band, the path set that contains equilibrium flows will be augmented

and the critical values of the indifference band to augment the path set can be identified

by solving a sequence of mathematical programs with equilibrium constraints (MPEC).

A novel solution method is provided to obtain the BRUE solution set and numerical

examples are given to illustrate this finding.

To provide guidelines to policy-makers for congestion mitigation, this research also

explores an important phenomenon which should be avoided in transportation network
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design, i.e., Braess paradox. The classical Braess paradox was built upon the per-

fectly rational behavioral assumption. Under the framework of bounded rationality,

each equilibrium flow pattern leads to a different total system travel time, resulting in

non-unique network performance measures. Because of the non-uniqueness of BRUE

solutions, which particular equilibrium pattern should be used to compare network per-

formances before and after new roads are built remains a question. This dissertation

aims to study the analytical properties of Braess paradox under bounded rationality by

exploring the relationships between the occurrence of Braess paradox and the indiffer-

ence band as well as the demand level. The unveiled relationships offer a guideline for

transportation planners to prevent the occurrence of Braess paradox and pave the way

for strategic transportation management under the bounded rationality assumption.
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Chapter 1

Introduction

1.1 Problem statement

The I-35W Bridge has been playing a critical role in transporting commuters to down-

town Minneapolis and East Bank Campus of the University of Minnesota, Twin Cities.

Its collapse in 2007 forced 140, 000 daily users (Danczyk et al. 2010) to switch to other

parallel bridges or to cancel trips. At the same time, an extra lane was added to the

parallel I-94 Bridge in each direction to reduce cross river traffic burdens. A year later,

the new I-35W Bridge was rebuilt and the addition of the bridge offered commuters a

new option to cross the river. Surprisingly, only 100, 000 daily trips on average were

observed on the new bridge (Danczyk et al. 2010), which was more than 25% daily

trip decrease. This phenomenon was referred to as ‘irreversible network disruption’

(Guo and Liu 2011). According to Zhu (2011), the total travel demand in the Twin

Cities area only dropped slightly in 2008 due to economic crisis and the average daily

trip on the I-94 Bridge returned to the original level after the temporarily added lanes

were closed.

In reality, there may exist many possible reasons for irreversible network disruption.

This dissertation aims to explain the observed phenomenon from route choice behavior

perspective by employing the theory of bounded rationality.

As opposed to ‘rationality as optimization’, Herbert Simon, in 1957, proposed that

people are boundedly rational in their decision-making processes. This is either because

people are lack of accurate information, or they are incapable of obtaining the optimized

1
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decision due to the complexity of the situations. They tend to seek a satisfactory choice

solution instead. Since then, ‘bounded rationality’ has been studied extensively in

economic and psychology literature (See Conlisk 1996 for a detailed review). Bounded

rationality (BR) was introduced into transportation science by Mahmassani and Chang

(1987).

Although the concept of boundedly rational route choice behavior is not new, empir-

ical validation of such behavioral principle using real-world data and a BR theoretical

framework are non-existent. This study is dedicated to bridging these gaps from both

empirical and theoretical perspectives.

1.2 Research objectives and scope

This research aims to first understand boundedly rational route choice behavior from

empirical analysis and then build a theoretical framework of boundedly rational user

equilibria. The goal of this study is to offer thorough insights into implication of bounded

rationality for transportation planning. In summary, the objectives of this study are

primarily focused on:

1. providing a comprehensive survey on boundedly rational travel behavior models

and methodologies;

2. analyzing empirical travel survey data from the Twin Cities and estimating

bounded rationality parameters;

3. developing a mathematical framework of solving boundedly rational user equilib-

ria;

4. exploring Braess paradox under bounded rationality and offering guidelines for

transportation network design.

In light of these objectives, this research is restricted to route choice behavior in

transportation networks with fixed travel demands and a single user class for each

origin-destination (OD) pair. Travel time is the only determinant in route choice. In

other words, travel factors, such as travel time reliability and behavioral heterogeneity

within the same OD pair, are not considered.
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Accordingly, the scope of this research includes four components (illustrated in Fig-

ure (1.1)):

Literature review

BR models and methodologies

BR empirical evidence

Empirical analysis

BR parameter estimation

Twin Cities GPS data analysis

BRUE solutions methodology

BRUE set properties

Theoretical model

Application

Braess paradox

Figure 1.1: Dissertation components

1.3 Research contributions

Perfect rationality (PR) has been widely used in modeling travel behavior. As opposed

to PR, bounded rationality (BR) has regained researchers’ attention since its first in-

troduction into transportation in the 1980s, due to its power in better modeling and

predicting travel behavior. Despite a small but growing body of studies on employ-

ing bounded rationality principle, BR travel behavior remains understudied due to the



4

following reasons:

1. BR parameters are usually latent and difficult to identify and estimate;

2. The existence of BR thresholds leads to mathematically intractable properties of

equilibria;

3. The non-uniqueness of boundedly rational user equilibria complicates transporta-

tion planning under the BR principle.

This dissertation aims to address the above three challenges and contributes signifi-

cantly to the state-of-the-art of boundedly rational travel behavior from both empirical

and theoretical aspects.

Firs of all, the disruption and the rebuilding of the I-35W Bridge in Minneapolis

provides us a rare opportunity to empirically study people’s route choices in response

to the change in road network’s topology. Accordingly, we propose an alternative route

choice theory, bounded rationality, to explain observed irreversible network disruption.

Though the concept of boundedly rational route choice is not new, its empirical verifica-

tion has been lacking. To verify this behavioral assumption, a hypothesis is developed

that travelers will not switch to the new I-35W Bridge unless the saved travel time

exceeds an indifference band. Then GPS travel data are analyzed from 143 commuters

tracked before and after the bridge’s reopening to test the hypothesis and the indiffer-

ence band is estimated by employing the probit model. Unlike a large body of existing

literature employing experimental laboratory data to discover route choice behavior, this

dissertation makes the first effort of utilizing empirical field data to uncover bounded

rationality and estimate associated behavioral parameters.

Theoretically, due to the existence of indifference bands, the boundedly rational user

equilibria (BRUE) is generally non-unique and the BRUE set is usually non-convex. As

a result, there exists little literature on developing equilibrium solution algorithms and

exploring its mathematical properties. To the best of our knowledge, this dissertation is

the first study that provides a systematic approach of constructing the BRUE set based

on the finding that the BRUE set can be decomposed into finite subsets. Accordingly,

the topological properties of the BRUE set are studied based on each subset’s property.

These two theoretical contributions offer a tool of predicting traffic flow patterns and

lay the foundations of BR related applications, such as network design problem.
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With the methodology of solving BRUE sets in place, our third contribution is to

explore relationships between the occurrence of the Braess paradox and the indifference

band in the setting of BRUE. The ultimate goal of studying boundedly rational route

choice behavior is to provide insights into transportation network design so that Braess

paradox can be avoided in the first place. The Braess paradox and its variants have

been extensively studied under the perfectly rational behavior assumption. However,

when the perfect rationality assumption is relaxed to bounded rationality, it remains

unclear under what conditions the Braess paradox occurs. This dissertation studies

the occurrence conditions in the classical Braess network as well as in grid networks

with Bureau of Public Roads (BPR) link performance functions. We reveal that Braess

paradox can happen in general networks if certain conditions are fulfilled and bounded

rationality may worsen the Braess paradox.

1.4 Dissertation organization

• Chapter 2 presents a comprehensive survey on existing boundedly rational travel

behavior models.

• Chapter 3 conducts an empirical analysis of irreversible network disruption of the

I-35W Bridge in Minneapolis by using boundedly rational route choice behavioral

assumption.

• In Chapter 4, the theoretical aspects of boundedly rational user equilibria are

discussed.

• Chapter 5 discusses the occurrence of Braess paradox under bounded rationality.

• Chapter 6 summarizes the research findings and the research gaps of this disser-

tation. Future research directions are also presented.



Chapter 2

Literature review

2.1 Introduction

Perfect rationality is widely used in modeling travelers’ decision-making behavior. As

opposed to ‘rationality as optimization’, Herbert Simon, in 1957, proposed that people

are boundedly rational in their decision-making processes (Simon 1957). This is either

because people lack accurate information, or they are incapable of obtaining an opti-

mized decision due to complexity of the situations. They tend to seek a satisfactory

choice solution instead. Since then, ‘bounded rationality’ has been studied extensively

in economics and psychology.

Mahmassani and Chang (1987) first employed bounded rationality (BR) in model-

ing pre-trip departure time selection for a single bottleneck. Since then, there is small

but growing literature on incorporating bounded rationality into various transporta-

tion models, such as hyperpath assignment (Fonzone and Bell 2010), transportation

planning (Gifford and Checherita 2007; Khisty and Arslan 2005), traffic policy making

(Marsden et al. 2012) and traffic safety (Sivak 2002). All these studies indicated that

the BR assumption plays a very important role in transportation modeling. However,

“there is not yet much convergence among them” (Ridwan 2004). In other words, there

does not exist a standard BR framework for travel behavior study.

In this chapter, we aim to conduct a comprehensive survey on boundedly rational

travel behavior and propose a unifying framework. There are two types of behavioral

research (Simon 1982): “studies that are aimed at discovering and testing invariant

6
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laws of human individual or social behavior” and “studies that estimate parameters

we need for fitting theoretical models incorporating known/believed laws to particular

situations where we wish to make predictions”. The former is to reveal behavior while

the latter is to model behavior. Accordingly, we will first review behavioral studies

on discovering and verifying bounded rationality. Then we will summarize research on

modeling boundedly rational travel behavior.

The rest of the chapter is organized as follows: in Section 2.2, empirical and exper-

imental evidence is listed to support bounded rationality in modeling people’s travel

behavior. In Section 2.3, 2.4 and 2.5, BR formulations are introduced in static traffic

assignment, dynamic traffic assignment and cognitive process models. Methodologies

of estimating boundedly rational learning parameters by utilizing static and panel data

from laboratory experiments are also introduced for each category.

2.2 Behavioural evidence on bounded rationality

2.2.1 Why not perfect rationality

In the following, we will present empirical evidence and anomalies to show that perfect

rationality is too ideal and a new behavioral framework is needed. Three cognitive

reasons are listed and are then followed by their manifestation.

Heuristic and bias

Psychologists and experimental economists verified that people use heuristic rules when

making decisions, leading to biases or systematic errors (Conlisk 1996). For example,

people react differently under the same situations when the problem is presented in

different ways, called “framing effect” (Tversky et al. 1981).

‘Debiasing’ experiments were conducted to test whether biases caused by heuris-

tic processes can be eliminated through repeated practice and adequate incentives or

punishments. However, many research indicated that biases are “substantial and impor-

tation behavioral regularities” (Conlisk 1996) and will not disappear due to deliberation

costs.

On the other hand, heuristics are also critical tools people employ when making

decisions. People try to tradeoff “between cognitive effort and judgemental accuracy”.
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Due to high costs of deliberation and information search, people tend to use heuristics to

find the first alternative which they are satisfied with instead of calculating an optimal

one.

Cognitive limit and deliberation cost

Hiraoka et al. (2002) showed that cognitive limits and deliberation costs play impor-

tant roles in route choices. They designed an experiment where subjects spoke aloud

while choosing routes. A protocol analysis was conducted to analyze subjects’ cognitive

processes from verbal data. Results indicated that drivers had the desire to choose

routes with less travel time, involving less cognitive resources and making them feel

comfortable while driving along. Among the above three route choice criteria, a choice

consuming less cognitive process dominated the other two criteria and drivers chose

routes dynamically when one route satisfying their criteria was found.

Behavioral heterogeneity

Drivers are heterogeneous in terms of their ages, genders, familiarity within a road

network and so on. There are two aspects regarding the impact of familiarity on route

choices. Lotan (1997) showed that more familiar drivers took longer habitual routes

than unfamiliar drivers. Hiraoka et al. (2002) showed that familiar drivers were more

responsive to current traffic conditions and had flexibility to switch more frequently

en route for shorter paths, while new drivers preferred staying in their predetermined

routes no matter how traffic conditions changed.

Contini and Morini (2007) investigated job changing behavior from Worker Histo-

ries Italian Panel (WHIP) data in Italy. Two variables, future wages and risk-on-the-

job, were identified as two driving forces of the job change. A full rationality model

should imply “a positive relationship between future wages and risk-on-the-job”. In

other words, the higher future wages are, the higher the risk-on-the-job is. However,

Contini and Morini (2007) revealed from WHIP data that when individual effects from

wage growth were included, the future wage was negatively proportional to risk-on-the-

job, which was inconsistent with the full rationality model. On the other hand, when

individual effects were removed, future wage was positively proportional to risk-on-the-

job. In conclusion, while market forces drove towards a rational outcome, individual
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characteristics led towards an opposite direction. Though it is not related to travel be-

havior, this study revealed behavioral heterogeneity across the population in response

to a system change.

Violation of taking shortest paths

Transportation researchers from across the world found evidence that people do not

usually take the shortest paths and the utilized paths generally have higher costs than

shortest ones.

After evaluating habitual routes, only 59% respondents from Cambridge, Mas-

sachusetts (Bekhor et al. 2006), 30% from Boston (Ramming 2001), 86.8% from Turin,

Italy (Prato and Bekhor 2006) chose paths with the shortest distance or the shortest

travel time. According to GPS studies, 60% of subject commuters in the Twin Cities,

Minnesota took paths longer than the shortest travel time paths (Zhu 2011) and high

percentage of commuting routes in Nagoya, Japan (Morikawa et al. 2005) and Lexing-

ton, Kentucky (Jan et al. 2000) were found to differ considerably from the shortest

paths.

Nonexistence of perfect rationality via learning processes

Some opponents in economics claimed that people can improve their rationality via

repeated learning process. In other words, people can approach to unbounded ratio-

nality while making decisions everyday based on previous experiences. Conlisk (1996)

argued that learning mechanism does improve people’s decision-making towards the

optimal in some situations, but it can also hinder learning and adaptation due to

habit. This has been validated by a sequence of route choice experiments. Compared

to unfamiliar drivers, familiar drivers stick mostly to their usual driving routes which

may be longer than the shortest path (Lotan 1997). Under four different route choice

rules, simulated drivers’ route choice behavior did not become rational through learning

(Nakayama et al. 2001). Instead, there were fewer rational drivers even after a long

process of route choices and they did not necessarily perceive system status accurately

even after a sufficient period of time.
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Infeasibility of dynamic traffic assignment

From modeling’s perspective, Szeto and Lo (2006) indicated that a dynamic traffic as-

signment model with a physical queue paradigm might not even converge. To solve this

anomaly, a tolerance-based principle was proposed that a route carrying flow at a time

interval has a travel cost which is less than an acceptable tolerance from the shortest

travel cost.

In summary, all above statements show that perfect rationality cannot capture peo-

ple’s cognitive processes in decision-making and more realistic assumption is needed in

travel behavior modeling.

2.2.2 Why bounded rationality

Many researchers showed that perfectly rational models cause estimation and prediction

errors without considering people’s cognitive limits and deliberation costs, habits and

myopia. On the contrary, models considering these factors give better prediction.

Habit and inertia

People “place higher value on an opportunity if it is associated with the status quo”

(Samuelson and Zeckhauser 1988), because it can provide significant energy saving to

cognitive thinking. Much empirical evidence suggested that habit plays a significant

role in people’s behavior in stable situations (Bamberg and Schmidt 2003).

Habit may result from searching for an optimal solution in prevailing circumstances,

but it also prevents people from pursuing better alternatives when situation changes

and can collapse to “bad habit” (Jager 2003). Lotan (1997) compared the impact of

information on familiar and unfamiliar drivers. Ten familiar drivers and fifteen unfa-

miliar drivers were selected to drive in the Newton network in Massachusetts coded in

traffic simulators. Results indicated that familiar drivers were reluctant to receive new

information and only considered salient information. Therefore most of them stuck to

their usual driving routes and did not necessarily minimize travel time.

Habit can be represented by a threshold in modeling travel choices. Cantillo et al.

(2006, 2007) applied a discrete choice model with thresholds to simulated SP/RP
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datasets to estimate and predict people’s mode choices, showing that a model not con-

sidering inertia overestimated the benefits of transport investments substantially. Lotan

(1997) fit an approximate-reasoning based model and a random utility model respec-

tively to driving simulation data in order to estimate and predict route choices. Results

showed that the approximate-reasoning based model outperformed the random utility

model. Carrion and Levinson (2012) studied commuters’ day-to-day route choices from

GPS data collected from 65 subjects for about 30 days, concluding that commuters

chose routes based on a specific threshold and might abandon a route if its travel time

exceeded the margin.

Mahmassani and his colleagues conducted a series of route choice experiments in

the 1990s showing that even when all path cost information was available to travelers,

commuters would not switch to shorter paths due to existence of inertia, which was

quantified by the ‘indifference band’ (Hu and Mahmassani 1997; Jayakrishnan et al.

1994a; Mahmassani and Chang 1987; Mahmassani and Jayakrishnan 1991;

Mahmassani and Liu 1999; Srinivasan and Mahmassani 1999). Accordingly a

boundedly rational route choice framework was proposed to capture people’s travel

behavior with information provision. By comparing commuter departure time and

route choice switch behavior in laboratory experiments with field surveys in Dallas

and Austin, Texas, Mahmassani and Jou (2000) showed that boundedly rational route

choice modeling observed from experiments provided a valid description of actual

commuter daily behavior.

Myopia

Myopia refers to the fact that people do not usually concern for wider interests or

longer-term consequences while making decisions. Consumers manifest myopia when

purchasing large appliances and tend to buy models with lower price but higher energy

consumption (Conlisk 1996). Gabaix et al. (2006) conducted an experiment involving

a class of complex decision problems. Two behavioral models were proposed to predict

choices: one with partial myopia and one with full rationality. The model with partial

myopia fit laboratory experiments better.

Similarly when making travel choices, travelers tend to switch to a link at an inter-

section which seems shorter for the time being but may lead to a longer route. Recent
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travel experiences also impact people’s travel choice more profoundly. Bogers et al.

(2005) used an interactive travel simulator “TSL” developed by Delft University of

Technology to investigate travel behavior. Subjects were asked to make route choices

among two alternative paths for 25 simulation days. En route information was provided

by a built-in dynamic traffic model and ex post information of realized travel times

were given in three different scenarios: travel time on the chosen route for the latest

period, travel times on both routes for the latest period and travel times on both routes

for all past periods. Experiential results showed that people were myopic because their

previous day’s travel experiences, such as lateness and experience travel time, greatly

impacted their choices in the next day.

Less computational burden and solution existence

From modeling’s perspective, bounded rationality requires less computational burdens

and ensures existence of a satisficing solution.

In large scale problems, it is difficult to attain optimal solutions analytically. The

perfectly rational search model proposed by Gabaix et al. (2006) is not solvable and

suffers from curse of dimensionality and no convergence. A heuristic algorithm usually

admits a computationally tractable solution without losing too much accuracy.

According to Simon (1957), decisions are sought dynamically and will not terminate

till an alternative meeting a certain threshold level is found. This level will be adjusted

if a satisficing alternative is difficult to find. “Such changes in aspiration level...tend to

guarantee the existence of satisfactory solutions” (Simon 1957). Similar results are found

in transportation literature. The traditional dynamic traffic assignment model with

perfect rationality may be infeasible, while a tolerance-based traffic dynamic ensures

existence of an equilibrium (Szeto and Lo 2006).

2.2.3 Boundedly rational travel choice models

Simon (1986) classified two types of rationality: substantive rationality (‘rationality

is viewed in terms of the choices it produces’) and procedural rationality (rationality

is viewed ‘in terms of the processes it employs’). Substantive rationality focuses on

the choice results subjective to certain goals, while procedural rationality describes the

cognitive process of a decision-maker. According to Simon (1982), bounded rationality
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is a more “ambitious” rationality concept, trying to capture both the substance of the

final decision and the dynamical process of decision-making, based on empirical studies

and psychological research.

In terms of travel decision choices, there also exist two categories of travel behavioral

models: static traffic assignment (i.e., stable and time-invariant route choices) and

dynamic traffic assignment (i.e., temporal travel behavioral changes). Static traffic

assignment can be embedded with substantive bounded rationality. However, dynamic

traffic assignment does not correspond to procedural bounded rationality. Accordingly,

we add another category of “dynamic bounded rationality” to represent rationality when

decisions have to be made repeatedly as time progresses. In addition, there is another

school of literature on modeling human beings’ cognitive processes in route choices,

which is associated with procedural bounded rationality.

Bounded rationality (BR) is rather a more realistic behavioral foundation than a

new theory. Thus it permeates every part of travel behavioral modeling. To review

BR related models and methodologies, a thorough survey on static and dynamic traffic

assignment models should come along. Therefore, we will introduce various travel be-

havior models and show how substantive, dynamic and procedural bounded rationality

are represented.

All relevant models are summarized in Table (2.1). Column “Category” represents

three major types of bounded rationality. Column “Model” summarizes all the route

choice models we will discuss in this chapter. Column “Aspect” illustrates the decision

which is incorporated with bounded rationality, column “Representation” further ex-

plains how it is incorporated while column “Specification” lists the specific form of the

associated bounded rationality parameter. Column “Estimated” indicates whether the

bounded rationality parameter is estimated or given in the corresponding model.
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The survey of each category of models is arranged as follows: at the beginning of

each section, a unifying framework diagram serves as a navigation map, providing a

general picture of each category (including elements and their relations) and how the

BR piece fits the whole picture. Then we will introduce analytical models and estimation

methodologies under the unifying framework.

2.3 Boundedly rational static traffic assignment

2.3.1 A unifying framework for game-theoretical approach

Figure (2.1) illustrates a framework of equilibrium models. A large population of trav-

elers make route choices in a road network and suffer from congestion effects leading to

travel costs or disutilities. The travel cost or the disutility is indicated in ovals which

represent latent variables (Walker 2001) and is also enclosed in a big box with dot-

ted borders because they are unobservable. Every traveler aims to minimize his own

travel cost or disutility. Bounded rationality thresholds can be embedded into either

cost or disutility functions in the form of “random error” or “rationality parameter”

or represented by the route choice principle, indicated in dotted hexagons. Individual’s

route choices and various types of equilibria, such as boundedly rational user equilibria

(BRUE), quantal response equilibrium (QRE) and boundedly rational Nash equilibria

(BRNE), are indicated in solid parallelograms, representing observable outputs. In this

section, we will introduce how different specifications of travel costs or disutilities and

route choice behavior lead to different types of equilibria.
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Figure 2.1: Boundedly rational game-theoretical framework in route choice

2.3.2 Static user equilibria

Wardrop’s first principle says that people will take the path with the least disutility

(i.e., travel time, monetary cost, etc). A Wardrop user equilibrium (UE) is reached

when no one can improve his travel cost by unilaterally changing routes. At UE, all

utilized routes have the minimum travel cost while all unutilized routes have higher

travel costs. In other words, the following conditions hold at an equilibrium f∗:

Cw
r (f

∗)− πw

⎧⎨
⎩= 0, if fw∗

r > 0,

� 0, if fw∗
r = 0.

,∀r ∈ Pw,∀w ∈ W, (2.3.1)

where πw is the minimum travel cost connecting OD pair w, i.e., πw = minj∈Pw Cw
j (f).

Under bounded rationality, at equilibrium, “every driver uses an acceptable path,

where a path is acceptable if the difference between its travel cost and that of the shortest

or least-cost path is no larger than a pre-specified threshold value” (Lou et al. 2010). In

other words, no one can reduce his travel cost by a threshold by unilaterally switching

routes. This threshold depends on network users’ behavior and varies among different

OD pairs, which needs to be obtained through behavioral surveys and experiments.



21

Given an indifference band, BRUE is shown to be non-unique (Lou et al. 2010).

Lou et al. (2010) proposed a path-based BRUE formulation and a link-node based for-

mulation for congestion pricing. The link-node based BRUE is shown to be more restric-

tive than the path-based one. Di et al. (2013) developed a nonlinear complimentariy

condition for one path-based BRUE:

C̃w
r (f

∗)− π̃w

⎧⎨
⎩= 0, if fw∗

r > 0,

� 0, if fw∗
r = 0.

,∀r ∈ Pw,∀w ∈ W. (2.3.2)

where,

C̃w
r (f

∗): the indifference travel cost, computed by C̃w
r (f

∗) = Cw
r (f

∗) + ρwr ;

π̃w: the shortest indifference travel cost, equal to the minimum travel cost plus the

indifference band connecting OD pair w, i.e., π̃w = minj∈Pw Cw
j (f) + εw;

ρ: an indifference vector and ρ = (ρwr )
w∈W
r∈P , where 0 � ρwr � εw. ρwr represents

the deviation of route r’s actual cost from the shortest indifference travel cost, i.e.,

ρwr �

⎧⎪⎨
⎪⎩
π̃w − Cw

r (f), if Cw
r (f) � min

j∈P
Cw
j (f) + εw,

0, o.w.

The above condition implies that, under bounded rationality, all chosen paths have

the same shortest indifference travel cost, equal to minj∈Pw Cw
j (f) + εw. The unused

paths should have equal or larger indifference path costs. Denote Fε
BRUE as the ε-

BRUE path flow solution set, including all the BRUE path flow patterns. There exists

little literature on constructing the BRUE set because it is shown to be non-convex

(Lou et al. 2010) and thus its mathematical properties are intractable.

Di et al. (2013) developed a systematic methodology of constructing this set in trans-

portation networks with fixed demands connecting multiple OD pairs. With the increase

of the indifference band, the path set that contains boundedly rational equilibrium flows

will be augmented. Accordingly, the critical values of indifference bands to augment

these path sets can be identified by solving a family of mathematical programs with

equilibrium constraints (MPEC) sequentially. For a network with single OD pair, given

a sequence of finite critical points ε∗k, k = 1, · · · ,K, with ε∗0 = 0, ε∗K+1 = ∞, a BRUE

solution set is the union of K + 1 subsets:

Fε
BRUE =

K⋃
k=0

Fε∗k
k . (2.3.3)
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where Fε∗k
k , k = 0, · · · ,K is the kth subset with associated critical indifference band ε∗k.

Di et al. (2014a) studied the topological properties of the BRUE set and showed that

generally the BRUE set is compact and non-convex. Given affine linear link performance

functions, all the subsets are convex and the BRUE set is connected (Di et al. 2014b).

2.3.3 Boundedly rational Nash equilibria with finite players

Game theory models finite players’ strategic decisions in a conflict but cooperative

environment. Nash equilibrium is said to be achieved if no player can improve his

payoff by chaning strategies. On the other hand, Wardrop user equilibrium is reached

when no traveler can improve his travel cost by unilaterally switching routes. Therefore

Wardrop user equilibrium considers infinitesimal travelers in a non-cooperative Nash

game. Haurie and Marcotte (1985) showed that Nash equilibrium converges to Wardrop

user equilibrium when the number of players goes to infinity. However, there exist few

studies on modeling boundedly rational route choices with game theory and establishing

relationship between boundedly rational Nash equilibrium and BRUE. Therefore we

would like to examine the literature on boundedly rational game theory.

Through repeated game experiments with finite players, researchers realized that

the perfect Nash equilibrium cannot be usually obtained. To explain these anomalies,

bounded rationality is then incorporated into a non-cooperative mixed-strategy game

in the form of inaccurate perception of payoff or cost functions. McKelvey and Palfrey

(1995) assumed that game players are utility maximizers whose perception of utility

functions is subject to noise. Chen et al. (1997) argued that players only know their

subconscious utilities attached to each alternative instead of utility functions. Zhao

(1994) suggested that the cost function should be represented by a fuzzy function. The

associated equilibrium is “quantal response equilibrium” (QRE) (McKelvey and Palfrey

1995), “boundedly rational Nash equilibrium” (BRNE) (Chen et al. 1997) or “ε-

equilibrium” (Zhao 1994) respectively. In the following, we will mainly introduce the

seminal work proposed by McKelvey and Palfrey (1995).

In a finite game (M, S, U), among M = {1, · · · , N} total players, player n has a

set of pure strategies Sn =
{
s1n, · · · , sJnn

}
. Each player knows strategy sets available to

himself and to others. The probability of player n taking strategy srn is prn � pn(s
r
n) � 0,
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and
∑

sjn∈Sn

pn(s
j
n) = 1. Denote pn = {prn}r∈Jnn∈M.

Player n does not know other players’ utility functions but is aware of others’ choice

probability. Denote p−n = {prk}r∈Jkk∈M,k �=n as the conjectured mixed strategy adopted by

players other than n. (srn, p
−n) is the strategy pair where player n adopts the pure strat-

egy srn and conjectures that all other players adopt their components of p. Therefore,

the expected utility of the rth pure strategy of player n, denoted as V n
r , is a function

of the strategy pair, i.e., V r
n = V r

n (s
r
n, p

−n).

As V r
n depends on others’ choice probabilities, let V̄ r

n be the expected utility over all

possible choices of all players other than n. Assume player n’s utility for each strategy

is subject to random error and is defined as:

U r
n = V̄ r

n + ζrn, (2.3.4)

where ζn = (ζ1n, · · · , ζJnn ) is the perceived utility error vector for player n with i.i.d.

Gumbel distribution.

One example of the expected utility function V̄ r
n is to assume that it depends on the

total number of players choosing alternative r (Seim 2006), i.e.,

V̄ r
n (s

r
n, p

−n) = θXr
n(s

r
n) +Nr(p

−n), (2.3.5)

where,

Xr
n(·): a utility mapping only depending on player n’s strategy srn;

Nr: the total number of players choosing alternative r, depending on others’ choices.

Player n will take strategy r if U r
n � U j

n,∀j = 1, · · · , Jn, j �= r. The probability that

player n selects strategy r is:

prn = P (U r
n > U j

n) =
eαV̄

r
n

Jn∑
j=1

eαV̄
j
n

, j �= r,

where α is the scale parameter for ζrn. It also represents the rationality level of each

player. When varying α from zero to infinity, the player’s choice behavior varies from

“placing equal probability over all alternatives” to “fully rational utility maximization”.

Every player has the same equilibrium conjecture of others’ path choices, i.e., pn =

pk = p∗. Therefore a statistical version of Nash equilibrium can be then defined as

follows:
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Definition 2.3.1. In a finite game (M, S, U), a quantal response equilibrium (QRE)

is any π = (π1, · · · , πJn) ∈ S such that ∀n ∈ M, 1 � r � Jn,

π∗(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
π ∈ S : πr

n =
eαV̄

r
n (π)

Jn∑
j=1

eαV̄
j
n (π)

,∀n, r

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.3.6)

McKelvey and Palfrey (1995) showed that QRE exists but is generally non-unique.

However, it is unique when α is restricted to be sufficiently small. As α goes to in-

finity, there always exists one subsequence of π∗(α) which converges to a unique Nash

equilibrium.

Chen et al. (1997) argued that the mathematical interpretations of choice behavior

by introducing noise into the utility function cannot manifest human being’s bounded

rationality. Accordingly, a boundedly rational Nash equilibrium model (BRNE) is de-

veloped based on the assumption that the player does not know his utility function,

instead, he knows utility values associated with each alternative. This latent utility is

called “subconscious utility” and BRNE is one extension of QRE.

2.3.4 Threshold discrete choice model

Aforementioned studies mainly focus on modeling boundedly rational route choice be-

havior and parameters associated with bounded rationality are assumed to be known.

The main goal of the behavioral research is to “estimate parameters we need for fitting

theoretical models incorporating known/believed laws to particular situations where

we wish to make predictions” (Simon 1982). Therefore BR parameter estimation is a

critical component of the BR research.

The discrete choice model is a common tool to estimate parameters. Within the

framework of the discrete choice modeling, the random utility maximization model

(RUM) is adopted in modeling and predicting drivers’ route choice behavior among

a set of finite paths. Provided perception errors are Gumbel distribution, RUM can

be expressed in the form of a multinomial logit model. The logit model assumes

paths are independent of each other and has independence from irrelevant alternatives

(IIA) property. In reality, however, many paths overlap with each other and are thus

not independent. To overcome this limitation, various RUM models were proposed:
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C-logit (Cascetta et al. 1996), path-size logit (Ben-Akiva and Ramming 1998), nested

logit (Jha et al. 1998), cross-nested logit (Vovsha and Bekhor 1998), multinomial probit

(Cascetta 1989; Daganzo et al. 1977; Jotisankasa and Polak 2006) and mixed logit or

multinomial probit with logit kernel (Ben-Akiva and Bolduc 1996). However, all these

models still assume utility maximization.

Within disturbed networks, for example, real-time information becomes available

or a new traffic plan (toll, addition/removal of roads) is implemented, travelers adjust

their behavor accordingly based on previous experiences. Habit plays a critical role when

travel choices are made repeatedly. Therefore, utility maximization is unrealistic and

a threshold representing habitual choice behavior should be introduced to characterize

habit.

Stimulus-response model

Stimulus-response theory, popular in psychology, economics and biology, provides an

efficient tool of quantifying human being’s behavioral response by varying stimulus of

specific intensities. In psychology and economics, the stimulus-response studies focus on

the change in decision-makers’ preference or choice in response to the change in utilities

of alternatives. Biologists are interested in the dose-response study, which is the impact

of toxic levels on an organ or a tissue.

A large body of literature in psychology, economics and biology (Cox 1987; Krishnan

1977) indicated that the occurrence of a response depends on the intensity of a stimulus

and there exists a threshold under which no response is manifest. This threshold is

called “just noticeable difference” (Weber’s law) or “minimum perceivable difference”

(Krishnan 1977), which represents bounded rationality. If the response is discrete, such

as people’s choice or preference, several biological experiments (Clark 1933; Hemmingsen

1933) verify that no response occurs unless the logarithm of stimulus exceeds some

threshold. When the response is qualitative, such as perceived loudness/brightness

or dose quantity, Weber’s law reveals that the response intensity is proportional to the

logarithm of the stimulus. When making route choice decisions, the response is normally

discrete, so we will review stimulus and quantal response models.

Denote X as the stimulus and ε as the threshold. The threshold varies over sub-

jects and its distribution is normal with mean μ and variance σ, i.e., ε ∼ N(μ, σ).
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Then the probability of response can be calculated from the probit model (Clark 1933;

Hemmingsen 1933):

P (response) = P (log(X) > ε) =

∫ log(X)−μ
σ

−∞

1√
2π

exp

(
− t2

2

)
dt. (2.3.7)

If the distribution of the threshold follows logistic distribution with location parameter

μ and scale parameter s, then the probability of response is:

P (response) =
1

1 + exp
(
− log(X)−μ

s

) . (2.3.8)

The distribution of the threshold, including mean μ and variance σ (for probit

model), or mean μ and scale s (for logit model), can be estimated by employing the

maximum likelihood method.

Threshold mode choice model

One application of the stimulus-response theory is to study the impact of the transporta-

tion planning policy change on people’s choice behavior. Cantillo et al. (2006, 2007)

proposed discrete choice models with state dependence (due to inertias, Cantillo et al.

2006) and serial correlation (due to persistence of unobservable attributes across a se-

quence of choices, Cantillo et al. 2007). Travelers will not switch to a new mode unless

its utility is greater than that of the current mode plus a threshold, which is a function

of the difference between two experienced mode utilities.

Denote the utility of the alternative Ar as U r
nt = V r

nt(Xn, Znt, θnt) + ζrnt, where ζrnt

is the error term. The traveler n picks a choice r on day t based on a multinomial

logit model. Assume a change happens to some attribute attached to an alternative

mode on day t+ 1. Assume travelers make stable mode choice right after the change is

made. Due to inertia, the probability of switching from the current choice Ant = r to

An,t+1 = r′, r′ �= r is equivalent to:

U r′
n,t+1 − U r

n,t+1 � Ir
′r

n,t+1, (2.3.9a)

U r′
n,t+1 − U j

n,t+1 � Ir
′r

n,t+1 − Ijrn,t+1,∀j ∈ Pnt, j �= r. (2.3.9b)

where,

Ir
′r

n,t+1: the inertia variable, represented by a random utility function depending on the
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utility difference, i.e., Ir
′r

n,t+1 = γn(V (Xn, Znt, θnt), V
r
nt − V r′

nt );

γn: an unknown coefficient varies randomly among individuals;

V (·): the utility function;

Xn: individual characteristics for traveler n;

Znt: trip features for traveler n on day t;

θnt: a vector of parameter needed to be estimated;

V r
nt: the deterministic utility for the alternative r.

A multinomial logit model is formulated to calculate choice probabilities of each

alternative and transition probabilities. The maximum likelihood estimation approach

is used to estimate parameters and inertial variables. Two sets of data were collected

in Cagliari, Italy: the RP data in terms of people’s mode choices among car, bus and

train; the SP data requiring the choice between a new train service and the current

mode choice. Estimation results showed that a misspecified model without inertia and

serial correlation may lead to biases and errors when a newly implemented policy has a

substantial impact.

2.4 Boundedly rational dynamic traffic assignment

2.4.1 A unifying framework for dynamic travel choice process

Making travel decisions is a repeated learning process and three stages are usually con-

sidered during dynamic decision-making processes (illustrated in Figure (2.2)). These

stages are indicated in rectangles and enclosed in a big box with dotted borders because

they are unobservable. Individual’s socioeconomic characteristics, available information

and their route choices are indicated by solid parallelograms, representing observable

inputs or outputs. Before making decisions, travelers are assumed to have some knowl-

edge of networks from previous experiences. Salient information and new experiences

may trigger travelers’ update mechanism. Then adaptation to switch departure time,

route or mode is made based on certain learning principle, which will provide more

information to the next decision-making process. Due to the existence of habit, there

exists a threshold at each stage to capture more realistic behavior, indicated in dotted

hexagons.

Dynamical travel choices can be studied on a daily basis or within a day. According
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to different time scales, a dynamic process can be represented by a day-to-day model or

a within-day model. In this section, we will first review analytical models of day-to-day

and within-day dynamics and then introduce parameter estimation for each stage.

Departure-time
adaptation

Update  threshold

Route switch
threshold

Experience

Schedule delay
threshold

Travel time
updating

Route
adaptation

Information

Socioeconomic &
demographic traits,
Trip characteristics

Departure-time,
route, mode choices

Mode
choice

Mode switch
threshold

Figure 2.2: Boundedly rational travel learning process

One thing worth of note is that, the mode choice is indicated in a dotted box

because there does not exist literature combining departure-time and route choices with

mode choice, partly because people may not switch mode as frequently as they adjust

departure-time and route. However, we should bear in mind that a multi-modal BR

travel behavior process can be modeled within this framework. Moreover, destination

choice can be also considered in this framework especially when non-work trips are

modeled.

2.4.2 Day-to-day traffic dynamic

Day-to-day traffic dynamical systems model drivers’ route choice adjustment in re-

sponse to temporary changes of a traffic network based on previous experienced

travel costs. There are two classes of traffic dynamics in the existing literature: (1)
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deterministic user equilibrium dynamical systems (Friesz et al. 1994; He et al. 2010;

Nagurney and Zhang 1997; Smith 1979), adopting various route choice update mech-

anism, such as proportional-switch adjustment (Smith 1979), tatonnement adjusting

process (Friesz et al. 1994), dynamical projection (Nagurney and Zhang 1997) or link-

based adjustment (He et al. 2010); (2) stochastic day-to-day dynamics (Cascetta 1989;

Davis and Nihan 1993; Watling 1999), assuming drivers follow logit or probit model.

Provided certain regulation conditions, these dynamical systems converge to different

types of equilibria: the deterministic user equilibrium dynamical systems stabilizes to

user equilibrium (UE) and the stochastic day-to-day dynamics’ equilibrium is charac-

terized by a stationary distribution with stochastic user equilibrium (SUE) as its mean.

In this section, we will discuss how BR is embedded into these two types of traffic

dynamics.

Deterministic day-to-day dynamic

The adjustment processes (Friesz et al. 1994; He et al. 2010; Nagurney and Zhang 1997)

assume: on each day, the flow pattern tends to move from the current pattern f to-

wards the target pattern u, based on current day’s path costs C(f) or link costs c(x)

(Friesz et al. 1994; He et al. 2010; Nagurney and Zhang 1997). He (2010) proposed a

general framework of existing day-to-day dynamics:

ḟ = λ(u− f), (2.4.1a)

u = PrΩ(f − γC(f)), (2.4.1b)

where,

f : the path or the link flow vector;

ḟ : the path or the link flow change;

u: target flow pattern;

λ: a positive constant determining the flow changing rate;

u− f : a flow changing direction;

Ω: the feasible path or link flow set;

PrΩ(f−γC(f)): projection operator, projecting f−γC(f) onto Ω, where γ is a coefficient.

The aforementioned day-to-day dynamics mainly focus on traffic evolution from

disequilibrium to equilibrium within a fixed network. When the topology of a network
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is changed, such as a disrupted or restored network, travelers may behave differently

from when the network is stable and the existing perfectly rational day-to-day dynamics

will not work. He and Liu (2012) proposed a prediction-correction process to describe

travelers’ reaction within a disrupted network while Guo and Liu (2011) developed a

boundedly rational route choice dynamic to capture travelers’ route choices in face of a

restored network. As the dynamic proposed by Guo and Liu (2011) involves bounded

rationality, we will briefly discuss this model.

Under certain regularity assumptions (Cantarella and Cascetta 1995), the existing

perfectly rational day-to-day dynamics have an unique fixed point. Therefore they

converge to the same UE flow pattern if a network first disrupts and is then restored

to the original level. This cannot capture irreversible response to the network change

in Minnesota (Guo and Liu 2011). It was observed that, although the new bridge has

higher capacity than the collapsed one, under similar demand level and almost identical

network topology, the traffic flow across the bridge decreased significantly. Perfectly

rational day-to-day dynamics will predict the same amount of traffic flow across the

bridge. By allowing drivers’ perception errors to vary in a presumed bound, a link-based

boundedly rational day-to-day dynamic (Guo and Liu 2011) successfully explained the

flow reduction phenomenon because traffic evolves from one fixed point towards another

within the BRUE solution set.

In the link-based boundedly rational day-to-day dynamic (Guo and Liu 2011), Equa-

tion (2.4.1b) is replaced with the following:

u = PrΩbr(c(x))(x), (2.4.2)

where x is the link flow and Ωbr(c(x)) is the acceptable link flow pattern induced by x.

The acceptable set induced by path cost c(x) is defined as:

Pbr(c(x)) � {r ∈ P : Cr(f) � min
j∈Pw

Cj(f) + ε}. (2.4.3)

where f is the path flow vector.

According to (2.4.3), Pbr(c(x)) can be computed in the following steps: based on

the current link cost c(x), the path cost C(f) can be calculated for OD pair w. Find the

shortest path, the 2nd shortest path, · · · , until the pth shortest path which has the cost

difference from the shortest one less than ε, while the (p + 1)th shortest path with the
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cost difference from the shortest one greater than ε. Then these p paths are acceptable

paths.

After the acceptable path set Pbr(c(x)) is known, assign the demand to those ac-

ceptable paths for each OD pair, then Ωbr(c(x)) can be mathematically expressed as:

Ωbr(c(x)) � {x ∈ X : x = Δf ,
∑

p∈Pbr(c(x))

fw
p = dw,∀w ∈ W}. (2.4.4)

The fixed point of this dynamic is the BRUE instead of the unique UE. Therefore

the stability property of this dynamic is more difficult to address. Its stability is defined

as: the perturbation of a fixed point will make the system to converge to a fixed point

within the set. The new fixed point can be the same or different from the initial one.

Rigorous proofs of the stability property of the BR dynamic were presented in Di et al.

(2014b).

Stochastic day-to-day dynamic

The existing deterministic day-to-day dynamics mainly model path choices based on

the previous day’s experience, while the existing stochastic day-to-day dynamics have

the capability of capturing both travel time update and route adaptation illustrated in

Figure (2.2). In the following, we will first give a general expression of the stochastic

day-to-day dynamic and then present how it can be relaxed to incorporate BR at each

stage.

Denote the expected state vector of the stochastic day-to-day dynamic as

[
gt

ft

]
. Then

the expected states of a stochastic day-to-day dynamic can be defined in a compact form:[
gt

ft

]
= h

([
gt−1

ft−1

])
, (2.4.5)

where,

h(·): a nonlinear mapping which will be specified later;

gt: the perceived travel cost vector on day t;

ft: the path flow on day t.

The mapping h(·) defines a nonlinear Markov process. It is continuously differen-

tiable with respect to the state if link cost functions are continuous. If all eigenvalues
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of the Jacobian matrix of h(·) are within a unit circle (Cantarella and Cascetta 1995),

the dynamic will converge to a stationary flow distribution.

The mapping h(·) can be further specified according to two stages defined by

Cantarella and Cascetta (1995). Cantarella and Cascetta (1995) built a unifying the-

ory of both day-to-day and within-day traffic dynamics, including learning/forecasting

mechanism and users’ choice behavior. In the following, we will introduce how to define

h(·) in these two stages.

Travelers update their perceived travel costs based on a weighted average of the

previous day’s perceived travel cost and the experienced cost (Cantarella and Cascetta

1995). Mathematically,

gt = λgt−1 + (1− λ)C(ft−1), 0 < λ < 1. (2.4.6)

In reality, travelers may be salient to the travel cost difference between the previous

day’s perceived travel cost and the experienced cost if its value is within a thresh-

old. Therefore, Wu et al. (2013) revised the cost update mechanism defined in Equa-

tion (2.4.6) as follows:

gt =

⎧⎨
⎩λgt−1 + (1− λ)C(ft−1), if |gt−1 − C(ft−1)| � ε,

Ct−1, o.w.
(2.4.7)

This travel time updating along with a logit route choice model is applied to model

travelers’ day-to-day evolution within urban railway networks and this updating model

better captures the day-to-day dynamic (Wu et al. 2013). Due to boundedly rational

cost updating, this dynamic is not continuously differentiable with respect to its state

any more. Its convergence and stability properties, unaddressed by Wu et al. (2013),

are more challenging to identify and remain unanswered.

For users’ choice behavioral modeling, the expected path choice dynamic can be

defined as a logit model ft = dP (gt), where P (·) is a logit probability. More generally

(Cantarella and Cascetta 1995),

ft = P (gt−1, C(ft−1))ft−1, (2.4.8)

where P (·) is a transition probability matrix, depending on previous day’s perceived

and actual costs.



33

The transition matrix P (·) can be further decomposed into two parts

(Cantarella and Cascetta 1995): reconsidering previous day’s choice and choosing to-

day’s path. Then the probability of choosing a path is the probability of reconsidering

the previous day’s choice (switching choice) times the conditional probability of choosing

that path given that the previous day’s choice is reconsidered (path choice). BR can be

embedded into calculating both switching choice and path choice. The representation

of BR in these two choices along with the methodology of estimating parameters will

be introduced in Section (2.4.5).

2.4.3 Within-day traffic dynamic

Dynamic traffic assignment (DTA) models traveler’s temporal travel choice change.

Peeta and Ziliaskopoulos (2001) classified existing dynamic traffic assignment models

into four methodological groups: discrete-time mathematical programming, continuous-

time optimal control, variational inequality and simulation-based. To the best of our

knowledge, bounded rationality has been only embedded into the third and the forth

categories in existing literature, which will be explained in the following.

Variational inequality

Szeto and Lo (2006) indicated that a DTA model with a physical queue paradigm may

not even converge. To solve this anomaly, a tolerance-based principle is proposed that a

route carrying flow at a time interval has a travel cost which is less than an acceptable

tolerance from the shortest travel cost.

Based on this principle, a nonlinear complementarity problem was formulated and

a heuristic day-to-day route-swapping algorithm was developed to solve dynamic user

optimal (DUO). To analyze the existence and uniqueness of the solution, a theoretical

gap was defined as the minimum of the largest difference between the travel times of all

used routes and the shortest OD travel times. DUO exists if and only if the theoretical

gap falls within the acceptable tolerance. Therefore, existence of the dynamic equilib-

rium depends on both network topology and route swapping behavior. Furthermore,

there exist multiple dynamical equilibria.
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Simulation

Various DTA simulators, such as DYNASMART (Jayakrishnan et al. 1994a), DynaMIT

(Ben-Akiva et al. 1997) and RouteSim (Ziliaskopoulos and Waller 2000), are employed

to compute dynamic user equilibrium (DUE). Simulation cannot obtain analytical prop-

erties of DUE but it satisfies FIFO (First In First Out) and circumvents holding-back of

vehicles. DTA simulators usually include three components (Cantarella and Cascetta

1995): demand/supply model, learning/forecasting mechanism and choice behavior.

BR principle can be introduced into learning/forecasting mechanism and choice mod-

els, which will be discussed in detail in Section (2.4.5).

2.4.4 Boundedly rational dynamical game with finite players

In Section 2.3.3, a game-theoretical approach is introduced to model boundedly rational

decisions. When the game is played repeatedly, Chen et al. (1997) proposed a boundedly

rational dynamical game and established the connection between static and dynamic

game. Supposing that the subconscious utility a player has depends on that player’s

beliefs about others’ strategies, when the player repeatedly play the game, this belief

can be obtained by the observed choices of other players in the past. So a dynamical

adjustment process using fictitious play is modeled where each player plays the game

based on others’ historic strategies.

Assume N players start with an arbitrary mixed strategy and then adjust their

strategies over time based on the observed play. The empirical distribution of player n

is P̄nt = (P̄ 1
nt, · · · , P̄ Jn

nt ), which can be calculated as:

P̄nt =
1

t

t−1∑
τ=0

p̂nτ . (2.4.9)

where p̂nτ is the actual choice probability of player n at time τ .

The subjective utilities are calculated based on empirical distributions prior to taking

action. Travelers are myopic when making choice adjustment. It is shown that both

players’ beliefs about others’ strategies and actual choices converge in probability to a

boundedly rational Nash equilibrium (BRNE).
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2.4.5 Boundedly rational learning behavior estimation

In this section, we will discuss how BR is embedded into travel time updating and choice

adaptation stages and how the BR parameters are estimated from observed choices.

In the repeated learning process illustrated in Figure (2.2), as a result of

habit, commuters will not update their travel time perception if the perceived

one minus the predicted one is within a threshold. Moreover, they will not

adjust their departure time unless the difference between the preferred arrival

time and the actual arrival time exceeds a bound (Chen and Mahmassani 2004;

Hu and Mahmassani 1997; Jayakrishnan et al. 1994a; Mahmassani and Chang

1987; Mahmassani and Jayakrishnan 1991; Mahmassani and Liu 1999;

Srinivasan and Mahmassani 1999; Yanmaz-Tuzel and Ozbay 2009). This bound

for lateness and earliness are different and people are usually more sensitive to lateness.

In addition, commuters will not switch routes if the difference between perceived travel

time and experienced one exceeds a bound (Akiva 1994).

Travel time perception updating

Jha et al. (1998) assumed that individuals update their travel time whenever new traf-

fic information is obtained or new travel time is perceived. This assumption is un-

reasonable due to the existence of updating costs. Chen and Mahmassani (2004) and

Jotisankasa and Polak (2006) proposed that only salient information impacts travelers.

Travelers do not update travel time if the difference between the perceived travel time

Ĉnt and the experienced travel time Cnt exceeds some threshold. Let ytime
nt denote a

travel time update indicator for traveler n at the end of day t, which equals to 1 if

traveler n updates travel time after day t, and 0 otherwise:

ytime
nt =

⎧⎨
⎩0, if Ĉnt − Cnt � εtime,o

nt , Cnt − Ĉnt � εtime,u
nt ,

1, o.w.
(2.4.10)

where εtime,o
nt , εtime,u

nt denote travel time overestimation and underestimation thresholds

for user n on day t respectively. If εtime
nt is treated as a fraction instead of an absolute

value, then travel time updating only happens if |Ĉnt − Cnt| � εtime
nt Ĉnt. In this case,

overestimation and underestimation share the same fractional threshold.
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If travel time is random, Chen and Mahmassani (2004) proposed another updating

mechanism that a traveler would not update travel time perception until his confidence

in all path travel times was below a desired level, i.e., αr
nt � 1

σnC̄r
nt
, r ∈ P, where αr

nt is

traveler’s confidence in path r’s travel time, σn is the variance of the perceived travel

time over a segment of unit travel time, and C̄r
nt is the mean perceived travel time of

path r.

Overestimation and underestimation thresholds are random variables depending on

individual characteristics and trip features. Therefore they can be expressed as:

εtime,o
nt = V time

o (Xn, Znt, θnt) + ζtime,o
nt , (2.4.11a)

εtime,u
nt = V time

u (Xn, Znt, θnt) + ζtime,u
nt . (2.4.11b)

where,

V time
o (·), V time

u (·): deterministic utility functions for overestimation and underestima-

tion;

Xn: individual characteristics for traveler n;

Znt: trip features for traveler n on day t;

θnt: parameters for traveler n on day t;

ζnt: error terms for traveler n on day t, is either ζont or ζ
u
nt.

The probability of updating can be calculated by a multinomial logit or a multino-

mial probit model. If the traveler decides to update travel time, there are three classes of

models in travel time updating: weighted average (Nakayama et al. 2001), adaptive ex-

pectation (Nakayama et al. 2001) and Bayesian (Jha et al. 1998; Jotisankasa and Polak

2006). If myopic factor is considered, updating is reduced to Ĉnt = Cn,t−1, i.e., the

perceived travel time on day t is equal to the experienced travel time on day t− 1.

Departure-time and route choice adaptation

After travel time is updated, drivers adjust their departure-time and route choices

based on certain rules. There are two classes of research on modeling choice adap-

tation: the first one is based on utility maximization (Chen and Mahmassani 2004;

Jotisankasa and Polak 2006) and the second one is based on bounded rationality. We

will only focus on boundedly rational departure-time and route choice adaptation.
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To study the impact of advanced travel information on people’s behavior, Mah-

massani and his colleagues conducted a series of experiments and showed that people

were boundedly rational when choosing routes repeatedly with information. These ex-

periments were run on an interactive simulator-DYNASMART, incorporating pre-trip

departure time, route choices and en-route path switching decisions. Subjects, as trav-

elers, picked departure time pre-trip based on the previous days’ travel experiences and

chose paths en-route at each node based on available information.

Let ydepnt denote a departure time switching indicator for traveler n on day t, which

equals to 1 if traveler n switches departure time on day t+1, and 0 otherwise. Traveler

n will not adjust his departure time unless the schedule delay (i.e., preferred arrival time

minus actual arrival time) exceeds some threshold. Early and late arrivals have distinct

indifference bands, denoted as εdep,ent , εdep,lnt respectively, representing tolerable schedule

delay. Then,

ydepnt =

⎧⎨
⎩0, if T ∗

nt − Tnt � εdep,ent , Tnt − T ∗
nt � εdep,lnt

1, o.w..
(2.4.12)

where T ∗
nt, Tnt denote preferred arrival time and actual arrival time for traveler n on

day t respectively.

Similarly, let yroutenjt denote a route switching indicator for traveler n at the interme-

diate junction node j on day t, which equals to 1 if traveler n switches his initial route

or route en-route at node j after day t, and 0 otherwise. Travelers do not change pre-

trip route or path en-route unless the trip time saving (the difference between predicted

travel time of the current path and that of the best path from this node to destination)

remains within his route indifference band:

yroutenjt =

⎧⎨
⎩0, if Cnjt − Cb

njt � εroutenjt Cnjt,

1, o.w.
(2.4.13)

where,

Cnjt, C
b
njt: the trip times of the chosen and the best path for traveler n from node j to

destination on day t respectively;

εroutenjt : the relative indifference band, as a fraction of Cnjt.

The aforementioned indifference bands vary among the population over time and

thus are random. They are influenced by individual characteristics (e.g., age, gender,
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myopia) and real-time information.

When travel time is assumed to be random, Yanmaz-Tuzel and Ozbay (2009) ap-

plied another learning mechanism, stochastic learning automata (SLA), to study drivers’

departure-time choice adaptation in response to a toll change on New Jersey Turnpike

(NJTPK). Travelers have three options to depart for work: pre-peak, peak and post-

peak. Each driver’s departure time choice is assumed to be automated by a stochastic

learning automaton which generates a sequence of actions based on drivers’ past expe-

riences and interactions with the environment. The driver will not update his or her

departure time if the experienced utility falls within a confidence interval from that of

the desired arrival time. Then the transition probability of the departure-time choice is

updated based on a linear reward-penalty reinforcement learning scheme. Learning pa-

rameters introduced in the reinforcement scheme are estimated from drivers’ departure

time choices observed from NJTPK toll data. This model successfully mimics NJTPK

users’ day-to-day travel behavior.

Estimation of departure-time and route choices

There are two schemes of estimating departure time and route choices under real-time

information: joint estimation based on joint probability and hierarchical estimation

based on conditional probability.

When estimating joint decisions of departure time and routes under real-time in-

formation, ydepnt and yroutenjt are assumed to follow a multivariate normal distribution.

Then the probability of switching both departure time and route is computed by a

multinomial probit model.

Departure-time and route choices can be also estimated by a hierarchical model

(Jha et al. 1998): the probability of selecting departure interval i and path j on day

t by individual n is based on a conditional probability instead of a joint probability:

P i,j
nt = P i

nt×P
j|i
nt , where, P

i
nt is the probability of selecting departure interval i and P

j|i
nt is

the conditional probability of selecting route j given the traveler n has selected departure

interval i. These two probabilities can be calculated by logit models respectively.

Given specifications for utility functions V (·), repeated observations of departure

time and route switching decisions made by N Commuters over T days can be modeled

as a multinomial logit or a multinomial probit function. The maximum likelihood
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estimation is adopted to estimate parameters in utility functions.

2.5 Boundedly rational cognitive process

In static traffic assignment, the traditional ‘perfect rationality’(PR) route choice

paradigm (Wardrop 1952) makes three assumptions regarding human being’s cognitive

processes:

• Each traveler is able to enumerate all alternative paths connecting his origin-

destination pair in a transportation network;

• Each traveler has access to information of all path costs;

• Each traveler is capable of picking the one with the least disutility.

The above assumptions are too restrictive in reality. First of all, due to the large size

of available paths in real traffic networks and people’s limited computational ability, it

is impossible to identify all feasible paths connecting each origin-destination pair. Sec-

ondly, accessing information of all paths is unrealistic due to the following reasons: (a)

No information provider can offer all path costs; (b) The costly information acquisition

process prevents travelers from obtaining all information. In addition, there are many

factors affecting path costs, such as travel time, travel distance, the number of traffic

lights and turns, weather, scenery, and so on. Some of these factors cannot be directly

measured from the field or are difficult to measure; (c) Human beings have limited cog-

nitive capabilities and are unable to discern two alternatives with similar utilities, not

mentioning finding the best routes in their minds.

In summary, a complicated cognitive process is involved in route choice. Though

previous two categories of BR models can describe static and dynamic boundedly ratio-

nal route choice behavior, the cognitive process leading to such behavior has not been

fully explored.

2.5.1 A unifying framework for boundedly rational cognitive processes

Figure (2.3) summarizes four types of cognitive processes (mental map formation, route

generation, information acquisition and alternative comparison) before making route
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choices. These cognitive processes are indicated in rectangles and enclosed in a big

box with dotted borders because they are unobservable. Individual’s socioeconomic

characteristics, available information and their route choices are indicated by solid par-

allelograms, representing observable inputs or outputs. Bounded rationality thresholds

can be embedded into each process, represented by dotted hexagons. In this section,

we will review how BR is modeled and estimated within each cognitive process.

Utility

Risk attitudesPerceptions

Indifference
relation

Preference

Cognitive threshold

K-shortest path

Cognitive cost

Mental Map

Route generation

Information
acquisition

Information

Route choice

Socioeconomic &
demographic traits,
Trip characteristics

Alternatives
comparison

Figure 2.3: Boundedly rational cognitive processes with random utility

2.5.2 Boundedly rational network recognition and route generation

The route choice behavior process can be decomposed into three stages

(Hato and Asakura 2000; Hiraoka et al. 2002; Ridwan 2004): network recognition; alter-

native generation and elimination; behavior decision. Bounded rationality is introduced

into the first two stages. The model proposed by Hato and Asakura (2000) will be
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mainly discussed.

At the first stage, each traveler has a perception value for each link. Perception value,

denoted as Cogijn for link ij, is a random variable depending on individual characteristics

and link attributes. A link cannot be recognized unless its perception value exceeds a

threshold εn. Mathematically, link ij can be recognized if P (Cogijn > εn) > 0.5. A logit

model can be used to identify the mental map in a traveler’s mind.

At the second stage, routes are generated from the mental map based on some

path generation algorithm, such as K-shortest path, labeling approach (Ben-Akiva et al.

1984), parametric least-generalized cost path algorithm (Mahmassani et al. 2005), dou-

bly stochastic choice set generation (Bovy and Fiorenzo-Catalano 2007) or pareto paths

generation (Wang et al. 2009). K-shortest path algorithm, widely used in path set gen-

eration, searches for the first K paths with the least path costs. This algorithm relaxes

the requirement of obtaining the shortest paths and reduces computational burdens,

which reflects the BR principle.

Given a path set, travelers extract attributes of each generated path. Each path has

many attributes, but only partial attributes are evaluated. Assume each path attribute

is attached with a reference value εk, which is a random error with i.i.d. Gumbel

distribution. For example, the distance of the alternative path should be within 1.33

times the shortest distance and the number of left or right turns cannot exceed 5 times.

Then those inferior paths are eliminated if the probability of one attribute V r
k of path

r exceeding εk, i.e., P (V r
k > εk) > 0.5.

At the third stage, based on the extracted routes, the utility theory

(Hato and Asakura 2000) or the inductive rule-based theory (Ridwan 2004) is assumed

for route choice behavior and traffic assignment is conducted. Hato and Asakura (2000)

showed that the chosen routes estimated by the BR model matched the stated preference

survey better than the model with full network.

2.5.3 Path information search

When the BR principle is used to model travelers’ route choice behavior, some re-

searchers argued that travelers do not take the shortest paths because they are not

capable of perceiving actual travel costs due to limited cognitive capacities, or it is too

costly to search information over all alternative paths (Gao et al. 2011). Therefore,
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Gao et al. (2011) proposed a cognitive cost model to capture people’s route choices in

complex contexts with costly information acquisition.

In cognitive cost model, the path travel time is assumed to be random. Before

searching, travelers only know the mean and the variance. If they decide to search

information, travelers will know the exact travel time of the searched path; however,

search consumes cognitive cost. Therefore search action is the trade-off between travel

benefit and cognitive cost. Accordingly, the probability of choosing path r given a choice

set Pn for traveler n is mainly composed of two parts:

P (r|Pn) = P (r|Pn,no search)P (no search) + P (r|Pn, search). (2.5.1)

If traveler n decides to search information, the probability of choosing path r given

a choice set Pn is further decomposed into the sum of three parts:

P (r|Pn, search) =
∑
s

T s
n∑

t=1

P (r|t,Pn,H
s
n)P (t|Hs

n)P (Hs
n), (2.5.2)

where,

P (Hs
n): the probability of individual n belonging to search class s;

P (t|Hs
n): the probability of searching path information till stage t given class Hs

n;

P (r|t,Pn,H
s
n): the probability of choosing path r given information is searched till stage

t. Logit models are used to calculate all three probabilities.

In the following, we will mainly introduce the methodology of computing P (t|Hs
n),

because it involves cognitive process modeling. To reflect that a traveler chooses a

satisfying route due to information availability, cognitive constraints and time limit,

Gao et al. (2011) adapted a directed cognition model (Gabaix et al. 2006) proposed in

economics.

Let μrs
nt, σ

rs
nt be mean and standard deviation of path travel cost r for individual n

from class s at stage t respectively. They are random variables at stage t when search

is conducted till t − 1. At stage t, traveler n decides to continue search or stop. To

compute P (t|Hs
n), the utilities associated with these two actions are defined as:

V (go at t|Hs
n) = θscost + θsbenefitB

s
nt(go),

V (stop at t|Hs
n) = θsbenefitB

s
nt(stop),
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where,

Bs
nt(go): the expected maximum benefit of searching at stage t, computed in Equa-

tion (2.5.4a);

Bs
nt(stop): the benefit of stopping search at stage t, computed in Equation (2.5.4b);

θscost, θ
s
benefit: cost and benefit coefficients, which need to be estimated.

If search stops at stage t, there is no search cost and thus V (stop at t|Hs
n) does not

contain the term θscost. On the other hand, when search is conducted, a higher benefit

will be obtained. Bs
nt(go) and Bs

nt(stop) are defined as follows:

Bs
nt(go) =

∫
μrs
nt,σ

rs
nt

ln
∑
r∈Pn

exp [V rs
nt (μ

rs
nt, σ

rs
nt)] f(μ

rs
nt, σ

rs
nt)dμ

rs
ntdσ

rs
nt, (2.5.4a)

Bs
nt(stop) = ln

∑
r∈Pn

exp
(
V rs
n,t−1

)
, (2.5.4b)

where,

V rs
nt (μ

rs
nt, σ

rs
nt): the utility of choosing path r for individual n from class s at stage t,

which is a linear function of travel time’s mean and standard deviation;

f(μrs
nt, σ

rs
nt): the joint distribution of path travel time means and standard deviations

given the search operation.

Gao et al. (2011) estimated route choice parameters from simulated revealed pref-

erence data among three alternative routes from home to workplace. The estimation

results showed that a model with information acquisition gave more accurate parameter

estimates than those without.

2.5.4 Minimum perceivable difference model

Most discrete choice models assume implicitly the existence of a preferable ordering over

alternatives even if the difference in utilities is negligible. Psychological experiments

(Guilford 1954) showed that people may be indifferent to two alternatives with similar

utilities.

Ridwan (2004) defined three fuzzy preference relations for two alternatives: strict

preference; indifference; incomparability. A fuzzy choice function was proposed cap-

turing the fuzziness feature of choices to calculate their rankings. Krishnan (1977)

proposed a minimum perceivable difference (MPD) model describing travelers’ mode
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choices among two alternatives with two relations: strict preference and indifference.

Denote Ui as the utility of alternative Ai, i = 1, 2. It can be expressed as the sum of a

deterministic component Vi and a random component ei: Ui = Vi + ei. Denote ε as an

indifference threshold. The ordering over two alternatives and its associated probability

can be defined as follows:

1. A1 � A2 if U1 > U2 + ε, A1 will be chosen with probability 1;

2. A2 � A1 if U2 > U1 + ε, A2 will be chosen with probability 1;

3. A1 ∼ A2 if |U1 − U2| � ε, A1 and A2 will be chosen with probability θ and 1− θ

respectively.

Denote the probability of preferring A1 and A2 as π1 and π2 respectively, and the

probability of being indifferent to A1 and A2 by π12. Given the distribution of e1 and

e2, the above preferring probability can be computed based on utility maximization.

The probabilities of choosing A1 and A2 are:

P (A1) = π1 + θπ12,

P (A2) = π2 + (1− θ)π12.

where θ is the probability of choosing A1 given A1 and A2 have the indifference relation.

Given choices made by N individuals, the likelihood function is: L =∏N
n=1 P (A

(n)
1 )P (A

(n)
2 ). The maximum likelihood method is used to estimate param-

eters as follows:

min − log(L)

s.t. ε � 0, (2.5.5a)

0 � θ � 1. (2.5.5b)

The estimated threshold ε is the by-product of the above program. The shortcoming of

the model is that only two alternatives are considered and it becomes complicated or

impossible to implement when multiple alternatives are involved.



Chapter 3

Empirical analysis of boundedly

rational route choice behavior

3.1 Introduction

The I-35W Mississippi River bridge plays a critical role in transporting commuters to

downtown Minneapolis and the University of Minnesota. Its collapse in 2007 forced

140, 000 daily users (Guo and Liu 2011; Zhu et al. 2010) to switch to other parallel

bridges or to cancel their trips. Accordingly, the I-94 Bridge was restriped with one

more lane to relieve traffic pressure across the river. A year later, a replacement I-35W

bridge was rebuilt over the same location and the extra lanes on I-94 were closed. The

addition of the bridge offered commuters another option to cross the river. Surprisingly,

only 100, 000 daily trips on average were observed on the new bridge (He and Liu 2012;

Zhu 2011). According to Zhu (2011), the total travel demand in the Minneapolis-St.

Paul metropolitan area dropped slightly in 2008 due to the economic crisis, but not

enough to explain this fall-off. In contrast, daily trips on the I-94 Bridge returned

to the original level before the I-35W bridge collapsed. Therefore, we assume that

variation in travel demands is not the main reason for the significant traffic reduction

on the replacement bridge.

To further understand the aforementioned phenomenon, two major GPS-based stud-

ies, including 143 commuters whose route choices might be affected by the addition of

the new link were conducted (Carrion and Levinson 2012; Zhu 2011; Zhu and Levinson

45
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2012). These commuters’ trips were tracked by GPS two to three weeks before and

eight to ten weeks after the reopening of the new I-35W bridge. Each commuter’s day-

to-day commuting routes and associated travel time could be drawn from GPS data.

By comparing route choices before and after the new bridge was rebuilt, it is posited

that commuters’ “stickiness of driving habit” Zhu (2011) prevented them from taking

the new bridge and thus resulted in a traffic flow drop on the new bridge. There may

also be perception errors at work. Moreover, Zhu (2011) further calculated travel time

differences between the routes actually taken and the shortest time routes from GPS

data. Fewer than 40% of commuters took the shortest paths, though 90% of subjects

took routes which were within 5 minutes of the shortest paths and almost no commuter

chose a route 20 minutes longer than the shortest path.

Utilizing the same GPS dataset, Carrion and Levinson (2012) modeled the time a

commuter consistently left his current bridge choice for other alternative bridges and

found that commuters chose routes based on a specific threshold and might abandon

a route if its travel time exceeded the margin. This threshold depended on the social-

demographics of subjects and varied day-to-day.

Previous studies focused on estimating indifference bands from laboratory experi-

ment data. For example, Mahmassani and Chang (1987) estimated indifference bands

by utilizing laboratory experiment data. By comparing commuter departure time and

route choice switch behavior in laboratory experiments with field surveys in Dallas and

Austin, Texas, Mahmassani and Jou (2000) showed that boundedly rational route choice

modeling observed from experiments provided a valid description of actual commuter

daily behavior. However, whether laboratory experimental experiences can represent

actual commuter daily behavior still remains unclear.

Other studies incorporated given values of the thresholds into their route choice

models, such as 20% of the mean travel time or 0.5 times the mean travel time

of certain previous trips (Carrion and Levinson 2012; Yanmaz-Tuzel and Ozbay 2009;

Zhu and Levinson 2012). These thresholds were obtained from experience or assump-

tions and served as inputs of specific route choice behavior models. Therefore the

adoption of a given value may not be valid.

People do not choose routes irrationally. Yet, the empirical evidence argues that

travelers do not always select the shortest travel time paths, but the chosen routes are
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within some threshold from the shortest ones. This chapter examines the phenomenon of

boundedly rational route choice behavior with GPS travel data collected in Minneapolis

in 2008 (Carrion and Levinson 2012; Zhu 2011; Zhu and Levinson 2012). The disruption

and the rebuilding of the I-35W bridge in Minneapolis provides us a rare opportunity

to use GPS travel survey data to study route choices in response to the change in

road network’s topology. This study offers the first empirical estimation of bounded

rationality parameters from GPS data.

The rest of the chapter is organized as follows: The next Section focuses on the

theoretical background of route choice. In Section 3.3, we discuss the details of the

GPS data and present two categories of commuters of interest. Trip distribution among

bridges over the Mississippi River is also presented. In Section 3.4, travel time saving by

taking the new I-35W bridge is calculated based on a speed map pooled from GPS com-

muting trips. In Section 3.5, the boundedly rational route choice model is presented and

we will show that subjects who used the old I-35W bridge display different behavioral

patterns compared to those who never used the old bridge. Accordingly, in Section 3.6,

indifference bands for old-users and non-users are estimated separately using GPS travel

survey data.

3.2 Theoretical Background

3.2.1 Boundedly rational route choice behavior

In practice, most transportation planning software packages employ route choice algo-

rithms based on Wardrop’s first principle Wardrop (1952) that people take the shortest

path(s) when traffic assignment is performed. In the academic literature, route choice

is often considered within the framework of random utility maximization (RUM), each

driver is assumed to take the route with the maximum utility among a set of finite paths.

Each path is attached with several attributes, including travel time, distance, overlap

with other paths, reliability, the number of traffic lights and turns, weather, scenery and

so on. Provided perception errors are Gumbel or normal distribution, stochastic user

equilibrium model can be expressed in the form of a multinomial logit or probit model.

One critique of both Wardrop’s first principle and RUM is the assumption that

people are “utility maximizers” (where utility is either travel time (Wardrop) or a bundle
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of factors including travel time (RUM)). Alternative hypotheses that are empirically

based posit that people actually make decisions by strategies (Simon 1982), heuristics

(Conlisk 1996), elimination by aspects (Tversky 1972), norms (Conlisk 1996) and/or

rules (Nakayama et al. 2001; Lotan 1997), rather than solving an optimization.

Therefore people do not always choose the alternative with the maximum utility.

Evidence from revealed route choice behavior finds after evaluating habitual routes,

only 59% of respondents from Cambridge, Massachusetts (Bekhor et al. 2006), 30% from

Boston (Ramming 2001), and 86.8% from Turin, Italy (Prato and Bekhor 2006) chose

paths with the shortest distance or shortest travel time. According to GPS studies, 90%

of subjects in the Minneapolis-St. Paul region took paths one-fifth longer than average

commute time (Zhu 2011) and a high percentage of commuting routes were found to

differ considerably from the shortest paths in Nagoya, Japan (Morikawa et al. 2005) and

Lexington, Kentucky (Jan et al. 2000). All findings above revealed that people do not

usually take the shortest paths and the utilized paths generally have higher costs than

shortest ones.

To relax the unrealistic assumption that only the shortest paths are used, several

route choice behavior models were proposed (Zhang 2011). This chapter examines one

alternative of the existing route choice behavior theories, i.e., bounded rationality. It

says that people do not always select the shortest paths, but the chosen routes are

within some threshold from the shortest ones.

As opposed to ‘rationality as optimization’, Herbert Simon, in 1957, proposed that

people are boundedly rational in their decision-making processes (Simon 1957). This is

either because people lack accurate information, or they are incapable of obtaining an

optimized decision due to complexity of the situation. They tend to seek a satisfactory

choice solution instead. Since then, bounded rationality has been studied extensively in

economics and psychology. Bounded rationality in decision-making may also result from

habit and inertia. People “place higher value on an opportunity if it is associated with

the status quo” (Samuelson and Zeckhauser 1988), because it can provide significant

energy saving to cognitive thinking. A large amount of empirical evidence finds that

habit plays a significant role in behavior in stable situations (Bamberg and Schmidt

2003).
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In travel behavior study, a series of experiments was conducted in the 1990s to em-

pirically validate bounded rationality (Hu and Mahmassani 1997; Jayakrishnan et al.

1994a; Mahmassani and Chang 1987; Mahmassani and Jayakrishnan 1991;

Mahmassani and Liu 1999; Srinivasan and Mahmassani 1999). These experiments

were run on an interactive simulator – DYNASMART, incorporating pre-trip

departure time, route choices and en-route path switching decisions. Subjects,

as travelers, picked departure time pre-trip based on previous days’ travel ex-

periences and chose paths en-route at each node based on available informa-

tion. The experimental results showed that, in the repeated learning process,

as a result of habit, commuters would not adjust their departure time unless

the difference between preferred arrival time and actual arrival time exceeded a

bound (Chen and Mahmassani 2004; Hu and Mahmassani 1997; Jayakrishnan et al.

1994a; Mahmassani and Chang 1987; Mahmassani and Jayakrishnan 1991;

Mahmassani and Liu 1999; Srinivasan and Mahmassani 1999). This bound for

lateness and earliness differed and people were usually more sensitive to lateness.

Bounded rationality was also found in mode choices. Cantillo et al. (2006, 2007)

indicated that there existed a threshold when the impact of the transportation planning

policy change was evaluated on choice behavior. Travelers would not switch to a new

mode unless its utility was greater than that of the current mode plus a threshold, which

was a function of the difference between two experienced mode utilities. Then a discrete

choice model with thresholds was applied to simulated SP/RP datasets to estimate and

predict mode choice. The prediction results showed that a model without considering

inertia overestimated benefits of transport investments substantially.

3.2.2 Threshold stimulus-response models

The existence of a threshold in choice behavior has also long been explored in other

fields and the model describing this behavior is called “threshold stimulus-response”

model. The stimulus-response model, popular in biology, psychology and economics,

provides an efficient method of quantifying behavioral response by varying stimulus of

specific intensities.

Biologists are interested in dose-response, which explores the impact of toxic levels

on an organ or a tissue. In psychology and economics, stimulus-response studies focus
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on the change in decision-makers’ preferences or choices in response to the change in

utilities of alternatives. The occurrence of a response depended on the intensity of a

stimulus and there existed a threshold under which no response was manifest (Cox 1987;

Krishnan 1977). This threshold was named “just noticeable difference” by Weber or

“minimum perceivable difference” by Krishnan (1977).

When the response is qualitative, such as dose quantity, Weber’s law revealed that

the response intensity is proportional to the logarithm of the stimulus. If the response

is discrete, such as choices or preferences, several biological experiments (Clark 1933;

Hemmingsen 1933) verified that no response occurred unless the logarithm of stimulus

exceeded some threshold. Several models, such as the threshold dose-response models

(Cox 1987), minimum perceivable difference model (Krishnan 1977), and biological pro-

bit or logit model (Krishnan 1977), were proposed to estimate the threshold. These

models will be briefly discussed subsequently.

• Dose-response models (Cox 1987) assumed that the probability of response is zero

if the amount of dosage is below a threshold parameter and follows logit or probit

model if it is more than the threshold. Cox (1987) showed that the threshold

model fit data better than traditional logit or probit model.

• The minimum perceivable difference model (Krishnan 1977) assumed indifference

between two alternatives if the difference of their values falls within a threshold.

Therefore, a third relation (i.e., indifference) other than ‘greater than’ or ‘less than’

was introduced. The threshold parameter was estimated via maximum likelihood

method.

• In the biological probit or logit model (Krishnan 1977), the threshold is assumed

to be a random variable with normal or logistic distribution and therefore a probit

or a logit regression can be used to estimate distribution related parameters. The

biological probit model was shown to predict responses more accurately than the

logit model.

This chapter employs threshold stimulus-response framework to model route choice

behavior and estimate associated thresholds.
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3.3 Route choice observations

GPS studies (Zhu 2011) provide the following data for 143 subjects:

• Each subject’s home and work locations;

• Each subject’s day-to-day commuting routes;

• Each subject’s day-to-day travel time.

Most subjects use more than one path and switch routes from time to time. There-

fore we define a “commonly chosen route” as the route a commuter uses most frequently

during the study period. The commonly chosen route from the beginning of the study

period up to September 18, 2008 (the day when the replacement I-35W bridge was

opened) is the “before-route”, and the one from September 18, 2008 until the end of

the study is the “after-route”.

Remark. 1. The same routes are defined as the ones which overlap at least 95% in

length and start within a 600 m (approximately 4 city blocks) radius from home

and end in a 600 m radius from the work location.

2. For each commuter, his or her experienced travel time on a path varies from day

to day due to uncertainty in traffic conditions. Therefore “average travel time”

on a before-route or on an after-route for a commuter is computed as the mean of

day-to-day GPS measured travel time on that route when he or she uses it.

3.3.1 Subject classification

A “crosser” is the commuter whose home and work locations are on different sides of

the river. Specifically, a crosser’s commuting route options may be enlarged by the

addition of the new bridge. Otherwise the subject is a “non-crosser”. In general a non-

crosser’s route options are not enlarged by the existence of the new bridge. (Note: some

individuals, nominally non-crossers, but in fact “double-crossers”, may have crossed the

river twice on certain routes from home to work, those individuals have been removed

from the analysis, as the sample size was too small. (“Triple-crossers” etc. were not

observed.))
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The addition of the new bridge may or may not save crossers’ average travel time.

Denote C
(n)
b , C

(n)
a as average travel times experienced by commuter n before and after

the reopening of the new bridge. When the average travel time on the after-route minus

that on the before-route is less than zero, i.e., C
(n)
a −C

(n)
b < 0, we say that the addition

of the new bridge saves commuter n’s travel time, or else it does not.

Table (3.1) shows the number of crossers and non-crossers. The “Change” column

refers to those commuters who change their routes after the addition of the bridge,

i.e., their before-routes and after-routes are different. Or else they belong to the “No

change” column. The “Save time” row refers to those whose average travel time on

after-routes is shorter than that on before-routes.

Table 3.1: Statistics of crossers and non-crossers

Type
Change No

change

Total (ex-

cluding

missing

data)

Subjects

with in-

complete

observa-

tions

Total (in-

cluding

missing

data)

C1 C2 C3=C1+C2 C4 C5=C3+C4

Non-crosser
Save

time

5 16 21
0 30

Save no

time

0 9 9

Crosser
Save

time

47 31 78
19 113

Save no

time

2 14 16

Total 54 70 124 19 143

Remark. There are 19 crossers whose route choice observations before the addition

of the bridge were missing, therefore they are classified as “Subjects with incomplete

observations” in column C4.
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When the addition of the new bridge saves crossers’ commuting time, a crosser

chooses either to change to the new bridge or not. Thus we further divide those crossers

into the following two categories:

• A “Switcher” is a crosser who switches to the new I-35W bridge as his or her

after-route given his or her travel time can be shortened by the new bridge;

• A “Stayer” is a crosser whose travel time can be improved by the new bridge but

stays on his or her before-route, i.e., the before-route and the after-route are the

same.

Figure (3.1) illustrates examples of a non-crosser, a switcher, a stayer and a crosser

with no time saving. The I-35W bridge is indicted by the purple line. In Figure (3.1a),

the non-crosser’s before-route and after-route are the same because he does not need to

cross the river and thus his route is not influenced by the new bridge. In Figure (3.1b-

3.1c), the switcher uses two different routes before the bridge was rebuilt and after,

while the stayer uses the same route which is not via the I-35W bridge. In Figure (??),

taking the new bridge cannot improve the crosser’s travel time, so he stays on the same

route.
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I-35W

before-route/
after-route

(a) Non-crosser

after-route

I-35W

before-route

(b) Switcher

I-35W

before-route/
after-route

(c) Stayer

Figure 3.1: Examples of subjects

In this study, only 47 switchers and 31 stayers are considered. So there are 78

subjects of interest.
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3.3.2 Bridge usage analysis for switchers and stayers

Figure (3.2) shows eleven bridges, indicated by red with names next to them, used by

subjects across the Mississippi River before and after the new bridge’s reopening. The

background is the TLG network (generated and maintained by Metropolitan Council

and The Lawrence Group) which encompasses the entire seven-county Minneapolis-St.

Paul Metropolitan Area.



56

I-
3
5
W

I-694

1
0
th

A
v
e

Plymouth

Broadway

Hennepin

Washington

Centra
lA

ve

I-9
4

37th Ave

Fra
nklin

Projection: NAD 1983 Transverse Mercator

0 1 2 3 40.5
Kilometers

Mississippi River Bridge Map
Minneapolis

Figure 3.2: Bridges over the Mississippi River

Seventy-eight subjects made 2,167 morning commuting trips during the study period.

Most subjects use more than one bridge to cross the river. The bridge used by the most

trips is the “most frequently used bridge”.

Figure (3.3) illustrates trip distribution among bridges. Before the new bridge was
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built, Washington, 10th Avenue and I-94 are the three most used bridges in the sample.

After its reopening, the I-35W bridge is the main bridge carrying 64% of observed

cross-river trips in the sample.
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Figure 3.3: Cross-river trip distribution among bridges for study subjects

For 47 switchers, we further calculate the percentage of switchers who changed from

their frequently used bridges to the I-35W bridge. Switchers originally on the 10th

Avenue Bridge provide the highest portion of switching to the I-35W bridge and those

originally on the Washington Ave Bridge follows. This is reasonable because the 10th

Avenue Bridge and the Washington Ave Bridge are the nearest to the I-35W bridge.

We also compute the duration it took subjects to settle on a bridge after the reopen-

ing, i.e., from September 18, 2008 until the day when the subject have been taking the

most frequently used bridge for at least two times consecutively (Carrion and Levinson

2012). Zero day for switchers means they immediately use the new bridge on September

18, 2008; while zero day for stayers means they stick to their before-routes regardless

of the addition of the bridge. On average, it took 3.0 days for 78 subjects to sta-

bilize their bridge choices. The number of days for switchers to stabilize is slightly

longer than that for stayers and it has larger variation. Interested readers can refer to

Carrion and Levinson (2012) which employed duration analysis to analyze how many

days it took commuters to use the current bridge choice.
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Table 3.2: Descriptive statistics of duration of bridge stabilization

Mean Std Median Min Max

Switcher 3.2 6.0 0 0 27

Stayer 2.7 5.7 0 0 20

Total 3.0 5.8 0 0 27

3.4 Travel time saving calculation

In this study, we assume that travel time saving is the only stimulus for commuters to

switch to the new bridge disregard of travel time reliability and other factors.

To obtain the travel time savings brought by taking the new I-35W bridge, we need

to identify routes via the new bridge. For switchers, the after-route is the route via the

new bridge. Stayers, on the other hand, never use the new bridge and therefore a route

via I-35W bridge for each stayer should be first identified.

The speed map was pooled from 6, 059 commuting trips out of 25, 157 total trips.

Only links with more than 5 observations before and after the new bridge’s reopening

were included. The average link speed was estimated from GPS data of all probe vehicles

passing this link during the experiment period. This map covers a high portion of the

freeway system and a fairly high portion of arterial roads, especially trunk highways

and downtown streets.

Based on the speed map, each link’s average travel time can be computed. Then

estimated travel times of a route is the sum of average travel times of all links along

that route. Consequently, the shortest paths via I-35W bridge is identified for stayers,

named “new-after-route”. Provided a new-after-route, the travel time saving for each

stayer can be estimated from the speed map.

Remark. Subjects’ commuting times are not the same, to make sure the following com-

parison is performed under the same benchmark, travel time saving proportion instead

of absolute travel time saving will be used. Denote �(n) as the travel time saving pro-

portion by taking the new bridge for commuter n. It is computed as �(n)=
C

(n)
a −C

(n)
b

C
(n)
b

,
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where C
(n)
b , C

(n)
a are estimated travel times experienced by commuter n before and after

the reopening of the new bridge.

Table (3.3) summarizes the statistics of estimated travel time saving by using the

new bridge among switchers and stayers:

Table 3.3: Estimated time saving statistics

Statistics Switcher Stayer Total

Distribution
Counts 47 31 78

Percentage (%) 60.3 39.7 100.0

Average Travel Time

(minute)

Before 16.4 19.2 17.5

After 14.5 18.2 16.0

Difference 1.9 1.0 1.5

Average Travel Time

Saving Percentage (%)

Average 13.0 5.4 10.0

Minimum 2.6 0.4 0.4

Maximum 34.4 25.2 34.4

Median 10.5 3.5 7.9

3.5 Route switching analysis

3.5.1 Old-users and non-users

Subjects have different time saving by taking the new bridge which varies from 2.6% to

34.4% for switchers and from 0.4% to 25.2% for stayers. This wide range of time saving

overlap between switchers and stayers results partially from drivers’ heterogeneity.

Among 78 subjects, 44 used the old I-35W bridge regularly before it collapsed and

34 were not the regular old bridge users. Old bridge users are pre-disposed to use

the new bridge while non-users may not use it even it could save substantial travel

time. Therefore, old-users and non-users should display different route choice behavior

in response to the addition of the new bridge.

In the following, we will further divide switchers and stayers based on whether they

are “old-users” or “non-users”. Denote y as the indicator of stayer (i.e., y = 0) or
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switcher (i.e., y = 1) and U as the indicator of non-user (i.e., U = 0) or old-user

(i.e., U = 1). The frequency of stayers and switchers for non-users and old-users are

summarized in Table (3.4).

Table 3.4: Contingency table of subjects’ categories

Non-user (U=0) Old-user (U=1) Total

Stayer (y=0) 23 8 31

Switcher (y=1) 11 36 47

Total 34 44 78

Figure (3.4) illustrates the boxplot of estimated time saving proportion statistics

for two groups (non-user and old-user). The dots are data which are outside third

quartile and represent outliers. Overall the mean and the median travel time savings

for switchers are higher than those of stayers. The mean travel time savings for non-users

are slightly higher than those for old-users.
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Figure 3.4: Boxplot of travel time saving proportions

3.5.2 Factors contributing to route switching

The path set for traveler n, n = 1, · · · , 78 on day t before addition of the I-35W bridge

is Pnt. The chosen route for traveler n at time t is denoted as Ant = r. Assume at

time t+ 1, the I-35W bridge was rebuilt. The new route due to addition of the I-35W

bridge is r′nt. Accordingly, the new path set enlarged by addition of the I-35W bridge

is P̃nt = {P, r′nt}. Therefore, the probability of switching to the new route and the
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probability of staying on the current route are computed respectively as follows:

P (y(n) = 1) = P (An,t+1 = r′nt|Ant = rnt, Un), (3.5.1a)

P (y(n) = 0) = P (An,t+1 = rnt|Ant = rnt, Un). (3.5.1b)

where Un = 1 represents that commuter n is an old-user.

P (An,t+1 = r′nt|Ant = rnt, Un) depends on the time saving by taking the new route

r′nt and whether commuter n has used this bridge before. Assume the log ratio of

switching over staying is a linear function of time saving and commuter’s group, thus a

logit model is formulated:

log
P (y(n) = 1)

P (y(n) = 0)
= β0 + β1 ∗ log(�(n)) + β2Un, (3.5.2)

where β0, β1, β2 are regression coefficients and need to be estimated from the data. We

use logarithm of time saving proportions here because time saving percentage varies

between 0% and 100% and rescaling will facilitate parameter estimation.

Given 78 subjects’ choices of switching or staying along with their characteristics, we

have {y1, · · · , y78} and the predictors are log(�(n)), n = 1, · · · , 78 and Un, n = 1, · · · , 78.
The likelihood function is: L =

∏78
n=1 P (y(n) = 1)P (y(n) = 0). The maximum likelihood

method (i.e., logit regression) is conducted to estimate parameters β0, β1 and results are

as follows:

Estimate Std. Error t-value Pr(> |t|)
(Intercept) 4.15 1.27 3.27 0.001 **

log(�) 1.85 0.48 3.828 0.000 ***

U 2.73 0.73 3.74 0.000 ***

** Statistically significant at .5% level

*** Statistically significant at .1% level

All three parameters are significantly different from zero at 0.5% significance level.

The goodness-of-fit measure by using Chi Square test gives p-value of 1.9e− 5.

β1 = 1.85 indicates that the log ratio of switching versus staying, i.e., log
(
P (y=1)
P (y=0)

)
,

increases by 1.85 if there is one unit increase in the logarithm of time saving brought

by a new route. β2 = 2.73 indicates that the log ratio of switching versus staying for an

old-user is 2.73 times higher than that for a non-user.
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Given a certain time saving, old-users have higher probability of switching than

non-users. Therefore these two groups display different route switching characteristics

in response to the addition of a new link.

3.6 Indifference band estimation

When the network topology remains the same for a long enough period of time, the traffic

flow pattern stabilizes and therefore travelers’ route choice decisions are usually stable

(Zhu and Levinson 2012), implying that they do not switch. Major network disruptions

force travelers to search for new routes. Network restorations allow travelers to stay on

the old route or switch to new routes, without any requirement they change.

Several assumptions are made regarding boundedly rational route switching in this

analysis:

• The network stabilized at an equilibrium before the new bridge was rebuilt;

• A commuter will decide to switch to the new bridge based on the principle of

bounded rationality.

• A new equilibrium is reached at the end of our GPS study period.

For old-users and non-users, subjects have different time saving ranges by taking

the new bridge. We divide this time saving range into I = 11 bins (i = 1, · · · , 11)
respectively. The total number of switchers and stayers for each bin can be calculated.

Figure (3.5) illustrates the distribution of switchers and stayers for each bin for old-

users. Figure (3.5a) show the frequencies within each bin. As the time saving increases,

generally speaking, the percentage of stayers gradually decreases to zero (with only one

outlier). Similar analysis can be applied to non-users shown in Figure (3.5b).
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Figure 3.5: Travel time saving distribution

If travel time were the only factor which impacting route choice, classical perfect

rationality cannot explain this phenomenon. Because if this were the case, everybody

should immediately switch as long as the time saving is greater than zero. This may

be caused by stickiness of the driving habit (Zhu and Levinson 2012). Therefore we

propose that travelers are boundedly rational in route switching. Accordingly a travel

time saving threshold, termed ‘indifference band’, is defined to capture this driving
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inertia. The boundedly rational user equilibrium is reached when no traveler can reduce

his travel time by an indifference band by unilaterally changing routes.

3.6.1 Unsupervised learning

According to Figure (3.5), when time saving is higher than 10%, everybody tends to

use the new bridge (regardless of the outlier). Thus an estimate of the indifference band

for old-users is 10%. Accordingly, when the new bridge can save at least 10% travel

time, 17 out of 18 subjects (i.e., the number of old-users whose time saving is greater

than 10%) switched, which can capture behavioral change of 94% subjects. Similarly,

an estimate of the indifference band for non-users is 14%, meaning when the new bridge

saves at least 14% travel time, 4 out of 5 non-users switched and the estimation accuracy

is 80.0%.

This method belongs to unsupervised learning and its disadvantage is that outlier

is not considered.

3.6.2 Logit regression model formulation

In this section, we assume that the indifference band is a deterministic constant for

old-users and non-users respectively. However, commuters may not perceive travel time

accurately.

As indicated in the stimulus-response model, several biological experiments (Clark

1933; Hemmingsen 1933) verified that no response occurs unless the logarithm of stim-

ulus exceeds some threshold. In our context, the new bridge serves as a stimulus and

travelers decide to choose it or not in response. Therefore, the logarithm of time saving,

denoted as log(�(n)) will be adopted.

Travel time savings is estimated from GPS data and speed map. However, drivers

may perceive it with some error (Parthasarathi et al. 2013). Denote �̂(n)
as the loga-

rithm of commuter n’s perceived travel time saving, which is random:

�̂(n)
= β log(�(n)) + η, (3.6.1)

where η is a standard normal random variable, i.e., η ∼ N(0, 1) with cumulative distri-

bution function Φη(x).
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Commuters will not switch routes unless the logarithm of the perceived travel time

saving is greater than the logarithm of the indifference band, i.e.,

y(n) =

⎧⎨
⎩1, if �̂(n)

> log(ε∗);

0, if �̂(n) � log(ε∗).
(3.6.2)

where,

y(n): a binary indicator for commuter n. It equals one if commuter n switches to the

new bridge and zero otherwise;

ε∗: the indifference band.

Therefore the probability of switching for commuter n is then computed as:

P (y(n) = 1| �n, Un) = P (�̂(n)
> log(ε∗)| �n, Un) = P (β log(�(n)) + η > log(ε∗)| �n, Un)

= P (η > log(ε∗)− β log(�(n))| �n, Un)

= 1− Φη(β0 + β1 log(�(n))) (3.6.3)

where β0 = log(ε∗), β1 = −β.

Using probit regression, coefficients are estimated separate for old-users and new-

users (Table 3.5):

Table 3.5: Probit regression coefficients

Estimate Std. Error t-value Pr(> |t|)
Old-users

(Intercept) -2.42 1.00 -2.42 0.016 *

log(�) -1.08 0.38 -2.81 0.005 **

Non-users

(Intercept) -3.51 0.91 -3.84 0.000 ***

log(�) -0.92 0.30 -3.06 0.002 **

* Statistically significant at 5% level

** Statistically significant at 1% level

*** Statistically significant at 0.1% level
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To illustrate, the mean indifference band for old-users is ε∗ = exp(−2.42) = 8.9%

with the 97.5% confidence interval as [1.1%, 53.8%]. β1 = −1.08 indicates that the log

ratio of switching versus staying, i.e., log
(
P (y=1)
P (y=0)

)
, increases by 1.08 if there is one unit

increase in the logarithm of time saving brought by a new route.

Estimation

To estimate the number of switchers and stayers given �, we divide the time saving

range (0 ∼ 35% for old-users and 0 ∼ 27% for non-users respectively) into bins with

1% increment, denoted as the jth bin (j = 1, · · · , 35 for old-users and j = 1, · · · , 27
for non-users). For each �j, P (y(n) = 1| �(n)

j , Un) can be computed according to

Equation (3.6.3). The expected number of switchers for the jth bin can be computed

as:

N̂
(j)
switcher = N (j)P (y = 1| �=�j, U) (3.6.4)

where,

N (j): the number of observations (i.e., switchers plus stayers) for the jth bin;

�j: the critical time saving thresholds for the jth bin.

Note that we also divide the range into I = 11 bigger bins (each bin is denoted as

the ith bin) when we calculate frequencies of switchers and stayers in Figure (3.5). Then

we can aggregate the total expected number of switchers and stayers within the jth bin

for each ith, i = 1, · · · , 11 bin. Figures (3.6-3.7) illustrate frequency and cumulative

distribution of switchers and stayers from estimation and observation respectively.
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(b) Stayers among old-users

Figure 3.6: Frequency and cumulative distribution for old-users
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(a) Switchers among non-users
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Figure 3.7: Frequency and cumulative distribution for non-users

Define the mean square error as MSE = 1
N

I∑
i=1

(
N̂

(i)
switcher −N

(i)
switcher

)2
, where

N̂
(i)
switcher is the estimated number of switchers for the jth bin and N

(i)
switcher is the

observed number of switchers, N is the total number of subjects. MSE is 17.4% for old-

users and 11.5% for non-users respectively. The estimated frequency and cumulative

percentage of switchers match the observed ones well and indicates that the proposed
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model can capture the switching pattern in data.



Chapter 4

Boundedly rational user

equilibrium (BRUE)

4.1 Introduction

When the BR assumption is used to model drivers’ route choice behavior, there are two

aspects regarding the boundedly rational route choice process. Some studies suggested

that travelers do not take the shortest paths because they are not capable of perceiv-

ing actual travel costs due to limited cognitive capacity, or it is too costly to search

information about all alternative paths (Gabaix et al. 2006; Gao et al. 2011).

On the other hand, some studies assumed that all path cost information is available

to travelers through some information system, but they will not switch to shorter

paths due to existence of inertia, which was quantified by a term named ‘indifference

band’ (Mahmassani and Chang 1987). A series of experiments were conducted by

Mahmassani and his colleges to validate this BR behavioral assumption and cal-

ibrate values of indifference bands (Hu and Mahmassani 1997; Jayakrishnan et al.

1994a; Mahmassani and Chang 1987; Mahmassani and Jayakrishnan 1991;

Mahmassani and Liu 1999; Srinivasan and Mahmassani 1999). These experiments were

conducted on an interactive simulator-DYNASMART, incorporating pre-trip departure

time, route choices and en-route path switching decisions. Subjects, as travelers, could

change paths en-route at each node and also adjust their departure-time choices the

next day based on previous days’ travel experiences. Travelers were assumed to follow

71
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the BR behavioral rule in decision-making processes, i.e., they would only switch

routes when improved trip time exceeded some indifference bands. The values of these

indifference bands depended on individual characteristics and network performances.

Lu and Mahmassani (2008) further studied the impact of congestion pricing on drivers’

behavior within the boundedly rational behavioral framework.

In this chapter, we assume that travelers can perceive travel costs accurately but

some indifference bands exist due to inertia to switch routes. When traffic flow patterns

stabilize to some equilibrium, called ‘boundedly rational user equilibrium’ (BRUE),

travelers can take any route whose travel time is within an indifference band of the

shortest path cost (Guo and Liu 2011; Lou et al. 2010). Indifference bands vary among

origin-destination (OD) pairs. By introducing one parameter (i.e., indifference band) for

each OD pair, the BR framework relaxes the restrictive PR assumption that travelers

only take the shortest paths at equilibrium.

According to Ben-Akiva et al. (1984), travelers’ route choice behavior is regarded as

a two-stage process: path set generation (i.e., a path choice set is generated between

origin and destination according to route characteristics) and traffic assignment (i.e.,

traffic demands are mapped to these generated paths based on certain traffic assignment

criteria). Accordingly, we will first study how to generate boundedly rational path sets

first and then assign traffic demands to these paths based on BRUE conditions. The

BRUE solution set is constructed by using networks with fixed demand. Obtaining the

BRUE solution set and exploring fundamental mathematical properties of BRUE will

serve as a building block for BRUE related applications, such as BR-related congestion

pricing and other network design problems.

Following the two-stage route choice process, the rest of the chapter is organized

as follows: In Section 4.2, the ε-BRUE is defined and formulated as a nonlinear com-

plementarity problem (NCP). In Section 4.3, a BRUE-related acceptable path set is

defined and its structure is studied. In Section 4.4, how to obtain acceptable path set is

presented. In Section 4.5, we will construct BRUE path flow solution set based on the

acceptable path set. Some examples are given to illustrate structure of the BRUE path

flow solution set.
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4.2 Definition of ε-BRUE and nonlinear complementarity

formulation

The traffic network is represented by a directed graph that includes a set of consecutively

numbered nodes, N , and a set of consecutively numbered links, L. Let W denote the

origin-destination (OD) pair set connected by a set of simple paths (composed of a

sequence of distinct nodes), Pw, through the network. The traffic demand for OD pair

w is dw. Let fw
i denote the flow on path i ∈ Pw for OD pair w, then the path flow vector

is f = {fw
i }w∈W

i∈Pw . The feasible path flow set is to assign the traffic demand on the feasible

paths: F � {f : f � 0,
∑
i∈P

fw
i = dw,∀w ∈ W}. Denote xa as the link flow on link a,

then the link flow vector is x = {xa}a∈L. Each link a ∈ L is assigned a cost function of

the link flow, written as c(x). Let δwa,i = 1 if link a is on path i connecting OD pair w,

and 0 if not; then Δ � {δwa,i}w∈W
a∈L,i∈P , denotes the link-path incidence matrix. Therefore

fw
i =

∑
a
δwa,ixa, and it can be rewritten in a vector form as x = Δf . Denote Cw

i (f) as

the path cost on path i for OD pair w, then the path cost vector C(f) � {Cw
i (f)}w∈W

i∈P .

So C(f) = ΔT c(x) under the additive path cost assumption.

In this chapter, we assume the link cost is separable, continuous and linear with

respect to its own link flow, i.e., c(x) = Hx, where H is the Jacobian matrix of the link

cost. Then the path cost can be computed as: C(f) = ΔT c(x) = ΔTHΔf � Af , where

A = ΔTHΔ.

4.2.1 Definition

Mahmassani and Chang (1987) defined a BRUE flow vector as the one ‘whenever all

users’ perceived travel costs on their selected routes are constrained within their respec-

tive indifference bands’. Following this line, we define ε-BRUE as follows.

Definition 4.2.1. For a given nonnegative vector ε = (εw)w∈W , εw � 0, a feasible path

flow vector f ∈ F is said to be a ε-boundedly rational user equilibrium (BRUE) path

flow pattern, denoted by f εBRUE , if

fw
i > 0 ⇒ Cw

i (f) � min
j∈P

Cw
j (f) + εw,∀i ∈ P,∀w ∈ W (4.2.1)
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This definition says that, for a one path flow pattern which is a boundedly rational

user equilibrium, travelers only pick any route that is within a given indifference band

ε of the shortest path.

Remark. • Equation (4.2.1) gives a necessary condition judging whether a flow pat-

tern is BRUE, and is equivalent to the following condition:

Cw
i (f) > min

j∈Pw
Cw
j (f) + εw ⇒ fw

i = 0,

But the inverse is not always true:

fw
i = 0 � Cw

i (f) > min
j∈Pw

Cw
j (f) + εw.

In other words, an unused path may have lower cost than a used one, which will

never happen in the UE setting. Therefore, if Cw
i (f) � min

j∈Pw
Cw
j (f) + εw, then

fw
i � 0.

• When ε = 0, the BRUE definition is reduced to:

F0
BRUE � FUE = {f ∈ F : fw

i > 0 ⇒ Cw
i (f) = min

j∈P
Cw
j (f),∀i ∈ P,∀w ∈ W};

(4.2.2)

The path flow set satisfying the above definition is called the UE path flow set.

Based on the UE path flow set FUE , the UE shortest path set PUE can be defined

as:

PUE = {i ∈ P : Cw
i (f) = min

j∈P
Cw
j (f),∀f ∈ FUE}. (4.2.3)

We should note that the UE shortest path from PUE may carry flow or may have

no flow on it.

• Some literature (Mahmassani and Chang 1987; Mahmassani and Stephan 1988;

Mahmassani and Liu 1999) assumed that the indifference band is a relative value

instead of an absolute value adopted here: the cost difference between cost of the

utilized path and that of the shortest path is within a fraction of the shortest cost.

Though the indifference band is presented differently in the above literature, the

methodologies of constructing the BRUE set remain the same.
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Usually the ε-BRUE is non-unique. Denote a set containing all path flow patterns

satisfying Definition (4.2.1) as the ε-BRUE path flow solution set:

Fε
BRUE � {f ∈ F : fw

i > 0 ⇒ Cw
i (f) � min

j∈P
Cw
j (f) + εw,∀i ∈ P,∀w ∈ W}; (4.2.4)

Proposition 4.2.1. If the link cost function is continuous, the ε-BRUE solution (ε � 0)

is non-empty.

Proof. First, Patriksson (1994) showed that, when the link cost function is continuous,

UE exists.

Let f ∈ FUE be the UE path flow pattern, when ε � 0,

fw
i > 0 ⇒ Cw

i (f) = min
j∈P

Cw
j (f) � min

j∈P
Cw
j (f) + εw,∀i ∈ P,∀w ∈ W

So f is also a ε-BRUE (ε � 0), i.e., f ∈ Fε
BRUE . Then FUE ⊆ Fε

BRUE . In other

words, UE must be contained in the BRUE set. Given the continuous link cost function,

at least one BRUE flow pattern exists, and therefore Fε
BRUE �= ∅.

Note. FUE may be non-unique if the link cost function is not strictly monotone. In

spite of its non-uniqueness, it is still contained in the ε-BRUE set.

4.2.2 BRUE-NCP formulation

Given the continuous link cost function, the ε-BRUE must exist. The next question

is, how we can compute equilibrium solutions. Since UE is a special case of BRUE, we

will start with UE. Based on the Wardrop’s first principle, UE can be solved from a

nonlinear complementarity problem (NCP). For all i ∈ Pw and all w ∈ W:

0 � fw
i ⊥ Cw

i (f)− πw � 0, (4.2.5a)

0 � πw ⊥ dw −
∑
i∈P

fw
i � 0. (4.2.5b)

where πw is the shortest path cost for tOD pair w. ⊥ is the orthogonal sign representing

the inner product of two vectors is zero.

Similarly, BRUE can be formulated as a NCP as well, but some changes should be

made.
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Proposition 4.2.2 (BRUE NCP). Given εw(w ∈ W), and some ρ = (ρwi )
w
i , where

0 � ρwi � εw. A feasible path flow vector f ∈ F is a ε-BRUE path flow pattern if and

only if it solves the following NCP, ∀i ∈ Pw,∀w ∈ W:

(NCP(ρ)) 0 � fw
i ⊥ Cw

i (f) + ρwi − πw � 0, (4.2.6a)

0 � πw ⊥ dw −
∑
i∈P

fw
i � 0. (4.2.6b)

where the physical meaning of πw is the maximum path cost within the band εw for OD

pair w.

Proof. In the fixed-demand case, (4.2.6b) is reduced to the nonnegative constraint on

πw � 0.

(1) To prove the necessary part, let f be a feasible flow pattern and let (ρ,π) be a

pair such that Equation (4.2.6) holds, then 0 � ρ � ε, πw � 0 for all w ∈ W and i ∈ Pw.

Moreover, Cw
i (f) + ρwi − πw � 0 and 0 � ρwi � εw indicate that

πw � Cw
i (f) + ρwi � Cw

i (f) + εw,

thus,

πw � min
j∈P

Cw
j (f) + εw.

For fw
i > 0, (4.2.6a) holds iff Cw

i (f) + ρwi − πw = 0, i.e.,

fw
i > 0 ⇒ Cw

i (f) = πw − ρwi � πw � min
j∈P

Cw
j (f) + εw,

which satisfies Definition (4.2.1), so f is a ε-BRUE path flow pattern.

(2) To prove the sufficient part, suppose f is a BRUE flow pattern. For i ∈ Pw and

w ∈ W , define

πw � min
j∈P

Cw
j (f) + εw � 0. (4.2.7)

and

ρwi �

⎧⎪⎨
⎪⎩
πw − Cw

i (f), if Cw
i (f) � min

j∈P
Cw
j (f) + εw;

0, if Cw
i (f) > min

j∈P
Cw
j (f) + εw;

(4.2.8)

Equation (4.2.6) holds automatically for any BRUE flow pattern. It suffices to

show that 0 � ρwi � εw, πw � 0. Since f is a BRUE flow pattern, it follows that, by
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Definition (4.2.1), if fw
i � 0, Cw

i (f) � min
j∈P

Cw
j (f)+ εw; if Cw

i (f) > min
j∈P

Cw
j (f)+ εw, then

fw
i = 0.

When fw
i � 0, then Cw

i (f) � min
j∈P

Cw
j (f) + εw,

Cw
i (f) � min

j∈P
Cw
j (f) + εw = πw,

which yields ρwi � 0 from (4.2.8). Again, by (4.2.8),

ρwi = πw − Cw
i (f) = min

j∈P
Cw
j (f) + εw − Cw

i (f) � εw,

showing that ρwi � εw. So 0 � ρwi � εw if fw
i > 0.

When Cw
i (f) > min

j∈P
Cw
j (f) + εw, i.e., fw

i = 0, then ρwi = 0 by (4.2.8).

In summary, 0 � ρwi � εw and πw � 0 for i ∈ Pw and w ∈ W .

Remark. • Comparing the UE-NCP with the BRUE-NCP formulation, there is one

additional term ρwi in BRUE-NCP, we call it ‘indifference function.’ If Cw
i (f) �

min
j∈P

Cw
j (f) + εw, then ρwi = 0; if Cw

i (f) = min
j∈P

Cw
j (f), then ρwi = εw.

• The meaning of πw is different in the two settings. Regarding UE, πw is the

shortest travel time; while in BRUE, its value is equal to the shortest travel cost

plus εw (see Equation (4.2.7)). πw is a function of the flow pattern, so we call it

the ‘maximum path cost’ for a specific BRUE flow pattern. For some flow pattern,

there may not exist a path with the exact cost of πw. If some flow pattern happens

to have a path with the cost of πw, this path may or may not carry flows.

From BRUE NCP (4.2.6) and its proof, we have another conclusion:

Corollary 1. If f ∈ Fε
BRUE , there must exist at least one vector pair (ρ,π) satisfying

NCP (4.2.6). Moreover, one value of (ρ,π) is determined by (4.2.7) and (4.2.8).

By substituting one indifference function ρ ∈ R
n
+ into the BRUE-NCP, one BRUE

path flow pattern can be obtained. The BRUE-NCP formulation provides an approach

of solving one BRUE solution. In the following we will show how to construct complete

BRUE solution sets out of a specific solution.
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4.3 Monotonically non-decreasing acceptable path set

In the last section, we show that when the indifference band is zero, BRUE is equivalent

to UE flow pattern and travelers will only take shortest paths. When the indiffer-

ence band gradually increases, some paths which are too costly to take under UE may

be utilized under BRUE. In this section, we will discuss the relationship between the

indifference band and the number of utilized paths.

4.3.1 Monotonically non-decreasing property

All feasible paths for one particular BRUE flow pattern can be classified into three

categories:

Definition 4.3.1. Given a ε-BRUE flow pattern f ∈ Fε
BRUE , the total feasible paths

could have three statuses: acceptable, zero-acceptable and unacceptable. The accept-

able path carries flow while its cost is within the shortest one plus a band; the zero-

acceptable path is acceptable in terms of the cost but carries no flow; and the unaccept-

able path is longer than the shortest cost plus the band.

aε(f) = {i ∈ P : fi > 0, Cw
i (f) � min

j∈P
Cw
j (f) + εw,∀w}; (4.3.1a)

0ε(f) = {i ∈ P : fi = 0, Cw
i (f) � min

j∈P
Cw
j (f) + εw,∀w}; (4.3.1b)

uε(f) = {i ∈ P : fi = 0, Cw
i (f) > min

j∈P
Cw
j (f) + εw,∀w}. (4.3.1c)

There are three properties of the above three path sets:

Proposition 4.3.1. (1) Given one BRUE flow pattern f , the union of paths at these

three status is the feasible path set: aε(f) ∪ 0ε(f) ∪ uε(f) = P;

(2) Given one BRUE flow pattern f , we can always find at least one path which is

acceptable or zero-acceptable: aε(f) ∪ 0ε(f) �= ∅;

(3) Given one BRUE flow pattern f , if ε � maxj∈P Cw
j (f)−minj∈P Cw

j (f), all feasible

paths are either acceptable or zero-acceptable: uε(f) = ∅.

Proof. (1) It is obvious from the definition.
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(2) Since the shortest path i = argminj∈P Cw
j (f) always exists, so i ∈ aε(f)∪0ε(f) ⊆

P.

(3) maxj∈P Cw
j (f) −minj∈P Cw

j (f) � ε implies Cw
i (f) � minj∈P Cw

j (f) + ε,∀i ∈ P,

thus no path is unacceptable, i.e., uε(f) = ∅.

Definition (4.3.1) divides all the feasible paths for one BRUE flow pattern into three

classes. Each status notation indicates dependency of path status on ε and a specific

BRUE flow pattern. The following proposition will discuss the relationship between the

path status and the value of ε.

Proposition 4.3.2. Given f ∈ Fε
BRUE , if 0 � ε < ε′, then aε(f) ⊆ aε

′
(f), 0ε(f) ⊆ 0ε

′
(f).

Proof. It suffices to show that, if an arbitrary path i is acceptable or zero-acceptable un-

der the indifference band ε, it is also acceptable or zero-acceptable when the indifference

band is ε′ > ε. ∀i ∈ aε(f), we know fi > 0, and

Cw
i (f) � min

j∈P
Cw
j (f) + εw < min

j∈P
Cw
j (f) + ε

′
=⇒ i ∈ aε

′
(f).

Therefore aε(f) ⊆ aε
′
(f). Similarly 0ε(f) ⊆ 0ε

′
(f).

Proposition (4.3.2) says that, for a ε-BRUE flow pattern, the status of a path depends

on the value of ε. Since its total feasible paths are fixed, those unused paths under

smaller ε can be utilized with bigger ε. Therefore, the bigger ε is, the more paths are

acceptable or zero-acceptable, and the less paths are unacceptable.

In the following, we will discuss the impact of the value of ε on the size of the

ε-BRUE flow set.

Proposition 4.3.3 (Monotonically non-decreasing flow set). If 0 � ε < ε′, then

Fε
BRUE ⊆ Fε′

BRUE .

Proof. It suffices to show that ∀f ∈ Fε
BRUE =⇒ f ∈ Fε

′
BRUE .

∀f ∈ Fε
BRUE =⇒ {fw

i > 0 ⇒ Cw
i (f) � min

j∈P
Cw
j (f) + ε

< min
j∈P

Cw
j (f) + ε

′
,∀i ∈ P,∀w ∈ W}

=⇒ f ∈ Fε
′

BRUE =⇒ Fε
BRUE ⊆ Fε

′
BRUE .
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Proposition (4.3.3) indicates that when ε increases, more flow patterns will be in-

cluded in the ε-BRUE flow set.

When the ε-BRUE flow set exists and is non-unique, each flow pattern has dif-

ferent combination of acceptable, zero-acceptable and unacceptable paths. A ‘largest

ε-acceptable path set’ contains all acceptable paths for every flow pattern in the ε-BRUE

flow set, mathematically:

Pε
l =

⋃
f∈Fε

BRUE

aε(f). (4.3.2)

The largest ε-acceptable path set shares the similar property as the ε-BRUE flow set

has:

Proposition 4.3.4 (Monotonically non-decreasing path set). If 0 � ε < ε′,

Pε
l ⊆ Pε′

l , where Pε
l is defined in (4.3.2).

Proof.

Pε
l =

⋃
f∈Fε

BRUE

aε(f) ⊆
⋃

f∈Fε′
BRUE

aε(f) (Proposition (4.3.3))

⊆
⋃

f∈Fε′
BRUE

aε
′
(f) (Proposition (4.3.2)) = Pε′

l .

When ε varies from zero to infinity, the minimum number of paths the largest ε-

acceptable path set contains is the UE shortest paths when ε = 0, i.e., P0
BRUE � PUE .

The maximum number of paths the largest ε-acceptable path set contains is all feasible

paths, meaning all feasible paths will be utilized if the indifference band is too large.

Then we have the following corollary:

Corollary 2. PUE ⊆ Pε
l ⊆ P.

Given ε, the largest ε-acceptable path set (defined in Equation (4.3.2)) is a set of

all acceptable paths under the ε-BRUE set. It is possible that some acceptable paths

for one ε-BRUE flow pattern are not acceptable for other flow patterns; vice versa.

This necessitates the exploration of the interior structure of the ε-acceptable path set.

Proposition (4.3.4) provides us with one approach of analyzing its structure by varying

values of ε.
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The path set is a set of finite paths, while ε is treated as a continuous parameter

for the time being. Starting with the UE path set when ε = 0, provided the topology

of a network and the link cost functions, PUE can be determined by some established

algorithms, e.g., column generation algorithm (Patriksson 1994), gradient projection

algorithm (Jayakrishnan et al. 1994b), or maximum entropy algorithm (Bell and Iida

1997). According to Proposition (4.3.4), when ε is gradually increased, more paths will

be included. We should be able to identify those acceptable paths one by one until all

alternative paths are included. This offers theoretical foundation for deriving different

combinations of acceptable paths by varying ε subsequently.

4.3.2 Definition of ε-acceptable path set

It is assumed that there are n alternative paths for OD pair w, i.e., P = {1, · · · , n}
and |P| = n, where |P| is the cardinality of set P. Among these n paths, there are p

shortest paths at the UE, i.e., PUE = {1, · · · , p} and |PUE | = p � n.

Definition 4.3.2. Assuming there exists a unique sequence of finite critical points

ε∗wj , (j = 1, · · · , J), with ε∗0 = 0, ε∗J+1 = ∞, dividing the nonnegative real line into

(J + 1) intervals: [0,∞) = [0, ε∗1) ∪ [ε∗1, ε∗2) · · · ∪ [ε∗J ,∞) =
⋃J

j=0[ε
∗
j , ε

∗
j+1). A sequence of

critical points are defined as:

ε∗1 � inf
ε>0

{PUE ⊂ Pε
l };

...

ε∗j � inf
ε>0

{Pε∗j−1

l ⊂ Pε
l }; (4.3.3)

...

ε∗J � inf
ε>0

{Pε
l = P}.

The largest ε-acceptable path set will remain the same until ε reaches these values, i.e.,

for ε∗j � ε1 < ε2 < ε∗j+1, P
ε∗j
l = Pε1

l = Pε2
l ⊂ Pε∗j+1

l .
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Figure 4.1: Monotonically non-decreasing property illustration

A ‘newly added path’ is defined as the path which is unacceptable under ε∗j−1 but

acceptable when ε = ε∗j :

r∗j � {i ∈ P : i ∈ Pε∗j
l , i /∈ Pε∗j−1

l }, (4.3.4)

Given the current acceptable path set Pε∗j−1

l , after newly acceptable paths are identified,

the updated acceptable path set is:

Pε∗j
l � Pε∗j−1

l

⋃
r∗j . (4.3.5)

Remark. There may exist two or more paths added at the same time, so r∗j should be

treated as a path set.

Provided a fixed indifference band ε, ε∗I � ε < ε∗I+1. Let K = min{I, J}. The

ε-acceptable path set is defined as:

Pε = {PUE ,Pε∗1
l , · · · ,Pε∗K

l }. (4.3.6)

In other words, the ε-acceptable path set is composed of K acceptable path sets with

PUE ⊂ Pε∗1
l ⊂ · · · ⊂ Pε∗K

l ⊆ P.

4.4 Generation of the ε-acceptable path set

In the last section, we introduced a BR-related path set: the largest ε-acceptable path

set. In this section, we will explore how to generate this path set. Definition (4.3.3) says
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that, the largest ε-acceptable path set includes more paths when ε increases to some

critical values. Thus, a mathematical program with equilibrium constraint (MPEC) can

be developed to solve these critical values:

(MPEC) min εj

s.t.

0 � fi ⊥ Ci(f) + ρi − π � 0,∀i ∈ P, (4.4.1a)∑
r∈P

fr = d, (4.4.1b)

d−
∑

j∈P
ε∗
j−1

l

fj > 0, (4.4.1c)

0 � ρi � εj ,∀i ∈ P, (4.4.1d)

fi + Ci(f) + ρi − π > 0,∀i ∈ P. (4.4.1e)

(4.4.1a-4.4.1b) is to guarantee that the path flow pattern is a feasible BRUE; (4.4.1c)

tries to push a small amount of flow from the acceptable path set Pε∗j−1

l to some newly

acceptable path if ε is increased a little bit; (4.4.1d) sets bounds for the indifference func-

tion; (4.4.1e) ensures strict complementarity condition in (4.4.1a) (Cottle et al. 2009).

If MPEC (4.4.1) is solvable, optimal solutions (f∗,ρ∗, π∗, ε∗j ) will be obtained. The

newly added path r∗j can be derived from f∗. It is the path that is excluded from Pε∗j−1

l

but begins to carry a very small amount of flow in f∗.

(4.4.1c) and (4.4.1e) are inequalities without equal sign, which defines an open set

causing non-attainability of the optimal solution. So we introduce a parameter 0 < δ � 1

such that d− ∑
r∈P

ε∗
j−1

l

fr � δd and fi +Ci(f) + ρi − π � δ. We call this modified version

as ’δ-MPEC’, and we will solve this version in practice by giving δ a very small value
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(δ = 0.01 works well). Rewrite the δ-MPEC in a compact form:

(δ-MPEC) min εj

s.t. 1T f = d, (4.4.2a)

− vT f � (δ − 1)d, (4.4.2b)

εj1− ρ � 0, (4.4.2c)

f + C(f) + ρ− π � δ, (4.4.2d)

ρ, π, εj � 0, (4.4.2e)

f � 0, (4.4.2f)

C(f) + ρ− π1 � 0, (4.4.2g)

fT (C(f) + fTρ− π1) = 0. (4.4.2h)

where v is an vector of the same dimension with the path flow vector, with the ith

component equal to one if fi ∈ Pε∗j−1 and zero otherwise. 1 is a vector of 1.

In practice, this MPEC problem can be solved by GAMS software (General Algebraic

Modeling System, see Rosenthal and Brooke 2007).

4.4.1 Solving critical points sequentially

When ε∗1 is achieved, we include the corresponding path r∗1 into the UE shortest path set

and get Pε∗1
l . Next we are interested in finding the critical point ε∗2 based on current Pε∗1

l .

We can solve the above MPEC again by replacing Pε∗1
l in (4.4.1b) with Pε∗2

l , and ε∗2 will

be obtained. Similarly, ε∗3, · · · , are able to be computed sequentially. This procedure

will not stop until all feasible paths are included into the BRUE acceptable set or the

critical value reaches the given ε.

The above procedure provides a method of obtaining the critical points and the order

of adding new paths to the acceptable path sets. We will illustrate how to implement

this procedure on a small network in the following.

Example 4.4.1. A four-link network connects one OD pair in parallel with demand 2.

The link cost for each link is 1, x2 + 1.5, x3 + 3, x4 + 3. The UE is x1 = 2, x2 = x3 =

x4 = 0. Four paths are numbered as path 1, 2, 3, 4.
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Figure 4.2: Single-OD pair network illustration

Solving MPEC, we have ε∗0 = 0, ε∗1 = 0.5, ε∗2 = 2, ε∗3 = ∞. There are three cases for

the largest ε-acceptable path sets:

(1) 0 � ε < 0.5: Pε
l = {1}, f = [2, 0, 0, 0];

(2) 0.5 � ε < 2: Pε
l = {1, 2}, f = [2, 0, 0, 0];

(4) ε � 2: Pε
l = {1, 2, 3, 4}, f = [2, 0, 0, 0].

If ε is calibrated from empirical data as 1.5, then P1.5
l = {1, 2}. Therefore, P1.5 =

{{1}{1, 2}}.

4.4.2 ε-acceptable path set for multiple OD pairs

For a network with total W OD pairs, let ε∗wj be the critical point for OD pair w ∈ W,

j = 0, 1, · · · , Jw. Then ε∗j �
{
ε∗wj
}
is a set of critical points for all OD pairs, assuming

ε∗w0 = 0, w ∈ W.

Given ε = (ε1, · · · , εW ), if ε1nK1
� ε1 < ε1nK1+1

, · · · , εWnKW
� εW < εWnKW+1

, then the

largest ε-acceptable set for multiple OD pairs is the union of the largest ε-acceptable

set for each OD path pair:

Pε
l = P(ε1,··· ,εw,··· ,εW )

l = P
ε∗1nK1
l

⋃
· · ·
⋃

P
ε∗WnKW
l . (4.4.3)

where Pε∗wnKw
l is the largest ε∗wnKw

-acceptable set for OD pair w and can be solved by

MPEC (4.4.1).

The ε-acceptable path set is composed of multiple largest ε∗wnKw
-acceptable sets when

varying ε∗wj among every critical point across all OD pairs:

Pε = P(ε1,··· ,εw,··· ,εW ) =

{
P(ε1,··· ,ε∗wj ,··· ,εW )

l

}
ε∗wj

, w ∈ W, j = 0, 1, · · · , Jw. (4.4.4)
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Now we will discuss how to solve each critical point for every OD pair. Regarding one

OD pair ν ∈ W, the same approach of computing ε∗νj as mentioned in Equation (4.4.1)

can be adopted. The only difference is, to compute path costs needs the information of

path flows across all OD pairs. So path flows fw, w ∈ W, w �= ν are parameters when

Equation (4.4.1) for ν is calculated. In other words, ε∗νj is a function of fw, w �= ν. But

we only want those fw, w �= ν such that ε∗νj which can be achieved. So accordingly, we

modify Equation (4.4.1) to accommodate this distinction. For any OD pair ν and the

jth, j = 1, · · · , Jw the critical point ενj can be computed as:

min ενj

s.t.

0 � f ν
i ⊥ Cν

i (f) + ρνi − πν � 0,∀i ∈ Pν , (4.4.5a)∑
j∈Pw

fw
j = dw,∀w ∈ W, (4.4.5b)

dν −
∑

j∈P
ε∗ν
j−1

l

f ν
j > 0, (4.4.5c)

0 � ρνi � ενj ,∀i ∈ Pν , (4.4.5d)

0 � f ν
i + Cν

i (f) + ρνi − πν > 0,∀i ∈ Pν . (4.4.5e)

The algorithm of calculating ε-acceptable path set for multiple OD pairs is thus

summarized as follows:

1. Calculate ε∗νj (j = 1, · · · , Jw, ν ∈ W) from Equation (4.4.5) and obtain the εν -

acceptable path set for OD pair ν;

2. As a by-product of solving Equation (4.4.5), one feasible path flow pattern

f∗w, w �= ν is attained simultaneously. Denote the longest used path for OD pair

w,∀w �= ν as pw :=

{
max
j∈Pw

Cw
j (f), f

w
i > 0

}
and compute Cw

p (f). Then the ith(i =

1, · · · , Jw) critical point for OD pair w is computed as: ε∗wi = Cw
p (f)− min

j∈Pw
Cw
j (f);

3. After obtaining the critical points ε∗wi (i = 1, · · · , Jw, w �= ν), if ε∗wi−1 < Cw
p (f) −

min
j∈Pw

Cw
j (f) < ε∗wi , f∗w(w �= ν) is also a BRUE path flow pattern. Then the path

pw is acceptable when ενj < ε∗νj and εwi < ε∗wi ; or else path pw is unacceptable;
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4. Combine the acceptable paths under various combinations of critical points among

all OD pairs and the ε-acceptable path set Pε is obtained.

The following example will illustrate how to construct the ε-acceptable path set for

multiple OD pairs.

Example 4.4.2. The topology of the test network, two OD demands and link cost

functions are illustrated above each link in Figure (4.3). Red curves on the right indicate

six paths, denoted by the number of links it passes along: 1-3, 1-4, 2-3, 2-4, 1, 2. The first

four paths belong to OD pair 1 and the rest two belong to OD pair 2. The equilibrium

path flow pattern is f1 = 0, f2 = 1, f3 = 0, f4 = 0, f5 = 1, f6 = 0.

321

d=2
X1

10+x2

d=1

5+X3

d=1

x4

1

2 4

3

Path 1

Path 2

Path 3

Path 4

Path 5

Path 6

Figure 4.3: Two-OD pair network and paths illustration

Based on Equation (4.4.5), ε∗11 , ε∗12 and ε∗21 can be computed separately. The critical

points for each OD pair are:

For OD pair 1,

(1) 0 � ε1 < 4: Pε1 = {2};

(2) 4 � ε1 < 8: Pε1 = {{2}, {1, 2}};

(2) 8 � ε1 < 12: Pε1 = {{2}, {1, 2}, {1, 2, 4}};

(3) ε1 � 12: Pε1 = {{2}, {1, 2}, {1, 2, 4}, {1, 2, 3, 4}}.

For OD pair 2,

(1) 0 � ε2 < 8: Pε2 = {5};

(2) ε2 � 8: Pε2 = {{5}, {5, 6}};
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Combing two OD pairs, the overall ε-acceptable path set under different combination

of critical points is:

Pε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{2, 5}, 0 � ε1 � 4, 0 � ε2 � 8;

{{2, 5}, {2, 5, 6}}, 0 � ε1 � 4, ε2 � 8;

{{2, 5}, {1, 2, 5}}, 4 � ε1 � 8, 0 � ε2 � 8;

{{2, 5}, {1, 2, 5}, {2, 5, 6}, {1, 2, 5, 6}}, 4 � ε1 � 8, ε2 � 8;

{{2, 5}, {1, 2, 5}, {1, 2, 4, 5}}, 8 � ε1 � 12, 0 � ε2 � 8;

{{2, 5}, {1, 2, 5}, {1, 2, 4, 5}, {2, 5, 6}, {1, 2, 5, 6}, {1, 2, 4, 5, 6}}, 8 � ε1 � 12, ε2 � 8;

{{2, 5}, {1, 2, 5}, {1, 2, 4, 5}, {1, 2, 3, 4, 5}}, ε1 � 12, 0 � ε2 � 8;

{{2, 5}, {1, 2, 5}, {1, 2, 4, 5}, {2, 5, 6}, {1, 2, 5, 6},
{1, 2, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5, 6}}, ε1 � 12, ε2 � 8.

(4.4.6)

All acceptable path sets are also illustrated in the following figure: numbers in each

block display acceptable path numbers for certain (ε1,ε2) pair. The left bottom block

for (ε1 < 4,ε2 < 8) is the UE shortest path set. How to get acceptable paths for

(ε1 � 4,ε2 < 8) in the block to its right will be explained in the following and other

blocks follow the same line of reason. As described above in steps (2) and (3), one path

flow pattern f1 = 0.001, f2 = 0.9999, f3 = 0, f4 = 0, f5 = 1, f6 = 1 is attained when

ε1 = 4 is solved from Equation (4.4.5). For OD pair 1, its path flow increases from 0

to a positive number 0.001, meaning that path 1 will start to carry flows if ε1 > 4; the

utilized path 5 has the cost of 2 and the unused path 6 has the cost of 10. Their cost

difference is 8. When ε2 < 8, only path 5 is acceptable for OD pair 2. Therefore, when

ε1 � 4 and ε2 < 8, only paths 1,2 (connecting OD pair 1) and 5 (connecting OD pair

2) are acceptable.
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Figure 4.4: Acceptable paths for critical point pairs (ε1,ε2)

By far we have proposed how to solve the ε-acceptable path set for both single

OD pair and multiple OD pairs. In the following we will discuss the methodology of

constructing the ε-BRUE path flow set.

4.5 Construction of ε-BRUE path flow set

Generally the ε-BRUE set is non-convex (Lou et al. 2010), so it is not easy to construct

it directly. If we can decompose the whole BRUE set into small subsets, which are easier

to study, then constructing the whole set can be reduced to constructing each subset.

Based on this idea, the key step is to explore the interior structure of the ε-BRUE set

and identify these simpler subsets.

In Section (4.4), we analyze the interior structure of the ε-acceptable path set: as the

indifference band gradually increases, more paths will begin to carry flows. Correspond-

ingly, the ε-BRUE set can be decomposed into subsets as well, with only acceptable

paths carrying flows for each subset. Denote the kth subset as Fε
k and K as the total

number of largest ε-acceptable path sets. Mathematically, Fε
BRUE is the union of K+1

disjoint subsets:

Fε
i

⋂
Fε
j = ∅, i, j = 0, · · · ,K, i �= j; (4.5.1a)

Fε
BRUE =

K⋃
k=0

Fε
k . (4.5.1b)
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According to the largest acceptable path set defined in Equation (4.3.2), the kth

ε-BRUE path flow subset is defined as:

Fε
0 = {f ∈ Fε

BRUE : aε(f) ⊆ PUE},
Fε
k = {f ∈ Fε

BRUE : Pε∗k−1

l ⊂ aε(f) ⊆ Pε∗k
l }, k = 1, · · · ,K. (4.5.2)

where Pε∗k
l is the largest ε∗k-acceptable path set defined in (4.3.5).

4.5.1 ε-BRUE path flow set for one OD pair

Equation (4.5.2) defines the kth subset of the ε-BRUE path flow set. In this section,

we will explore how to construct each subset. By defining a sequence of sets Sε
k, k =

0, · · · ,K and assigning all travel demands to paths from the associated largest path set,

we get:

Sε
0 � {f ∈ F : ∀ i ∈ PUE : fi, fj � 0, |Ci(f)− Cj(f)|� ε;

∀ i �∈ PUE : fi = 0}.

Sε
k � {f ∈ F : ∀ i ∈ Pε∗k−1

l : fi � 0;∃i ∈ Pε∗k
l \Pε∗k−1

l : fi > 0; (4.5.3)

∀ i, j ∈ Pε∗k
l : |Ci(f)− Cj(f)|� ε;

∀ i �∈ Pε∗k
l : fi = 0}, k = 1, · · · ,K.

where Pε∗k
l is defined in (4.3.5).

The set Sε
0 contains all feasible path flow patterns where only the UE shortest paths

carry flows and the cost difference between any two shortest paths are within the band

ε. For the set Sε
k, k = 1, · · · ,K, there are two types of paths: the newly acceptable

paths will carry flows and those belonging to the ε∗k−1-largest acceptable paths may

carry flow or not. The cost difference between any two acceptable or zero-acceptable

paths are within the band ε. By definition, each subset is disjoint, i.e.,

K⋂
k=0

Sε
k = ∅; and

it is a subset of the ε-BRUE set, i.e., Sε
k ⊆ Fε

BRUE . The following proposition will show

that Fε
k and Sε

k are equivalent sets.
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Proposition 4.5.1.

Fε
k = Sε

k, k = 0, · · · ,K. (4.5.4)

where Fε
k is defined in (4.5.2), Sε

k is defined in (4.5.3).

Proof. (1)Fε
k ⊆ Sε

k, k = 0, · · · ,K.

∀f ∈ Fε
k , by definition, aε(f) ⊆ Pε∗k , i.e., ∀i, j ∈ aε(f), Ci(f) � min

j∈P
Cj(f) + ε �

Cj(f)+ε ⇒ Ci(f)−Cj(f) � ε. Similarly, Cj(f)−Ci(f) � ε. In summary, |Ci(f)−Cj(f)|�
ε,∀i, j ∈ Pε∗k

l ⇒ f ∈ Sε
k.

(2)Sε
k ⊆ Fε

k , k = 0, · · · ,K.

When k = 0:

∀i ∈ aε(f), f ∈ Sε
0 , we need to show i ∈ PUE . Assume i �∈ PUE, since f ∈ Sε

0 , then

fi = 0. On the other hand, because i ∈ aε(f), fi > 0, contradicted with fi = 0. Thus

∀i ∈ aε(f), i ∈ PUE , i.e., a
ε(f) ⊆ PUE ,∀f ∈ Sε

0 ⊆ Fε
BRUE ⇒ f ∈ Fε

0 . So Fε
0 ⊆ Sε

0 .

Combing with the result from (1), Fε
0 = Sε

0 .

When k = 1, similarly, aε(f) ⊆ Pε∗1 ,∀f ∈ Sε
1 , and PUE ⊂ aε(f) as ∃i ∈ Pε∗1

l \PUE :

fi > 0, i.e., at least one newly added path needs to carry flow. Because Sε
1 ⊆ Fε

BRUE\Sε
0 ,

and Fε
0 = Sε

0 , therefore PUE ⊂ aε(f) ⊆ Pε∗1
l ,∀f ∈ Fε

BRUE\Fε
0 , so f ∈ Fε

1 .

We can repeat this proof similarly for k = 2, · · · ,K. Therefore Sε
k ⊆ Fε

k , k =

0, · · · ,K.

In conclusion, Fε
k = Sε

k, k = 0, · · · ,K.

Proposition (4.5.1) shows that by constructing each flow subset as in Equa-

tion (4.5.3), then it is equivalent to the definition of the subset in Equation (4.5.2).

The union of these subsets constitutes the ε-BRUE set:

Corollary 3.

Fε
BRUE =

K⋃
k=1

Sε
k. (4.5.5)

where Sε
j is defined in Equation (4.5.3). In summary, Proposition (4.5.4) and Corol-

lary (3) provide the methodology of constructing the ε-BRUE set. The following exam-

ple will illustrate this methodology.

Example 4.5.1. The topology of the test network, the OD demand between nodes

1 − 4 and link cost functions are illustrated in Figure (4.5) with ε = 15. Red lines
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display four paths: 1-3-4 (path 1),1-3-2-4 (path 2), 1-2-3-4 (path 3), 1-2-4 (path 4).

The equilibrium path flow pattern is [2, 2, 0, 2], i.e., path 1,2 and 4 are utilized under

UE. Substituting Pε∗0
l = {1, 2, 4}, path costs and demands into MPEC (4.4.2), we obtain

ε∗1 = 6.5, f = [1.5, 3, 0, 1.5], C(f) = [96.5, 103, 103, 96.5]. In other words, if ε∗1 > 6.5, path

3 is utilized as well. Since ε = 15 > ε∗1, we know Pε=15 = {{1, 2, 4}, {1, 2, 3, 4}}.

3

4

2

1

Path 1

Path 2

Path 3

Path 4

d=6
X3

10x1

10x650+x2

50+x4

10+x5

Figure 4.5: Single OD pair network illustration

Due to flow conservation of the fixed demand, its BRUE solution set can be charac-

terized by the first three paths. The whole BRUE solution set is shown in Figure (4.6),

composed of a 3-path yellow subset and a 4-path magenta subset. Each subset satisfies

Equation (4.5.4):

Fε=15
0 = {f ∈ F : ∀i ∈ {1, 2, 4} : fi, fj � 0, |Ci(f)− Cj(f)|� 15, f1 + f2 + f4 = 6; f3 = 0};

Fε=15
1 = {f ∈ F : ∀i ∈ {1, 2, 4} : fi � 0; f3 > 0; f1 + f2 + f3 + f4 = 6;

∀i, j ∈ {1, 2, 3, 4} : |Ci(f)− Cj(f)|� 15}.

Within Fε=15
0 , path 3 does not carry flow, so the 3-path subset is on the bottom of the

(f1, f2, f3) coordinates; Within Fε=15
1 , path 3 begins to carry flow and f3 > 0. Either

the 3-path subset or the 4-path subset is convex, but their union is not convex, which

is consistent with results in Lou et al. (2010).
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Figure 4.6: BRUE solution set illustration composed of two pieces

4.5.2 ε-BRUE path flow set for multiple OD pairs

After knowing the methodology of obtaining all acceptable paths sets for multiple OD

pairs in Section (4.4.2), it is not difficulty to generalize the methodology of constructing

the ε-BRUE set for a single OD pair to multiple OD pairs. For a network with multiple

OD pairs, the ε-BRUE set is the union of all subsets where demands are assigned to all

acceptable paths across OD pairs:

Fε
BRUE =

K⋃
k=1

Sε∗
k , (4.5.6)

where,

Sε
1 � {f ∈ F : ∀ i, j ∈ PUE : fw

i , f
w
j � 0, |Cw

i (f)− Cw
j (f)|� εw;

∀ i �∈ PUE : fw
i = 0, w ∈ W}.
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Sε
k � {f ∈ F : ∀ i ∈ Pε∗k−2

l : fw
i � 0;∃i ∈ Pε∗k−1

l \Pε∗k−2

l : fw
i > 0;

∀ i, j ∈ Pε∗k−1

l : |Cw
i (f)− Cw

j (f)|� εw;

∀ i �∈ Pε∗k−1

l : fw
i = 0, w ∈ W}, k = 2, · · · ,K.

where, K is the total number of acceptable path sets; Pε∗k
l is defined in Equation (4.4.3).

4.6 Topological properties of the BRUE set

After the BRUE path flow set is obtained, it is crucial to explore its topological prop-

erties to facilitate BR related applications.

4.6.1 Closedness and compactness

A closed set can guarantee that if the solution is on the boundary, it can be attained.

Compactness of a set has many well-established characteristics in the field of topology.

So it is essential to know whether the BRUE set is compact or not.

Heine-Borel theorem says that, if a set is closed and bounded, then it is compact.

So boundedness and closedness will be established first.

Proposition 4.6.1. Fε
BRUE is bounded.

Proof. Since F is bounded, and Fε
BRUE ⊂ F . Thus Fε

BRUE is bounded.

Proposition 4.6.2. Fε
BRUE is closed.

Proof. Fε
BRUE defined by Inequalities (4.5.2) is closed obviously. Since the union of the

closed sets are closed, so Fε
BRUE is closed.

Following the two propositions above and Heine-Borel theorem, we have:

Corollary 4. Fε
BRUE is compact.

4.6.2 Connectedness

A topological space X is said to be connected if it cannot be represented as the union of

two disjoint, nonempty, open sets. A topological space X is said to be path connected

if for all x1, x2 ∈ X, there exists a path τ such that τ(0) = x1 and τ(1) = x2. It can be



95

shown that if X is path connected, it is also connected. So we will show that Fε
BRUE is

path-connected and therefore connected.

Proposition 4.6.3. Fε
BRUE is connected given affine linear cost functions.

Proof. First of all, it can be shown that each subset is connected. Each subset is the

solution set of a system of linear inequalities |Ci(f)−Cj(f)|� ε,∀i, j ∈ PUE or Pk
l , k =

0, · · · ,K, which is a polytope, so it is connected.

Secondly, we will show that Fε
k , k = 0, · · · ,K − 1 and Fε

k+1 are connected pairwise

by mathematical induction. Start with k = 0. The monotonic property implies that

PUE ⊂ P1
l .

Denote f0 ∈ Fε
0 , f

1 ∈ Fε
1 . Let the path k ∈ P1

l \PUE . Then for f0: f0
k = 0, |Ck(f

0)−
Ci(f

0)|> ε,∀i ∈ PUE . For f1: f1
k > 0, Ck(f

1) − Ci(f
1) > ε,∀i ∈ PUE . With continuous

path cost functions, there must exist a flow pattern f∗ ∈ Fε
0 such that f∗

k = 0, |Ck(f
∗)−

Ci(f
∗)|� ε,∀i ∈ PUE . Then f∗ ∈ Fε

1 . Consequently f∗ ∈ Fε
0

⋂Fε
1 �= ∅.

As Fε
0 and Fε

1 are connected, i.e., there exist paths p0, p1 joining f0, f1 with f∗

respectively. Therefore there exists a path p = p0
⋃

p1 joining f0 and f1 through f∗, i.e.,

Fε
0 and Fε

1 are path-connected and therefore connected pairwise.

Similarly, Fε
k and Fε

k+1, k = 1, · · · ,K − 1 are connected pairwise. In conclusion,

Fε
BRUE =

⋃K
k=0Fε

k is connected.

4.6.3 Non-convexity

Lou et al. (2010) illustrated the non-convexity of Fε
BRUE . The following validates the-

oretically this statement:

Proposition 4.6.4. Given affine linear link performance function, Fε
k is a polytope;

however, Fε
BRUE is generally non-convex.

Proof. An immediate result from inequalities (4.5.2) showing that Fε
k is a polytope.

However, the union of the convex sets are not necessarily convex; furthermore, as the

number of acceptable paths each polyhedron contains is different, so the union of poly-

tope in different dimensions is surely not convex if there exists more than one subset.



Chapter 5

Boundedly rational Braess

paradox

5.1 Introduction and motivation

The network design problem (NDP) is to improve the road network performance by

determining a set of plans, such as building new roads, expanding existing roads

or enforcing congestion pricing, based on certain route choice behavior assumption

(Yang and Bell 1998b). However, building more roads may not necessarily enhance

the system performance due to the Braess paradox (Braess 1969; Braess et al. 2005).

Network planners should be cautious of the Braess paradox while making a new network

design.

5.1.1 Literature review on the Braess paradox

The Braess paradox was first illustrated by a real-life example in Stuttgart: A road

investment failed to yield expected benefits until another street was closed (Murchland

1970). Its existence was also tested in various experimental games from the perspec-

tive of the behavioural theory (Rapoport et al. 2009, Schneider and Weimann 2004,

Selten et al. 2004).

96
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Murchland (1970) analyzed that the Braess paradox results from self routing and

suggested avoiding it by reducing the discrepancy between selfish routing and opti-

mal routing. Researchers further explored conditions when the Braess paradox oc-

curs: Pas and Principio (1997) showed that Braess paradox only occurs when the travel

demand is within a certain range. Frank (1981) and Steinberg and Zangwill (1983)

studied necessary and sufficient conditions when the Braess paradox occurs for general

networks with linear link cost functions; Dafermos and Nagurney (1984) proposed a

positive semidefinite matrix to test whether the paradox occurs with asymmetric link

travel times.

There are also many studies extending the paradox to more general contexts. Smith

(1978) illustrated how an increase in the travel time on an uncongested road can lead to

a reduction in the total delay. Fisk (1979) studied the paradox in a two-mode network

with transit and auto, where transit travel time may decrease when the auto demand

increases. Steinberg and Stone (1988) showed that an increase in one link’s congestion

level can lead to abandonment of another link. Yang and Bell (1998a) found that adding

a new road segment might reduce the network capacity.

In addition, the Braess paradox was shown to prevail in other types of

networks: computer networks (Kameda et al. 2000; Korilis et al. 1999), mechani-

cal and electrical networks (Cohen and Horowitz 1991), large-scale random graphs

(Valiant and Roughgarden 2006) and large sparse graphs (Chung and Young 2010).

5.1.2 Contribution

The contributions of this chapter are two-fold:

• This chapter generalizes the existence conditions of the Braess paradox from the

classical Braess network to grid networks with Bureau of Public Roads (BPR)

link performance functions and shows that the Braess paradox can easily occur in

ordinary networks;

• Given the boundedly rational assumption, how travelers react to addition of new

links in a network has never been explored. This chapter aims to shed light on

when the Braess paradox occurs under the boundedly rational driver behavior in

the classical Braess network and ordinary grid networks. Especially, the impacts
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of the indifference band and the congestion sensitivity of link cost functions on

the occurrence of the Braess paradox is analyzed. This study can thus offer guide-

lines for network planners when network design proposals are made within the

boundedly rational framework.

This chapter is organized as follows. In Section 5.2, the definition of bounded ratio-

nality user equilibria (BRUE) and the methodology of characterizing the BRUE set in

the classical Braess network are given. Due to non-uniqueness of the BRUE set, three

attitudes, risk-averse, risk-neutral and risk-prone towards building new links are dis-

cussed, which are based on the best, the worst and the distribution of the system travel

time respectively. In Section 5.3, the paradox analysis starts with the Braess network

with affine linear link performance functions. The methodologies of computing the best

and the worst flow patterns are introduced. When the Braess paradox happens given

the demand level and the indifference band are followed. In Section 5.4, the paradox

analysis is discussed in grid networks with nonlinear link performance functions and a

more general condition of the occurrence of the paradox is given.

5.2 Braess paradox under boundedly rational user equi-

librium

The transportation network is represented by a directed graph that includes a set of

consecutively numbered nodes, N , and a set of consecutively numbered links, L. Let

W denote the origin-destination (OD) pair set (with W OD pairs) connected by a set

of simple paths (composed of a sequence of distinct nodes), Pw, through the network.

The traffic demand between each OD pair is dw ∈ R+ (where R+ represents the set

of all non-negative real numbers) and the traffic demand vector d = (dw)w∈W ∈ R
W
+ .

Let fw
i denote the flow on path i ∈ Pw for OD pair w, then the path flow vector is

f = {fw
i }i∈Pw,w∈W . The feasible path flow set is to assign the traffic demand onto the

feasible paths: F � {f : f � 0,
∑

i∈Pw

fw
i = dw,∀w ∈ W}. Denote xa as the link flow

on link a, then the link flow vector is x = {xa}a∈L. Each link a ∈ L is assigned a

cost function which is a function of the link flow, written as c(x). Let δwa,i = 1 if link

a is on path i connecting OD pair w, and 0 if not; then Δ � {δwa,i}w∈W
a∈L,i∈P denotes the
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link-path incidence matrix. We have the relationship x = Δf . Denote Cw
i (f) as the

path cost on path i for OD pair w, then the path cost vector C(f) � {Cw
i (f)}w∈W

i∈P . So

C(f) = ΔT c(x) under the additive path cost assumption.

Under the user equilibrium (UE), the paradox is defined as:

Definition 5.2.1. The Braess paradox happens, if the system travel time (STT) after

new links are added is higher than the one without them, i.e., STTw > STTwo, where

STTw is the STT with new links and STTwo is the one without.

Due to the non-uniqueness of the BRUE, the road network may operate at differ-

ent equilibrium flow patterns with new links and without, resulting in uncertain road

network operation. Network planners may hold different attitudes towards whether to

build a new link or not if uncertainty exists:

• If network planners assume the worst case is most likely to happen after the new

link is added, and the best case is very possible to occur without it, then we say

that this planner has an attitude preference of ‘risk-averse’ towards building a new

link;

• If network planners assume the best case is most likely to happen after the new

link is built, while the worst case occurs most likely without it, then this planner

holds an attitude of ‘risk-prone’ towards building the new link;

• If network planners’ decisions are not affected by the degree of uncertainty in flow

distributions and only the expected performance is considered with and without

a new link, we call this attitude as ‘risk-neutral.’

The worst and the best cases aforementioned can be represented by the maximum

and the minimum STT values among the BRUE flow patterns:

Definition 5.2.2. In a network with W OD pairs with the traffic demand vector d and

the indifference band vector ε, the worst and the best cases are defined as the maximum

and the minimum STT (denoted as ‘w-STT’ and ‘b-STT’ respectively) among the ε-

BRUE solution set, i.e.,

w-STT (d, ε) = max
f∈Fε

BRUE

STT (d, f), (5.2.1a)

b-STT (d, ε) = min
f∈Fε

BRUE

STT (d, f). (5.2.1b)
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Assume there exists a distribution g(STT ) over the STT interval satisfying:

∫ w-STT

b-STT
g(STT )dSTT = 1, (5.2.2)

Then the expected performance is computed as the integral of the distribution from

b-STT to w-STT , i.e.,

ESTT (d, ε) =

∫ w-STT

b-STT
STTg(STT )dSTT. (5.2.3)

Based on different attitudes towards risk caused by non-uniqueness of the BRUE

solution, the following scenarios for the Braess paradox are defined:

Definition 5.2.3. (a) Risk-averse Braess paradox happens, if the worst STT after

new links are added is higher than the best one without them, i.e., w-STTw >

b-STTwo;

(b) Risk-prone Braess paradox happens, if the best STT after new links are added is

higher than the worst one without them, i.e., b-STTw > w-STTwo;

(c) Risk-neutral Braess paradox happens, provided distributions gw(STT ), gwo(STT )

over the STT interval satisfying Equation (5.2.2),if its expectation after new links

are added is higher than that without, i.e.,∫ w-STT

b-STT
STTgw(STT )dSTT >

∫ w-STT

b-STT
STTgwo(STT )dSTT.

Denote SRA as the (d, ε) region for the risk-averse paradox where (d, ε) ∈ R
W
+ ×R

W
+ ,

SRP for the risk-prone paradox and SRN for the risk-neutral paradox. Mathematically,

SRA = {(d, ε) : w-STTw > b-STTwo} , (5.2.4a)

SRP = {(d, ε) : b-STTw > w-STTwo} , (5.2.4b)

SRN =

{
(d, ε) :

∫ w-STT

b-STT
STTgw(STT )dSTT >

∫ w-STT

b-STT
STTgwo(STT )dSTT

}
.

(5.2.4c)

Then we have the following proposition for three paradox regions:

Proposition 5.2.1. SRP ⊂ SRN ⊂ SRA.
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Proof. (1) Show SRP ⊂ SRN .

Given
∫w-STT
b-STT gw(STT )dSTT = 1,

∫w-STT
b-STT gwo(STT )dSTT = 1, we have for all

(d, ε) ∈ R
W
+ × R

W
+ ,

b-STTw �
∫ w-STT

b-STT
STTgw(STT )dSTT � w-STTw,

b-STTwo �
∫ w-STT

b-STT
STTgwo(STT )dSTT � w-STTwo.

If b-STTw > w-STTwo, then∫ w-STT

b-STT
STTgw(STT )dSTT � b-STTw > w-STTwo �

∫ w-STT

b-STT
STTgwo(STT )dSTT.

Therefore
∫w-STT
b-STT STTgw(STT )dSTT >

∫w-STT
b-STT STTgwo(STT )dSTT and then

SRP ⊂ SRN .

(2) Show SRN ⊂ SRA. If
∫w-STT
b-STT STTgw(STT )dSTT >∫w-STT

b-STT STTgwo(STT )dSTT , then

w-STTw �
∫ w-STT

b-STT
STTgw(STT )dSTT >

∫ w-STT

b-STT
STTgwo(STT )dSTT � b-STTwo.

So w-STTw > b-STTwo and thus SRN ⊂ SRA.

Remark. The above proposition states that the risk-averse planners are the most con-

servative among three types of planners. Therefore a risk-averse paradox must be a

risk-neutral or a risk-prone paradox; however, a risk-neutral or a risk-prone paradox is

not necessarily a risk-averse one. The similar statement holds for the risk-neutral and

the risk-prone paradox.

When the following conditions are satisfied, we have a “strong” definition of the

Braess paradox:

Definition 5.2.4. (a) Braess paradox happens, if the best case after new links are

added is higher than the worst one without them, i.e., b-STTw > w-STTwo;

(b) Braess paradox does not happen, if the worst case after new links are added is

lower than the best one without them, i.e., w-STTw < b-STTwo.



102

No matter which extremal values we use to determine the occurrence of the paradox,

it is prerequisite to compute the worst and the best STTs. Given BRUE NCP formula-

tion in Equation (4.2.6), solving the extremal cases is equivalent to solving mathematical

programs with equilibrium constraints (MPEC):

min /max STT (d, f)

s.t.

0 � fw
i ⊥ Cw

i (f) + ρwi − πw � 0,∀i ∈ Pw,∀w ∈ W,

0 � πw ⊥ dw −
∑
i∈Pw

fw
i � 0,∀w ∈ W.

5.3 Braess paradox analysis on the Braess network

We will first study the Braess paradox under BRUE in the classical Braess network

(Braess 1969), because:

• The Braess paradox under bounded rationality is fairly new and no research ef-

forts have been conducted. A simpler network will be a good starting point to

investigate its properties;

• A simple network allows us to present the analysis in a more intuitive way by

illustrating results graphically.

The classical Braess network is shown in Figure (5.1): link 1 (from node 1 to 3),

2 (from node 1 to 2), 3 (from node 3 to 4) and 4 (from node 2 to 4) form the basic

network; while link 5 (from node 3 to 2) is a new link to be added. The link travel time

function is listed by each link, where a1, a2, b1, b2 are cost function parameters. The

total demand traveling from origin node 1 to destination node 4 is denoted as d.
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a1+b x2 2 b1x4

Figure 5.1: Braess network illustration

When link 5 is not added, there are two alternative paths: 1-3-4 (path 1) and 1-2-4

(path 2), called ‘2-path scenario’. Two path costs are computed as:

C1 = (b1 + b2)f1 + a1, (5.3.1a)

C2 = (b1 + b2)f2 + a1. (5.3.1b)

When link 5 is added, there are three alternative paths: 1-3-4 (path 1), 1-2-4 (path

2) and 1-3-2-4 (path 3), called ‘3-path scenario.’ Three path costs are computed as:

C1 = (b1 + b2)f1 + b1f3 + a1, (5.3.2a)

C2 = (b1 + b2)f2 + b1f3 + a1, (5.3.2b)

C3 = b1(f1 + f2) + (2b1 + b2)f3 + a2. (5.3.2c)

In the following, all variables related to the 2-path scenario will have a subscript 2,

while those related to the 3-path scenario will have a subscript 3.

5.3.1 UE and BRUE

In this simple case, the user equilibrium (UE) flow pattern for both scenarios can be

calculated by letting all path costs equal. Assume a1 � a2, b1 > b2. In the 2-path
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scenario, UE2(d) =
[
d
2 ,

d
2

]T
. In the 3-path scenario:

UE3(d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0, 0, d

]T
, 0 � d < a1−a2

b1+b2
,[

−a1+a2+(b1+b2)d
b1+3b2

, −a1+a2+(b1+b2)d
b1+3b2

, 2(a1−a2)−(b1−b2)d
b1+3b2

]T
, a1−a2
b1+b2

� d < 2(a1−a2)
b1−b2

,[
d
2 ,

d
2 , 0

]T
, d � 2(a1−a2)

b1−b2
.

(5.3.3)

Interested readers can refer to Pas and Principio (1997) for detailed calculation of these

two UEs.

Remark. 1. The assumptions of a1 � a2 and b1 > b2 guarantee that there exist three

cases of UE3 defined in Equation (5.3.3), when the travel demand varies from zero

to infinity (Pas and Principio 1997).

2. These two assumptions also ensure that the new link is attractive, due to lower

a2, b2 coefficients in its cost function. Moreover, b1 > b2 necessitates the existence

of the Braess paradox under UE. As the new link is connected by two links whose

marginal cost with one more unit of flow is higher than that of the new link, when

more travelers use the new link, congestions on these two connecting links may

cancel out time saving brought by the new link. If this is the case, the Braess

paradox happens.

In the 2-path scenario, by definition of the BRUE, if path 1 is shorter and path 2

is utilized, then C2 − C1 � ε; If path 2 is shorter and path 1 is utilized, then C1 −
C2 � ε. Therefore the BRUE flow patterns in 2-path scenario must satisfy a system of

inequalities, given both paths are utilized:

BRUEε
2 = {f : Ci(f)− Cj(f) � ε, i, j = 1, 2, i �= j}. (5.3.4)

Although Equation (5.3.4) is initially obtained by assuming both paths are utilized,

it also holds for any BRUE flow pattern with only one path utilized. That is, for the

2-path scenario, due to its special symmetric structure, when only one path is utilized,

the non-utilized path is always shorter, and thus there does not exist a BRUE flow

pattern such that Ci(f) − Cj(f) > ε while fi = 0. In summary, Equation (5.3.4) holds

for any BRUE flow pattern, whether both paths are utilized or only one path is utilized.
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In the 3-path scenario, if path 1 is the shortest and paths 2 and 3 are utilized, then

Ci − C1 � ε, i, j = 2, 3; If path 2 is the shortest and paths 1 and 3 are utilized, then

Ci −C2 � ε, i, j = 1, 3; Similarly, if path 3 is the shortest and path 1 and 2 are utilized,

then Ci − C3 � ε, i, j = 1, 2. In summary, the BRUE flow patterns in 3-path scenario

must satisfy a system of inequalities, given all three paths are utilized:

S = {f : Ci(f)−Cj(f) � ε, i, j = 1, 2, 3, i �= j}. (5.3.5)

However, S may be a subset of the BRUE set due to the assumption that all three

paths are utilized. That is, there might be a BRUE flow pattern such that Ci(f) −
Cj(f) > ε while fi = 0, i.e., a non-utilized path is outside the indifference band, which

does not belong to S yet is still BRUE. In the following, we will identify such special

BRUE flow patterns with a non-utilized path outside the indifference band.

We first look into the case when only one path is utilized, i.e., the traffic demand

is assigned to only one path. In this case, if the utilized path is either path 1 or path

2, it can be easily verified that the utilized path is the longest path, and thus there

does not exist a non-utilized path outside the indifference band. If the utilized path is

path 3, then the flow pattern is BRUE with path 3 being the shortest path and path

1 and path 2 being the non-utilized paths outside the indifference band if and only if

the following conditions hold: d < a1−a2
b1+b2

and ε < −(b1 + b2)d + a1 − a2. Under these

conditions, S = ∅ and the BRUE set is a singleton, i.e., BRUEε
3 =

[
0, 0, d

]T
.

We then look into the case when only two paths are utilized, i.e., the traffic demand

is assigned to two of the three paths with one path being non-utilized. In this case, if

the non-utilized path is path 1 and thereby path 2 is utilized, C1 < C2 holds due to the

symmetry between path 1 and path 2. Thus under BRUE, the non-utilized path (path

1) cannot be outside the indifference band, otherwise the utilized path 2 would be ”even

more” outside the indifference band which contradicts BRUE. The same analysis holds

if path 2 is the non-utilized one. If the non-utilized path is path 3, then the flow pattern

can be BRUE with path 3 being a non-utilized path outside the indifference band if and

only if the following conditions hold: d > 2(a1−a2)
b1−b2

, ε < (b1 − b2)d − 2(a1 − a2), under

which there exists a special BRUE subset {f ∈ F : f3 = 0, |C1(f) − C2(f)| � ε}. This

subset is actually BRUEε
2 and BRUEε

2 ⊆ BRUEε
3 in this case. Note that this special

BRUE subset is never completely within S, i.e., BRUEε
2 �⊆ S, because at least part of
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this subset is comprised of BRUE flow patterns such that path 3 is not utilized yet is

the longest path outside the indifference band. Therefore the BRUE set is the union of

two convex sets BRUEε
2 and S, i.e., BRUEε

3 = BRUEε
2

⋃
S. Although the BRUE flow

set is generally non-convex, it still has a simple enough structure for us to graphically

solve for the best and worst cases.

Based on the above discussion, we can say that it holds S = BRUEε
3 except for two

special cases identified above. Therefore,

BRUEε
3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0, 0, d

]T
, if d < a1−a2

b1+b2
, ε < −(b1 + b2)d+ a1 − a2,

BRUEε
2

⋃
S, if d > 2(a1−a2)

b1−b2
, ε < (b1 − b2)d− 2(a1 − a2),

S, o.w.

(5.3.6)

In summary, the BRUE set for the Braess network is either convex (a singleton is

also convex) or the union of two convex subsets. Therefore it is closed and bounded and

thus compact. Given affine linear cost functions, it is also connected. This property will

be used in the next section when we identify the best and the worst path flow patterns.

5.3.2 Graphical solutions of the best and the worst cases

The paradox under BRUE is defined upon the best and the worst flow patterns in

the BRUE set. To identify the minimum and the maximum of STTs, we first need

to study the properties of the STT function. Given affine linear cost functions, the

STT is a quadratic function and the BRUE set is convex or non-convex with simple

structure. Solving extremal flow patterns in Equation (5.2.5) is equivalent to solving

positive-definite quadratic programs over a convex set or the union of two convex sets.

The Braess network only contains two or three paths, therefore these two extremal cases

can be solved graphically.

Two-path scenario

The STT associated with a specific flow pattern is computed as the product of flows

and its associated travel costs. The system travel time for the 2-path scenario, denoted
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as ‘STT2’, is computed as:

STT2(d, f) =
2∑

i=1

Cifi = (b1 + b2)(f
2
1 + f2

2 ) + a1d. (5.3.7)

STT2 is a quadratic function with respect to flow patterns. Since STT is a continuous

function with respect to path flows while the BRUE set is compact, the STT over the

BRUE set constitutes a closed interval, called the “STT interval.” The STT interval

can be represented graphically by a line segment connecting the best and the worst

values.

Before finding the minimum flow pattern defined in Equation (5.2.1b), it is important

to discuss the system optimal (SO), the feasible flow distribution with the minimum STT

given a pre-determined traffic demand. Mathematically,

SO(d) = min
f∈F

STT(d, f).

If SO ∈ Fε
BRUE , then SO is the best flow pattern.

In the 2-path scenario, SO2(d) =
[
d
2 ,

d
2

]T
. It is UE and is therefore BRUE. Thus it

is also the best flow pattern.

Solving the worst flow pattern is equivalent to maximizing a positive definite

quadratic program over a convex set. Therefore the worst flow pattern should oc-

cur on one corner of BRUEε
2. Its corner point is a feasible flow pattern satisfying

C1(f)− C2(f) = ε or C2(f)−C1(f) = ε.

Three-path scenario

In the 3-path scenario, due to flow conservation, the feasible flow set can be characterized

by two path flows, i.e., f3 = d− f1 − f2. Then STT3 can be computed as follows:

STT3(d, f) =

3∑
i=1

Cifi

= (b1 + 2b2)(f
2
1 + f2

2 ) + 2b2f1f2 + [a1 − a2 − 2(b1 + b2)d] (f1 + f2)

+
[
(2b1 + b2)d

2 + a2d
]
. (5.3.8)
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Given a certain demand level, STT3 is also a quadratic equation with respect to path

flows on the first two paths. SO3 depends on the demand level:

SO3(d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0, 0, d

]T
, 0 � d < a1−a2

2(b1+b2)
,[ −a1+a2

2
+(b1+b2)d

b1+3b2
,

−a1+a2
2

+(b1+b2)d

b1+3b2
,
(a1−a2)−(b1−b2)d

b1+3b2

]T
, a1−a2
2(b1+b2)

� d < a1−a2
b1−b2

,[
d
2 ,

d
2 , 0

]T
, d � a1−a2

b1−b2
.

(5.3.9)

As aforementioned, if SO3 ∈ BRUE3, it is the best flow pattern; or else the best

flow pattern has to be identified otherwise.

For the worst flow patterns, there are two cases:

1. If BRUE3 is convex, the worst flow patterns must occur at one corner point;

2. if BRUE3 is the union of two convex subsets, the worst flow patterns also occur at

one corner point of one subset. However, calculation is needed to compare which

subset’s corner point carries higher STT value.

UE3 is a special case of BRUE3, which can help to locate the BRUE set. SO3 has

the minimum STT value, which facilitates finding the extremal cases. As the demand

level varies, UE3 and SO3 have five possible relative positions shown in Figure (5.2).

The triangle area encompassed by two axes and the line f1+f2 = d is the feasible region.

STT3 is a conic function with respect to the first two path flows and thus its contours

(i.e., all flow patterns with the same STT3 values) are ellipses, centered at SO3. The

best and the worst flow patterns are those BRUE which are located at the nearest and

the farthest STT contours from SO3.
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Figure 5.2: Relative positions of UE3 and SO3

In Figure (5.2b-5.2c), SO3 may be closer to UE3 or closer to the boundary of the

feasible region f1 + f2 = d. When SO3 is closer to UE3, as ε varies, the worst and the

best flow patterns are different from those when SO3 is closer to f1+f2 = d. Therefore,

it is further split into two scenarios. Similarly UE3 may be closer to the origin or to

SO3 in Figure (5.2d). In conclusion, to capture all possibilities of the worst and the

best flow patterns, the demand level should be divided into eight intervals (shown in
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Figure (5.3 and A.1-A.7)). Within each demand interval, the best and the worst flow

patterns depend on the value of ε and we will discuss them as ε increases from zero

to ∞. In the following, Case 1 when 0 � d < a1−a2
2(b1+b2)

(shown in Figure (5.3)) will be

elaborated upon.
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Figure 5.3: Case 1: 0 � d < a1−a2
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Figure (5.3a)-(5.3e) illustrate the worst and the best cases when 0 � d < a1−a2
2(b1+b2)

,

as ε gradually increases. The slanted line and the triangle are the feasible sets for

two scenarios respectively. The blue line segment is BRUE2 and the green polytope is

BRUE3. Grey elliptical lines are STT contours, facilitating identification of the best

and the worst cases. A star represents the best-case flow pattern, while circles indicate

the worst cases on the corner points of the BRUE set. There exist two worst flow

patterns because of symmetry of the BRUE set.

When 0 � ε < (b1 + b2)d (shown in Figure (5.3a)), ε is too small to divert flows

from path 3 to path 1 or 2, so BRUE3 contains only one flow pattern-the origin and

therefore the worst and the best cases are the same. The worst flow patterns for 2-path

scenario are corner points of BRUE2. As ε grows till (b1+b2)d (shown in Figure (5.3b)),

any feasible flow pattern under 2-path scenario belongs to BRUE2, so the worst flow

patterns for 2-path scenario are corner points of the line f1 + f2 = d. If ε continues to

grow up to −(b1+ b2)d+a1−a2 (shown in Figure (5.3c)), BRUE3 starts to expand and

the best flow pattern is the upper right corner point which is closest to SO3, indicated

by a circle. Continue this analysis until ε is so large that every feasible flow pattern

under 3-path scenario is BRUE3. Similar analysis can be applied to other seven cases

under different demand levels shown in Appendix.

In Figure (5.3a-5.3b), below the path flow coordinates is an axis representing the

STT, with its value increasing to the right. STT values for both scenarios are plotted

on this axis. STT3 is a single value and STT2 interval locates on the right side of STT3,

denoting that STT2 is higher than STT3. Thus the Braess paradox never happens.

Similar analysis can be applied to Figure (5.3c). In Figure (5.3d-5.3e), two STT intervals

overlap. So whether the paradox happens or not depends on which BRUE flow pattern

is used for the analysis (i.e., which attitude planners hold). This will be discussed in

detail in the next section.

Remark. In Case 8 shown in Figure (A.7b), BRUE3 is non-convex which reflects the

only non-convex situation discussed in Section 5.3.1. BRUE2 is one subset of BRUE3,

therefore it is hidden. The other subset S is indicated by a green triangle. After

calculation, we find out that the worst flow pattern is the corner point of BRUE2 not

that of S.
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5.3.3 Paradox synthesis over (d, ε) region

After analyzing the STT functions as the demand level or the indifference band varies

respectively, we are ready to explore how STTs vary with both variables.

One (d, ε) pair determines a BRUE set, among which each flow pattern is associated

with a STT value. As analyzed in Section 5.3.2, the STT values over a BRUE set con-

stitutes a compact interval. Figure (5.4) summarizes the STT intervals in two scenarios

within the (d, ε) region. The x-axis is the demand level and the y-axis represents the

indifference band level. Same colors are used to indicate STT intervals in two scenarios

as in Figure (5.3): the blue line segment represents STT2 while the green line segment

indicates STT3.

Though there exist a STT2 interval and a STT3 interval for each (d, ε) pair, under

certain combinations of d and ε, the STT intervals in two scenarios display similar

“patterns”. The pattern here we mean that the STT interval is either a single value

or an interval, and two STT intervals have similar relative positions. When two STTs

display similar patterns over a set of (d, ε) pairs, only one pattern is plotted. For

example, when 0 � d < a1−a2
2(b1+b2)

and 0 � ε < −(b1 + b2)d + a1 − a2, STT3 is a single

value while STT2 is an interval lying on the right side of STT3 (i.e., every STT value in

2-path scenario is larger than that in 3-path scenario). Therefore we can illustrate this

pattern in one set of STT2 and STT3 intervals, shown in the left bottom region in pink

color.

Under various combinations of d and ε, STT2 and STT3 have different values and

different relative positions (as illustrated in Figure (5.3,A.1-A.7)). Therefore the points

over the (d, ε) region can be grouped into multiple subregions. In Figure (5.4), the

vertical dividing lines indicate critical values of d, while the horizontal lines and oblique

ones represent critical values of ε with the formula listed next to the separating lines.

The pink region is when the paradox does not happen while the yellow region is when

the paradox always happens. The green region is when three attitudes are needed to

determine whether the paradox happens or not.
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5.3.4 Braess paradox regions under three different attitudes

In this subsection, we will plot SRP , SRN , SRA for the Braess network and study their

relationships, given cost parameters a1 = 50, a2 = 10, b1 = 10, b2 = 1.

Summarizing the analysis of the best and the worst STTs for eight cases in Sec-

tion 5.3.2 will give us complete STT functions. As STTs are functions of both d and

ε, 3-dimensional surfaces over (d, ε) region are used to illustrate them. In Figure (5.5),

the red surface denotes w-STT3 and the yellow one denotes b-STT2. The region where

the red is above the yellow surface is when the paradox happens. Since we are compar-

ing the worst value with link 5 to the best one without, this represents the risk-averse

attitude.

Figure 5.5: Risk-averse paradox

For ease of visualization, we project these two surfaces onto the 2-dimensional (d, ε)

plane in Figure (5.6a). The paradox happens over the red region. The demand level is

divided into eight intervals, with each interval representing one case discussed in Sec-

tion 5.3.2. Under each demand interval, C is short for ‘Case’ and the number following
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it denotes the case number. When ε = 0, the risk-averse paradox only occurs when the

demand falls within an intermediate level (i.e., 2.6 � d � 8.8), which is consistent with

the paradox analysis under UE in Pas and Principio (1997).

In Figure (5.6c), the red surface refers to b-STT3 and the yellow one represents w-

STT2. The red region is when the paradox happens. This represents the risk-prone

attitude. Similarly, when ε = 0, the risk-prone paradox only occurs when 2.6 � d � 8.8.

Increasing ε may cause the risk-prone paradox to disappear when the demand level is

too low and to happen when the demand level is high.

Assuming a uniform distribution over the STT interval, i.e., g(STT ) = 1
STT , the

mean of the STT is the arithmetic average of the best and the worst values. The Braess

paradox with the risk-neutral attitude is shown in Figure (5.6b). Similarly, the risk-

neutral paradox only occurs when 2.6 � d � 8.8 given ε = 0. Increasing ε may cause

the risk-prone paradox to disappear, because the indifference band can help improve

the system performance in the best scenario.
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(a) Risk-averse region SRA

(b) Risk-neutral region SRN
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These three paradox regions satisfy the relationship shown in Proposition (5.2.1).

Given ε = 0, the demand level under which three paradoxes happen are the same. When

the paradox under UE happens, the risk-averse paradox surely occurs with ε > 0, but

the risk-prone or risk-neutral paradox does not necessarily occur; on the other hand,

even when the paradox under UE does not happen, it may occur when ε > 0.

5.4 Braess paradox analysis in grid networks

Section 5.3 mainly focuses on deriving existence conditions of the Braess paradox an-

alytically in the classical Braess network. Although this network structure makes it

easy to illustrate the paradox graphically, the structure itself is unusual or extreme (at

least in transportation networks), which gives the implication that Braess paradox can

happen only in this kind of extreme networks, or at least it is unclear whether it can

happen in other more “ordinary” networks. In this section, we will generalize the para-

dox conditions under BRUE to simple and ordinary grid networks with regular BPR

link performance functions, to further demonstrate the potential of the Braess paradox

occurring in real transportation networks.

5.4.1 A grid network with one OD pair

Consider a simple grid network as shown in Figure (5.7). To make the network “ordi-

nary”, we consider that all links have the same commonly used BPR link cost function.

The link cost structure in this example simply represents a usual case that all roads in

the network are of similar standards. Consider that there is one OD pair from Node O

to Node D with a demand level d = 2. For this network, the UE flow on each link is

x = 1, and the UE travel time between OD is 3.45.

4

1

D3

2O

Cm( )1+0.15x^4

t(x)=1+0.15x^4

Figure 5.7: A grid network with BPR link cost functions
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Now consider one middle link is added from node 1 to 4, indicated as dotted line

in Figure (5.7). We shall demonstrate that, if the newly added middle link is faster

than the existing links, then Braess paradox could occur, i.e. the new UE travel time

between OD could be higher than 3.45. For simplicity, let the newly added middle link

have a BPR link cost function t(x) = cm(1 + 0.15x4), where cm is the free flow travel

time of the new middle link. Here we use cm to represent the fast degree of the new

link, i.e. the new link is the same with existing links if cm = 1, is slower if cm > 1,

and is faster if cm < 1. Under UE, the relationship of cm and the new UE travel time

is plotted in Figure (5.8). In Figure (5.8), the x-axis is the free flow travel time of the

new link, while the y-axis is the new UE travel time between OD. As cm decreases (the

new link becomes faster), the new UE travel time first decreases and then increases. In

particular, when the new link is so fast that cm < 0.75, the new UE travel time will be

higher than the original level 3.45, which means that the Braess paradox happens. If

the new link is ideally fast with a zero travel time, i.e., cm = 0, then the new UE travel

time will be 16 % higher than the original level 3.45.
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Figure 5.8: UE travel time comparison without and with the new link
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Because the network is a normal grid network with regular BPR link cost functions,

our result indicates that the Braess paradox can happen in the real world, especially in

grid networks. Retrospectively, the reason for the occurrence of the Braess paradox in

an ordinary grid network is simple: when a new fast link is added (or more generally,

some improvement is completed for some part of the network), users will be attracted

to use the new link, which will result in flow concentration on links connected to the

new link. The detrimental congestion effect of the flow concentration could outweigh

the beneficial effect of the fastness of the new link. When this is the case, the Braess

paradox simply occurs. With this underlying philosophy, it is clear that, as long as the

new link is fast enough to attract users and thereby causes flow concentration in its

vicinity, there is a possibility of the Braess paradox occurring.

The above argument is especially true for transportation networks with BPR link

cost functions, because BPR cost functions are convex functions such that the congestion

effect increases nonlinearly (more than linearly) with the level of flow concentration. On

the other hand, the fastness of the new link reduces travel times only linearly with its

fast degree. Therefore, as the new link becomes faster, the congestion effect of the

attracted flow concentration increases at a higher rate than the fastness effect itself

does, which means that, if the new link is too fast, the attracted congestion effect could

outweigh the fastness effect itself and thus the Braess paradox could occur. This implies

that, a “middle” link in a grid network with BPR link cost functions (like the one in

Figure (5.7)), if much faster than other links, could be a paradox link.

With the above example and analysis, and in view of the popularity and practicality

of BPR link cost functions and grid-kind networks in transportation field, it is safe to

say that the occurrence of Braess paradox in transportation networks should not be too

surprising.

Because the congestion effect of link cost functions plays an important role in the oc-

currence of the paradox, we introduce a term named ‘congestion sensitivity’ to describe

this congestion effect. The congestion sensitivity of link i’s travel time, denoted as pi,

is measured by the power of the link flow xi in its cost function ti(x). For example, if

the BPR function is used, i.e., t(x) = 1 + 0.15x4, the congestion sensitivity is p = 4.

To better understand the impact of the congestion effect on the paradox, in the

following, we would like to study the relationship of the link cost congestion sensitivity
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and the occurrence of the risk-averse paradox. The reason we mainly focus on the

risk-averse paradox is that it represents the worst scenario given a new link is built.

Under BRUE, the worst STT can be solved from Equations (5.2.5) with GAMS software

(General Algebraic Modeling System, see Rosenthal and Brooke 2007).

Remark. As the BRUE set is non-convex, the best and the worst STTs computed by

GAMS may be sub-optima and deviate from actual best and worst values, but the rela-

tive gap between the solution and the optimum is 10% by default in computation. For

such a small network optimization, GAMS can actually provide very accurate solutions

by employing two reliable approaches (Ferris et al. 2002). Therefore the accuracy of

the computed STTs is controlled to be within 90% of optima in the following numerical

examples. The sensitivity analysis of the solution accuracy can be discussed but it goes

beyond the scope of this study, which will be our future investigation.

In the grid network shown in Figure (5.7), assume the demand level d = 2, the new

link travel time is cm(1 + 0.15xp) and other links’ travel times are 1 + 0.15xp, where

p � 0. Note that when p = 0, the cost function reduces to a constant 1.15; while when

p = 1, the cost function reduces to the linear function 1 + 0.15x.

In Figure (5.9), each line represents a frontier of the risk-averse paradox region as

the function of (ε, p), given a certain cm. When (ε, p) falls on the right upper part of

the frontier, the risk-averse paradox happens. When cm varies from 0 to 1.5 (the range

when the paradox first happens and then disappears under UE), the occurrence of the

paradox may be affected by both ε and p or dominated by either of them.

When cm = 0 (indicated by the red line with star markers), the paradox happens if

p � 2.4 regardless of ε, because the new link is so fast that many travelers are attracted

to use it and two links connecting it suffer from the congestion effect if the congestion

sensitivity is high.

When cm = 0.7 (indicated by the black dotted line with square markers) and 0.9

(indicated by the yellow line with circle markers), in general, the larger the congestion

sensitivity is, the more likely the risk-averse paradox happens given a smaller indifference

band. In other words, bounded rationality plays a diminishing role in the occurrence of

the paradox if the congestion sensitivity is higher, because the link cost is highly sensitive

to the flow increase if the congestion sensitivity is large. However, when cm = 1.1

(indicated by the cyan line with cross markers) and 1.5 (indicated by the magenta line
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with diamond markers), the larger the congestion sensitivity is, the more likely the

risk-averse paradox happens with a larger indifference band. In other words, bounded

rationality plays a more important role in the occurrence of the paradox given the

congestion sensitivity is higher. This is because the paradox is dominated by ε when

cm is longer.

Therefore, there exists a critical travel cost of the newly built road so that the

indifference band and the congestion sensitivity play different roles in the occurrence

of the paradox under and above this value. In the grid network shown in Figure (5.7),

cm = 1 is the threshold. In practice, the indifference band is determined by people’s

route choice behavior and the congestion sensitivity is one of the road characteristics,

so these two values are difficult to modify. To reduce the likelihood of the occurrence

of the paradox, we need to carefully choose the travel cost of the new link.
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Figure 5.9: Risk-averse Braess paradox frontier over (p, ε) region

5.4.2 A grid network with four OD pairs

Here we give a multiple-OD network to further demonstrate the Braess paradox in

transportation networks. Figure (5.10) shows a grid network with four OD pairs, from

node 1 to 6 (OD 1), from 1 to 9 (OD 2), from node 4 to 6 (OD 3), and from 4 to 9
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(OD 4). The demand level for each OD pair is d = 0.7. All current links have the same

BPR cost function: t(x) = 1 + 0.15x4. The new link is added from node 2 to 5 with a

BPR link cost function t(x) = cm(1 + 0.15x4), where the free flow cost cm reflects the

fast degree of the new link.

5

2

64

31

t(x)=1+0.15x^4

8 97

Cm(1+0.15x^4)

Figure 5.10: A grid network connecting four OD pairs with BPR link cost functions

Figure (5.11) plots the UE travel time of the four OD pairs as a function of the free

flow travel time of the new middle link, cm. From our numerical results (also can be

seen from Figure (5.11)), when the new link has a free flow travel time 0.10 < cm < 0.84

(faster than the existing links), the UE travel times of all the four OD pairs are higher

than the original costs without the new link, which means that the addition of the new

fast link increases the UE travel time of every road user. Thus it is clear that the newly

added link could easily be a “paradox” link if its fast degree is not carefully designed.



123

0 0.5 1 1.5
2

2.5

3

3.5

4

4.5

5

Cm

E
qu

ili
br

iu
m

 O
D

 tr
av

el
 ti

m
e

 

 
OD1−without
OD2−without
OD3−without
OD4−without
OD1−with
OD2−with
OD3−with
OD4−with

Figure 5.11: Paradox analysis in the grid network connecting four OD pairs

It should be mentioned here that the above multiple-OD network example is not

constructed by much effort, as we simply incorporate the elementary network of Fig-

ure (5.7) into this larger network. The point here is that, no matter how complex a

network is, as long as it is a grid-kind network with BPR-kind convex link cost functions,

a fast “middle” link could be a “paradox” link, due to the same reasons mentioned in

the small single-OD example.

To examine the impact of BRUE on Braess paradox, let us now consider that the

indifference band for OD pair 1 is 0.1 and zero for other OD pairs. In this network,

we only discuss the paradox conditions when the new link free flow travel time cm

varies, provided the fixed demand levels and the indifference bands for four OD pairs.

Figure (5.12) shows the best and the worst STT functions with respect to cm without and

with the new link. The blue dotted lines represent the worst and the best STTs without

the new link, and the red lines represent those with the new link. We can decompose

cm into multiple intervals and the occurrence of the paradox is indicated within each
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interval: ‘No BP’ means the paradox does not happen, ‘BP’ means the paradox definitely

happens and ‘BPRA’ means the risk-averse paradox happens. When the new link is too

fast (i.e., cm ∈ [0, 1]), i.e., the congestion effect outweighs the beneficial effect brought

by the new link, either the paradox always happen (i.e., cm ∈ [0, 0.79]) or the risk-averse

paradox happens (i.e., cm ∈ [0.79, 1]). If the new link is too long (i.e., cm � 1.18), no

one will use it and there is no reason to build it. Thus, if we plan to build this new link,

cm ∈ [1, 1.06] is recommended in this case.
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Figure 5.12: Paradox analysis in the grid network connecting four OD pairs

Remark. When cm < 0.4, the best and the worst STT functions seems overlapping but

their values are a little different. When the new link is quite fast given the indifference

band ε = 0.1, most people traveling between OD pair 1 use the new link and only a few

use other routes. Thus, the worst scenario deviates only slightly from the best one and

the indifference band plays a very small role.



Chapter 6

Conclusions and Future Research

Directions

In this chapter, we will first summarize three significant research findings of this disserta-

tion in empirical validation, theoretical modeling and application of boundedly rational

route choice behavior. Then research gaps of this dissertation will be pinpointed. As

a growing research field in travel behavior study, several promising research directions

will also be provided.

6.1 Conclusions

This dissertation is motived by the irreversible response to a network change due to the

reopening of the I-35W Bridge in Minneapolis. To explain this anomalous phenomenon,

a boundedly rational route choice framework is proposed. Within this framework, em-

pirical analysis and theoretical modeling are developed, as well as its implication for

transportation planning.

First, by analyzing route choices of commuters in the Twin Cities before and after

the reopening of the I-35W Bridge, we reveal that there exists a time saving threshold

under which drivers will not switch to the new bridge. This threshold results from

people’s stickiness of driving habits and is characterized by an indifference band. A

probit model is used to estimate this indifference band by utilizing GPS travel data.

As bounded rationality successfully explains observed anomaly, this empirical work
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provides insights into the cause of the irreversible network change and sheds lights on

route choice behavior estimation with empirical data.

Second, by analyzing the interior structure of the BRUE set, this dissertation shows

that the BRUE set can be decomposed into finite subsets and each subset is convex

if affine linear link performance functions are employed. As a result, a systematic

methodology of obtaining BRUE solutions is proposed for networks with fixed demands.

The topological properties of the BRUE set are also studied.

The theoretical aspects of BRUE solutions help predict BRUE link flow patterns

in a network, paving the way for bounded rationality related applications. The most

crucial application is the Braess paradox analysis under bounded rationality. This

dissertation studies the general existence condition of the Braess paradox in ordinary

networks and analyzed the Braess paradox based on boundedly rational route choice

behavior assumption. The analysis shows that Braess Paradox can easily occur in

ordinary networks and the impact of BRUE on the Braess Paradox varies as the newly

built link cost changes. In contrast to the previous Braess paradox analysis which is

only influenced by the demand level, the occurrence of the boundedly rational Braess

paradox becomes more complicated and depends on both the demand level and the

indifference band.

6.2 Research gaps of this dissertation

Though this dissertation provides a comprehensive framework of boundedly rational

travel behavior modeling and estimation, there are several research directions which

need to be extended.

6.2.1 Empirical verification and estimation

Though it is the first effort in estimating the indifference band by utilizing empirical

GPS data collected in the Twin Cities, the empirical study is subject to limitations. Ac-

cording to the distribution of estimated time saving brought by using the new bridge,

stayers are decomposed into two groups: stayers from one group do not switch be-

cause the saved time is marginal; the other group of stayers decides to stay even when

saved time is substantial. This may result from the relatively small sample size or the
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behavioral heterogeneity among travelers.

Nowadays, not only aggregated detector data at fixed locations, but also mobile

sensor data from GPS or smart-phones for individual travelers are available. With

travel behavioral data from various sources in place, empirical verification of bounded

rationality should continue and bounded rationality parameters need to be estimated

for more metropolitan areas.

6.2.2 Mathematical properties of BRUE

One of the contribution of this dissertation is that the BRUE set can be decomposed

into multiple convex subsets provided with affine linear link cost functions. However, it

is still a big challenge to understand the topological properties of the BRUE set with

general link cost functions. Deeper understanding of the equilibrium set’s mathematical

properties will provide better prediction of traffic flow patterns and facilitate bounded

rationality applications.

Furthermore, existing studies on analytical properties of BRUE assume that deter-

ministic flow-dependent travel time is the only factor influencing route choices. Two

other major contributing factors, travel time reliability and monetary cost, have been

incorporated into perfect rationality models and accordingly UE is subjected to many

variants: Stochastic UE (SUE), Probabilistic UE (PUE) (Lo et al. 2006), Late ar-

rival penalized UE (LAPUE) (Watling 2006), Mean-excess traffic equilibrium (METE)

(Chen and Zhou 2010; Chen et al. 2011), Stochastic bicriterion user-optimal (Dial 1996,

1997), Bi-objective UE (BUE) (Wang et al. 2009). Significant contributions can be

made if these two factors are also incorporated into BRUE.

6.2.3 Transportation network design under bounded rationality

New methodologies are needed regarding the transportation network design problem

(NDP) with boundedly rational travel behavior. The classical network design problem

is usually formulated as a bi-level program: the upper level is the decision made to

either enhance capacities of the established links, apply congestion pricing, or add new

links to an existing road network; the lower level is an equilibrium problem, describing

how travelers are distributed within the new road network. Due to the existence of
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the indifference band, travelers may respond differently to a network design proposal,

leading to non-uniqueness of the equilibrium and causing difficulties in BRUE link flow

pattern prediction and proposal evaluation. Therefore a new network design framework

needs to be established to accommodate boundedly rational route choice behavior.

The above three directions are mainly focused on generalizing findings of this dis-

sertation. Boundedly rational travel behavior is still understudied and broader research

directions need to be provided.

6.3 Future Research Directions

In this section, we will point out research gaps which need to be filled in the existing

literature.

6.3.1 Cognitive process

Bounded rationality, involving extensive psychology and behavorial aspects, has been

well-studied in economics and psychology for decades. However, the cognitive process of

boundedly rational travel behavior remains understudied in transportation. The travel

behavior decision-making is a complicated cognitive process and borrowing models from

these established fields can expedite BR research in transportation.

6.3.2 Game-theoretical BRUE model

The boudedly rational game-theoretical model results in boundedly rational equilibria

and its analytical properties are generally tractable. There is no such literature on

exploring boundedly rational user equilibria with the game theoretical approach. Great

contributions will be made if the boundedly rational finite game can be borrowed to

model travel behavior. In addition, travelers are usually treated as infinitesimals and

large population approximation may also be needed to generalize boundedly rational

Nash equilibria to user equilibria.
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6.3.3 Boundedly rational multi-modal and route choice

Most existing dynamic travel behavioral models incorporated bounded rationality into

both departure-time and route choices and these two choices are jointly estimated. Mode

choice is always treated as a separate decision apart from these two choices. In future, a

unifying framework of boundedly rational multi-modal departure-time and route choices

should be developed to integrate all travel decisions.
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Appendix A

Acronyms and Appendix

Table A.1: Notation

N A set of consecutively numbered nodes

L A set of consecutively numbered links

a ∈ L Link index

W Origin-destination (OD) pair set connected by a set of simple

paths

Pw Simple paths (composed of a sequence of distinct nodes) connect-

ing OD pair w ∈ W
dw Traffic demand for OD pair w

d Traffic demand vector

fw
i Flow on path i ∈ Pw for OD pair w

f = {fw
i }w∈W

i∈Pw Path flow vector

F Feasible path flow set is to assign the traffic demand on the feasible

paths

xa Link flow on link a

x = {xa}a∈L Link flow vector

c(x) Link performance function

δwa,i Link-path incidence indicator, 1 if link a is on path i connecting

OD pair w, and 0 if not

Δ � {δwa,i}w∈W
a∈L,i∈P Link-path incidence matrix
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Table A.1 – continued from previous page

C(f) � {Cw
i (f)}w∈W

i∈P Path cost vector

⊥ Orthogonal sign representing the inner product of two vectors is

zero

(εw)w∈W Indifference band for OD pair w ∈ W
ε = (εw)w∈W , εw � 0 Indifference band vector

πw Maximum path cost within εw for OD pair w

ρwi Indifference function for path i ∈ P connecting OD pair w ∈ W
Pε
l Largest ε-acceptable path set

PUE User equilibrium shortest path set

Fε
BRUE ε-BRUE path flow solution set

w-STT (d, ε) the maximum STT among the ε-BRUE solution set

b-STT (d, ε) the minimum STT among the ε-BRUE solution set

SRP (d, ε) region for the risk-prone paradox

SRN (d, ε) region for the risk-neutral paradox

SRA (d, ε) region for the risk-averse paradox

Table A.2: Acronyms

Acronym Meaning

PR Perfect rationality

BR Bounded rationality

OD Origin-destination pair

BRD Boundedly rational day-to-day dynamic

UE User equilibrium

DUE Dynamic user equilibrium

DUO Dynamic user optimal

DTA Dynamic traffic assignment

BRUE Boundedly rational user equilibrium

STT system travel time

MPEC Mathematical programs with equilibrium constraints

Continued on next page
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Table A.2 – continued from previous page

Acronym Meaning

RUM Random utility maximization

i.i.d. Independently identically distributed

m meter
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