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Abstract

The continuing development of new energy technologies for electronic devices and med-

ical applications necessitates the search for advanced nanomaterials. Among the more

promising candidates are two novel materials: nanocrystal (NC) assemblies and three-

dimensional (3D) topological insulators (TIs). The former have great promise for opto-

electronic and photovoltaic devices, while the latter can be applied in spintronics and

quantum computing. Thus far, however, the development of NC- and TI-based devices

have been slowed by a lack of a solid theoretical understanding of many of their electronic

properties, in particular, the influence of the presence of disorder on charge transport.

In this thesis we propose to help address this need by performing a detailed, theoretical

analysis of the disorder effects on electronic transport properties of NC arrays and TIs.

NC assemblies can be made from different materials. Specifically, we consider three

types of systems: semiconductor NCs, metallic NCs and superconducting grains. As-

grown semiconductor NCs are insulators, and in order for them to be useful in photo-

voltaic devices, their electrical conductivity must be tuned by doping. Recent experi-

ments have shown that the resistivity of a dense crystalline array of semiconductor NCs

depends in a sensitive way on the level of doping as well as on the NC size and spacing.

We show that in sufficiently small NCs, the fluctuations in donor number from one NC

to another provide disorder that helps to determine the conduction mechanism in the

array. Using this model, we explain how the different regimes of resistivity observed

in experiment arise based on the interplay between the charging spectrum of NCs, the

long-ranged Coulomb interactions between charged NCs, and the discrete quantum en-

ergy levels of confined electrons. We supplement our theory with a computer simulation,

which we use to calculate the single particle density of states (DOS) and the resistivity.

Compared to semiconductor NCs, the quantum gaps in metallic NCs become neg-

ligible and disorder is provided by donors and acceptors that are randomly situated

in the interstitial spaces between grains. These changes may lead to different results

for electron energy distribution and charge transport. Using a computer simulation we

calculate the DOS and the conductivity in 2D and 3D arrays of metallic NCs. While

the Coulomb gap in the DOS is a universal consequence of electron-electron interaction
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in disordered systems with localized electron states, we show that for granular metals

there is not one but three identical adjacent Coulomb gaps, which together form a struc-

ture that we call a “Coulomb gap triptych.” Furthermore, unlike in the conventional

Coulomb glass models, in metallic NC arrays the DOS has a fixed width in the limit of

large disorder.

The third type of NC assemblies we consider are granular superconductors in the

strongly insulating regime, in which the array as a whole is insulating while individ-

ual grains may still contain Cooper pairs. In such cases, coherent tunneling is absent.

Instead, electronic states are localized and electron conduction proceeds primarily by

hopping of electrons between grains through the insulating gaps which separate them.

In principle, electronic conduction can occur either through tunneling of single elec-

trons or through simultaneous tunneling of an electron pair (or both). Using a simple

computer simulation, we numerically calculate the DOS and conductivity, and study

the evolution of conduction mechanism as a function of temperature, charging energy

and superconducting gap. The implications of our results for magnetoresistance and

tunneling experiments are also discussed.

The rest of the thesis discusses another type of disorder system: 3D TI. The 3D TI

has gapless surface states that are expected to exhibit a range of interesting quantum

phenomena. However, as-grown TIs are typically heavily-doped n-type crystals. Com-

pensation by acceptors is used to move the Fermi level to the middle of the band gap,

but even then TIs have a frustratingly small bulk resistivity. We show that this small

resistivity is the result of band bending by poorly screened fluctuations in the random

Coulomb potential. Using numerical simulations of a completely compensated TI, we

find that the bulk resistivity has an activation energy of just 0.15 times the band gap,

in good agreement with experimental data. At lower temperatures activated transport

crosses over to variable range hopping with a relatively large localization length. We also

extend our theory to the more practical case of strongly compensated semiconductors,

as in experiments the exact condition of complete compensation is difficult to meet.

We calculate the DOS, conductivity and activation energy of a strongly compensated

TI as a function of compensation degree. Historically known as good thermoelectric

materials, the thermopower properties of compensated TIs are also discussed.
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Chapter 1

Introduction

1.1 Nanocrystal assemblies

There has never been a greater need for efficient new energy technologies than at present.

As the world’s fossil fuel resources are increasingly depleted, and as the environmental

consequences of their depletion accumulate, the need for clean and renewable energy

technologies becomes more critical. Solar cell technologies, in particular, seem like an

ideal candidate to replace fossil fuels, given their ability to directly convert sunlight

into useful electrical power via the photovoltaic effect. However, the high cost and

low efficiency of current photovoltaic devices has thus far prevented their widespread

implementation.

These practical limitations have led researchers to examine alternate materials and

methods of fabrication for solar cells. Among the more promising approaches is to

make solar cells from arrays of semiconductor nanocrystals (NCs). NC arrays retain the

broadband absorptive properties and superior transport properties of traditional bulk

semiconductors while offering the advantages of cheap and scalable synthesis and an

absorption spectrum that can be readily tuned by adjusting the NC size or shape.

A NC is an aggregate of between a few hundred and a few hundred thousand atoms

that combine into a crystalline form of matter. Given the small size of NCs, which are

typically between 3 and 10 nanometers in diameter, quantum mechanical effects strongly

affect the energy of electrons confined within the NCs, and thus help to determine the

optical and electronic properties of the NC array. As produced, because of various forces
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such as the van der Waals internaction, individual NCs can self-assemble themselves into

a superlattice, where the interplay between individual and collective properties may

lead to many interesting phenomena in optics and electronic transport. Such dense,

crystalline assemblies of NCs are the main objects of interest in this thesis.

One of the major technological challenges associated with NC-based photovoltaic

devices is that, as produced, NC arrays are insulating, meaning that light-created elec-

trons and holes are not easily converted into useful electrical current. Thus, in order

for NC arrays to be useful in photovoltaic devices, their electrical conductivity must

be tuned by the addition of donor electrons or acceptor holes (”doping”), either by

chemical modification of the NC composition or by electrochemical gating.

In particular, we consider the case where each NC is made from a semiconductor that

is heavily-doped, for example, by donor impurities. In this case all donor electrons reside

in the conduction band of the NC. It is known that a heavily-doped bulk semiconductor

is essentially a good conductor due to relatively large overlap between the wave functions

of donor electrons. In NC assemblies, however, the condition of metallic conduction is

usually difficult to meet even under heavily-doping for the following reasons.

Note that NCs do not touch each other but are separated by some insulator mate-

rial such as the ligands shown in Fig. 1.1. In order to conduct across the array, donor

electrons must tunnel between NCs under the high barrier associated with those insu-

lating ligands. The tunneling integral t between neighboring NCs decays exponentially

with the separation d and with the height of the tunneling barrier between them. For

metallic conduction this means t being larger than the characteristic disorder energy in

the system.

In fact, one can show that, even a small amount of disorder (such as the standard

5% size distribution) will cause relatively large fluctuations of the electron energy from

one NC to another [1] so that donor electrons experience Anderson localization. In

this situation conduction proceeds only by phonon-assisted tunneling, or “hopping”,

between localized electron states. This hopping is a thermally-activated process in

which electron tunneling occurs simultaneously with the absorption or emission of a

phonon whose energy accounts for the difference between the initial and final electron

states.

Suppose in the global ground state of the array all NCs are neutral, then hopping



3

D d

D’

Figure 1.1: (Color online) Schematic drawing of spherical semiconductor NCs (large,
light-colored circles) with diameter D arranged in a crystalline lattice with lattice con-
stant D′. Each NC is coated in a thin layer of insulating ligands (curvy lines) that
maintain a separation d = D′−D between NCs and prevent them from sintering. Each
NC has a random number of donors in its interior (small, black circles).

transport requires an electron to be thermally excited to jump from one neutral NC

to another. This process produces two oppositely charged NCs, each of which has

a corresponding Coulomb self-energy Ec = e2/κD, where κ is the effective dielectric

constant of the NC array and D is the NC diameter. This charging energy plays the

role of an activation energy for resistivity in the case where all NCs are neutral in the

global ground state. Equivalently, one can say that the distribution of electron ground

state energies, or the “density of ground states” (DOGS) of NCs, has a gap of width 2Ec

centered at the electron Fermi level. As a result, the resistivity ρ follows the Arrhenius

law: ln ρ ∝ Ec/kBT , where kBT is the thermal energy.

In experiments, however, one often observes a temperature dependence of the re-

sistivity that is different from simple activation: ln ρ ∝ T−γ , with the temperature

exponent γ < 1. Such “stretched exponential” behavior is believed to be possible only

if the disorder is so strong that a substantial fraction of NCs is charged in the global

ground state. Such charging creates a random Coulomb potential landscape that shifts

up and down the electron energy spectra at different NCs. As a result of this shifting,
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the gap in the DOGS is smeared and filled. This smearing means that some electron

states have energies very close to the Fermi level, and as a result one can find a pair of

empty and filled electron states separated by an energy ∆E that is much smaller than

Ec. At small temperature kBT ≪ Ec, it is hopping between such pairs that are close in

energy that dominates the conduction. For small ∆E the typical separation r between

the corresponding NC pair is much larger than the spacing D′ between neighboring

NCs. Thus, at small temperature T electron conduction relies on tunneling between

distant NCs.

If the temperature T is made increasingly small, the corresponding energy difference

∆E of electron hops becomes increasingly small due to the scarcity of available high-

energy phonons, and as a result the typical hop length increases. Such behavior is

known as variable range hopping (VRH), and is responsible for the stretched exponential

behavior γ < 1 in the resistivity. When the DOGS is constant near the Fermi level, the

resistivity follows the Mott law of VRH [2]: ln ρ ∝ T−1/4. However, in systems where

the long-ranged Coulomb potential is not screened, electron correlation effects produce

a DOGS that vanishes quadratically with energy at the Fermi level [3]. Such a vanishing

DOGS results in the Efros-Shklovskii (ES) law of VRH: ln ρ ∝ T−1/2. In principle, all

three of these conduction behaviors — Arrhenius (γ = 1), Mott VRH (γ = 1/4), and

ES VRH (γ = 1/2) — are possible in arrays of semiconductor NCs, depending on the

magnitude and type of disorder present.

A number of transport experiments on seminconductor NC arrays found that factors

such as doping level, temperature and NC size can all affect the resistivity. For instance,

as the average number ν of dopant electrons per NC is varied, the dependence of the

resistivity ρ on the temperature T changes between Arrhenius-type activated conduction

(γ = 1) and VRH (γ < 1); on the other hand, at some particular doping level (e.g.,

ν = 2), as the temperature is decreased a transition from activated transport to VRH

was observed [4]. Thus far, however, there is no general theory to explain how different

types of conduction can coexist, especially how disorders affect conductivity. According

to the above analysis, the presence of sufficiently strong disoder is essential for the non-

vanishing DOGS at the Fermi level and thereby non-activated transport. While both

doping level and NC size may have fluctuations in real experiments, understanding the

role of disorders in NC charge transport is therefore crucial to the development and
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applications of NC-based devices.

In this thesis, such a theory is presented to examine the disorder effects on resistivity

of a dense, crystalline array of semiconductor NCs. Specifically, we study the temper-

ature dependence of the resistivity on the level of doping as well as on the NC size

and spacing. The choice of these parameters determines whether electron conduction

through the array will be characterized by activated nearest-neighbor hopping or VRH.

Once understood, this model is adapted to explore hopping transport in two other

types of NC assemblies: metallic NCs and superconducting grains. Similar to semi-

conductor NCs, conduction in metallic ones also proceeds by hopping between localized

electron states. However, there are two different aspects that must be taken into account

when studying metallic NCs. First, quantum confinement effects are negligible, for the

spacing between quantum energy levels is now small compared to the charging energy

of a dot. Second, disorder no longer comes from the random chemical doping process

but has a different source. These features are shown below to lead to very different (and

striking) results on DOGS and conductivity in metallic NCs.

Finally we turn our attention to periodic arrays of superconducting grains. Such

systems combine the unique electronic spectrum of superconducting quantum dots with

the strong Coulomb correlations that are ubiquitous in disordered systems [5]. Granular

superconductors exhibit many interesting quantum phenomena such as a giant magne-

toresistance peak [6, 7, 8] and a disorder-driven superconductor-insulator transition

[9, 10]. So far, a comprehensive theory of the electron conductivity that can explain

these features remains elusive.

Here, we focus on the strongly disordered limit, where the array of superconducting

grains as a whole is insulating while individual grains may still retain prominent fea-

tures of superconductivity [10, 11, 6]. In this case, electronic states are localized and

electron conduction proceeds primarily by hopping of electrons between grains through

the insulating gaps which separate them. In principle, electronic conduction can occur

either through tunneling of single electrons or through simultaneous tunneling of an

electron pair (or both). What determine the conduction mechanism are two important

energy scales associated with the spectrum of electron energy states within each grain:

charging energy Ec, and the superconducting gap ∆0 that represents an activation en-

ergy for separating a Cooper pair. As the ratio of ∆0/Ec is gradually increased, say,
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by an applied magnetic field, the system goes from single-electron dominated regime to

electron pair dominated regime. The evolution of DOGS and conductivity also provides

a qualitative explanation for the giant magnetoresistance peak that has been observed

in some of the superconducting ultra-thin films.

Although the above systems are made of different materials, they all share one im-

portant feature: the presence of disorders plays an important role in charge transport.

In semiconductor NCs, the only disorder is assumed to be the fluctuations in donor

numbers among NCs; in metallic NCs and superconducting grains, disorder is provided

by random impurity charges embedded in the insulating gaps between grains. It will be

explained below that, the interplay between disorder, Coulomb interactions and quan-

tum effects can have significant influence on electron conduction and lead to peculiar

results on DOGS and resistivity that are not seen in conventional bulk seminconductor

and Coulomb glasses.

1.2 Topological insulators and strongly compensated semi-

conductors

The discovery and classification of distinctive electronic phases of matter has always been

an important topic in condensed matter physics. As we know, the behavior of electrons

in different materials varies dramatically. The electrical insulator, for instance, is one of

the most basic electronic phases of matter, characterized by an energy gap for electronic

excitations. Recent work has, however, now uncovered a new class of materials termed

topological insulators (TIs) [12, 13, 14, 15, 16]. The most distinguishing feature of

these insulators is that they can insulate on the inside but conduct on the outside -

analogous to a block of wood covered with a layer of copper, except that the material

is actually the same throughout. Due to strong spin-orbit coupling, electrons that

move along the surface have their spin locked perpendicular to their momentum (spin-

momentum locking) (see Fig. 1.2(a) for the band structure of a typical 3D TI [17]).

Furthermore, these gapless surface states are topologically protected against disruptions

such as defects, chemical passivation, and thermal fluctuations. First predicted and

then discovered experimentally in semiconducting alloy Bi1−xSx, 3D TI has attracted

enormous attention in the physics community for their potential applications ranging
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from spintronics to quantum computation.

Figure 1.2: (a) Energy band structure of undoped Bi2Se3 measured by ARPES. The
top and bottom are the conduction and valence band of the bulk, respectively; in the
middle are the gapless surface states that have a dirac-cone like band structure. (b)
Schematic drawing of energy band structure of 3D TI in momentum space. The large
concentration of intrinsic dopants puts the Fermi level µ high in the conduction band.
To achieve a bulk insulating state, the (shallow) intrinsic dopants must be compensated
by (shallow) acceptors. As a result, the original Fermi level µmoves from the conduction
band down into the band gap.

While a number of crystals have been identified to be 3D TIs, unfortunately, most of

them are poor insulators and the bulk of TI crystals of substantial size (> 10 µm) shunts

the surface conductivity. The current literature [18, 19, 20, 21, 22, 23, 24, 25, 26]broadly

discusses how one can achieve a bulk-insulating state.

Typically as-grown TI crystals such as Bi2Se3 are heavily doped n-type semiconduc-

tors, so that the Fermi level resides in the bulk conduction band. (In as-grown Bi2Se3,

Se vacancies are believed to play the role of intrinsic donor impurities.) To make them

insulating, these TIs are compensated by acceptors such as Te. The compensation pro-

cess is illustrated in Fig. 1.2(b). With increasing compensation K = NA/ND, where ND

and NA are the concentrations of monovalent donors and acceptors, respectively, the

Fermi level shifts from the conduction band to inside the gap and then into the valence

band at K > 1. When compensation of donors is complete, K = 1, the Fermi level is

in the middle of the gap and the most insulating state of TI is achieved. The hope is

that for a TI with the gap Eg ∼ 0.3 eV the resistivity should obey the activation law

ρ = ρ0 exp(∆/kBT ), with activation energy ∆ = Eg/2 ∼ 0.15 eV, so that TI is well

insulating at room temperatures and below.
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However, the typical experimental situation near K = 1 is frustrating [25]. In the

range of temperatures between 100 and 300 K, although the resistivity is activated,

the activation energy ∆ ∼ 50 meV, which is three times smaller than expected. At

T ∼ 100 K the activated transport is replaced by VRH and resistivity grows even more

slowly with decreasing T . Finally, at even smaller T < 50 K resistivity saturates around

ρ(T ) < 10 Ωcm. This means that, in spite of complete compensation the conductance of

TI samples thicker than 10 µm is dominated by the bulk even at helium temperatures.

The above theory is based on the assumption that the conduction and valence band

edges are flat just like in undoped (or lightly doped) semiconductors. However, the bulk

of 3D TI is essentially a heavily-doped, strongly-compensated semiconductor. As the

semiconductor is fabricated, due to some high temperature process (explained below in

more detail), a large amount of dopants are randomly situated in space. AtK = 1, when

almost all donors and acceptors are charged, random spatial fluctuations in the local

concentration of impurities lead to large fluctuations of charge. The resulting potential

is poorly screened because of the vanishing average concentration of screening electrons

n = ND −NA ≪ ND, and therefore, has huge fluctuations.

Below we show that it is the disorder effect neglected in the conventional flat bands

theory that leads to the unexpected bulk conductivity. Specifically, the anomalously

large bulk conductivity of TI at K = 1 can be explained as a consequence of disorder

potential created by randomly-distributed in space donor and acceptor impurities. The

disorder potential significantly bend the conduction and valence bands and in some

places bring them to the Fermi level, resulting in a reduced activation energy. Our theory

is supplemented with a computer simulation, which we use to calculate the DOGS,

conductivity and activation energy. A transition from thermally activated transport to

VRH conduction at low temperatures is also found.

Our theory is then extended to the case of finite compensation. In experiments,

tuning the compensation is tricky and it can be difficult to reach the exact K = 1

condition. Instead, one may end up with somewhere near the complete compensation.

Thus, it is a very practical question that whether our model holds for 1−K ≪ 1 as well,

especially the validation of the relation between activation energy and compensation

degree. Furthermore, Bismuth compounds are known historically as good thermoelectric

materials. Using our theory based on disorder potential, we calculate the thermopower
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of Bi1−xSex and compare our numerical results with the recent experimental data.

1.3 Main results of this thesis

As briefly explained in the previous section, in disordered systems where electrons are

strongly localized, electron conduction primarily proceeds by hopping between localized

states. This hopping transport is sensitive only to the ground state energies of electrons

and holes that are added to the as-grown materials. In order to calculate conductivty of

NC assembilies and TIs, a detailed description of the ground state energy distribution

is needed. Each physical system has its own characteristic disorder source, and one of

the main goals of this thesis is to examine disorder effects on the electron ground states

and the corresponding conductivity.

In Ch. 2 we present such a theory, based on a first-principles description of the

ground state arrangement of electrons within an array of doped semiconductor NCs.

We focus on a simple model of identical spherical NCs that are covered by a thin

layer of insulating ligand (or some other insulator) and arranged in an ideal crystalline

lattice, as depicted in Fig. 1.1. We show that the presence of fluctuations in donor

number between different NCs is sufficient to produce charging of NCs, which results

in a disordered Coulomb landscape that encourages VRH. This charging is driven by

the large gaps between shells of the electron quantum energy spectrum in NCs with

large Bohr radius aB. Specifically, these inter-shell gaps drive electrons to depart from

NCs with a large number of donors, where maintaining electroneutrality would require

placing electrons in higher quantum energy shells, and reside instead on nearby NCs

with small donor number. In this way some NCs spontaneously acquire a positive or

negative charge, and it is this charging that leads to VRH when the temperature is not

too large.

Using this model, we explain how the different regimes of resistivity observed in

experiment arise based on the interplay between the charging spectrum of NCs, the

long-ranged Coulomb interactions between charged NCs, and the discrete quantum en-

ergy levels of confined electrons. We supplement our theory with a simple computer

simulation to calculate the DOGS and the resistivity.

Our main result is that VRH appears when the average number ν of electrons per
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Figure 1.3: (Color online) Phase diagram indicating regimes of activated and ES re-
sistivity as a function of doping level ν and the dimensionless quantum energy gap
∆ ≡ 20.64κaB/κNCD at low temperature kBT ≪ e2ξ/κD2. Symbols correspond to
simulated systems: filled (light blue) circles indicate systems that exhibited ES resis-
tivity and open squares indicate systems that exhibited activated resistivity. The thick
(red) curve is an approximate boundary between these two regimes, which are labeled
“ES” and “A”, respectively. Dashed, horizontal lines indicate the value of ∆ corre-
sponding to Si NCs with D = 5 nm (as in Ref. [27]) and to CdSe NCs with D = 6.2 nm
(as in Ref. [4]). This phase diagram and the computer simulation methods are discussed
more thoroughly in Ch. 2.

NC, the NC diameter D, and the temperature T satisfy the following three conditions:

(i) ν & 0.6,

(ii) D . 34κaB/κNC, and

(iii) kBT . 0.5e2ξ/κD2.

Here, κNC is the internal dielectric constant of NCs. When these three conditions are

satisfied, the resistivity follows the ES law. In situations where any of the three criteria

is not met, the conduction is activated. This result is depicted at low temperature,

kBT ≪ e2ξ/κD2, in the phase diagram of Fig. 1.3.
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In contrast to semiconductor NCs, where the spontaneous charging is driven by ran-

dom doping and relatively large quantum gaps, metallic NCs are different in two ways.

First, in metallic NCs the gap ∆ between quantum energy levels becomes vanishingly

small and spontaneous charging does not occur. Second, disorder now comes from a

different source. Instead of fluctuations in donor number among dots, in such systems

disorder is provided by donors and acceptors that are randomly situated in the intersti-

tial spaces between grains—for example, in the metal oxide of the grains (more details

about the disorder mechanism are discussed in Ch. 3). It is then an interesting question

to see how the DOGS and conductivity of the system are going to be modified.
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Figure 1.4: (Color online) The DOGS of a regular 3d array of monodisperse NCs, where
ε = E/(e2/2C0) is the dimensionless single-particle energy and g∗(ε) = (e2Dd/2C0)g(ε)
is the dimensionless DOGS, where D is the NC diameter. Here, the results are shown
from a computer simulation of a 3d cubic lattice. The shaded area shows filled electron
states, and the empty area indicates empty states. In addition to electron–hole symme-
try, the two peaks of the DOGS have a mirror symmetry across ε = ±1, respectively
(dotted lines). This symmetry creates from the central Coulomb gap two additional
half-gaps at ε = ±2, resulting in a “Coulomb gap triptych.” Insets show the DOGS
near the Fermi level ε = 0 in log-log scale.

In Ch. 3, we explore hopping transport in two-dimensional (2D) and three-dimensional

(3D) arrays of monodisperse normal metallic grains. The most striking result is the re-

peated Coulomb gap in the DOGS. We show that, as a result of the periodic charging

spectrum of individual grains, there is not one but three identical adjacent Coulomb gaps
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in the DOGS (one full gap at the Fermi level and two “half-gaps” on either side), which

together form a structure that we termed a “Coulomb gap triptych.” The Coulomb gap

triptych represents a bridge between the concepts of the Coulomb gap and the Coulomb

blockade. In addition, the DOGS in metallic granular arrays exhibits a rather surprising

feature: unlike in conventional Coulomb glass models, it has a fixed width in the limit

of large disorder. This result is shown in Fig. 1.4, which can be verified by tunneling

experiments.

The final type of NC arrays to be discussed is periodic arrays of superconducting

grains in the strongly disordered limit, where the array of superconducting grains as

a whole is insulating while individual grains may still contain Cooper pairs. Coherent

tunneling of Cooper pairs (the Josephson effect) is neglected. In such a system, elec-

tronic states are localized and electron conduction proceeds primarily by hopping of

electrons between grains through the insulating gaps which separate them.

At a given temperature T , two important energy scales associated with the spectrum

of electron energy states within each grain affect the magnitude of hopping conductivity

. The first one is the charging energy Ec = e2/2C0, where C0 is the self-capacitance of a

single grain. The second energy scale is the superconducting gap ∆0, which represents

an activation energy for separating a Cooper pair. In the limit where ∆0/Ec → 0,

the array is equivalent to a granular metal [5, 28, 29, 30]; in the opposite limit, each

grain has the properties of a bulk superconductor. Here, we are interested in the regime

when Ec and ∆0 are similar in magnitude. The previous study of metallic NCs can be

considered as a model for a granular superconductor in the limit where ∆0/Ec → 0.

In principle, electronic conduction can occur either through tunneling of single elec-

trons or through simultaneous tunneling of an electron pair (or both). Using a simple

computer simulation, we show that it is the ratio of superconducting gap to charging

energy ∆0/Ec that determines whether the hopping transport is governed by tunneling

of single-electrons or electron pairs. Specifically, we study the DOGS and conductivity

as a function of gap ∆0 and temperature T . The result for the DOGS of single electrons,

which is denoted g1(ε), is shown in Fig. 1.5(a) for different values of ∆∗ = ∆0/Ec. Fig.

1.5(b) shows the DOGS for electron pairs, g2(ε). As ∆∗ grows, the system switches from

single-electron dominated regime to electron pair dominated regime. The transition is

also reflected in system’s hopping conductivity, which is discussed thoroughly in Ch. 4.
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Figure 1.5: (Color online) Single electron and pair DOGS, g∗1(ε) and g∗2(ε), of a regular
2d array of monodisperse metallic grains as a function of the dimensionless electron
energy ε = E/Ec at different values of the superconducting gap ∆∗ = ∆0/Ec. At
∆∗ < 1, the single electron DOGS g∗1 has a soft Coulomb gap at ε = 0, while the
pair DOGS g∗2 has a hard gap, and the situation is reversed for ∆∗ > 1. ∆∗ = 1 is
a critical point at which both g∗1,2 have a soft Coulomb gap. The three DOGS curves
corresponding to g∗1(ε) at ∆∗ = 0, 1 and g∗2(ε) at ∆∗ ≥ 1 constitute “Coulomb gap
triptychs” and can be scaled onto each other by rescaling the electron charge.

The mechanism of the giant magnetoresistance peak observed in many superconducting

thin films can also be qualitatively explained by the evolution of DOGS.

In the remainder of this thesis, we turn our attention from NC assemblies to another

important type of disorder system: 3D topological insulators. As briefly discussed

in the previous section, the bulk of a 3D TI is essentially a heavily-doped, strongly

compensated semiconductor, with a large number of charged dopants present in the bulk.

These impurities create enormously-fluctuating random Coulomb potential that bend

the conduction and valence bands, and the bulk resistivity can be dramatically different

from the one assumed in the flat bands picture of TI [31]. First, at relatively high
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Figure 1.6: Energy diagram of a completely compensated TI with band gap Eg. The
upper and the lower straight lines (Ec and Ev) indicate the unperturbed positions of the
bottom of the conduction band and the ceiling of the valence band; the middle line (µ)
corresponds to the Fermi level. Meandering lines represent the band edges, which are
modulated by the fluctuating potential of charged impurities; Rg is the characteristic
size of these potential fluctuations. The percolation levels for electrons, Ee, and holes,
Eh, are shown by dashed lines; the activation energy ∆ corresponds to the difference
Ee − µ (or µ − Eh). Puddles occupied by carriers are shaded. Shallow impurity levels
are not shown because they merge with the band edges.

temperatures activated conduction is due to electrons and holes being activated from the

Fermi level to their corresponding classical percolation levels (classical mobility edges),

Ee and Eh, in the conduction and the valence bands. These may be substantially closer

to the Fermi level µ than the unperturbed by random potential bottom of the conduction

band Ec and ceiling of the valence band Ev (Fig. 1.6). 1 Thus, one can think of the

universal small factor ∆/Eg ≃ 15 as corresponding to a percolation threshold associated

with percolation through the potential created by random impurities in 3D. Second, at

low enough temperatures electrons and holes can hop (tunnel) between puddles, so that

variable range hopping replaces activated transport. In the low temperature limit ρ(T )

should obey the ES law of VRH [3].

The above theory on the enhanced bulk conductivity in TI was confirmed by numer-

ical simulations using percolation approach. We compute the resistivity as a function

1 Note that Ec here represents the bottom of the conduction band, and should not be taken as the
charging energy defined in the sections of NC assemblies.
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of temperature, and find two activated regimes of hopping conductivity. At high tem-

peratures we see the large activation energy Ea ∼ Ec − µ; in the range of intermediate

temperatures, we see much smaller activation energy ∆ ≃ 0.3(Ec−µ) = 55 meV, which

is in good agreement with the experimental value. At low temperatures the resistivity

is well described by ES law.

So far we have focused on the case of complete compensation K = 1. In the remain-

der of Chapter 5, we move on to a more practical situation: a strongly compensated

semiconductor (SCS), namely 1 − K ≪ 1. This is because with existing methods of

growth of TI samples one cannot reach K = 1 exactly. It is then important to know

how stable the resistivity results at K = 1 are for the case of 1−K ≪ 1.

We model numerically the ground state of such SCS and its resistivity using algo-

rithms similar to Ref. [31]. We find that in agreement with the analytic theory [32],

when 1 −K grows, the screening of the random potential improves and its correlation

length Rg decreases. The amplitude of the random potential decreases as well. As a

result, hole puddles shrink and eventually vanish and the chemical potential µ moves

up, so that Ec − µ decreases. One can say that with increasing 1 − K, the screening

due to bending of the conduction band occurs only while all acceptors remain occupied

by electrons and negatively charged.
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Figure 1.7: (Color online) The activation energy ∆ at K = 1, 0.99, 0.98, 0.97, 0.96 and
0.95 (from right to left). The dashed line is the best linear fit ∆ ≃ 0.3(Ec − µ).

As a result of these changes, the activation energy ∆ decreases with growing 1−K.
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We find that the relation ∆ = 0.3(Ec−µ) obtained in Ref. [31] for K = 1 remains valid

for 1 −K ≪ 1 (see Fig. 1.7) as well. [In p-type semiconductor where K = ND/NA, a

similar relationship ∆ = 0.3(µ−Ev) takes place.] In principle, our prediction that ∆ =

0.3(Ec − µ) can be directly compared with experiments in TIs. Indeed, for each K, the

position of the Fermi level can be found via measurements of the surface concentration

of electrons in the gapless surface state using Shubnikov-de-Haas oscillations.



Chapter 2

Semiconductor Nanocrystals

2.1 Introduction

Arrays of semiconductor NCs have great promise for optoelectronic and photovoltaic

devices, for both their optical and electronic properties can be readily tuned – the former

by choosing the size or shape of NCs [27, 33], and the latter by the addition of dopants

or surface ligands that control the spacing between NCs [34, 35]. Recent experiments

have demonstrated that dense, crystalline arrays of spherical semiconductor NCs can be

reliably produced with diameter in the range 4–10 nm and with less than 5% dispersion

[27, 28]. Thus, optoelectronic or photovoltaic devices made from NCs can be designed

to operate precisely in any chosen region of the optical spectrum.

In Fig. 2.1(a), for example, a high-resolution tunneling electron microscope image of

a single CdSe NC is shown, where the dark spots are CdSe atoms aligned periodically

just like in a bulk crystal. NCs made from PbSe or Si are also commonly studied. As

produced, due to a variety of forces such as the van der Waals internaction, individual

NCs can self-assemble themselves into a superlattice. Fig. 2.1(b) shows a face-center

cubed superlattice of CdSe NCs. Such a superlattice combines both individual and

collective properties of NCs and may give a range of interesting physical phenomena.

From a practical standpoint, however, the development of NC-based devices is slowed

by the high resistivity of the NC arrays. In their undoped state, semiconductor NCs are

insulators, and in order to reduce their large resistivity it is necessary to bring additional

electrons (or holes) to the NCs either through chemical doping [36] or electrochemical

17
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Figure 2.1: Transmission electron microscopy of (a) a single CdSe NC and (b) a face-
center cubed superlattice of CdSe NCs.

gating [4]. In this chapter we focus primarily on the former, although we comment on

electrochemical gating at the end of the chapter.

In particular, we consider the case where each NC is made from a semiconductor

that is heavily-doped by donor impurities. In this case all donor electrons reside in the

conduction band of the NC. In order to conduct across the array, these electrons must

tunnel between NCs under the high barrier associated with the insulator (such as the

ligands shown in Fig. 2.2) that fills the space between them.

In the presence of even a relatively small amount of disorder in the array, the large

tunneling barriers imply that donor electrons experience Anderson localization due to

fluctuations in the electron energy from one NC to another [1]. In this situation con-

duction proceeds only by phonon-assisted tunneling, or “hopping”, between localized

electron states. This hopping is a thermally-activated process in which electron tunnel-

ing occurs simultaneously with the absorption or emission of a phonon whose energy

accounts for the difference between the initial and final electron states. (While metallic

conduction through the array is in principle possible, and has been reported [37], it

requires the characteristic disorder energy in the system to be smaller than the hopping

integral t between neighboring NCs. Since t decays exponentially with the separation

d between NCs and with the height of the tunneling barrier them, the condition for

metallic conductivity is difficult to meet, and in this chapter we assume that electron

conduction proceeds by hopping.)

If one assumes that in the global ground state of the array all NCs are neutral, then
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Figure 2.2: (Color online) Schematic drawing of spherical semiconductor NCs (large,
light-colored circles) with diameter D arranged in a crystalline lattice with lattice con-
stant D′. Each NC is coated in a thin layer of insulating ligands (curvy lines) that
maintain a separation d = D′−D between NCs and prevent them from sintering. Each
NC has a random number of donors in its interior (small, black circles).

hopping transport requires an electron to be thermally excited to jump from one neutral

NC to another. This process produces two oppositely charged NCs, each of which has

a corresponding Coulomb self-energy Ec = e2/κD, where κ is the effective dielectric

constant of the NC array and D is the NC diameter. This charging energy plays the

role of an activation energy for resistivity in the case where all NCs are neutral in the

global ground state. Equivalently, one can say that the distribution of electron ground

state energies, or the “density of ground states” (DOGS) of NCs, has a gap of width 2Ec

centered at the electron Fermi level, as shown in Fig. 2.3. As a result, the resistivity

ρ follows the Arrhenius law: ln ρ ∝ Ec/kBT , where kBT is the thermal energy. We

emphasize that the activation energy for hopping conduction is sensitive only to the

ground state energies of electrons and holes that are added to NCs. For this reason

when calculating the resistivity it is sufficient to consider the DOGS, which does not

include excited electron states with additional kinetic energy.

In experiments, however, one often observes a temperature dependence of the re-

sistivity that is different from simple activation: ln ρ ∝ T−γ , with the temperature
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Figure 2.3: (Color online) Distribution of electron ground state energies in the absence
of any disorder. The bottom shaded (green) peak corresponds to the filled states, while
the top empty one corresponds to the excited states. The DOGS has a gap of width
2Ec centered at the electron Fermi level.

exponent γ < 1. Such “stretched exponential” behavior is believed to be possible only

if the disorder is so strong that a substantial fraction of NCs is charged in the global

ground state. Such charging creates a random Coulomb potential landscape that shifts

up and down the electron energy spectra at different NCs. As a result of this shifting,

the gap in the DOGS is smeared and filled. This smearing means that some electron

states have energies very close to the Fermi level, and as a result one can find a pair of

empty and filled electron states separated by an energy ∆E that is much smaller than

Ec. At small temperature kBT ≪ Ec, it is hopping between such pairs that are close in

energy that dominates the conduction.

Of course, for small ∆E the typical separation r between the corresponding NC pair

is much larger than the spacing D′ between neighboring NCs. Thus, at small temper-

ature T electron conduction relies on tunneling between distant NCs. To understand

how such long-range tunneling is possible, consider first the tunneling of an electron be-

tween nearest-neighboring NCs. When the electron tunnels through the insulating gap

of thickness d between NCs, it accumulates an action ~d/a, where a is the decay length

of the electron wavefunction outside of the NC. Thus, the tunneling amplitude between

nearest neighbors is suppressed by a factor ∼ exp[−d/a]. On the other hand, when an

electron tunnels to a NC at a distance x ≫ D′, the path of least action for the elec-

tron is to travel primarily through nearest-neighboring NCs, making hops only through

the small gaps between neighbors and thereby accumulating an action ∼ ~(d/a)(x/D′),

plus an additional much smaller term corresponding to action accumulated across the
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interior of each NC. Thus, the tunneling amplitude to the distance x is suppressed by a

factor ∼ exp[−xd/D′a]. The exponential decay of the tunneling amplitude is described

by defining the localization length ξ, such that tunneling between NCs with separation

r is suppressed by the factor exp[−2r/ξ]. By the argument above, one cannot simply

equate ξ with a, but rather ξ ∼ aD′/d ≫ a [29]. It is this enhanced localization length,

made possible by tunneling through intermediate NCs, that allows for long-range hop-

ping. In the remainder of this chapter, we consider the limit where d and a are both

very small compared to the NC diameter, so that D′ ≃ D while ξ remains finite.

If the temperature T is made increasingly small, the corresponding energy difference

∆E of electron hops becomes increasingly small due to the scarcity of available high-

energy phonons, and as a result the typical hop length increases. Such behavior is

known as variable range hopping (VRH), and is responsible for the stretched exponential

behavior γ < 1 in the resistivity. When the DOGS is constant near the Fermi level, the

resistivity follows the Mott law of VRH [2]: ln ρ ∝ T−1/4. However, in systems where

the long-ranged Coulomb potential is not screened, electron correlation effects produce

a DOGS that vanishes quadratically with energy at the Fermi level [3]. Such a vanishing

DOGS results in the Efros-Shklovskii (ES) law of VRH: ln ρ ∝ T−1/2. In principle, all

three of these conduction behaviors — Arrhenius (γ = 1), Mott VRH (γ = 1/4), and

ES VRH (γ = 1/2) — are possible in arrays of semiconductor NCs, depending on the

magnitude and type of disorder present. In this chapter we focus our description on the

fundamental role played by inherent fluctuations in donor number among doped NCs.

Experiments probing the resistivity of NC arrays have reported that the resistivity

depends in a sensitive and qualitative way on the level of doping [4]. Specifically, as the

average number ν of dopant electrons per NC is varied, the dependence of the resistivity

ρ on the temperature T changes between Arrhenius-type activated conduction (γ = 1)

and VRH (γ < 1). VRH has been reported in a variety of granular semiconductor

systems [4, 33, 38, 39], but thus far there is no general theory to explain how these

different types of conduction can coexist and why they appear in particular ranges of

the electron “filling factor” ν.

In this Chapter we present such a theory, based on a first-principles description of

the ground state arrangement of electrons within an array of doped NCs. We focus on

a simple model of identical spherical NCs that are covered by a thin layer of insulating
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ligand (or some other insulator) and arranged in an ideal crystalline lattice, as depicted

in Fig. 2.2. We show that the presence of fluctuations in donor number between different

NCs is sufficient to produce charging of NCs, which results in a disordered Coulomb

landscape that encourages VRH. This charging is driven by the large gaps between shells

of the electron quantum energy spectrum in NCs with large Bohr radius aB. Specifically,

these inter-shell gaps drive electrons to depart from NCs with a large number of donors,

where maintaining electroneutrality would require placing electrons in higher quantum

energy shells, and reside instead on nearby NCs with small donor number. In this way

some NCs spontaneously acquire a positive or negative charge, and it is this charging

that leads to VRH when the temperature is not too large.

Using this model, we explain how the different regimes of resistivity observed in

experiment arise based on the interplay between the charging spectrum of NCs, the

long-ranged Coulomb interactions between charged NCs, and the discrete quantum en-

ergy levels of confined electrons. We supplement our theory with a simple computer

simulation, which we use to calculate the DOGS and the resistivity.

Ch. 2 is organized as follows. In Sec. 2.2 the theoretical model for semiconductor

NCs is defined. Sec. 2.3 describes our computer simulation, including our methods for

numerically calculating the DOGS and resistivity. Results are presented in Sec. 2.4,

along with a discussion of why Arrhenius and VRH resistivity appear in particular

regimes of ν, D, and T . We also discuss interesting features of the DOGS in this model,

including the appearance of “reflected Coulomb gaps” at either side of the Fermi level.

Sec. 2.5 presents some speculation on how our results can be applied to electrochemical

gating of NC arrays using ionic liquids followed by concluding remarks in Sec. 2.6.

2.2 Model of NC arrays with random number of dopants

In order to describe the resistivity of a dense array of semiconductor NCs and capture

its dependence on doping level, temperature, and NC diameter, we adopt the following

simplified theoretical model. We consider NCs to be identical spheres of diameter D

with large internal dielectric constant κNC ≫ κ. These spheres are arranged in a regular,

three-dimensional (3D) lattice, with each lattice site i located at the center of a NC. For

simplicity, we consider a cubic lattice with lattice constant D′ just barely larger than
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D, so that d ≪ D (see Fig. 2.2). Our choice of a cubic lattice does not qualitatively

affect any of the results we present below.

We further assume that the radius D/2 of the NCs is comparable to or smaller than

the effective electron Bohr radius aB = ~2κNC/me2 of the semiconductor, where e is the

electron charge and m is the effective electron mass. As an example, NCs made from Si

have aB ≈ 2.4 nm; for CdSe NCs, aB ≈ 5 nm. Under this condition the wavefunction

of a donor electron is extended across the entire volume of a NC, rather than localized

around a donor impurity, and the energy of the electron is strongly affected by quantum

confinement within the NC. As an example, a single donor in the center of a NC has

a delocalized electron state when D < 6aB [40, 41]. This condition can be used as

a somewhat conservative estimate for how small the diameter should be to produce

electron states that are extended across the NC.

In order to obtain the quantum energy spectrum in NCs, one can make the approx-

imation that each NC is an infinite 3D square well. Such an approximation is valid

because of the NCs’ relatively large work function. The resulting energy spectrum can

be described by defining the energy EQ(n) of the nth lowest electron, which gives for

the first few energy levels

EQ(n) =
~2

mD2
×


0, n = 0

19.74, n = 1, 2

40.38, 3 ≤ n ≤ 8

66.43, 9 ≤ n ≤ 18

. (2.1)

These first three nonzero energy levels can be labeled 1S, 1P, and 1D, respectively.

Higher electron shells have thus far not been examined by experiment, since they corre-

spond to very large doping, and will not be discussed in this work. We focus primarily

on the case where the spacing between quantum energy levels ≈ 20~2/mD2 is larger

than the characteristic scale of Coulomb energies, e2/κD. The expression of Eq. (2.1)

ignores the weak perturbation of quantum energy levels resulting from electron-electron

interactions. This approximation is justified because of the large internal dielectric

constant κNC, as explained below.

During the doping process, each NC i acquires some number Ni of positively-charged

donors that it contains within its interior. These are assumed to be fixed, while the

number of electrons ni within the NC can change due to electron tunneling between
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NCs. We assume that donors are added randomly to each NC by some high-temperature

process, so that if the average number of donors per NC is ν, then the probability that

a given NC will have exactly N donors is given by the Poisson distribution:

P (N) =
νN

N !
e−ν . (2.2)

This randomness in the number of donors is the only form of disorder that we

include in our model. We show in Sec. 2.4 that this disorder is sufficient to produce

random charging of NCs, which leads to VRH. As mentioned in the introduction, the

spontaneous charging of NCs is the result of the large gaps between quantum kinetic

energy shells, which drive electrons away from NCs with many donors (emptying higher

shells) and into NCs with few donors (filling lower shells), so that the number of electrons

in a given NC is not generally equal to the number of donors. Additional disorder arising

from fluctuations in the NC size is not considered explicitly in this chapter. The possible

effect of such size fluctuations is discussed at the end of Sec. 2.4, but we note here that

fluctuation of NC size alone cannot produce spontaneous charging of NCs in the global

ground state, which, as we show below, plays a crucial role for VRH.

In addition to the quantum kinetic energy of the system, transport through the ar-

ray is also greatly affected by long-ranged Coulomb interactions, which must be taken

into account. In general, one could expect that calculating the total Coulomb energy of

the system is a difficult problem, since the positions of negative electrons within each

NC are described by their corresponding quantum wavefunctions and the positions of

positive donors are random within the NC’s volume. For our problem, however, a sig-

nificant simplification is available because the internal dielectric constant κNC is much

larger than both the external dielectric constant κi of the insulator in which the NCs

are embedded and the overall effective dielectric constant κ of the assembly. Specif-

ically, the large internal dielectric constant κNC implies that any internal charge e is

essentially completely compensated by the dielectric response, with the great majority

of that charge, e(κNC − κ)/κNC, becoming distributing across the surface of the NC.

In this way each NC can be thought of as metallic in terms of its Coulomb interac-

tions. This allows us to write that the Coulomb self-energy of a NC with net charge

q is given approximately by q2/κD, irrespective of how its constituent internal charges
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are arranged. The interaction between two NCs i, j at a distance rij can also be ap-

proximated as qiqj/κrij . These approximations are equivalent to the so-called constant

interaction model, which is commonly used for individual quantum dots [42].

It should be noted that the effective dielectric constant κ of the NC array is not

simply equal to the dielectric constant κi of the insulating medium between NCs, but

also includes the effect of polarization of NCs in response to an applied field. This

polarization effectively decreases both the Coulomb self-energy of a single NC and the

interaction between neighboring NCs. Generally speaking, the renormalization of the

dielectric constant is not very strong, so that κ is not very different from κi even when

κNC ≫ κi. The canonical Maxwell-Garnett formula gives the approximate relation [43]

κ ≃ κi
κNC + 2κi + 2f(κNC − κi)

κNC + 2κi − f(κNC − κi)
, (2.3)

where f = πD3/[6(D′)3] is the volume fraction occupied by the NCs; for f < 0.4, this

expression is accurate to within 8% [44]. As an example, for the case of a cubic lattice

with D = 5 nm and D′ = 6 nm (so that f = 0.3) and for κNC/κi = 5, one has κ ≈ 1.6κi.

Given this model, we can write down the Hamiltonian for our system as

H =
∑
i

[
e2(Ni − ni)

2

κD
+

ni∑
k=0

EQ(k)

]

+
∑
⟨i,j⟩

e2(Ni − ni)(Nj − nj)

κrij
. (2.4)

Here, the first term describes the electrostatic self-energy of NC i, which has charge

qi = e(Ni − ni), the second term describes the total quantum energy of the ni electrons

on NC i, and the last term indicates the Coulomb interaction between different NCs.

The ground state for a particular system (a set of donor numbers {Ni}) is defined

by the set of electron occupation numbers {ni} that minimizes the Hamiltonian H.

Given the ground state configuration, one can determine the energy of the highest filled

electron level, ε
(f)
i , and the lowest empty electron level, ε

(e)
i , at each NC i. Specifically,

ε
(f)
i = EQ(ni) +

e2[(Ni − ni)
2 − (Ni − ni + 1)2]

κD

−
∑
j ̸=i

e(Nj − nj)

κrij
(2.5)
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and

ε
(e)
i = EQ(ni + 1) +

e2[(Ni − ni − 1)2 − (Ni − ni)
2]

κD

−
∑
j ̸=i

e(Nj − nj)

κrij
. (2.6)

For the global ground state configuration, ε
(f)
i < ε

(e)
j for all i, j. As alluded to in the

introduction, the definitions of ε
(f)
i and ε

(e)
i describe only the lowest energy state of an

electron or hole added to the site i. For this reason we refer to the density of states of

these energy states ε
(e,f)
i as the DOGS.

The resistivity of the NC array is largely determined by the set of these ground state

single-particle energies {ε(f)i } and {ε(e)i }. In the following section we show how these

energy states can be used to calculate both the ground state electron DOGS g(ε) and

the resistivity ρ as a function of temperature and doping level. Note that in this problem

every site is represented by two energies, in contrast to the canonical impurity band of

lightly-doped semiconductors [32], where every donor has only one relevant excitation

energy.

It is also important to note that in our model these donor electrons are assumed to be

responsible for all conduction. In other words, we assume that the temperature T is low

enough (and the doping level ν is high enough) that donor electrons are much more abun-

dant than electrons activated from the valence band. In practical cases, this assumption

is easily met: it requires only that the thermal energy kBT be much smaller than the

band gap energy Eg. More exactly, it requires that kBT ≪ Eg/ ln[κNCD
2Eg/e

2aBν
2/3].

2.3 Computer modeling

In this section we describe our computational method for calculating the density of states

and the resistivity at a given value of ν, T , and D. These calculations are based on a

computer simulation of a finite, cubic array of L×L×L NCs, which proceeds as follows.

First, we specify the doping level ν. The simulation then assigns the donor number Ni

for each NC i according to Eq. (2.2). The initial values of the electron numbers {ni}
are then assigned randomly in such a way that the system is overall electro-neutral, i.e.,∑

i ni =
∑

j Nj . The simulation then searches for the ground state by looping over all
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NC pairs ⟨ij⟩ and attempting to move one electron from i to j. If the move lowers the

Hamiltonian H, then it is accepted, otherwise it is rejected. Equivalently, one can say

that for each pair i, j we check that two ES ground state criteria are satisfied:

ε
(e)
j − ε

(f)
i − e2

κrij
> 0 (2.7)

and

ε
(e)
i − ε

(f)
j − e2

κrij
> 0. (2.8)

If either one of these criteria is violated, then an electron is transferred. This process

continues until all sites i, j satisfy Eqs. (2.7) and (2.8).

It should be noted that this procedure does not in general find the exact ground

state, but only a “pseudo-ground state” that is stable with respect to single-electron

transfers. In principle, the system energy can be lowered further by some multi-electron

transfers. The effect of these higher-order relaxation processes on the properties of

the pseudo-ground state has been examined for similar models [45, 46], and they are

generally beyond our intended accuracy in this chapter, so we do not consider them

here.

Once the pseudo-ground state occupation numbers {ni} have been found, one can

define the single-particle energies ε
(f)
i and ε

(e)
i for each NC i using Eqs. (2.5) and (2.6).

These energies are tabulated and then histogrammed in order to calculate the single-

particle DOGS g(ε). In the results presented below we define electron energies ε relative

to the Fermi level µ, which is calculated for each realization of the simulation as µ =

[min{ε(e)i } −max{ε(f)i }]/2. In this way ε < 0 corresponds to filled electron states ε(f)

while ε > 0 corresponds to empty states ε(e). (See, for example, Fig. 2.5 below.)

Once the pseudo-ground state energies {ε(f)i } and {ε(e)i } are determined, we calculate

the resistivity of the system by mapping the simulated NC array to an effective resistor

network. The equivalent resistance Rij between NCs i and j can be determined by

writing down the time-averaged rate of electron transfer between sites i and j in the

presence of an electric field and expanding in the limit of small field, as in the canonical

Miller-Abrahams resistor network [32, 47]. In calculating Rij we consider only electron

transfer among the highest filled states, ε(f), and the lowest empty states, ε(e), which

is appropriate when the temperature is small enough that T < e2/κD, so that thermal

excitation of multi-electron transitions is exponentially unlikely.
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Since each NC has two energy levels that can participate in conduction, ε(f) and

ε(e), one can say that there are four parallel conduction processes that contribute to

the resistivity between two NCs i and j: one for each combination of the initial energy

level at site i (either ε
(f)
i or ε

(e)
i ) and the final energy level at site j (either ε

(f)
j or

ε
(e)
j ). Each of these four processes has a corresponding effective resistance R

(αβ)
ij , where

α, β = (f), (e). These four resistances can be said to be connected in parallel between

NCs i and j, and their value can be written compactly as

R
(αβ)
ij = R0 exp

[
2rij
ξ

+
ε
(α,β)
ij

kBT

]
, (2.9)

where R0 is a prefactor that has only a relatively weak power-law dependence on tem-

perature. The first term in the exponential of Eq. (2.9) describes the exponential sup-

pression of the tunneling rate with distance r, as explained in the introduction, and

the second term describes thermal activation by exponentially-rare phonons of energy

ε
(α,β)
ij . Since we are interested only in identifying the exponential component of the

dependence of resistivity on temperature, we take R0 to be a constant. The energy

ε
(α,β)
ij in Eq. (2.9) is defined as follows [32]:

ε
(α,β)
ij =


|ε(β)j − ε

(α)
i | − e2

κrij
, ε

(β)
j ε

(α)
i < 0

max
[∣∣∣ε(α)i

∣∣∣ , ∣∣∣ε(β)j

∣∣∣] , ε
(β)
j ε

(α)
i > 0

. (2.10)

The net resistance Rij between NCs i and j is the parallel sum of the four resistances

R
(αβ)
ij . Since the exponential factor in Eq. (2.9) provides a sharp differentiation between

these four parallel resistances, at relatively low temperatures and to within the accuracy

of our calculations we can equate Rij with the minimum of the four parallel resistances.

That is,

Rij ≃ min
{
R

(αβ)
ij

}
. (2.11)

After calculating all resistances Rij for a given simulated array, we find the dimensionless

resistivity of the network ρ/ρ0, where ρ0 = R0D
′, using a percolation approach [32].

Specifically, we find the minimum value Rc such that if all resistances Rij with Rij < Rc

are left intact while others are eliminated (replaced by Rij = ∞), then there exists a

pathway connecting the left and right faces of the simulation volume (the “infinite”

percolation cluster). The resistivity ρ/ρ0 is approximated as Rc/R0.
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In our analysis below we make use of the following dimensionless units, which reduce

the number of free variables in the problem. We introduce the dimensionless distance

between the centers of NCs i and j,

r∗ij =
rij
D

, (2.12)

the dimensionless temperature

T ∗ =
2D2κkBT

e2ξ
, (2.13)

the dimensionless electron energy

ε∗ =
ε

e2/κD
, (2.14)

the dimensionless electron DOGS

g∗(ε∗) =
e2D2

κ
g(ε∗), (2.15)

and the dimensionless resistivity

ln ρ∗ =
ξ

2D
ln(ρ/ρ0). (2.16)

In these units, Eq. (2.9) can be written more simply as

ln ρ∗ij = r∗ij + ε∗ij/T
∗, (2.17)

and the problem loses any explicit dependence on the diameter or the localization length.

It is also convenient to discuss the energy gap between the 1S and 1P shells in terms of

the dimensionless parameter

∆ ≡
EQ(3)− EQ(2)

e2/κD
= 20.64

κ~2

me2D
= 20.64

κaB
κNCD

. (2.18)

We use our simulation to examine the resistivity at various values of ν, T ∗, and ∆.

Results below correspond to a simulated system of size L = 25 with open boundaries,

averaged over 100 realizations. Simulations at smaller system size, 15 ≤ L < 25, do not

produce noticeably different results for either the DOGS or the resistivity, which allows

us to avoid having to extrapolate our results to infinite system size.
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2.4 Results and discussion

Our goal is to determine which conditions produce VRH in the NC array. To this end

we calculated the resistivity ρ and the electron density of ground states g(ε) for a range

of values of the doping level ν, the temperature T ∗, and the quantum energy scale ∆.

(Varying ∆ is equivalent to considering different values of the NC diameter.) Before

proceeding to present general results, however, we first illustrate the most important

features of the problem by discussing the hypothetical case where all NCs have the

same number of donors, so that there is absolutely no disorder in the system. Say,

for example, that ν = 5 and that Ni = 5 for all i. In this situation, the ground

state arrangement of the system is for electrons to uniformly neutralize all donors:

ni = Ni = 5. The result, by Eqs. (2.5) and (2.6), is that every NC has the same

two energy levels, ε(f) = EQ(5) − e2/κD and ε(e) = EQ(5) + e2/κD, and the system’s

Fermi level µ = EQ(5). Equivalently, one can say that the single-particle DOGS for this

hypothetical system corresponds to two δ-function peaks at ε = ±e2/κD.

As explained in the introduction, conduction in this uniformly neutral system re-

quires the excitation of a positive/negative NC pair. Specifically, such an excita-

tion produces one positive NC containing 4 electrons and one negative NC contain-

ing 6, and as such it has an excitation energy equal to the sum of the two Coulomb

self-energies. Equivalently, one can say that conduction requires the production of

a hole in the filled δ-function DOGS peak at ε = −e2/κD and an electron in the

empty DOGS peak at ε = e2/κD, and so the conduction has an activation energy

εA = Ec = e2/κD. Thus, this hypothetical system without disorder has activated

conduction: ρ = ρ0 exp[εA/kBT ].

On the other hand, once the randomness in donor number is taken into account, one

can no longer say in general that the ground state arrangement of electrons is uniformly

neutral, ni = Ni. Indeed, when Ni can take a wide range of values, then those NCs with

very large N may become ionized so that their electrons can occupy lower-energy shells

on other NCs with small N . In this way, the presence of a discrete quantum energy

spectrum instigates the production of positively- and negatively-charged NCs. It is this

spontaneous charging that allows for VRH, as we will show below.
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Still, it is straightforward to see that the system remains nearly uniformly elec-

troneutral in the ground state under either of two conditions: (i) very small quantum

energy gap, ∆ ≪ 1, or (ii) very small doping level, ν ≪ 1. In the former case, the differ-

ence between quantum energy levels becomes negligibly small compared to the energy

required to produce charging of NCs. Thus, the NCs remain neutral and the conduction

is activated, as explained above. In the limit of very small doping, ν ≪ 1, the system

also remains nearly uniformly neutral due to an extreme scarcity of donors with Ni > 2.

Indeed, by Eq. (2.2), at small ν the fraction of donors with Ni > 2 is ≃ ν3/6. Thus,

neutrality of the system can be maintained without requiring any significant number of

electrons to occupy the 1P shell, and there is essentially no charging of NCs. Therefore

in the limit of very small ν the conduction is also activated.

In situations where either ∆ or ν is not small, one can expect spontaneous charging

of NCs in the ground state, and it is not trivial to predict the DOGS or the temperature

dependence of the resistivity. We explore these situations using our simulation method,

outlined in Sec. 2.3. Before proceeding to present results for a wide range of ν and ∆,

we first focus on the illustrative cases of ν = 5 and ν = 2, taking for the quantum energy

gap ∆ = 5.

At ν = 5, the Fermi level resides in the middle of the 1P shell. Thus, since the

gap between quantum energy levels is relatively large, in the ground state essentially

all NCs satisfy 2 ≤ ni ≤ 8. By Eq. (2.2), however, roughly 11% of NCs have a donor

number satisfying Ni < 2 or Ni > 8. Such NCs become charged in the ground state,

driven by the large gaps in the quantum energy spectrum that induce electrons to

leave the 1D shell and to fill the 1S shell. Thus, the ground state configuration of the

system consists of randomly-distributed fixed charges, which correspond to those NCs

with Ni < 2 (which become negatively-charged) or Ni > 8 (positively-charged), and

mobile electrons and holes in the partially-filled 1P shell. The mobile electrons and

holes arrange themselves in such a way that the ES criteria of Eqs. (2.7) and (2.8) are

satisfied. It is these criteria that give rise to the vanishing DOGS near the Fermi level

[3, 32].

This process of charging of NCs is illustrated schematically in Fig. 2.4, which shows

the energy levels of isolated NCs with donor numbers 0 ≤ N ≤ 10. In the neutral state,

a NC with N donors has N filled electron energy levels (Fig. 2.4a). When the system
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contains a mixture of NCs with different N , however, electrons abandon high energy

levels in NCs with large N and fill empty states in NCs with small N . This process is

shown for the case ν = 5 in Fig. 2.4b. The resulting charged NCs produce a random

Coulomb potential throughout the system that smears the single electron energy levels

and produces a finite density of states near the Fermi level.

ε*
N =   0 1 2 3 4 5 6 7 8 9 10

ε*
1S

2+∆

2

a)

ε*
N =   0 1 2 3 4 5 6 7 8 9 10

µ

b)

P(N) , % : 3 8 14 18 18 15 10 7 4 2

+2+2+1+1

--11--22

0.7

Figure 2.4: (Color online) Schematic depiction of the charging process in a system with
NCs with varying donor number N . (a) The single-electron energy levels (horizontal
line segments) are shown for isolated NCs. The Coulomb self-energy of charged NCs
produces a spectrum where different charge states have a separation 2e2/κD. The
quantum confinement energy provides a gap between subsequent shells, e.g. 1S and 1P
states or 1P and 1D states. In the neutral state, a NC with N donors has N filled energy
levels (indicated by filled blue dots). ε∗1S indicates the quantum kinetic energy of the 1S
shell, ε∗1S = EQ(1)/(e

2/κD). (b) A depiction of the charging process at ν = 5. Electrons
in the 1D shell of NCs with N > 8 abandon these NCs and instead fill empty energy
levels in the 1S shell of NCs with N < 2. In this way NCs with N > 8 become positively
charged and NCs with N < 2 become negatively charged. The resulting Fermi level µ is
shown by the dashed line. For NCs with N = 5, it resides in the center of the 1P shell.
The relative abundance of different donor numbers at ν = 5 is shown at the bottom of
the figure as a percentage.

The DOGS for ν = 5 and ∆ = 5, as calculated by our numerical simulation, is
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plotted in Fig. 2.5a. One can see the quadratic Coulomb gap near the Fermi level, as

proscribed by the ES theory. As compared to the conventional Coulomb gap problem

in lightly-doped semiconductors [32], this Coulomb gap is remarkably well preserved,

with the DOGS remaining quadratic until ε∗ ≈ 1. This strong Coulomb gap suggests

that the resistivity should follow the ES law for all temperatures T ∗ ≪ 1. Specifically,

at these small temperatures the resistivity is described by

ρ(T ) = ρ0 exp

[(
TES

T

)1/2
]
, (2.19)

where

TES =
Ce2

kBκξ
(2.20)

and C is a numerical coefficient of order unity.

This behavior can indeed be seen in Fig. 2.5b, where ln ρ∗ is plotted as a func-

tion of (T ∗)−1/2. The linear relationship at large (T ∗)−1/2 suggests that, as expected,

the resistance follows the ES law at small temperatures. We find that the numerical

coefficient C ≈ 8.1, as compared to the typical value C ≈ 2.8 in lightly-doped bulk

semiconductors [32]. At larger temperatures T ∗ > 1 [or (T ∗)−1/2 < 1], the resistiv-

ity saturates at ln ρ∗ = 1. At such large temperatures the factor ε∗ij/T
∗ in Eq. (2.17)

typically becomes smaller than unity, which indicates that electrons tunnel relatively

easily between nearest neighbors, and VRH is abandoned in favor of nearest-neighbor

hopping. At these large temperatures the resistivity can be expected to have only a

relatively weak power-law dependence on temperature, which is beyond the accuracy of

our numerical calculations.

In addition to the parabolic Coulomb gap near the Fermi level, another salient

feature of the DOGS in Fig. 2.5a is that it has strong maxima at ε∗ = ±1 and collapses

nearly to zero at ε∗ = ±2, as if there were additional Coulomb gaps that constrain

the density of states around ε∗ = ±2. These “reflected Coulomb gaps” are in fact the

product of an approximate symmetry in the system, which can be seen by examining

Eqs. (2.5) and (2.6). At ν = 5, the great majority of NCs have 2 < ni < 8. For such

NCs, EQ(ni) = EQ(ni + 1); both the highest filled and lowest empty electron states

are in the 1P shell. In this case, one can subtract Eqs. (2.5) and (2.6) to show that

ε
∗(e)
i = ε

∗(f)
i +2. Thus, the great majority of NCs contribute to the density of states two
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Figure 2.5: (Color online) Density of ground states and resistivity at ν = 5 and ∆ = 5, as
measured by computer simulation. (a) Density of states as a function of electron energy.
Filled electron states are shaded. Dashed red lines show, schematically, the quadratic
Coulomb gap near the Fermi level, ε∗ = 0, and the “reflected Coulomb gaps” at ε∗ = ±2.
Note that that the total shaded and unshaded areas under the g∗(ε∗) curve are both
normalized to unity, since each NC has one electron and one hole excitation. The inset
shows the DOGS over a wider energy range, with small, distant peaks indicating rare
NCs whose highest filled electron state is in the 1S shell or whose first empty state is in
the 1D shell. (b) The dimensionless logarithm of the resistance, ln ρ∗, as a function of
(T ∗)−1/2, which illustrates the existence of ES resistivity at small temperature.

energy levels – one filled, one empty – separated by 2e2/κD. This creates an approximate

discrete translational symmetry in the density of states, so that g∗(ε∗) ≈ g∗(ε∗ − 2) for

0 < ε∗ < 2. As a consequence, the Coulomb gap at the Fermi level implies the existence

of reflected Coulomb gaps at ε∗ = ±2. In other words, one can say that because of

the discrete charging spectrum of NCs the conventional quadratic bound on the DOGS

near the Fermi level also produces (approximate) quadratic bounds on the DOGS near

ε∗ = ±2. The contribution of rare NCs with ni = 2 or ni = 8 to the DOGS can be seen

in the small peaks at ε∗ = −6 and ε∗ = 7, as shown in the inset of Fig. 2.5a.

The presence of reflected Coulomb gaps is not unique to the doping level ν = 5.
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Indeed, for all ν that are sufficiently removed from the quantum energy gaps at ν = 2,

ν = 8, etc., the relation ε
∗(e)
i = ε

∗(f)
i + 2 is valid for most NCs in the system and the

resulting DOGS is essentially identical to that of Fig. 2.5a. Consequently, the resistivity

plot shown in Fig. 2.5b accurately describes the resistivity at most values of ν > 1. The

reflected Coulomb gaps in Fig. 2.5a appear even more dramatically for large NCs with

external impurity charges, as will be shown in Ch. 3.

On the other hand, one could expect qualitatively different behavior at ν = 2, where

there are precisely enough electrons to fill the 1S shell of every NC, and the Fermi

level sits in between the 1S and 1P shells. In this case there is no “discrete translational

symmetry” in the density of states, since the empty and filled energy levels for most NCs,

ε
(e)
i and ε

(f)
i , sit on opposite sides of the quantum energy gap, as shown schematically in

Fig. 2.6. This produces a DOGS that is qualitatively different from what is shown in Fig.

2.5a. One could therefore expect that the dependence of the resistivity on temperature

is also qualitatively different. Such thinking is supported by a recent experiment on

electrochemically gated NCs [4], which reported that when ν is very close to 2 there

appears an appreciable temperature window over which the resistivity follows the Mott

law. Given these differences, it is worth giving some special consideration to the case

ν = 2.

ε*
N =   0 1 2 3 4 5

µ

P(N), %: 27 27 18 9 4
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--11 --11
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Figure 2.6: (Color online) Schematic depiction of the filled and empty energy levels
at ν = 2. Energy levels are shown for NCs in the absence of any Coulomb potential,
similar to Fig. 2.4. At ν = 2, some electrons leave the 1P shell of NCs with N > 2
and fill empty states in the 1S shell of NCs with N < 2. The resulting Fermi level µ is
aligned with the first(second) energy level of the 1P shell in NCs with N = 4(5), which
is partially filled.

The DOGS for ν = 2 is shown in Fig. 2.7a. Unlike at ν = 5, where the DOGS



36

collapses at ε∗ = ±2, the DOGS at ν = 2 is much broader, with a width ∆ + 2. This

broad DOGS can be seen as a consequence of the large gap between 1S and 1P energy

shells, which implies that the energy of electron or hole excitations, ε
(f)
i and ε

(e)
i , can

take a wide range of values, depending on the donor number Ni. Alternatively, one can

say that since both 1S and 1P electron states contribute to the DOGS near the Fermi

level, the density of states has a characteristic width similar to that of the gap ∆.
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Figure 2.7: (Color online) Density of states and resistivity at ν = 2 and ∆ = 5, as
measured by computer simulation. (a) DOGS as a function of electron energy. Filled
electron states are shaded. The dashed red curve is the same parabolic curve shown in
Fig. 2.5a. The inset shows the DOGS very close to the Fermi level. (b) The dimen-
sionless logarithm of the resistance, ln ρ∗, as a function of (T ∗)−1/2, which shows ES
resistivity at T ∗ ≪ 1.

As at ν = 5, the DOGS vanishes at the Fermi level (see the inset of Fig. 2.7a),

but in this case it can only be described as parabolic over the fairly narrow range of

energies |ε∗| < 0.2. In the intermediate range of energies 0.2 < |ε∗| < 1, the DOGS

grows roughly linearly with energy. At larger energies 1 < ε∗ < ∆ the DOGS becomes

roughly constant.

In spite of this relatively complicated DOGS, Fig. 2.7b shows that the resistivity

is in excellent agreement with the ES law, with a coefficient C ≈ 5.7 [see Eq. (2.20)],
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at all but very large temperatures. This is somewhat surprising, since it suggests that

the system exhibits ES resistivity even when the temperature is large enough that the

band of energies over which VRH occurs is much larger than the width of the parabolic

Coulomb gap. This behavior would be impossible if states were randomly distributed

in space. Our observation of ES resistivity suggests that at ν = 2 spatial correlations

emerge which somehow preserve ES resistivity even in the absence of a parabolic DOGS.

To illustrate how this might be possible, let us first recall that in a disordered two-

dimensional (2D) system, the DOGS is linear in energy near the Fermi level rather than

parabolic, but the ES law of VRH is still obeyed [3]. One can now imagine a 3D system

in which sites with energies close to the Fermi level are arranged in a 2D fractal subspace

embedded in the system volume. In such a system, one would still have a linear DOGS

near the Fermi level accompanied by ES resistivity, even though the system as a whole

is three-dimensional. Using this reasoning, one can speculate that the results shown

in Fig. 2.7 are indicative of such a fractal arrangement of sites near the Fermi level,

driven in some way by the long-ranged Coulomb potential. More broadly, these results

hint at the idea that in a disordered system of localized states dominated by Coulomb

interactions, one should be able to derive the ES law without explicit reference to the

DOGS or the system’s dimensionality. Such an argument was in fact first put forward

by Larkin and Khmelnitskii [48]. Our system at ν = 2 may be a good application of this

argument. It remains unclear, however, in which situations this argument is applicable

a priori. This general question and its application to the case ν = 2 will be the subject

of a future publication.

By conventional thinking, the relatively constant DOGS at |ε∗| > 1 would seem to

suggest a regime of temperature in which the resistivity follows the Mott law, which

describes VRH in the presence of a constant DOGS. However, unlike the experiments

of Ref. [4], we see no noticeable region of Mott VRH. The Mott resistivity observed in

Ref. [4] at ν = 2 is likely the result of some additional disorder that is outside the model

considered in this section, and is discussed further in Sec. 2.5.

Having considered the specific cases of ν = 5 and ν = 2, we now turn our at-

tention to a general description of VRH at different values of ν and ∆. In order to

identify more precisely which conditions produce VRH, we used our simulation to mea-

sure the resistivity as a function of T ∗, ν, and ∆ over the range 0.01 ≤ T ∗ ≤ 10,
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Figure 2.8: (Color online) Phase diagram indicating regimes of activated and ES re-
sistivity as a function of doping level ν and the dimensionless quantum energy gap
∆ ≡ 20.64κaB/κNCD at low temperature kBT ≪ e2ξ/κD2. Symbols correspond to
simulated systems: filled (light blue) circles indicate systems that exhibited ES resis-
tivity and open squares indicate systems that exhibited activated resistivity. The thick
(red) curve is an approximate boundary between these two regimes, which are labeled
“ES” and “A”, respectively. Dashed, horizontal lines indicate the value of ∆ corre-
sponding to Si NCs with D = 5 nm (as in Ref. [27]) and to CdSe NCs with D = 6.2 nm
(as in Ref. [4]).

0.2 ≤ ν ≤ 2, and 0.5 ≤ ∆ ≤ 5. For each case we measured the exponent γ of the

temperature dependence of resistivity by calculating the “reduced activation energy”

w(T ∗) = −d(ln ρ∗)/d(lnT ∗) ∝ T−γ [49]. The exponent γ was identified by making a

power law best fit to w(T ∗). Those values of T ∗, ν, and ∆ that produce γ = 0.5 ± 0.1

were identified with ES resistivity; domains where γ > 0.6 were identified with activated

resistivity. As discussed above, no significant regimes were identified that showed Mott

behavior. We use this data to construct an approximate phase diagram in the space of

T ∗, ν, and ∆ that identifies which behavior can be expected.

Our result is plotted in Fig. 2.8 for T ∗ ≪ 1. Generally speaking, the results indicate

that for ν > 0.6 and ∆ > 0.5 one can expect ES resistivity, while for other conditions
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the resistivity is activated. These conditions are equivalent to the conditions (i) and

(ii) that were announced in the introduction. Dashed horizontal lines indicate, as an

example, the values of ∆ corresponding to CdSe NCs with D = 6.2 nm, as in Ref. [4],

and Si NCs with D = 5 nm, as in Ref. [27]. Both of these dashed lines assume that

κNC/κi = 5. At temperatures T ∗ > 1 VRH is gradually replaced by nearest-neighbor

hopping. The condition T ∗ < 1 is equivalent to the condition (iii) from the introduction.

As mentioned above, the model considered in this section does not account explicitly

for any sources of disorder other than fluctuations in donor number. For example, in real

NC arrays the diameter D varies from one NC to another, which introduces variations in

the quantum spectrum between NCs [see Eq. (2.1)]. Nonetheless, the presence of these

size fluctuations in addition to fluctuations in donor number does not destroy ES VRH,

since the Coulomb gap near the Fermi level is a universal result of the ES stability criteria

[Eqs. (2.7) and (2.8)] and is independent of the source of disorder in the system. Whether

size fluctuations or other sources of disorder enhance the role of VRH or significantly

affect the magnitude of the resistivity remains yet to be studied. Generally speaking,

however, one can expect that the phase diagram of Fig. 2.8 is accurate whenever the

typical magnitude of size fluctuations δD satisfies (δD)/D ≪ 1/∆. We further expect

that even larger size fluctuations do not greatly affect VRH in regimes where the ES

law applies, since in such cases the DOGS is already saturated by the disorder in donor

number. In regimes where the resistivity is activated, the presence of a large additional

disorder should generally promote the existence of VRH, which decreases the resistivity

at small T ∗.

2.5 Gating of a NC array by an ionic liquid

In Secs. 2.1 – 2.4 we discussed systems of NCs doped by random impurities, and we

explored the dependence of the resistivity on the doping level. In such systems, the

doping level is established during the fabrication of NCs. In many cases, however, it is

desirable to have a doping level that can be continuously tuned, so that the resistivity of

a single device can be set to a wide range of values. For this purpose, electrochemically

gated arrays of semiconductor NCs are actively being studied [4, 35].

In such systems, conduction electrons are introduced into the system via a voltage
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source, which drives electrons from a top gate to a bottom gate that is in electrical

contact with the NC array. Generally, in between the top gate and the NC array is

a room temperature ionic liquid that provides large capacitance and therefore allows

for a high density of electrons to be introduced to the NC array at a relatively small

voltage [50]. The cations from this ionic liquid intercalate into the spaces between NCs,

penetrating deep into the array through the percolating network of pores between NCs,

and thus provide a neutralizing charge for the conduction electrons. A schematic picture

of this system is given in Fig. 2.9.

+

+

-e + Q
A -e + Q

B

Q
C

Figure 2.9: (Color online) A schematic picture of an array of semiconductor NCs (large
circles) gated by an ionic liquid. Cations (small circles with +’s) are driven by a voltage
source to intercalate between NCs. Because of the large NC dielectric constant κNC,
the net effect of positive ions is to provide a fractional donor charge Qi at a given
NC i. Neutralizing electrons occupy NCs in order to neutralize ionic charges. Ligands
separating NCs are shown as curvy lines.

The large internal dielectric constant of NCs and the relatively small diameter of

cations suggests the presence of strong image charge forces that bind cations electro-

statically to their image charges in the NC surface. In this way, one can expect that

cationic charges are located primarily on the surface of each NC. If one assumes that the

position of cations on the NC surfaces is random, then one again arrives at a model of

fractionalized cation image charges, similar to what is suggested in Sec. 3.2 (see below

Ch. 3 for more details).

For this model one can use a Hamiltonian that includes both a prominent quantum

kinetic energy spectrum, as in Sec. 2.2, and a fluctuating, fractionalized donor charge,
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as in [29]:

H =
∑
i

[
(Qi − eni)

2

κD
+

ni∑
k=0

EQ(k)

]

+
∑
⟨i,j⟩

(Qi − eni)(Qj − enj)

κrij
(2.21)

Here, the fractional charge Qi/e can be chosen uniformly from the interval [ν−1/2, ν+

1/2].

Using our computer simulation method, we have briefly investigated the DOGS and

resistivity of the system described by this Hamiltonian at various values of ν ≥ 1. We

find that ES VRH appears at low temperature for all values of ν > 1. In fact, when

|ν − 2| > 1 and |ν − 8| > 1, the DOGS is exactly the same as in Fig. 3.2a, and the

resistivity is also identical (see below Ch. 3 for more details).

We note that the model defined by Eq. (2.21), where the fractional donor charge

is completely random, is unlikely to be accurate when ν is at the boundary between

two quantum energy shells. At ν = 2, for example, random fractional charges lead to a

fluctuating Coulomb potential with characteristic amplitude much larger than kBT/e at

room temperature. However, such a large Coulomb potential induces cations, which are

mobile during the gating process, to rearrange in order to screen the potential. In this

way the cation positions become correlated and the typical amplitude of the Coulomb

potential is reduced to kBT/e, which is not large enough to produce charging of NCs.

As a result, the typical amplitude of fluctuations in Qi is likely much smaller than e, so

that one should not expect a finite DOGS near the Fermi level. Rather, in the absence

of any other disorder, the resistivity should be large and activated.

Experiments with ionic liquid gating confirm that, as expected, the resistivity is

much larger at ν = 2 than at other filling factors [4]. However, the resistivity is generally

shown to correspond to VRH rather than activated behavior, with ES resistivity seen

at very small temperature and Mott resistivity at larger temperatures. This VRH is

likely the result of some other source of disorder, unrelated to the positions of cations,

which produces finite DOGS near the Fermi level even at ν = 2. For example, if the NC

diameters are not uniform, but are drawn from some distribution with finite width, then

the energy levels corresponding to the 1S and 1P states are smeared. If the distribution

of NC diameters has wide tails, then the 1S and 1P energy levels can be smeared as far
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as the Fermi level, producing a finite DOGS near the Fermi level, as shown schematically

in Fig. 2.10.
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Figure 2.10: (Color online) Schematic picture of the density of states at ν = 2 in
the presence of fluctuations in the NC diameter D. (a) If D has some wide-tailed
distribution, then the 1S and 1P energy levels are broadened and have a finite overlap.
(b) Spatial correlations between rare 1S and 1P energy states near the Fermi level
produce a Coulomb gap, so that ES resistivity is seen at very small temperatures and
Mott resistivity is seen at larger temperatures.

The overlap between some 1S and 1P energy levels produces rare NCs with n = 3

or n = 1 whose energy is very close to the Fermi level. Such rare, mobile electrons are

free to rearrange themselves in order to satisfy the ES stability criteria, and in doing so

they produce a small Coulomb gap at the Fermi level (see Fig. 2.10). As a result, the

resistivity follows the ES law at very small T , and the Mott law at larger T , where the

DOGS sampled by electron hops is essentially constant. This is precisely what is seen

in experiment [4].

It is worth mentioning that ionic liquid gating of NC arrays allows one to measure

the total electronic charge Q as a function of applied gate voltage, or, in other words,

the differential capacitance of the array C = dQ/dV . In arrays of small spherical NCs,

where the quantum gaps ∆ dominate over Coulomb energies, most electrons enter the

array when the voltage coincides with the energies of a quantum energy shell (1S or
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1P, for example). At such voltages the differential capacitance should have prominent

peaks. Between these voltages the capacitance should be small, reflecting the small

electron DOGS. We are not aware of any such experimental data 1 .

2.6 Conclusion

In this Chapter we have used a simple theoretical model and a computer simulation to

show how both activated transport and VRH arise in arrays of doped semiconductor

NCs. Our primary result is illustrated in the phase diagram of Fig. 2.8: when the

doping level ν and the quantum confinement energy ∆ are sufficiently large, and when

the temperature T ∗ is sufficiently small, the resistivity of the array is characterized

by ES VRH. Such VRH is driven by the fluctuations in donor number from one NC

to another, which lead to spontaneous charging of NCs as electrons depopulate higher

quantum energy shells and fill lower ones.

We have also identified a striking feature of the DOGS in NC arrays: the presence

of “reflected Coulomb gaps” at electron energies ±2e2/κD, which are a consequence of

the ES stability criteria and the discrete charging spectrum of NCs (see Fig. 2.5). This

feature is even more prominent in large, metallic NCs with external impurity charges

that is discussed in the following chapter.

The effect of additional disorder, such as fluctuations in NC size, remains yet to

be explored quantitatively. We conjecture, however, that for chemically doped NCs

our results will be largely unaltered by the addition of such disorder. For the case of

NCs gated by ionic liquid, this external disorder seems crucial only for explaining the

presence of Mott VRH at particular values of ν (see Fig. 2.10).

1 In our recent paper [50], we studied the hypothetical case where cations are large enough that
only one cation can enter a pore in the NC array. In this case, due to the Coulomb interaction, the
cations form a crystal structure within the pores of the crystalline NC array. This situation is different
from the model where ions are small and are introduced at relatively large temperature. In Ref. [50]
we argued that in the former case the peak in capacitance corresponding to the 1S shell splits into two
delta-function-like peaks, such that one electron enters every NC at two particular values of the voltage.



Chapter 3

Metallic nanocrystals

3.1 Introduction

Granular metals and arrays of metallic nanocrystals (NCs) represent interesting com-

posite systems, wherein the unique properties of individual NCs are combined with

collective, correlation-driven effects between NCs to produce novel material properties

[34, 28]. One of the most important properties is the electron conductivity, which pro-

ceeds by electron tunneling, or “hopping”, between NCs through the insulating gaps

which separate them. In relatively dense NC arrays, electron conduction can occur

both through nearest-neighbor hopping and through VRH. As already discussed in Ch.

2, in the presence of some disorder, the latter mechanism dominates at low tempera-

tures, where the length of hops grows to optimize the conductivity. When the Coulomb

interaction between localized electrons is taken into account, it can be shown that at

sufficiently low temperature VRH conductivity obeys the Efros-Shklovskii (ES) law [3]:

σ = σ0 exp
[
− (TES/T )

1/2
]
, (3.1)

where σ0 is a constant (or a weak, power-law function of temperature) and TES is a

characteristic temperature (see Eq. (2.20)). (Eq. (3.1) can be viewed as the inverse of

Eq. (2.19).) Eq. (3.1) has been observed in a number of granular metal systems at low

temperature (see Refs. [5] and references therein). In these systems, as in lightly-doped

semiconductors and other “Coulomb glasses”, ES conductivity can be seen as the result

of a vanishing single-particle density of states (DOS) at the Fermi level µ. This vanishing

44
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DOS is the consequence of a very general stability criterion of the ground state [32],

and it implies that in a system of d dimensions the DOS g(ε) satisfies

g(ε) <
Ad

e2d
|ε|d−1. (3.2)

Here, Ad is some numerical constant of order unity, ε is the electron energy relative to

the Fermi level, and e is the electron charge. Eq. (3.2) is called the “Coulomb gap.”

In this chapter we report an additional striking feature of the DOS in periodic arrays

of monodisperse metal NCs surrounded by random impurity charges. Namely, we show

that the Coulomb gap at ε = 0 necessarily implies the existence of additional, identical

Coulomb gaps at energies ε = ±e2/C0, where C0 is the self-capacitance of each NC.

This result is shown in Fig. 3.2.

The remainder of this chapter is organized as follows. In Sec. 3.2 I define the system

being studied and outline our simulation technique. In Sec. 3.3 I describe our main

results for the DOS and conductivity on both 2d and 3d arrays. We close in Sec. 3.4

with concluding remarks.

3.2 Model

Experimentally, regular arrays of metal NCs can now be reliably synthesized with diam-

eter D in the range 3–7 nm and with size dispersion less than 5% [5, 28, 34]. For such

small NCs, the self-capacitance C0 is also small: C0 = κD/2, where κ is the effective

dielectric constant of the array, given approximately by the Maxwell-Garnett formula

[43, 50]. Correspondingly, the Coulomb self-energy q2/2C0 of an NC with charge q

plays a large and important role in electron transport. To see this, one can imagine a

hypothetical NC array with no disorder. In such an array, in the ground state all NCs

are neutral and electron conduction requires the thermal excitation of positive-negative

NC pairs. Thus, the conductivity is activated with an activation energy e2/2C0. For

nanometer-sized NCs, this activation energy can easily exceed the thermal energy kBT .

In the presence of some finite charge disorder, however, the fluctuating Coulomb

potential can produce charging of NCs in the ground state and thus lead to a Coulomb

gap in the DOS and to ES conductivity. To show how this happens, I adopt the following

simplified model. I assume that identical, spherical, metallic NCs reside in a regular
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d-dimensional square lattice with lattice constant D′, and that impurity charges ±e are

embedded in the insulator (oxide) between NCs. Such impurity charges can be thought

to effectively create a fractional donor charge Qi that resides on each NC i, for reasons

that are explained below. The net charge of the NC can then be written as qi = Qi−eni,

where ni is the integer number of electrons that reside on the NC relative to its neutral

state (ni can be positive or negative). Given this model, the Hamiltonian for the system

is

H =
∑
i

(Qi − eni)
2

2C0
+

∑
⟨i,j⟩

C−1
ij (Qi − eni)(Qj − enj). (3.3)

Here, the first term describes the Coulomb self-energy of each NC and the second term

describes the interaction between charged NCs. The coefficient C−1
ij is the inverse of the

matrix of electrostatic induction Cij . This Hamiltonian has been also been proposed as

a model for arrays of large semiconductor NCs [51].

Because of the presence of the impurity charges, electrons become redistributed

among NCs from their neutral state in order to screen the disorder Coulomb potential.

In order to calculate the DOS and conductivity I first attempt to find numerically the set

of electron occupation numbers {ni} that minimizes the Hamiltonian. In the numerical

simulations that we describe below, we make the approximations that C0 = κD/2 and

C−1
ij = 1/κrij . These approximations do not effect our main conclusions, as we explain

below.

The model of fractional donor charges Qi was first put forward in Ref. [29]; here

its justification is briefly repeated. When an impurity charge, say with charge +e, is

located close to the point of contact between two NCs, labeled A and B, it induces

negative image charges −qA and −qB in the surfaces of NCs A and B, respectively.

This is shown schematically in Fig. 3.1. In order to maintain overall neutrality of the

NCs, an equal and opposite image charge appears at the center of each NC: +qA and

+qB. (These “image charges at the center” represent a uniform electronic charge at the

NC surface.) The values of qA and qB are such that together the image charges −qA

and −qB neutralize the donor charge: qA + qB = e. Their respective magnitudes are

determined by the distance between the impurity and each NC surface. For example, if

the impurity sits exactly along the line connecting the centers of NCs A and B and if the

gap w = D′ −D between NCs satisfies w ≪ D, then qAxB = qBxA, where xA and xB
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are the distances between the impurity and the surface of NCs A and B, respectively.

Since the impurity charges and the image charges −qA, −qB together form a compact,

neutral arrangement, the net effect of the impurity charge is to produce “fractionalized”

donor charges, such that +qA is relayed to the center of NC A and +qB is relayed to

the center of B.

+qA
+qB

+e

-qB
-qA

D/2

D’

Figure 3.1: (Color online) A schematic depiction of the fractionalization of a charged
impurity (small black circle) between NCs (large gray circles). The positive impurity
induces negative image charges (white circles) in nearby metal surfaces and is effectively
neutralized, while equal and opposite positive images are conveyed to the center of the
NC (×’s).

In this way, each NC i can be said to have a fractional donor chargeQi, which is equal

to the sum total of the fractionalized charges donated by individual impurities around

it. In the limit where there are very many impurity charges surrounding each NC,

one can think that the random variable Qi is Gaussian-distributed with some standard

deviation larger than e. In fact, however, in such cases one can effectively adopt a

much simpler model, in which the value of Qi is chosen randomly from the uniform

distribution Qi ∈ [−e/2,+e/2]. To see why this model is valid, consider that each

NC minimizes its Coulomb self-energy by minimizing the magnitude of its net charge,

|Qi−eni|. Since ni can take any integer value, it is generally true that in the ground state

−e/2 ≤ Qi−eni ≤ e/2. In other words, each NC can effectively adjust to the presence of

an arbitrarily strong charge disorder by changing its electron number ni (say, by drawing

electrons from the voltage source) so that its net charge acquires a magnitude smaller

than e/2. This has important implications for the disorder-dependence of conductivity,

as I show below.

Given the ground state configuration for a particular system, defined by the set of

electron occupation numbers {ni}, one can determine the energy of the highest filled
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electron level, ε
(f)
i , and the lowest empty electron level, ε

(e)
i , at each NC i. Specifically:

ε
(f)
i =

2e2ni − 2Qie− e2

2C0
− e

∑
j ̸=i

C−1
ij (Qj − enj), (3.4)

ε
(e)
i =

2e2ni − 2Qie+ e2

2C0
− e

∑
j ̸=i

C−1
ij (Qj − enj). (3.5)

These energies are defined so that the Fermi level µ = 0, and in the ground state ε
(f)
i < 0

and ε
(e)
i > 0 for all i. The single particle DOS g(ε) is defined by making a histogram of

the energy values ε
(f)
i and ε

(e)
i . Higher and lower electron energy states are ignored in

this work, as they play no role in conductivity at kBT ≪ e2/C0.

In order to evaluate numerically the DOS, I use a computer simulation to search for

the ground state arrangement of electrons, {ni}, in a finite array of NCs. For simplicity,

we set the lattice constant D′ = D; this corresponds to the limit where the gap w

between NCs is very thin while the tunneling transparency of the barrier between them

remains much smaller than unity. In our simulation we search for the ground state

by looping over all NC pairs i, j and attempting to move one electron from i to j.

If the move lowers the Hamiltonian H, then it is accepted, otherwise it is rejected.

Equivalently, one can say that for all i, j we check that the ES ground state criterion is

satisfied:

ε
(e)
j − ε

(f)
i − e2C−1

ij > 0. (3.6)

It should be noted that this procedure does not in general find the exact ground state,

but only a “pseudo-ground state” that is stable with respect to single-electron transfers.

In principle, the system energy can be lowered further by some simultaneous multi-

electron transfers. Such processes are generally seen to have only a relatively weak

effect on the DOS [45, 46] that slightly deepens the Coulomb gap near the Fermi level.

3.3 Results and discussion

The resulting DOS is shown in Fig. 3.2a for a two-dimensional (2d) simulated system of

size 100 × 100 lattice sites and in Fig. 3.2b for a three-dimensional (3d) system of size

25 × 25 × 25. Electron energies are plotted in the dimensionless form ε∗ = ε/(e2/2C0)

and the DOS is plotted in the dimensionless form g∗(ε∗) = (e2Dd/2C0)g(ε
∗). The insets
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to these figures show a log-log plot of the DOS near ε = 0, which suggests that in 2d the

DOS follows g2d(ε) ∝ ε1.5 at small energies and in 3d g3d(ε) ∝ ε2.4. These exponents

are somewhat larger than the theoretical ones given in Eq. (3.1), so that apparently the

ES bound is not saturated. This is similar to what happens in the Efros model of the

Coulomb glass [52] at disorder strength A = 1 [45]. The results of Fig. 3.2 are generated

using a uniform distribution Qi ∈ [−e/2, e/2] for the fractional charge. If one instead

takes Qi to be Gaussian-distributed with a standard deviation < 3e, the resulting DOS

is everywhere equal to that of Fig. 3.2 to within 0.6%.
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Figure 3.2: (Color online) The DOS of a regular array of monodisperse NCs, where ε∗ =
E/(e2/2C0) is the dimensionless single-particle energy and g∗(ε∗) = (e2Dd/2C0)g(ε

∗) is
the dimensionless DOS, where D is the NC diameter. Here, the results are shown from
a computer simulation of a) a 2d square lattice and b) a 3d cubic lattice. The shaded
area shows filled electron states, and the empty area indicates empty states. In addition
to electron–hole symmetry, the two peaks of the DOS have a mirror symmetry across
ε∗ = ±1, respectively (dotted lines). This symmetry creates from the central Coulomb
gap two additional half-gaps at ε∗ = ±2, resulting in a “Coulomb gap triptych.” Insets
show the DOS near the Fermi level ε∗ = 0 in log-log scale.
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Fig. 3.2 also highlights the striking additional symmetry in the DOS in both 2d

and 3d, as compared to the DOS in the conventional Coulomb glass problem [32, 45].

Namely, each peak in the DOS is symmetric with respect to reflections about ε∗ = ±1,

so that the DOS has identical, repeated Coulomb gaps at ε∗ = ±2. The origin of

these additional Coulomb gaps can be understood by noting a particular symmetry in

the Hamiltonian that is reflected in the filled and empty state energies, ε
(f)
i and ε

(e)
i .

Namely, by subtracting Eqs. (3.4) and (3.5) one can show that

ε
∗(e)
i = ε

∗(f)
i + 2 (3.7)

for all i. Thus, all NCs contribute to the DOS two energy levels – one filled, one empty

– separated by e2/C0. This implies that as the density of states collapses at ε very close

to zero (the Coulomb gap), the density of states must also collapse as ε∗ approaches ±2

in identical fashion. That is, the ES stability criterion of Eq. (3.6) places constraints

both on the DOS near ε = 0 and on the DOS near ε = ±e2/C0.

One can also note that states with ε
∗(f)
i < −2 or ε

∗(e)
i > 2 are prohibited, since

by Eq. (3.7) these would imply that some NC has ε
(e)
i < 0 or ε

(f)
i > 0. Thus, g(ε) is

strictly zero at |ε∗| > 2. This is a markedly different situation than in the conventional

Efros model [52], where the width of the DOS reflects the characteristic strength of the

disorder. In the present problem, for large enough disorder the DOS has a saturated

width e2/C0. This saturation occurs because the number of electrons n at each site can

adjust to screen an arbitrarily large Coulomb disorder. Thus, one can expect that at

large disorder the conductivity also becomes independent of disorder strength.

In order to evaluate the conductivity directly, we employ the approach of the Miller-

Abrahams network [47], similar to what is explained in the previous sections. Our results

for the conductivity are shown in Fig. 3.3, plotted as a function of the dimensionless

temperature T ∗ = 4DC0kBT/(e
2ξ) raised to the power −1/2. The results indicate

that the conductivity is well-described by the ES law of Eq. (3.1) at relatively small

temperatures T ∗ . 1, both in 2d and 3d 1 .

This behavior is consistent with the prominent Coulomb gaps seen in Fig. 3.2. In

1 In fact, if one repeats the original ES derivation [3] using the DOS shown in Fig. 3.2, one arrives
at a slightly different temperature dependence lnσ ∝ T−γ at low temperature, with γ ≈ 0.56 in 2d
and γ ≈ 0.53 in 3d. Due to finite size limitations, our conductivity data (Fig. 3.3) cannot discriminate
between these exponents and γ = 1/2.
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both 2d and 3d, replacing the uniform distribution of Qi with a distribution with larger

variance — for example, by taking Qi as the sum of three or more independent frac-

tional charges — did not affect the conductivity to within our numerical accuracy. This

insensitivity to the disorder strength stands in contrast to the Efros model [52], where

large disorder widens the DOS, so that ES conductivity exists only when the temper-

ature is sufficiently small that electron hops are confined to within the parametrically

narrow window of energies in which g(ε) is constrained by the Coulomb gap [32]. On

the contrary, in arrays of monodisperse metallic NCs the DOS becomes essentially in-

dependent of disorder strength, so that even at large disorder the Coulomb gap plays a

prominent role and the conductivity follows the ES law.
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Figure 3.3: (Color online) The temperature dependence of the conductivity in (a) 2d
and (b) 3d. In both cases, the conductivity follows the ES law [Eq. (3.1)] at small
temperatures, T ∗ ≪ 1, as shown by the dashed lines.

3.4 Conclusion

The triptych structure of the DOS should have observable consequences for a number

of experiments on metal NC arrays. It is possible, for example, that the DOS can be

probed directly by tunneling experiments, similar to the ones that have directly observed

the Coulomb gap in doped semiconductors [53]. For systems with a finite dispersion δC
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in the NC self-capacitance, the repeated Coulomb gaps will be smeared over some finite

energy interval rather than collapsing to zero exactly at ε∗ = ±2. One can simulate this

behavior numerically by adding a stochastic spatial variation to C0. Our simulations

suggest that for root mean square deviation δC ≪ C0, g(ε∗ = ±2)/g(ε∗ = ±1) ≈
3(δC/C0)

2. This implies that for a system with 5% dispersion in the NC diameter, the

collapse of the DOS at ε∗ = ±2 is complete to within 1%, and the resulting g∗(ε∗) curve

would not be distinguishable from that of Fig. 3.2 if added to the plot.



Chapter 4

Superconducting grains

4.1 Introduction

Granular superconductors are arrays of superconducting granules that are connected

by electron tunneling. As such, these systems combine the unique electronic spectrum

of superconducting quantum dots with the strong Coulomb correlations that are ubiq-

uitous in disordered systems [5]. Among the more celebrated properties of granular

superconductors are a giant magnetoresistance peak [6, 7, 8] and a superconductor-

insulator transition that can be tuned by disorder or magnetic field [9, 10]. So far,

a comprehensive theory of the electron conductivity that can explain these features

remains elusive.

In the present chapter, we focus on the strongly disordered limit, where the array of

superconducting grains as a whole is insulating while individual grains may still retain

prominent features of superconductivity [6, 10, 11]. In this case, electronic states are

localized and electron conduction proceeds by phonon-assisted tunneling, or “hopping,”

of electrons between grains through the insulating gaps which separate them. In prin-

ciple, electronic conduction can occur either through tunneling of single electrons or

through simultaneous tunneling of an electron pair. Here we note only that coherent

tunneling of Cooper pairs (the Josephson effect) is neglected throughout this chapter,

since it is not relevant in the strongly disordered limit that we are considering.

Since hopping conductivity is a thermally activated process, its magnitude at a given

temperature T depends on two important energy scales associated with the spectrum of

53
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electron energy states within each grain. The first is the charging energy Ec = e2/2C0,

where e is the electron charge and C0 is the self-capacitance of a single grain. The

importance of the charging energy can be seen by considering that, in a neutral system,

conduction requires an electron to hop from one neutral grain to another, thereby pro-

ducing two charged grains, each with Coulomb self-energy Ec. The second important

energy scale is the superconducting gap ∆, which represents an activation energy for

separating a Cooper pair. In the limit where ∆/Ec → 0, the array is equivalent to a

granular metal [28, 29, 5, 30]. In the opposite limit, where ∆/Ec → ∞, each grain has

the properties of a bulk superconductor. In the present chapter our focus is on exploring

the novel physics that results when Ec and ∆ are similar in magnitude.

Since the superconducting gap ∆ is typically on the order of 1 meV or smaller

[10, 54], Ec ∼ ∆ implies that the self-capacitance C0 & 80 aF. This relatively large

self-capacitance can be achieved either by fabricating large grains or by surrounding the

grains by an environment with a high effective dielectric constant κ, so that the product

of κ and the grain diameter D satisfies κD & 400 nm. For 3d arrays, large C0 can also

be achieved by making an array of very densely-packed grains, for example, cubic grains

separated by a thin insulating layer [29]. In this chapter we assume that the Josephson

coupling energy J between grains satisfies J ≪ Ec, so that the array is indeed insulating

[5] regardless of the value of ∆, and coherent tunneling of Cooper pairs is absent. Since

we are considering the case of relatively large grains, we also assume that the spacing δ

between discrete electron energy eigenstates within the grain satisfies δ ≪ Ec.

In relatively dense arrays, electron conduction can occur both through hopping of

electrons between nearest-neighboring grains and through VRH between distant grains

[34, 5, 29]. In systems with localized electron states, the latter transport mechanism

dominates at low temperature. As previously shown, for systems with unscreened

Coulomb interactions, due to a very general stability criterion of the global ground

state the DOGS must vanish [3] at the Fermi level µ. This vanishing DOGS is called

the Coulomb gap, and in the canonical Coulomb glass model of disordered systems it

leads to a conductivity σ that obeys the Efros-Shklovskii (ES) law:

σ ∝ exp[−(TES/T )
1/2], (4.1)
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where

TES =
Ce2

κξ
(4.2)

is a characteristic temperature, C is a numerical coefficient, and ξ is the electron local-

ization length of the array. Eq. (4.1) has been observed in a number of granular metals

and superconductors at low temperature (see Ref. [5] and references therein).

In the previous chapter, we used a computer simulation to explore VRH in 2d and

3d arrays of monodisperse normal metallic grains. In such systems disorder is provided

by donors and acceptors randomly situated in the interstitial spaces between grains—

for example, in the metal oxide of the grains. We showed that as a consequence of

the periodic charging spectrum of individual grains there is not one but three identical

adjacent Coulomb gaps in the DOGS (one full gap at the Fermi level and two “half-

gaps” on either side), which together form a structure that we termed a “Coulomb gap

triptych.” Unlike in conventional Coulomb glass models, in metallic granular arrays the

DOGS has a fixed width in the limit of large disorder.

This previous study can be considered as a model for a granular superconductor in

the limit where ∆/Ec → 0. In the present chapter, we generalize the theory of Ref.

[30] to the case of finite ∆∗ ≡ ∆/Ec. Specifically, we assume that within each grain

electrons can form Cooper pairs, thereby lowering the system energy by −2∆ per pair.

We use this model to study the DOGS and conductivity as a function of the gap ∆ and

the temperature T .

For energies close to the Fermi level our results for DOGS and conductivity are

similar to those of an earlier seminal work [55], which aimed to capture the effect of

pairwise attraction of electrons on the Coulomb gap and VRH conductivity. The authors

of Ref. [55] started from the canonical Efros model of the Coulomb glass [52] with strong

disorder and added the possibility of occupation of a site by two electrons with a finite

(positive or negative) interaction energy U . They used this model to study how varying

the on-site energy U affects DOGS, and the hopping conductivity σ in the presence of

large external disorder. In this chapter we examine a model that is more realistic for

granular superconductors, and we confirm a number of interesting observations made

in Ref. [55].

Ch. 4 is organized as follows. In Sec. 4.2 we define the system being studied and

outline our simulation technique. In Sec. 4.3 we describe our main results for the DOGS
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and conductivity, focusing primarily on 2d arrays, and we present their implications for

magnetoresistance. In Sec. 4.4 we show that our results generalize to the 3d case as

well. Sec. 4.5 is devoted to translating our results for the DOGS into a prediction for

tunneling experiments. We close in Sec. 4.7 with concluding remarks.

4.2 Model

In this chapter we consider an array of identical, spherical grains with diameter D

arranged in a regular, d-dimensional square lattice with lattice constant D′ > D. For

simplicity of discussion, during the majority of this chapter we focus on case d = 2;

results for d = 3 are presented in Sec. 4.4. Disorder in this system is assumed to be

provided by impurity charges ±e that are embedded in the insulating interstitial spaces

between grains. Such impurity charges can be thought to effectively create a random

fractional donor charge Qi that resides on each grain i, for reasons that are explained

more fully in Ref. [30]. The net charge of the grain can then be written as qi = Qi−eni,

where ni is the integer number of electrons that reside on the grain relative to its neutral

state. We emphasize that ni can be a positive or negative integer, and can be defined

as ni = Ni − Ii, where Ii is the number of positive ions and Ni the number of electrons

at grain i. Within each grain, the Ni electrons can form bound pairs through the local

attraction energy ∆. In general, ∆ can be tuned by an applied magnetic field B, as

discussed below.

Given this model, the Hamiltonian for the system can be written

H =
∑
i

(Qi − eni)
2

2C0
+
∑
⟨i,j⟩

C−1
ij (Qi − eni)(Qj − enj) (4.3)

−2∆
∑
i

⌊
Ni

2

⌋
.

Here, the first term describes the Coulomb self-energy of each grain and the second term

describes the Coulomb interaction between charged grains. The coefficient C−1
ij is the

inverse of the matrix of electrostatic induction Cij . In the numerical simulations that we

describe below, we make the approximations C0 = κD/2 and C−1
ij = 1/κrij . The third

term in the Hamiltonian describes the total pairing energy of electrons; Ni is the number

of electrons and ⌊Ni/2⌋ is the number of electron pairs within grain i. In Ref. [55], the



57

authors proposed a similar Hamiltonian as a model for disordered superconducting films

such as InOx. Unlike in Eq. (2.4), the model considered in Ref. [55] assumes that the

electron occupation numbers are restricted to Ni = 0, 1, 2 and that disorder is provided

by random, uncorrelated site energies rather than by the random charges Qi. While

we consider our model more realistic for granular superconductors, we will show that it

reproduces many of the features reported in Ref. [55].

Because of the presence of the impurity charges, electrons become redistributed

among grains from their neutral state in order to screen the disorder Coulomb poten-

tial. The corresponding ground state arrangement of electrons among grains plays an

essential role in the conductivity, since it determines the lowest empty and highest filled

electron energy levels at each grain. In our numerical simulation described below, we

search for the set {ni} that minimizes the Hamiltonian and use it to calculate the DOGS

and the conductivity.

In conventional Coulomb glass models, the characteristic strength of the disorder is

a free parameter that determines the width of the DOGS [52, 32]. One can expect that

in our problem a similar role is played by the typical magnitude of the disorder charge

Qi, which reflects the average number of impurity charges surrounding each grain. In

fact, however, in the limit where there are many such charges one can effectively adopt a

simple model in which the value of Qi is chosen randomly from the uniform distribution

Qi ∈ [−e,+e]. To see why this model is valid, consider that each grain minimizes its

Coulomb self-energy by minimizing the magnitude of its net charge, |qi| = |Qi − eni|.
In the absence of any Cooper pairing, ni may freely take any integer value in order to

arrive at a state for which −e/2 ≤ qi ≤ e/2. If one assumes, on the other hand, that

Cooper pairing is so strong that all electrons are paired in the ground state (∆∗ ≫ 1) ,

then Ni = ni + Ii may still freely take any even-integered value, so that in the ground

state −e ≤ qi ≤ e. In other words, regardless of the value of ∆, each grain can effectively

adjust to the presence of an arbitrarily strong charge disorder by changing its electron

number ni so that its net charge acquires a magnitude smaller than e. For this reason,

in the limit of large disorder the DOGS has a fixed width, as first explained in Ref.

[30]. For the results presented below, we take Qi to be randomly chosen from the

uniform distribution Qi ∈ [−e, e]. The ion number Ii is assumed to be very large, so

that electrons are never completely depleted from any given grain. Ii is also taken to
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be even or odd with equal probability; the relevance of this choice is explained below.

In our analysis below it is convenient to introduce the following dimensionless units,

which reduce the number of free variables in the problem. We introduce the dimension-

less distance between the centers of grains i and j,

r∗ij =
rij
D

, (4.4)

the dimensionless charge

q∗i =
Qi − eni

e
, (4.5)

the dimensionless electron energy

ε = E/Ec, (4.6)

the dimensionless DOGS for single electrons and electron pairs

g∗1,2(ε) = EcD
dg1,2(ε), (4.7)

the dimensionless temperature

T ∗ =
2DkBT

Ecξ
, (4.8)

and the dimensionless resistivity

ln ρ∗ =
ξ

2D
ln(ρ/ρ0), (4.9)

where ρ0 is a prefactor for the resistivity with a weak, power-law dependence on tem-

perature. We also assume that the gap between neighboring grains D′ − D ≪ D, so

that D′ ≃ D. The problem then loses any explicit dependence on the diameter or the

localization length. With these definitions, one can write the Hamiltonian of Eq. (4.4)

in dimensionless units as

H∗ =
∑
i

q∗2i +
∑
⟨i,j⟩

q∗i q
∗
j

r∗ij
− 2∆∗

∑
i

⌊
Ni

2

⌋
. (4.10)

If one is given the ground state electron occupation numbers {ni}, then one can

determine the highest occupied electron energy state, ε1−i , and the lowest empty state,

ε1+i , at a given grain i. These energies determine the contribution of the grain i to the

single-electron conductivity, and are given by:

ε1−i = −2q∗i − 1−
∑
j ̸=i

q∗j
r∗ij

−

{
0 , Ni odd

2∆∗ , Ni even
, (4.11)
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ε1+i = −2q∗i + 1−
∑
j ̸=i

q∗j
r∗ij

−

{
2∆∗ , Ni odd

0 , Ni even
. (4.12)

From Eqs. (4.11) and (4.12) one can see that the spectrum of single-electron energy

levels at a given grain i depends on the “parity” of the grain: whether the number of

electrons in the neutral state, Ii, is odd or even. To understand why this is the case,

consider first the spectrum of a single grain with ∆ = 0. In such a grain, ε1+i − ε1−i = 2

regardless of the number of electrons in the grain. This implies a ladder of electron

energy levels, spaced by 2Ec, corresponding to different charge states of the grain.

These energy levels are shown schematically in the left side of Fig. 4.1. When ∆∗ is

finite, on the other hand, those energy states corresponding to an even total number

of electrons in the grain become shifted by −2∆∗ as a consequence of the attractive

interaction between electron pairs. As a result, ε1+i − ε1−i = 2 − 2∆∗ for grains with

odd Ni and ε1+i − ε1−i = 2+2∆∗ for grains with even Ni. This suggests that the energy

to add or remove one electron from the grain’s neutral state depends on the parity of

the grain, as shown in the center of Fig. 4.1. (The importance of the grain parity for

its electronic spectrum has been well established by previous theoretical [56, 57] and

experimental [58, 59] studies.) At ∆∗ = 1, pairs of electron energy states become two-

fold degenerate, as shown on the right side of Fig. 4.1. As a consequence, at ∆∗ ≥ 1

in the ground state all grains have an even total number of electrons, regardless of the

disorder strength. This uniform pairing has an important consequence for the DOGS,

as discussed below.

The diagram of Fig. 4.1 shows that the spacing between energy levels at ∆∗ = 1 is

doubled relative to that of ∆∗ = 0. One can observe that this same increased spacing

could be achieved if the electron charge e were replaced with an effective charge
√
2e,

so that the charging energy Ec ∝ e2 is doubled. In fact, this effective charge
√
2e plays

a prominent role for the DOGS and conductivity at ∆∗ = 1, as will be shown in Sec.

4.3.

In the presence of some disorder, the ladder of energy states depicted in Fig. 4.1

becomes shifted randomly up or down from one grain to the next by the disorder po-

tential. The values of ε1−i and ε1+i for each grain—those energy states just above and

just below the constant global Fermi level—contribute to the DOGS g∗1(ε).
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Figure 4.1: Single-electron energy levels of an isolated neutral grain. At ∆∗ = 0 (left),
the Coulomb self-energy produces a spectrum where different charge states ε are sep-
arated in energy by 2. At 0 < ∆∗ < 1 (center), those energy levels corresponding to
the addition of an electron to a grain with an odd total number of electrons are shifted
by −2∆∗. At ∆∗ = 1 (right), the difference in self-energy 2Ec between two successive
charge states is compensated by the pairing energy −2∆, so that pairs of subsequent
electron levels merge. The Fermi level at ε = 0 is indicated schematically by a dashed
line.

Thus far we have focused our discussion on hopping by single electrons, which is

characterized by a localization length ξ = ξ1. In principle, conduction may occur

through simultaneous hopping of an electron pair as well, with a distinct localization

length ξ = ξ2. For example, one can expect pair tunneling to become dominant in the

limit ∆∗ → ∞, where thermally activated breaking of bound Cooper pairs is completely

suppressed. In order to discuss conduction by electron pairs, one can similarly define

the energy associated with pair excitations, in analogy with Eqs. (4.12) and (4.11).

Specifically:

ε2−i = −4q∗i − 4− 2
∑
j ̸=i

q∗j
r∗ij

− 2∆∗, (4.13)

ε2+i = −4q∗i + 4− 2
∑
j ̸=i

q∗j
r∗ij

− 2∆∗. (4.14)

Note that, unlike for single electron excitations, for pairs we have ε2+i −ε2−i = 8 regardless

of the parity of the grain. This suggests that the ladder of energy states corresponding

to pair excitations has a uniform spacing 8Ec, and thus all pair excitation energies
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are independent of ∆. This is as expected, since the total number of bound pairs in

the system is unchanged by the simultaneous tunneling of a pair. As with the single

electron energy levels, the disorder potential produces a random shifting of the two-

electron energy levels from one grain to another. The energies ε2−i and ε2+i in the

ground state are histogrammed to produce the pair DOGS, g∗2(ε).

In order to evaluate numerically the DOGS, we use a computer simulation to search

for the ground state arrangement of electrons, {ni}, in a finite array of grains. This is

done by looping over all pairs ij and attempting to move either one or two electrons

from i to j. If the proposed move lowers the total system energy H∗, then it is accepted,

otherwise it is rejected. This process is continued until no single-electron or pair transfers

are possible that lower H∗. Equivalently, one can say that for all i, j we check that two

sets of ES ground state criteria are satisfied:

ε1+j − ε1−i − 1/r∗ij > 0. (4.15)

and

ε2+j − ε2−i − 4/r∗ij > 0. (4.16)

The final arrangement of electrons can be called a “pseudo-ground state,” which is not

strictly equal to the true ground state of the system but which generally provides an

identical DOGS up to very small energies [32, 45, 46].

Once the energies {ε1±,2±
i } are known, we evaluate the resistivity using the approach

of the Miller-Abrahams resistor network [47]. This approach is described in detail in

Refs. [30, 51], but here we give a brief conceptual overview. In the Miller-Abrahams

description, each pair of grains ij is said to be connected by some equivalent resistance

Rij . The value of Rij increases exponentially with the distance rij between the grains

and with the activation energy Eij required for hopping between them according to

Rij ∝ exp[2rij/ξ + Eij/kBT ]. Note that, using the dimensionless units of Eqs. (4.4) –

(4.9), one can define the dimensionless logarithm of the resistance lnR∗
ij = r∗ij + εij/T

∗,

which has no explicit dependence on ξ. The resistivity of the system as a whole is found

using a percolation approach. Specifically, we find the minimum value Rc such that if

all resistances Rij with Rij < Rc are left intact while others are eliminated (replaced

with R = ∞), then there exists a percolation pathway connecting opposite faces of the

simulation volume. The system resistivity is equated with RcD
d−2.
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In principle, single-electron hopping and pair hopping provide parallel mechanisms

for charge transport between a given pair of grains ij, and so they can be represented as

parallel resistors connecting the two grains. In most situations, however, one of the two

mechanisms dominates the conductivity while the other can be neglected, as we show

below. We therefore focus primarily on the case where single and pair excitations can

be treated as independent, non-connected resistor networks with resistivities ρ1 and ρ2,

respectively. Some limited results for mixed conduction are provided at the end of the

following section.

All numerical results for 2d systems presented in the following section correspond

to simulations of 100 × 100 lattice sites with open boundary conditions, averaged over

1000 independent, random realizations of the disorder. Energies are defined relative to

the Fermi level µ, so that in the ground state ε1−i < 0, ε2−i < 0 and ε1+i > 0, ε2+i > 0

for all i.

4.3 Results and discussion

The DOGS is shown in Fig. 4.2 for single electron excitations, g∗1(ε), and for pair

excitations, g∗2(ε), at different values of the gap ∆∗. For each curve, the DOGS vanishes

at the Fermi level (ε = 0), as required by the stability criteria of Eqs. (4.15) and (4.16).

One can also note that the DOGS generally becomes wider with increasing ∆∗ as a

consequence of the widening gaps between odd and even electron energy levels (see

Fig. 4.1). The evolution of the DOGS with ∆∗ can be understood more completely as

follows.

At ∆∗ = 0, the array is equivalent to a granular normal metal. As a consequence,

the curve g∗1(ε) at ∆∗ = 0 is identical to the one reported in Ref. [30]. The most

salient feature of this curve is its “triptych” symmetry, with two identical peaks that

are symmetric about their centers. As explained in Ref. [30], this symmetry is a result of

the ES stability criterion of Eq. (4.15) in conjunction with the uniform spacing between

electron energy levels (at ∆∗ = 0, ε1+i − ε1−i = 2 for all i, as shown in Fig. 4.1). Thus,

the “soft” Coulomb gap at ε = 0 gets repeated identically at ε = ±2. On the other

hand, the pair DOGS, g∗2(ε), at ∆
∗ = 0 has a hard gap at the Fermi level with width 4.

This hard gap can be understood by considering that at ∆∗ = 0, Eqs. (4.11) – (4.14)
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Figure 4.2: (Color online) Single electron and pair DOGS, g∗1(ε) and g∗2(ε), of a regular 2d
array of monodisperse metallic grains as a function of the dimensionless electron energy
ε = E/Ec at different values of the superconducting gap ∆∗ = ∆/Ec. At ∆∗ < 1, the
single electron DOGS g∗1 has a soft Coulomb gap at ε = 0, while the pair DOGS g∗2
has a hard gap, and the situation is reversed for ∆∗ > 1. ∆∗ = 1 is a critical point at
which both g∗1,2 have a soft Coulomb gap. The three DOGS curves corresponding to
g∗1(ε) at ∆

∗ = 0, 1 and g∗2(ε) at ∆
∗ ≥ 1 constitute “Coulomb gap triptychs” and can be

scaled onto each other by rescaling the electron charge, as discussed in Sec. 4.3. One
can equivalently say that these three curves exhibit effective charges e,

√
2e, and 2e,

respectively.

imply that ε2±i = 2ε1±i ± 2. Since ε1−i < 0 and ε1+i > 0 for all i, we have |ε2±i | > 2, and

therefore there must be a hard gap of width 4. Physically, one can say that the gap

arises in g∗2(ε) because the charging energy 4Ec associated with adding two electrons

to a given grain is larger in magnitude than the random Coulomb potential, which is

screened effectively by the rearrangement of single electrons. As a consequence of the

relation between ε2±i and ε1±i , at ∆∗ = 0 the two DOGS can be mapped onto each other

via the relation g1(ε) = 2g2[2ε + 2 sgn(ε)]. A slightly different version of this relation

was reported in Ref. [55].
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When the pairing interaction is finite but small, 0 < ∆∗ < 1, g∗1(ε) is unchanged very

close to the Fermi level, but away from the Fermi level it becomes somewhat broadened

due to the widening energy gaps between even and odd parity electron states (see Fig.

4.1). The pair DOGS, meanwhile, retains a hard gap near the Fermi level, but the width

of this gap shrinks to 4(1−∆∗).

In the opposite case, where the pairing interaction is strong enough that ∆∗ > 1, the

situation is reversed. That is, the single-electron DOGS g∗1(ε) acquires a hard gap at

the Fermi level while g∗2(ε) has only a soft Coulomb gap. This result can be understood

by first noting that at ∆∗ ≥ 1, all electrons are paired in the ground state. This is true

because at ∆∗ > 1 any grain with an odd number of electrons can lower its energy by

acquiring an electron from a distant grain with electron energy close to the Fermi level

(or from the voltage source). Making use of Eqs. (4.11) – (4.14) for even-parity grains

produces the relation ε1±i = 1
2ε

2±
i ± (∆∗− 1). Since ε2+i > 0 and ε2−i < 0, it follows that

all |ε1±i | > ∆∗ − 1 for all i, and thus there is a hard gap in g∗1(ε) of width 2(∆∗ − 1).

Physically, this hard gap arises because the pairing interaction is stronger than the

disorder Coulomb potential, which is screened effectively by Cooper pairs. Thus, any

excitation of single-electron hops requires a finite activation energy of at least ∆∗ − 1.

The relations between ε2±i and ε1±i at ∆∗ > 1 imply a mapping between g∗1(ε) and g∗2(ε)

that was also noticed by Ref. [55], namely g∗2(ε) =
1
2g

∗
1[

1
2ε + sgn(ε)(∆∗ − 1)]. At such

large values of ∆∗, the fixed relation ε2+i −ε2−i = 8 implies that g∗2(ε) becomes saturated

and has a fixed width for all ∆∗ ≥ 1.

At the point where ∆∗ = 1 precisely, some remarkable features emerge in the DOGS.

This might be expected by noticing the special role played by ∆∗ = 1 in the single-

electron energy spectrum; this is the point where pairs of energy levels become degen-

erate (see Fig. 4.1, right). At ∆∗ = 1 neither g∗1(ε) nor g
∗
2(ε) has a hard gap, and in fact

the two DOGS can be mapped onto each other via the simple relation g∗2(ε) =
1
2g

∗
1(

1
2ε).

In addition, there is a simple scaling relation between g∗1(ε) at ∆∗ = 1 and g∗1(ε) at

∆∗ = 0. Namely,

g∗1(ε)
∣∣∣
∆∗=1

=
1

2
g∗1 (ε/2)

∣∣∣
∆∗=0

= 2g∗2(2ε)
∣∣∣
∆∗≥1

. (4.17)

The second equality in Eq. (4.17) can be understood in a straightforward way. In-

deed, the second equality suggests that one can arrive at the pair DOGS at large ∆∗
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by taking the single-electron DOGS at ∆∗ = 0 and rescaling the value of the electron

charge by a factor of 2. Replacing e by an effective charge e∗ = 2e in the unit of energy

Ec produces a factor 4 expansion of the x-axis and a factor 4 contraction of the y-axis,

which is equivalent to the second equality in Eq. (4.17). This scaling can be expected,

since for large pairing interaction ∆∗ > 1, all electrons are paired, and one can natu-

rally think that only charge 2e objects exist in the problem. Thus, at such large ∆∗ the

problem of the arrangement of electron pairs in the disorder potential is equivalent to

the problem of the arrangement of single electrons in a disorder potential, with rescaled

units.

The first equality in Eq. (4.17), on the other hand, is unexpected, since it implies

that g∗1(ε)
∣∣
∆∗=1

can be determined from g∗1(ε)
∣∣
∆∗=0

by replacing the electron charge

with an effective charge e∗ =
√
2e. This remarkable feature of the DOGS at ∆∗ = 1

was first pointed out by Ref. [55]. Those authors showed that the result e∗ =
√
2e is the

natural consequence of single electrons hopping in a Coulomb landscape that is shaped

predominantly by Cooper pairs. More formally, one can say that the pair stability

criterion of Eq. (4.16) produces a stronger constraint on g∗1(ε) than the single-electron

criterion of Eq. (4.15). This can be seen by substituting ε2±i = 2ε1±i , which is correct at

∆∗ = 1 (see Fig. 4.1), into Eq. (4.16). As a result, one finds that ε1+i − ε1−j − 2/r∗ij > 0,

or in dimensionfull units, E1+
i − E1−

j − (
√
2e)2/κrij > 0. Repeating the traditional

derivation of the Coulomb gap [3] starting with this inequality leads to an effective

charge e∗ =
√
2e in the DOGS.

In addition to its importance for the DOGS, the effective charge e∗ plays a prominent

role in the electron conductivity. Specifically, it enters the characteristic temperature

TES in the ES law [Eq. (4.1)]. Since TES ∝ e2 [see Eq. (4.2)], the arguments above

suggest that if one defines the ES temperature T s
ES(∆

∗) for single-electron conductivity

and T p
ES(∆

∗) for pair conductivity at a given value of ∆∗, then these should satisfy

T p
ES(∆

∗ ≥ 1) = 2T s
ES(∆

∗ = 1) = 4T s
ES(∆

∗ = 0). (4.18)

It should be noted that, for energies close to the Fermi level our results for g1(E)

and g2(E) are similar to those of an earlier seminal work [55], which aimed to capture

the effect of pairwise attraction of electrons on the Coulomb gap and VRH conductivity.

The authors of Ref. [55] started from the canonical Efros model of the Coulomb glass [52]
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with strong disorder and added the possibility of occupation of a site by two electrons

with a finite (positive or negative) interaction energy U . They used this model to study

how varying the on-site energy U affects g1(E), g2(E), and the hopping conductivity σ in

the presence of large external disorder. In the present chapter we examine a model that

is more realistic for granular superconductors, and we confirm a number of interesting

observations made in Ref.[55].

In order to verify the prediction Eq. (4.18), we measured the single-electron resistiv-

ity ln ρ∗1 and the electron pair resistivity ln ρ∗2 at various values of ∆∗ and over a range

of temperatures using the resistor network approach described in Sec. 4.2. The result is

plotted in Fig. 4.3 as ln ρ∗ versus (T ∗)−1/2. As expected, at low temperature, T ∗ ≪ 1,

the conductivity is well described by the ES law in all cases. By making linear best

fits to the data at low temperature, we find that the corresponding temperatures TES

indeed satisfy Eq. (4.18). This can be seen from the dashed lines in Fig. 4.3, which show

three fit lines with relative slopes 1 :
√
2 : 2, as predicted by the corresponding effective

charges e∗. If the data in Fig. 4.3 are fitted with independent best fit lines, we find

that T p
ES(∆

∗ ≥ 1) ≈ 2.2T s
ES(∆

∗ = 1) ≈ 4.3T s
ES(∆

∗ = 0), which is within our numerical

uncertainty of the prediction in Eq. (4.18).
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Figure 4.3: (Color online) The temperature dependence of the resistivity for single
electron conduction at ∆∗ = 0, 1 and pair conduction at ∆∗ ≥ 1. The dimensionless
resistance ln ρ∗ is plotted against (T ∗)−1/2 to illustrate that the resistivity follows the
ES law [Eq. (4.1)] at low temperatures. The dashed lines are linear fits whose slopes
have the ratio 1:

√
2:2.
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The evolution of TES with ∆ suggests an interesting mechanism for the magnetore-

sistance of the sample. Generally speaking, the pairing energy ∆ in a superconducting

material decreases monotonically [60] with the intensity of an applied magnetic field B.

Thus, by applying a magnetic field one can tune the pairing energy and thereby alter

the DOGS, the ES temperature TES, and the resistivity. In the following discussion we

assume that this tuning of ∆ is the primary role of an applied magnetic field, and we

ignore the effect of the magnetic field on hopping interference phenomena [61]. One

could also imagine that the magnetic field is applied parallel to the array, so that all

hopping trajectories encircle zero magnetic flux.

In order to investigate this mechanism for magnetoresistance, we consider first the

case where all conduction is due to single electron hopping. This would be the case,

for example, when ξ2/ξ1 ≪ 1. In such a case the results of Figs. 4.2 and 4.3 imply a

monotonic negative magnetoresistance. That is, as a magnetic field B is applied, the

gap ∆ decreases, leading to a larger DOGS near the Fermi level and thus to enhanced

conductivity. More specifically, if the superconducting gap is large enough that at zero

magnetic field ∆∗ > 1, then in the absence of a magnetic field the single-electron DOGS

has a hard gap. This hard gap implies that at low temperatures T ∗ ≪ (∆∗ − 1), the

resistivity is very large and described by an Arrhenius-type activation law. When B is

increased to the point that ∆∗ = 1, the resistivity becomes smaller and obeys the ES

law with a characteristic temperature T s
ES(1). As the magnetic field is increased even

further, TES decreases and the resistivity declines. This decline continues until such large

fields that ∆∗ ≪ 1, when the resistivity plateaus and TES = T s
ES(0). According to the

second equality in Eq. (4.18), at small temperatures one should expect that the large-B

resistivity and the resistivity at ∆∗ = 1 are related by [ln ρ∗1(∆
∗ = 1)]/[ln ρ∗1(∆

∗ = 0)] ≃
√
2.

This result is confirmed in Fig. 4.4, which shows the single-electron resistivity as a

function of the superconducting gap ∆∗ at various values of temperature. As expected,

the resistivity indeed declines with decreasing gap (increasing B), and at very small

temperatures (large (T ∗)−1/2) the relation [ln ρ∗1(∆
∗ = 1)]/[ln ρ∗1(∆

∗ = 0)] =
√
2 is

nearly satisfied. This result provides an additional confirmation of the picture of an

effective electron charge
√
2e at ∆∗ = 1.

We would like to emphasize that this mechanism for negative magnetoresistance
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Figure 4.4: (Color online) Resistivity for single-electron hopping, ln ρ∗1, as a function of
the superconducting gap ∆∗ at different values of the temperature T ∗. The resistivity
is normalized by its value at ∆∗ = 0, and one can see that for small temperatures the
ratio [ln ρ∗1(∆

∗ = 1)]/[ln ρ∗1(∆
∗ = 0)] seems to approach

√
2. The declining resistivity

with decreasing gap implies a negative magnetoresistance. The dotted vertical line
indicates ∆∗ = 1, which can be thought of as the point where the resistivity crosses over
from an activated dependence to the ES law with increasing magnetic field (at small
temperature).

is quite unusual, and cannot be understood simply as a reduction of some activation

energy due to weaker Cooper pairing. Rather, the negative magnetoresistance arises

because decreased ∆∗ leads to a DOGS g∗1(ε) that is less depleted by intimidation by

Cooper pairs, and thus to enhanced electron conduction at low temperature.

The results of Fig. 4.4 focus on the case where conduction is provided by single

electrons only, which is appropriate when ξ2/ξ1 ≪ 1. On the other hand, when the

localization lengths ξ1 and ξ2 are similar in magnitude, the conduction should be dom-

inated by single-electron hopping at ∆∗ ≪ 1 and by pair hopping at ∆∗ ≫ 1. This is

the case because at all ∆∗ ̸= 1 one of the two DOGS has a hard gap. By increasing the

magnetic field, then, one can apparently produce a transition between pair-dominated

conduction and single-electron-dominated conduction, provided that ∆∗ > 1 in the ab-

sence of applied field. Such a transition may help to explain the giant magnetoresistance

peak seen in experiments [6, 7, 8], as was proposed by Ref. [55].
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Figure 4.5: (Color online) Resistivity for both single-electron hopping (blue curve),
ln ρ∗1, and electron pair hopping (red curve), ln ρ∗2, as a function of the superconducting
gap ∆∗ at a certain low temperature. At ∆∗ > 1, the ground state of the system is
governed by electron pairs, so that pair DOGS has a soft gap at the Fermi level, while
single-electron DOGS is gapped. As a result, resistivity for single-electron hopping is
much larger than that of pair hopping. At ∆∗ < 1, the mechanisms for ground state and
resistivity are just the opposite: pair DOGS is gapped and resistivity for pair hopping is
exponentially large. The declining resistivity of single-electron hopping with decreasing
gap implies a negative magnetoresistance, while the increasing resistivity of electron
pair hopping with decreasing gap implies a positive magnetoresistance.

A comparison of field-dependence of hopping resistivity between single-electron and

electron pairs is shown in Fig. 4.5. At ∆∗ > 1, the system is dominated by elec-

tron pairs. Therefore, pair DOGS has a soft (Coulomb) gap at the Fermi level, while

single-electron DOGS has a hard gap. As a result, the resistivity associated with single-

electron hopping is much larger than that with pair hopping. At ∆∗ < 1, however, the

situation is reversed: pair DOGS is gapped, which leads to exponentially large resis-

tivity. The declining resistivity of single-electron hopping with decreasing gap implies

a negative magnetoresistance, while the increasing resistivity of electron pair hopping

with decreasing gap implies a positive magnetoresistance.

To investigate this possibility, we performed simulations to measure the resistivity

at different values of the localization lengths ξ1, ξ2 and the temperature T , using a

resistor network that allows for mixed conductivity of singles and pairs. We find that

if ξ1, ξ2, and T are chosen such that the resistivities are nearly equal at ∆∗ ≫ 1 and
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∆∗ = 0, then one can indeed observe a moderate peak in the resistivity in the vicinity

of ∆∗ = 1. One such result is shown in Fig. 4.6, and is qualitatively similar to a result

obtained in Ref. [55] for an array in which the quantity Ec −∆ varies strongly between

grains.
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Figure 4.6: (Color online) The resistivity, ρ/ρ0, as a function of the superconducting
gap ∆∗ for a 2d array with localization lengths ξ1 = D and ξ2 = 10D and temperature
T = 0.1Ec/kB [so that (T ∗

1 )
−1/2 = 2.1 and (T ∗

2 )
−1/2 = 6.7]. The maximum in ρ/ρ0

suggests a magnetoresistance peak associated with the transition from pair-dominated
conduction (at large ∆∗, small magnetic field) to single electron-dominated conduction
(at small ∆∗, large magnetic field).

While this result is promising, we caution that by itself it does not provide a sat-

isfactory qualitative description of the magnetoresistance peak observed in experiment.

For example, the peak in Fig. 4.6 arises out of the deeply insulating state, ρ ∼ 103ρ0.

Since the constant ρ0 is generally on the order of h/e2 ≈ 26 kΩ, this disagrees with

experiment [6, 8, 7], where the magnetoresistance peak is seen to arise from a state

with ρ ∼ h/e2. The appearance of a noticeable peak also apparently requires a large

ratio ξ2/ξ1, which is likely to be possible only very close to the superconductor-insulator

transition. Such large values of ξ2 probably go beyond the limit of applicability of our

model.
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4.4 3d arrays

Thus far our presentation of results has focused on the case of 2d arrays. In this section

we briefly report on simulations of the DOGS and resistivity in 3d arrays. Generally

speaking, while some details of the shape of the DOGS and the magnitude of the

resistivity are modified relative to the 2d case, the triptych structure of the DOGS

and the values of the effective charges remain unchanged. All results in this section

correspond to simulated 3d systems of 24 × 24 × 24 lattice sites with open boundary

conditions, averaged over 1000 realizations of the disorder.

When considering the DOGS, the most prominent difference between 2d and 3d

systems is that in 3d the ES criterion [Eq. (4.15)] imposes a stronger constraint on

g∗1(ε). Specifically, in d dimensions the ES criterion implies [32] that g∗1(ε) < kd|ε|d−1,

where kd is a constant, so that in 3d the DOGS vanishes at least quadratically with

energy near the Fermi level while in 2d it is constrained to vanish only linearly. Fig.

4.7 shows g∗1(ε) and g∗2(ε) for 3d arrays, and one can see that in cases where g∗1(ε) is

ungapped it indeed vanishes as a higher power of ε near the Fermi level.

Nonetheless, the most important qualitative features of the DOGS from the 2d case

remain in 3d as well. Specifically, the curves corresponding to g∗1(ε) at ∆∗ = 0, 1 and

g∗2(ε) at ∆∗ ≥ 1 have the “triptych” structure of two identical, symmetric peaks, and

they can be scaled onto each other using the same scaling relations of Eq. (4.17). This

implies that in 3d we have the same effective charges e∗ = 1e, e∗ =
√
2e, and e∗ = 2e

for single electrons at ∆∗ = 0, 1 and for pairs at ∆∗ ≥ 1, respectively.

Thus, the most important conclusion from our results in 2d remains for the 3d case

as well. This is as expected, since, as explained in Sec. 4.3, the effective charges arise

from the single-electron energy spectrum (Fig. 4.1), and are therefore independent of

the system dimensionality.

One can also check that in 3d the effective charges have the same influence on the

ES temperature as predicted by Eq. (4.18). By numerically evaluating the resistivity of

these 3d systems, we indeed find that the ES temperatures TES obey Eq. (4.18). A plot

of the dimensionless resistivity ln ρ∗ against (T ∗)−1/2 in 3d is essentially identical to that

of Fig. 4.3, with slight downward shifts in the magnitude of the resistivity relative to the

2d case. Making independent linear fits to the data gives T p
ES(∆

∗ ≥ 1) ≈ 2.6T s
ES(∆

∗ =
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Figure 4.7: (Color online) Single electron and pair DOGS, g∗1(ε) and g∗2(ε), of a 3d array
of monodisperse metallic grains. The DOGS curves obey the same scaling relations as
in 2d, [see Eq. (4.17)], indicating the presence of the same effective charges 1e,

√
2e,

and 2e and ∆∗ = 0, ∆∗ = 1, and ∆∗ > 1, respectively.

1) ≈ 5.1T s
ES(∆

∗ = 0), which agrees with Eq. (4.18) to within our numerical uncertainty.

4.5 Tunneling experiments

In the previous sections we presented results for the DOGS and we showed that these

results have important consequences for the characteristic temperature TES and for the

magnetoresistance. In this section we discuss how the DOGS can be observed directly

from tunneling experiments.

Tunneling experiments have previously been used to directly observe the Coulomb

gap in lightly-doped semiconductors [62, 53], and have also measured the supercon-

ducting gap in isolated superconducting grains [54] and in disordered films [10]. It is

therefore natural to think that the single-electron DOGS g1(E) predicted here can also



73

be measured via tunneling. In the problem we are considering, however, the energy

scales Ec and ∆ are similar in magnitude, and thus the tunneling conductance reflects

a convolution of the DOGS g1(E) with the density of states f(E) within each grain. As

a result, we consider it worthwhile to explicitly state our predictions for the tunneling

conductance G(∆, V ), where V is the applied voltage, at different values of the gap ∆.

For simplicity, in this section we ignore the potential effects of spin polarization on

the tunneling rates. This is equivalent to assuming that any applied magnetic field

modifies the superconducting gap ∆ primarily through orbital effects rather than the

Zeeman effect, so that the electron energy levels shown in Fig. 4.1 are not labeled by

spin.

Since the spacing δ between discrete electron energy levels within the grain satisfies

δ ≪ Ec, as explained in the Introduction, we can take the density of states f(E) within

each grain to be a continuous function. For metallic grains with ∆ = 0, f(E) can be

considered a constant, f(E) = f0, as long as |(E−µ)/µ| ≪ 1. On the other hand, when

∆ is finite, coherence peaks arise in the density of states [60], so that at |E| > ∆

f(E)

f0
=

E√
E2 −∆2

, (4.19)

where in this expression E is measured relative to the center of the superconducting

gap. [Eq. (4.19) ignores the potential effect of thermal broadening of the coherence

peaks.]

The expression of Eq. (4.19) indicates that the conductance into a single grain is

greatly enhanced when the voltage is aligned with the edge of the superconducting gap.

For an array of grains, the total conductance is the integrated conductance of all the

individual grains, each of which has a different relative alignment with the voltage.

Thus, the differential conductance satisfies

G(∆, V ) = G0AD
1+d

∫ eV

0
g1(E)f(eV − E +∆)dE, (4.20)

where G0 is a constant and A is the area of the tunnel barrier. [The term +∆ in the

argument of f in Eq. (4.20) accounts for the fact that the function f(E) in Eq. (4.19) is

defined relative to the center of the superconducting gap while the ground state energies

described by g1(E) include the gap energy ∆.]



74

Given our results for g1(E), one can use Eq. (4.20) to numerically evaluate the

conductance G(∆, V ). For the limiting case ∆ = 0, where the density of states f(E)

is constant, Eq. (4.20) becomes simply G(∆ = 0, V ) ∝
∫ eV
0 g1(E)dE, or in other words

g1(eV ) ∝ dG(0, V )/dV . For small but finite ∆, on the other hand, such that 0 < ∆∗ < 1,

the conductance G(∆, V ) is enhanced at small V relative to G(0, V ) as a result of the

coherence peaks. At large ∆∗ > 1, a gap opens in g1(E), and G(∆, V ) remains at zero

for |eV | < (∆∗ − 1)Ec.

This result is shown in Fig. 4.8 for the case of tunneling into a 2d array. Here

the conductance G(∆, V ) is plotted normalized to the value G(0, V ) as a function of

dimensionless voltage eV/Ec for different values of ∆
∗. One can think that these different

curves correspond to different magnetic field, since, as explained above, an increased

magnetic field reduces the gap ∆. Thus, Fig. 4.8 suggests that if one starts with a sample

for which ∆∗ > 1 and increases the magnetic field, a dramatic change occurs in the

quantity G(∆, V )/G(0, V ). Namely, G(∆, V )/G(0, V ) first remains at zero for small V ,

since the single-electron DOGS is gapped. As the magnetic field is increased, the width

of this gap decreases, until the point where ∆∗ = 1 and it disappears. Once ∆∗ ≤ 1, the

value of G(∆, V )/G(0, V ) undergoes an abrupt change such that it becomes divergently

large at small voltage. This divergence can be seen as the result of the coherence peaks,

which greatly increase the tunneling at small voltage relative to the case where there

is no Cooper pairing (high magnetic field). Increasing the magnetic field also has the

effect of lowering the conductance peak at larger voltage, eV/Ec ∼ 2 + ∆∗.

It should be noted that the prediction of Fig. 4.8 is dependent on the existence of un-

screened, long-range Coulomb interactions between electrons, which create the Coulomb

gap in g1(E). If such long-range interactions are screened by the presence of a nearby

metal electrode, which creates an image charge for each charged grain and truncates

the 1/r interaction, then the Coulomb gap will not be preserved and the predictions

of this chapter will be modified. For 2d arrays, it is therefore likely that macroscopic

tunneling experiments will not be effective in identifying a Coulomb gap. The behavior

of Fig. 4.8 may nevertheless still be identified if one uses a scanning tunneling tip to

measure the conductance through individual grains and takes an ensemble average (as

in, e.g., Ref. [63]). Alternatively, one can measure the conductance into a 2d face of a

thick, 3d array, as was done in Ref. [53]. While Fig. 4.8 plots the conductance assuming
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Figure 4.8: (Color online) Tunneling conductance G(∆, V ) into a 2d array of supercon-
ducting grains as a function of voltage V and for different values of the superconducting
gap ∆∗, plotted as a ratio of the conductance at ∆ = 0. The voltage V is plotted in the
dimensionless form eV/Ec. As the magnetic field is increased, driving down the value of
∆, the ratio G(∆, V )/G(0, V ) at small voltage changes from zero to a divergently large
value as ∆∗ is made smaller than 1.

tunneling into a 2d array, if one assumes that g∗1(ε) is identical to that of a 3d system

(Fig. 4.7), the results are qualitatively very similar.

4.6 Disordered Indium Oxide thin films

In this section, a specific material of granular superconductors is discussed: InOx (InO).

InO thin films is one of the materials in which the disorder-driven superconductor-

insulator transition (SIT), a quantum phase transition, has been discovered [64, 65].

Compared to other materials such as amorphous Bi [66] and TiNx [67] that also host

SIT, amorphous InO is of particular interest for its giant magnetoresistance (MR) peak

in the insulating regime, a puzzle that has long drawn great attention in the physics

community both theoretically and experimentally [65, 68, 69]. Beside the transition,

direct evidence of Cooper pairs, both above the transition temperature and in the

insulating regime, has also been reported [70].

Traditionally, disorder in InO is tuned by varing its stoichiometric oxygen concentra-

tion during the fabrication process. This method, however, can introduce unavoidable
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complexities to the system such as the conflation of variations of carrier concentration

and levels of disorder, and therefore cannot account for the intrinsic variations over

different samples. In contrast to the method of chemical doping, electrostatic tuning

of SIT offers the advantage of modulating the carrier concentration without altering its

disorder. In a recent work Ref. [71], a field effect transistor (FET) configuration was

used to electrostatically tune the SIT in InO thin films. In this experimental study,

many interesting phenomena were observed, such as variable range hopping in the insu-

lating regime and the broadening of superconducting fluctuations near the SIT. As the

charge carrier density in the thin film was tuned, the size and location of the MR peak

in the insulating regime changed as well. In this section, we will apply our transport

theory for superconducting grains illustrated above to the case of InO thin films, and

try to explain the evolution mechanism of MR peaks with charge carrier concentration

found in [71].

The details of sample growth and fabrication and the approach of electrostatic tuning

are explained in Refs. [[30, 55]]. Fig. 3 in Ref. [71] shows the MR measurements of two

InO thin film samples at different gate voltages. Both samples exhibited SIT tuned by

carrier modulation, which is clearer in the case of sample B. The most significant feature

of the data for sample A [Fig. 3(a1)-(a3)] is the transition from negative MR to positive

MR followed by downward slope of Rs upon further increase of H, all taken at fixed T ,

over the range of 0.5 K to 1 K. Strong MR Peak is also found in insulating regime for

both samples.

In a disorder-driven SIT, the spatial inhomogeneity of the pairing energy ∆ can be

very important. In the insulating regime, in some models, the system may break up

into superconducting islands. Near the SI transition, it has been suggested that the MR

peaks in disordered systems arise because magnetic fields affect the concentration and

size of superconducting islands, so that as these islands shrink with increasing field there

is a transition from Cooper pair-dominated to single electron-dominated transport.

On the other hand, reduction of the superconducting pairing energy within islands

can itself lead to a tradeoff between conduction by Cooper pairs and conduction by

unpaired electrons, and thus (potentially) to a MR peak, even when the concentration

and the size of the superconducting islands are fixed. Recent theoretical works [30, 55]

studied a model with fixed size and concentration of superconducting grains, and they
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showed how a MR peak deep in the insulating state can arise as a result of the reduction

of the superconducting gap with increased magnetic field H. This predicts that near

the MR peak and at low temperature, the conduction should be described by ES VRH,

as shown in Fig. 1(a2) and Fig. 1(b2) in Ref. [71]. Both approaches lead to an insulator

in which Cooper pairs with nonzero ∆ are formed in the insulating regime of the system

and are responsible for the MR peak.

The shift of the MR peak to higher magnetic fields with increasing carrier concentra-

tion, as shown in Figs. 3 in Ref. [71], can be explained qualitatively within the context

of the theory of Refs. [30, 55, 72]. Increasing the carrier density presumably increases

the density of states at the Fermi level within the superconducting grains, thereby driv-

ing up the zero-field superconducting gap ∆0. A larger ∆0 implies that a larger H is

required in order to reduce ∆ to the value of the grain charging energy Ec, so that the

MR peak shifts to higher H. In this way the transition from negative MR [as in Fig.

3(a1)] to a peak at an intermediate H [Fig. 3(a2)] to a peak at a larger H [Fig. 3(a3)]

can be understood.
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Figure 4.9: (Color online) Simulation of log resistivity of a 2D array of identical super-
conducting grains deep in the insulating state as a function of H. Different curves are
labeled with their corresponding values of ∆0/E0. As ∆0 is increased, which presumably
corresponds to larger carrier density, a MR peak develops that shifts to larger magnetic
field, in qualitative agreement with what is seen in Ref. [71]. Here all curves correspond
to a temperature such that KBT = 0.1Ec and have localization lengths ξ1 and ξ2 for
single-electron and pair conductivity, respectively, satisfying ξ1/ξ2 = 8.

As an example, Fig. 4.9 shows values of the resistance of a simulated 2D array of
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regularly-spaced, monodispersed superconducting grains (or islands) as a function of

H, calculated using the method described in [30]. At small ∆0/Ec, the conductivity

is primarily due to hopping of unpaired electrons, and there is a monotonic negative

MR [as seen, for example, in Fig. 3(a1) in Ref. [71]]. At larger ∆0/Ec, which ostensibly

corresponds to larger carrier density, the MR develops a peak associated with a trade-

off between conductivity by single electrons and conductivity by Cooper pairs. This

peak moves to larger H as ∆0/Ec is increased [as in Fig. 3(a1) in Ref. [71]]. For the

simulation of Fig. 4.9 we have assumed a conventional BCS-like dependence of ∆ on the

field H: ∆ = ∆0

√
1− (H/Hc)2. In this way the data shown in Figs. 3 in Ref. [71] is

consistent with the concept of tuning the local superconducting gap by modulating the

carrier density. Moreover within this picture, the global transition from insulating state

to superconducting state can be understood as the increasing carrier density drives zero

∆ regions to non-zero ∆, therefore connecting each superconducting grains otherwise

disconnected. Unfortunately, the simulation method used to generate Fig. 4.9 cannot

be used for a quantitative determination of the relationship ∆(n), since this requires a

knowledge of the H-dependence of the gap as well as the relative localization lengths ξ1

and ξ2 for unpaired and paired electron hopping. We also caution that the simulation

technique is applicable only for the heavily-insulating limit, and in this sense our com-

parison between Figs. 3 in Ref. [71] and 4.9 is only qualitative. It should also be noted

that within this simple model a strong MR peak develops only at relatively large ξ2/ξ1.

A final caveat is the possibility that other models may give similar results.

4.7 Conclusion

In this chapter we have proposed a model of a disordered granular superconductor and

evaluated the DOGS and resistivity at different values of the superconducting gap ∆.

Our primary result is the DOGS for single electrons and electron pairs shown in Figs.

4.2 and 4.7. We also have considered the implications of the DOGS for the conductivity

of the system (Figs. 4.3), and explained a mechanism for negative magnetoresistance

(Fig. 4.4). Our predictions for the tunneling conductance are given in Fig. 4.8.

Perhaps the most remarkable result is the existence of effective charges 1e, 2e, and
√
2e at ∆∗ = 0, ∆∗ > 1, and ∆∗ = 1, respectively, which was first reported by Ref.
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[55]. These effective charges codify exact scaling relations between different results for

the DOGS [Eq. (4.17)] and for the conductivity at low temperature [Eq. (4.18)], and

can be understood in a fairly intuitive way. At ∆∗ = 0, electrons are unpaired and

electronic conduction is performed by single electrons. At ∆∗ > 1, electrons become

bound in Cooper pairs and these pairs are the primary players both in the conductivity

and in determining the DOGS. At the point ∆∗ = 1, single electrons hop in a disorder

potential that is shaped primarily by Cooper pairs, and the single-electron DOGS and

conductivity can be described by an effective charge e∗ =
√
2e.

It is perhaps worth emphasizing that this effective charge
√
2e does not represent a

real quasiparticle in the traditional sense. For example, unlike the charges 1e and 2e,

the charge
√
2e is unlikely to appear in the shot noise of the current (or the Fano factor),

since the actual hopping is performed by single electrons. Rather, the appearance of the

charge
√
2e in g1(E) and TES is the result of a degeneracy in the electronic spectrum,

which results in electrons being paired in the ground state. These paired electrons

rearrange in the presence of a disorder potential and determine the properties of the

ground state, while transport is carried by singles. It is this combination of intimidation

by pairs and conduction by singles that produces the appearance of a
√
2 charge.

More generally, this view represents something of a novel paradigm in hopping trans-

port. Namely, that a system can be simultaneously populated by two or more charged

species (here, singles and pairs), one of which determines the Coulomb landscape while

the other is responsible for transport. Exploring this kind of physics in other classes of

disordered systems remains a promising topic for future study.



Chapter 5

Topological insulator and strongly

compensated semiconductor

5.1 Completely compensated topological insulator

5.1.1 Introduction

The three-dimensional (3D) topological insulator (TI) [12, 13, 14, 15, 16] has gapless

surface states, which host a spectrum of quantum transport phenomena [73, 74]. In Fig.

5.1(a), the band structure of an undoped Bi2Se3, a typical 3D TI, measured by ARPES

is shown. While the bulk is a normal band insulator, the surface states are gapless and

has a dirac-cone structure, with the dirac point inside the band gap of the bulk.

While a number of crystals have been identified to be 3D TIs, most of them are poor

insulators and the bulk of TI crystals of substantial size (> 10 µm) shunts the surface

conductivity. The current literature [18, 19, 20, 21, 22, 23, 24, 25, 26]broadly discusses

how one can achieve a bulk-insulating state.

Typically as-grown TI crystals such as Bi2Se3 are heavily doped n-type semiconduc-

tors. (It is believed that Bi2Se3 is doped by Se vacancies.) To make them insulating,

these TIs are compensated by acceptors. The compensation process is illustrated in Fig.

5.1(b). With increasing compensation K = NA/ND, where ND and NA are the concen-

trations of monovalent donors and acceptors, the Fermi level shifts from the conduction

band to inside the gap and then into the valence band at K > 1. When compensation

80
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Figure 5.1: (a) Energy band structure of undoped Bi2Se3 measured by ARPES. The top
and bottom are the conduction and valence band of the bulk, respectively; in the middle
are the gapless surface states that have a dirac-cone like band structure. (b) Schematic
drawing of energy band structure of 3D TI in k-space. The large concentration of
intrinsic dopants puts the Fermi level µ high in the conduction band. To achieve a
bulk insulating state, the (shallow) intrinsic dopants must be compensated by (shallow)
acceptors. As a result, the original Fermi level moves from the conduction band down
into the band gap.

of donors is complete, K = 1, the Fermi level is in the middle of the gap and the most

insulating state of TI is achieved, as shown in Fig. 5.2. For a TI with a gap Eg ∼ 0.3

eV the resistivity is expected to obey the activation law

ρ = ρ0 exp(∆/kBT ) (5.1)

with activation energy ∆ = Eg/2 ∼ 0.15 eV, so that the TI is a good insulator at room

temperatures and below.

Figure 5.2: Energy diagram of a completely compensated TI with band gap Eg assumed
in the flat bands picture. While the compensation is complete, the Fermi level lies in
the middle of the gap, and the corresponding resistivity is thermally activated with
activation energy to be half of the band gap.

However, the current experimental situation near K = 1 is frustrating [25]. In the
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temperature range from 100 and 300 K, although resistivity is activated, the activation

energy ∆ ∼ 50 meV, which is three times smaller than expected. At T ∼ 100 K the

activated transport crosses over to variable range hopping (VRH), characterized by ρ ∝
exp[(T0/T )

x] with x < 1, and the resistivity grows even more slowly with decreasing T .

In Ref. [25] the authors show that Mott VRH (x = 1/4) provides a reasonable fit to their

data at 50 K . T . 100 K. When temperature is further decreased, resistivity grows

even more slowly and below 50 K, resistivity saturates around ρ(T ) < 10 Ωcm. This

means that in spite of complete compensation, even at helium temperatures conductance

of TI samples thicker than 10 µm is dominated by the bulk.

Ee 

Eh 

Ec 

Ev 

Rg 

Eg û 

� 

Figure 5.3: Energy diagram of a completely compensated TI with band gap Eg. The
upper and the lower straight lines (Ec and Ev) indicate the unperturbed positions of the
bottom of the conduction band and the ceiling of the valence band; the middle line (µ)
corresponds to the Fermi level. Meandering lines represent the band edges, which are
modulated by the fluctuating potential of charged impurities; Rg is the characteristic
size of these potential fluctuations. The percolation levels for electrons, Ee, and holes,
Eh, are shown by dashed lines; the activation energy ∆ corresponds to the difference
Ee − µ (or µ − Eh). Puddles occupied by carriers are shaded. Shallow impurity levels
are not shown because they merge with the band edges.

In Sec. 5.1, we suggest an explanation for the unexpectedly small bulk resistivity of

completely compensated TIs (K = 1). We assume that both donors and acceptors are

shallow and we use the theory of completely compensated semiconductors (CCS) [75, 32].

This theory is based on the idea that near K = 1, when almost all donors and acceptors

are charged, random fluctuations in the local concentration of impurities result in large

fluctuations of charge. The resulting Coulomb potential is poorly screened because
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of the vanishing average concentration n = ND − NA of screening electrons. Huge

fluctuations in the random potential bend the conduction and valence bands edges and

in some places bring them to the Fermi level, thereby creating electron and hole puddles

that non-linearly screen the random potential. Thus, the amplitude of fluctuations is

limited only by the semiconductor gap Eg. As a result the ground state of a CCS, shown

in Fig. 5.3, is similar to a network of p-n junctions [75, 32]. The characteristic size of

these p-n junctions, also called the nonlinear screening radius, is given by

Rg =
E2

gκ
2

8πNe4
, (5.2)

where κ is the dielectric constant, e is the electron charge, and N = ND = NA. For

N = 1019 cm−3 and κ = 20, Rg ≈ 70 nm ≫ N−1/3 ≈ 4.6 nm, so that we deal with

a very long range potential. As a result, the resistivity can be dramatically different

from the expectation outlined above, which assumed flat bands. First, at relatively

high temperatures conduction is due to electrons and holes being activated from the

Fermi level to their corresponding classical percolation levels (classical mobility edges),

Ee and Eh, in the conduction and the valence bands. These may be substantially

closer to the Fermi level µ than Eg/2, but so far the resulting value of ∆ has not been

studied theoretically. Second, at sufficiently low temperatures electrons and holes can

hop (tunnel) between distant puddles, so that variable range hopping replaces activated

transport. In the low temperature limit ρ(T ) should obey the Efros-Shklovskii (ES) law

of VRH [3],

ρ = ρ0 exp
[
(TES/T )

1/2
]
, (5.3)

where TES = Ce2/κξ, ξ is the localization length of states with energy close to the Fermi

level, and C is a numerical coefficient. So far the magnitude of TES and the nature of

the crossover between activated and VRH conduction have not been studied.

In this section, motivated by the TI resistivity puzzle, we return to CCS and model

numerically the K = 1 case. In Sec. 5.1.2 the theoretical model for completely compen-

sated TI is defined, and our computer simulation methods for numerically calculating

the DOGS and resistivity are introduced. Results are presented and discussed in Sec.

5.1.3.

Our assumption of random distribution of impurities is crucial for this theory. Usu-

ally, for samples made by cooling from melt, the distribution of impurities in space is a
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snapshot of the distribution the impurities have at higher temperature when the diffu-

sion of impurities practically freezes. In semiconductors with a narrow enough gap at

this temperature, there is a concentration of intrinsic carriers larger than the concentra-

tion of impurities. Intrinsic carriers screen the Coulomb interaction between impurities,

so that impurities remain randomly distributed in space. At lower temperatures, when

intrinsic carriers recombine, impurities are left in random positions [76, 32]. If diffu-

sion freezes at T ∼ 1000K, it is reasonable to assume that impurities are randomly

positioned in a semiconductor with Eg ≤ 0.3 eV . This justifies the use of this theory

for typical TIs. Our results are applicable to other narrow gap semiconductors, for

example, InSb. (Historically, large effort was made to make InSb insulating via strong

compensation. The goal was to improve characteristics of InSb based photo-detectors.

Results were again frustrating: the dark resistivity was too small. Our results are in

reasonable agreement with transport experiment data for InSb [77, 78].)

For moderately large T we find that ∆ = 0.15Eg. For a TI with Eg = 0.3 eV

this implies ∆ = 45 meV, in agreement with observed values [25]. We also find that

the single-particle DOS has a Coulomb gap at the Fermi level [3]. We show from our

simulation that the resistivity is described by Eq. (5.3) at low temperatures and crosses

over to Eq. (5.1) at higher T . We present a crude estimate of the localization length

ξ which suggests that TES ∼ 900 K and that the crossover between activation and ES

VRH occurs at T ∼ 40 K. Together our results for the activated and VRH resistivity

establish a universal upper limit for the resistivity ρ(T ) that one can achieve for a 3D

TI compensated by shallow inpurities.

5.1.2 The model, pseudoground state, and density of states

In order to model the CCS numerically, we simulate a cube filled by an equal number

of randomly positioned donors and acceptors (20000 of each). We numerate all donors

and acceptors by the index i and we define ni = 0, 1 as the number of electrons residing

at impurity i and the variable fi to discriminate between donors (fi = 1) and acceptors

(fi = −1). The resulting Hamiltonian is

H =
Eg

2

∑
i

fini +
∑
⟨ij⟩

V (rij)qiqj , (5.4)
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where qi = (fi +1)/2−ni is the net charge of site i and all energies are defined relative

to the Fermi level. The first term contains the energies of shallow donors and acceptors,

which is very close to the semiconductor gap Eg. The second term of H is the sum of

interaction energies of charged impurities. If two impurities are at distance r >> aB,

where aB is the Bohr radius of impurity states, one can use the Coulomb interaction

V (r) = e2/κr. For a pair of empty donors, one donor shifts down the energy of the

electron on the other by an energy V (r) = −e2/κr. This classical form for V (r) is good

for a lightly doped SCS. But in a heavily doped SCS, where aB > N
−1/3
D , most impurities

have at least one neighbor at distance r < aB and quantum-mechanical averaging over

electron wave function becomes important. (This is why an uncompensated heavily

doped semiconductor is a good metal). For example, such a pair of donors cannot

create a state deeper than that of the helium-like ion with a binding energy 4EB, where

EB = e2/2κaB is the binding energy of the shallow donor state. Here, we deal with

heavily doped SCS, where (Ec − µ) > 4EB and quantum effects limit the role of short-

range potential. To model such a case, we continue to use the classical Hamiltonian Eq.

(5.4), but truncate the Coulomb potential to V (r) = e2/κ(r2 + a2B)
1/2. Note that Eq.

(5.4) does not include the kinetic energy of electrons and holes in conduction and valence

bands and, therefore, aims only at description of the low temperature (kBT ≪ Eg)

physics of SCS.

In all results below we use dimensionless units for r, aB, ξ, H, Eg, and kBT , measur-

ing all distances in units of N−1/3 and all energies in units of e2N1/3/κ. Thus, Eq. (5.4)

can be understood as dimensionless, with Eg ≫ 1 and V (r) = (r2 + a2B)
−1/2. For a TI

with Eg = 0.3 eV, κ = 20 and N = 1019 cm−3, the unit of energy e2N1/3/κ ≈ 15 meV,

so that the dimensionless gap Eg ≈ 20. We were unable to directly model Eg = 20,

since in this case the very large Rg ≈ 16 leads to large size effects. Instead, we present

results for the more modest Eg = 10, where Rg ≈ 4 and size effects are negligible,

and for Eg = 15, where Rg ≈ 9 and size effects can be treated using extrapolation.

Unless otherwise stated, results below use aB = 2 and are averaged over 100 random

initializations of the donor and acceptor positions.

In our simulation, we first search for the set of electron occupation numbers {ni}
that minimizes H. We start by assuming that all donors are empty (ni = 0, qi = 1)

and that all acceptors are filled (ni = 1, qi = −1). These charged donors and acceptors
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create a random Coulomb potential whose magnitude exceeds Eg. We then sequentially

choose pairs consisting of one filled site and one empty site and attempt to transfer an

electron from the filled site to the empty site. If the proposed move lowers the total

system energy H, it is accepted, otherwise it is rejected. To describe the change in H

resulting from such a transfer it is convenient to introduce the single-electron energy

state, εi, at a given impurity i:

εi =
Eg

2
fi −

∑
j ̸=i

V (rij)qj . (5.5)

The process of transferring electrons concludes when all pairs i, j with ni = 1 and nj = 0

satisfy the ES stability criterion:

εj − εi − V (rij) > 0. (5.6)

This final arrangement of electrons can be called a pseudo-ground state, since higher

stability criteria of the ground state (involving multiple simultaneous electron trans-

fers) are not checked. Such pseudo-ground states are known to accurately describe the

properties of the real ground state at all but extremely small energies [32, 45, 46]. The

resulting DOS of impurties in the pseudo-ground states g∗(ε) is calculated by making a

histogram of the single-electron energies εi.

Once the energies {εi} are calculated, we evaluate the resistivity using the approach

of the Miller-Abrahams resistor network [32]. Namely, each pair of impurities i, j is said

to be connected by the resistance Rij = R0 exp[2rij/ξ + εij/kBT ], where the activation

energy εij is defined [32] as follows:

εij =

 |εj − εi| − V (rij), εjεi < 0

max [|εi| , |εj |] , εjεi > 0.
(5.7)

The resistivity of the system as a whole is found using a percolation approach. Specif-

ically, we find the minimum value Rc such that if all resistances Rij with Rij < Rc

are left intact, while others are eliminated (replaced with R = ∞), then there exists a

percolation pathway connecting opposite faces of the simulation volume. The system

resistivity ρ(T ) is taken to be proportional to Rc, which captures the exponential term

while details of the prefactor are ignored [32].
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Figure 5.4: (Color online) Dimensionless single-electron DOS g∗(ε) =
g(ε)/[2N/(e2N1/3/κ)] for a completely-compensated semiconductor with aB = 2
and Eg = 10. The inset shows the DOS near the Fermi level ε = 0 (upper curve, blue).
For comparison, the quadratic Coulomb gap g(ε) = (3/π)ε2 is shown by the dashed
line [3, 52]. The lower (magenta) line shows separately the DOS of rare filled donors
and empty acceptors.

5.1.3 Results and discussion

The result is shown in Fig. 5.4, with the DOS in units of [2ND/(e
2N

1/3
D /κ)], so that the

total area is equal to unity. Occupied and empty states are separated by the Fermi level

at ε = 0, which is defined as a half distance between minimum empty and maximum

occupied energy ε. At K = 1, the almost constant symmetric DOS between −Eg = −15

and Eg = 15 reflects a practically uniform distribution of random potential from −Eg/2

to Eg/2, and a corresponding uniform distribution of band edges Ec between 0 and Eg

and Ev between 0 and −Eg [see Fig. 5.3(a)]. Near the Fermi level one sees the Coulomb

gap as a consequence of ES stability criterion [3]. (For comparison, the quadratic

Coulomb gap g(ε) = (3/π)ε2 is shown by the dashline. The DOS of rare filled donors

and empty acceptors is shown by magenta line in the inset of Fig. 5.4.)

In Fig. 5.5 we plot the computed resistivity as a function of temperature, using

the dimensionless logarithm of the resistance (ln ρ)∗ = (ξ/2) ln(Rc/R0) and the dimen-

sionless temperature T ∗ = 2kBT/ξ. These notations are introduced to exclude any

explicit dependence on ξ. Fig. 5.5(a) shows (ln ρ)∗ versus (T ∗)−1/2 over the huge range
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Figure 5.5: (Color online) The temperature dependence of the resistivity for Eg = 10
(blue dots). The dimensionless resistivity (ln ρ)∗ is plotted in (a) against (T ∗)−1/2 to
illustrate that the resistivity follows the ES law at low temperatures, and in (b) against
(T ∗)−1 to show that the resistivity is activated at larger T ∗, with two distinct activation
energies. The dashed lines (black) are linear best fits.

of temperatures 0.03 < T ∗ < 200. One can see that at low temperatures T ∗ < 0.3 the

resistivity is well described by the ES law, Eq. (5.3), with C ≈ 4.4. The higher tempera-

ture range 1 < T ∗ < 200 is plotted separately as a function of 1/T ∗ in Fig. 5.5(b). Here

we find two activated regimes of hopping conductivity. At extremely high temperatures

T ∗ > 50 we see the large activation energy Ea ∼ 0.75Eg while in the intermediate range

1 < T ∗ < 10 we see an activation energy ∆ = (0.15±0.01)Eg. We repeated this analysis

for the larger band gap Eg = 15 using systems of 10000, 20000 and 30000 donors and by

extrapolating to infinite size we find ∆ = (0.15 ± 0.02)Eg. These results for ∆ remain

unchanged, within our statistical uncertainty, if we use aB = 1 instead of aB = 2.
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It should be noted that the large activation energy Ea ∼ 0.75Eg observed at T ∗ > 50

does not have any physical meaning for a real CCS, since at such large temperatures

the conduction is not due to hopping but rather to free, “hot” carriers far from the

conduction and valence band edges. Nonetheless, for our model Hamiltonian this result

is consistent with established theories which say that at such large temperatures Ea =

⟨εij⟩, where ⟨...⟩ denotes averaging over all pairs i, j (see Ch. 8 of Ref. [32]).

On the other hand, the second activation energy ∆ = 0.15Eg makes full physics sense

and should be seen in experiment. At T ≪ Eg electrons optimize their conductivity by

hopping among impurities that are energetically close to the Fermi level. The activation

energy ∆ can be understood as the resulting percolation level for hopping between

nearest-neighboring sites. In other words, if electrons are activated only to those sites

with |ε| < εp, then precisely at εp ≥ ∆ = 0.15Eg there exists an infinite conduction

pathway for electrons comprised of hops of length ∼ N−1/3 or shorter.

In a heavily doped semiconductor this energy is equivalent to the activation energy of

electrons from the Fermi level to the conduction band mobility edge Ee. (Of course, holes

are activated from the Fermi level to their percolation level Eh as well.) For a typical TI

Eg = 0.3 eV, so that we get ∆ = 45 meV, in good agreement with typical experimental

data [25]. (We note, however, that recent experiments on Sn-doped Bi2Te2Se have

achieved ∆ ∼ 125 meV [26]. Such large activation energies may be associated with

deep donor impurity levels, which go beyond our model.)

This activation to the percolation level persists until much smaller temperatures,

where ∆ becomes prohibitively large compared to the thermal energy. At such small T ∗

conduction proceeds by VRH among electron/hole puddles at the Fermi level and the

resistivity is given by Eq. (5.3).

One can interpret the relatively small numerical factor 0.15 above by recalling that

in a typical 3D continuous random potential, ∼ 17% of space has a potential smaller

than the percolation level [32]. As we demonstrated above the energy of the conduction

band bottom is roughly uniformly distributed in the interval (0, Eg). This means that

the percolation level Ee should be close to 0.17Eg and makes our result ∆ = 0.15Eg

quite reasonable.

So far we have emphasized results that do not explicitly depend on the localization
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length ξ. In fact, knowledge of ξ is necessary to predict TES and the transition temper-

ature Tt between Eq. (5.1) and Eq. (5.3) in real temperature units. (According to Fig.

5.5a, the transition happens at T ∗ ≈ 1/2, or Tt ≈ ξ/4). We argue now that in a TI ξ is

quite large, leading to a prominent role for VRH. To see this, consider that if an electron

with energy close to the Fermi level is assumed to tunnel from one electron puddle to

another distant puddle along the straight line connecting them, then the tunneling path

passes through regions where the conduction band bottom is quite high above Fermi

level. This implies a small tunneling amplitude, or ξ ≪ aB. In fact, however, a tunnel-

ing electron can use the same geometrical path as a classical percolating electron with

energy ∆ above the Fermi level. In order to roughly estimate ξ, we assume that along

such a classical percolation path the tunneling barriers V are uniformly distributed in

the range 0 ≤ V ≤ ∆ and we neglect the curvature of this path. Integrating the action

along this path then gives ξ ∼ ~/(m∆)1/2 = aB
√

e2/aB∆. For a TI with Eg = 20 and

aB = 2 this gives ξ ≃ 0.8. This crude estimate leads to TES ∼ 900 K and Tt ∼ 40 K,

which is similar in magnitude to the experimentally observed Tt ∼ 100 K where the

resistivity crosses over from activated to VRH behavior [25].

We note that if one plots our result for (ln ρ)∗ against (T ∗)−1/4 in the relatively

narrow crossover range 50 K < T < 100 K, one gets a mostly straight line, as seen in Ref.

[25]. However, our results suggest that at low temperatures the bulk resistivity follows

the ES law of VRH with temperature exponent x = 1/2, which should become apparent

if the bulk resistivity can be probed to very low temperature. Such measurements are

presumably possible in samples that are much thicker than those studied in Ref. [25]

(∼ 100 µm). For such thick samples conduction through the bulk of the TI crystal

dominates over the surface transport until much smaller temperatures.

5.2 Strongly compensated semiconductor

5.2.1 Introduction

In the previous section we suggest an explanation of anomalously large bulk conductivity

of TI at K = 1. We assume that both donors and acceptors are shallow and randomly

positioned in space and the theory of completely compensated semiconductor (CCS) [32,

75] is adopted. According to our numerical simulation, at K = 1 the activation energy
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∆ ≃ 0.15Eg, in good agreement with the experimental value. This is because Ee and

Eh are substantially closer to the Fermi level µ than the unperturbed by a random

potential bottom of the conduction band Ec and ceiling of the valence band Eν [see

Fig. 5.3]. At low enough temperatures, electrons and holes can hop (tunnel) between

puddles so that VRH replaces activated transport.

Figure 5.6: Energy diagram of a strongly compensated semiconductor (1 − K ≪ 1)
with gap Eg. The upper and the lower straight lines indicate the unperturbed positions
of bottom of the conduction band, Ec, and ceiling of the valence band Eν ; the middle
straight line corresponds to the Fermi level µ. Meandering lines represent the band
edges, which are modulated by the fluctuating potential of charged impurities. Rg

is the characteristic size of potential fluctuations. Percolation levels Ee for electrons
and Eh for holes are shown by dashed lines. Puddles occupied by carriers are shaded.
Shallow impurities levels are not shown because they practically merge with band edges.

In the present section, we change our focus from a possible maximum bulk resistivity

of a completely compensated semiconductor at K = 1 to the more practical question of

the dependence of bulk resistivity of a strongly compensated semiconductor (SCS) on K

at 0 < 1−K ≪ 1. Indeed, with existing methods of growth of TI samples one can not

get K = 1 exactly. It is important to know how stable the resistivity results at K = 1

are for the case of 1−K ≪ 1. For example, one can ask at which 1−K the activation

energy ∆ is twice smaller than at K = 1. For definiteness, we consider n-type SCS,

where the concentration of electrons n = ND −NA ≪ ND and 1 −K ≪ 1. We model

numerically the ground state of such SCS and its resistivity using algorithms similar to

Sec. 5.1. We find that in agreement with the analytic theory [32], when 1 −K grows,

the screening of the random potential improves and its correlation length R decreases.



92

The amplitude of the random potential decreases as well. As a result, hole puddles

shrink and eventually vanish and the chemical potential µ moves up, so that Ec − µ

decreases. One can say that with increasing 1 − K, the screening due to bending of

the conduction band occurs only while all acceptors remain occupied by electrons and

negatively charged. All these changes are illustrated by transition from Fig. 5.3 to Fig.

5.6.

As a result of these changes, the activation energy ∆ decreases with growing 1−K.

We find that the relation ∆ = 0.3(Ec − µ) obtained in Ref. [31] for K = 1 remains

valid for 1 − K ≪ 1 (see Fig. 5.12 below) as well. [In p-type semiconductor where

K = ND/NA, a similar relationship ∆ = 0.3(µ − Ev) takes place.] By K = 0.97 the

activation energy ∆ is about two times smaller than at K = 1. This result shows that

achieving maximum resistivity with ∆ = 0.15Eg is problematic. It also explains the

origin of large scatter of magnitude of ∆ among TI samples [25].

In principle, our prediction that ∆ = 0.3(Ec − µ) can be directly compared with

experiments in TIs. Indeed, for each K, the position of the Fermi level can be found

via measurements of the surface concentration of electrons in the gapless surface state

using Shubnikov-de-Haas oscillations. On the other hand, at low temperatures, we find

numerically a direct cross-over from activation to ES VRH. We also find how TES being

correlated with ∆ decreases with 1−K.

The plan of sec. 5.2 is as follows. In Sec. 5.2.2, we formulate the model, explain the al-

gorithm of numerical simulation of the pseudoground state and resistivity. In Sec. 5.2.3,

we present our results for DOS and resistivity, and arrive at a small activation energy for

conduction band resistivity ∆ = 0.3(Ec − µ). We also evaluate the localization length

of states with energy close to Fermi energy and estimate the characteristic temperature

of ES law TES. In Sec. 5.2.4, we estimate the thermopower of strongly compensated

semiconductor and show that the Peltier energy (heat) is Π ≃ ∆/2 = 0.15(Ec − µ), in

qualitative agreement with a recent experimental paper.

5.2.2 The model, pseudoground states, and the density of states

To model a heavily doped SCS, we create a cube filled with 20000 donors and 20000K

acceptors that are randomly positioned in space. We numerate all donors and acceptors

by index i and use ni = 0 or 1 for the number of electrons residing on a donor or an
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acceptor. In addition, we use a variable fi to discriminate between donors (fi = 1) and

acceptors (fi = −1). The Hamiltonian of our system is defined the same way as Eq.

(5.4).

We use dimensionless units for r, aB, H, Eg, and kBT as defined in Sec. 5.1.2.

Thus Eq. (5.4) now can be understood as dimensionless, where Eg ≫ 1 and V (r) =

(r2 + a2B)
−1/2. For TI with Eg = 0.3 eV, κ = 30, and ND = 1019 cm−3, we have

N
−1/3
D = 4.6 nm and e2N

1/3
D /κ ≃ 10 meV, so that the dimensionless gap Eg = 30. We

could not model Eg = 30, because in this case, the very large correlation length of long-

range potential, Rg, leads to large size effect. Instead, we run more modest Eg = 15,

for which the size effect requires extrapolation only at K = 1 [31]. Our goal is to find

the activation energy ∆ and estmate TES as a function of K or µ.

We search for the set {ni, fi} that minimizes H and use such a set to calculate the

DOS and the conductivity. We start from the neutral system of all populated by elec-

trons (negatively charged) acceptors (ni = 1, qi = −1), of equal number of randomly

chosen 20000K empty (positively charged) donors (ni = 0, qi = 1), and of 20000(1−K)

filled (neutral) donors (ni = 1, qi = 0). Charged donors and acceptors create a random

potential whose magnitude exceeds Eg. In order to screen the Coulomb potential fluc-

tuations, some electrons leave acceptors for donors. At any stage of this process, there

are two types of occupied states – neutral donors and negatively charged acceptors, and

two types of empty states – positively charged donors and neutral acceptors, respec-

tively. Electrons may hop from an occupied impurity to an empty one. If the proposed

move lowers the total system energy H, then it is accepted, otherwise it is rejected. To

check whether H goes down, for a given set of electron occupation numbers {ni, fi}, it
is convenient to introduce the single-electron energy state, εi at a given impurity i as

in Eq. (5.5). For all i, j with ni = 1 and nj = 0, we check that ES pseudoground state

stability criterion Eq. (5.6) is satisfied.

If this criterion is not satisfied, we move the electron from impurity i to j and

recalculate all εi. This process is done by looping all possible pairs of impurities i, j

with ni = 1 and nj = 0 and is continued until no single-electron transfers can be

made to lower H. The final arrangement of electrons can be called a pseudoground

state, because the higher stability criteria of ground state are not checked. Once the
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Figure 5.7: (Color online) Fermi level µ as a function of 1−K for aB = 1 and Eg = 15.
The size of dots characterizes the uncertainty.

energies {εi} are known, we evaluate the resistivity using the approach of the Miller-

Abrahams resistor network [32]. The results below are obtained at Eg = 15, aB = 1

for K = 1, 0.99, 0.98, 0.97, 0.96, and 0.95 (averaged over 100 realizations of impurities

coordinates).

5.2.3 Results and discussion

For a pseudoground state, we find the Fermi energy µ as a half distance between the

minimum empty and maximum occupied energy ε. Fig. 5.7 shows how the Fermi

level µ(K) shifts from the middle of the gap towards the conduction band bottom

with growing 1 − K. At 1 − K > 0.01, this dependence is in reasonable agreement

with the prediction of single-band theory (the theory that ignores valence band and

acceptors) [32] that Ec − µ = A(1 − K)−1/3. However, note that for heavily doped

SCS, the coefficient Ah ≃ 1.4 is twice smaller than the coefficient Al ≃ 2.8 obtained in

Ref. [32] for a lightly doped SCS, where aB ≪ 1. In this case, the short-range Coulomb

interaction at distance r ≪ N
−1/3
D leads to an additional contribution to µ of the same

order of magnitude.

To confirm our understanding of results for 1 − K > 0.01, we obtained the same

results for the position of Fermi level µ (and DOS of donors and conductivity, see below)

using a simplified one-band model where all acceptors are assumed to be negative. Such
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Figure 5.8: (Color online) Dimensionless single-electron DOS g∗(ε) in units of [(1 +

K)ND/(e
2N

1/3
D /κ)] as a function of ε calculated from the Fermi level for aB = 1 and

Eg = 15 at K = 0.95 (blue) and 1 (red). Impurity states with ε < 0 are occupied
and with ε > 0 are empty. At K = 1, the total DOS of impurities has donor-acceptor
symmetry, which is lost with growing 1−K.

program is similar to the classical impurity band program used in Chapter 14 of Ref. [32],

but uses the redefined V (r).

The resulting DOS of impurities is shown in Fig. 5.8 for K = 1 and K = 0.95.

At K = 1, the almost constant symmetric DOS between −Eg = −15 and Eg = 15

reflects a practically uniform distribution of random potential from −Eg/2 to Eg/2,

and a corresponding uniform distribution of band edges Ec between 0 and Eg and Eν

between 0 and −Eg [see Fig. 5.3]. In the middle (at the Fermi level) one sees the ES

Coulomb gap [3].

At K < 1, the DOS of impurities loses the donor-acceptor symmetry it has at K = 1.

As mentioned in Sec. 5.2.1 (see Fig. 5.6), with growing 1 − K, acceptors become all

filled and disengaged from screening. Acceptor DOS (leftmost peak) splits from the

donor one, which in turn has two peaks separated by the Fermi level. The large right

peak belongs to empty donors, while the small and narrow left peak belongs to occupied

donors. The donor peaks are separated by the ES Coulomb gap.

Growing with 1−K the disengagement of acceptors from screening is also illustrated

in Fig. 5.9, where we show the DOS g∗(ε) for neutral donors and acceptors. If at K = 1,

the total number of electrons and holes in puddles are equal, with growing 1 −K, the
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Figure 5.9: (Color online) Dimensionless DOS g∗(ε) for neutral (occupied by electrons)
donors with ε < 0 and neutral (empty) acceptors with ε > 0 for aB = 1 and Eg = 15 at
K = 0.98 (blue) and 1 (red).

total number of electrons in electron paddles grows, while the total number of holes in

hole puddles decreases. Thus, at 1 −K ≥ 0.02, valence band practically plays no role

in screening.

For K = 0.95, 0.97, 0.98, and 1 at aB = 1 and Eg = 15, the computed dependence

of (ln ρ)∗ = (ξ/2) ln(Rc/R0) is shown as a function of (T ∗)−1/2 in the huge range of

temperatures 0.03 < T ∗ < 200 in Fig. 5.10. Here, T ∗ = 2kBT/ξ is yet another

dimensionless temperature. These notations are introduced to exclude any explicit

dependence on ξ. One can see at low temperatures 0.03 < T ∗ < 0.3 the resistivity is

well described by ES law Eq. (5.3) (with C ≃ 4.4 at K = 1). The higher temperature

range 1 < T ∗ < 200 is plotted separately as a function of 1/T ∗ in Fig. 5.11. We find

two activated regimes of hopping conductivity. At high temperatures 50 < T ∗ < 200,

we see the large activation energy Ea ∼ Ec − µ, while in the range of intermediate

temperatures 1 < T ∗ < Eg, we see much smaller activation energy ∆ = 0.3(Ec − µ).

The first activation energy Ea does not have any physical meaning for a real SCS,

because at kBT > Eg conductance of SCS is actually not due to hopping but free

carriers with high energy, which are not taken into account by energy Eq. (5.4) (see

Ref. [31]). In contrary to Ea, the second activation energy ∆ = 0.3(Ec − µ) makes

full physical sense and should be seen in real experiment. The origin of this activation

energy for the hopping transport is also explained in Chapter 8 of Ref.[32]. At T ≪ Eg,
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Figure 5.10: (Color online) The temperature dependence of the resistivity in the whole
temperature range 0.03 < T ∗ < 200. The dimensionless resistance (ln ρ)∗ is plotted
against (T ∗)−1/2 to illustrate that the resistivity follows the ES law at low temperatures.
The dashed lines are the best linear fits.

electrons optimize their conductivity by using for hopping impurities energetically close

to the Fermi level. Eventually at very low temperatures, such opitmization leads to ES

conductivity. However, when donor energies are slowly modulated by the long-range

potential, there are large areas that do not have donors with energies close to the Fermi

level and the tunneling through them is slow. Therefore, there is a range of temper-

atures where electrons use only nearest-neighbor donors for hopping, while activating

to donors is located at the percolation level of nearest-neighbor percolation. We then

find the activation energy from the Fermi level to the nearest-neighbor percolation level

by studying the hopping activation energy ∆. In a heavily doped semiconductor, this

energy is indistinguishable from the activation energy of electrons from the Fermi level

to the conduction band percolation level Ee. [Of course, holes are activated from the

Fermi level to their percolation Eh as well so that ∆ = 0.3(µ− Eh)].

We verified that hopping conduction modeling correctly predicts the activation en-

ergy of the band transport by direct calculation of the percolation level Ee. For this

purpose, we created a cubic lattice with a small lattice constant N
−1/3
D /3. At every site

of this lattice, we calculated the potential of all charged impurities and then found low-

est energy Ee at which percolation over this lattice takes place. The activation energy

of the band transport was again close to ∆ = 0.3(Ec − µ). This result is also close to
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Figure 5.11: (Color online) The temperature dependence of the resistivity in the high
temperature range 1 < T ∗ < 200. (ln ρ)∗ is plotted against (T ∗)−1 to illustrate that the
resistivity is activated at high temperatures. The dashed lines are the best linear fits.

what was obtained in Ref. [79] based on an estimate of percolation level for a generic

long-range random potential [32].

In Fig.5.12, we plot ∆ as a function of Ec − µ for all the values µ(K) obtained at

K = 1, 0.99, 0.98, 0.97, 0.96, and 0.95. We see that the relation ∆ ≃ 0.3(Ec − µ) holds

well for all K in this interval.

So far, we emphasized the results that do not explicitly depend on ξ. Actually, a mag-

nitude of ξ is necessary to calculate TES . We argue now that in a TI ξ is quite large lead-

ing to the prominent role of VRH. If an electron with an energy close to the Fermi level

were tunneling from an electron puddle to a distant one along the straight line, it would

tunnel through high barriers and its wave function would decay with ξ ≪ aB. Actually,

a tunneling electron can use the same geometrical path as a classical percolating electron

with energy ∆ above the Fermi level that avoids large barriers. We assume that along

such a path tunneling barriers V are uniformly distributed in the range 0 ≤ V ≤ ∆ and

neglect contribution of curvature of this path into action. Integration over V then gives

(here we return to normal units) ξ = ~/(8m∆/9)1/2 and kBTES = 4.2(e2/κ~)(m∆)1/2.

For a TI with aB = N
−1/3
D , we get TES = 4.2[(e2N

1/3
D /κ)∆]1/2. For ∆ varying between

1 and 2.5e2N
1/3
D /κ as shown in Fig. 5.12, TES changes from 4.2 to 6.6e2N

1/3
D /κ. For

κ = 30, ND = 1019cm−3, and e2N
1/3
D /κkB ≃ 100 K, TES varies from 420 to 660 K. In

order to study VRH in TI samples experimentally, one has to deal with large enough
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Figure 5.12: (Color online) The activation energy ∆ at K = 1, 0.99, 0.98, 0.97, 0.96, and
0.95 (from right to left). The dashed line is the best linear fit ∆ ≃ 0.3(Ec − µ).

.

samples, where surface conductance is smaller than the bulk one. 1

5.2.4 Thermopower

In a recent paper, the authors studied activation energy of the bulk resistivity of series

of samples of Bi2Te3−xSex with different x and thereby different positions of the Fermi

level in the TI gap. They found that when the Fermi level sinks into the gap, the

activation energy of resistivity ∆ grows and reaches a maximum at 40 meV and then

decreases. The increase of the activation energy ∆ on both sides of the maximum is

accompanied by the increase of the absolute value of the thermopower S. However, near

the maximum of ∆, the thermopower abruptly changes its sign. These findings are in

agreement with what one can expect when a semiconductor goes through the point of

complete compensation. Here, we would like to concentrate on the maximum absolute

value of the thermopower, for example, at n-type side of the maximum.

It is known that for flat bands n-type semiconductor with the Fermi level µ inside

its gap the thermopower S = ∆/eT , where the activation energy ∆ = Ec − µ. For

1 Historically VRH between puddles was studied in Ref. [80]. This paper was written before Ref. [3]
and claimed Mott VRH. Now it is clear that resistivity obeys Eq. (5.3). The theory [80] of the transition
from activated transport to ES law is to be modified as well, but we are not dwelling on this transition
range, because it is difficult to study details of such a transition in experiment.
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bended bands of a strongly compensated n-type semiconductor, one could think that

S = ∆/eT , where the activation energy ∆ = Ee − µ is determined by the activation to

percolation level Ee. Actually, it was argued [81, 82, 83] that the Peltier energy (heat)

Π = eTS is determined by the average potential energy of electrons E (conduction band

bottom) along most conducting one-dimensional percolation paths, Π =< E−µ >. (We

call a percolation path any line where the potential energy of electron is smaller than Ee

and we call a set of the least resistive of these paths, which carry most of the current,

the most conducting percolation paths.) The thermopower of an open circuit following

an individual percolation path can be obtained by integrating E − µ along this path.

Among two parallel paths connecting points A and B, the more resistive one has a

somewhat larger open circuit thermopower and, therefore, drives circular current back

through the least resistive one. This current reduces thermopower of the resistive path

so that the voltage between A and B is determined by the more conducting path.

If the probability distribution of potential energy E on most conducting paths is the

same as for the unconditional probability distribution of E, which we call DOS g∗(E)

above, we can use g∗(E) to calculate Π and S. For example, in the case of a constant

g∗(E) for µ < E < Ee, we get ES =< E − µ >= ∆/2 = (Ee − µ)/2. This conclusion

was confirmed by the numerical experiment [81] for the case of a constant g∗(E).

In a strongly compensated semiconductor, one can use the real g∗(E) found above.

For example, at K = 0.95 one can use Fig. 5.12 to find that ∆ = Ee − µ ≃ 1. Then

using DOS shown in Fig. 5.8 one can check that the average energy in the range of

0 < E < 1 is < E − µ >≃ ∆/2 = 0.5. Thus our simple approximate prediction is that

the largest achievable Π ≃ ∆/2. This conclusion is valid for all K ≤ 0.98 we studied.

For the data of the paper, our prediction means that at T = 100 K the largest

thermopower S = Π/eT observed should be of the order 25 mV/100 K = 0.25 mV/K

in resonable agreement with the observed value S = 0.4 mV/K.

Here, we are not considering the additional contribution to thermopower of activated

electrons from phonon drag [84, 85]. This effect becomes significant only at temperature

T ≤ TD/3, where TD is the Debye temperature, because at larger temperatures, the low-

energy phonons interacting with electrons are strongly scattered by thermal phonons,

which in turn are strongly interacting with imperfections of the crystal. In Bi2Se3,

TD ∼ 150 K, so that phonon drag should get important only below 50 K (where electron
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transport is already via hopping), while the activated transport we are interested in

happens at T ≥ 100 K.

In order to go beyond the above approximation that the distribution of energies on

paths contributing to Π is given by the density of states g(E), we calculate currents Iij

in every Miller-Abrahams resistor Rij and the total current I(U) for a small applied

voltage U by solving Kirchhoff equations for the ground state of impurities obtained

by our algorithm. Following Ref. [86], we then calculate the energy flux through a

cross-section of the sample Q(U) as a sum of energy fluxes carried by resistors qij =

(Ei+Ej)Iij/2e and found Π = Qe/I. We simplify the implementation of this procedure

by modifying our algorithm in the following way: instead of dealing with completely

randomly positioned donors and acceptors, we randomly position them on all sites that

are appropriate to their number cubic lattice. To find the energies Ei, we use a simple

Coulomb potential. (There is no need in truncation at small distances via finite aB.)

We concentrate on the range of relatively high temperatures, where the conductivity

is characterized by activated behavior. We checked that the conductance I/U has the

same activation energy ∆ as obtained by the percolation algorithm. We found that in

the range of 0.95 ≤ K ≤ 0.98, where the asymmetry of the density of states is large and

donors dominate the transport, Peltier energy Π/∆ ≃ 0.40± 0.05, not too far from the

simplified theories and the experimental data. For K > 0.98, growing donor-acceptor

symmetry reduces Π and brings it to zero at K = 1, in agreement with the data of the

paper.

5.3 Conclusion

In this chapter, we apply the model of strongly compensated semiconductor to a bulk

TI with narrow gap. For a completely compensated TI, at moderately large T we find

that ∆ = 0.15Eg, in agreement with observed values [25]. We also find that the single-

particle DOS has a Coulomb gap at the Fermi level [3], and the resistivity is described

by Eq. (5.3) at low temperatures and crosses over to Eq. (5.1) at higher T . A crude

estimate of the localization length ξ is presented, which suggests that TES ∼ 900 K and

that the crossover between activation and ES VRH occurs at T ∼ 40 K. Together our

results for the activated and VRH resistivity establish a universal upper limit for the
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resistivity ρ(T ) that one can achieve for a 3D TI compensated by shallow inpurities.

We then use the same model to the case of finite compensation. We calculate the

activation energy of the bulk resistivity ∆ and showe that it grows as ∆ = 0.3(Ec − µ),

when the compensation degree K → 1 and the Fermi level sinks into the gap. If one

of the two carriers still dominates and the thermopwer is still monopolar the Peltier

energy is Π ≃ ∆/2. Both predictions seem to agree with most of the TI data.

We would like to mention that the same model is able to interpret measurements

of the Hall Effect obtained for the same samples. The Hall constant RH is expected to

grow exponentially with decreasing temperature with the same activation energy ∆ as

the resistivity [87, 88, 81]. The reason for such growth is that RH is dominated by nodes

of percolation path network that occur at energy close to the percolation level. Such

nodes are relatively rare at low temperatures. Therefore RH(T ) = ρ(T )u(T )/c grows

with decreasing T , where mobility u(T ) ∝ Tm and m ≥ 2. The observed behavior of

RH(T ) does not contradict this prediction [25]. Indeed, the largest activation energy of

RH was found to be on average ∼ 15 meV larger than the largest ∆ ∼ 50 meV. This

difference is of the order of 1.5kBT at the characteristic measurement temperature of

activation law T = 100K and, therefore, the experimental data is compatible with a

power law u(T ). In future work, we plan to narrow the range of theoretical predictions

by a numerical evaluation of RH for the simulated above potential of our model.



Chapter 6

Conclusions and Discussion

In this thesis we have studied charge transport in two disorder systems, NC assemblies

and 3D TIs, in which disorder effects play a significant role. In these systems, at rela-

tively low temperatue electron states are strongly localized, and electronic conduction

proceeds primarily by hopping of electrons between grains through the insulating gaps

which separate them. Although in different materials the disorder mechanisms are dif-

ferent, they are all shown to have great impact on the ground state electron energy

distribution and charge transport of the system.

In arrays of semiconductor NCs, disorder mainly originates from the fluctuations

in number of donors from one NC to another. We show that, when the NC size is

sufficiently small, because of the competition between quantum energy gaps and charg-

ing energy, this disorder becomes the driving force for charging of some of the NCs.

These charged NCs produce long-range, random Coulomb potential that smears the

charging (hard) energy gap in the DOGS, which eventually leads to VRH rather than

activated transport at low temperatures. The condition for activated transport and

VRH is summarized in Fig. 2.8, and is confirmed by a computer simulation.

For metallic and superconducting grains, disorder is provided by donors and accep-

tors that are randomly situated in the interstitial spaces between grains. As explained

in Ch. 3 and 4, this disorder results in two rather striking features of the DOGS which

are unseen in conventional Coulomb glass. First, there is not one but three identical

adjacent Coulomb gaps, which together form a structure that we call a “Coulomb gap

triptych.” Second, the DOGS has a fixed width in the limit of large disorder. These two

103
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features are found in the DOGS for both metallic and superconducting grains, as seen

in Fig. 3.2 and Fig. 4.2 and 4.7. Electron transport is calculated based on the DOGS.

In metallic grains, the system is governed by VRH at relatively low temperatures. For

superconducting grains, the conduction mechanism is determined by two important en-

ergy scales, charging energy Ec and superconducting gap ∆ within a grain. As the ratio

of these two energies is increased, the system goes from the regime of single-electron

hopping to that of electron pair hopping, as seen in Fig. 4.4. The evolution mechanism

of DOGS and conductivity is also applied to explain the origin of the giant MR peak in

the deeply insulating regime that has been found in some of the superconducting thin

films, in particular, amorphous InO.

The rest of the thesis discusses 3D TIs and strongly compensated seminconductor,

in which disorder is assumed to be due to the largely-fluctuating, random Coulomb

potential created by a large number of charged impurities present in the bulk [as seen

in Fig. 5.3 and 5.6]. We show that, the band bending by poorly screened fluctuations

in the random Coulomb potential results in an anomalously small bulk resistivity and

thermopower as found in recent transport experiments on 3D TIs. Using numerical sim-

ulations of strongly compensated TI, we find that the bulk resistivity has an activation

energy and thermopower with values in good agreement with experimental data (Fig.

5.12). The conductivity of the system has two major regimes: at higher temperature

it is thermally activated through nearest hopping among impurity states; at lower tem-

peratures activated transport crosses over to variable range hopping with a relatively

large localization length.

In summary, this thesis provides some new insight into the disorder effects on charge

transport in systems that are promising candidates for new photovaltaic and spintronics

devices. In particular, we aim to use the theories developed here to address some of

the experimental puzzles such as the coeistence of different conduction mechanisms in

NC assemblies and the anomalously small resistivity in 3D TIs. Using the combined

theoretical and computational approach described above, we hope to further the micro-

scopic understanding of charge conduction in NC arrays and 3D TIs, and thereby aid

in the development of crucial new technologies.
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Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but

this cannot always be achieved. This appendix defines jargon terms in a glossary, and

contains a table of acronyms and their meaning.

A.1 Acronyms

Table A.1: Acronyms

Acronym Meaning

nanocrystal NC

topological insulator TI

variable range hop-

ping

VRH

density of ground

states

DOGS

density of states DOS
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