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Abstract 

Potential energy surfaces (PESs) play essential roles in the study of chemical 

dynamics. The adiabatic ground-state PES of N4 was constructed with permutationally 

invariant polynomials and is suitable for treating high-energy vibrational-rotational 

energy transfer and collision-induced dissociation in N2–N2 collisions. Our adiabatic PES 

reproduces the ab initio data well but adiabatic surface fitting is not designed to 

reproduce the cuspidal ridges at state crossings. This motivates working with the diabatic 

representation for the photodissociation where state crossing seams are key global 

features. Diabatic representations are also very convenient for fitting state couplings. A 

new diabatization scheme based on complete-active-space self-consistent-field diabatic 

molecular orbitals and the fourfold way was proposed to obtain smooth diabatic 

potentials and couplings at the multi-configurational quasi-degenerate perturbation theory 

level of electronic structure theory. The new scheme has been used to study the 

photodissociation of phenol in which three electronic states are involved. A new method 

for fitting global potential energy surfaces of multi-dimensional reactive systems was 

developed and is called the anchor points reactive potential (APRP) scheme. The full-

dimensional 3 x 3 matrix of diabatic potential energy surfaces and couplings for the 

nonadiabatic photodissociation of phenol was constructed with the APRP method. 

Multidimensional tunneling calculations through the barrier on the shoulder of the 

conical intersection of the S1 and S2 states of phenol suggest the adiabatic nature of the 
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early dynamics of phenol photodissociation and the importance of tunneling in the 

photodissociation. 
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Chapter 1. Introduction 

1.1 General Overview 

For a molecular system involving both electrons and nuclei, the electronic and 

nuclear degrees of freedom can be separated with the widely used Born-Oppenheimer 

approximation.1 The electronic degrees of freedom are solved quantum mechanically at 

fixed nuclear geometry. The sum of the resulting energy eigenvalues of the electronic 

Hamiltonian and the Coulomb repulsion energies between nuclei are called adiabatic 

potential energies, and they depend parametrically on the nuclear geometry, which leads 

to the useful concept of potential energy surfaces (PESs). Minima on PESs correspond to 

equilibrium structures of molecules, and saddle points on PESs correspond to transition 

state structures of chemical reactions. Potential energy surfaces are (3N – 6)-dimensional 

hypersurfaces, where N is the number of nuclei.  

In the Born-Oppenheimer approximation, the nuclei are assumed to move on a 

single adiabatic PES, and this motion can be treated either quantum mechanically or 

classically. PESs are crucial in the study of chemical dynamics. They can be constructed 

implicitly by solving the electronic structure problem at every step of the nuclear motion, 

and this is called direct dynamics; in particular, where the potential energy, gradient, 

and/or Hessian is calculated by electronic structure methods each time the dynamics or 

sampling algorithm calls for it. An alternative approach is to construct the PES explicitly 

with analytic functions to represent (fit) a set of individual electronic structure 

calculations performed prior to the dynamics step.2-5 
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The Born-Oppenheimer approximation works well when PESs are well 

separated,6 which is the case for many thermal chemical reactions. However, it breaks 

down when two or more adiabatic PESs approach closely or intersect. In the latter case, 

several PESs, rather than one single PES, are needed for the proper description of nuclear 

motions, and transitions between different adiabatic PESs are governed by nonadiabatic 

couplings. Nonadiabatic couplings are off-diagonal matrix elements of the nuclear 

momentum vector and the nuclear kinetic energy, which are often called nonadiabatic 

derivative couplings and nonadiabatic scalar couplings, respectively. The latter, although 

they are not necessarily negligible, are often neglected in semiclassical treatments.7 The 

nonadiabatic derivative couplings are vectors in the nuclear coordinate space and will be 

called nonadiabatic couplings for simplicity. Nonadiabatic couplings are responsible for 

nonadiabatic transitions between different adiabatic states, and they are usually small in 

region when adiabatic states are well separated. However, they can vary rapidly near 

avoided crossing and become singular at conical intersections where two adiabatic states 

are degenerate and two adiabatic PESs touch.8-10 This makes the adiabatic representation 

inconvenient for dynamical studies of many nonadiabatic processes such as 

photodissociation, predissociation, quenching of excited states in collisions, 

chemiluminescence, etc. The use of diabatic representations10 has been proposed as an 

alternative approach to study dynamics. 

The notation “diabatic” was first introduced by Lichten11 in the study of ion-atom 

collisions. Diabatic states are strictly defined as states have zero nonadiabatic 
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couplings.12 However, such diabatic states do not exist in general13 because the curl 

condition14,15 for their existence is generally not fulfilled. Although the strict diabatic 

states do not exist in general, quasi-diabatic states that are defined to have small 

nonadiabatic couplings that can be neglected are often very useful, and they are often just 

called diabatic states.6 That language will be followed in this thesis.  

Diabatic states can be constructed by rotating adiabatic states through an 

orthogonal transformation called the adiabatic-to-diabatic transformation. Diabatic states 

are not eigenstates of the electronic Hamiltonian, so the potential energy matrix is not 

diagonal. The off-diagonal elements are called diabatic couplings, and they promote 

electronic-state transitions in a diabatic representation. Because it removes the singularity 

of nonadiabatic couplings at conical intersections, the diabatic representation is suitable 

for the practical study of dynamics of nonadiabatic processes. However, diabatic states 

are not merely a mathematical construction to bypass the singularity of nonadiabatic 

couplings; rather they have solid physical relevance in that they yield smooth molecular 

properties.16 Diabatic states can be defined as states whose electronic structures keep 

their essential characters over the entire range of nuclear coordinates (or at least change 

slowly over the whole range). It can be shown17 that by transforming to a diabatic 

representation, even one that does not remove all of the removable nuclear momentum 

coupling, one can obtain results where the leading correction to the wave function at 

energies of interest for photochemistry is of order 2/1−M , where M is the ratio of an 

average nuclear mass to the electron mass (thus 2/1−M  < 0.024). 
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Electronically nonadiabatic processes can be modeled in either the adiabatic 

representation or a diabatic representation. In the adiabatic representation, adiabatic states 

are uniquely defined as the eigenstates of the electronic Hamiltonian, and the electronic 

Hamiltonian is diagonal. The diagonal elements are adiabatic PESs Vi which have (3N – 

8)-dimensional cuspidal ridges along conical intersection (CI) seams. The nonadiabatic 

couplings, which promote nonadiabatic transitions, are vectors in the nuclear space which 

vary rapidly where two PESs approach and become singular at conical intersections. In a 

diabatic representation, the nonadiabatic couplings are negligible (or assumed to be 

negligible), and diabatic electronic states and their associated PESs are coupled through 

the off-diagonal elements of electronic Hamiltonian.  

Potential energy surfaces can be constructed in either the adiabatic or a diabatic 

representation. However, the cuspidal ridges of adiabatic potentials and the singularity of 

nonadiabatic couplings in ubiquitous conical intersection regions18 prevent the analytic 

fit of adiabatic PESs and nonadiabatic couplings. The wave functions of diabatic states 

change slowly with respect to nuclear coordinates; thus the diabatic potentials and 

diabatic couplings are smooth functions of nuclear coordinates that allow for convenient 

analytic representation. With an analytic representation of diabatic potentials and 

couplings, one can perform dynamics studies in either the diabatic or adiabatic 

representation because adiabatic PESs and nonadiabatic couplings can be obtained easily 

with diabatic potentials and couplings.19 
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1.2 Diabatization schemes 

Diabatic states are not uniquely defined so many schemes have be developed to 

construct diabatic states; they are discussed in two recent reviews. 20,21 These schemes 

can be classified into two general categories: schemes that try to construct diabatic states 

without first calculating adiabatic states, and schemes that construct diabatic states as 

linear combinations of adiabatic states. 

Valence bond theory22 can be used to construct diabatic states,23,24 and this 

theory has been used to construct diabatic states in SN1 reactions25 and proton-coupled 

electron transfer.26 Diabatic states can be constructed by optimizing the wave function 

subject to a constraint on density, as in frozen density functional method27,28 and 

constrained density functional theory (CDFT).29 The CDFT developed by van Voorhis et 

al.30-33 computes diabatic states without constructing adiabatic states by minimizing the 

energy of a system using KS DFT with constraints on either spin or electronic density. 

Methods like this can be well suited for charge-transfer reactions but may be not as useful 

in photochemical reactions where no charge transfer is involved. 

The second category of methods first constructs a set of adiabatic states; diabatic 

states are then generated by rotating the adiabatic states by means of an orthogonal 

adiabatic-to-diabatic transformation matrix. Depending on how the adiabatic-to-diabatic 

matrix is obtained, these methods can be further classified as coupling-based methods 

and property-based methods. The coupling-based methods involve the minimization of 

nonadiabatic couplings.12-15,34 This type of method was originally proposed by Smith12 



 

 6 

(for one-dimensional problems where nonadiabatic coupling can be reduced to zero) and 

Baer,14,15 and it involves the integration of nonadiabatic couplings along a selected path. 

Since the curl condition cannot be satisfied in general, the integration of nonadiabatic 

couplings is path-dependent except for the one-dimensional case. Thus diabatic states 

constructed with this type of methods depend on the integration path. Requiring the 

evaluation of nonadiabatic couplings over an extended range of nuclear coordinates along 

a selected path, the coupling-based methods are quite computationally demanding 

(because a path that winds through the whole space is long and cumbersome), and their 

applications are limited to very small systems (with less than three atoms). 

The property-based methods focus on the smoothness of properties of diabatic 

states as functions of nuclear coordinates. The property-based methods have great 

computational advantages over coupling-based methods since the evaluation of 

nonadiabatic couplings are not needed to construct diabatic states from adiabatic states. 

One can enforce the smoothness of a physical property, such as a one-electron property, 

to construct diabatic states. Mulliken first suggested the use of dipole moments,35 as was 

pursued later by Hush,36 and others.37,38 The quadruple moment39 and the transition 

dipole moment40,41 have also been employed in the construction of diabatic states. 

Subotnik and coworkers42,43 proposed a generalization of the Boys localization 

algorithm to construct diabatic states with localized electron and spin density. Yarkony44 

showed that any real-valued Hermitian electronic property operator, satisfying only 

certain limited restrictions, can be used to construct diabatic states near a conical 
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intersection.  

One can also enforce the smoothness of the electronic wave functions themselves 

(in the language above, the “property” under consideration is wave function smoothness).  

Hendekovic and coworkers suggested the construction of diabatic states by maximizing 

of the sum of the squared occupation numbers of natural spin orbitals45,46 or by an 

interpolation based on the one-electron reduced density matrices. 47 Spiegelman and 

Malrieu48 suggested constructing diabatic states by using effective Hamiltonians based 

on the CIPSI (Configurational Interaction by Perturbation with multiconfigruational 

zeroth order wave functions Selected by Iteration) algorithm, and their method has been 

improved by Cimiraglia et al.49 Köppel and coworkers developed the block 

diagonalization scheme50-53 to yield diabatic states in a given block provided that one 

starts with a reference basis that already behaves diabatically. The block diagonalization 

scheme can be derived from a least action principle54 and has been developed within the 

complete-active-space self-consistent-field (CASSCF)55-57 framework by Domcke and 

coworkers.58,59 The diabatization method proposed by Simah et al.60 is based on 

condition that both the orbitals and the configuration coefficients of the diabatic wave 

functions change as little as possible as a function of geometry by maximizing certain 

functions of the overlap between orbitals at current geometry and those at a neighboring 

geometry. Average natural orbitals have been shown to quasidiabatic character and may 

be used to as starting point to construct diabatic states in some cases. García et al.61 

suggested the use of state-averaged natural orbitals as starting point to construct diabatic 
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states since they have nearly diabatic character. Ruedenberg and Atchity proposed a 

diabatization method based on configurational uniformity.62-64 The principle of 

configurational uniformity was used by Nakamura and Truhlar65-67 in conjunction with 

their development of the fourfold way diabatization method. The fourfold diabatization 

method uses a threefold density matrix criterion and reference orbitals to generate 

diabatic molecular orbitals (DMOs) which change smoothly as the nuclear coordinates 

follows any continuous path in the region of interest; the fourfold way is more general 

than the orbital diabatization schemes of García et al. and Atchity and Ruedenberg, which 

work only for a subset of the commonly occurring cases.  In a second stage of the 

fourfold way, the user recasts the configuration state functions in terms of the DMOs, 

specifies the diabatic prototypes in term of lists of dominant configuration state functions 

(CSFs) expressed in terms of the DMOs, and transforms the adiabatic state wave 

functions to diabatic state wave functions by the principle of configurational uniformity. 

As compared to several alternative schemes to construct diabatic states, the 

fourfold way diabatization method yields diabatic potentials and couplings at a given 

geometry independent of any path leading to that geometry; in another word, the diabatic 

states obtained by fourfold way diabatization are path-independent. Another important 

feature of fourfold-way diabatization is that it yields N diabatic electronic states that span 

the same space as N chosen adiabatic states. The fourfold way diabatization method has 

been applied to the study of photodissociation of ammonia,68-71 bromoacetyl chloride,72 

hydrogen bromide,73 and chlorobromomethane.74 
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In this dissertation, we simplified the fourfold diabatization method to include 

dynamical correlation energy by multi-configuration quasi-degenerate perturbation 

theory (MC-QDPT) 75,76 while using DMOs based on the CASSCF step (chapter 3). The 

new algorithm was used to construct MC-QDPT diabatic states with CASSCF DMOs for 

the photodissociation of phenol to phenoxyl radical and H atom, which has been studied 

extensively as a prototypical process in photochemistry,77-98 both experimentally and 

theoretically (chapter 4).  

1.3 Potential energy surfaces construction 

Analytic representation of PES is needed for dynamics study except for direct 

dynamics calculations, which – when accurate electronic structure methods are employed 

– are only practical for very small systems requiring very little sampling. Molecular 

mechanics (MM),99 which denotes an analytical potential expressed in internal 

coordinates, is perhaps the simplest way to construct a PES, but conventional MM omits 

cross terms and is valid only near an equilibrium structure. Recently, MM-like force 

fields for specific molecules based on electronic structure calculations of energies and 

Hessians at an equilibrium structures have been developed for more accurate 

simulations.100,101 Even such molecule-specific force fields, though,  are unable to 

describe bond-breaking processes. 

Recently developed methods based on permutation-invariant polynomials 

(PIP)102,103 and interpolating moving least squares (IMLS)104-106 can describe bond 

dissociation processes and chemical reactions very well; but they are limited to very 
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small systems, usually five or fewer atoms since they require many electronic structure 

calculations as input. The number of electronic calculations required for PES fitting 

grows rapidly with the dimensional of the system. For a system with N atoms, the number 

of internal degrees of freedom is F = 3N – 6, and the number of data points grow as mF, 

where m is the number of points needed to span a given degree of freedom. For a 

molecule with only 13 atoms, such as phenol, using only four points in each dimension 

for the fit would still require 433 ≅ 1020 data points. 

The reactive empirical bond order method,107,108 ReaXFF,109,110 and the valence 

bond order (VBO) method,111 are aimed to extend MM to bond breaking processes, but 

such methods have less accuracy for global or semiglobal PESs than conventional MM 

has near equilibrium structures. It would be desirable to combine analytical potentials in 

internal coordinates for degrees of freedoms that involve small distortions from 

equilibrium structures with model potentials based on general functional forms to fit 

degrees of freedom involved in or closely coupled to bond breaking or bond 

rearrangements. Such an approach would be analogous to the combined quantum 

mechanics/molecular mechanics (QM/MM) method where MM is used for degrees of 

freedom of spectator atoms, and QM is used for degrees of freedom of active ones. 

Unlike QM/MM, which has been used widely for incorporating MM into electronic 

structure calculations of PESs of large systems such as enzymes and catalysis,112-118 

very few studies have been performed that incorporate MM-like force fields into the 

fitting of high-dimensional PESs.119  



 

 11 

In this dissertation, we constructed a global ground state PES of N4 using modified 

permutationally invariant polynomials with the correct asymptotic behavior (chapter 2). 

A method called anchor points reactive potential (APRP), that combines fitting of 

quantum mechanical potential energy surfaces for selected degrees of freedom with 

molecule-specific MM-like force fields for other degrees of freedom, was proposed to 

obtain a high-dimensional PES to treat bond-breaking processes (chapter 3). The APRP 

method is used to construct the full dimensional PESs for the photodissociation of phenol 

(chapter 6). 

1.4 Organization of the dissertation 

This dissertation is organized to address two issues. The first is the simplification 

of the fourfold diabatization method to obtain MC-QDPT diabatic states with CASSCF 

DMOs (chapter 3) and apply the method to study the photodissociation of phenol 

(chapter 4). The second is the construction of potential energy surfaces. This has two 

parts: (i) The adiabatic ground-state surface of N4 was constructed with modified 

permutation-invariant polynomials with better asymptotic behavior (chapter 2); (ii) a new 

method to construct high-dimensional PESs for bond dissociation processes was 

developed (chapter 5) and applied to construct the full-dimensional PESs of the phenol to 

study the dynamics of photodissociation. 

Chapter 2 describes the construction of a global ground-state potential energy 

surface for N4 suitable for treating high-energy vibrational-rotational energy transfer and 

collision-induced dissociation in N2–N2 collisions. Modified permutationally invariant 
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polynomials with the correct asymptotic behavior were used to fit about 17,000 ab initio 

data point. Our adiabatic PES reproduces the ab initio data well, but fails to reproduce the 

cuspidal ridges at state crossings, and this motivate us to work with diabatic 

representation for the photodissociation of phenol. Yuliya Paukku, Zoltan Varga, and 

Donald G. Truhlar are acknowledged as coworkers for chapter 2. 

Chapter 3 describes a new scheme for the direct diabatization of MC-QDPT wave 

functions. Our new scheme constructs MC-QDPT diabatic states by utilizing CASSCF 

DMOs. The new diabatization scheme was tested for the dissociation of LiF and the 

reaction of Li + FH � LiF + H. Xuefei Xu and Donald G. Truhlar are acknowledged as 

coauthors for chapter 3. 

Chapter 4 describes the application of the new fourfold way diabatization method 

to the photodissociation of phenol. Diabatic potentials of the three low-lying states (1ππ, 

1ππ*, and 1πσ*) and their diabatic (scalar) couplings were calculated at MC-QDPT level 

along the O–H stretching and C–C–O–H torsion coordinates for the nonadiabatic 

photodissociation of phenol to phenoxyl radical and hydrogen atom. The work in chapter 

4 provides insight into the mode specificity of phenol photodissociation and shows that 

diabatization at the MC-QDPT level employing CASSCF diabatic MOs can be a good 

starting point for multi-dimensional dynamics calculations of photochemical reactions. 

Xuefei Xu and Donald G. Truhlar are acknowledged as coauthors for chapter 4. 

Chapter 5 presents a new method for fitting potential energy surfaces in 

molecular-mechanics-like internal coordinates based on data from electronic structure 
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calculations. The method is especially suitable to chemical reactions involving bond 

dissociation but should be extendable to bond-rearrangement reactions as well, and it is 

used in this chapter to construct the full dimensional PESs for the O-H bond dissociation 

in methanol and the N–H bond dissociation in dimethylamine. Xuefei Xu and Donald G. 

Truhlar are acknowledged as coauthors for chapter 5. 

Chapter 6 describes the application of our improved APRP method to construct a 

full-dimensional 3 x 3 matrix of diabatic potential energy surfaces and couplings for the 

nonadiabatic photodissociation of phenol. The potential energy surfaces and couplings 

are used to calculate and characterize the adiabatic surfaces and conical intersections. The 

surfaces and couplings are used for full-dimensional tunneling calculations of the 

adiabatic photodissociation rate, and the couplings are used to provide indicators of 

which vibrational modes are effective in promoting dissociation. Xuefei Xu, Jingjing 

Zheng, and Donald G. Truhlar are acknowledged as coauthors for chapter 6. 
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Chapter 2. Global Ab Initio Ground-State Potential Energy Surface of N4 

Adapted with permission from Yuliya Paukku, Ke R. Yang, Zoltan Varga, and Donald G. 

Truhlar, J. Chem. Phys. 139, 044309 (2013). 

2.1 Introduction 

Energy transfer and dissociation in collisions of nitrogen molecules are important 

for many atmospheric processes. The present motivation for studying such collisions is 

the role they play within the shocked gases surrounding hypersonic vehicles in 

establishing non-Boltzmann internal energy distributions that must be understood to 

model convective heat flow to the vehicles.1 The shocked gases surrounding hypersonic 

vehicles are very hot and can have temperature up to 20,000 K. The high-energy 

collisions of the hot N2 (molecules with high vibrational–rotational quantum numbers ν, j) 

can involve vibrational-rotational excitation and relaxation, 

N2(ν1, j1) + N2(ν2, j2)  → N2(ν'1, j'1) + N2(ν'2, j'2)  

and collision-induced dissociation, 

N2(ν1, j1) + N2(ν2, j2)  → N2(ν'1, j'1) + N + N 

The first step in molecular dynamics studies of such collisions is to obtain a potential 

energy surface valid up to high energy and large vibrational extensions. Ultimately one 

must consider coupled potential energy surfaces and electronic as well as vibrational–

rotational inelasticity. However, the goal of the research reported here is to obtain a 

reasonably accurate global potential energy surface (PES) for the ground electronic state. 



 

 20 

A potential energy surface for N4 includes an N3 surface as a subset. There have 

been a number of studies for the structures and energetics of N3 species.2-4 The 

dissociation of N3 has been studied previously5-7 and several PESs of N3 have been 

reported in literature. A London-Eyring-Polanyi-Sato (LEPS) PES for the quartet state of 

N3 was developed by Laganà et al.8 for the classical trajectory study of N (4S) ＋N2 

( +Σ g
1 ) collisions. The LEPS PES yields a collinear transition structure, which does not 

agree with the bent transition structure suggested by theoretical studies with multi-

reference configuration interaction.2
 
In order to improve the LEPS PES for the transition 

structure, the same group developed a series of new PESs9,10 (denoted as L0 to L4), with 

the latest L4 PES10 being fitted to 56 CCSD(T)/aug-cc-pVTZ energies. In 2003, Wang et 

al.11 proposed the first full-dimensional ab initio based PES for N3 4A'' state for the 

quantum dynamics study of N (4S) ＋N2 ( +Σ g
1 ) collisions. An analytic PES with 68 

parameters was fitted by using 3326 points calculated by open-shell CCSD(T) with cc-

pVQZ basis set. A very accurate global PES for the ground 4A'' state of N3 was reported 

in 2007 by Galvão and Varandas12 based on the double many-body expansion; 1592 

points were calculated with CCSD(T) and MRCI+Q and extrapolated to complete basis 

set (CBS) limit.  

Since the ground state of N3 radical is a doublet,7 the PESs of doublet N3 have 

also attracted much attention. In 2004, an adiabatic PES for the lowest 2A'' state of N3 

was constructed by Babikov et al.13 using tensor product B-cubic spline representation 
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based on 2286 points calculated by MRCI+Q with aug-cc-pVTZ basis set. Adiabatic 

PESs for five low-lying doublet states (three 2A' states and two 2A'' states) of N3 have 

been fitted by Zhang et al.14 based on 1504 points calculated by MRCI+Q with the aug-

cc-pVTZ basis sets. The most recent adiabatic PESs for the two lowest 2A'' states of N3 

have also been developed by Galvão and Varandas15 in 2011 with the double many-body 

expansion fitting strategy and used for a quasi-classical trajectory study of the N (2D) ＋ 

N2 (
+Σ g

1 ) reaction. 

Several studies have been reported for the tetrahedral form of N4,16-18 which is 

considered to be a high energy density material. Theoretical geometries, energies, and 

physical properties have been reported. 

Ab initio studies of van der Waals N2–N2 have also been reported. Couronne and 

Yellinger19 have reported a study of the structure and stability of the (N2)2 complex at 

canted (taken from the crystal structure), T-shaped, X-shaped, parallel, and linear 

structures. The geometry of each dimer conformation was defined by four parameters, the 

distance between the centers of mass, two angles, and one dihedral angle, and symmetry-

constrained optimization of each conformer was carried out, where only the distance 

between centers of mass was optimized. T-shaped and canted conformers were found to 

be the most stable ones. The equilibrium structure, potential energy surface, and van der 

Waals mode vibration of several (N2)2 configurations have been studied with coupled 
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cluster with singles, doubles, and perturbative triples (CCSD(T)) method and quadruple 

zeta basis set cc-pVQZ by Wada et al.20  

Unlike N3, for which there has been considerable work on the full-dimensional ab 

initio PESs for both doublet and quartet states, very few studies have been carried out for 

the full-dimensional PESs of N4. There are, however, many studies on the reduced four-

dimensional PESs of N4 for N2–N2 intermolecular interactions with rigid N2 molecules 

in literature. 21-31 One of the first ab initio PES of N2–N2 was developed by Böhm and 

Ahlrichs.21 They fitted a 4-D PES with a site–site ansatz (three sites per molecule) for 

rigid N2 to 46 dimer interaction energies that were calculated by the coupled-pair 

functional (CPF) modification of CISD method with a [6s4p2d] basis set. Van der Avoird 

et al.22 proposed a 4-D PES in terms of spherical harmonic expansions to fit 225 ab initio 

data points. Two empirical parameters were introduced to reproduce the experimental 

second virial coefficients. By changing five parameters to fit several experimental 

properties, such as second virial coefficients, scattering crossing sections, etc., the PES 

was further improved by Cappelletti et al.24 

Stallcop and Partridge23 calculated N2–N2 interaction energies using CCSD(T) 

calculations with extensive basis set, the size of at least [6s5p4d]. An analytical PES was 

constructed with spherical harmonic expansions to fit the ab initio data. Some parameters 

of the PES were adjusted to experimental data to yield reliable second virial coefficient. 

Leonhard and Deiters25 performed CCSD(T) calculations with aug-cc-pVnZ (n = D and 

T) basis sets and extrapolated the results to CBS limit. They applied a site-site potential 



 

 23 

function with five sites per molecule to fit the CCSD(T)/CBS energies; two scaling 

parameters were introduced to reproduce the experimental second-order virial 

coefficients. 

Aquilanti et al.26 reported an experimental PES and calculated rovibrational 

levels of the N2–N2 dimer, obtained from multiproperty analysis of scattering data and 

second virial coefficients. In 2008, Cappelletti et al.30 developed a PES using bond-bond 

pairwise additive representation by combining the symmetry adapted perturbation theory 

(SAPT) results and experimental properties. Karimi-Jafari et al.27 performed MP2 

calculations with basis set up to cc-pVQZ and extrapolated the MP2 results to CBS limit. 

An analytical PES based on spherical harmonic expansions was then fitted to MP2/CBS 

results. 

Strąk and Krukowski28 calculated 315 geometries using CCSD(T) with the aug-

cc-pVQZ basis set. The CCSD(T) results were used to parameterize an analytic PES with 

spherical harmonic expansions. Gomez et al.29 applied the SAPT method with a 

[5s3p2d1f] basis set to calculate the interaction energies of nearly 460 points on the N2–

N2 ground state. An analytical PES with spherical harmonic expansions was 

parameterized to those ab initio data. 

The most recent and accurate PES of N2–N2 was developed by Hellman in 

2012.31 Hellman performed CCSD(T) calculations with basis sets up to aug-cc-pV5Z 

supplemented with bond functions; the results were further extrapolated to CBS limit. 

The corrections for core-core and core-valence correlations, relativistic effects, and 
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higher order excitations up to CCSDT(Q) were also considered. A 4-D PES was 

parameterized from 408 high-level ab initio points. Several N2–N2 PESs were tested for 

the R-dependence of anisotropy against CCSD(T) with aug-cc-pVTZ and bond 

functions.32 It was shown that the potentials with simplified functional forms and 

parameters based on or extracted from experimental data do not reproduce the correct 

anisotropy of the PES and ab initio based PES should be the proper way to go. 

 All the PESs discussed above are reduced 4-D PESs with rigid N2 molecules. We 

cannot use them to study high-energy collisions of N2 with N2where vibrational energy 

transfer or collision-induced dissociations are involved. The very old PES extracted from 

experimental data, which was developed by Johnson et al.33 is one of the very few PESs 

of N4 that allows us to study high-energy N2–N2 collisions. Morse potentials were used 

to model the N2 bond stretches while exponential-six atom–atom potentials were used to 

model the nonbonding interactions. To the best of our knowledge, no ab-initio-based full-

dimensional PES has been reported for N4. A distinguishing feature of the present study 

is the attempt to develop a full-dimensional PES valid up to high energy and large 

vibrational extensions of each N2 subsystem. 

Most of the PESs mentioned above were constructed with spherical harmonics, 

which can describe the isotropic and anisotropic intermolecular interactions of N2 very 

well. Spherical harmonic expansions are a natural choice to represent reduced PESs 

describing the inter-molecular interactions when the N2 molecules are well separated and 

each close to its equilibrium internuclear separation. But this is not the case for global 



 

 25 

PESs where the dissociation of N2 molecules is allowed. The Sorbie-Murrell34 and 

Aguado-Paniagua35 functional forms are widely used in the PESs fitting of triatomic 

systems. Both of them involve many-body expansions that can treat the short-range and 

long-range interactions properly and can be constructed to have the proper asymptotic 

behaviors. Sorbie-Murrell and Aguado-Paniagua many-body expansions have also been 

used to construct the PES of tetraatomic or pentaatomic systems, such as H4,36,37 H5,38 

H5
+,39 but their applications are limited to monovalent atoms. For an adequate treatment 

of systems with complex spin-couplings of asymptotic fragments, as in current case of N4, 

which could involve quartet N3 + quartet N or doublet N3 + doublet N, some geometry-

dependent switching functions,34 that could be very system-dependent, would have to be 

used. 

Our approach is to use ab initio electronic structure theory to calculate the PES at 

selected geometries and then to fit this data to a global analytic function. Because we 

want the PES to be valid even for dissociative collisions and even near state crossings, we 

use a multireference wave function method that treats both static and dynamic 

correlation, in particular complete active space second-order perturbation theory 

(CASPT2).40,41 The fitting is accomplished using permutation-symmetry-invariant 

polynomials involving powers of functions of the internuclear distances. This method 

was pioneered by Brahms and Bowman,42,43 who developed methods for generating the 

polynomials by monomial symmetrization. However, there are unphysical terms are in 

the permutation-invariant polynomials proposed by Brahms and Bowman, which lead to 
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spurious interactions in asymptotic ranges. A modified strategy was used in our 

construction of the ground state PES of N4 by removing all unphysical terms in the 

Brahms-Bowman’s permutationally invariant polynomials. 

2.2. Methods 

2.2.1. Electronic structure calculations 

Multireference second order perturbation theory, in particular, CASPT2,40,41 is 

used for the calculations in order to account for dynamical correlation. For the N2 

molecule, the ground state is +Σ g
1 , and the excited electronic states are well separated in 

energy.44,45 Therefore, single-state CASPT2 calculations are performed with the 

complete active space self-consistent field (CASSCF)46 reference wave function 

optimized for the ground state. 

In order to select a reasonable active space for the reference CASSCF wave 

function and to check the dissociation energies obtained with CASPT2, we performed 

test calculations for N2 dissociation placing only 2p orbitals in the active space (active 

space of six electrons in six orbitals: 6e/6o) and placing both 2s and 2p orbitals in the 

active space (10e/8o). In the former case, the 2s orbitals were not correlated in either the 

SCF step or the PT2 step. The (6e/6o) CASPT2 calculation with only 2p orbitals active 

and correlated yielded a dissociation energy of 228.7 kcal/mol, whereas the CASPT2 

dissociation energy with both 2s and 2p orbitals active and correlated is 220.3 kcal/mol. 

Both calculations lead to reasonably good agreement with experimental data for the 
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dissociation energy and equilibrium bond length of nitrogen molecule (228.4 kcal/mol 

and 1.098 A, respectively).44,47 However, placing 2s orbitals in the active space results in 

high computational costs because it leads to too many configurations. Fortunately, 

excluding the 1s and 2s orbitals from both the active space and PT2 correlation 

calculation gives an almost perfect dissociation energy for N2. Therefore, we chose a 

12e/12o active space for the N4 system and did not correlate either 1s or 2s electrons. For 

nonsymmetric geometries, this leads to 40,609,128 contracted configurations. Although 

the eight lowest-energy orbitals (1s and 2s) are doubly occupied in all configurations, 

they are fully optimized for each geometry. All electronic structure calculations are 

performed with the Molpro software package.48,49 

The calculations are carried out at sequences of geometries in which one internal 

coordinate is scanned while the rest of the coordinates are fixed. The Hartree–Fock wave 

function is used as an initial guess for the CASSCF reference wave function at the first 

point of each scan; then, for each of the rest of the points of the scan, the CASSCF 

reference wave function of the previous point is used as the starting point for the next 

CASSCF calculation. 

For some geometrical arrangements an excited state approaches closely to the 

ground state. Therefore, a level shift50 of 0.3 hartree is applied in all CASPT2 

calculations in order to eliminate intruder-state problems. The g4 version of the Fock-

operator,49 which is an extension of the g1, g2, and g3 zeroth-order Hamiltonians 

proposed by Andersson,51 is selected. This modified Fock-operator makes CASPT2 
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calculations approximately size extensive in the case of the dissociation of a molecule to 

high-spin open-shell atoms, which is precisely what is needed here. 

The minimally augmented correlation-consistent polarized valence triple zeta 

basis set, maug-cc-pVTZ52 is used for all calculations. 

For some geometries the 2p orbital from the active space switches place with one 

of the 2s inactive orbitals (not included in the active space), leading to an inconsistent 

solution to the CASSCF equations. For N4 this problem mostly occurs at points with high 

symmetry and when four nitrogen atoms are close to each other, especially in the case of 

(N3 + N)-like geometries. Distorting the geometry by a small amount or using a better 

initial guess of the wave function helps to avoid this problem.  

Occupation restrictions (restriction cards49) for the inactive orbitals are used in 

CASSCF calculations to restrict the occupation patterns in order to avoid so-called 

primary space (P-space) problems and CASSCF convergence problems. These problems 

can occur because of the limited active space or if two electronic states in the same 

symmetry are almost degenerate, for example near avoided crossings. However in our 

case increasing the active space would make the cost prohibitive, and increasing the 

primary space threshold or changing configurations did not help to avoid the problem. 

However, restrictions solved the problem. For example, we restrict 2s inactive orbitals to 

have a maximum and minimum number of electrons equal to 2. Because restricted 

orbitals are not in the active space, this restriction does not change the result, but the 

restriction card changes the algorithm used by the software and eliminates the problem. 
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The energy of two N2 molecules infinitely separated and each at its own 

equilibrium distance, is taken as the zero of energy for the PES. Relative energies with 

respect to the zero of energy were used for the fitting. 

The initial data set consists of energies for a diverse set of geometries. Nine sets 

of geometries correspond to an N2 approaching another N2 geometries, and 3 sets of 

geometries correspond to a triatomic molecule interacting with an atom (N3 + N) are 

used.  

Figure 2.1 shows the coordinates used to define the geometries for the N2 + N2 

sets. In each N2 + N2 set, one of the N2 molecules has a fixed bond length rA set 

successively equal to the equilibrium distance of 1.098 Å, to the equilibrium distance 

decreased by 0.2 Å, and to equilibrium distance increased by 0.2 Å; the other N2 is 

dissociating with the bond length rB varied from 0.8 to 6.0 Å; and the distance d between 

the centers of mass is varied from 1 to 10 Å to account for long range interaction at large 

distances. Thus each set corresponds to a set of points on a three-dimensional grid. The 

sets differ in the internal angles, e.g., collinear, T-shaped, etc. For example, the T-shaped 

model has two N2 molecules perpendicular to each other and situated at a distance d 

between their centers of mass.  

In the linear N2 + N2 set and in the N3 + N sets, a different coordinate system was 

used; see Figure 2.2 where polar coordinates are used to define one of the N3 + N sets. 

For the triatomic molecule interacting with an atom, 2B1 and 4B1 bent N3 structures were 
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optimized with the CASPT2 (9e/9o)/maug-cc-pVTZ method. Then for each set of N3 + N 

calculations, the bond lengths of N3 were fixed to the optimized values, decreased by 0.2 

Å and increased by 0.2 Å. The ground-state linear 2Πg N3 geometry was taken from 

experimental results,53 the N–N bond lengths were set to 1.181 Å, then decreased and 

increased by 0.2 Å. 

The sets just described lead to 16746 points. We then eliminated all points with 

energies greater than 2000 kcal/mol, leaving 16380 points (15363 points from N2 + N2 

scanning and 1017 points from N3 + N scanning). Next we added a point corresponding 

to a geometry-optimized tetrahedral structure and points corresponding to optimizing 

cyclic and bent 2B1 and 4B1 structures with one N far from N3. We also added five 

randomly generated points and one linear N3 + N point. And two points with short N–N 

bond lengths (0.6 and 0.7 Å) and a large distance between centers of mass of nitrogen 

molecules have been added to the data set to yield a better description of the short-bond-

length repulsive region. 

We added 30 points along linear synchronous transit54 (LST) paths connecting 

points from two different of the 12 arrangements shown in Figure 2.3. For each LST path, 

the points on the path are generated by 

( ))0()1()0(
iiii qqqq −+= λ  

where qi is an internal coordinate, qi
(0) is a point from one of the systematic sets, qi

(1) is 

a point from another set, and the LST points are generated by setting the parameter λ  to, 
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for example, -0.2, +0.2, +0.4, etc. Path 1 is from H-shape N4 to X-shape N4; path 2 is 

from linear N3 + N to N2 + N2; path 3 is from T-shape N4 to X-shape N4 with one N2 

dissociated; and path 4 is from N + N3 to H-shape N4. 

Finally, 14 data points with large separation between N2 and N2 were added to 

yield better asymptotic behavior. Putting all these points together yields a total of 16435 

points to be used for fitting.55 

2.2.2. Fitting the potential energy surface 

We defined six internuclear distances as follows: r1 = r12, r2 = r13, r3 = r14, r4 = 

r23, r5 = r24, and r6 = r34, where rij is the distance between atoms i and j. The variables 

 )/)(exp( ieii arrX −−= , 

were used to describe the N4 potential energy surface, where re is the equilibrium bond 

length of 1.098 Å for N2, and ri and ai (i = 1,…, 6) are internuclear distances and non-

linear parameters, respectively. Since iX  may be interpreted as a Pauling bond order,56-

60 the iX  are called bond orders. Since a quadratic polynomial in iX  is equivalent to a 

Morse curve,61 they may also be called Morse variables. 

We chose 0.9 Å for all ai based on some trial tests. The starting point for an 

analytic PES is an expansion in a Taylor series of bond orders as  
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where ni is the order of polynomial of iX , and the coefficients 
654321 nnnnnnC are the 

linear parameters that need to be determined through least-squares fits. The summation in 

eq. 2.1 is over all n1, n2, n3, n4, n5, and n6, each starting from 0, such that their sum is 

less than or equal to k; therefore k is the highest total degree of the multinomials. Some 

terms in eq. 2.1, such as 61
61
nn

XX , are products of functions of unconnected distances, 

e.g., a function of the 1–2 distance (r1 = r12) times a function of the 3–4 distance (r6 = 

r34). Those terms, which we call unconnected terms, introduce spurious interactions 

between two N2 fragments since they survive even when two N2 fragments are far from 

each other. We therefore remove all unconnected terms in eq. 2.1. Also, terms like in
iX  

that only describe pairwise 2-body interactions are replaced with the pre-optimized N2 

potential energy function V2 (r) for better asymptotic behavior. This yields 
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where V0 is the relative energy of four separated N atoms (2De). The reminder 

“connected” under the sum in eq. 2.2 denotes that unconnected terms are removed from 

the sum. The prime on the sum in eq. 2.2 denotes that V0 and two-body terms are also 

removed from the sum. Due to the permutation symmetry of the four identical N atoms, 

some of the coefficients are identical by symmetry. One can therefore construct an 



 

 33 

explicitly permutationally invariant basis to reduce the number of linear coefficients.42,43 

In the present paper, we follow the monomial symmetrization approach proposed by Xie 

and Bowman62 to construct permutationally invariant polynomial basis functions to fit 

the global potential energy surface of N4: 
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where ][ 654321
654321
nnnnnn

XXXXXXS are the symmetrized polynomials with correct 

permutation invariance.  

We truncated the Taylor expansion at k = 9. This includes 5005 terms if one uses 

eq. 2.1; however, by removing 2-body and unconnected terms and using symmetrized 

polynomials ][ 654321
654321
nnnnnn

XXXXXXS as the k = 9 basis, the number of independent 

terms is reduced to 276. The 276 654321 nnnnnnD   coefficients are determined by least-

square fits.  

The potential energy function of N2 was fitted with a generalized Morse potential 

 e
rrrf

e DeDrV e −−= −− 2))((
2 ]1[)(  (2.4) 

where De = 228.7 kcal/mol is the equilibrium bond dissociation energy calculated by 

CASPT2/maug-cc-pVTZ with the CASSCF(6e, 6o) reference wave function. In a 

standard Morse potential, one has 

 α=)(rf  (2.5) 
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where α is a constant. In order to obtain a more accurate fit, we made )(rf  depend on r; 

in particular, we defined intermediate variable 
44

44

e

e

rr

rr
y

+

−
=  and expanded )(rf  in a 

Taylor series of y: 
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with the optimized coefficients a0 = 2.70963254293 Å-1, a1 = 0.132620177271 Å-1, a2 = 

0.296757048793 Å-1, a3 = 0.197112432229 Å-1, a4 = -0.502002309588 Å-1, a5 = 

0.380734244606 Å-1, a6 = 0.121001628750 Å-1. 

Since we are interested in high-energy collisions, we need to fit our potential 

energy surface over a very wide energy range. To avoid putting too much emphasis on 

the high-energy data points and reducing the fitting quality of data points with relative 

low energies, we reduced the weight on high-energy points, as has been done before.63 

However in the present work we used a newly devised weighting function; in particular 

we use the following weighting factor in our weighted-least-square fitting: 
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where )(iw is the weighting factor of data point i with energy iE , and cE is a preselected 

energy threshold to reduce the weights of high-energy data points. In the final fit, we 

chose cE  to be 100 kcal/mol. Furthermore, we excluded the data points with energies 

larger than 2000 kcal/mol in our fitting. We think that energies above 2000 kcal/mol 

would be rarely visited during dynamic studies, and the accuracy in those ranges is not 

very important.  
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2.3. Results 

Figures 2.4 through 2.7 show comparisons of the global fit to the calculated points 

on the dissociation curves for N–N interacting with N2, where the calculations are 

performed with the CASPT2 method for various dimer arrangements. Results are given 

as a function of the internuclear distance in one molecule (rB) with the other molecule 

(rA) at its equilibrium distance. Although we do not show plots to illustrate this, the fits 

also include data like this with the second molecule stretched by 0.2 Å from its 

equilibrium geometry and with it compressed by 0.2 Å from its equilibrium geometry. 

Seven more plots similar to Figures 2.4–2.7 but for other geometries are given in 

supplementary material. A surface cut as a function of two variables is shown in Figure 

2.8 for the bent T-shaped dimer. The surface cut is not from the global fit, but rather is 

based on local interpolation to guide the eye in visualizing the data.  

The root-mean-square errors (RMSEs) and mean unsigned errors (MUEs) of the 

final fit are shown for different energy ranges in Table 2.1.  

The results in Table 2.1 are for the final fit to all the data. To further test the 

quality of our fitted PES, we omitted the data corresponding to the four LST paths to see 

how our fitting procedure would perform for data quite different from that used in the fit. 

The energies predicted by this test fit, as well as the CASPT2 energies being predicted, 

are shown in Figure 2.9.  
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2.4. Discussion 

As a subset of the N4 surface, the surface of N3 interacting with an atom has been 

calculated. Therefore, stationary points of N3 were used. The geometries of low-lying 

cyclic 2B1 and bent 4B1 stationary structures were taken from a recent work7 and 

optimized with CASPT2. Our optimized nonlinear stationary structures of N3 agree well 

with previous theoretical results. For 2B1 calculated bond lengths are 1.45 Å and N–N–N 

angle is 50.2 degrees. For 4B1 the bond lengths are 1.27 Å and N–N–N angle is 117.4 

degrees.  

For comparison with previous studies of tetrahedral N4, we performed an 

optimization of tetrahedral structure of singlet N4 with CASPT2(12e/12o)/maug-cc-

pVTZ level. The bond lengths and absolute energy obtained with the method we used are 

consistent with previous computational work:18 the N–N bond length is 1.450 Å, the 

energy, relative to two nitrogen molecules is 191.7 kcal/mol. At this geometry the fit 

gives an energy of 173.4 kcal/mol, with an error of 18.3 kcal/mol. Although not very 

good, the fit is still acceptable. Actually, the large discrepancy of relative energies of the 

tetrahedral N4 calculated by CASPT2 and our analytic PES is an example of a more 

general phenomenon, namely that the fit is less accurate near surface crossings where the 

fitted PES smoothes out the cusp due to state crossing, as shown clearly in Figure 2.7 for 

d = 1.0 and 1.4 Å respectively, where d is the distance between the centers of mass of the 

two N2 molecules. Our goal here is to fit the lowest adiabatic potential energy surface, 
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even though that surface has cuspidal ridges due to surface crossings, and the functional 

form chosen here, with continuous derivatives, must smooth those crossings out. This 

could be considered a disadvantage or an advantage, with the latter point of view 

reflecting the fact that Born-Oppenheimer trajectories will be smoother (and hence 

probably more realistic) if one smoothes the cuspidal ridges. The only truly satisfactory 

way to fit potential energy surfaces in the presence of surface crossings is to use a 

diabatic representation and fit more than one surface and their couplings,64,65 but that is 

beyond the present scope. 

Table 2.1 shows that the average quality of the fitted PES is quite good since the 

RMSE for E < 100 kcal/mol is only 1.7 kcal/mol, and the RMSE for 100 kcal/mol ≤ E < 

228 kcal/mol is 4.1 kcal/mol. The RMSE is a good criterion for evaluating the fitting 

accuracy if the errors are normally distributed. However, it could be exaggerated by 

larger errors, and the MUEs are more robust. That is why Table 2.1 also provides the 

MUEs for the various energy ranges. The MUEs are quite small, 1.2 kcal/mol for E < 100 

kcal/mol and 2.3 kcal/mol for 100 kcal/mol ≤ E < 228 kcal/mol. Both RMSEs and MUEs 

show that our fitted PES is quite good (better than the expected accuracy of CASPT2) for 

energies below the dissociation limit of 228 kcal/mol. For 228 kcal/mol ≤ E < 456 

kcal/mol, our fitting is still quite good, with RMSE and MUE of 5.8 and 3.1 kcal/mol, 

respectively. So our PES should be suitable to study high-energy collisions of N2 with 

N2.  
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The quality of the fitting procedure was further tested by leaving the 30 LST 

points out of the fitting process, producing a less accurate global surface called the test 

PES. The test surface reproduces the general trends of the CASPT2 curves for the LST 

paths. The agreement of energies predicted by test PES and those calculated by CASPT2 

is best for energies lower than the dissociation limit (228 kcal/mol), as also implied by 

RMSEs and MUEs of the final fit. Path 1 calculated by CASPT2 has an energy maximum 

at λ = 0.8. The energy maximum has been shifted to λ = 0.6 with the test PES. But the 

qualitative shape of path 1 predicted by our test PES agrees with that calculated by 

CASPT2. Path 2 predicted by our test PES agrees extremely well with the CASPT2 one, 

especially for the data points with energies below 300 kcal/mol. The test PES reproduces 

path 3 near the starting T-shaped N4, but it fails to reproduce the cusp due to a state 

crossing near λ = 0.6. Instead, it yields a smooth curve near the cusp. That problem, 

discussed above for the final fit, is inevitable when one fits adiabatic surfaces to 

continuous functions, as has been observed before.66 For path 4, the test fit reproduces 

the CASPT2 curves very well for energy below 300 kcal/mol, but the agreement degrades 

for higher energies. 

2.5. Summary 

A global ground-state potential energy surface for N4 suitable for treating high-

energy vibrational-rotational energy transfer and dissociation in N2–N2 collisions has 

been developed. About 17,000 ab initio data points have been calculated for the N4 

system, distributed along nine series of N2 + N2 geometries and three series of N3 + N 



 

 39 

geometries using CASPT2 with an active space of 12 electrons in 12 orbitals and the 

maug-cc-pVTZ triple zeta basis set. The six-dimensional ground-state potential energy 

surface was fitted using least-squares fits to electronic energies based on permutationally 

invariant polynomials in bond order variables. 
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Table 2.1 The mean unsigned errors (MUEs) and root-mean-square errors (RMSEs) of 

the fitted potential energy surface with respect to CASPT2/maug-cc-pVTZ results for 

different energy ranges (in kcal/mol). 

  NO. of points MUE RMSE 
E < 100.0  693 1.2 1.7 
100.0 ≤ E < 228.0 1941 2.3 4.1 
228.0 ≤ E < 456.0 11858 3.1 5.8 
456 ≤ E < 1000.0 1610 10.9 14.6 
E > 1000.0 333 21.7 30.9 
All data 16435 4.1 8.2 
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Figure 2.1. Coordinates for N2 + N2. rA: re − 0.2 Å, re, re + 0.2 Å, rB: 1.0 – 5.0 Å, d: 1.0 

– 10.0 Å, θA, θB : 0, π/3, π/2, φ: 0, π/2, π/3. 
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Figure 2.2. Polar coordinates for the bent 4N3 + 4N interaction. 
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Figure 2.3. Molecular arrangements for N4. 
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Figure 2.4. Dissociation curves for N2 + N2: comparison of the global fit to the values 

obtained with the CASPT2 method for the A-shaped set with one N2 fixed to its 

equilibrium distance. Both rB and d are in Å. In Figure 2.4-2.7, d is the distance between 

the centers of mass of the two nitrogen molecules. 
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Figure 2.5. Dissociation curves for N2 + N2: comparison of the global fit to the values 

obtained with the CASPT2 method for the T-shaped set with one N2 fixed to its 

equilibrium distance. 
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Figure 2.6. Dissociation curves for N2 + N2: comparison of the global fit to the values 

obtained with the CASPT2 method for the H-shaped set with one N2 fixed to its 

equilibrium distance. 
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Figure 2.7. Dissociation curves for N2 + N2: comparison of the global fit to the values 

obtained with the CASPT2 method for the X-shaped set with one N2 fixed to its 

equilibrium distance. 
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Figure 2.8. Three-dimensional surface for N2 + N2, obtained with the CASPT2 method 

for bent T–shaped arrangement. 
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Figure 2.9. Comparison of the test fit (green) to the CASPT2/maug-cc-pVTZ data (red) 

for the four LST paths. (The data points along the 4 paths are not included in the test fit to 

see the ability of the fitting strategy to predict the relative energies of N4.) 
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Chapter 3. Direct Diabatization of electronic states by the fourfold way: Including 

dynamical correlation by multi-configuration quasidegenerate perturbation theory 

with complete active space self-consistent-field diabatic molecular orbitals 

Adapted with permission from Ke R. Yang, Xuefei Xu, and Donald G. Truhlar, Chem. 

Phys. Lett. 573, 84 (2013). 

3.1 Introduction 

The widely used Born-Oppenheimer (BO) approximation separates the electronic 

and nuclear motions, which leads to the concepts of adiabatic states and potential energy 

surfaces (PESs). Adiabatic PESs are associated with adiabatic electronic states, which are 

the eigenstates of the electronic Hamiltonian at each nuclear configuration. The couplings 

between nuclear motions and electronic motions are usually called nonadiabatic coupling. 

In the adiabatic representation, nonadiabatic couplings are off-diagonal matrix elements 

of the nuclear momentum vector and the nuclear kinetic energy, although the latter is 

often neglected in semiclassical treatments.1 The former are (3NA – 6)-dimensional 

vectors, where NA is the number of atoms in the molecule. The couplings can be rapidly 

varying in avoided crossing regions where two or more adiabatic PESs approach closely, 

and they are singular along (3NA – 8)-dimensional conical intersection seams; this makes 

them inconvenient for dynamical studies of photodissociation, predissociation, quenching 

of excited states in collisions, chemiluminescence, etc. The use of diabatic 

representations2 has been proposed as an alternative approach to study dynamics. In 

nonadiabatic representations (any representation except the adiabatic one), the states are 
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coupled not only by the nuclear momentum and kinetic energy but also by the electronic 

Hamiltonian; diabatic states are nonadiabatic states whose momentum and kinetic energy 

couplings are negligible compared to the electronic Hamiltonian couplings, which are 

off-diagonal elements of the electronic Hamiltonian matrix. The electronic Hamiltonian 

couplings are slowly varying, nonsingular scalars and hence are much more convenient 

for dynamical calculations. Strictly diabatic states would be states whose nuclear 

momentum and kinetic energy couplings (nonadiabatic couplings) vanish completely and 

globally; they do not exist in general,3 so one has to develop methods to obtain diabatic 

states whose nonadiabatic couplings are negligible but not strictly vanishing. 

Many methods, based on a variety of criteria, have been proposed to calculate 

diabatic states, which are not unique, and they are briefly discussed in Refs. 4 and 5 (with 

more than 50 references to previous treatments). Among these methods, the fourfold way 

diabatization scheme4-6 proposed by Nakamura and one of the authors is very promising 

and has been applied to study of the photodissociation of ammonia,7-10 bromoacetyl 

chloride,11 hydrogen bromide,12 and chlorobromomethane.13 One important advantage 

of the fourfold way over alternative schemes is that it is "direct," which in this context 

means that the diabatic potentials and couplings calculated at a given geometry are 

independent of any path leading to that geometry. Another important feature of fourfold-

way diabatization is that one obtains N diabatic electronic states that span the same space 

as N chosen adiabatic states (for example, the N lowest).  
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The fourfold-way algorithm is based on the density matrix, and it was originally 

proposed4 for the diabatization of complete-active-space (CAS) self-consistent-field 

(CASSCF)14-16 wave functions. However, CASSCF is not quantitatively accurate 

because it includes only a small fraction of the dynamical correlation. To include 

dynamical correlation, the method was further developed for the diabatization of multi-

configuration quasi-degenerate perturbation theory (MC-QDPT),17,18 which (like multi-

state CASPT2 (Ref. 19) is a "perturb, then diagonalize" effective Hamiltonian variant of 

the multi-reference perturbation theory (MRPT).20-23 In this letter, we present a simpler 

scheme to perform diabatization of MC-QDPT wave functions, and we test its 

performance for two test cases, namely, the dissociation of LiF and the reaction Li + FH 

→ LiF + H.  

In order to obtain diabatic states, the multi-electron wave functions are expressed in 

terms of diabatic molecular orbitals (DMOs) rather than the usual canonical molecular 

orbitals (CMOs) because the DMOs vary smoothly with geometry, whereas the CMOs 

need not be smooth along continuous nuclear-coordinate paths. In the original algorithms, 

the CASSCF diabatic states were expressed in terms of DMOs obtained from the 

CASSCF wave function, and the MC-QDPT diabatic states were expressed in terms of 

DMOs obtained using a density matrix based on the eigenvectors of the MC-QDPT 

effective Hamiltonian. In the algorithm presented here, the MC-QDPT diabatic states are 

expressed in terms of the CASSCF DMOs; this simplifies the treatment and, more 

importantly, it was motivated by our observation that the CASSCF DMOs are sometimes 
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smoother than the DMOs that result from the more complicated MC-QDPT procedure. 

The quality of the diabatic states is not compromised by using the CASSCF DMOs 

because the new diabatic states still span the same space as the N MC-QDPT adiabatic 

states that they replace. 

We stress that the goal of the diabatization scheme considered here is to obtain a set 

of diabatic states that span the same space as a chosen set of adiabatic states, but for 

which the coupling by the nuclear momentum operator is negligible compared to the 

effect of coupling by the electronic Hamiltonian. This will allow convenient treatments of 

electronically nonadiabatic states. (Since nonadiabatic states are not unique, some other 

workers have defined them with other objectives in mind, for example24 to account for 

electron–nuclear correlation.) Because the diabatic states span the same space as the 

adiabatic ones, the method is not designed to overcome any limitations in the method 

used to obtain adiabatic states. For example, if or when the MC-QDPT method makes 

significant errors due to an incomplete treatment of electron correlation or gives 

nonsmooth adiabatic potential curves near places where the CASSCF states cross, the 

diabatization scheme does not correct these problems.  But it does provide a convenient 

way to carry out dynamics at the MC-QDPT level, and this level (which is essentially the 

same as multistate CASPT2) has been demonstrated to provide useful accuracy for 

studying many photochemical processes. Nevertheless, it would be useful in future work 

to apply this diabatization scheme to other methods for calculating sets of ground and 

excited state potential energy surfaces, such as extended multi-configuration quasi-
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degenerate perturbation theory (XMC-QDPT)25 or extended multi-state complete active 

space second-order perturbation theory (XMS-CASPT2)26 which would be expected to 

produce smoother adiabatic curves near surfaces crossings, or even to more significantly 

different methods such as multireference configuration interaction.27-29 The present 

simplification of the method such that the DMOs are determined at the CASSCF level 

will facilitate such extensions. 

3.2 Theory 

The fourfold-way diabatization scheme is limited (at the present time) to complete 

active space methods (e.g., CASSCF, CASPT2, and MC-QDPT based on a CASSCF 

reference). In CAS methods, the molecular orbitals are divided into three classes: inactive 

orbitals that are doubly occupied in all reference configurations, external orbitals that are 

unoccupied in all reference configurations, and active orbitals that have variable 

occupation (0, 1, or 2) in reference configuration state functions (CSFs). The limitation to 

CAS methods is because we take advantage of the invariance of CASSCF wave functions 

to orbital rotations that do not mix orbitals from the different classes, in particular 

transformations that mix the active orbitals among themselves. 

We will briefly discuss the fourfold-way diabatization method and then present our 

new scheme for diabatization of MC-QDPT wave functions with CASSCF DMOs. For 

more details of the original scheme, please refer to the original fourfold-way 

diabatization papers.4,5 
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3.2.1 The original fourfold way algorithms for diabatization 

We obtain N diabatic states kφ , with Nk L1= , by orthogonal transformation 

(assuming all wave functions are real) of the N adiabatic states nψ , with Nn L1= , as 

follows 

 ∑=
=

N

n
nknk T

1
ψφ , (3.1) 

where nkT is an element of the orthogonal adiabatic-to-diabatic transformation matrix T. 

The adiabatic states are linear combinations of L orthonormal CSFs, αχ , 

 ∑=
=

L

nn c
1α

αα χψ , (3.2) 

where the coefficients ncα  are obtained variationally or by perturbation methods. We 

consider systems for which each adiabatic state is dominated by a small set of CSFs at 

potential reference geometries, which are geometries where adiabatic states are almost 

equal to diabatic states. At potential reference geometries, one can identify "dominant" 

CSFs, δχ  (called diabatic prototypes), that make large contributions to one and only one 

of the N adiabatic states of interest, and one can divide them into N groups as follows: 

Group 1G : { δχ }, 11 aL=δ , which are mainly important for 1ψ ; 

Group kG : { δχ }, kk aa L)1( 1 += −δ , which are mainly important for kψ ; 

Group NG :{ δχ }, δ = (a
N−1 +1)L(a

N
= M ) , which are mainly important for Nψ . 
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where M is the total number of diabatic prototypes in all of the groups. The dominant 

CSF group lists kG  (with Nk L1= ) may be used to form templates of the diabatic states 

kφ , Nk L1= , provided that we exclude any CSF that would be prominent in more than 

one diabatic state as we vary the geometry. One may need to consider more than one 

potential reference geometry and make dominant CSF lists by taking the union of the 

dominant CSF lists at each of them. Furthermore, sometimes one needs to add diabatic 

prototypes to the lists even when they are not identified at potential reference geometries. 

At any geometry, we can obtain approximate wave functions for the N adiabatic 

states nψ , with Nn L1= , by using either CASSCF or MC-QDPT. With the predefined 

dominant CSF lists kG  and the calculated coefficients ncα  of the N adiabatic states nψ  

expressed in terms of these CSFs, the adiabatic/diabatic transformation matrix T  is 

determined by the configuration uniformity procedure introduced by Atchity and 

Ruedenberg.30 The details of the step to determine T  are given in Refs. 4 and 5, and we 

will not change or discuss them here. 

The CSFs in the group lists must be smooth functions along nuclear-coordinate 

paths, as required for them to fulfill their mandate as diabatic prototypes; thus the 

molecular orbitals (MOs) that are used to construct these dominant CSFs have to change 

smoothly along paths in nuclear coordinate space. These MOs that change smoothly are 

the DMOs we mentioned above. 
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 The fourfold algorithm for constructing DMOs consists of the threefold density 

matrix criterion and the maximum overlap reference MOs (MORMO) criterion. The 

threefold density matrix criterion is the maximization of the functional defined as: 

 D3 = αN D
NO +αRD

ON +αT D
TD , (3.3) 

where Nα , Rα , and Tα are predefined parameters. Here we use the standard values of 2, 

1, and 0.5. The functional NOD  is called the natural orbital term and is defined as 

 
2

1

NO )(∑=
=

η

µ
µµpND , (3.4) 

where η  is the number of active MOs used to construct CSFs, and p  is the state-

averaged density matrix (averaged over the N states of interest). The functional OND  is 

called the occupation number term and is defined as 

 ∑ ∑=
= =

η

µ
µµ

1

2

1

ON )(
N

n

n
pD , (3.5) 

where n
pµµ  is the one-particle density matrix element of the adiabatic wave function nψ . 

The third term TDD  is called the transition density term and is defined as 

 DTD =
2

N −1
(pµµ

mn

m<n

N

∑ )2

µ=1

η

∑ , (3.6) 

where mnp  is the transition density matrix between adiabatic states mψ  and nψ . 

The MORMO criterion involves introducing λ  reference MOs ref
τu , λτ L1= , 

and a reference orbital functional ROD . For a specific geometry Q, ROD  is defined as4-6 
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
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1
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refRO )()(
I

i

I

j
jiji QQaaD , (3.7) 

where I is the number of atomic basis functions, )(Qiξ , Ii L1=  are the normalized 

atomic orbitals, and ref
iaτ and jaτ  are the coefficients of MO ref

τu at geometry Qref and Q, 

respectively.  

To apply the fourfold way to determine DMOs, one first maximizes ROD  by 

rotating all η  active orbitals, and the λ  rotated MOs that maximize ROD  are taken as 

the first λ DMOs. Then D3 is maximized by orbital rotations within the remaining set of 

λη −  active MOs to determine the remaining DMOs. After determining DMOs with the 

fourfold way, those DMOs need to be ordered according to the DMOs at nearby 

geometries to construct consistent CSFs to obtain the adiabatic/diabatic transformation 

matrix T based on configuration uniformity. The determination of the transformation 

matrix T is explained in previous work.4,5 

The fourfold-way diabatization algorithm has been implemented for adiabatic 

states described by both CASSCF and MC-QDPT wave functions. For CASSCF wave 

functions, it is very clear that only DMOs spanning the same space of η  active orbitals 

need to be determined with fourfold way, since the occupancies of inactive and external 

orbitals are the same in all CSFs, either doubly occupied or unoccupied. But this requires 

further justification for MC-QDPT wave functions. In general the adiabatic state, MQ
nψ , 

obtained with MC-QDPT can be written as 
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 ψn
MQ = cαnχα

α=1

LCAS

∑ + cαnχα
α=LCAS+1

L

∑ , (3.8) 

where CASL  is the number of CSFs in the CAS configuration space, and L  is the total 

number of CSFs. In CSFs αχ  with CAS1 LL=α , all inactive and external orbitals are 

doubly occupied and unoccupied, respectively, as for CASSCF wave functions. But this 

is not the case for CSFs αχ  with LL L1CAS +=α , in which the occupancies of inactive 

and external orbitals can differ from 2 and 0. However, if the active space is chosen large 

enough for a good description of all N states, one can expect that  

 cαn
2

α=1

LCAS

∑ >> cαn
2

α=LCAS+1

L

∑ . (3.9) 

So we make the assumption that, even when dynamical correlation is included, only the 

DMOs spanning the active orbital space need to be determined, while the remaining 

orbitals can be taken as CMOs.  

3.2.2 Including dynamical correlation by MC-QDPT with CASSCF DMOs 

The original implementation of the fourfold-way diabatization of MC-QDPT 

wave functions is conceptually complicated by the use of MC-QDPT DMOs, and the 

smooth variation of the DMOs is dependent on smooth variation of the MC-QDPT 

effective Hamiltonian eigenvectors. Here we propose a simplified scheme to include 

dynamical correlation in diabatic states. The first steps are the same as before: we use the 

fourfold way to obtain the CASSCF DMOs, and then the CASSCF wave functions are 
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expressed in terms of CSFs constructed with CASSCF DMOs. In the previous MC-QCPT 

algorithm, the CASSCF DMOs are only used as initial MOs in the MC-QDPT adiabatic 

calculations, and we determine the final DMOs by applying the fourfold way at the MC-

QDPT level (these new DMOs are the MC-QDPT DMOs); then we express the wave 

function by eq. 3.8 where χα  is a CSF expressed in terms of MC-QDPT DMOs for the 

active space and CMOs for the inactive and virtual spaces. Finally the coefficients of eq. 

3.) are used with the predefined dominant CSF lists in the configurational uniformity 

scheme to obtain the diabatic states. 

In contrast, in the new method we skip the step to obtain MC-QDPT DMOs, and 

we replace eq. 3.8 by  

 ψn
MQ = cαn

0 χα
0

α=1

LCAS

∑ + cαn
0 χα

0

α=LCAS+1

L

∑  (3.10) 

where χα
0  is a CSF expressed in terms of CASSCF DMOs for the active space  and 

CMOs for  the inactive and virtual spaces. With the predefined dominant CSF lists and 

the coefficients in Eq. 3.10, we calculate the adiabatic/diabatic transformation matrix and 

do the diabatization of MC-QDPT adiabatic states without the complication of MC-

QDPT DMOs. 

3.3 Applications 

This section will illustrate the new diabatization scheme presented in Sec. 3.2 by 

applying it to two test systems, the dissociation of LiF and the reaction Li + FH → LiF + 
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H. The two test cases are quite different, and they provide critical tests of the new 

method. The first case was chosen because it is a classic case31 of a curve crossing whose 

location is very sensitive to dynamical correlation. In particular the curve crossing of the 

ionic and covalent interactions occurs at a much larger distance when dynamical 

correlation is fully included. This provides a severe test of the applicability of using 

CASSCF DMOs in a calculation with post-CASSCF dynamical correlation. The second 

test case was chosen because it is a multi-arrangement reaction system where the DMOs 

derived by the fourfold way must change their character smoothly along a reaction 

pathway,4,5 which required an extension of the original configurational uniformity 

concept of Atchity and Ruedenberg.30 

All calculations were carried out with a locally modified version of the 

HONDOPLUS v5.2 program.32,33 Computational details and results are given in the 

following two subsections. 

3.3.1 First test case: LiF dissociation (1 1Σ+, 2 1Σ+) 

The two lowest 1Σ+ states of LiF exhibit an ionic–covalent diabatic curve crossing 

at large bond length. LiF is a good example to test a diabatization scheme since the 

location of its weakly avoided crossing of the adiabats is very sensitive to dynamical 

correlation; the location of the avoided crossing point is quite different for CASSCF and 

MC-QDPT wave functions. It is therefore a good check to demonstrate that our new 

scheme is able to give the proper location of the avoided crossing in LiF. 
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The basis set we used is 6-311G(3df,3pd)34,35 
augmented by diffuse s and p 

functions with exponents 0.0052 (s) and 0.0097 (p) for Li and 0.089 (s) and 0.083 (p) for 

F. The active space contains the 2s and 2p orbitals of Li and the 2p orbitals of F; this 

choice gives an active space with 6 electrons in 7 orbitals. The 1s orbitals of the Li and F 

atoms and the 2s orbitals of F were kept doubly occupied in the CASSCF calculations, 

but only the two sets of 1s orbitals are kept doubly occupied in the MC-QDPT 

calculations. 

The geometry with an Li–F bond length of 3.0 a0 was taken as the reference 

geometry to obtain the dominant CSF lists, which are G1 = {χ1} and G2 = {χ2}, where χ1 

is (4σ)2(5σ)0(1π)4 and χ2 is (4σ)1(5σ)1(1π)4. No reference orbital is needed, so we used 

(αN ,αR,αT ; γ) = (2,1,0.5;0) to determine the CASSCF and MC-QDPT DMOs for the 

original CASSCF and MC-QDPT diabatization schemes and for the new diabatization 

scheme in which MC-QDPT wave functions are expressed in terms of CASSCF DMOs. 

The adiabatic potential energy curves V1 and V2, the diabatic potential energy 

curves U11 and U22, and the diabatic coupling U12 obtained by diabatization of CASSCF 

wave functions with CASSCF DMOs are shown in Figure 3.1a. The adiabatic potential 

energy curves have an avoided crossing at large bond length, and the two diabatic 

potential energy curves (the ionic U11 and the covalent U22) cross each other near rLiF = 

10.5 a0, which is a much smaller than the experimental36 distance of 13.7 a0. The 

calculated adiabatic potential energy curves and diabatic coupling by diabatization of 

MC-QDPT wave functions with MC-QDPT DMOs, are shown in Figure 3.1b. By 
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including dynamical correlation, the diabatic states obtained by MC-QDPT cross at rLiF 

= 12.5 a0, which is a significant improvement over CASSCF. The physical reason for the 

improved performance of the MC-QDPT method is that the electron affinity of fluorine is 

greatly improved by including dynamical correlation, as is well known from previous 

work.37 

With our new scheme, we first obtained CASSCF DMOs. Then the adiabatic MC-

QDPT wave functions were expressed in terms of the CASSCF DMOs and were used for 

direct diabatization to obtain the energies of diabatic states and diabatic couplings. The 

calculated adiabatic and diabatic potential energy curves and diabatic couplings are 

shown in Figure 3.1c. The diabatic states U11 and U22 calculated by our new scheme with 

CASSCF DMOs cross at rLiF = 12.5 a0, which is the same distance as found with the 

more complicated scheme with MC-QDPT DMOs. Not only do we get a similar crossing 

distance, we also find that the diabatic potential energy curves calculated with our new 

scheme are very similar to those calculated by diabatization of MC-QDPT wave function 

with MC-QDPT DMOs.  

3.3.2 Second test case: Li + HF chemical reaction (1 2A′, 2 2A′) 

Along the reaction path of Li(2S) + HF(1Σ+) → LiF(1Σ+) + H(2S) and near to the 

transition state, the two lowest adiabatic states of LiFH have a strongly avoided 

crossing.38 This avoided crossing may be interpreted as the crossing of the valence bond 

curves corresponding to the reactant bonding configuration and the product bonding 
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configuration. The excited state of the two states involved correlates with Li(2P) + 

HF(1Σ+) in the reactant asymptotic and with LiF(3Σ+) + H (2S) at the product.  

We studied this system with the 6-311G(3df,3pd) basis set34,35 augmented by 

diffuse s and p functions with exponents 0.0052 (s) and 0.0097 (p) for Li, 0.089 (s), 

0.00001 (s), and 0.083 (p) for F, and 0.037 (s), 0.012 (s), and 0.055 (p) for H. The active 

space contains the 2s and 2p orbitals of Li, the 2p orbitals of F, and the 1s orbital of H, 

yielding 7 electrons in 8 orbitals. The 1s orbitals of Li and F atoms and the 2s orbitals of 

F were kept doubly occupied in the CASSCF calculations, but only the two sets of 1s 

orbitals are kept doubly occupied in the MC-QDPT calculations. 

The potential reference geometries in our calculations were: rLiF = 15.0 a0 and rFH 

= 1.73 a0 in the reactant region and rLiF = 2.96 a0 and rFH = 15.0 a0 in the product region 

with three different Li-F-H angles γ: 45°, 90°, and 135°.  

A reference orbital is needed to disentangle the orbital pair 6a′ and 7a′, where 6a′ is 

the 2s orbital of Li, and 7a′ is a 2p orbital of Li near reactant asymptotic. Since the 6a′ 

orbital remains 2s-like along the whole reaction path, but 7a′ becomes the 1s orbital of H 

in the product, we chose 6a′ as the reference orbital, and the MORMO reference 

geometry was chosen to have the coordinates: rLiF = 15.0 a0, rFH = 1.73 a0, and Li-F-H 

angle equal to 135°.  

Next, the dominant CSF lists need to be determined for all reference geometries. 

For the reactant region we have G1 = {χ1} and G2 = {χ2}, where: 

χ1: ...(4a′)2(5a′)2(6a′)1(7a′)0(1a′′)2 
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χ2: ...(4a′)2(5a′)2(6a′)0(7a′)1(1a′′)2 

where 5a′ is the 2py orbital of F (the Li–F axis is the z axis). In the product region we 

again have G2 = {χ2}, but—based on the dominant CSFs at all potential reference 

geometries—we have to add two more CSFs to G1 to provide a good representation in the 

product region. In particular we add {χ3(1), χ3(2)} where the spatial parts of the electronic 

configurations of χ3(1) and χ3(2) are the same, 

χ3
(1), χ3(2): ...(4a′)2(5a′)1(6a′)1(7a′)1(1a′′)2 

but they differ in the spin functions. 

For the reaction path with γ = 120°, we performed diabatization with the original 

CASSCF and MC-QDPT methods as well as with our new scheme. The resulting 

potential energy curves and diabatic coupling are shown in Figure 3.2. As the Li atom 

approach HF molecule, the energy of the ground state decreases slightly along the 

reaction path, which can be rationalized as noncovalent attraction between Li atom and 

HF molecule. Then, as the reaction coordinate s approaches -0.6 amu1/2a0, the Li atom 

gets close to the F atom (rLiF = 3.68 a0), and the strong HF bond begins to break, so the 

energy of the ground state increases rapidly. The energy of the ground state further 

increases as the Li atom continues toward the HF molecule, and finally it decreases after 

passing the saddle point as the LiF bond is formed. The energy of the ground state near 

the product asymptotic is higher than that near the reactant asymptote because the HF 

bond is stronger than the LiF bond.  
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In Figure 3.2a, the diabatization is done with CASSCF wave functions, so no 

dynamical correction is included. The two adiabatic states have a strongly avoided 

crossing near the transition state, and the two diabatic states cross near s = 0.03 a0, where 

s is the distance along the minimum energy path in an isoinertial coordinate system 

scaled to 1 amu. The barrier height for reaction on the ground-state potential energy 

surface is about 1.1 eV. With MC-QDPT wave functions, which include dynamical 

correlation, the adiabatic and diabatic potential energy curves and the diabatic coupling 

change significantly as compared to Figure 3.2a, and the barrier height is reduced to 

about 0.5 eV, as shown in Figure 3.2b. With our new method, in which we include the 

dynamical correlation by MC-QDPT with CASSCF DMOs, the resulting adiabatic and 

diabatic energies and diabatic coupling agree well with the more complicated 

diabatization scheme with MC-QDPT DMOs, as shown in Figure 3.2c. 

3.4 Concluding remarks 

The fourfold way is a direct diabatization method for converting adiabatic 

electronic wave functions to diabatic ones and computing the diabatic potential energy 

surfaces and couplings. The key steps are to compute DMOs, to re-express the adiabatic 

states in terms of DMOs, and to use the re-expressed states to compute the adiabatic-to-

diabatic transformation by configurational uniformity. We previously presented 

algorithms for applying this method to compute both CASSCF diabatic states and MC-

QDPT diabatic states. The latter algorithm was based on DMOs determined using the 

eigenvectors of the effective Hamiltonian that underlies the MC-QDPT calculation. Here 
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we present an algorithm in which the MC-QDPT diabatic states are expressed in terms of 

the CASSCF DMOs; this simplifies the treatment and, more importantly, it was 

motivated by our observation that the CASSCF DMOs tend to be smoother than the 

DMOs that result from the more complicated MC-QDPT procedure. The quality of the 

diabatic states is not compromised by using the CASSCF DMOs because the new 

diabatic states still span the same space as the N MC-QDPT adiabatic states that they 

replace. We illustrate the method on two test cases, the dissociation of LiF and the 

reaction of Li with HF to yield LiF + H. With the inclusion of dynamical correlation, the 

results obtained by both the original MC-QDPT diabatization scheme and our new 

scheme improve over those obtained by the CASSCF diabatization, giving more realistic 

ionic-covalent crossing distances for LiF and smaller reaction barriers for Li + FH. The 

results with our new scheme are quite similar to those obtained with the original MC-

QDPT diabatization scheme, which is more complicated, validating the new scheme and 

suggesting that it would be a good choice for nonadiabatic dynamics studies in the future. 
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Figure captions: 

Figure 3.1. Potential energy curves of the two lowest 1Σ+ states of LiF. V1 and V2 are 

adiabatic energies; U11 and U22 are diabatic energies; and U12 is the diabatic coupling. 

We take the zero of energy as the ground-state energy of the dissociation limit. (a) 

diabatization with CASSCF DMOs and CASSCF wave functions; (b) diabatization with 

MC-QDPT DMOs and MC-QDPT wave functions; (c) diabatization with CASSCF 

DMOs and MC-QDPT wave functions. 

Figure 3.2.Potential energy curves of the two lowest doublet states of LiFH along the 

reaction path at a Li-F-H angle γ of 120.0°. We chose the ground state energy of the 

reactant asymptote, Li(2S) + HF(1Σ+), as the zero reference energy. V1 and V2 are 

adiabatic energies; U11 and U22 are diabatic energies; and U12 is the diabatic coupling. 

(a) diabatization with CASSCF DMOs and CASSCF wave functions; (b) diabatization 

with MC-QDPT DMOs and MC-QDPT wave functions; (c) diabatization with CASSCF 

DMOs and MC-QDPT wave functions. 
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Figure 3.1. Potential energy curves of the two lowest 1Σ+ states of LiF. V1 and V2 are adiabatic energies; U11 and U22 are diabatic 

energies; and U12 is the diabatic coupling. We take the zero of energy as the ground-state energy of the dissociation limit. (a) 

diabatization with CASSCF DMOs and CASSCF wave functions; (b) diabatization with MC-QDPT DMOs and MC-QDPT wave 

functions; (c) diabatization with CASSCF DMOs and MC-QDPT wave functions. 
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Figure 3.2.Potential energy curves of the two lowest doublet states of LiFH along the reaction path at a Li-F-H angle γ of 

120.0°. We chose the ground state energy of the reactant asymptote, Li(2S) + HF(1Σ+), as the zero reference energy. V1 and V2 

are adiabatic energies; U11 and U22 are diabatic energies; and U12 is the diabatic coupling. (a) diabatization with CASSCF 

DMOs and CASSCF wave functions; (b) diabatization with MC-QDPT DMOs and MC-QDPT wave functions; (c) 

diabatization with CASSCF DMOs and MC-QDPT wave functions. 
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Chapter 4. Diabatic Molecular Orbitals, Potential Energies, 

and Potential Energy Surface Couplings by the Fourfold Way 

for Photodissociation of Phenol 

Adapted with permission from Xuefei Xu, Ke R. Yang, and Donald G. Truhlar, J. Chem. 

Theory Comput. 9, 3612 (2013). 

4.1 Introduction 

Photodissociation of phenol to phenoxyl radical and hydrogen atom is a well-

studied photochemical reaction in which nonadiabatic transitions and conical 

intersections (CIs) of potential energy surfaces (PESs) play important roles. In 2002, 

Sobolewski and Domcke1 first revealed the importance of the dark 1πσ* state in the 

photoinduced O–H fission process. The PES of the higher-energy 1πσ* state (1A´´ in Cs 

symmetry) undergoes two symmetry-allowed crossings along the hydrogen detachment 

reaction coordinate of phenol, first with the bright 1ππ* state (2A´ in Cs symmetry), then 

with the electronic ground state 1ππ (1A´ in Cs symmetry). The two symmetry-allowed 

crossings of PESs for planar geometries are potions of conical intersection seams that 

also extend to nonplanar geometries,2 and they are expected to play prominent roles in 

photodissociation.  

In the past ten years, both theoretical and experimental methods have been used 

for in-depth investigation of the roles of these two CIs in the phenol photodissociation 
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dynamics and determining the vibrational modes most strongly coupled to the 1πσ* state, 

which is the only state connecting diabatically upon dissociation to ground-state 

phenoxyl plus a hydrogen atom. Although the 1πσ* state of phenol is not be populated 

directly, at high enough photoexcitation energy it can be accessed through the CI with the 

bright 1ππ* state. There is, however, controversy over the early time dynamics after 

phenol is excited to v = 0 level of the first 1ππ* state. Considering the high energy barrier 

separating the originally excited system from the first CI (1ππ*/1πσ*), one mechanism 

suggested is 1ππ*�  (1ππ)# internal conversion (IC) from the first excited state 1ππ* to the 

vibrationally excited (#) ground state (1ππ), with O-H vibrations as efficient acceptor 

modes, followed by predissociation along the ground-state PES as the dominant non-

radiative decay process.3 An alternative mechanism is H atom tunneling to the 1πσ* state 

through the barrier on the shoulder of the 1ππ*/1πσ* CI.1,4 Recent experimental studies 

of the dependence of the 1ππ* state lifetimes of bare phenol and several substituted 

phenols on the energy gaps between 1ππ* and 1πσ* state by Pino4c are the strongest 

supports for the H tunneling mechanism via a 1ππ*/1πσ* CI, because the 1ππ* state 

lifetime should be independent on the properties of 1πσ* state based on the 1ππ*�  (1ππ)# 

IC mechanism. The recent Faraday Discussion4e offers further evidence against the 

1ππ*�  (1ππ)# ground-state predissociation mechanism: the similar reaction dynamics of 

the isolated phenol molecule to that in liquid cyclohexane, i.e., long lifetime of the first 

excited state and slow appearance of phenoxyl radical (on a nanosecond timescale). 
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Because the solvent will cause fast (sub-nanosecond) vibrational energy relaxation, the 

late (nanosecond) appearance of phenoxyl radical cannot be explained by the ground-

state predissociation mechanism, and this indirectly supports the H tunneling dissociation 

mechanism. 

The mechanism of the early time dynamics through nonadiabatic 1ππ*/1πσ* 

coupling or 1ππ*�  (1ππ)# internal conversion will have a large effect on the later 

dynamics, including the final branching ratio of the products. The second CI (1πσ*/1ππ) 

in the later stage of the dynamics will also exert some influence on the branching ratios of 

the products. 

The coupling modes of CIs are another focus of dynamics studies of phenol 

dissociation.3-6 The two CIs (1ππ*/1πσ*, 1πσ*/1ππ) of the three states of interest along 

the H detachment coordinates under Cs symmetry are both symmetry-allowed 

intersections because the 1πσ* state is A´´ symmetry whereas the 1ππ* and 1ππ states are 

of A´ symmetry for planar phenol. Nonadiabatic transitions between the two states at the 

two CIs are therefore mediated in planar geometries by a´´ vibrational modes. Ashfold et 

al.3c,3d assigned the out-of-plane ring vibrations v16b (a´´) and v16a (a´´) as the dominant 

coupling modes for the 1ππ*/1πσ* CI and the 1πσ*/1ππ CI, respectively, by 

identification of product (phenoxyl radical) vibrational states. Vieuxmaire and Lan et 

al.4a,5 suggested the C–C–O–H torsion as the strongest coupling mode for both the two 

CIs based on their ab initio calculations of PESs along each of all ten normal modes 

coordinates of a´´ symmetry of phenol at the CIs. They argued4a that C–C–O–H torsion is 
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a disappearing mode for product phenoxyl radical that Ashfold et al. had ignored it in the 

analysis of the total kinetic energy release (TKER) spectrum. In a recent study Dixon et 

al.4d took into account the two-fold torsional degeneracy of phenol and reconsidered the 

coupling modes of these states at the CIs in light of the non-rigid molecular symmetry 

group G4 (which is isomorphous with C2v). The electronic symmetries of the three states 

(1ππ, 1ππ*, and 1πσ*) of interest are A1, B2 and B1 in the group G4. This symmetry 

argument led to the conclusion that only vibrational modes with a2 symmetry can enable 

coupling of the states at the 1ππ*/1πσ* CI, and b1 modes can enable coupling at the 

1πσ*/1ππ CI. Based on the measured TKER spectrum and 2D dynamics calculations, 

they assigned v16a (a2 in G4) as the dominant coupling mode for the 1ππ*/1πσ* CI. Such 

symmetry considerations also invalidated the hypothesis of v16a as the coupling mode of 

CI (1πσ*/1ππ) and C–C–O–H torsion (b1 in G4) as coupling mode of CI (1ππ*/1πσ*). 

Dixon et al. said that “Within G4, the b1 torsional mode has two components separated by 

an angle of 180° and a high potential barrier. In calculating the 1ππ * ′H 1πσ *  matrix 

element for torsional coupling, the phases of these two components are such that they 

exactly cancel.”4d At the same time they emphasized that the two components reinforce 

each other at the lower CI (1πσ*/1ππ). 

Wave packet studies of the phenol photodissociation process have been carried 

out,3f,4a,4d,5,6 usually using two-dimensional PESs that are functions of the RO−H 

reaction coordinate and a selected coupling coordinate. The conclusions of theoretical 
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dynamics studies of the nonadiabatic process are strongly dependent on the assumptions 

made about the global PESs. Therefore it is desirable to use full-dimensional PESs 

obtained from electronic structure calculations with less simplifications. 

In modeling an electronically nonadiabatic process where two or more electronic 

states are coupled via BO breakdown terms, one can choose either an adiabatic or a 

diabatic representation for the potential energy surfaces and their couplings.7 The well-

defined adiabatic representation can be obtained directly from variational or other 

conventional electronic structure calculations, which is convenient; however, adiabatic 

PESs have high-dimensional cuspidal ridges in ubiquitous8 conical intersection regions. 

Furthermore, in the adiabatic basis, the nonadiabatic couplings are off-diagonal matrix 

elements of the nuclear momentum vector (and its square) and are often rapidly varying 

and have singularities on conical intersection seams.9,10 The cuspidal ridges and 

singularities have high dimensionality and are not symmetry determined, and this makes 

analytical representations (fits) essentially impossible. The nonadiabatic couplings in the 

adiabatic representation also require special attention to the choice of coordinate system 

origin and to avoiding spurious long-range effects,11 and they require consistent 

treatment of momentum and momentum-squared couplings in regions where the 

couplings are large. The inconveniences (even failure for some process12) in using 

adiabatic bases make diabatic representations preferable for dynamics studies, and 

interest in diabatic states is increasing.13-29 A diabatic representation can be obtained by 

rotating the adiabatic electronic states to diabatic states in electronic state space via a 
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unitary transformation to make the nonadiabatic coupling negligibly small compared to 

the off-diagonal elements of the electronic Hamiltonian matrix (the diabatic couplings). 

Strictly speaking, the diabatic states based on this definition should be called 

quasidiabatic states because the strict diabatic states are electronic states with vanishing 

nonadiabatic vector coupling; however such strict diabatic states do not exist in general30 

because the curl condition31 for their existence cannot be satisfied. We are following the 

common convention of labeling quasidiabatic states as diabatic states; in particular a 

diabatic representation “is any electronic representation where the nuclear momentum 

matrix elements are less significant than the off-diagonal matrix elements of the 

electronic Hamiltonian or, preferably, insignificant compared to these.”34a A diabatic 

representation provides smooth PESs, and smooth, nonsingular, scalar couplings with the 

acceptable disadvantage of neglecting some portion of the coupling.10 It can be shown32 

that by transforming to a diabatic representation, even one that does not remove all of the 

removable nuclear momentum coupling,33 one can obtain results where the leading 

correction to the wave function at energies of interest for photochemistry is of order 

2/1−
M , where M is the ratio of an average nuclear mass to the electron mass (thus 

2/1−
M  < 0.024). 

Diabatic representations are not unique, and there are many methods to calculate 

diabatic states.7,12-35 In the present work we will chose the fourfold-way approach34,35 

which is based on the principle of configurational uniformity,36 to perform direct 

calculations of diabatic states for the three states (1ππ, 1ππ*, and 1πσ*) of interest for the 
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photolysis PESs of phenol and their couplings. The fourfold way is a general 

diabatization scheme based on configurational smoothness (configurational uniformity), 

and it is designed to require only information obtained from adiabatic wave functions 

without estimation of any other physical property; it takes advantage of the variational 

principle or perturbation theory for electronically adiabatic states to optimize the space 

spanned by the set of electronic wave functions under consideration, and it yields a 

unique (within a phase factor) diabatization for each nuclear geometry independent of 

any path in configuration space. The fourfold-way algorithm now is available both for 

diabatization of complete-active-space (CAS) self-consistent-field (CASSCF)37 wave 

functions and for more accurate diabatization of multi-configuration quasi-degenerate 

perturbation theory (MC-QDPT)38 wave functions, which include dynamical correlation. 

Including dynamical correlation is essential for quantitative or semiquantitative accuracy, 

and the original diabatization scheme for MC-QDPT diabatic states employed diabatic 

molecular orbitals (DMOs) based on the dynamically correlated wave function. 

Recently35 it was shown that MC-QDPT diabatization can be achieved with CASSCF 

DMOs, and in the present article we show that one can obtain MC-QDPT diabatic states 

with CASSCF DMOs even for phenol photodissociation, which is complex for the 

reasons discussed above and also because the extent of delocalization of various orbitals 

depends on geometry. 
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4.2 Computational details 

The ground state minimum of phenol has been optimized by the complete active 

space self-consistent-field (CASSCF) method using the aug-cc-pVTZ basis set.39 The 

active space includes 12 active electrons and 11 active orbitals consisting of three π, three 

π*, σCO, σOH, σ*CO, and σ*OH orbitals, and one lone pair orbital (pz) on oxygen as 

shown in Fig. 4.1 (phenol is placed in the xy plane); we label this calculation 

CAS(12,11). The optimized equilibrium geometry of phenol is a planar structure with Cs 

symmetry. The adiabatic PESs of the three states of interest (which are 1ππ, 1ππ*, and 

1πσ* in the vicinity of the equilibrium structure of phenol), have been calculated along 

the H detachment reaction coordinate, RO–H, and the C–C–O–H torsion coordinate by 

using the state-averaged CASSCF method with the same weights for each state, denoted 

as SA(3)-CAS(12,11) with the jul-cc-pVDZ40 basis set. The other geometric parameters 

in the calculations of cuts of PESs are fixed at their values at the equilibrium geometry.  

Taking the resulting SA(3)-CAS(12,11) wave functions as the reference, the MC-

QDPT method was used to include the dynamical correlations effects, denoted as SA(3)-

MCQDPT(12,11). A reasonable value 0.02 Eh
2 of the intruder-state-avoidance (ISA)41 

energy denominator shift has been used in all MC-QDPT calculations. The corresponding 

diabatic states and couplings were obtained by the fourfold way at the MC-QDPT level 

with CASSCF DMOs. The procedure of diabatization will be reviewed and details will be 

presented in the subsection 4.2.1. 
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Ground-state geometry optimizations of phenol and phenoxyl were performed 

using the GAMESS42 program package, and all other adiabatic and diabatic calculations 

were done using the HONDOPLUS-v5.243 program package. 

4.2.1 Fourfold-way diabatization procedure 

The diabatization scheme and theory of the fourfold way have been presented in 

detail in previous papers.34,35 Here, we only review the key concepts and present the 

application of the fourfold way to phenol photodissociation. 

4.2.1.1 Diabatic molecular orbitals (DMOs) 

To apply the configurational uniformity approach to obtain suitable diabatic 

states, the configuration state functions (CSFs) should be expressed in terms of smoothly 

varying molecular orbitals (MOs), which are called diabatic MOs (DMOs). The DMOs 

for the inactive and virtual spaces are taken to be the same as the canonical MOs (CMOs) 

of the CASSCF calculation, and those for the active space, denoted 

{ active ,2, 1,, Nju j L= } where Nactive is the number of active orbitals, are obtained by 

transforming the active CMOs by orbital rotations determined in a systematic way by a 

scheme called the fourfold way.  

The orbitals generated by the fourfold way satisfy the threefold density criterion 

and, when needed, the maximum overlap reference MOs (MORMO) criterion. The 

threefold density criterion is often insufficient to ensure that the DMOs change smoothly 

in the strong-interaction regions, especially when multiple nonbonding p orbitals are 
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involved. In such cases, which include phenol photodissociation, the MORMO criterion 

also has to be applied. In general the MORMO criterion involves λ reference MOs 

{ λττ  ,2, 1,,ref
L=u }, which are a subset of DMOs at a reference geometry, called the 

MORMO reference geometry ( ref
Q ). For phenol, we use λ = 1 (so we now drop the 

subscript τ), and in the present work the single reference MO is taken to be the oxygen py 

orbital of a phenoxyl radical that is essentially infinitely separated from H (in practice, 

the O−H distance is equal to 5 Å with the phenyl ring in the xy plane with the x axis along 

the C−O bond). The reference orbital )(ref
Qu  at any other geometry (Q) is defined as  

 ∑=
i

ii QQaQu )()()(ref ξ  (4.1) 

where )(Qiξ  is an atomic (contracted) basis function at the geometry Q, and 

)(Qai  is a coefficient that depends on Q . Because the DMOs are numbered to have 

maximum likeness to the active canonical MOs at the reference geometry, and the 

oxygen py orbital is most similar to the first active canonical orbital at the equilibrium 

structure of phenol (where the first active canonical orbital of phenol, by which we mean 

the lowest-energy active orbital, is a bonding combination of O py and the H 1s orbital), 

we use the reference oxygen py orbital as to determine the DMO with j = 1, that is, to 

determine )(1 Qu . This is accomplished by determining the )(Qa j  to maximize 

 
2

refRO )()()()(∑∑=
i j

jiji QQQaQaD ξξ , (4.2) 
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which is called the reference overlap (RO) term. The remaining DMOs, 

11 ,3, 2,, L=ju j , are then determined by maximizing (in the remaining space) the 

threefold density functional 

 TDONNO
3 DDDD TRN ααα ++= , (4.3) 

which involves a weighted sum of three functionals with weights Nα , Rα , and Tα . The 

functionals are a state-averaged natural orbital term ( NOD ), the sum of the squares of the 

orbital occupation numbers for all the states ( OND ), and a transition density term 

( TDD ). The meaning of the terms in the D3 functional and the importance of the RO 

term with respect to the D3 functional are explained in the original papers34 and are 

reviewed in the next paragraph. 

Equation 4.3 is called the threefold density criterion, and the use of eq 4.2 with eq 

4.3 is called the fourfold way.  The physical meaning of the terms in eqs 2 and 3 are as 

follows. Maximizing NOD  by itself would yield the state-averaged natural orbitals 

(SANOs), maximizing OND  by itself would maximize the sum of the squares of the 

occupation numbers of the molecular orbitals in the adiabatic states, maximizing TDD  

corresponds to minimizing the sum of the squares of the off-diagonal elements of the 

transition density matrix, and maximizing ROD  with a valence bond reference orbital 

would correspond to introducing some valence bond character into the diabatic states. 

The use of the first three of these functionals was motivated in part by the work of García 

et al.,44 who showed the quasidiabatic character of state-averaged natural orbitals 
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(SANOs) in selected cases, by the work of Atchity and Ruedenberg36a who used the fact 

diabatic orbitals can sometimes be obtained by maximizing the occupation number, and 

by our own work34a that showed that maximizing TDD  corresponds to recognizing that 

the diabatic MOs should provide a more economical expansion of the adiabatic states. 

Furthermore, the use of ROD  is based on the recognition that neglecting the nuclear 

momentum and kinetic energy coupling due the gradient and Laplacian acting on 

electronic basis functions that simply translate with nuclei provides a consistent scheme 

for obtaining physically reasonable nonadiabatic couplings at chemical energies.30,45-48 

However we found34 that maximization of any of these four terms by itself did not yield 

useful diabatic molecular orbitals in the general case, whereas using the linear 

combination of eq 4.3 (with parameters Nα , Rα , and Tα  of the order of magnitude 

unity) combined with the pre-determination of one or a few DMOs by eq 4.2 does very 

generally yield reasonable DMOs.  

We consider that the occupation number term ( OND ) is a refinement of the 

natural orbital term ( NOD ), so it is recommended that Rα be smaller than Nα . The 

transition density term ( TDD ) is generally less important than the other two terms, and 

for some cases, Tα  should be set as 0 to avoid unphysical contributions. Although the 

parameters Nα , Rα , and Tα  in eq 4.3, were introduced for flexibility, it was 

recommended that values of 2, 1, and 0.5 respectively provide a reasonable starting point 

for trials on new systems, and in practical applications we have found that these values 
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are usually adequate and need not be changed. (In particular, the three parameters have 

been set to the standard values34 of 2, 1, and 0.5 in the application to phenol.)  

Some additional comments on the ROD  term may be worthwhile at this point. 

Use of the threefold density criterion may be called49 an intrinsic procedure in that it 

finds the DMOs by analyzing the adiabatic wave functions (by way of the adiabatic 

density matrices that may be computed from the adiabatic wave functions) with a self-

contained procedure, whereas the ROD  term may be called extrinsic49 because (like the 

block diagonalization method of Pacher, Cederbaum. and Köppel,48 in which one begins 

with an "initial basis" that is known to behave diabatically) it presupposes that one has 

identified one or more valence-bond-like orbitals as DMOs having significant overlap 

with the occupied orbitals in the dominant configurations. Extrinsic methods are in our 

opinion less desirable because, rather than simply requiring application of a system-

independent automatic algorithm, they require system-dependent judgments about nearly 

diabatic orbitals that are appropriate for describing the diabatic configurations of interest; 

and therefore we always attempt to employ the minimum number of reference MOs. 

However, all three terms of D3 are functionals of the state-dependent one-electron density 

matrices and the one-electron transition density matrices, and we have shown that it is 

impossible to design a functional of these matrices alone that will yield acceptable DMOs 

in the general case,34a so it is not possible to completely exclude the need for ROD  in 

some cases. Fortunately we have found that one can usually obtain acceptable results 

with a very small number of reference orbitals, often just one or two. The most common 
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case encountered so far where one has to introduce reference orbitals is when one has two 

or more nonbonding orbitals on the same non-spectator center, such as found in 

photodissociations producing halogen atoms, OH radicals, or NH2 radicals. In such cases 

the reference orbital prevents non-smooth mixing of these nonbonding orbitals. (This 

problem arises because such a pair of orbitals, for some geometries, is special case of a 

pair of orbitals with nearly degenerate state-averaged occupation numbers.34a) The need 

for an extrinsic algorithm is perhaps not surprising since the treatment of intrinsically 

multiconfigurational systems or excited states usually requires some judgment, such as, 

for example, the choice of active space and the choice of states to be averaged over in 

CASSCF calculations. 

After the DMOs are determined by the fourfold way, we express all CSFs in 

terms of DMOs rather than canonical MOs, and then we define the diabatic prototype 

CSFs. 

4.2.1.2 Diabatic prototype CSFs 

In the fourfold way diabatization scheme we need to define one or more potential 

reference geometries to construct dominant CSF lists for the diabatic states of interest by 

calculating adiabatic states at these geometries. These geometries may be called 

prototype-selection geometries. The CSFs in the group Gk are prototypes of the diabatic 

state kφ . The group list Gk should remain the same for all nuclear geometries, however, 

the dominant CSFs in Gk are not necessarily always dominant for kφ , but at least one 
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CSF of Gk is dominant for kφ  in any nuclear geometry. A dominant CSF δχ  belonging 

to the group Gk must not be dominant for any other diabatic state )'(' kkk ≠φ  at any 

geometry. The potential reference geometries are usually chosen in weak-interaction 

regions where adiabatic states are, to a good approximation, the same as diabatic states. 

For planar phenol, due to the symmetries of the states, there is no interaction between the 

PESs of 1ππ* and 1πσ* or between the 1πσ* and 1ππ PESs, even in their crossing 

regions. Therefore, in the present work, we choose the ground-state equilibrium geometry 

of phenol in Cs symmetry and two geometries respectively in middle and asymptotic 

regions of H detachment of phenol with only different OH distances (RO−H = 1.3, 5.0 Å) 

compared to the equilibrium geometry (RO−H = 0.964 Å at CASSCF level) as prototype 

geometries to construct the consistent diabatic prototype CSF lists by combining the 

dominant CSFs of adiabatic states at all three prototype-selection geometries. The 

resulting diabatic prototype CSF lists are shown in Table 4.1. 

The U2 state obtained in the adiabatic-to-diabatic transformation requires some 

discussion. To understand this state, recall that a key desirable feature of our 

diabatization is that our diabatic states span in the same space as the selected adiabatic 

states. The third adiabatic state at large RO−H has an intersection with the fourth one at an 

energy above 6 eV. But this high-energy region is not important for understanding the 

mechanistic issues reviewed in the introduction. Thus rather than add a fourth state to the 

manifold studied, we simply let the U2 diabatic state be the union of the second diabatic 
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state at small RO−H with the new diabatic state appearing at high energy at large RO−H. 

This should have a negligible effect on the dynamics under consideration, but it does 

mean that the U2 diabatic state has a long diabatic prototype list consisting of the union 

of the state lists for two configurationally uniform states. It also means that the diabatic 

couplings involving U2 are not smooth at geometries corresponding to this intersection of 

the third and fourth adiabatic states, but again this is not important because at those 

geometries U2 is not important to the dynamics under consideration. This kind of 

behavior can be expected to be a rather universal phenomenon when one calculates 

global potential energy surfaces. In a typical case, the first adiabatic state would 

somewhere intersect the second, the second would somewhere intersect the third, and so 

forth up to the Nth adiabatic state that would somewhere intersect the (N + 1)st. Thus we 

would need (at least) N + 1 diabatic states to represent the first N adiabatic states. If the 

intersection of states N and N + 1 occurs in an energetically accessible and important 

dynamical region, we should add one more state to the manifold, pushing the problem 

higher up until it occurs at such a high energy that it is not important to have accurate 

surfaces at the last intersection. In the present case, the surfaces above 6 eV are not 

expected to be important for the mechanistic issues discussed in the introduction, so three 

states are enough. 
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4.2.1.3 Configurational uniformity 

We obtain N diabatic states Nkk L1}{ =φ  by orthogonal transformation of the N 

adiabatic states Nnn L1}{ =ψ  as follows: 

 ∑=
=

N

n
nknk T

1
ψφ , (4.4) 

where nkT  is an element of the orthogonal adiabatic/diabatic transformation matrix that is 

obtained by configurational uniformity. This involves projecting the adiabatic CSFs onto 

the prototype lists and transforming to states that maximize the dominance of the diabatic 

prototypes. This configurational uniformity criterion can be applied at any geometry, 

yielding diabatic states that span same function space as the adiabatic states and also 

yielding a nondiagonal scalar diabatic potential matrix U replacing the adiabatic 

potentials V and the vectors that couple them. 

In the present case for phenol, N = 3. The adiabatic states are expressed by CI 

expansions in terms of L orthonormal configuration state functions (CSFs) χα  as 

 ψn = cαnχα

α=1

L

∑ . (4.5) 

4.2.2 MC-QDPT diabatization with CASSCF DMOs 

Recently, a simplified scheme35 for MC-QDPT fourfold-way diabatization was 

proposed: first, use the fourfold way at the CASSCF level to obtain CASSCF DMOs, 

then use these CASSCF DMOs to express the MC-QDPT adiabatic states: 



 

 92 

 ∑+∑=
+==

L

L
n

L

nn cc
1

00

1

00MQ

CAS

CAS

α
αα

α
αα χχψ  (4.6) 

where χα
0  is a CSF expressed in terms of CASSCF DMOs for the active space and 

CMOs for the inactive and virtual spaces, CASL  is the number of CSFs in the CAS 

configuration space, and L is the total number of CSFs. For the present application, the 

value of CASL  in eq 4.6 is 60984 for all geometries of phenol. With the predefined 

dominant CSF lists and the coefficients in eq 4.6, we calculate the adiabatic/diabatic 

transformation matrix and do the diabatization of MC-QDPT adiabatic states. Compared 

to the original scheme of MC-QDPT diabatization, which only uses CASSCF DMOs as 

initial MOs in the MC-QDPT calculations and needs to determine the final DMOs at the 

MC-QDPT level, this new scheme simplifies the treatment without compromising the 

quality of the diabatic states. 

4.3 Results and discussion 

The calculated vertical excitation energies of the 1ππ* and 1πσ* states are shown 

and compared to previous theoretical4d,5 and experimental results50,51 in Table 4.2. This 

table shows that SA(3)-CAS(12/11) calculations overestimate the vertical excitation 

energy of the 1ππ* state. The vertical excitation energy (4.70 eV) of the 1ππ* state 

obtained by SA(3)-MCQDPT(12,11)/jul-cc-pVDZ in the present study is comparable to 

the other high-level theoretical results that include both dynamical and static correlations, 

and it is only 0.12 eV higher than the experimental highest peak value (4.58 eV) of the 
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spectrum of the 1ππ* state in hexane.50 The present MC-QDPT calculations significantly 

overestimate the vertical excitation energy (5.86 eV) of the 1πσ* state compared to the 

experimental data51 (5.12 eV), but the result is comparable to the other high-level 

theoretical results (5.64−5.76 eV) with larger basis sets. One advantage of working in the 

diabatic representation is that it would be much easier to make an empirical correction for 

such systematic errors when fitting analytical potentials for dynamics when one is 

working in a diabatic representation than when one is working in the adiabatic one. 

Table 4.2 also shows the equilibrium bond dissociation energy of the O–H bond 

of phenol and the vertical excitation energies of the D1 and D2 doublet excited states of 

phenoxyl radical relative to its ground state D0, which is also a doublet. The ground state 

D0 has a singly occupied π orbital delocalized on both the phenyl ring and the pz π orbital 

of O. The first excited state D1 is an excitation of that orbital to a py σ orbital on O; and 

the second excited state D2 is a single-electron excitation of a π orbital of the ring (the 

highest doubly occupied orbital in the ground state) to the singly occupied orbital of the 

ground state. The MC-QDPT values of the bond dissociation energy of phenol and 

excitation energies of phenoxyl are comparable to the experimental values.52-57 A larger 

basis set would be expected to improve the present SA(3)-MCQDPT(12,11) results; 

however, for the purpose of demonstrating the ability to make a successful diabatic 

transformation, semiquantitative accuracy is sufficient, and we will continue to use the 

jul-cc-pVDZ basis set in the calculations of PESs. 
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4.3.1 Smooth diabatic MOs (DMOs) 

For any geometry, we number the active canonical MOs (CMOs) in order of 

increasing energy. We find that orbitals 5, 6, 8, 9, 10, and 11 are smooth, but orbitals 1, 2, 

3, 4, and 7 are not suitable for diabatization based on configurational smoothness, 

because they can completely change their character as functions of geometry. As shown 

in Fig. 4.2, the canonical MOs 1 and 2 have mixed oxygen px and py character at RO−H = 

1.04 Å, and when RO−H ≥ 1.32 Å, the orders of orbitals 1–4 change. Figure 4.3 shows the 

interconversion of oxygen py and pz CMOs at RO−H = 1.32 Å along the C-C-O-H torsion 

angle. These mixings of px and py, or pz and py orbitals of oxygen as nuclear coordinates 

are changed are also observed for DMOs obtained by applying only the threefold density 

criterion. This is why we used the full fourfold way with the py orbital of oxygen as a 

MORMO reference orbital. The DMOs at various geometries obtained by the fourfold 

way are shown in Figs. 4.4 and 4.5. The DMOs are originally numbered to approximately 

match the ordering of the CMOs at the equilibrium geometry of phenol.  Then, at any 

other geometry, they are numbered so that they are smooth continuations of the orbitals at 

the equilibrium geometry; this would not be possible for the CMOs because they do not 

change smoothly, but the DMOs remain smooth with little deformation along continuous 

nuclear-coordinate paths. 

4.3.2 Potentials and couplings along the O–H stretching and C–C–O–H torsion 

We find, for the geometries considered along O-H stretching and C-C-O-H 

torsion coordinates in this paper, that the energy gap between U1 and U2 is always at 
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least 1.55 eV, and |U12|2/|U1 – U2| is always less than 0.03 eV. Therefore, except for the 

reaction path from the equilibrium geometry of phenol to its prefulvenic structure to be 

discussed in section 4.3.5, the U12 diabatic coupling is not dynamically important, and in 

the rest of this section we do not discuss it, but rather we focus on the more important 

U13 and U23 diabatic couplings and the diagonal diabatic potentials. A diabatic coupling 

is a signed quantity, but the sign is not unique. It depends on the arbitrary phase factors of 

diabatic states, and it is not permutationally invariant. Although the signed diabatic 

coupling is not permutationally invariant, the absolute square of the diabatic coupling is 

permutationally invariant. Hence, we calculate the squared magnitude of diabatic 

couplings ( 2
' )( nnU ) in the present work, and we can assign consistent signs to the 

couplings in future semiclassical dynamics studies by a calculation of the signs at one 

geometry (to establish a consistent set of phase relations) plus continuity along a 

trajectory. 

4.3.2.1 Potentials and couplings along the O–H stretching coordinate 

The MC-QDPT adiabatic potentials (V1, V2, and V3) of the three lowest states 

along the O–H stretching coordinate, RO–H, are shown in Fig. 4.6a. The adiabatic 

potentials V1, V2, and V3 are numbered in order of increasing energy at any geometry. In 

the vicinity of the equilibrium structure of the ground state, these states have the 

characters 1ππ, 1ππ*, and 1πσ*, respectively. The other geometric parameters in the 

calculations of cuts of PESs are fixed at their ground-state values as obtained at the 
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CASSCF level. The zero of energy is the ground-state MC-QDPT energy at RO–H = 

0.964 Å. The corresponding MC-QDPT diabatic potentials (U1, U2, and U3) and the 

squares of diabatic couplings ((U13)2 and (U23)2) as obtained with the smooth CASSCF 

DMOs based on the fourfold way scheme are shown in Figs. 4.6b and 4.6c. 

We observe two intersections of the adiabatic potentials along the O–H stretching 

coordinate in Fig. 4.6a and the corresponding two crossings of diabatic potentials in Fig. 

4.6b. Analyzing the coefficients of 11 diabatic prototypes (dominant CSFs) in the three 

states along the O–H stretching coordinate shown in Fig. 4.7 shows that the first crossing 

(CI1) at RO–H ≈ 1.32 Å is the crossing of the second diabatic state U2 (1ππ* with 

dominant configurations 1
2χ  4

2χ ) and the third diabatic state U3 (1πσ* with dominant 

configuration 1
3χ ). The second crossing (CI2) occurs at RO–H ≈ 2.26 Å; this is the 

crossing of the third diabatic state U3 (1πσ*, which corresponds at long RO–H distance to 

the doublet state of phenoxyl with a singly occupied π orbital and an H atom, with the 

most dominant configuration 1
3χ ) and the first diabatic state U1 (1ππ corresponds at long 

RO–H distance to the doublet state of phenoxyl with a singly occupied σ orbital and an H 

atom, with the most dominant configuration being 2
1χ ).  

Because only the RO–H distance is changed from the planar equilibrium geometry, 

the system retains Cs symmetry along the O–H stretching coordinate. The 1ππ and 1ππ* 

states have A´ symmetry, which differs from the A´´ symmetry of the 1πσ* state; 
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therefore the diabatic couplings U13 along the OH stretching coordinate and the diabatic 

couplings U23 for RO–H < 1.48 Å are zero as shown in Fig. 4.6c. However, as shown in 

Fig. 4.7b and as has been discussed in the final paragraph of section 4.2.1.2, when RO–H 

≥ 1.48 Å, the dominant configurations of diabatic state U2 change to 5
2χ  7

2χ  due to a 

higher-energy crossing of potentials (this higher energy crossing is not particularly 

interesting for the photodissociation considered here, but we note that the success of the 

diabatization even in the presence of this higher-energy crossing is encouraging), so that 

in this long RO–H region the U2 state is a high-energy 1πσ* state (denoted as 2πσ* in Fig. 

4.6b) instead of the 1ππ* state. Thus, nonzero coupling of U23 is observed for RO–H ≥ 

1.48 Å as a result of U2 (2πσ*) and U3 (1πσ* state in Fig. 6b) both being of the same A´´ 

symmetry. This non-zero coupling U23 is small as compared to the energy gap between 

the two states, so that along O–H stretching coordinate the adiabatic and diabatic 

potentials of the three states always agree well with each other. 

4.3.2.2 Potentials and couplings along the O–H stretching coordinate at various C–

C–O–H torsion angles 

The MC-QDPT adiabatic (V1, V2 and V3) and diabatic (U1, U2 and U3) potentials 

and the squares of diabatic couplings ((U13)2 and (U23)2) of the three low-energy states 

along the O–H stretching coordinates RO–H at various C–C–O–H torsion angles (C–C–

O–H = 30, 50, 70, 90°) are shown in Fig. 4.8. At these geometries, except for those with 

C–C–O–H = 90°, the phenol is asymmetric, and all states have the same A symmetry. 
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The crossings of adiabatic potential curves (V3 and V2 at short RO–H distances, and V1 

and V2 at long RO–H distances) at planar structures (Fig. 4.6a) become avoided crossings 

at these C–C–O–H torsion angles. At C–C–O–H = 90°, the phenol has Cs symmetry 

again, but the symmetry plane is different from that of planar phenol. Now the 1ππ* is 

A´´ symmetry, and the 1πσ* is A´ symmetry; thus they again have different symmetries, 

just as they do for planar geometries. Consequently, a symmetry-allowed crossing (CI1) 

of V3 and V2 is observed in Fig. 4.8d for C–C–O–H = 90°. However, the second crossing 

at long RO–H distance becomes an avoided crossing even for C–C–O–H = 90° because 

the 1πσ* state has the same A´ symmetry as one of the dominant configurations ( 1
1χ ) of 

the 1ππ state. 

In contrast to the sudden changes of adiabatic potentials in the two avoided-

crossing (or crossing) regions, the diabatic potentials always change smoothly, and they 

cross each other without complications. For C–C–O–H = 30−70°, the crossing of U2 and 

U3 occurs before the avoided crossing of V2 and V3 as shown in Figs. 4.8a-4.8c. In the 

regions where diabatic potentials cross, large diabatic couplings are observed, except for 

the first crossing at C–C–O–H = 90° because of the symmetry.  
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4.3.2.3 Potentials and couplings along the C–C–O–H torsion angles at two conical 

intersections 

The two crossings of interest for planar geometries, CI1 (1ππ*/1πσ*) and CI2 

(1ππ/1πσ*), occur at RO–H ≈ 1.32 and 2.26 Å respectively (Fig. 4.6) based on the present 

MC-QDPT calculations. At RO–H = 1.32 and 2.26 Å, the MC-QDPT adiabatic (V1, V2, 

and V3) and diabatic (U1, U2, and U3) potentials and the squares of most relevant diabatic 

couplings for each case [(U23)2 for CI1 and (U13)2 for CI2] are shown as functions of C–

C–O–H torsion coordinates (C–C–O–H angles) in Fig. 4.9. The C–C–O–H torsion lifts 

both the degeneracy of the 1ππ* and 1πσ* states and the degeneracy of the 1ππ and 1πσ* 

states. The figure shows that the strongest repulsion of adiabatic potentials V2 and V3 at 

RO–H = 1.32 Å happens at C–C–O–H = 20−30° where U23 has its largest absolute value, 

which is 0.17 eV. When the C–C–O–H torsion reaches 90°, V2 and V3 become nearly 

degenerate again, but at a higher energy. The repulsion of adiabatic potentials V1 and V2 

at RO–H = 2.26 Å increases continuously along the C–C–O–H torsion coordinate, and the 

diabatic coupling U13 has its largest absolute value, 0.12 eV, at C–C–O–H = 60°, but the 

absolute value of U13 is reduced to 0.005 eV at C–C–O–H = 90°. This small U13 

coupling at C–C–O–H = 90° can be explained by symmetry, i.e., the most dominant 

configuration 2
1χ  of U1 at RO–H = 2.26 Å has different symmetry (A´´) than the U3 state 

(A´). 
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4.3.3 1ππππππππ*/1ππππσσσσ*(U2 = U3) and 1ππππππππ/1ππππσσσσ*(U1 = U3) seams as functions of RO–H 

distance and the C−−−−C−−−−O−−−−H angle 

The 1ππ*/1πσ* diabatic crossing seam is where U2 = U3, and the 1ππ/1πσ* 

diabatic crossing seam is where U1 = U3. The MC-QDPT diabatic crossing seams are 

plotted in Fig. 4.10 as functions of RO-H distance and C−C−O−H angle, along with the 

corresponding adiabatic potentials and their projections in the coordinate plane defined 

by the O-H distance and the C−C−O−H angle. The diabatic potentials of the 1ππ* (U2) 

and 1πσ* (U3) states intersect at short O–H distances of RO–H = 1.21−1.33 Å for various 

C−C−O−H angles, and the diabatic potentials of 1ππ (U1) and 1πσ* (U3) intersect at long 

O–H distances of 1.65−2.26 Å. The shortening of this distance as the torsion angle 

increases could also be seen in Fig. 4.8. Based on the present MC-QDPT calculations, the 

diabatic 1ππ*/1πσ* seam is in the energy range of 5.7−6.5 eV relative to the ground-state 

minimum energy, and an energy of ~ 1 eV has to be overcome for the H tunneling 

mechanism of the photolysis of phenol.  

4.3.4 Potentials and couplings along the vibrational modes v16a and v16b at two 

conical intersections  

MC-QDPT adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) potentials at 

the two conical intersections (CI1 and CI2) and the squares of the most relevant diabatic 

couplings [(U23)2 for CI1 and (U13)2 for CI2] are shown in Figs. 4.11 and 4.12 along 

Cartesian normal-mode displacements of the v16a and v16b modes. As discussed in the 
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introduction, these two modes – along with the C−C−O−H torsion that we have already 

discussed – have been considered to be the most likely candidates for dominant coupling 

modes for the two crossings. Modes 16a and 16b are out-of-plane ring distortions, and 

their normalized Cartesian displacements were calculated using the M06-L density 

functionalError! Bookmark not defined. with the aug-cc-pVTZ basis set and are shown 

respectively in Figs. 4.11a and 4.12a.  

The smooth diabatic potentials and couplings that we obtained along the two out-

of-plane phenyl ring vibrational modes further demonstrate the suitability of the fourfold 

way for generating global potential energy surfaces and couplings for a complex reaction. 

Both of the two modes lift the degeneracy of V2 and V3 at the first CI1 (1ππ*/1πσ*), and 

the U23 couplings along the atomic displacement coordinates of the two out-of-plane 

distortion modes are significantly different from those along the C-C-O-H torsion angles. 

For example, at CI1, the calculated values of |U23|2/|U2 – U3| along the v16a mode can be 

around three times larger than the |U23|2/|U2 – U3| values along the v16b mode, and over 

300 times larger than those along C−C−O−H torsion. Along the ring distortion modes, we 

see both larger |U23| and smaller diabatic energy gaps. Although v16a and v16b have 

comparable U23 couplings, the G4 symmetry analysis of Dixon et al.4d shows that only a2 

modes can couple 1ππ* and 1πσ* states; thus we assign the v16a mode (which is a2 in G4) 

rather than v16b (which is b1 in G4) as the dominant coupling mode for CI1 (1ππ*/1πσ*). 
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As shown in Figs. 4.9, 4.11, and 4.12, neither v16a nor v16b shows U13 couplings 

that are larger than those along the C−C−O−H torsion at the CI2 (1πσ*/1ππ) intersection. 

(Figure 4.8 shows larger U13 couplings at some other geometries, but it is most relevant 

for the photochemical mechanism to focus on the regions of strong interaction of the 

potential energy surfaces, as we do in Figs. 4.9, 4.11, and 4.12). The v16b mode only 

barely lifts the degeneracy of V1 and V2, and the magnitudes of the U13 couplings along 

the v16b mode are smaller than 0.03 eV. The calculated U13 couplings along v16a mode 

are larger than those for v16b but comparable with those obtained along C−C−O−H 

torsion. Again, considering the implications of the G4 symmetry (see the introduction), 

we assign the C-C-O-H torsion (b1 in G4) as the dominant coupling mode for CI2 

(1πσ*/1ππ). 

We have seen in Figs. 4.9, 4.11, and 4.12 that the relevant 1–3 couplings for CI2 

are far less than the 2–3 couplings for CI1 along each of the three vibrational modes that 

we investigated. A smaller diabatic coupling implies more diabatic behavior (whereas a 

larger diabatic coupling implies more widely separated adiabats and hence more adiabatic 

behavior). The smallness of the calculated diabatic coupling at CI2 therefore provides a 

possible explanation of the experimental observation that ground-state phenoxyl radical is 

the dominant product in the UV photolysis of phenol at all photolysis wavelengths.4e 

That is, the system approaches CI2 on U3 (or equivalently on V2) and traverses this 
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region mainly diabatically, which leads to dissociation on U3, which corresponds at large 

O-H distance to V1. 

4.3.5 Potentials and Couplings along reaction path from equilibrium geometry of 

phenol to prefulvenic form of phenol 

A nonadiabatic process leading to a prefulvenic form of phenol though a 

prefulvenic conical intersection (of character 1ππ/1ππ*, which is the U1/U2 in the 

notational convention of the present paper) may contribute to the photolysis of phenol.5 

Here we show that our diabatization method remains valid even for the significant 

nonplanarity of the ring along a high-energy reaction path leading to the prefulvenic 

structure. To examine this reaction pathway, we first optimized the prefulvenic structure 

on the 1ππ* surface of phenol using the same method as in the Ref. 5 but a different basis 

set (jul-cc-pVDZ) and a larger active space, in particular a CAS(12,9) active space that 

includes 12 active electrons and nine active orbitals as follows: three σ bonding orbitals 

of C–C bonds in the ring, one σ bonding orbital and one σ* antibonding orbital of the 

newly formed C–C bond, one π bonding orbital and one π* antibonding orbital, one lone 

pair orbital of the three sp2 hybridized carbon atoms, and one lone pair orbital of the 

carbon atom bonded to the oxygen atom. MC-QDPT adiabatic (V1, V2, and V3) and 

diabatic (U1, U2, and U3) potentials along the reaction path connecting equilibrium 

geometry of phenol with its prefulvenic structure and the squares of the most relevant 

diabatic couplings [(U12)2 and (U13)2] are calculated and shown in Fig. 4.13, for which 
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eight intermediate geometries between the equilibrium and prefulvenic structures of 

phenol are obtained by linear interpolation (in other words, it is a linear synchronous 

transit path58). The active space used in the potential calculations along this reaction path 

is same as that used for the other reaction paths, i.e., it includes 12 active electrons and 11 

active orbitals. A crossing of U1 and U2 states is observed in Fig. 4.13, and it is 

associated with an avoided crossing on the shoulder of a prefulvenic conical intersection 

of the two lower-energy states. 

The actual paths followed in experiments at typical photolysis energies would be 

lower-energy paths than the one shown in Fig. 4.13. Since Fig. 4.13 shows that the 

present diabatization scheme remains valid even for out-of-plane ring distortions large 

enough to raise the energy more than 6 eV, we expect that it is more than adequate to 

represent such lower-energy paths. 

The reader should keep in mind that if a diabatization scheme is used to create a 

full potential energy surface, one must re-examine the adequacy of the methods for each 

new region of space encountered; this is not an issue specific to present method, but 

rather it affects all methods. For example, one might find regions of space where the 

active space is not adequate to yield accurate adiabatic surfaces for the states of interest, 

and the active space would need to be increased even for an adiabatic calculation. In 

addition, if a diabatization is to be performed, it is possible that some regions of space 

will require one to expand or delimit the diabatic prototype list. It is very encouraging 

that in the study reported here we were able to use a single practical choice of active 
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space and single manageable list of diabatic prototypes to map out adiabatic potentials, 

diabatic potentials, and diabatic couplings over the whole combined ranges of the O−H 

dissociation coordinate and the C−C−O−H torsion and over significant ranges (> 6 eV) of 

out-of-plane ring distortions that we examined. 

4.4 Concluding remarks 

This article reports the application of our recently simplified algorithm for 

diabatization to a very demanding case, namely the photodissociation of phenol. This 

case is demanding because the extent of conjugation of the oxygen atom p orbitals to the 

ring is a sensitive function of the O−H bond dissociation coordinate, the C−C−O−H 

torsion coordinate, and the v16a and v16b out-of-plane vibrations of the phenyl group, all 

of which are studied and successfully treated.  

The MC-QDPT adiabatic potentials of the three low-energy states (which are 1ππ, 

1ππ*, and 1πσ* for the most relevant geometries) of phenol are calculated along the O–H 

stretching coordinate, the C–C–O–H torsion coordinate, and the v16a and v16b distortion 

modes with three state-averaged CASSCF wave functions as reference states. Smooth 

CASSCF diabatic MOs are obtained by the fourfold way and are successfully used to 

perform direct MC-QDPT diabatization calculations for the three states and their diabatic 

couplings based on configurational uniformity along the various nuclear-motion 

coordinates for the nonadiabatic photodissociation reaction of phenol to phenoxyl radical 

and hydrogen atom. In the present context, "direct MC-QDPT diabatization" means that 

the diabatic potentials can be computed from MC-QDPT calculations at any geometry 
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independently of other geometries (i.e., without having to follow a path to that geometry, 

as is required in most diabatization algorithms). The seams of 1ππ*/1πσ* and 1ππ/1πσ* 

diabatic intersections are plotted as functions of O–H distance and C–C–O–H torsion 

angles. 

In order to assign the dominant coupling modes at the two conical intersections 

(1ππ*/1πσ* and 1ππ/1πσ*), except for along C–C–O–H torsion, the adiabatic, and 

diabatic potentials and the diabatic couplings of the three low-energy states have been 

calculated along Cartesian normal-mode displacements of the two vibrational modes v16a 

and v16b at the two conical intersections. Based on the calculated couplings and the G4 

symmetry analysis, we assign v16a and C–C–O–H torsion as the dominant coupling 

modes for the 1ππ*/1πσ* and for 1ππ/1πσ* intersections, respectively. 

The fourfold way diabatization method is confirmed to be valid even along a 

significantly distorted reaction path from the planar equilibrium geometry of phenol to its 

prefulvenic form. 

The present work, using the photolysis of phenol as a test case, shows that MC-

QDPT diabatization based on CASSCF DMOs can provide a good starting point for 

multi-dimensional dynamics studies of complex processes. We anticipate that the 

promising results in this paper will be the beginning of a new line of research for 

studying photochemical dynamics. 
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Table 4.1. Definitions of the configuration state functions occurring in each of the three 

prototype lists, where each configuration state function is defined by the occupancies of 

the eleven DMOs, each of which is a linear combination of the eleven active canonical 

MOs. 

Group G1, prototype CSFs for diabatic state 1φ  

10000122222:

00000222222:

2

1

1

1

χ

χ
 

Group G2, prototype CSFs for diabatic state 2φ  

10100222211:

11000222220:

10000222212:

01000222122:

01100222121:

00100222212:

01000222221:

7

2

6

2

5

2

4

2

3

2

2

2

1

2

χ

χ

χ

χ

χ

χ

χ

 

Group G3, prototype CSFs for diabatic state 3φ  

20000122221:

10000222221:

2

3

1

3

χ

χ
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Table 4.2. The vertical excitation energies (eV) of the 1ππ* and 1πσ* states of phenol and of the D1 and D2 states for phenoxyl radical 

and equilibrium bond dissociation energy (eV) of ground-state phenol. 

  phenol phenoxyl radical 

Method 1ππ*-1ππ 1πσ*-1ππ De D1 D2 

SA(3)-CAS(12,11)/jul-cc-pVDZa 5.04 5.56 2.54 1.79 2.63 

SA(3)-MCQDPT(12,11)/jul-cc-pVDZa 4.70 5.86 4.37 0.94 2.28 

MRCI/aug-cc-pVDZb 4.75 5.76 

CASPT2(10/10)/aug(O)-AVTZc 4.52 5.64 4.31 0.65 2.43 

EOM-CCSD/aug(O)-AVTZc 4.97 5.67 

Exp. 4.58d 5.12d 4.18e/4.08e 0.7f/0.99g 2.08f/2.03g 

aThe equilibrium geometry of phenol is optimized at CAS(12,11)/aug-cc-pVTZ level for the present study. The phenoxyl 
geometry is optimized at the CAS(11,10)/aug-cc-pVTZ level.  

bRef. 5 
cRef. 4d 
dRef. 50 and 51 
eThe experimental De is obtained from the experimental D0 of Ref. 52 (first value given) or the experimental D0 of Ref. 51 

(second value given), in each case converted to De by using the calculated zero point energies for phenol and phenoxyl as 
obtained from M06-L/aug-cc-pVTZ vibrational frequencies from the present work scaled with a scaling factor of 0.980 from ref. 
55. The M06-L exchange-correlation functional is from ref. 56, and the density functional calculations were carried out with ref. 
57. 

fRef. 53 
gRef. 54 
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Figure 4.1. The eleven canonical active orbitals for RO−H = Re = 0.964 Å and C−C−O−H = 0°. 
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Figure 4.2. Canonical MOs (1, 2, 3, 4, and 7) in active space at C−C−O−H = 0°. 
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Figure 4.3. Canonical MOs (1, 2, 3, 4, and 7) in active space at RO−H = 1.32 Å. 
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Figure 4.4. Diabatic MOs (1, 2, 3, 4, and 7) in active space at C−C−O−H = 0°. 
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Figure 4.5. Diabatic MOs (1, 2, 3, 4, and 7) in active space at RO−H = 1.32 Å. 
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a 

b 

c 

Figure 4.6. Adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) potentials and square 

of diabatic couplings ((U13)2 and (U23)2) along RO−H distance, the other geometric 

parameters are fixed at their values at the ground-state equilibrium geometry. 
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a 

b 

c 

Figure 4.7. Plots of coefficients of 11 diabatic prototypes along RO−H distance, the other 

geometric parameters are fixed at their values at the ground-state equilibrium geometry. 
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Figure 4.8. Adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) potentials and squares of the diabatic couplings ((U13)2 and 

(U23)2) along the RO−H coordinate at various C−C−O−H angles (a: 30°, b: 50°, c: 70°, d: 90°), with the other geometric parameters 

fixed at their values at the ground-state equilibrium geometry.
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a 

b 

Figure 4.9. Adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) potentials along the 

C−C−O−H angle at two conical intersections [the CI at RO−H = 1.32 Å (a) and the CI at 

RO−H = 2.26 Å (b)] and the corresponding squares of the most relevant diabatic couplings 

in each case [(U23)2 at the first CI (a) and (U13)2 at the second CI (b)]; the other 

geometric parameters are fixed at their values for the ground-state equilibrium geometry. 
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a 

b 

Figure 4.10. Diabatic crossing seams: the 1ππ*/1πσ* (where U2 = U3) and 1ππ/1πσ* 

(where U1 = U3) seams as functions of RO−H distance and C−C−O−H angle. 
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a 

b 

c 

Figure 4.11. The atomic displacements of vibrational mode ν16a (a), and adiabatic (V1, 

V2, and V3) and diabatic (U1, U2, and U3) potentials along scaled Cartesian normal-mode 

displacements (Å) of ν16a at two CIs [RO−H = 1.32 Å (b) and 2.26 Å (c)] and the 

corresponding squares of the most relevant diabatic couplings in each case [(U23)2 at the 

first CI (b) and (U13)2 at the second CI (c)]. 

ν16a 
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a 

b 

c 

Figure 4.12. The atomic displacements of vibrational mode ν16b (a), and adiabatic (V1, 

V2, and V3) and diabatic (U1, U2, and U3) potentials along scaled Cartesian normal-mode 

displacements (Å) of ν16b at two CIs (RO−H =1.32 Å (b) and 2.26 Å (c)) and the 

corresponding squares of the most relevant diabatic couplings in each case [(U23)2 at the 

first CI (b) and (U13)2 at the second CI (c)].  

ν16b 
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Figure 4.13. Adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) potentials and 

squares of diabatic couplings (U12)2 and (U13)2 along a linearly interpolated reaction 

coordinate from the equilibrium geometry of phenol (reaction coordinate = 0) to its 

prefulvenic form (reaction coordinate = 1). The curves are B-spline fits to ten points 

along the linear synchronous reaction path. 
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Chapter 5. Anchor Points Reactive Potential for Bond-

Breaking Reactions 

Adapted with permission from Ke R. Yang, Xuefei Xu, and Donald G. Truhlar, J. Chem. 

Theory Comput. 10, 924 (2014). 

5.1 Introduction 

Potential energy surfaces (PESs) and their associated force fields play critical 

roles in chemical reactions and molecular interactions; the construction of a PES is the 

first step in computing the dynamics1-4 or optimizing a geometry. The PES may be 

implicit, as in direct dynamics, or explicit, when an analytical PES is available. 

Molecular mechanics (MM), which denotes an analytical potential expressed in internal 

coordinates, is perhaps the simplest way to construct a PES, but conventional MM omits 

cross terms and is valid only near an equilibrium structure. Nevertheless MM finds a 

myriad of uses and is widely used in the study of protein folding, drug docking, and 

materials simulations. Many MM force fields, for instance CHARMM,5-8 AMBER,9-13 

GROMOS,14 MM3,15-17 OPLS,18-20 UFF,21 MMFF94,22-25 GAFF,26 and TraPPE27,28 

have been developed for the study of biopolymers, other polymers, and small organic 

molecules. The key advantage of popular MM force fields is that they involve 

transferable parameters that need not be redetermined for each new molecule studied. 

Recently, MM-like force fields for specific molecules based on quantum mechanical 

electronic structure calculations of energies and Hessians at an equilibrium structure have 
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been developed for more accurate simulations.29,30 However, one of the limitations of 

even such molecule-specific internal-coordinate force fields is their inability to describe 

bond-breaking processes.  

Recent development in potential energy surfaces fitting such as using global 

permutationally-invariant polynomials31,32 and the interpolated moving least square 

(IMSL) method,33-35 can describe bond breaking processes and have been used 

successfully to generate global potential energy surfaces based on electronic structure 

calculations, but they require many such calculations. In particular, the number of 

electronic calculations required for PES fitting grows rapidly with the dimensional of the 

system, and therefore most fitted PESs are limited to systems with five or less atoms. For 

a system with N atoms, the number of internal degrees of freedom is F = 3N – 6, and the 

number of data points grow as mF, where m is the number of points needed to span a 

given degree of freedom. For a molecule with only ten atoms, using only four points in 

each dimension for the fit still requires 424 ≅ 1014 data points.  

Conventional MM can be extended to include bond breaking by substituting a 

Morse curve or similar one-dimensional potential energy curve for the usual bond 

stretching term, but this does not allow for the change in geometrical parameters and 

force constants in other modes as the breaking bond is extended, and so it can be very 

inaccurate. Some work has been carried out to extend MM to bond breaking processes 

without assuming such separability of the bond breaking coordinate, but still allowing for 

the possibility of using general or specific-range parameters, as in the reactive empirical 
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bond order method,36,37 ReaXFF,38,39 or the valence bond order (VBO) method,40 but 

such methods have less accuracy for global or semiglobal PESs than conventional MM 

has near equilibrium structures. It would be desirable to combine analytical potentials in 

internal coordinates for degrees of freedoms that involve small distortions from 

equilibrium structures with model potentials based on general functional forms to fit 

degrees of freedom involved in or closely coupled to bond breaking. Such an approach 

would be analogous to the combined quantum mechanics/molecular mechanics (QM/MM) 

method where MM is used for degrees of freedom of spectator atoms, and QM is used for 

degrees of freedom of active ones. Unlike QM/MM, which has been used widely for 

incorporating MM into electronic structure calculations of PESs of large systems such as 

enzymes and catalysis,41-47 very few studies have been performed that incorporate MM-

like force fields into the fitting of high-dimensional PESs.48 In this article, we present a 

method called anchor points reactive potential (APRP) that combines fitting of quantum 

mechanical potential energy surfaces for selected degrees of freedom with molecule-

specific MM-like force fields for other degrees of freedom to obtain a high-dimensional 

PES to treat bond-breaking processes.  

5.2 Methodology 

5.2.1 Anchor Points Reactive Potential (APRP) Method 

Conventional molecular mechanics force field cannot describe chemical reactions 

in which bond breaking processes are involved. In our proposed anchor points reactive 
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potential method, the contributions to a potential energy surfaces (PES) are divided 

according to their dependence on three pre-defined groups of internal coordinates: 

1. Reaction coordinates: q 

2. Secondary coordinates: s 

3. Tertiary coordinates: Q 

The potential energy is written as  

 ( ) ( )qQqsq ||)( ]3[]2[]1[
VVVV ++= , (5.1) 

where f(x|y) denotes a function with a dependence on x and a parametric dependence on y. 

The three terms in eq 5.1 will be called the primary, secondary, and tertiary potentials; 

the primary and secondary terms can be completely general. In the present application, 

the reaction coordinate group consists of a single bond length r, and we will present the 

equations in the present subsection for this single-reaction-coordinate case to make the 

ideas more clear. To fit ( )rV |]2[
s  and V [1](r) , we need to calculate many data points in 

the space of s and r for a set of fixed values of the tertiary coordinates corresponding to a 

reference structure, and for the calculation of the torsional term in the secondary potential, 

we also calculate a grid of energies in a two-dimensional subspace with the other 

coordinates relaxed (see further details below). 

The tertiary potential is described by analytic potentials in internal displacement 

coordinates ][aQ  relative to a set of anchor structures a with the anchor structures spaced 

along the reaction coordinates at a set of anchor values {ra = ri, i = 1, 2, ..., NA}: 
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 V
[3]

Q | r( ) = Va Q
[a]( ) Ta r( )

a=1

NA

∑ . (5.2) 

In eq 5.2, NA is the number of anchor structures, ( )][a
aV Q  is a molecular mechanics-like 

potential with molecule-specific and anchor-point-specific parameters at anchor structure 

a, and ( )rTa  is called a tent function. The tent function is defined by 

 T1 r( ) →

            1                     r < r1

r − r2( )
4

r − r2( )
4

+ r − r1( )
4

               r1 ≤ r < r2
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
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 T
NA

r( ) →

r − rNA−1( )
4

r − rNA( )
4

+ r − rNA−1( )
4

             r
NA−1 ≤ r < r

NA

1                          rNA
≤ r















, (5.3c) 

Tertiary coordinates Q are further divided into two subgroups: stiff coordinates 

Qstiff such as stretches, bends, and rigid torsions, and soft torsion coordinates QST, which 

involve wide-amplitude motion. The tertiary potential at anchor structure a is written as 

 Va Q
[a]( ) =Va

stiff
Qstiff

[a]( ) +Va
ST

QST
[a]( ) , (5.4) 
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where Va
stiff

Qstiff
[a]( )  is the potential energy contribution from stiff coordinates, and 

Va
ST

QST
[a]( )  is the potential energy contribution from soft torsions.  

Partial optimization is performed for each anchor structure a, with the only 

constraint being r = ra , and the force constant matrix ][aF  in internal displacement 

coordinates is calculated for the optimized structure. Element i of the stiff internal 

displacement coordinate vector Qstiff
[a]

 
is defined as 

 ][
,

][
stiff,

a
eii

a
i

SSQ −= , (5.5) 

where Si
 is an internal coordinate , and Si,e

[a]  is the optimized value of Si
 in the 

constrained optimized geometry of anchor point a. 

Since ( )qs |]2[
V  and )(]1[ qV

 
are fitted to data corresponding to a rigid tertiary 

subspace corresponding to a reference structure, while the tertiary potential is expanded 

at partially optimized anchor structure a, a relaxation energy V[a] needs to be considered; 

this is defined as the energy difference between partially optimized anchor structure a 

and the rigid geometry with the same ra . Then Va
stiff

Qstiff
[a]( )  is expanded near anchor 

structure a as  

 ( ) ][
stiff

][
stiff

][
stiff

][][
stiff

stiff

2
1 aaaaa

a VV QFQQ
T

+= , (5.6) 
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where ][
stiff

aF  is the partial force constant matrix in the stiff subspace. The other tertiary 

potential term is parameterized as: 

 ( ) ( )[ ]∑ −−=
=

ST

1

][
,

][][
ST

ST cos1
N

a
e

aa
a nVV

τ
ττττ ϕϕQ ,

 
(5.7)

 

where NST is the number of soft torsions, τn  is the local periodicity of the torsion, and 

][a
Vτ  and ][

,
a
eτϕ  are respectively the torsion barrier and equilibrium torsion angle for 

torsion τ  at anchor structure a.  

5.2.2 Analytical Cartesian gradient  

In order to perform efficient dynamic studies, we require analytic Cartesian 

gradients of the PES. Denoting a column vector containing 3N Cartesian coordinates 

( ii x=−23ξ , ii y=−13ξ , ii z=3ξ , i = 1, …, N, where N is the number of atoms) as ξ, eq 

5.1 yields 

 
( ) ( ) ( )

ξ

qQ

ξ

qs

ξ

q

ξ d

dV

d

dV

d

dV

d

dV || ]3[]2[]1[
++= . (5.8) 

Each term in eq 5.8 is constructed with internal coordinates, so the chain rule must be 

applied to obtain the analytic Cartesian gradient. This yields  
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For the APRP PES of eq 5.1, 
( )

q

q

∂

∂ ]1[
V

, 
( )
q

qs

∂

∂ |]2[
V

, 
( )
q

qQ

∂

∂ |]3[
V

, 
( )
s

qs

∂

∂ |]2[V
, and 

( )
Q

qQ

∂

∂ |]3[
V

 can be evaluated straightforwardly. The other derivatives,
ξ

q

∂

∂
, 
ξ

s

∂

∂
, and 

ξ

Q

∂

∂
, 

are Wilson’s rectangular B matrices49 for reaction coordinates and secondary and tertiary 

coordinates, with dimensions of NN 3×q , NN 3×s , and NN 3×Q , where Nq, Ns, and 

NQ are the number of reaction, secondary, and tertiary coordinates, and they can be 

evaluated analytically.50,51  

5.3 Results and Discussion 

We provide two examples to illustrate the APRP method, namely the O−H 

dissociation in CH3OH and the N−H dissociation in (H3C)2NH. The electronic structure 

calculations for geometry optimization and energy and force constant calculations were 

performed with the unrestricted Kohn-Sham formalism with Gaussian 09.52 The M06 

exchange–correlation functional53 and the 6-31+G(d) basis set54 were used. For 

integrations to compute the exchange-correlation energy, we used a pruned (99, 590) grid 

[called the ultrafine grid] for all single-point energy calculations and a (150,974) grid 

[called the superfinegrid] for optimizations and force constant calculations.  

5.3.1Dissociation of Methanol 

The reference structure for the parametrization of the primary and secondary 

potentials is taken to be the equilibrium geometry of CH3OH. The CH3OH molecule 
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possesses Cs symmetry. When the H atom is removed, the CH3O radical undergoes Jahn-

Teller distortion from C3v symmetry to Cs symmetry.55 The optimized geometries and 

atomic labeling are shown in Figure 5.1. To treat the O−H bond dissociation, the O−H 

distance (rOH = r56) was chosen as the reaction coordinate; the bending and torsional 

coordinates that involve the separating H atom (θHOC = θ651 and φHOCH = φ6512), were 

chosen as secondary coordinates; and the other coordinates are tertiary (rCH = r12, r13, 

r14, rCO = r15, θHCH = θ213, θ214, θ314, and θHCO = θ215, θ315, and θ415) were chosen as 

tertiary coordinates.  

The Varshni model potential, given by 

 22
OH11OH11OH

]1[ )]}1)/((exp[)/(1{)( −−−= rrrrDrV β , (5.10) 

was used to fit the O−H dissociation curve in CH3OH since it has been shown to provide 

better approximations than the widely used Morse model in diatomics56,57 and in the 

C−H dissociation of CH4.58 The optimized parameters are given in the supporting 

information and the calculated and fitted O−H dissociation curves are shown in Figure 

5.2. The H−O−C bending and H−O−C−H torsion in secondary coordinates both involve 

the dissociated H atom, so they were parameterized with flexible functional forms that 

depend parametrically on the O−H bond length.  

A scan was performed for r = 0.65-4.0 Å and θ = 60-180° with other internal 

coordinates of the equilibrium structure held rigid; the scan showed that at least a cubic 

term is needed to account for anharmonicity, so we used:  
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 [ ] [ ]303
2

02
]2[

bend )(coscos)()(coscos)()|( rrkrrkrV θθθθθ −+−= . (6.11) 

Notice that eq 6.11 has physically correct behavior in the vicinity of θ = 180°, whereas a 

polynomial in θ rather than θcos  would have unphysical behavior. The quadratic and 

cubic force constants, )(2 rk and )(3 rk , as well as the equilibrium bond angles )(0 rθ  

depend parametrically on the O−H bond length. The parametric dependence of the 

equilibrium bond angle on the O−H bond length is fitted with a switching function: 

 )cos(cos
2

)(tan1
cos)(cos 12

0
10 θθθθ −

−+
+=

rra
r , (6.12) 

where 1cosθ , 2cosθ , a , and 0r  are adjustable parameters. The force constants were 

fitted with linear combinations of Gaussian functions: 

 ∑ −−=
=

iGN

j
jijijii rrArk

,

1

2
,,, ])(exp[)( α , (6.13) 

where iGN ,  is the number of Gaussian functions used to fit )(rki . Contour plots of the 

calculated and fitted bending potentials are compared in Fig. 6.3; they are in good 

agreement. 

The H−O−C−H torsion potential was calculated for φHOCH = 0-180° with a step 

size of 10° for r = 0.65-4.0 Å. Contour plots of the torsion energy profiles along the O−H 

dissociation are shown in Figure 5.4a. The H−O−C−H torsion energy reaches its 

minimum for φHOCH = 180°, 60°, and by symmetry, -60°. It is interesting that the torsion 

barrier increases first as the O−H bond length increases, reaching its maximum around 
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1.7 Å, and decreases as the O−H bond length increases further; this nonmonotonic trend 

is understandable since in the two limits of rOH equal to 0 and to infinity, the barrier 

should be zero. A cosine function was used to fit the torsion energy  

 [ ])(3cos1)()|( 03
]2[

tor ϕϕϕ −−= rVrV  (5.14) 

The parametric dependence of torsion barrier )(3 rV  on O−H bond length is fitted with 

linear combination of Gaussian functions: 

 ∑ −−=
=

GN

i
iii rrArV

1

2
3 ])(exp[)( α  (5.15) 

A contour plot of the fitted torsion energy is shown in Figure 5.4b. It reproduces the 

calculated result in Fig. 5.4a very well. Unlike the other terms in the primary and 

secondary potentials, the parameters in the secondary torsion were explained with relaxed 

structures, that is, all internal coordinates except rOH and φHOCH are relaxed in the 

calculation. 

Now we turn to ]3[V  which depends on tertiary coordinates and depends 

parametrically on rOH. We optimized CH3OH and CH3O to obtain their equilibrium 

geometric parameters and force constant matrices (hessians) needed for the molecular 

mechanics force fields in the tertiary subspace. In addition to CH3OH and CH3O, three 

more structures were partially optimized with fixed O−H bond lengths (rOH = 1.5, 2.0, 

and 3.0 Å) to obtain the equilibrium geometric parameters and force constants matrices 

along the dissociation path. Five anchor structures were used to describe the distortion of 
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tertiary coordinates along the O−H bond dissociation path. Four of these structures were 

the optimized structure with rOH = 0.966 Å and the partially optimized structures with 

rOH = 1.5, 2.0, and 3.0 Å; the fifth was an anchor structure at rOH = 5.0 Å, taken to have 

the energy and force constant matrix of CH3O. Since there are no soft torsions in the 

tertiary coordinates for this system, eq 5.6 was used to describe distortions of tertiary 

coordinates in the vicinity of each anchor structure, and eq 5.2 was be used to describe 

the tertiary potential all along the dissociation path. 

As specified above, redundant internal coordinates are used as the tertiary 

coordinates for the construction of APRP PES. However, to test the performance of 

APRP, one needs to work with nonredundant coordinates that uniquely define a structure. 

A set of nonredundant internal coordinates are chosen as the following: S1-S4: r12, r13, 

r14, r15 

S5:  r56 

S6:  6)( 415315215214213314 θθθθθθ −−−++  

S7:  6)2( 214213314 θθθ −−  

S8:  2)( 214213 θθ −  

S9:  6)2( 415315215 θθθ −−  

S10:  2)( 415315 θθ −  

S11:  θ651 

S12:  φ6512 
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In this choice of non-reduandant internal coordinates, S5 is the reaction coordinate 

equal to the O−H bond length, S11, and S12 are the H−O−C bending and H−O−C−H 

torsion included in the secondary coordinates. S1-S4 are bond lengths in tertiary 

coordinates, and S6-S10 are linear combinations of bond angles to constructed non-

redundant internal coordinates as suggested by Pulay and coworkers.59 Three slices of 

the potential energy curves along the non-reduandant internal coordinates, S4, S6, and S8, 

are shown in Figure 5.5 for three different O−H bond lengths (rOH = re, 2.0, and 4.0 Å).  

Figure 5.5a, 5.5d, and 5.5g show the comparison of DFT calculated potential 

energy curves and APRP potential energy curves along the C−O bond stretching. They 

agree with each other near the equilibrium bond distance, but the APRP curves are too 

replusive for stretched bonds and not repulsive enough for compressed bonds, which is a 

typical result of bond stretrch anharmonicity. Model potentials such as Morse potential or 

Varshni potential can be used for bond stretching if more accurate descriptions is needed. 

However, in the photodissociation reaction under consideration, the dispecements along 

these coordiantes are expected to be small at the energies of interest, so the harmonic 

approximation should be adequate.  

The comparison of DFT and APRP potential energy curves along S6 and S8 are 

shown in Figure 5.5b) and 5.5c, Figure 5.5e and 5.5f, and Figure 5.5h and 5.5i, for rOH = 

re, 2.0, and 4.0 Å, respectively. They agree well with each other in all cases. We note that 

no information (neither equilibrium geometric parameters nor Hessians) were input to the 
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fit at rOH = 4.0 Å , but APRP nevertheless describes the potential energy curves quite 

well for this O–H distance.  

5.3.2 Dissociation of Dimethyl Ammonia 

The reference structure for the parametrization of the primary and secondary 

potentials is taken to be the equilibrium geometry of (H3C)2NH. The (H3C)2NH 

molecule has Cs symmetry. When the H atom is dissociated, the (H3C)2N radical has C2v 

symmetry. The optimized geometries and atomic labeling are shown in Figure 5.6. To 

treat the N−H bond dissociation, the N-H distance (which may be called either r NH or 

r9−10) was chosen as the reaction coordinate; and the bends and torsion that involve the 

dissociating H are chosen as secondary coordinates; in particular the secondary 

coordinates are two H−N−C bond angles θHNC (θ10−9−1 and θ10−9−5) and the H−N−C−C 

out-of-plane torsion θHNCC (θ10−9−1−5). These three coordinates cannot all change 

independent, so we used θHNCC and a linear combination, )(
2

1
59101910 −−−− −= θθφ , 

of the other two coordinates as nonredundant coordinates for fitting ]2[V . The other 8 

bond lengths, 13 bond angles, and 6 torsions, in which the dissociated H atom (H10) is 

not involved, were chosen as tertiary coordinates.  

The Varshni model potential, eq 5.10, was used to fit the N−H dissociation curve 

in (H3C)2NH. The calculated and fitted N−H dissociation curves are shown in Figure 5.7; 

they agree well. 
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A scan was performed for r = 0.7 Å to 4.0 Å and φ  = -43° to 43° with other 

coordinates constrained to their values at the (H3C)2NH equilibrium geometry. The 

calculated H−N−C bending potential energies along the N−H dissociation are shown in 

Figure 5.8a. The following functional form was chosen to fit the H−N−C bending 

potential energies  

 4
4

2
2

]2[
bend )()()|( φφφ rkrkrV +=  (5.16) 

The cubic force constant, )(3 rk , is zero as a result of our definition of φ . The quadratic 

and quartic force constants, k2(r)and k4(r) , depend parametrically on the N−H bond 

length, and they were fitted with linear combinations of Gaussian functions as shown in 

eq 5.13. A contour plot of the fitted H−N−C bending potential energies along the N−H 

dissociation is shown in Figure 5.8b, and it reproduces the main features of the calculated 

one in Figure 5.8a, where they are seen to agree well. 

The H−N−C−C out-of-plane bend potentials are calculated for θHNCC = 0-90° and 

r = 0.7-4.0 Å. Figure 5.9a shows 2D contour plots of the out-of-plane bending potential 

energy profiles along the N−H dissociation. Equation 5.11 was used to fit this potential, 

and a 2D contour plot of the fitted potential is shown in Figure 5.9b. 

The tertiary potential for (H3C)2NH was obtained by performing optimization and 

frequency analysis of (H3C)2NH and (H3C)2N, and partial optimization and frequency 

analysis of three other anchor structures with rNH = 1.5, 2.0, and 3.0 Å. The bond 

stretches and bond angle bends were treated with eq 5.6 as in the case of CH3OH. Since 
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(H3C)2NH has soft torsions, in particular HCNC torsions, in the tertiary subspace, eq 5.7 

was used for this molecule although it was not needed for methanol. The HCNC torsion 

potentials of (H3C)2NH at the five anchor structures were fitted with the following 

functional form 

 ( ) ( )[ ]0
][MM 3cos1 ϕϕϕ −−= a

ia VV  (5.17) 

where a is the index of anchor structures. The calculated and fitted torsion potentials in 

(H3C)2NH and (H3C)2N are shown in Figure 5.10. 

Again, to test the performance of APRP for tertiary coordinates, a set of non-

redundant internal coordinates was chosen for (H3C)2NH. Potential energy curves along 

three selected coordinates (S1, S10, and S20) at rNH = re, 2.0, and 4.0 Å were calculated 

with both DFT and APRP and are shown in Figure 5.11. The definition of nonredundant 

internal coordinates is described in detail in the supporting information and the potential 

dependence on the coordinates is shown for only three selected coordinates: 

S1:  r1−2 

S10:  )6( 914913912412312413 −−−−−−−−−−−− −−−++ θθθθθθ  

S20:  591 −−θ  

As in the case of CH3OH, the APRP potential energy curves agree well with the 

DFT ones near the equilibrium bond lengths but fail to describe the anhormonicity for 

large bond stretches. The APRP potential energy curves along bond angle coordinates 

reproduce the DFT ones well, both for anchor structures and for non-anchor structures. 
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These plots show that APRP is able to describe the potential well for small distortions 

along the bond dissociation coordinate by interpolating between anchor structures. 

5.4 Concluding remarks 

By combining model potentials and internal coordinate force fields, we have 

developed a new scheme called anchor points reactive potential (APRP) to fit high-

dimensional PESs. Analytic gradients of APRP PESs can be easily implemented for 

dynamic studies by using Wilson’s B matrix. We illustrated the APRP method by 

applying it to construct the full dimensional PESs of CH3OH and (H3C)2NH to describe 

the X−H (X = O or N) bond breaking processes. It would be impractical to fit these 

potential energy surfaces with conventional PES fitting methods, but the present method 

is straightforwardly applicable and indeed would be applicable to much larger systems as 

well. The new method may be considered to be an extension of some previous 

methods29,30,60,61 for fitting analytical potentials based in whole or in part on quantum 

mechanical Hessians, but those methods were developed for representing the potential in 

the vicinity of a single equilibrium structure, and the present method is designed for 

reactive potentials. It may also be compared to Shepard interpolation,62,63 but it is more 

systematic in its design. 

Although these examples involve only bond breaking, the method could be 

extended in a straightforward way to isomerization processes in which bonds are both 

broken and formed. Another generalization is that, although the APRP is applied here to 

Born-Oppenheimer processes occurring on the ground electronic state, it could also be 
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applied to electronically nonadiabatic processes of large molecules, such as light-induced 

DNA damage or photodissociation. The method would be especially well suited to fitting 

diabatic PESs for photodissociation, such as those recently reported for phenol.64 
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Figure 5.1. Geometries of CH3OH (top) and CH3O (bottom) (both in Cs symmetry). 
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Figure 5.2. Varshini potential to describe the O−H bond dissociation in CH3OH. All 

internal coordinates except the O-H bond distance are held constant along the path used 

for this figure. 
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Figure 5.3. Contour plots of calculated and fitted H−O−C bending potential energies (in 

kcal/mol) along the O−H dissociation path (Note that θ0 is a function of rOH). All internal 

coordinates except rOH and θHOC are held constant at their reference values for this 

figure. 
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Figure 5.4. Contour plots of calculated and fitted H−O−C−H torsional potential energies 

(in kcal/mol) along the O-H dissociation path. All internal coordinates except rOH and 

φHOCH are relaxed in the calculation of this secondary torsion.
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Figure 5.5. Slected slices along the degrees of freedom S4, S6, and S8 (From left to right rOH = re, 2.0, and 4.0 Å).
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Figure 5.6 Geometries of HN(CH3)2 (top, Cs) and N(CH3)2 (bottom, C2v). 
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Figure 5.7. Varshini potential to describe the N−H bond dissociation in HN(CH3)2. 
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Figure 5.8. Contour plots of calculated and fitted H−N−C bending potential energies (in 

kcal/mol) along the N−H dissociation path. 
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Figure 5.9. Contour plots of calculated and fitted H−N−C−C out-of-plane potential 

energies (in kcal/mol) along the N-H dissociation (Note that θ0 is a function of rNH). 
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Figure 5.10. The calculated and fitted H-C-N-C torsion profiles of HN(CH3)2 (top) and 

N(CH3)2 (bottom). 
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Figure. 5.11. Slices of the potential surface along the degrees of freedom S1, S10, and S20. (From left to right, rNH = re, 2.0, and 4.0 

Å.)
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Chapter 6. Full-dimensional potentials and state couplings and 

multidimensional tunneling calculations for the 

photodissociation of phenol 

6.1 Introduction 

By separating the electronic and nuclear degrees of freedom, the widely used Born-

Oppenheimer (BO) approximation1 leads the useful concepts of adiabatic states and 

potential energy surfaces (PESs). Adiabatic PESs are (3N – 6)-dimensional hypersurfaces 

(where N is the number of atoms in a molecule) with (3N – 8)-dimensional cuspidal 

ridges along conical intersection (CI) seams where two or more adiabatic PESs are 

degenerate. The couplings between nuclear motions and electronic motions are usually 

called nonadiabatic couplings, and they are responsible for nonadiabatic transitions 

between different adiabatic states and for the development of coherent superpositions of 

adiabatic electronic states as the nuclear positions evolve. Nonadiabatic couplings are 

usually small in regions removed from conical intersection seams and from the regions of 

near degeneracy surrounding them, and when they are small, nuclear motions can be 

treated to a good approximation as evolving on a single adiabatic PES.2 

The BO approximation breaks down when two or more adiabatic PESs approach 

closely or intersect. The nonadiabatic couplings vary rapidly in such regions and become 

singular at CIs, thereby promoting nonadiabatic transitions in those regions. To model 

electronically nonadiabatic processes where two or more electronic states are coupled via 

nonadiabatic couplings, one can use either the adiabatic representation or a diabatic 

representation.3 In the adiabatic representation, which is unique, the electronic 
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Hamiltonian (always defined here, as usual, to also include nuclear repulsion) is diagonal; 

the diagonal elements are the adiabatic PESs Vi , and the nonadiabatic couplings are 

vectors deriving from the action of nuclear momentum operators on the adiabatic 

electronic wave functions. In a diabatic representation, these vectors couplings are 

negligible (or assumed negligible), and diabatic electronic states and their associated 

PESs, Ui i , are coupled through scalar off-diagonal elements, Uij , of the electronic 

Hamiltonian; these off-diagonal elements are called diabatic couplings. Diabatic states 

are sometimes called quasidiabatic states because strict diabatic states, in which the 

nuclear-momentum couplings are not just negligible but zero, do not exist in general.4 

Thus diabatic states are not uniquely defined, and many schemes have been proposed to 

construct diabatic states.5-31  

Potential energy surfaces can be constructed in either the adiabatic or diabatic 

representation, but the cuspidal ridges of the adiabatic potentials and the singularity of 

nonadiabatic couplings in ubiquitous conical intersection regions32 prevent the analytic 

representation of adiabatic PESs and nonadiabatic couplings. On the other hand, diabatic 

potentials and couplings change smoothly with respective to geometrical variations, and 

they allow for convenient representation. After one has the diabatic PESs available, one 

can carry out dynamics calculations in either the diabatic or the adiabatic representation, 

where the latter would be obtained from the diabatic PESs and diabatic couplings by 

transformations. In the present article, we develop an analytic representation of the 

multidimensional coupled potential energy surfaces for phenol in the diabatic 

representation, in particular we use potentials obtained by fourfold-way 

diabatization,17,31,33 and the resulting diabatic surfaces and couplings yield the adiabatic 

surfaces and nonadiabatic couplings by standard equations given elsewhere.34 
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As a prototypical process in photochemistry, the photodissociation of phenol to 

phenoxyl radical and H atom has been studied extensively both experimentally and 

theoretically, especially in recent years.33,35-55 The photodissociation of phenol involves 

passage through a crossing region of the 1ππ* excited state and the 1πσ* state, which is 

repulsive along the O−H dissociation coordinate r, and this crossing region surrounds a 

conical intersection (CI1) of the 1ππ* and 1πσ* states. The repulsive 1πσ* state further 

crosses the 1ππ ground state at another conical intersection (CI2) at larger r. Thus we 

need to consider three adiabatic PESs called Vi , with i = 1, 2, 3, or three diabatic PESs; 

the latter are the diagonal elements Uii  of a 3 x 3 matrix potential, but we call them Ui  

for simplicity. The roles of the two CIs in the photodissociation of phenol and of the 

vibrational modes that affect the probabilities of transitions at the CIs have been studied 

extensively, leading to stimulating insights and debates. Wave-packet studies37,43,49,50 

have been carried out to study the dynamics of phenol photodissociation, but they were 

performed with two-dimensional potential energy surfaces by considering only the O−H 

stretching coordinate and a selected coupling mode. Due to the complexity of the phenol 

molecule, which has 13 atoms and whose PESs are therefore 33-dimensional, only 

recently was there an attempt to get higher-dimensional PESs.52 Very recently, Zhu and 

Yarkony constructed full-dimensional coupled PESs of phenol using a diabatic 

Hamiltonian whose domain of definition was constructed using quasiclassical surface 

hopping trajectories.53 In the present article we present full-dimensional coupled PESs of 

phenol as obtained by a quite different approach. Either set of coupled PESs should be 

able to lead to more complete studies of the phenol photodissociation process including 

the key role of the phenoxyl ring vibrations. 
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The size of phenol prevents the use of many PES fitting approaches, such as 

permutation-invariant polynomials,56-58 and the interpolated moving-least squares59-61 

method, that have been widely used for smaller systems. Here we use an improved 

version of our recently proposed anchor points reactive potential (APRP) method,62 

which combines general analytic forms for large-amplitude modes with molecule-specific 

and anchor-point-specific molecular mechanics terms for small-amplitude modes, to 

obtain full-dimensional semiglobal diabatic PESs for photodissociation of phenol. The 

improvement consists in the use of internal coordinates with better global behavior. The 

surfaces are based on partitioning the internal coordinates into three groups: the reaction 

coordinate r (also called the primary coordinate), secondary coordinates s, and tertiary 

coordinates Q, and the potentials are semiglobal in that they are defined for all possible 

values of the primary and secondary coordinates but only for small-amplitude vibrations 

of the tertiary coordinates away from the planar reference geometry of the phenoxyl 

fragment.   

The geometry and atomic numbering of phenol and phenoxyl radical are shown in 

Fig. 6.1. (The structures mentioned in the caption of Fig. 1 will be explained more fully 

below.) In the present work, the O−H fission coordinate was chosen as the reaction 

coordinate r; the C1−O−H bond angle θ and C2−C1−O−H torsion angle φ were chosen as 

secondary coordinates; and the internal coordinates of phenoxyl were chosen as tertiary 

coordinates Q. We use smooth diabatic potentials and couplings along r and φ calculated 

previously33 combined with new calculations of the diabatic potentials and couplings 

along θ and small-amplitude-vibration approximations of the dependence of the 

potentials on the tertiary coordinates at several anchor points (explained below).  
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Upon dissociation, the ground 1ππ state of phenol diabatically connects to the 

excited A
~

 2B2 state of phenoxyl radical and H atom, while the repulsive 1πσ* state 

diabatically connects to the ground  2B1 state of phenoxyl radical and H atom. These 

diabatic connections are apparent in Fig. 6.2, which more properly belongs in the results 

section but is placed here to provide the reader with a picture of the general shapes of the 

potential surfaces to make the presentation in Section 6.2 clearer. 

6.2 Methods and computational details  

6.2.1 Anchor points reactive potential (APRP) method for diabatic potentials 

Here we summarize the APRP method, specializing the description to the case of 

phenol photodissociation. The potential of diabatic state i is written as  

 Ui =Ui
[1](r) +Ui

[2]
s | r( ) +Ui

[3]
Q | r( ), (6.1a) 

where f(x|r) denotes a function with a dependence on x and a parametric dependence on r, 

and the three terms on the right side are called the primary, secondary, and tertiary terms. 

General functional forms were used to fit Ui
[1]  and Ui

[2]  with tertiary coordinates fixed 

at reference geometries, and we take Ui
[2]  to be separable: 

 ( ) ( )rUrUU iii || ],2[],2[]2[ θφ θφ += . (6.1b) 

The tertiary potentials are described by interpolation between preselected anchor points 

with tent functions: 

 Ui
[3] = Ui

[a] Q[a]( ) Ti
[a]

r( )
a=1

NA

∑ , (6.2) 
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where ( )][][ aa
iU Q  is the expansion of the potential energy of diabatic state i around 

anchor point a, and ( )rT
a

i
][  is the tent function at anchor point a.  

The tent functions are defined by  

 Ti
[1] =

            1                     r < r
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In the present case of phenol, all diabatic calculations were carried out by fourfold-

way diabatization using multi-configurational quasi-degenerate perturbation theory (MC-

QDPT)63 with the jul-cc-pVDZ basis set,64 as described previously.33 More specifically, 

we calculated the diabatic states U1 (1ππ), U2 (1ππ*), and U3 (1πσ*) along the chosen 

reaction coordinate r (O–H distance) and secondary coordinates θ (C1–O–H bond angle) 

and φ (C2–C1–O–H torsion) with other coordinates fixed, and we used these calculations 

to fit the primary and secondary potentials. The scans of r and φ were performed in the 

same way as the previous work;33 in particular, rigid scans of the C1–O–H bend (θ, with 
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values of 90, 100, 107, 120, and 130°) were carried out at various r from 0.964 to 5.0 Å 

with other coordinates taken as the same as those obtained for the planar equilibrium 

geometry of ground state phenol by the complete-active-space self-consistent-field 

(CASSCF)65 method with the aug-cc-pVTZ basis set66.  

Primary potentials. The primary potential of the diabatic 1ππ state was fit to the 

Varshni model potential,67 given by  

 22
1111

]1[
1 )]}1)/((exp[)/(1{ −−−= rrrrDU β . (6.4) 

The diabatic 1ππ* state has a minimum near the ground-state equilibrium distance re, and 

it crosses the diabatic first 1πσ* state at about 1.3 Å and a second 1πσ* state of higher 

energy at about 1.5 Å. For the photodissociation of phenol, the 1ππ* state is only 

important in the small-r range, so it is acceptable to fit the U2
[1](r)curve to a Morse 

potential68 and we used 

 2
2

22
]1[

2 )]}(exp[1{ ArrDU +−−−= α . (6.5) 

A three-term function was used to fit the repulsive potential of first diabatic 1πσ* state: 

 ∑ +−−=
=

3

1
3,3,3

]1[
3 )](exp[

i
iii ArraU α . (6.6) 

Secondary potentials. The torsion potential )|(]2[
rUi φ  of diabatic state i is fitted 

with the following expression: 

 ∑ −=
=

jn

j

j
jii rWU

1
,

],2[ )2cos1)(( φφ , (6.7) 

where nj is the number of terms to expand the torsion potential [nj = 1 for diabatic states 

U1 and U2 (1ππ and 1ππ*) and nj = 2 for diabatic state U3 (1πσ*)], and Wi, j
 is the barrier 



 

 165 

height of the jth term. The latter was expanded as a linear combination of Gaussian 

functions, given by 

 ])(exp[
1

2
,,,,,,, ∑ −−=

=

kn

k
kjikjikjiji rrAW α . (6.8) 

In fitting the C1–O–H bending potentials, we used cosθ rather than θ in order to 

have the proper symmetry of bend potentials with respect to π – ∆θ and π + ∆θ: 

 ∑ −=
=
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j

j
ijii rrkU
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0,,

],2[ ))(cos)(cos( θθθ
 (6.9) 

The force constant ki,j was further expanded with linear combinations of Gaussians 

similar to eq. 6.8. A hyperbolic tangent function is used to fit the dependence of cos θi,0 

on r : 

 )cos(cos
2

))(tanh(1
coscos 1,2,

1,1,
1,0, ii

ii
ii

rra
θθθθ −

−+
+=  (6.10) 

where 1,cos iθ  and 2,cos iθ  are constant parameters.
 

Tertiary potentials. Now we turn to ]3[
iU , which depends on tertiary coordinates 

and depends parametrically on r through the use of anchor points. The dependence of the 

diabatic potentials on tertiary coordinates is needed only for small extensions from planar 

geometries. For planar geometries, the diabatic states U1 (1ππ), U2 (1ππ*), and U3 (1πσ*) 

belong to the A′, A′, and A′′ irreducible representations, respectively, and as shown in 

Fig. 6.2, the two states with same symmetries are always well separated, while the 

intersecting diabatic states along the reaction coordinate r have different symmetries; thus 

the adiabatic states are good approximations to the diabatic states under the Cs symmetry 

constraint of the planar geometries. Hence we chose anchor points with planar structures 
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and obtained the diabatic states at each anchor point by adiabatic calculations of the 

correct symmetry as described next.  

For diabatic states U1 (1ππ) and U3 (1πσ*), since they are the lowest states of their 

symmetry, we utilize ground-state Kohn-Sham calculations with the M06-2X exchange-

correlation potential69 and the jul-cc-pVDZ basis set  to perform partial optimization 

(optimizing all secondary and tertiary coordinates for fixed r) and calculate the Hessians 

at each of the anchor points. For diabatic state U2 (1ππ*), since it is an excited state (S1) 

in A′ symmetry, time-dependent density functional theory (TDDFT)70,71 was used to 

perform the partial optimization and Hessian calculations, again with the M06-2X 

exchange-correlation potential and the jul-cc-pVDZ basis set. 

For each diabatic state, four planar anchor points were chosen along the O−H 

dissociation coordinate; for U1, they are at r = 0.964, 1.32, 2.00, and 5.00 Å, and for U2 

and U3, they are at r = 0.964, 1.32, 2.26, and 5.00 Å. The first anchor point for each of 

the diabatic states has the ground-state equilibrium O−H bond length calculated by 

CASSCF/jul-cc-pVDZ; the second anchor point was chosen to have an O−H bond length 

close to the first conical intersection (CI1) in planar geometry; the third anchor points 

were chosen to have an O−H bond length close to the second conical intersection (CI2); 

and the final anchor points were chosen to yield the correct asymptotic limit of phenoxyl 

radical.  

The ground state of phenoxyl is  2B1 and it has a low-lying  2B2 excited state; 

these states connect diabatically to surfaces U3 (1πσ *) and U1 (1ππ), respectively, and 

they were optimized with UM06-2X/jul-cc-pVDZ. The geometric parameters and 

Hessians of phenoxyl in these two states were used for the final anchor points with r = 
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5.00 Å. For anchor points with other O−H bond lengths, geometrical parameters and 

Hessians were obtained with partial optimizations. Since U2 state is not very relevant 

after the first conical intersection (CI1), the geometrical parameters and Hessian elements 

at r = 1.32 Å were used for it at the next two anchor points r = 2.26 Å and 5.00 Å.  

In our original APRP, the tertiary potential around anchor point a was expanded as 

 , (6.11) 

where Urel,i
[a]  is the energy of state i at the partially optimized geometry of anchor point a, 

relative to the energy of a fixed reference geometry, ][a
iF  is the partial force constant 

matrix, and ][a
iQ  is a column vector of the internal displacements around anchor 

structure a with elements 

 ][
,e

][ a
jij

a
ji QQQ −= , (6.12) 

where Q j  is an internal coordinate, and ][
,e
a

jiQ  is the optimized value of Q j for state i in 

the constrained optimized geometry of anchor point a. By partitioning internal 

displacements Qi
[a]  into stretches (S), bends (B), and torsions (T), eq 6.11 can be written 

as 

 aaaaaaa
i

a
i iUiUiUiUiUiUUU

,,,,,, BTSTSBTTBBSS][
rel,

][ ++++++= , (6.13) 

where the SS, BB, and TT terms are the potentials from bond stretches, bond angle bends, 

and torsions, and the SB, ST, and BT terms are the potentials from stretch–bend 

couplings, stretch–torsion couplings, and bend–torsion couplings, respectively. The force 
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constant matrices in the terms of eq. 6.13 are respectively called Fi
SS,a , F

i
BB,a , F

i
TT,a , 

Fi
SB,a , Fi

ST,a , and Fi
BT,a . 

In the current application of APRP to the construction of diabatic PESs of phenol, 

instead of using simple internal displacements ][a
iQ , we used variables with better global 

behaviors.  

For bond stretches, instead of r – re, we use R = (r – re)/r. This coordinate was 

originally proposed by Simons, Parr, and Finlan (SPF)72 for diatomic molecules. The use 

of SPF coordinates includes anharmonic effects and corrects the over-repulsion for large 

bond length (r > re) and under-repulsion for short bond length (r < re) of widely used 

force fields using r - re.  

For bond angle bends, instead of θ – θe, we use cosθe – cosθ to preserve the 

continuity when the bond angle crosses π. 

For torsions, eφφ −  is replaced with 
( )

2
sin eφφ −n

 or )(sin eφφ −n  (depending on 

whether it is a diagonal or off-diagonal term) to maintain the correct periodicity behavior, 

where n is an integer number that indicates the local periodicity of the torsion. For phenol, 

the torsions in the phenoxyl ring all have n = 1. 

With the new choice of variables, the terms in eq. 6.13 can be written explicitly as 
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Note that in eq. 6.14c, 
( )

2
sin en φφ −

 is used to build the local periodicity for the 

diagonal terms, while )(sin en φφ −  is used to replace eφφ −  in cross terms.  

The force constants in eqs. 6.14a to 6.14f are related to the Hessian elements in eq. 

6.13 by 
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With our new choice of variables to describe bond stretches, bond angle bends, and 

torsions, eqs. 6.14 have much better behavior than the terms used previously for large 

distortions, although they require no more information. Thus, we recommend using them 

to construct force fields in the future.  

In addition to the above terms, we added a repulsive Born-Mayer potential between 

all pairs (1-4, 2-5, and 3-6) of para carbon atoms to all three diabatic potentials (see Fig. 

6.1 for atomic numbering); this prevents the nonbonded atoms from getting too close 

during trajectories. The Born-Mayer potential is given as 

 ∑ −=
6–35,–24,–1=Y–X

Y–XBM )exp( rBV α  (6.15) 

where the interaction parameters are taken from the literature:73 B is 42000 kcal mol-1, 

and α is 3.58 Å. 
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6.2.2 Diabatic couplings 

The diabatic coupling U12 of diabatic state U1 (1ππ ) to diabatic state U2 (1ππ*) is 

not considered here (i.e., is set to zero) since the energy separation between those two 

states is quite large at all considered geometries. By symmetry, there is no contribution to 

diabatic couplings U13 and U23 from the in-plane vibrational coordinates of planar 

phenol. So we need only consider the contribution of out-of-plane modes to the diabatic 

couplings U13 and U23. Phenol has ten out-of-plane coordinates, nine in the phenoxyl 

ring plus the C2−C1−O−H torsion φ. The nine out-of-plane phenoxyl coordinates we use 

(labeled S1 to S9) are similar to those used by Pongor et al.74 These coordinates are given 

in Table 6.1. 

In a similar spirit to that used in the APRP representations of the diabatic potentials, 

the diabatic couplings are expressed as 

 ( ) ( )rUrUU ijijij ||, ],2[]3[ φφ+= S
S , (6.16) 

where ],2[ φ
ijU  is fitted to MC-QDPT data, and Uij

[3,S]is constructed by interpolating linear 

expansions around anchor structures with tent functions: 
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where ]0[
,aijU  is a constant parameter for anchor structure a, and ( )rTa  is the tent function 

with the same form as ( )rT
a

i
][  used for tertiary potential. The parameter αijaA  in the 

representation of diabatic coupling 
j

U
i

 equals the first partial derivative of 
j

U
i

 with 

respect to αS  at anchor structure a. Four planar anchor points with other geometric 
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parameters fixed at CASSCF/aug-cc-pVTZ optimized ground state minimum were 

chosen along the O−H dissociation coordinate, and they are the same for both diabatic 

couplings: r = 0.964, 1.32, 2.26, and 5.00 Å. Since diabatic coupling U23 and U13 are 

important near the first conical intersection (near anchor point 2) and the second conical 

intersection (near anchor points 3), respectively, the gradients αaA23  (α = 1 to 9) and 

αaA13  (α = 1 to 9) were calculated numerically (with a step size of 10 degree) from MC-

QDPT/jul-cc-pVDZ fourfold way calculations for anchor points 2 and 3, respectively. 

The gradients of diabatic couplings were set to zero for anchor points away from the 

relevant conical intersections. 

To fit ],2[
13

φ
U  and ],2[

23
φ

U , flexible and general functional form needs to be used. As 

discussed previously, both of these couplings are zero at φ = 0° due to symmetry. At φ = 

90°, the phenol molecule also has Cs symmetry and in this case, three diabatic states U1 

(1ππ), U2 (1ππ*), and U3 (1πσ*) belong to A′, A′′, and A′, respectively. Only ],2[
23

φ
U  

would be zero at φ = 90° due to symmetry. We use the following functional forms to fit  

],2[
13

φ
U  and ],2[

23
φ

U  
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where )(raη  is fitted with a linear combination of N Gaussians: 
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Three Gaussian functions were used to fit a1 in eq. 6.18a, and two Gaussian functions 

were used to fit a2  and a3 in eq. 6.18a. All ηa (η = 1, 2, and 3) in eq. 6.18b were fitted 

with one Gaussian function. 

6.2.3 Adiabatic potentials and nonadiabatic couplings 

With diabatic potentials and couplings fitted in internal coordinates, the analytic 

Cartesian gradients of diabatic potentials and diabatic couplings ijnU∇  (n = 1, …, 3N) 

are evaluated straightforwardly by using Wilson B-matrices.62 The adiabatic potential 

energies Vi are the eigenvalues of diabatic potential energy matrix U and can be obtained 

by diagonalizing the U matrix. The analytic Cartesian gradients of the adiabatic potentials 

inV∇ and the nonadiabatic couplings ijF  are34  

 jkn
kj

jkijin UccV ∇∑=∇
,

* , (6.20) 
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where n = 1, …, 3N and cij is the element of orthogonal matrix C that diagonalizes the 

diabatic potential matrix U. 
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6.2.4 Additional computational details 

The reference orbitals and diabatic prototypes employed in the MC-QDPT fourfold-

way diabatizations are specified in Ref. 33. These calculations were performed with 

HONDOPLUS.75 

For fitting the tertiary potential, the adiabatic partial optimizations and Hessian 

calculations at anchor points were performed by Kohn-Sham density functional theory 

with the M06-2X exchange-correlation functional and the jul-cc-pVDZ basis set with 

ultrafine grids with Gaussian09.76  

The geometry optimizations and frequency analyses of equilibrium and transition 

structures were performed by the POLYRATE program77 with the APRP surfaces. The 

geometry of the minimum energy conical intersection (MECI) between adiabatic states Vi 

and Vj was obtained by minimizing the penalty function 2)()(
2
1

jiji VVVVF −++= α  

with α = 105 Eh
-1 (where Eh = 1 hartree). 

We ran thousands of sample dissociative coupled-surface trajectories to confirm 

that the final versions of the coupled potential energy surfaces conserve energy and 

angular momentum and do not visit regions of configuration space where the surfaces 

yield unphysical results. These calculations were carried out with the ANT program.78 

6.3 RESULTS AND DISCUSSION 

6.3.1 Equilibrium geometries 

The bond lengths and bond angles of the 1ππ and 1ππ* state of phenol and the 2B1 

and 2B2 states of phenoxyl radical are given Tables 6.2, 6.3, and 6.4. For the 1ππ state of 

phenol, the experimental geometry is available by microwave spectroscopy79 and 
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electron-diffraction.80 The geometry of the 1ππ* state of phenol is available from 

simultaneous fit to the vibronic intensities and effective rotational constants.81 No 

experimental bond lengths and bond angles are available for phenoxyl radical, and 

theoretical results82 obtained by CASPT2 calculations with 9 active electrons in 8 active 

orbitals with the aug-cc-pVTZ basis set are listed for comparison. Due to the use of Born-

Mayer repulsion of para-situated C atoms to avoid unphysical behavior in test trajectory 

calculations, the C−C bond lengths optimized with our APRP surface are slightly larger 

than the M06-2X results, but the tables show that both are in very good agreement with 

the literature79-82 results. The C1−O bond of ground-state phenol is a typical single bond, 

having the bond length of 1.365 Å. The C−C bond lengths increase from ~1.40 Å in the 

ground state phenol to ~1.43 Å in the S1 state of phenol, suggesting the benzene ring is 

expanded upon excited to the S1 state. 

The excited 2B2 state of phenoxyl radical resembles the ground-state geometry of 

phenol (to which it connects diabatically) in that it has all C−C bond distances around 

1.40 Å and a C1−O bond length of 1.33 Å. However, the equilibrium geometry of the 

ground state (2B1) of phenoxyl radical differs significantly from the geometries of both 

the 1ππ state of phenol and the 2B2 state of phenoxyl radical. The ground state of 

phenoxyl radical has a geometry similar to that of a quinone, with much shorter C1−O 

bond length of 1.246 Å, and the C−C bond lengths are less symmetrical, with 1.461 Å for 

C1−C2 and C1−C6, 1.379 Å for C2-C3 and C5−C6, and 1.416 Å for C3−C4 and C4−C5, 

comparable to the C−O bond length (1.222 Å) and two C−C bond lengths (1.334, and 

1.477 Å) in 1,4-benzoquinone.83 The vibrational frequencies of the ground-state 

adiabatic surface were calculated at the minimum-energy geometries of the APRP surface, 
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and they are compared in Fig. 6.3 to M06-2X frequencies and available experimental 

fundamental frequencies of phenol84 and phenoxyl radical.85 The frequencies calculated 

with our adiabatic PES reproduce the M06-2X results, both overestimating the 

experimental frequencies slightly. The overestimate by M06-2X is consistent with known 

trends,86 but nevertheless we did not scale the density functional frequencies or Hessians 

in the present work. 

6.3.2 Energetics and thermal rate constants 

The adiabatic vertical excitation energies of phenol and phenoxyl radical calculated 

with the APRP PESs are shown and compared with previous theoretical and available 

experimental results in Table 6.5. Experimentally, the spectrum for the optically allowed 

excitation of phenol from its ground state to the 1ππ* state has a maximum at 4.58 eV.87 

The excitation to the 1πσ* state is electric dipole forbidden, and no reliable experimental 

result is available. Previous high-level ab initio studies suggested that the vertical 

excitation energy of the 1πσ* state should in the range 5.6-5.9 eV. 33,44,50 Our APRP 

surface predicts vertical excitation energies to be 4.58 and 5.88 eV for excitations to the 

1ππ* state and the 1πσ* state, respectively, in good agreement with these reference values. 

In comparison to these results, the MC-QDPT/jul-cc-pVDZ results that were used in the 

construction of primary and secondary potential yield vertical excitation energies of 4.70 

and 5.86 eV for the two states of phenol.33 The slight difference between the APRP and 

MC-QDPT values is a result of the different equilibrium geometry of phenol used in the 

calculations. The CASSCF/aug-cc-pVTZ optimized geometry was used in the calculation 

with MC-QDPT while the equilibrium geometries of the APRP surface were used for the 

APRP result. The fact that the APRP agrees slightly better with the reference values is 

just a fortuitous result of this technical shift in geometric parameters.  
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The excitation energy of ground state phenoxyl radical to the 2B2 state was first 

determined to be 1.06 eV in a gas-phase ultraviolet photoelectron spectroscopy 

experiments.88 It was later observed to be 1.10 eV by UV-VIS and IR polarization 

spectroscopy of phenoxyl radical in cryogenic argon matrices.89 The excitation energy of 

phenoxyl radial from the 2B1state to the 2B2 state calculated by our APRP surface is 1.07 

eV, agreeing quite well with experimental results.  

The equilibrium dissociation energy of the O−H bond calculated from the APRP 

PES is 3.93 eV, which is smaller than the experimentally derived De,33,90,91 as shown in 

Table 6.5. 

The classical adiabatic excitation energy, i.e., the energy of the S1 state minimum 

minus that of the S0 state minimum on the APRP surfaces was calculated to be 4.42 eV. 

We can calculate the quantal adiabatic excitation energy, i.e., the 00
0  energy, which is the 

energy of the S1 zero point level minus that of the S0 zero point level on the APRP 

surfaces, by adding the S1 zero point energy (2.66 eV) and subtracting the S0 zero point 

energy (2.85 eV); that yields 4.22 eV. This may be compared to the experimental value50 

of 4.51 eV. 

Although there has been considerable emphasis on the location of the conical 

intersection, we should keep in mind that there is generally a saddle point on the lower 

adiabatic surface on the side of a conical intersection,92 and for some purposes the 

characteristics of this saddle point are equally important or more important than the 

characteristics of the conical intersection. The transition state (i.e., saddle point) for H 

dissociation on the first excited adiabatic state surface was located, with a classical 

barrier height of 0.72 eV with respect to the S1 minimum (or 5.14 eV with respect to the 
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S0 minimum). At the saddle point geometry, the energies of the S0 and S2 states of phenol 

are 1.66 and 5.95 eV, respectively. The large energy gap (0.81 eV) between the S1 and S2 

states at the saddle point suggests that an adiabatic model of dissociation on the S1 

surface might be a good zero-order model for the early dynamics of H-dissociation. The 

transition state has two nonplanar structures, which are mirror images, with C2−C1−O−H 

torsion angles of -20.5 and 20.5°. As shown in Fig. 6.1, the C−C and C−O bond lengths 

in the transition state structures are very close to those in the ground state phenoxyl 

radical. The O−H bond length of the transition state structures is 1.33 Å, close to 1.32 Å 

at which value the S1 and S2 states of phenol intersect for planar geometry at the MC-

QDPT level.33 The imaginary frequency at the saddle point is 4254i cm-1, which is rather 

high because the reduced mass for hydrogenic dissociation is low and because the saddle 

point is so close to a conical intersection. (A barrier due to a CI may be thin because the 

CI is pointy at the top, as compared to flat for a saddle point.) The minimum energy path 

in mass-scaled (i.e., isoinertial) coordinates93,94 (MEP) was calculated using the Page-

McIver algorithm,95 and the calculated potential energy MEPV  along the MEP is shown 

in Fig. 6.4a. The abscissa of this figure is the reaction coordinate s, defined as the 

distance along the curved MEP through the isoinertial coordinates scaled to a reduced 

mass of 1 amu. We already noted the high imaginary frequency, which shows that the 

barrier is thin at the top, but Fig. 6.4a shows it is thin farther down as well. In fact, the 

MEPV  barrier of photodissociation of phenol on the S1 excited state surface is much 

thinner than MEPV  curves of typical chemical reactions, consistent with the large 

imaginary frequency. 
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The zero point vibrational energy of the saddle point is 2.58 eV, as compared to the 

zero point vibrational energy of 2.66 eV for the equilibrium structure on S1. The ground-

state vibrationally adiabatic potential ( G
aV ) curve is defined as the sum of MEPV  and the 

zero point energy of modes transverse to the reaction path; this potential is important 

because it serves as an effective potential energy for vibrationally adiabatic tunneling.93-

100 The ground-state vibrationally adiabatic barrier G
aV  along the S1 surface of phenol is 

shown in Fig. 6.4b. The sum of the potential energy and the zero point energy at the 

saddle point is 3.30 eV, and the maximum value of this sum (i.e., of the ground-state 

vibrationally adiabatic potential) is also 3.30 eV, and this occurs very close to the saddle, 

at s = –0.004 Å, where rOH = 1.32 Å. Only two states (n = 0 and n = 1) of the O−H 

stretching mode have energies below the barrier as shown in Fig. 6.4b. 

Figure 6.4b can be used to illustrate the thinness of the effective barrier for 

tunneling by comparing it to that for the H + H2 hydrogen-exchange reaction. The 

ground-state vibrationally adiabatic potential ( G
aV ) curve for the H + H2 reaction is 

shown in Fig. 3 of a previous paper.101 In that figure, as in the present article, the 

reaction coordinate is scaled to 1 amu, so it is meaningful to compare the widths of the 

barriers. Examination of G
aV  for the H + H2 reaction at an energy 0.10 eV below the 

barrier top shows a width of 0.7 Å, whereas the width of G
aV  in Fig. 6.4b at an energy 

0.10 eV below the barrier top is only 0.12 Å, a factor of six thinner. This is certainly a 

dramatic difference. This may uncover a previously unappreciated general phenomenon, 

namely that barriers close to conical intersections may sometimes be very thin, allowing 

considerable tunneling on the lower surface at energies below the barrier. 
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Figure 6.4c shows the minimum energy reaction path is roughly divided into two 

stages, first the torsion angle changes with approximately constant O-H distance, then the 

O-H bond breaks at roughly constant torsion angle. If we consider the MEP in the 

downward direction, this means that the MEP approaches the minimum along the lowest-

frequency normal mode, which is the expected result.102,103 When the reaction path 

changes from the O–H stretch to the torsion, the potential energy barrier becomes more 

gradual (the rise from the equilibrium geometry is less steep along a low-frequency mode 

than along a high-frequency one). Although this change in character of the MEP and the 

associated MEPV  is interesting mechanistically, it has little effect on the tunneling 

because, as shown in Fig. 6.4, the change of character of the reaction path to be the 

torsion occurs for s < –0.3 Å, whereas the tunneling occurs in the region with s > –0.3 Å. 

If the change in character of the MEP were to occur at higher energy, the barrier would 

not retain its thin shape all the way down to the lowest tunneling energy. 

It is interesting to calculate the rate constants for the electronically adiabatic 

thermal dissociation of H on the S1 surface; such rate constants cannot be compared 

directly to experiment not only because the actually dissociation is not completely 

electronically adiabatic but also, and perhaps more significantly, because phenol need not 

become thermalized on the S1 surface prior to dissociation. Nevertheless, the calculation 

– being the first calculation of the tunneling process to include all degrees of freedom –

provides valuable insight. The thermal rate constants of the unimolecular H-dissociation 

of phenol on the V2 surface were calculated with canonical variational theory 

(CVT),104,105 with vibrations transverse to the reaction coordinate quantized. Tunneling 

was included in the calculations by four different methods: the zero-curvature tunneling 

(ZCT) approximation,93,106 the small-curvature tunneling (SCT) approximation,100 the 
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large curvature tunneling (LCT) approximation,107,108 and the microcanonically 

optimized tunneling (µOMT) approximation.108,109 The ZCT calculation may be 

considered to be an approximation to the SCT one (as explained further below). The SCT 

calculations are vibrationally adiabatic and the LCT calculation is vibrationally 

nonadiabatic, and they also have different tunneling paths appropriate to the limits of 

small curvature of the reaction path and large curvature of the reaction path; the µOMT 

approximation chooses between them on the basis that, for each tunneling energy, the 

tunneling approximation that yields the most tunneling (largest rate constant) is expected 

to be most accurate.110,111 Since only two vibrational states of the O-H stretching mode 

have energy levels below the barrier, we performed the calculations using quantized-

reactant-state tunneling calculations.112,113 We found that the SCT and µOMT 

approximations give nearly the same result, both larger than the result given by LCT 

approximation. Therefore the SCT result is our most accurate, but we show both the ZCT 

and SCT results in Table 6.6 because the comparison is physically interesting. The ZCT 

result shows the effect of tunneling along the MEP as if it were a straight path in 

isoinertial coordinates, whereas the SCT result includes corner cutting across the concave 

side of the curved path to shorten the tunneling path and increase the tunneling 

probability. The unimolecular thermal rate constants increase by many orders of 

magnitude when one includes tunneling, and the effect of corner cutting is very 

significant. 

The SCT tunneling probability in the n = 0 state of the O–H stretch (at an energy 

2.66 eV above the equilibrium minimum of the S1 potential) is 7.8 × 10-6, and the SCT 

tunneling probability in the n = 1 state of the O–H stretch (at an energy of 3.07 eV) is 

0.051. 
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Without considering the tunneling effect, the lifetime of the S1 state, which is the 

reciprocal of the tabulated unimolecular rate constant, is calculated to be 3.4 × 107 ns at 

300 K. Including tunneling by the SCT approximation, the lifetime is found to be 

between 0.5 and 6 ns for the temperatures shown in Table 6.6. Although we cautioned 

that the electronically adiabatic thermal lifetime cannot be compared directly to the 

photochemical lifetime, it is still interesting that the experimental lifetime of the S1 state 

of phenol was reported to be τ ≈ 2 ns,48 which shows that the calculation is not entirely 

unreasonable even if the remarkably good agreement of such an approximate calculation 

is partly fortuitous. Independent of this quantitative comparison though, the calculations 

show that without a doubt the dissociation reaction proceeds many orders of magnitude 

faster due to tunneling. 

6.3.3 Selected scans and 3D plots of conical intersections 

Figure 6.2 show the diabatic potential energy curves of three states, namely, the 

ground 1ππ state, the 1ππ* state, and the repulsive 1πσ* state along the O−H stretch with 

the other geometric parameters fixed at the equilibrium geometry of ground-state phenol. 

As the O−H bond length increases, the APRP 1πσ* state intersects the 1ππ* state at 1.32 

Å (CI1); then it further intersects the 1ππ state at 2.23 Å (CI2), and it finally dissociates 

to the ground state of phenoxyl radical (2B1 state) and H atom. The 1ππ state, which is 

the ground state of phenol at short O−H bond length, intersects the 1πσ* state at 2.23 Å, 

and it dissociates to the excited state of phenoxyl radical (2B2 state) and H atom. MC-

QDPT diabatic potential curves are also shown in Fig. 6.2 for comparison. The MC-

QDPT curves cross at rOH ≈ 1.32 and 2.26 Å for 1ππ*/1πσ* and 1ππ/1πσ*.33 Figure 6.2 
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shows clearly that – despite the small difference in the location of CI2 – the APRP PES 

reproduces the MC-QDPT diabatic potential curves very well.  

For planar geometry, the diabatic couplings are zero by symmetry, so the adiabatic 

states also intersect at r = 1.316 (CI1), where V2 = V3 = 5.613 eV and r = 2.232 Å (CI2) 

where V1 = V2 = 4.434 eV. Those points belong to the seams of conical intersections 

along which two adiabatic state are degenerate.  

In Fig. 6.5, the diabatic potential (U1, U2, and U3) and diabatic couplings (U13 and 

U23) are shown along the O−H bond stretch coordinate at various torsion angles (φ = 30, 

50, 70, and 90°). The diabatic potential curves calculated by fourfold way diabatization 

with MC-QDPT wave functions are also presented in Fig. 6.5 to show how well our PES 

reproduce both the calculated diabatic potentials and diabatic couplings. For a nonzero 

value of the C2−C1−O−H torsion angle, the diabatic potential U3 still crosses U2 and U1 

along the O−H bond stretch, but the C2−C1−O−H torsion breaks the planar symmetry 

and results in nonzero diabatic couplings, thus lifting the degeneracy all along the 

adiabatic curves and converting the intersections to avoided crossings. (Note that the term 

“avoided crossing” should not be understood as implying that surfaces do not cross;32 

rather it means that they do not cross along the path under discussion.) The only 

exception is at φ = 90°, where the phenol molecule again has Cs symmetry, but now with 

the symmetry plane perpendicular to the benzene ring; diabatic states U2 (1ππ*) and U3 

(1πσ*) now have A′ and A′′ symmetry, respectively, and the diabatic coupling U23 is zero 

by symmetry. Our PES yields zero diabatic coupling of U23 at φ = 90° by construction, 

shown in Fig. 6.5d. 
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Three-dimensional plots of diabatic surfaces U2 and U3 and adiabatic surfaces V2 

and V3 are shown in Fig. 6.6 as functions of the O−H bond stretch and the C2−C1−O−H 

torsion coordinate with the other geometric parameters fixed with their values 

corresponding to the equilibrium structure of ground-state phenol. The diabatic states 

cross at both planar and non-planar geometries, forming a seam with U2 = U3 in the r and 

φ space. The diabatic coupling U23 is not zero for most nonplanar geometries, but it is 

zero along the φ = 0 that intersects the diabatic intersection scheme at r = 1.316 Å to yield 

a conical intersection there, this is simply another view of the CI1 intersection geometry 

shown in Fig. 6.2. We should keep in mind that at φ = 90°, U23 is zero along the O−H 

bond stretching coordinate by symmetry, and there is another conical intersection with V2 

= V3.  

In Fig. 6.7, we also provide plots similar to Fig. 6.6 but now for U1, U3, V1, and V2. 

This provides another view of the intersection at r = 2.232 Å and φ = 0°, labeled CI2 in 

Fig. 6.2. The ability to reproduce the conical intersection with our diabatic PES reflects 

one advantage of developing PESs in a diabatic representation – namely we do not have 

to fit the cusps in the adiabatic representation near conical intersections or to line up 

avoid crossings in the nearly degenerate adiabatic surfaces; these features emerge 

naturally from the diagonalization. 

Although the conical intersections look like points in Figs. 6.6 and 6.7, we should 

keep in mind that these are just points on 31-dimensional intersection seams. The point 

with the lowest energy along a seam of conical intersections is called the minimum 

energy conical intersection (MECI), and its energy is an important characteristic of the 

coupled surfaces. With our analytic PESs, we located the MECI between V2 and V3 
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(MECI1) and the MECI between V1 and V2 (MECI2). Both MECIs have planar structures. 

MECI1 has rOH = 1.273 Å with V2 = V3 = 5.351 eV and MECI2 has rOH = 1.971 Å with 

V1 = V2 = 4.172 eV. The C−C, C−O, and O−H bond lengths and C−O−H bond angles of 

MECI1 and MECI2 are shown in Fig. 6.8, along with those of ground state phenol and 

phenoxyl radical. Both MECIs have C–C bond lengths similar to those in the equilibrium 

ground state phenoxyl radical equilibrium which corresponds to the diabatic state U3 

(1πσ*); these ring distortions lower the energy of the 1πσ* state with respect to what is 

shown in Fig. 6.2, and consequently the conical intersections have lower energies and 

shorter O−H bond lengths than the CIs in Fig. 6.2 (1.273 v. s. 1.316 Å for the first CI and 

1.971 v. s. 2.231 Å for the second CI).  

The energy of MECI1, 5.35 eV, is 0.18 eV higher than the saddle point discussed in 

the previous subsection. This small difference is consistent with the statement made there 

that the saddle point is close to a conical intersection and yet the gap between V2 and V3 

increases from 0 to 0.81 eV as one moves from MECI1 to the V2 saddle point, so the 

dynamics is much more adiabatic near the saddle point than near the CI. The 

displacement of the minimum energy path from the conical intersection does make the 

gap nonzero, but the gap is still much smaller than in the H + H2 reaction where the gap 

at the saddle pot is more than 6 eV.114 

6.3.4 Scans for out-of-plane geometries 

When out-of-plane modes are involved, the Cs symmetry of the phenol molecule is 

broken. The diabatic potential U3 still crosses U2 and U1 along the O−H stretching 

coordinate, but the adiabatic potentials V1, V2, and V3 need not intersect each other 

because of the non-zero diabatic couplings. Figure 6.9 shows one-dimensional cuts 
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through the potential surfaces for nonplanar geometries with the C2−C1−O−H torsion 

angle equal to φ = 145°. The phenoxyl ring is fixed at the ground state equilibrium 

geometry of phenol with θCOH = 107° and 130° in Figs. 6.9a and 6.9b; the phenoxyl ring 

is fixed at the transition state geometry of the S1 excited state with θCOH = 112° in Fig. 

6.9c; and the phenoxyl ring is fixed at the ground-state equilibrium geometry of phenoxyl 

radical with θCOH = 115° in Fig. 6.9d. In all cases, the adiabatic potential curves show 

avoided intersections along the O−H stretching coordinate, as expected.  

Near conical intersections, diabatic potential energy curves may cross along the 

C2−C1−O−H torsion coordinate. But adiabatic potential energy curves avoid crossing 

since the nonzero diabatic couplings lift the degeneracy of diabatic states. This is shown 

clearly in Fig. 6.10. In Fig. 6.10a, for rOH = 1.29 Å with all other geometric parameters 

except φ fixed at the ground equilibrium geometry of phenol, the diabatic potential U3 

crosses U2 at φ = 25°, but the adiabatic potential curves V2 and V3 avoid crossing. In fig. 

6.10b, for rOH = 2.10 Å, the diabatic potential U3 crosses U1 at φ = 24°, but again the 

adiabatic potential curves V1 and V2 avoid crossing. 

So far we have shown cuts through the APRP PESs for a fixed geometry of the 

phenoxyl moiety of phenol. The good performance of our APRP PES for those 

geometries is expected since we used general functional forms to fit the dependence of 

MC-QDPT diabatic potentials and couplings on the primary and secondary coordinates. 

Next we examine the PESs for some nonplanar geometries with distorted phenoxyl 

groups. In the language of the APRP, we are looking here at how the PESs and couplings 

vary for geometries with distortions in tertiary coordinates. In particular, we examine the 

dependence on the ν16a (an out-of-plane ring puckering/twisting vibration of a´´ 
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symmetry) and ν16b modes that have been singled out for attention in experimental 

studies.45,50 (We use Wilson’s labeling scheme115 for the phenol and phenoxyl 

vibrational modes.) 

The diabatic potentials and relevant diabatic couplings along Cartesian normal-

mode displacements of the ν16a and ν16b modes were calculated with our APRP PESs 

and compared with MC-QDPT results at the two conical intersections in Figs. 6.11 and 

6.12. The normalized Cartesian normal-mode displacements of ν16a and ν16b modes 

calculated by the M06-L functional116 with the aug-cc-pVTZ basis set were used in order 

to be consistent with previous MC-QDPT calculations.33 The APRP diabatic potentials 

and couplings agree qualitatively with the MC-QDPT results. The diabatic coupling U23 

increases linearly along the Cartesian normal-mode displacements of both ν16a and ν16b 

modes at CI1. At CI2, the diabatic coupling U13 also increases linearly along the 

Cartesian normal-mode displacement of the ν16a mode. However, it remains very small 

along the Cartesian normal-mode displacement of the ν16b mode. These calculations of 

the diabatic couplings for out-of-plane distortion of the ring in phenol can be used in the 

future for full-dimensional studies of the effects of vibrational mode coupling on the 

dynamics of photodissociation of phenol. However, we can also gain insight into the 

photodissociation dynamics by studying the couplings even without carrying out full 

dynamics studies, and we consider that next. 

First we recall the Ehrenfest effective PES, which we will call V , for multi-

electronic-state molecular dynamics is a weighted average over the adiabatic PESs, Vj , 

where the weights are the diagonal elements, jjρ , of the electronic density matrix.34,117-

120 Then we consider a photoexcited system with 22ρ  >> 11ρ  and 22ρ  >> 33ρ  
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approaching CI1. If the system is not adiabatic, we expect to see 33ρ  increase, and that 

puts a higher weight on V3 and raises V , which makes it less likely that the system 

dissociates. Now let the system undergo a vibration in an out-of-plane mode while it 

approaches CI1; this has two consequences: (1) the vibration causes U2 and V2 to go up, 

which raises V , decreasing the probability of dissociation; and (2) the vibration causes 

|U23| to go up, which makes the system more adiabatic, which keeps 33ρ  low, which 

tends to keep V  low, which increases the probability of dissociation. For some modes, 

call them “inactive” modes, effect (1) may dominate. For other modes, call then “active” 

modes, effect (2) may dominate. We conclude that reaction will preferentially occur 

through those molecules that happen to have active modes excited as they get to CI1. 

When one experimentally observes the products (as Ashfold and coworkers45,50 

do), one will then see an excess of molecules with active modes excited since those are 

the ones that preferentially reacted. Under the conditions of the experiments, most of the 

vibrational modes are initially in their ground vibrational state. Let qm  be an out-of-

plane vibrational mode, and let Zm  be the zero point energy in that mode. Near a planar 

geometry,  

 U2 =U2(q = 0) +
1
2

kmqm
2 , (6.22) 

and 

 U23 = Cmqm , (6.23) 
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where km  is a force constant, and Cm  depends on the fit to the diabatic couplings. (Both 

km  and Cm  depend on geometry in the APRP.) Let Dm = Cm , and let Qm  be the 

harmonic turning point of qm : 

 Q
m

= 2Z
m

k
m

, (6.24) 

Since an active mode has |U23| large and U2(Qm ) −U2(0)  small, we define 
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Substituting eqs. 6.22, 6.23, and 6.24 into eq. 6.25, we have 

 X (Q
m

) = D
m

2 / k
m

Z
m

. (6.26) 

This is the simplest unitless quantity that goes up when |U23| goes up and is larger when 

the rise in U2 is smaller.  

We calculated )( mQX  for all out-of-plane modes at a planar geometry of the S1 

state of phenol that has the same OH distance as the transition state but the rest of the 

coordinates the same as in the equilibrium geometry of the S1 state. We found that 

)( mQX  is 0.12 for mode ν16a (103 cm-1), 0.064 for mode 11 (197 cm-1), and 0.050 for 

mode 10a (389 cm-1), but it ranges between 0.013 and 2 × 10-4 for the other seven out-of-

plane modes of phenol (with frequencies in the range 81–865 cm-1). This provides a 

simple explanation for why ν16a mode is the most prominent excited mode observed45,50 

in the products of the photodissociation reaction; and we note that mode 10a is also 

observed50 to be excited in the products. We note that vibrational modes can also be 

excited during the energy release phase as the system progresses from the region of the 
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saddle point and CI1 down to products, but the analysis just given is consistent with the 

interpretation50 of at least some of the observed vibrational mode selectivity as arising 

from the ability of various vibrational modes to promote state coupling. Unfortunately 

this is called promotion of “nonadiabatic transitions” in Ref. 50, but actually—as the 

above discussion should make clear—the relevant consideration is promotion of diabatic 

coupling, which leads to adiabatic passage, not nonadiabatic transitions. 

6.3.5 Nonplanar conical intersections 

The conical intersections occur in a (3N – 8)-dimensional manifold, where N is the 

number of atoms. Thus, in phenol molecule, the conical intersection should have a 

dimension of 31. Both U13 and U23 vanish for planar geometries, which form a 23-

dimensional manifold, because 2N – 3 = 23. With the further constraint of U22 = U33 or 

U11 = U33, the 1ππ*/1πσ* and 1ππ/1πσ*conical intersections occur in a 22-dimensional 

manifold in planar geometry.  This is a relatively low-dimensional subset of the full 31-

dimensional seam, and therefore most of the conical intersection seam has nonplanar 

geometry. 

Locating conical intersections that are not determined by symmetry can be carried 

out by special algorithms in the adiabatic representation.121,122 However, with the 

analytic diabatic PES matrices of phenol on hand, we can locate such conical 

intersections more easily.123,124 Contour plots of U2 - U3 and U23 with respect to the 

C2−C1−O−H torsion angle φ and one of the H out-of-plane bend angles, in particular 

θ8−2−1−3, which denotes the deviation of atom 8 from the 2-1-3 plane, are shown in Fig. 

6.13 at r = 1.29 Å. At the planar geometries, both φ and θ8−2−1−3 are zero, and adiabatic 

state V3 is 0.21 eV higher in energy than adiabatic state V2. The seam with U22 = U33 = 0 
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and the seam with U23 = 0 cross at φ = 40.1° and θ8−2−1−3 = 25.0°.  If these two diabatic 

states formed a closed space, that point (solid circle in Fig. 6.13) will be a nonplanar 

conical intersection of V2 and V3, but due to the perturbation by diabatic state U1, the 

location of the true conical intersection is displaced from this point. Nevertheless this is a 

good starting point for a search, and by making a contour plot of V2 – V3 in this vicinity 

(which is inexpensive because we have an analytic representation), we find that V2 = V3 

= 6.00 eV at φ = 50.9° and θ8−2−1−3 = 15.4° (solid square in Fig. 6.13).  

In Fig. 6.14, we present the contour plots of U1 - U3 and U13 with respect to the 

C−C−O−H torsion angle φ and one of the H out-of-plane bend angles θ9−3−2−4 at r = 2.20 

Å. The seam with U1 - U3 = 0 eV and the seam with U13 = 0 eV cross at φ2−1−7−13 = 

12.4° and θ9−3−2−4 = -16.2° which is also a nonplanar conical intersection with V1 = V2 = 

4.54 eV as a result of the smallness of the perturbation by diabatic state U2 at this 

geometry. 

6.4 Summary and concluding  

We have improved the APRP method to use internal coordinates with better global 

behavior. For the three-state photodissociation of phenol, we have used the improved 

APRP method to develop analytic full-dimensional diabatic potential energy surfaces 

with analytic gradients, analytic diabatic coupling surfaces and their gradients, adiabatic 

energy surfaces and their gradients, and adiabatic nonadiabatic couplings. Selected scans 

show that our APRP diabatic potential PESs and diabatic couplings surfaces reproduce 

well the results calculated previously by the fourfold way with the MC-QDPT method. 

We illustrate the magnitudes of the diabatic couplings and adiabatic gaps for various 

nonplanar geometries and show how they may be used to provide a simple estimate of 
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which vibrational modes promote the dissociation process. By diagonalizing the diabatic 

potential matrices, conical intersections can be correctly reproduced, and we show how to 

use the APRP potential to locate points on conical intersection seams at nonsymmetrical 

geometries. 

We used the APRP potentials to locate the transition state, minimum-energy path, 

and vibrationally adiabatic potential energy curve for photodissociation of phenol on the 

S1 surface and to study of thermal rate constants for adiabatic dissociation, which 

confirmed the importance of tunneling for S1 state photodissociation of phenol. 

The APRP potential for phenol can be used for the study of dynamics of 

photodissociation of phenol to elucidate the effect of ring motion, including out-of-plane 

vibrational modes. The success of the APRP method in producing coupled surfaces and 

couplings suitable for full-scale dynamics calculations is very encouraging, and improved 

APRP method can be used to map out coupled potential energy surfaces and their 

couplings for other complex systems, thereby allowing much more complete molecular 

dynamics simulations than have been practical in the past. 
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Table 6.1. Out-of-plane coordinates of phenoxyl 
 

 

Coordinate Definition 
 

δ1 C2−C1−C6−C5 torsion 

δ2 C1−C6−C5−C4 torsion 

δ3 C6−C5−C4−C3 torsion 

δ4 C5−C4−C3−C2 torsion 

δ5 C4−C3−C2−C1 torsion 

δ6 C3−C2−C1−C6 torsion 

S1 )(6 654321
2/1 δδδδδδ −+−+−−

  

S2 )22(12 654321
2/1 δδδδδδ −+−−+−−

 

S3 )(4 6431
2/1 δδδδ +−+−−

 
S4  O7 out-of-plane bend 
S5  H12 out-of-plane bend 
S6  H11 out-of-plane bend 
S7  H10 out-of-plane bend 
S8  H9 out-of-plane bend 
S9  H8 out-of-plane bend 
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Table 6.2. Calculated and experimental geometric parameters of the ground 1ππ state of 

phenola 

 
APRP M06-2Xb microwavec electron-diffractiond 

bond lengths (Å) 
C1–C2 1.402 1.396 1.391 1.399 
C2–C3 1.400 1.395 1.394 1.399 
C3–C4 1.399 1.394 1.395 1.399 
C4–C5 1.402 1.397 1.395 1.399 
C5–C6 1.397 1.392 1.392 1.399 
C6–C1 1.402 1.396 1.391 1.399 
C2–H8 1.092 1.092 1.086 1.083 
C3–H9 1.090 1.090 1.084 1.083 

C4–H10 1.089 1.089 1.080 1.083 
C5–H11 1.090 1.090 1.084 1.083 
C6–H12 1.089 1.089 1.081 1.083 
C1–O7 1.365 1.365 1.375 1.381 

O7–H13 1.022 0.964 0.957 0.958 
bond angles (deg) 

C6–C1–C2 120.4 120.4 120.9 121.6 
C1–C2–C3 119.5 119.6 119.4 118.8 
C2–C3–C4 120.6 120.6 120.5 120.6 
C3–C4–C5 119.3 119.3 119.2 119.7 
C4–C5–C6 120.8 120.8 120.8 120.6 
C5–C6–C1 119.4 119.4 119.2 118.8 
C1–C2–H8 120.0 120.0 120.0 
C2–C3–H9 119.3 119.3 119.5 

C3–C4–H10 120.3 120.3 120.3 
C4–C5–H11 119.9 119.9 119.8 
C5–C6–H12 121.7 121.7 121.6 
C6–C1–O7 117.1 117.1 117.0 117.2 

C1–O7–H13 107.2 109.5 108.8 106.4 
a See Fig. 6.1 for numbering of atoms. 
b jul-cc-pVDZ 
c Ref. 79 
d Ref. 80 
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Table 6.3. Calculated and experimental geometric parameters of the 1ππ* state of phenola 

  APRP M06-2X b Expt. c 
bond lengths (Å) 

C1–C2 1.434 1.429 1.421 
C2–C3 1.424 1.419 1.420 
C3–C4 1.427 1.421 1.431 
C4–C5 1.425 1.419 1.425 
C5–C6 1.426 1.421 1.426 
C6–C1 1.425 1.420 1.413 
C2–H8 1.090 1.090 1.083 
C3–H9 1.087 1.087 1.080 
C4–H10 1.090 1.091 1.079 
C5–H11 1.087 1.087 1.080 
C6–H12 1.087 1.087 1.079 
C1–O7 1.338 1.338 1.356 
O7–H13 1.034 0.967 0.992 

bond angles (degree) 
C6–C1–C2 123.6 124.0 123.4 
C1–C2–C3 117.5 117.3 118.5 
C2–C3–C4 119.4 119.3 118.5 
C3–C4–C5 122.4 122.7 123.1 
C4–C5–C6 119.1 118.9 118.6 
C5–C6–C1 118.0 117.8 118.4 
C1–C2–H8 120.0 120.1 120.2 
C2–C3–H9 120.7 120.8 
C3–C4–H10 118.7 118.5 
C4–C5–H11 120.2 120.2 
C5–C6–H12 123.3 123.4 122.3 
C6–C1–O7 116.2 116.0 115.9 
C1–O7–H13 106.5 109.5 108.8 

a See Fig. 6.1 for numbering of atoms. 
b TD-DFT with the M06-2X functional and the jul-cc-pVDZ basis set 
c Ref. 81 
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Table 6.4. Calculated geometric parameters of the X
~

 2B1 and  2B2 states of phenoxyl 

radicala 

   APRP M06-2Xb CASPT2c 

   2B1 state 

bond lengths (Å) 
C1–C2 1.461 1.453 1.448 
C2–C3 1.379 1.375 1.379 
C3–C4 1.416 1.410 1.408 
C1–O7 1.246 1.249 1.255 
C2–H8 1.090 1.090 1.081 
C3–H9 1.090 1.090 1.081 
C4–H10 1.090 1.090 1.081 

bond angles (deg) 

C6–C1–C2 121.0 121.0 120.9 
C1–C2–C3 118.7 118.7 118.9 
C2–C3–C4 121.3 121.2 121.1 

C1–C2–H8 119.6 119.6 119.7 
C4–C3–H9 118.7 118.7 118.8 

  A
~

 2B2 state 

bond lengths (Å) 
C1–C2 1.409 1.403 1.402 
C2–C3 1.397 1.392 1.393 

C3–C4 1.400 1.394 1.394 
C1–O7 1.331 1.333 1.330 
C2–H8 1.088 1.088 1.079 
C3–H9 1.090 1.090 1.081 
C4–H10 1.088 1.088 1.079 

bond angles (deg) 
C6–C1–C2 121.0 121.0 120.9 
C1–C2–C3 118.7 118.7 118.9 
C2–C3–C4 121.3 121.2 121.1 
C1–C2–H8 119.6 119.6 119.7 
C4–C3–H9 118.7 118.7 118.8 

a See Fig. 1 for numbering of atoms. 
b jul-cc-pVDZ   
c Ref. 82
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Table 6.5. Vertical excitation energies of phenol and phenoxyl and the equilibrium dissociation energy of phenol (in eV) 
                                                                        

    phenol     phenoxyl  
                                               

  1ππ* - 1ππ 1πσ* - 1ππ De  2B2 - 2B1 
                                                                        

APRPa 4.58 5.88 3.93  1.07 

SA(3)-CAS(12,11)/jul-cc-pVDZb 5.04 5.56 2.54  1.79 

SA(3)-MC-QDPT(12,11)/jul-cc-pVDZb 4.70 5.86 4.37  0.94 

CC2/aug-cc-pVDZc  4.86 5.36 

MRCI/aug-cc-pVDZd 4.75 5.76    

CASPT2(10/10)/aug(O)-cc-pVTZe 4.52 5.64 4.05  0.65 

EOM-CCSD/aug(O)-cc-pVTZe 4.97 5.67    

Experimental 4.58f  4.18g /4.08g 1. 06h/1. 10i 
                                                                        

a The equilibrium geometries of phenol and phenoxyl radical were optimized with the fitted PES and were used to calculate the 
vertical excitation energies and the equilibrium dissociation energy for breaking the O–H bond. 
b Ref. 33 
c Ref. 48 

d Ref. 44 
e Ref. 50 
f Highest peak value obtained from Ref. 87 
g Derived in Ref. 33 from Ref. 90 (first value) and Ref. 91 (second value) 
h Ref. 88 
i Ref. 89 
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Table 6.6. Thermal unimolecular rate constants and lifetimes for hydrogen dissociation of 

phenol on the V2 surface at various temperatures 

T(K) CVT CVT/ZCT CVT/SCT 
  Rate constant (s-1) 

150 8.1 × 10-10 4.8 × 106 5.2 × 108 
300 2.9 × 101 1.8 × 106 1.8 × 108 
600 4.3 × 106 1.1 × 108 2.1 × 108 

1000 5.0 × 108 1.6 × 109 2.1 × 109 
  Lifetime (ns) 

150 1.2 × 1018 210 1.9 
300 3.4 × 107 556 5.5 
600 235 9.3 4.8 

1000 2.0 0.6 0.5 
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Figure 6.1. The figure shows the structure of the transition state on adiabatic surface S1, 

and it also shows four sets of bond distances for key eight C−C, C−O, and O−H bond 

lengths (in Å) and the  C−O−H bond angle (in degrees). From top to bottom are values 

for the equilibrium geometry of the S1 state of phenol, the saddle point of the S1 state (the 

structure shown), the X
~

 2B1 state of phenoxyl radical, and the A
~

 2B2 state phenoxyl 

radical. “N.A.” denotes not applicable. 



 

 206 

 

Figure 6.2. Calculated and fitted diabatic potential energy curves of phenol along the 

O−H dissociation coordinate. The other geometric parameters are fixed at their values at 

the equilibrium geometry of ground state phenol. The locations of the conical 

intersections on the APRP surfaces for these cuts are r = 1.316 Å and r = 2.232 Å, 

respectively.  
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Figure 6.3. Comparison of vibrational frequencies calculated from the ground-state APRP 

surface, from M06-2X and DFT calculations with available experimental results. Top: the 

1ππ state of phenol; bottom: the X
~

 2B1 state of phenoxyl radical. 
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Figure 6.4. (a) Calculated MEPV  vs the reaction coordinate s (scaled to a reduced mass of 

one amu) for the photodissociation of phenol on the S1 state surface. (b) Calculated 

ground-state vibrationally adiabatic potential ( G
aV ) vs the reaction coordinate s. n = 0 and 

n = 1denote the energy levels with vibrational quantum number of 0 and 1 for the O−H 

stretch and 0 for other vibrational modes. The numbers denotes the values of O−H bond 

length at corresponding reaction coordinates. (c) Calculated O−H bond length and 

C2−C1−O−H torsion angle vs the reaction coordinate s.  
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Figure 6.5. Calculated and fitted diabatic potentials (U1, U2, and U3) and diabatic couplings (U13 and U23) of phenol along the O−H 

dissociation coordinate r at various C2−C1−O−H torsion angles φ. The other geometric parameters are fixed at their values at the 

equilibrium geometry of ground state phenol.
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Figure 6.6. Three-dimensional plots of (a) the U22 and U33 diabatic potential-energy 

surfaces showing the diabatic crossing of the 1ππ* and 1πσ* states and (b) the V2 and V3 

adiabatic potential-energy surfaces of phenol as functions of r and φ. The conical 

intersection (CI1) is seen at r = 1.32 Å and φ = 0° with all other geometric parameters 

fixed at the ground state equilibrium geometry of phenol. 
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Figure 6.7. Three-dimensional plots of (a) the U1 and U3 diabatic potential-energy 

surfaces showing the diabatic crossing of the 1ππ and 1πσ* states and (b) the V1 and V2 

adiabatic potential-energy surfaces of phenol as functions of r and φ. The conical 

intersection (CI2) is seen at r = 2.23 Å and φ = 0° with all other geometric parameters 

fixes at the ground state equilibrium geometry of phenol. 



 

 213 

 

Figure 6.8. The figure shows the structure of MECI1 and four sets of bond distances for 

key eight C−C, C−O, and O−H bond lengths (in Å) and the  C−O−H bond angle (in 

degrees). From top to bottom are values for the equilibrium geometry of the S0 state of 

phenol, MECI1, MECI2, and the X
~

 2B1 state phenoxyl radical. “N.A.” denotes not 

applicable. 
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(a) (b) 

(c) (d) 

Figure 6.9. Diabatic potentials (U1, U2, and U3) and adiabatic potentials (V1, V2, and V3) versus rOH with C2−C1−O−H torsion 

φCCOH = 145°, (a) all other geometric parameters fixed at the ground equilibrium geometry of phenol, (b) θCOH = 130° and all other 
geometric parameters fixed at the ground equilibrium geometry of phenol, (c) all other geometric parameters fixed at the excited state 
(S1) transition state geometry of phenol, (d) θCOH = 115° and all other geometric parameters fixed at the ground equilibrium geometry 
of phenoxyl radical. 



 

 215 

 

 

Figure 6.10. Diabatic potentials (U1, U2, and U3) and adiabatic potentials (V1, V2, and 

V3) versus C2−C1−O−H torsion φCCOH (a) with rOH = 1.29 Å and all other geometric 

parameters fixed at the ground equilibrium geometry of phenol, (b) with rOH = 2.10 Å 

and all other geometric parameters fixed at the ground equilibrium geometry of phenol. 

(b) 

(a) 
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Figure 6.11. The atomic displacements of vibrational mode ν16a (a), and calculated and 

fitted diabatic potentials and the most relevant diabatic couplings at conical intersections 

of the 1ππ* and 1πσ* states (b) and the 1ππ and 1πσ* states (c) the states along scaled 

Cartesian normal-mode displacements. 

(b) 

(c) 

(a) 
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Figure 6.12. The atomic displacements of vibrational mode ν16b (a), and calculated and 

fitted diabatic potentials and the most relevant diabatic couplings at conical intersections 

of the 1ππ* and 1πσ* states (b) and the 1ππ and 1πσ* states (c) the states along scaled 

Cartesian normal-mode displacements. 

(b) 

(c) 

(a) 
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Figure 6.13. Contour plots of U2 – U3 and U23 (in eV) to locate the non-planar conical 

intersection of the 1ππ* and 1πσ* states at rOH = 1.29 Å. The solid square and circle are 

explained in Section 6.3.5. 
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Figure 6.14. Contour plots of U1 – U3 and U13 (in eV) to locate the non-planar conical 

intersection of the 1ππ and 1πσ* states at r = 2.20 Å.
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