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Abstract 

DNA replication is continually impeded by endogenous lesions that cause the 

stalling of replication forks.  If left unchecked, this threatens the integrity of the genome 

and may be a driver of cancer development.  Utilizing the Mcm4
chaos3

 mouse model, we 

found that dormant replication origins, which act as backup initiation sites, play a critical 

role in the recovery of stalled replication forks.  A reduced number of dormant origins in 

these mice led to persistently stalled forks, incomplete replication and the mis-

segregation of sister chromatids in mitosis, causing elevated genome instability. 

Mcm4
chaos3/chaos3

 cells also displayed intrinsic activation of the Fanconi anemia 

(FA) pathway, suggesting that it too plays a functional role in fork progression.  Indeed, 

disruption of FA pathway activation in the Mcm4
chaos3/chaos3

 background led to an even 

higher number of persistently stalled forks.  Furthermore, we discovered that a lack of 

dormant origins also leads to delayed replication, as seen by extremely late DNA 

synthesis.  Accordingly, concomitant loss of both mechanisms led to heightened genomic 

instability, causing mice to either die shortly after birth or exhibit accelerated 

tumorigenesis. 

Finally, we investigated if HELQ is perhaps another FA gene by characterizing 

the first Helq mutant mouse model (Helq
gt

).  Helq
gt/gt

 cells/mice displayed modest FA-

like phenotypes such as interstrand crosslink hypersensitivity and hypogonadism, but not 

defects in homologous recombination repair.  Rather, HELQ was found to work in 

parallel to the FA protein FANCC to suppress replication-associated genome instability. 
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Introduction 

 All of the information required for the formation and maintenance of a human 

organism is stored in its DNA.  The diploid human genome, consisting of 6 billion base 

pairs spread out over 23 pairs of chromosomes, resides in all the nuclei of the trillions of 

cells that make up the human body.  Despite this complexity, research throughout the past 

few decades has provided fascinating insights into how the cell is able to accurately 

duplicate (DNA replication) and maintain (DNA repair) the integrity of all this genetic 

information throughout our lifetimes.  Such information is vital to our understanding of 

human health, as even a single mutation in the genetic code can lead to birth defects, 

genetic disorders or the development of cancer. 

 Replication is made more difficult due to the fact that the DNA can be damaged 

by a number of both exogenous environmental agents as well as endogenous chemical 

alterations during DNA metabolism
1
.  Damaged sites cannot be processed by the high-

fidelity replicative polymerases and if found on the leading strand template, on which 

synthesis is continuous, the replication fork can stall.  If left in this state, large regions of 

the genome could go unreplicated and be lost in subsequent daughter cells.  This would 

lead to the loss of significant amounts of genetic information that could wreck havoc on 

the integrity of the genome. 

To guarantee that replication is complete, cells possess many strategies for the 

recovery of stalled forks
2
.  One solution that seems most simple is to newly initiate DNA 

synthesis at a nearby adjacent region of the DNA.  This is achieved through the firing of 
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dormant replication origins that exist in excess throughout the genome.  However, if 

dormant origins are unavailable or prove inappropriate for certain lesions, specialized 

proteins can be recruited to help the fork progress past the lesion.  For example, error-

prone translesion synthesis (TLS) polymerases can be temporarily recruited to directly 

bypass the lesion by inserting any base across from the damaged site.  In addition, a 

homology-directed mechanism can replicate past the lesion in an error-free manner by 

temporarily switching the template to the newly-synthesized sister chromatid strand.  

This requires the homologous recombination (HR) machinery.  Members of the Fanconi 

anemia (FA) pathway may play a key role in regulating these latter two mechanisms, 

though exactly how this occurs remains elusive. 

This chapter will provide pertinent background information regarding how these 

mechanisms promote the complete replication of the genome.  First, we will discuss how 

cells separate the events of “origin licensing” from “origin firing” to achieve precisely 

one new copy of the DNA after replication.  Importantly, excess (“dormant”) origins 

produced through the licensing process are needed to fully complete replication and 

prevent tumors in mice.  We will also discuss how certain regions of the genome called 

common fragile sites (CFSs) are intrinsically difficult to replicate due to a lack of origins 

and thus depend on the FA pathway for their stability.  Multiple lines of evidence suggest 

that the FA pathway plays a critical role in the recovery of spontaneously stalled forks, 

and loss of this pathway leads to the human cancer susceptibility disease Fanconi anemia.  

Finally, the potential role of a candidate FA gene, HELQ, will also be explored.  

Together, this body of information shows how cells utilize a multi-layered system, 
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including dormant origins and the FA pathway, to ensure complete replication and 

prevent chromosome instability that may otherwise lead to cancer. 

 

DNA replication: origin licensing and origin firing 

 In order for replication to commence, the DNA double helix must initially be 

opened at special starting loci called replication origins.  In bacteria, such as E. coli, this 

occurs at a single, sequence-specific element.  A single pair of replication forks initiated 

at this site is sufficient to replicate the entire circular genome.  However, the human 

genome is about 700 times larger than the E. coli genome and replication forks proceed 

about 20-fold more slowly.  It would therefore take at least 20 days to achieve one round 

of replication if there were only one origin per chromosome
3
. 

 In order to efficiently replicate larger and more complex genomes, mammalian 

cells activate approximately 30,000-50,000 origins at each S phase
4
.  Accordingly, 

shorter distances between activated origins means less time to complete replication.  

However, this brings the added complexity of making sure that the DNA is fully 

replicated without activating the same origins more than once, which would lead to re-

replication
5
.  Eukaryotic cells solve this problem by temporally separating DNA 

replication into two sequential steps of “origin licensing” and “origin firing”.  While 

origin licensing determines all origin sites exclusively during the late M and early G1 

phases, origins can only be activated to fire upon entry into S phase, during which 

licensing is inhibited. 
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 Origin licensing entails the formation of pre-replicative complexes (pre-RCs) at 

prospective origin sites.  This begins when a six-membered origin recognition complex 

(ORC) binds to origin loci.  In the budding yeast Saccharomyces cerevisiae, this occurs 

exclusively at regions containing a specific sequence element called an autonomously 

replicating sequence (ARS)
6
.  In other eukaryotes, however, there are no clear origin 

consensus sequences and the ORC proteins, though evolutionarily conserved, don’t 

maintain their sequence specificity.  Rather, origins appear to be determined by a 

complex combination of general sequence elements (AT-rich regions), chromatin context 

and transcriptional activity
3
. 

 Once ORC is bound to origin sites, two proteins called cell division cycle 6 

(CDC6) and chromatin licensing and DNA replication factor 1 (CDT1) work together to 

load the heterohexameric MCM2-7 complexes onto the chromatin
7-13

.  Comprised of the 

essential, conserved and structurally related minichromosome maintenance proteins 2 

through 7, MCM2-7 is a core component of the replicative helicase
14-19

.  These proteins 

derive their name from the original  screen performed in budding yeast for mutants that 

were unable to fully replicate and thereby maintain mini-chromosomes containing a 

single origin
20

.  As they will later travel with bidirectional replication forks, MCM2-7 

complexes are loaded onto the chromatin as double hexamers
21-23

.  At this point, any 

locus containing a pair MCM2-7 hexamers is considered licensed (complete pre-RC) and 

is competent to initiate firing if activated
24-26

.  It is now understood that a single ORC can 

load several MCM2-7 double hexamers onto origin sites, and it is estimated that there is 

anywhere from a 10- to 40-fold excess of origins that are normally licensed compared to 
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the number of ORC-bound sites or the number of functional origins
24,27,28

.  Because this 

vastly exceeds the number of origins which are sufficient to complete replication
29,30

, 

researchers originally referred to this phenomenon as the “MCM paradox”
31

.  The 

significance of such excess or “dormant” origins will be discussed in detail below. 

Three overall mechanisms are at work in eukaryotic cells to make sure that origin 

licensing is restricted to the late M and early G1 phases.  First, S and M phase specific 

cyclin-dependent kinases (CDKs) function to degrade or re-localize several pre-RC 

components during S phase and mitosis
32-35

.  The other two mechanisms involve the 

regulation of CDT1, which can either be bound and inhibited by the protein Geminin
36-40

 

or targeted for proteolytic degradation by the CUL4/DDB1 ubiquitin ligase
41-43

.  Because 

the anaphase-promoting complex/cyclosome (APC/C), which causes ubiquitin-mediated 

degradation of Geminin and mitotic cyclins, is active during G1 phase
36,44

 and because 

CUL4-DDB1-dependent degradation of CDT1 requires chromatin-bound PCNA
45,46

, 

these three inhibitory mechanisms are inactive in G1 phase so that licensing can occur. 

 Once cells enter into S phase, licensed origins (or pre-RCs) are then converted to 

pre-initiation complexes (pre-ICs) through the recruitment of several “firing factors”.  

Cell division cycle 45 (CDC45) and the GINS complex (GINS stands for “Go, Ichi, Nii 

and San” or “5, 1, 2 and 3” in Japanese) combine with MCM2-7 to form the CMG 

helicase, the complete replicative helicase essential for replication initiation as well as 

elongation
47-54

.  This requires a host of other factors, including the kinases CDC7-DBF4 

(DDK) and CDK.  While DDK phosphorylates multiple MCM subunits
55-58

, CDK 
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phosphorylates RECQL4 and Treslin, which work together with TOPBP1 to promote the 

interaction of CDC45 and GINS with MCM2-7
59-63

.  Other factors such as MCM10
64,65

, 

GEMC1
66

, DUE-B
67

 and Idas
68

 also appear to be required for initiation in higher 

eukaryotes, with MCM10 playing an additional role in elongation
64,69

. 

 After pre-ICs have formed, initiation complexes can be completed through the 

recruitment of the replicative polymerases and other replisome components.  Origins can 

then be fired to generate bidirectional replication forks.  Because MCM2-7 hexamers 

travel with each fork as the replicative helicases
70,71

 this returns fired origins to the 

unlicensed state.  Inactive MCM2-7 complexes and other pre-RC components are then 

passively displaced from the chromatin as active replisomes pass through them
30,72,73

.  All 

origins do not fire at once, but are activated throughout S phase (early to late) in a distinct 

program determined by both chromatin context
74-76

 and the availability of limiting firing 

factors
77-81

. 

 

Dormant replication origins 

 As mentioned previously, eukaryotic cells license an excessive number of 

potential origins compared to the number that are needed to complete replication under 

normal conditions.  Still, early studies indicated that reduced MCM levels compromised 

both origin licensing and genome stability in yeast
82,83

, suggesting that excess origins 

might have an important function after all. 
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In light of the fact that new origins cannot be licensed once S phase begins, it was 

proposed that this excessive licensing protects cells from the possibility of incomplete 

replication under conditions of replicative stress.  In 2006, Woodward et al. analyzed 

DNA replication kinetics in Xenopus laevis egg extracts in which the chromatin was 

manipulated to be either “minimally licensed” or “maximally licensed”
30

.  While 

minimally licensed chromatin replicated poorly in the presence of low levels of 

replication inhibitors, maximally licensed chromatin was able to maintain complete 

replication by activating additional origins that would have otherwise remained dormant 

(hence the name “dormant origins”).  Furthermore, the authors showed that treatment of 

Caenorhabditis elegans with a small interfering RNA (siRNA) targeting MCM7 caused a 

drastic hypersensitivity to the replication inhibitor hydroxyurea (HU)
84

, indicating a 

physiologically important role of dormant origins in normal replication.  This led the 

authors to propose a model in which dormant origins can be seen as a method of stalled 

fork rescue, ensuring that no region of the genome gets left unreplicated. 

Shortly after this, two studies using human cancer cell lines provided clear 

evidence that dormant origins play a similar role in mammalian cells
25,26

.  Up to 50% 

depletion of MCM2-7 complexes in these cells had little effect on replication kinetics in 

unperturbed conditions, but co-treatment with replication inhibitors induced chromosome 

instability and cell death.  This suggested a role of dormant origins in preserving genomic 

stability only in the context of replicative stress. 
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How exactly dormant origins are activated under stressful conditions was 

confusing for many years due to the actions of the ATR (ataxia telangiectasia mutated 

and Rad3-related) kinase.  In response to stalled forks, such as those induced by 

replication stress, ATR and its downstream effector CHK1 were reported to actually 

inhibit the firing of additional origins
85-88

.  This apparent contradiction was eventually 

resolved in 2010, when it was demonstrated that ATR/CHK1 prevent the global firing of 

new replication clusters while simultaneously stimulating the local firing of dormant 

origins in clusters where replication has already begun
89

.  This allows cells to efficiently 

redirect their limited replication resources to active clusters until full replication is 

achieved
90

.  How cells are able to distinguish between local and global origins remains a 

mystery, though several models have been proposed
91

. 

 

Mcm mutant mouse models 

 The critical role of dormant origins in preserving genomic stability in normal, 

physiological conditions did not become clear until the characterization of several Mcm 

mutant mouse models.  Using a N-ethyl-N-nitrosourea (ENU) mutagenesis screen for 

chromosome instability mutants
92

, Shima et al. identified chaos3 (chromosome 

aberrations occurring spontaneously 3), a mutant allele of the Mcm4 gene
93

.  This allele 

was found to harbor a point mutation encoding a single amino acid substitution (F345I) in 

the MCM4 protein.  This change was found to significantly reduce overall MCM levels 

in mouse embryonic fibroblasts (MEFs) homozygous for chaos3 (Mcm4
chaos3/chaos3

), 
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leading to a lower number of dormant origins.  Mcm4
chaos3/chaos3

 MEFs also showed an 

increased number of chromosome breaks after treatment with aphidicolin (APH), an 

inhibitor of the replicative polymerases α, δ and ε
94-96

.  Most striking, however, was the 

observation that nearly all Mcm4
chaos3/chaos3

 females succumbed to mammary tumors with 

a mean latency of 12 months, suggesting for the first time that dormant origins play a 

critical role in tumor suppression.  Importantly, these findings proved consistent with 

regards to other MCM subunits, as a hypomorphic Mcm2 allele in mice also leads to 

decreased dormant origin usage and tumorigenesis
97,98

. 

Additional intriguing insights emerged when our lab later discovered that all 

MEFs derived in a C57BL/6J background display intrinsically lower origin densities 

when compared to other backgrounds
99

, suggesting that such replication kinetics are 

genetically controlled.  Mcm4
chaos3

 homozygosity in this context was sufficient to make 

the active origin density even lower and caused semi-lethality in mice.  These findings 

match well with another group that found that incremental increases or decreases in the 

amount of chromatin-bound MCMs can modify the phenotypes of Mcm4
chaos3/chaos3

 

mice
100

.  Namely, decreased MCM levels led to accelerated tumor onset or lethality while 

increased MCM levels significantly delayed tumorigenesis.  Together, these findings 

indicate that it is likely the amount of MCM2-7 complexes loaded on the chromatin that 

directly impacts genome stability, cell viability and tumor suppression. 
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A lack of active origins induces fragility at CFSs 

 In every human genome, there exist certain loci called common fragile sites 

(CFSs) that are highly prone to chromosome breakage simply due to the fact that they are 

intrinsically difficult to replicate.  These loci were originally identified as sites where 

gaps, breaks or constrictions formed on metaphase chromosomes under conditions of 

mild replicative stress, such as APH treatment
101

.  Breakage at these sites was termed 

CFS “expression” and hundreds of such loci have since been identified in the human 

genome
102

. 

 What makes CFSs particularly difficult to replicate?  There seems to be multiple 

correct answers to this question, none of which are mutually exclusive and may depend 

on the individual locus or cell type being studied
103,104

.  Early studies reported that AT-

rich sequences, due to their ability to form secondary structures, can impede the 

replication machinery and thereby induce fragility in a subset of CFSs
105-108

.  The 

presence of large genes
104,109

 and intrinsically late replication timing
110-112

 also appear to 

correlate with fragility.  Then in 2011, two very elegant studies provided striking new 

evidence that fragility at the FRA3B and FRA16C loci were due to either a paucity of 

replication initiation events
103

 or an inability to activate additional origins after fork 

stalling
108

, respectively.  These contexts sound very much like a reduction in the number 

of dormant origins, and indeed, the latter study found an increase in the expression of 

several CFSs upon knockdown of MCM3
108

. 
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The role of the FA pathway in CFS stability 

Perhaps unsurprisingly, factors required for the stability of stalled replication 

forks, such as ATR and CHK1, have been shown to induce CFS expression when 

absent
113-115

.  This also includes the Fanconi anemia (FA) proteins
116

, which play a 

necessary role in fork stabilization/protection
117-119

.  In 2005, cells deficient for FA 

pathway components were shown to display higher frequencies of CFS expression under 

conditions of replication stress
116

.  Treatment with low doses of replication inhibitors 

induced robust mono-ubiquitination and nuclear localization of FANCD2, key measures 

of FA pathway activation
120

.  Together with the fact that FA pathway activation occurs 

during normal S phase
117,121

, these data strongly implicated the FA pathway in 

responding to spontaneously stalled forks. 

In 2009, it was observed that low levels of APH treatment robustly induced the 

focus formation of the FA proteins FANCD2 and FANCI at CFSs throughout the G2/M 

phases
122

.  This led the authors to propose that FANCD2/FANCI mark sites of unresolved 

replication intermediates that go unrecognized by normal checkpoint processes.  As these 

cells progressed into anaphase, it was found that such FANCD2/FANCI foci actually 

flank structures called DNA ultra-fine bridges (UFBs)
122,123

.  UFBs are thin threads of 

DNA caught between segregating chromosomes that can only be visualized by staining 

for the BLM or PICH proteins
124,125

.  While such structures may be resolved through the 

actions of PICH/BLM and the FA proteins, they might also represent a pathogenic 

consequence of under-replicated loci.  CFS sequences were also reported to be present in 
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micronuclei (MN)
122

, implicating unresolved replication intermediates in chromosome 

mis-segregation as well.  Finally, another group found that under-replicated loci at CFSs 

could manifest as a newly identified form of chromosome instability called 53BP1 

nuclear bodies (53BP1-NBs)
126

.  Though not yet well understood, it was observed that 

CFSs can “rupture” during their passage through mitosis and are then “shielded” by the 

53BP1 protein in the subsequent G1 phase daughter nuclei.  Together, these studies 

reveal that UFBs, MN and 53BP1-NBs are all useful markers of unresolved replication 

intermediates and may be sources of replication-associated genomic instability.  Notably, 

FA mutant cells have been shown to exhibit increased frequencies of MN
123

, 53BP1-

NBs
127

 and UFBs
128

. 

 

Fanconi anemia 

The FA pathway derives its name from the human disease Fanconi anemia, a rare 

genetic disorder that occurs in approximately 1 in every 100,000 births
129

.  The disease is 

characterized at the clinical level by congenital abnormalities, hypogonadism, bone 

marrow failure (BMF) and a heightened predisposition to cancer, particularly acute 

myeloid leukemias and squamous cell carcinomas of the head, neck or ano-genital 

regions
130,131

.  It is genetically heterogeneous with 16 different complementation groups 

having been identified to date, including FANCA, FANCB, FANCC, FANCD1/BRCA2, 

FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ/BRIP1/BACH1, FANCL, FANCM, 

FANCN/PALB2, FANCO/RAD51C, FANCP/SLX4 and, most recently, 
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FANCQ/ERCC4
130,132,133

.  For a subset of patients, no complementation group has yet 

been assigned, indicating that other FA genes are yet to be identified. 

At the cellular level, FA patient cells display a slight accumulation in G2 phase of 

the cell cycle with increased numbers of spontaneous chromosome aberrations
134,135

.  But 

the hallmark of these cells is an exquisite hypersensitivity to agents that produce DNA 

interstrand crosslinks (ICLs), such as mitomycin C (MMC), cisplatin and 

diepoxybutane
136

.  ICLs create a covalent bond between the two DNA strands so that 

they cannot be opened for either replication or transcription.  This makes them extremely 

toxic to replicating cells and  potent chemotherapeutic agents
137

.  ICL-inducing agents 

also cause a drastic increase in chromosome breaks and radial structures in FA cells, and 

are thus used as the standard method of FA diagnosis
138,139

. 

Because of this, the molecular details of FA pathway activation have largely been 

determined by studying its role in ICL repair.  The canonical FA pathway is described as 

having three main tiers.  The first includes the 8 members of the FA core complex 

(FANCA, -B, -C, -E, -F, -G, -L and -M) and their associated co-factors (MHF1, MHF2, 

FAAP20, FAAP24 and FAAP100)
131,140

.  Upon fork stalling, these proteins function 

together as an E3 ubiquitin ligase, of which FANCL is the catalytic subunit
141

, to mono-

ubiquitinate the second tier proteins FANCD2 and FANCI.  This action allows for the 

recruitment of FANCD2/FANCI to the chromatin and is considered the key step for 

pathway activation
120,142,143

.  Proteins comprising the third tier are not needed for 

FANCD2/FANCI mono-ubiquitination and are therefore called the downstream 
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members.  These include FANCD1, -N, -J, -O, -P and -Q.  Several of these factors are 

known to have integral roles in HR and heterozygous mutations in FANCD1, FANCN, 

FANCJ, and FANCO cause susceptibility to breast and ovarian cancers
144-149

.  Mono-

ubiquitinated FANCD2/FANCI coordinates these factors to process the damaged fork.  In 

the case of ICL repair, this involves the excision of the ICL by nucleases
150-154

, bypassing 

the lesion via TLS polymerases
150,151

, and finally repair of the newly created DNA double 

strand break (DSB) by HR using the sister chromatid
155

. 

Given that APH treatment also robustly induces FA pathway activation
116,122,123

, 

the FA pathway may coordinate similar DNA repair mechanisms for the processing of 

non-ICL stalled forks.  This would explain its association with unresolved replication 

intermediates and its requirement for CFS stability.  Such a role would also seem to be 

more pertinent to physiological conditions, as ICLs are apparently very rare in the 

endogenous cellular environment
156

.  Therefore, understanding how the FA pathway 

works at spontaneously stalled forks appears essential for solving the enigmatic 

connection between FA pathway function and the clinical phenotypes of the disease.  It is 

currently thought that cancer predisposition in FA patients stems from increased 

chromosome instability, but how exactly this occurs or what the tumor-driving events are 

remains enigmatic.  Additionally, the FA pathway plays a specialized role in the 

survival/maintenance of hematopoietic stem cell populations
157

, but if this is due to a 

specific repair function of the FA pathway in these cells is unknown.  A pair of recent 

studies may have provided part of the answer by revealing important roles of the FA 

pathway in aldehyde metabolism
158,159

.  Fancd2 homozygous null mutant mice that were 
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deprived of aldehyde dehydrogenase 2 (ALDH2) activity either experienced embryonic 

lethality or succumbed to acute lymphoblastic leukemias at very early ages.  These 

findings suggest that aldehydes, which are present in the endogenous cellular 

environment and can form both crosslink and non-crosslink DNA damage
160-162

, may be 

linked to the phenotypes observed in FA patients. 

The generation of several FA mutant mouse models has also led to a greater 

understanding of the genetics underlying FA.  All models to date have faithfully 

recapitulated the cellular ICL hypersensitivity and hypogonadism seen in FA patients, the 

latter stemming from a reduced number of primordial germ cells
163,164

.  Surprisingly, 

however, these models show subtle, if any phenotypes regarding other developmental 

abnormalities, overt BMF or cancer predisposition
165,166

.  In fact, the most common 

developmental abnormality observed apart from hypogonadism is an increased incidence 

of microphthalmia in a C57BL/6J genetic background
167-170

.  These findings suggest that 

certain differences in the murine genetic model may mask the role of the FA pathway in 

physiological conditions. 

Another strategy that may help us to better understand FA pathway function is to 

identify the yet unassigned complementation groups of FA.  One compelling candidate 

FA gene is HELQ (previously known as HEL308), which encodes the DNA repair 

helicase HELQ.  The Drosophila melanogaster ortholog of HELQ was first identified in a 

screen for ICL hypersensitive mutants
171

.  It was later found to be required for meiotic 

DSB repair
172

, suggesting a role in HR.  Similar functions were shown for the C. elegans 
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ortholog
173,174

, with ICL resistance being epistatic to the FANCD2 ortholog in this 

organism
173

.  Knockdown of HELQ in human cells was shown to confer MMC 

hypersensitivity as well as decreased HR efficiency, the latter being epistatic to 

knockdown of FANCD2
175

.  Finally, GFP-tagged HELQ was found to co-localize with 

RAD51 and FANCD2 foci at stalled replication forks in human cells
176

.  However, up to 

this point there had been no mutant model system in which to study HELQ’s role in 

genome stability or its connection to the FA pathway in mammalian cells. 

 

Replication stress is linked to genomic instability and cancer 

 While genomic instability has long been known to be a hallmark of cancer 

cells
177

, how it is formed and whether it is a significant driver of tumor progression were 

not well understood for decades.  The mutator hypothesis originally proposed that 

precancerous cells acquire mutations in important “caretaker genes” that are necessary 

for genomic stability
178,179

.  The loss of such genes, it was thought, might lead to an 

increased mutation frequency that could drive cancer progression.  This seems to be the 

case for many hereditary cancers
180

, such as mutations in FA genes.  However, large-

scale sequencing studies later revealed that caretaker gene mutations are extremely rare in 

sporadic cancers
181-184

.  Rather, the most commonly mutated genes included TP53 and 

major oncogenes/tumor suppressor genes that regulate cell proliferation. 

 In 2005, a pair of studies made a surprising discovery when they found that 

precancerous lesions actually exhibit a highly activated DNA damage response (DDR), 
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including phosphorylation of ATM, CHK2, histone H2AX and p53
185,186

.  This correlated 

with an increased number of DSBs as well as an increased loss of heterozygosity of CFS 

loci.  A short time later, it was shown that oncogene-induced senescence occurs via this 

same mechanism
187,188

.  This led to the oncogene-induced replication stress model
189

, 

which suggests that activated oncogenes, while driving excessive proliferation, also cause 

perturbed replication kinetics (replication stress).  This leads to a higher number of forks 

stalling and eventually collapsing to form DSBs, particularly at CFSs with reduced origin 

densities.  This in turn hyper-activates the DDR, which serves as a major anti-tumor 

barrier by inducing p53-mediated cell cycle arrest, senescence or apoptosis.  In this 

context, late-stage mutations inactivating the ATM-CHK2-p53 checkpoint axis can lead 

to the uncontrolled proliferation of cells with severely perturbed replication and rampant 

genomic instability.  The fact that CFSs are a major source of the chromosomal 

rearrangements seen in tumors supports this model
104,190,191

. 

 

Summary 

 In summary, cells license an excess of potential origins for DNA replication prior 

to entering S phase.  While only a small subset of these origins is needed to complete 

replication under normal conditions, dormant origins can be activated as backups when 

needed.  Certain genomic loci called CFSs lack a sufficient number of active origins and 

therefore depend on the FA pathway for their stability during replication.  In this way, 

both dormant origins and the FA pathway work in parallel to maintain fork 
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stability/progression and suppress chromosome instability that might otherwise lead to 

cancer. 

 How exactly a loss of dormant origins might confer chromosome instability and 

tumorigenesis in the Mcm4
chaos3

 mutant mouse model had been a mystery.  In 

CHAPTER II, our studies reveal that MEFs homozygous for Mcm4
chaos3

 exhibit a ~60% 

decrease in the number of chromatin-bound MCMs, leading to a substantial loss of 

dormant origins.  We found that this led to an elevated number of persistently stalled 

forks, indicating that dormant origins play a pivotal role in stalled fork recovery even in 

unchallenged S phase.  Unresolved replication intermediates in these cells persisted even 

into M phase, as indicated by an increased number of FANCD2 foci in early M phase, 

suggesting that a number of lesions are not fully replicated upon mitotic entry.  This 

correlated with a higher frequency of chromosome non-disjunction in Mcm4
chaos3/chaos3

 

cells, leading to elevated levels of MN, aneuploidy and chromosome breaks.  These 

findings suggest that stalled fork recovery mediated by dormant origins is required to 

suppress multiple forms of chromosome instability that could promote tumorigenesis. 

 An intrinsically high number of FANCD2 foci in Mcm4
chaos3/chaos3

 cells suggested 

an important function of the FA pathway in stalled fork recovery when dormant origins 

are lacking.  In CHAPTER III, we investigated this functional interaction by disrupting 

the FA pathway in Mcm4
chaos3/chaos3

 cells via a null allele of Fancc (Fancc
-
).  As we 

predicted, Mcm4
chaos3/chaos3

;Fancc
-/-

 MEFs displayed a much greater number of 

persistently stalled forks than either single mutant.  However, we were also surprised to 
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uncover a unique role of dormant origins in replication completion.  A closer examination 

of FANCD2 foci in Mcm4
chaos3/chaos3

 cells revealed that DNA synthesis was still going on 

at these sites in early M phase, indicating delayed replication.  We thus concluded that 

dormant origins are required to preclude the presence of long, origin-poor loci that cannot 

finish replicating until extremely late.  Together, these collective roles of dormant origins 

and the FA pathway in fork progression proved essential for maintaining chromosome 

stability, and almost all Mcm4
chaos3/chaos3

;Fancc
-/-

 mice displayed perinatal lethality in an 

inbred C57BL/6J genetic background.  Surviving mice succumbed to tumors more 

quickly than Mcm4
chaos3/chaos3

 littermates, implicating both mechanisms in tumor 

suppression. 

Finally, the role of mammalian HELQ in relation to the FA pathway was 

unknown.  In CHAPTER IV, we describe the characterization of the first Helq mutant 

mouse model (Helq
gt

).  We found that mice homozygous for this allele exhibited mild 

forms of FA-like phenotypes such as hypogonadism and MMC sensitivity when 

compared to Fancc
-/-

 mutants, despite displaying no defects in FANCD2 mono-

ubiquitination.  Helq
gt/gt

 MEFs also showed no significant reduction in the levels of HR 

when measured in vivo.  Rather, Helq was shown to play an important role in the 

suppression of replication-associated genome instability, as Helq
gt/gt

;Fancc
-/-

 double 

mutant cells exhibited very high levels of spontaneous MN and 53BP1-NBs.  These data 

suggest that Helq acts in parallel to the FA pathway in the recovery of stalled forks.  
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Summary 

Eukaryotic cells license far more origins than are actually used for DNA replication, 

thereby generating a large number of dormant origins. Accumulating evidence suggests 

that such origins play a role in chromosome stability and tumor suppression, though the 

underlying mechanism is largely unknown. Here, we show that a loss of dormant origins 

results in an increased number of stalled replication forks, even in unchallenged S phase 

in primary mouse fibroblasts derived from embryos homozygous for the Mcm4
Chaos3

 

allele. We found that this allele reduces the stability of the MCM2-7 complex, but confers 

normal helicase activity in vitro. Despite the activation of multiple fork recovery 

pathways, replication intermediates in these cells persist into M phase, increasing the 

number of abnormal anaphase cells with lagging chromosomes and/or acentric fragments. 

These findings suggest that dormant origins constitute a major pathway for stalled fork 

recovery, contributing to faithful chromosome segregation and tumor suppression. 
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Introduction 

 Replication origin licensing is a prerequisite for genome duplication, as DNA 

synthesis in S phase initiates exclusively from licensed origins (reviewed in
1
). This 

process is restricted to the late M and early G1 phases, during which heterohexamers of 

the six minichromosome maintenance proteins (MCM2-7) are loaded onto origin 

recognition complex (ORC)-bound chromatin sites (reviewed in
2,3

). In the ensuing S 

phase, origins fire only once, when chromatin-bound MCM2-7 forms a replicative 

helicase complex (CMG complex) with cofactors CDC45 and GINS unwinding the 

DNA
4,5

. Active MCM2-7 complexes are then likely to travel along with ongoing 

replication forks, returning fired origins to the unlicensed state
6,7

. Following S phase 

entry, multiple factors prohibit origin relicensing, thereby preventing rereplication of 

DNA
8
. It should be noted that the majority of replication origins in mammalian cells are 

not defined by specific DNA sequences
9
. 

It is known that an excessive amount of MCM2-7 complex is loaded onto 

respective ORC-bound chromatin sites
10,11

 and that these complexes are presumably 

competent to initiate origin firing if permitted
11-13

. So, while a huge excess of potential 

origins exists throughout the genome in eukaryotic cells, only a fraction of them is 

apparently sufficient for DNA replication
14,15

. Therefore, the role of such excess 

chromatin-bound MCM2-7 complexes has not been well understood. 

Recent studies have investigated the role of these excess origins in human cancer 

cell lines
12,13

. Consistent with an overabundance of MCM2-7 complexes on chromatin, 
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up to 90% depletion of the MCM2-7 proteins had little effect on the densities of active 

origins in unperturbed S phase. However, MCM2-7-depleted cells did exhibit poor 

survival in the presence of low levels of the replication inhibitors aphidicolin (APH) or 

hydroxyurea. These findings suggest that dormant origins licensed by excess MCM2-7 

complexes are most likely used as backups for “emergency” situations by increasing the 

number of replication forks, promoting the completion of DNA replication. However, it 

should be noted that the use of cancer cell lines in these studies might have hindered the 

ability to reveal the true role of dormant origins in vivo, as they exhibit greatly 

upregulated expression of the MCM2-7 proteins
16,17

. Although it was previously thought 

that dormant origins are essentially dispensable in unperturbed S phase
12,13

, we and others 

have reported that a reduced level of MCM2-7 proteins causes spontaneous tumors in 

mice with complete penetrance
18-21

, suggesting that dormant origins play an important 

role in such conditions. These mouse models exhibited a high level of spontaneous 

micronuclei in erythrocytes, a surrogate phenotype for chromosome instability
20,21

. 

However, it remained to be determined whether chromosome instability occurs in other 

types of cells in these mice and how it is generated upon a loss of dormant origins, 

leading to spontaneous tumorigenesis in these mice. 

Here, we used the Mcm4
Chaos3

 allele to investigate the complex role of dormant 

origins in chromosome stability, as the Phe345Ile change encoded by this allele 

compromises the stability of the MCM2-7 complex and leads to a reduced number of 

dormant origins. We found that this loss of dormant origins results in an accumulation of 

stalled replication forks in unchallenged S phase. Furthermore, despite the activation of 
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multiple DNA repair pathways, a significant fraction of stalled forks persist into M phase 

and interfere with chromosome segregation. 
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Results 

Chromatin-Bound MCM2-7 Protein Levels Are Significantly Reduced in 

Mcm4
chaos3/chaos3

 MEFs, Resulting in a Loss of Dormant Origins 

Previously, we reported that Mcm4
Chaos3

 homozygosity causes lower levels of the 

MCM2-7 proteins
21

. As these proteins exist in vast excess of the number of replication 

origins that fire in S phase, we investigated whether Mcm4
Chaos3

 homozygosity also 

causes lower levels of chromatin-bound MCM2-7 proteins in primary fibroblasts (MEFs) 

isolated from Mcm4
Chaos3/Chaos3

 embryos. Western blots (Figure 1A) revealed an 

approximately 60% reduction of all components of the MCM2-7 complex on chromatin 

compared to wild-type cells. Chromatin immunoprecipitation followed by quantitative 

polymerase chain reaction also gave a similarly reduced rate of MCM2 at all specific loci 

examined (Figure S1A). To verify this reduced number of dormant origins 

in Mcm4
Chaos3/Chaos3

 cells, we performed a DNA fiber assay using consecutive dual 

labeling of two kinds of modified dUTPs
22

 (Figure 1B). Previous studies
12,13,19

 have 

demonstrated that a moderate loss of the MCM2-7 complexes from chromatin has little 

effect on active origin density in untreated conditions. Indeed, there was no difference in 

the average origin-to-origin distances between wild-type and Mcm4
Chaos3/Chaos3

 MEFs in 

untreated conditions (49.1 ± 2.6 kb and 49.6 ± 3.8 kb, respectively) (Figures 1C 

and S1B). However, in the presence of APH, which triggers dormant origin firing
12

, the 

average origin-to-origin distance in wild-type cells was reduced to 37.4 ± 1.9 kb, 

significantly smaller than the 41.5 ± 0.97 kb observed in Mcm4
Chaos3/Chaos3

 cells (Figures 
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1C and S1B). These findings collectively support the idea that Mcm4
Chaos3/Chaos3

 cells 

have a significantly reduced number of dormant origins. 

 

Mcm4
Chaos3/Chaos3

 Cells Have an Increased Number of Spontaneously Stalled Forks 

Even in unchallenged conditions, we found that Mcm4
Chaos3/Chaos3

 cells had nearly twice 

as many asymmetric bidirectional forks (one fork being stalled) as wild-type cells 

(Figure 1D). These observations suggest that fork stalling occurs at a higher frequency 

in Mcm4
Chaos3/Chaos3

 cells and may explain why they show reduced levels of replication 

proteins on chromatin, such as proliferating cell nuclear antigen (PCNA) and CDC45 

(Figure 1A). Indeed, we found that an increased number of Mcm4
Chaos3/Chaos3

 cells were 

positive for discrete, bright RPA32 foci (Figure 2A), which form at stalled replication 

forks
23,24

. Moreover, the frequency of Mcm4
Chaos3/Chaos3

 cells positive for RAD17 

phosphorylated at Ser645 (pRAD17)
25

 was increased about 2-fold in untreated conditions 

(Figure 2A). RAD17 is a substrate of ATR and is involved in fork recovery
25

. It functions 

upstream of CHK1, a major effector kinase in the ATR pathway
26

. Previous studies 

reported that MCM depletion compromises checkpoint signaling in human cancer cell 

lines
14,27

. However, Mcm4
Chaos3/Chaos3

 cells exhibited levels of CHK1 phosphorylation at 

Ser345 (pCHK1) similar to wild-type when challenged (Figure S2), suggesting that there 

is no major defect in the ATR-CHK1 pathway. This observation is consistent with data 

from a recent study using Mcm2 hypomorphic mouse cells
19

. Despite relatively consistent 

detection of pRAD17 foci (Figure 2A), pCHK1 was barely detectable in 
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unchallenged Mcm4
Chaos3/Chaos3

 cells (Figure S2). This may indicate that the number of 

stalled forks in Mcm4
Chaos3/Chaos3

 cells is still not sufficient to induce full activation of the 

ATR-CHK1 pathway, allowing cell-cycle progression in the majority of Mcm4
Chaos3/Chaos3

 

cells. Stalled forks can potentially collapse, leading to the formation of double-strand 

breaks (DSBs). Mcm4
Chaos3/Chaos3

 cells exhibited only a modest increase in the formation 

of γH2AX foci, a marker of DSBs
28

, in S phase (Figure 2B, left). It should be noted that 

only a small percentage of S phase cells were positive for γH2AX foci regardless of 

genotype (Figure 2B). Thus, stalled forks appear to be stably maintained during S phase. 

 

The Phe345Ile Change Impairs the Stability of the MCM2-7 Complex, but Not Helicase 

Activity 

To understand what causes fork stalling in Mcm4
Chaos3/Chaos3

 cells, we measured fork 

velocity using the DNA fiber technique (Figure 1B). Surprisingly, fork velocity was 

actually faster in Mcm4
Chaos3/Chaos3

 cells compared to wild-type (Figure S1C). This 

apparently faster fork velocity could be partially explained by a lower level of fork 

terminations in Mcm4
Chaos3/Chaos3

 cells due to a loss of dormant origins (see Figures S1D 

and S1E). The helicase functions of the MCM2-7 complex are carried out in the CMG 

complex (
4
; A. Costa, I.I., N. Tamberg, T. Petojevic, E. Nogales, M.R.B., and J.M. 

Berger, unpublished data). As the phenylalanine residue mutated in Mcm4
Chaos3/Chaos3

 

cells lies in a highly conserved domain (Figure S3A), we reconstituted 

the Drosophila CMG complex with the same mutant MCM4 to investigate its actual 
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helicase activity. The mutant complex was purified with a stoichiometry identical to 

wild-type (Figure 3A). Interestingly, the mutant CMG was slightly more efficient 

helicase than the wild-type CMG (Figure 3B), which may explain the faster fork speed 

in Mcm4
Chaos3/Chaos3

 cells (Figures S1C and S1D). However, the consistently lower yields 

of the mutant CMG complex prompted us to examine the stability of the mutant MCM2-7 

complex. Wild-type and mutant MCM2-7 complexes were purified and subjected to 

analytical fractionation. While the wild-type complexes were stable, it was clear that the 

mutant complexes dissociated into subfractions (Figure 3C), reflecting a suspected 

weaker association between MCM6 and MCM4 (Figure S3B). Similarly reduced 

interactions between MCM6 and MCM4 were also found in Mcm4
Chaos3/Chaos3

 cells 

(Figure S3C). Therefore, these weaker associations are the most likely cause of the 

instability of the mutant complex, thereby contributing to a decreased amount of MCM2-

7 proteins. Taken together, these data suggest that a loss of dormant origins, rather than a 

defect in helicase activity, is the major cause of stalled fork accumulation 

in Mcm4
Chaos3/Chaos3

 cells. 

 

Mcm4
Chaos3/Chaos3

 Cells Exhibit Significantly Elevated Levels of RAD51 and BLM Foci 

Stalled forks can be rescued by homology-directed repair involving RAD51
29

. We found 

that Mcm4
Chaos3/Chaos3

 cells exhibit a mild increase (~2-fold) in spontaneous RAD51 foci 

formation (Figure 4A) and a drastic increase in foci formation for BLM helicase 

(Figure 4B), another protein involved in stalled fork recovery that counteracts 
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RAD51
30,31

. As yeast mcm mutants exhibit a hyperrecombination phenotype
32,33

, we 

measured the frequency of homologous recombination (HR) events using the FYDR 

(fluorescent yellow direct repeat) transgenic locus system (Figures S4A and 

S4B)
34

. Mcm4
Chaos3/Chaos3

 MEFs exhibited slightly higher frequencies of spontaneous HR 

events at this locus (Figures 4C and S4C), but were not significantly different from wild-

type. Next, we challenged these MEFs with APH, which induces fork stalling and 

RAD51 foci formation (Figure 4A). Unlike treatment with a higher dose of APH (3 µM) 

or camptothecin (CPT), an inducer of DSBs at replication forks
35

 (see Figure S2), a low 

dose of APH did not increase HR events (Figure 4D). Therefore, the rescue of stalled 

forks in Mcm4
Chaos3/Chaos3

 cells may occur via the RAD51/BLM-mediated pathways 

without a significant increase in canonical HR events. 

 

The Occurrence of Replication Intermediates Marked by FANCD2 Sister Foci in 

Prophase Is Markedly Enhanced in Mcm4
Chaos3/Chaos3

 Cells, Leading to an Increased Level 

of Micronucleus Formation 

Recent studies reported that unreplicated regions flanked by two stalled forks can persist 

into M phase and are marked with sister foci of FANCD2, a Fanconi anemia protein that 

presumably directs the resolution of such structures
36,37

. To investigate whether stalled 

forks are resolved before M phase entry in Mcm4
Chaos3/Chaos3

 cells, we examined the 

formation of FANCD2 sister foci in prophase. While FANCD2 sister foci were very 

rarely found in wild-type cells, nearly 50% of Mcm4
Chaos3/Chaos3

 cells were positive for 
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such foci at prophase (Figure 5A). Higher numbers of FANCD2 foci were also observed 

in Mcm4
Chaos3/Chaos3

 cells throughout M phase (Figure S5A). We also found that foci 

formation for FANCI, a critical FANCD2-interacting protein
38,39

, was drastically 

increased in Mcm4
Chaos3/Chaos3

 cells as well (Figure S5B). This drastic increase in 

FANCD2 sister foci was associated with an elevated incidence of aberrant anaphase cells 

containing lagging and/or acentric chromosomes (Figure 5B). In accord with such 

structures in anaphase leading to micronucleus formation
37

, Mcm4
Chaos3/Chaos3

 cells also 

exhibited a 2-fold increase in spontaneous micronuclei MN compared to wild-type cells 

(Figure 5B). This is a relatively small increase compared to the 20-fold increase observed 

in erythrocytes, the original phenotype that led to the identification of Mcm4
Chaos3

 
21

. 

However, this can be attributed to the specific nature of erythrocytes as enucleated cells, 

as MN may occur more frequently in the absence of functional DNA repair and 

checkpoint responses in erythroblasts. 

 

Mcm4
Chaos3/Chaos3

 Cells Exhibit Chromosome Number and Structural Instability in Late M 

Phase 

To understand the extent to which lagging chromosomes contribute to MN formation 

in Mcm4
Chaos3/Chaos3

 cells, we quantitated the number of MN positive for the centromeric 

protein CENP-A
40

. We found that the incidence of CENP-A positive MN is significantly 

elevated in Mcm4
Chaos3/Chaos3

 cells compared to wild-type (Figure 5C), indicating an 

increased level of aneuploidy. Since aneuploid cells are rare and may have a reduced rate 
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of proliferation
41

, we performed interphase fluorescence in situ hybridization (FISH) 

using probes specific to near-centromeric regions of chromosome 16. This revealed not 

only a significant increase in aneuploidy in Mcm4
Chaos3/Chaos3

 cells but also a significant 

increase in tetraploidy (Figure S5C). The exact mechanism responsible for 

tetraploidization has not been determined, but could result from cytokinesis failure 

(Movies S1–S3). Acentric chromosomes resulting from chromosome breaks, on the other 

hand, create CENP-A-negative MN, which were found in ~40% of all MN in 

untreated Mcm4
Chaos3/Chaos3

 cells (compare the MN frequencies in Figures 5B and 5C). As 

reported previously
21

, G-banding analysis of metaphase chromosomes revealed no 

significant increase in spontaneous breaks in Mcm4
Chaos3/Chaos3

 cells. However, it did 

reveal an increase in numerical and structural aberrations in Mcm4
Chaos3/Chaos3

 cells, such 

as translocations and dicentric chromosomes (Figures 5D and S5D). Therefore, it is likely 

that acentric fragments arise after metaphase through the conversion of unresolved 

replication intermediates to DSBs. Indeed, we found a >2-fold increase in the number of 

MN positive for γH2AX foci in Mcm4
Chaos3/Chaos3

 cells that had just completed mitosis 

(Figure 5E). Interestingly, we also found a significant increase in the number of γH2AX 

foci in the main nuclei of Mcm4
Chaos3/Chaos3

 cells in early G1 phase (Figure S5E). These 

data indicate that unresolved replication intermediates are more susceptible to collapse 

after metaphase, giving rise to DSBs. 
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The Chromosome Instability Seen in Mcm4
Chaos3/Chaos3

 Cells Promotes the Formation of a 

Variety of Spontaneous Tumors 

Previously, we reported that Mcm4
Chaos3/Chaos3

 females in the C3HeB/FeJ (C3H) 

background develop mammary tumors only
21

. Since tumor spectrum is strongly 

influenced by genetic background, as seen in Mcm2 hypomorph mice
19

, we 

bred Mcm4
Chaos3

 into the C57BL/6J (B6) strain to investigate the effect of genetic 

background on Mcm4
Chaos3

 tumorigenesis. All B6 Mcm4
Chaos3/Chaos3

 females succumbed to 

neoplasms by the age of 16 months with a mean latency of 12.4 months (Figure 6A 

and Table S1). However, unlike C3H Mcm4
Chaos3/Chaos3

 females, B6 Mcm4
Chaos3/Chaos3

 

females were highly prone to histiocytic sarcomas. Histiocytic sarcoma is a rare 

malignant proliferation of macrophage-like cells in humans and mice (Figure 6B)
42,43

. We 

also generated 21 F1 Mcm4
Chaos3/Chaos3

 females by crossing B6 congenic (N8) and C3H 

congenic (N8) mice. All F1 Mcm4
Chaos3/Chaos3

 females developed tumors with a mean 

latency of 14.2 months (Figure 6A and Table S2). Histiocytic sarcomas and lymphomas 

were the predominant neoplasms (Figures 6B and 6C), while three mammary 

adenocarcinomas were also observed. These data suggest that the chromosome instability 

seen in Mcm4
Chaos3/Chaos3

 cells (Figure 6D) is not restricted to mammary tumor formation 

but is relevant to the formation of a variety of tumors.  
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Discussion 

In the present study, we used primary Mcm4
Chaos3/Chaos3

 MEFs as a model to 

investigate the mechanism by which a loss of dormant origins confers chromosome 

instability. As summarized in Figure 6D, our findings suggest that a loss of dormant 

origins leads to the accumulation of stalled forks, ultimately resulting in incomplete DNA 

replication. The resulting unresolved replication intermediates are then carried over into 

M phase, thereby interfering with proper chromosome segregation. As a 

consequence, Mcm4
Chaos3/Chaos3

 cells exhibit increased incidences of aneuploidy, 

chromosome breaks, translocations, and tetraploidy, all of which are commonly observed 

in cancer cells. Given the high tumor predisposition of Mcm4
Chaos3/Chaos3

 mice, the 

chromosome instability seen in Mcm4
Chaos3/Chaos3

 cells is likely to promote tumorigenesis. 

Collectively, these findings suggest that dormant origins exist in abundance because of 

their critical role in fork recovery in unchallenged S phase, thereby promoting 

chromosome stability and tumor suppression. 

Even in unchallenged S phase, replication forks stall due to the presence of 

endogenous DNA lesions. It is currently thought that stalled forks can be recovered by 

(1) homology-directed repair, (2) translesion synthesis (TLS) with error-prone DNA 

polymerases, or (3) passive replication from an adjacent origin
44

. The use of dormant 

origins for stalled fork rescue can be viewed as an example of the last option, although 

this option originally implied rescue by adjacent major origins without any de novo 

firing. Our data show that the average density of active origins remains unchanged 
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between wild-type and Mcm4
Chaos3/Chaos3

 cells in unchallenged S phase (Figure 1C). This 

observation supports the previously held notion
12

 that only dormant origins in the vicinity 

of stalled forks are allowed to fire and are therefore not likely to be detected as clearly as 

major origins by DNA fiber analysis (see model in Figure S6). Further studies are needed 

to elucidate the molecular mechanisms responsible for the use of dormant origins for 

stalled fork rescue. 

Among the multiple pathways for stalled fork recovery, how an appropriate 

pathway is chosen for spontaneously stalled forks is largely unknown. An increased 

frequency of spontaneously stalled forks in Mcm4
Chaos3/Chaos3

 cells led us to hypothesize 

that dormant origins play a more significant role in the recovery of spontaneously stalled 

forks than previously anticipated
12,13

. In agreement with this hypothesis, a loss of 

dormant origins appears to activate homology-directed repair for the recovery of stalled 

forks (Figure 4A). Moreover, a recent study showed that MCM depletion in human 

primary lymphocytes leads to an increase in RAD51 foci formation
45

. Unlike some yeast 

mcm mutants
32,33,46

, Mcm4
Chaos3/Chaos3

 cells exhibited no significant increase in canonical 

HR events when measured at the FYDR locus. This finding is consistent with recent 

data
29

 and can also be explained by the antirecombinogenic role of BLM
30

, which also 

forms an elevated number of foci in Mcm4
Chaos3/Chaos3

 cells (Figure 4B). It should be 

noted that this reporter assay detects only unequal recombination events with tract lengths 

of more than a few hundred bases. Therefore, our data cannot exclude the possibility of 

an increase in gene conversion events with much shorter tract lengths. 
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Despite the activation of homology-directed repair, stalled forks do not seem to be 

fully rescued, as >50% of Mcm4
Chaos3/Chaos3

 cells exhibit FANCD2/I foci in prophase 

(Figures 5A and S5B), a marker of unresolved replication intermediates
36,37

. These 

observations suggest that dormant origins could be a preferred option for fork recovery 

over other pathways. This idea is quite feasible, considering the possible harmful 

consequences of homology-directed repair and TLS, such as genome rearrangements
47

 

and point mutations
48

, respectively. A recent study reported that MCM depletion in 

human primary lymphocytes causes hyperactivation of the nonhomologous end-joining 

(NHEJ) pathway, resulting in an increase in the misrepair of DSBs
45

. Interestingly, we 

found that Mcm4
Chaos3/Chaos3

 cells exhibited an increased incidence of translocations and 

dicentric chromosomes (Figures 5D and S5D). Based on our model (Figure 6D), 

chromosome breakage is likely to occur in late M phase. It is then possible that these 

broken chromosome ends are repaired by NHEJ in G1 phase, generating translocations. 

Taken together, these data suggest the hypothesis that the preferential use of dormant 

origins for stalled fork rescue occurs to prevent a possible increase in misrepair events 

resulting from hyperactivated DNA repair pathways. 

In contrast to the commonly held idea that stalled forks eventually collapse, we 

found that spontaneously stalled forks are actually well preserved in S phase in primary 

mouse cells (Figure 2B). In fact, a fraction of stalled forks persisted into M phase, as 

evidenced by an increased number of FANCD2/I foci in prophase (Figures 5A and S5B). 

While the majority of these stalled forks are likely to be resolved by the downstream 

Fanconi pathway, a certain fraction of them remain unresolved, presumably physically 
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interconnecting sister chromatids
36,37

. Our study showed that a loss of dormant origins 

alone is capable of inducing such chromosome missegregation events without any 

exogenous replication inhibitor. The persistence of stalled forks in Mcm4
Chaos3/Chaos3

 cells 

also partially activates the ATR pathway, as evidenced by a significant increase in 

pRAD17 foci formation (Figure 2A). This may explain why there exists a subtle but 

significant level of Mcm4
Chaos3/Chaos3

 cells accumulated at the G2/M phases as described 

previously
21

. It should also be noted that a low level of unresolved replication 

intermediates apparently escape from any known cell-cycle checkpoint, as previously 

demonstrated
49,50

. 

Consistent with the role of dormant origins in tumor suppression, a recent study 

reported that tumor formation in Mcm4
Chaos3/Chaos3

 mice is significantly delayed by 

increasing the levels of chromatin-bound MCM2-7 proteins
18

. We find 

that Mcm4
Chaos3/Chaos3

 mice exhibit phenotypes very similar to what has been seen 

in Mcm2 hypomorph mice
19,20

, such as a modest increase in the levels of γH2AX and 

phosphorylated p53 (Figure S2). While it remains to be determined, 

Mcm4
Chaos3

 and Mcm2 hypomorph mice may share essentially the same mechanism for 

tumorigenesis. One striking difference between these two mouse models is tumor 

latency; Mcm2 hypomorph mice develop tumors much faster than Mcm4
Chaos3/Chaos3

 mice. 

As discussed elsewhere
20

, this difference could be attributed to the distinct roles of each 

component of the MCM2-7 complex. Moreover, the presence of the transgene 

in Mcm2 hypomorph mice may additionally contribute to tumorigenesis by altering the 

expression of nearby genes. 
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Chromosome instability is a hallmark of cancer cells. However, how it is 

generated is still not well understood. We found that an increased frequency of stalled 

forks is sufficient to induce multiple types of chromosome instability. This idea is also 

consistent with an emerging hypothesis that replication stress is the major cause of the 

chromosome instability observed in cancer
51,52

. Since the majority of cancer-initiating 

events deregulate the proper G1/S transition
53

, a loss of dormant origins may occur at an 

early stage of carcinogenesis. In this context, the findings presented in this study are 

highly relevant to our understanding of cancer development.  



  Kawabata et al., 2011 

53 
 

Experimental Procedures 

Animals and MEFs 

Mcm4
Chaos3

 was introduced into the B6 and C3H backgrounds by backcrossing seven 

times (N8). F1 mice were generated by crossing congenic B6 and C3H lines. All 

experiments involving mice were approved by the Institutional Animal Care and Use 

Committee (IACUC). MEFs were generated from 12.5–14.5 dpc embryos and cultured 

using a standard procedure. F1 MEFs were used for all experiments unless otherwise 

noted. 

 

Western Blotting and Immunofluorescence Microscopy 

Western blotting and immunofluorescence staining were carried out using standard 

procedures. Cell fractionation was performed using the Qproteome Nuclear Protein Kit 

(QIAGEN, Germantown, MD). Detailed procedures are provided in Supplemental 

Experimental Procedures. 

 

DNA Fiber 

We used the DNA fiber protocol previously developed by Sugimura et al
22

. Briefly, 

ongoing forks were labeled with digoxigenin-dUTPs for 20 min and then with biotin-

dUTPs for 30 min. Labeled cells were dropped onto slides, fixed, and dipped into lysis 

buffer. The resulting DNA fibers were released and extended by tilting the slides. 
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Incorporated dUTPs were then visualized by immunofluorescent detection using Anti-

digoxigenin-rhodamine (Roche, Branford, CT) and streptavidin, Alexa Fluor 488 

(Invitrogen, Carlsbad, CA). 

 

HR Events at the FYDR Locus 

HR-positive recombinant cells were detected by methods described previously
34

. Detailed 

procedures are provided in Supplemental Experimental Procedures. 

 

 Aberrant Anaphase and Cytokinesis-Block Micronucleus Assays 

For both analyses, cells were cultured on coverslips, fixed, and stained with DAPI for 

fluorescence microscopy. At least 100 anaphases were scored per experiment. To score 

micronuclei, cytochalasin B (0.72 µg/ml) was added to block cytokinesis 16 hr before 

harvest. The resulting binucleated cells were scored for the presence of micronuclei. At 

least 200 binucleated cells were scored per experiment. For the CENP-A and γH2AX 

analyses, cells were subjected to antibody treatment following fixation. 

 

Purification and Characterization of the MCM2-7 and CMG Complexes 

The baculovirus vector expressing the Drosophila melanogaster MCM4
Chaos3

 protein was 

constructed by standard PCR-based site-directed mutagenesis and the Invitrogen Bac-to-

Bac protocol. The conserved residue Phe349 was replaced by isoleucine in the resulting 
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mutant protein. The purification of the Drosophila CMG and MCM2-7 complexes was 

performed as described previously
4
. The MCM3 and Sld5 proteins carry N-terminal 

FLAG and HA affinity tags, respectively. For the MCM2-7 stability experiments, 

fractions from the Mono Q HR 5/5 column chromatography step that contained the MCM 

2-7 hexameric complex were pooled and injected onto the Mono Q PC 1.6/5 column 

connected to the Pharmacia SMART micropurification system. The column was 

developed with ten column volumes of linear 300–1100 mM potassium acetate gradient, 

and 20 fractions were collected and analyzed by SDS-PAGE and Coomassie brilliant blue 

staining. The DNA helicase assays were carried out with an M13-based circular substrate 

as described previously
4
, except that the ATP concentration was kept at 10 mM. 
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Figure legends 

Figure 1 

Mcm4
Chaos3/Chaos3

 Cells Have Reduced Amounts of the MCM2-7 Proteins on Chromatin, 

Resulting in a Reduced Number of Dormant Origins. (A) All components of the MCM2-

7 complex are significantly reduced in Mcm4
Chaos3/Chaos3

 cells. Reduction levels of 

chromatin-bound MCM2/4/7 as well as other replication proteins in Mcm4
Chaos3/Chaos3

 

(C3) cells were estimated by referencing wild-type (WT) proteins loaded in different 

amounts (left). In Mcm4
Chaos3/Chaos3

 cells, the MCM3/5/6 proteins were also reduced in 

both the chromatin fraction and whole-cell extract (WCE) (right). Protein samples were 

obtained from cells cultured asynchronously. Actin and stained membranes were used as 

loading controls. (B) Schematic presentation of consecutive dual labeling in the DNA 

fiber assay. Replication forks were labeled with digoxigenin-dUTPs (dig-dUTPs, red) for 

20 min followed by biotin-dUTPs (green) for 30 min. (C) There is no significant 

difference in the average density of active origins between wild-type and 

Mcm4
Chaos3/Chaos3

 cells in untreated conditions (UNT). However, APH treatment induced 

a significantly lower origin density in Mcm4
Chaos3/Chaos3

 cells (p < 0.05, t test). These 

values were determined by measuring the distances between adjacent origins as shown 

(left). Bars show standard error of the mean (SEM). (D) Mcm4
Chaos3/Chaos3

 cells show a 

significant increase in the frequency of asymmetric forks (see image on the left). The 

average frequencies are shown with SEMs and are compared by χ
2
 test (p < 0.005, see 

asterisk). 
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Figure 2 

Elevated Levels of RPA, pRAD17, and γH2AX Foci Formation Are Observed 

in Mcm4
Chaos3/Chaos3

 Cells. (A) An increased number of Mcm4
Chaos3/Chaos3

 cells are positive 

for RPA32 and pRAD17 (Ser645) foci. Shown are the average percentages of cells 

positive for each marker in the untreated (UNT) and APH-treated (300 nM for 24 hr) 

conditions. Bars are SEMs for ten different fields obtained from two independently 

performed experiments. Representative images are shown on the right with a magnified 

view of the selected nuclei. Nuclei are stained with DAPI (blue). Scale bars are 40 µm. 

(B) Mcm4
Chaos3/Chaos3

 cells show a slight increase in the formation of γH2AX foci in S 

phase. Shown are the average percentages of cells positive for γH2AX foci and the 

distribution of the number of γH2AX foci per cell in the untreated condition (left). S 

phase cells were detected by incorporation of dUTPs. Bars are SEMs for three 

independent experiments. Representative images are shown on the right. Scale bars are 

10 µm. 

 

Figure 3 

The Mutant MCM2-7 Complex Is Unstable but Retains Proper Helicase Activity in the 

CMG Complex. (A) Silver-stained 10% SDS-polyacrylamide gels (PAGE) show purified 

wild-type and mutant CMG complexes. (B) An autoradiograph of a helicase assay 

showing the radiolabeled products separated by PAGE (top). M13 circular DNA annealed 
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with a radiolabeled oligonucleotide was used as a substrate. The migration of double-

stranded substrate and displaced oligo is shown with arrows. The amount of protein in 

femtomoles in each reaction is indicated. The first two lanes show the completely 

denatured substrate and the substrate with no protein. The reactions were performed in 

duplicate and quantified as a percentage of substrate processed, as shown in the bottom 

graph. Error bars show standard deviations. (C) The salt elution profiles of wild-type and 

mutant MCM2-7 from Mono Q anion-exchange chromatography show the relative 

instability of the mutant complex (top). Blue and red lines show the relative absorbance 

at 280 nm for the wild-type and mutant gradient runs, respectively (left y axis); the gray 

axis indicates salt concentration (right y axis). The peak protein fractions from the mutant 

gradient were separated by SDS-PAGE and stained with Coomassie brilliant blue 

(bottom); the fraction numbers are shown above each lane. The starting stoichiometric 

mutant MCM2-7 complex that was loaded onto this column is shown in the first lane, and 

the pooled peak fractions (15 and 16) from the WT gradient are shown in the last lane. 

 

Figure 4 

An Increase in RAD51 and BLM Foci Formation in Mcm4
Chaos3/Chaos3

 Cells Does Not 

Lead to a Significant Increase in Homologous Recombination Events. (A) An increased 

number of Mcm4
Chaos3/Chaos3

 cells are positive for RAD51 foci. (B) BLM foci formation is 

drastically elevated in Mcm4
Chaos3/Chaos3

 cells. Shown in (A) and (B) are the average 

percentages of cells positive for ≥2 foci in the untreated and APH-treated conditions 
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(left). The average number of foci per cell is also shown. Bars are SEMs for ten different 

fields obtained from two independently performed experiments. Representative images 

are shown on the right. Scale bars are 20 µm. (C) No significant increase in HR events 

was detected at the FYDR locus in Mcm4
Chaos3/Chaos3

 cells compared to wild-type. Bars are 

SEMs for recombinant frequencies determined by analyzing at least 16 embryos per 

genotype. (D) No significant increase in HR events was detected at the FYDR locus in 

either wild-type or Mcm4
Chaos3/Chaos3

 cells after a low dose of APH treatment. CPT and a 

higher dose of APH were used as positive controls. Bars are SEMs for recombinant 

frequencies determined by analyzing at least three independent MEF lines. 

 

Figure 5 

Mcm4
Chaos3/Chaos3

 Cells Have a Drastically Increased Number of FANCD2 Sister Foci at 

Prophase, Preceding Abnormal Anaphase and Micronucleation. (A) An increased 

frequency of FANCD2 sister foci is found in Mcm4
Chaos3/Chaos3

 cells. The average 

percentages of cells positive for FANCD2 sister foci (top) and the average numbers of 

FANCD2 sister foci per cell (bottom) are shown with SEMs. Note that the number of 

FANCD2 sister foci per cell increases approximately 2-fold in Mcm4
Chaos3/Chaos3

 cells 

compared to wild-type cells, while nearly all cells become positive for such foci in the 

presence of APH. Representative images are shown on the right with a magnified view 

(indicated by squares). (B) An increased number of Mcm4
Chaos3/Chaos3

 cells undergo 

abnormal anaphase, forming micronuclei (MN). The average frequencies of abnormal 
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anaphases containing lagging chromosomes and/or fragments are shown for wild-type 

and Mcm4
Chaos3/Chaos3

 cells with SEMs (left, top). B6 MEFs were used for anaphase 

analysis. The average MN frequencies are also shown for wild-type and Mcm4
Chaos3/Chaos3

 

cells with SEMs (left, bottom). MN were detected using the cytokinesis-block 

micronucleus assay
54

. Representative images are shown on the right for a normal 

anaphase, an abnormal anaphase containing lagging chromosomes, a normal binucleated 

cell, and one with a micronucleus. Scale bars are 5 µm. (C) Mcm4
Chaos3/Chaos3

 cells have 

an increased number of centromeric (CENP-A
+
) MN compared to wild-type cells. The 

average frequencies of CENP-A
+
 MN were determined from three independently 

performed experiments and are shown with SEMs. Representative images are shown on 

the right. (D) G-banding analysis of metaphase chromosomes shows no evidence for 

increased chromosome breaks but does reveal an increased occurrence of translocations 

in Mcm4
Chaos3/Chaos3

 cells. Representative karyotypes containing translocations are also 

shown (bottom). (E) Mcm4
Chaos3/Chaos3

 cells have an increased number of γH2AX-foci-

positive (γH2AX
+
) MN compared to wild-type cells. The average frequencies of 

γH2AX+ MN were determined from three independently performed experiments and are 

shown with SEMs. Representative images are shown on the right for MN positive and 

negative for γH2AX (red) in binucleated cells. APH was used as a positive control (150 

nM for 24 hr). Nuclei are stained with DAPI (blue). Scale bars (A, C, and E) are 10 µm. 
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Figure 6 

Many Different Types of Spontaneous Tumors Are Observed in Mcm4
Chaos3/Chaos3

 Mice. 

(A) Tumor-free survival curves for B6 and F1 Mcm4
Chaos3/Chaos3

 (C3) and wild-type (WT) 

females. (B) Representative images of histiocytic sarcomas. A hematoxylin and eosin 

(H&E) stain (top) shows a diffusely hypercellular liver area with round cells (black 

arrowheads) smaller than hepatocytes (unfilled arrowheads). Immunohistochemistry 

(IHC) with Mac-2, a macrophage marker, identified these small round cells (stained 

brown) as histiocytes (bottom). (C) Representative images of F1 Mcm4
Chaos3

 

gastrointestinal lymphomas, including an H&E image (top) and an IHC image with B220, 

a B cell marker (bottom). (D) A model for chromosome instability driven by a loss of 

dormant origins. A lack of dormant origins increases the frequency of unresolved 

replication intermediates marked with FANCD2 sister foci (red diamonds) in M phase. 

Although such lesions can be rescued in a Fanconi-pathway-dependent manner, a 

significant fraction persists into anaphase, interconnecting sister chromatids. As a result, 

the disjunction of sisters is disrupted and lagging chromosomes occur. This has three 

possible consequences: (1) Tetraploidy may occur due to cytokinesis failure, when the 

frequency of nondisjunction is high
55

, (2) Aneuploidy could occur due to the 

nondisjunction of a few sisters, forming MN positive for CENP-A, or (3) Breaks may 

arise when unresolved replication intermediates are converted into DSBs, generating 

acentric fragments. In this case, MN positive for γH2AX foci would be formed. These 

aberrations lead to multiple types of chromosome instability, thereby contributing to 

tumorigenesis.
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Supplemental experimental procedures 

ChIP 

Sigma’s Imprint Chromatin Immunoprecipitation Kit was used. Briefly, cells in an 

asynchronous culture were harvested. The DNA and proteins were cross-linked using 1% 

formaldehyde and then quenched in 0.125M glycine. After cell lysis, the nuclei were 

precipitated and the DNA was fragmented by sonication. A portion of the fragmented 

DNA was saved as an input control. For the rest of the sample, immunoprecipitation (IP) 

was performed with the anti-MCM2 antibody (Abcam, ab3159) that gave the best 

performance judged by semi-quantitative PCR results using the primer pairs specific to 

the rDNA locus origins
56

 among all antibodies tested in our laboratory. After reversal of 

the cross-links and proteinase K digest, DNA was used for quantitative PCR using 

standard conditions. 

 

Coimmunoprecipitation 

Coimmunoprecipitation was performed using a kit (Dynabeads Co-Immunoprecipitation 

Kit, Invitrogen). Briefly, 3x106 cells were harvested in PBS and proteins were extracted 

using an extraction buffer (Buffering salts pH7.4, 110 mM KOAc, 0.5% Triton X-100, 

protease inhibitor; complete EDTA-free). After centrifugation (2600 x g for 5min), the 

supernatant was incubated with anti-MCM2 or anti-rabbit IgG antibody-bound beads, 
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followed by several washes. Bound proteins were released by buffer EB (Buffering salts, 

pH2.8) and used for western blotting. 

 

Interphase FISH  

DNA isolated from BAC clones RP23-290E4 and RP23-356A24 was used to make 

probes specific to regions flanking the centromere of chromosome 16
57

 using the Vysis 

Nick Translocation kit (Abbott Molecular) as well as Green-496-dUTPs and Orange-552-

dUTPs from Enzo Life Sciences. Hybridization was performed under standard 

conditions. Images were captured using the Axio Imager A1 (Zeiss). At least 200 nuclei 

were scored for the number of FISH signals per experiment. A total of >600 nuclei was 

observed per genotype in three sets of independently performed experiments. 

 

Generation of MEFs 

MEFs were obtained from 12.5-14.5 dpc embryos using a standard procedure. A 

homogenized embryo was plated onto a 10 cm dish (p0), replated onto a 15 cm dish (p1), 

and frozen in three vials. For experiments, one vial was thawed and the cells were 

cultured on a 10 cm dish for a few days (p2). The resulting 6-9 x 106 cells (p3) were then 

replated for experimental use. 
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Antibodies 

For western blotting and immunocytofluorescence, we used Abcam anti-MCM antibodies 

(ab3159, ab4460, ab4459, ab17967, ab4458 and ab2360 for MCM2, MCM3, MCM4, 

MCM5, MCM6 and MCM7, respectively), anti-pan actin (Thermo Scientific; MS-1295-

P1ABX), anti-RAD51 (Calbiochem; PC130) anti-CDC45, anti-FANCD2, anti-BLM, 

anti-FANCI (Abcam; ab56476, ab2187, ab476, and ab74332, respectively), anti-

phospho-RAD17, anti-phospho-CHK1, anti-H2AX, anti-PCNA, anti-CENP-A, anti-

RPA32, anti-phospho-p53, and anti-histone H3 (Cell Signaling; #3421, #2341, #2577, 

#2586, #2048, #2208, #9284, and #9847, respectively). 

 

Western Blotting 

Cell extracts were harvested using Laemili’s sample buffer, run on 8 or 12% SDS-

polyacrylamide gels, and transferred to polyvinylidene membranes. Membranes were 

then incubated with primary antibodies, followed by incubation with the appropriate 

secondary antibodies. Proteins were visualized using the Immobilon Western 

Chemiluminescent HRP substrate (Millipore, WBKLS0500). Cell fractionation was 

performed using the Qproteome Nuclear Protein Kit (Qiagen). Briefly, cells were first 

treated with hypotonic solution to remove cytosolic proteins, followed by incubation with 

a buffer containing a high concentration of salt. Histone-containing pellets were separated 

from soluble nuclear fractions by centrifugation and incubated with Benzonase to 

completely digest DNA and release proteins tightly associated with chromatin. 
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Immunofluorescence Microscopy 

To observe discrete foci of RPA32, phospho-RAD17, BLM, and RAD51 on chromatin, 

cells were pretreated with 0.5% Triton X-100 in PBS for 1 minute before fixation with 

paraformaldehyde (PFA) for 15 minutes. After permeabilization in 0.1% Triton X-100 in 

PBS for 15 min, cells were subjected to treatment with the Image-iT signal enhancer 

(Invitrogen) before being incubated with primary antibodies. Staining with the 

appropriate secondary antibodies and fluorescence microscopy (Zeiss) were used to 

visualize foci. FANCD2, FANCI, CENP-A, and H2AX foci were visualized by the same 

method without the pre-extraction step. All procedures were performed at room 

temperature. 

 

DNA Fiber 

We used the DNA fiber protocol developed by Sugimura et al
22

. Ongoing forks were 

labeled with digoxigenin-dUTPs for 20 min and then with biotin-dUTPs for 30 min. To 

allow efficient incorporation of the dUTPs, a hypotonic buffer (10mM HEPES, 30mM 

KCl, pH7.4) treatment precedes each dUTP labeling step. To visualize the labeled fibers, 

cells were mixed with a 10-fold excess of unlabeled cells, fixed, and dropped onto slides. 

After cell lysis, the DNA fibers were released and extended by tilting the slides. 

Incorporated dUTPs were then visualized by immunofluorescent detection using anti 
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digoxigenin-Rhodamine (Roche) and streptavidin-Alexa-Fluor-488 (Invitrogen). Images 

were captured using the Axio Imager A1 (Zeiss). 

 

HR Events at the FYDR Locus 

MEFs were generated as described above. Cells at passage 2 were harvested and analyzed 

by the FACSCalibur (BD Biosciences) using the FL1 and FL2 channels. To determine 

the spontaneous recombinant frequency, at least 16 independent MEF cultures were used 

per genotype and at least 106 cells were analyzed per MEF line. To determine the 

recombinant frequency induced by replication inhibitors, MEFs were treated with APH or 

CPT for 24 hrs. After a 48-hr recovery period, cells were analyzed by flow cytometry. 

 

Live Cell Imaging 

0.5x106 wildtype or Mcm4Chaos3/Chaos3 MEFs were plated onto a 60 mm dish for 24 

hrs and observed using the DeltaVision microscope (Applied Precision). Each dish 

contained standard medium supplemented with 0.25μM DRAQ5 (Sigma), a DNA dye. 

Each image was assembled into a movie file using the DeltaVision SoftWoRx software. 
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Supplemental table, figure and movie legends 

Table S1 

Summary of B6 Mcm4Chaos3 Tumor Histopathology 

 

Table S2 

Summary of F1 Mcm4Chaos3 Tumor Histopathology 

 

Figure S1, Related to Figure 1 

(A) Chromatin-immunoprecipitation (ChIP) data from selected loci show reduced levels 

of chromatin-bound MCM2 in Mcm4
Chaos3/Chaos3

 cells. The rDNA locus contains a well-

defined origin
56

, and was thus used as a control. The additional four loci from 

chromosomes 1 and 8 were selected due to their defined replication timing with I/II, and 

V indicating early and late replication timing, respectively
58

. Whether or not origins are 

present in these loci is unknown. Reduction levels relative to wildtype were determined 

by quantitative PCR on ChIP’ed DNA. The averages of three experiments are shown. (B) 

Similar distributions of origin-to-origin distance are found between wildtype and 

Mcm4
Chaos3/Chaos3

 cells (upper panel). While there was no significant difference in the 

distributions in the untreated conditions (p=0.777, Kolmogorov-Smirnov test), 

Mcm4
Chaos3/Chaos3

 cells did have an increased number of origin-to-origin distances larger 

than 80kb (p<0.05, 2-test). Although aphidicolin (APH) treatment resulted in a 
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significant decrease in origin-to-origin distances in both genotypes, the average distance 

in Mcm4
Chaos3/Chaos3

 cells was significantly larger than that of wildtype cells (lower panel, 

p=0.0102, t-test). (C) Fork velocity in Mcm4
Chaos3/Chaos3

 cells is faster than that of 

wildtype (left, p<0.005, t-test). The distribution of fork velocity (right) in 

Mcm4
Chaos3/Chaos3

 cells is also significantly different from that of wildtype cells (p<0.001, 

Kolmogorov-Smirnov test). This apparently faster fork velocity in Mcm4
Chaos3/Chaos3

 cells 

can be explained by different levels of fork termination. Faster forks are more likely to 

merge together, resulting in fork termination. An increased level of stalled forks in 

Mcm4
Chaos3/Chaos3

 cells might have led to a reduction in fork terminations, causing more of 

the faster forks to be visible for measurement. Faster forks in wildtype cells, on the other 

hand, might have been excluded from the measurement due to a higher level of fork 

terminations. To address this concern, fork velocity was re-measured using a short-pulse 

labeling method (10 min for dig-dUTP and 15 min for Biotin-dUTP) to reduce the 

frequency of fork terminations as shown in (D). (D) While fork velocity in wildtype cells 

is ~15% faster (left) than the data shown in (C), forks are still faster in Mcm4
Chaos3/Chaos3

 

cells (p<0.005, t-test). Note the increase in faster forks (>1.2 kb/min) in wildtype cells 

(right). (E) The average origin-to-origin distance remains the same after the short-pulse 

labeling experiments in both wildtype and Mcm4
Chaos3/Chaos3

 cells. Therefore, a reduced 

number of dormant origins might have led to a lower level of fork terminations in 

Mcm4
Chaos3/Chaos3

 cells. 
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Figure S2, Related to Figure 2 

Mcm4
Chaos3/Chaos3

 cells exhibit a normal checkpoint response following treatment with 

replication inhibitors. Increased phosphorylation of CHK1, p53 and H2AX was observed 

6 hours after treatment. Note that Mcm4
Chaos3/Chaos3

 cells (indicated as “C”) have 

intrinsically higher levels of phospho-p53 and γ-H2AX in untreated conditions (UNT) 

compared to wildtype cells (indicated as “W”). However, these basal levels of 

phosphorylation are substantially lower than those after treatment with replication 

inhibitors. 

 

Figure S3, Related to Figure 3 

(A) The phenylalanine residue mutated in Mcm4
Chaos3/Chaos3

 cells is conserved in all 

eukaryotes and resides at a position that affects complex stability. An alignment of the 

amino acid sequences from several organisms is shown with conservation levels. (B) The 

Phe345Ile change in Mcm4
Chaos3/Chaos3

 cells resides at the interface between MCM4 and 

MCM6. The presence of a gap between MCM2 and MCM5 has been predicted for the 

inactive form of the MCM2-7 complex
59

, and has been recently confirmed (Costa et al., 

in press). These two factors seem to play a role in the formation of the sub-complexes 

MCM2/6 (see fractions #18 & 19) and MCM4/7/3/5 (fractions #11 & 12), as seen in Fig. 

3C. (C) Co-immunoprecipitation results show a robust in vivo interaction between 

MCM2 and MCM6 in both wildtype and Mcm4
Chaos3/Chaos3

 cells but a somewhat weaker 

interaction between MCM2 and MCM4 in Mcm4
Chaos3/Chaos3

 cells. An interaction between 
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MCM2 and MCM5 was very weak regardless of genotype. These data are consistent with 

the in vitro sub-complexes detected in Fig. 3C. 

 

Figure S4, Related to Figure 4 

(A) eYFP expression arises from homologous recombination at the FYDR locus, which 

contains two tandem repeats of incomplete eYFP expression cassettes. The resolution of 

homologous recombination between these repeats has two different outcomes at the 

molecular level. While gene conversion can occur as a non-crossover event (top), unequal 

sister chromatid exchange (SCE) can result from a crossover event (bottom). The use of 

both wildtype and Mcm4
Chaos3/Chaos3

 MEFs that carry the FYDR locus in the hemizygous 

state allows for the detection of HR events only during and/or after this locus is 

replicated. (B) Recombinant cells that express eYFP are detected by flow cytometry. 

eYFP signals were detected using the FL1 and FL2 channels. The gate was set using cells 

without the FYDR locus to distinguish eYFP signals from autofluorescence. (C) 

Distributions of spontaneous recombinant frequencies are shown for wildtype and 

Mcm4
Chaos3/Chaos3

 cells. The average frequencies are shown in Figure 4C. 

 

Figure S5, Related to Figure 5 

(A) The number of FANCD2 sister/twin-foci throughout M phase is significantly higher 

in Mcm4
Chaos3/Chaos3

 cells. The average number of foci determined by three independent 
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experiments is shown (left). Spontaneous FANCD2 sister/twin foci, rarely observed in 

wildtype cells, were significantly increased in Mcm4
Chaos3/Chaos3

 cells. Aphidicolin (APH) 

treatment (150 nM for 24 hrs) increased the number of foci even in wildtype cells, while 

Mcm4
Chaos3/Chaos3

 cells still contained a relatively higher amount. Pro: prophase, PM: 

prometaphase, M: metaphase, A: anaphase. Bars indicate SEMs. Representative images 

of FANCD2 sister/twin foci are shown on the right. Scale bar is 10 μm. (B) 

Mcm4
Chaos3/Chaos3

 cells also have a drastically increased number of FANCI foci in 

prophase. Much like FANCD2 foci (Figure 5A), FANCI foci were observed in more than 

50% of Mcm4
Chaos3/Chaos3

 cells in the untreated condition (UNT, left). Although APH 

treatment nearly saturated the formation of FANCI foci in both wildtype and 

Mcm4
Chaos3/Chaos3

 cells, the number of FANCI foci per cell was still significantly higher in 

Mcm4
Chaos3/Chaos3

 cells. Representative images of FANCI foci are shown on the right. 

Scale bar is 10 μm. (C) An increased frequency of aneuploidy in Mcm4
Chaos3/Chaos3

 cells is 

revealed by interphase FISH using probes specific to near-centromeric regions of 

Chromosome 16 (top, left). The percentage of aneuploid cells was determined by 

dividing the number of cells with chromosome loss (-1) and chromosome gain (+1) 

signals by the total number of cells observed (see representative images of interphase 

FISH below). The percentage of tetraploid cells was also significantly increased in 

Mcm4
Chaos3/Chaos3

 cells (top, right). Scale bar is 10 μm. (D) G-banding analysis of 

metaphase chromosomes shows an increased frequency of translocations in 

Mcm4
Chaos3/Chaos3

 cells. The top portion includes the results for wild-type cells, while the 

bottom portion includes results for Mcm4
Chaos3/Chaos3

 cells. A total of 40 chromosomes 
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were fully analyzed per genotype. Numbers in brackets indicate the number of cells with 

karyotypes shown on the left. (E) Mcm4
Chaos3/Chaos3

 cells exhibit a significantly elevated 

level of twin H2AX foci formation in early G1 phase. G1 phase cells were detected as 

binucleated cells following a 4hr-treatment with cytochalasin B. Only binucleated cells 

that contained H2AX foci in both nuclei were considered positive for twin foci. Scale bar 

is 10 μm. 

 

Figure S6, Related to Figure 6 

The use of dormant origins may provide a simple and prompt pathway for stalled fork 

recovery. A speculative model of stalled fork rescue by dormant origin firing is shown. In 

both wildtype and Mcm4
Chaos3/Chaos3

 cells, active origins (indicated as filled orange 

hexagons) fire to generate bidirectional forks. When fork stalling occurs in wildtype cells, 

a nearby dormant origin (open orange hexagons) immediately fires and fork progression 

continues. However, the lack of dormant origins in Mcm4
Chaos3/Chaos3

 cells results in 

persistent fork stalling. In this model, only those in the vicinity of stalled forks are 

allowed to fire, causing the apparent inter-origin distances to remain unchanged between 

wildtype and Mcm4
Chaos3/Chaos3

 cells, as seen in Fig 1C. 
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Movie S1 

Normal Cytokinesis of Wild-Type MEF. Movie S1, related to Figure 5, shows a living 

wild-type cell in cytokinesis. Cells were cultured in the presence of DNA dye DRAQ5 

(0.25 µM) and subjected to fluorescence microscopy to monitor cytokinesis. The duration 

of the movie is 30 min, and the time interval between captures is 2 min. 

 

Movie S2 

Normal Cytokinesis of Mcm4
Chaos3/Chaos3

 MEF. Movie S2, related to Figure 5, shows a 

living Mcm4
Chaos3/Chaos3

 cell in cytokinesis. Cells were cultured in the presence of DNA 

dye DRAQ5 (0.25 µM) and subjected to fluorescence microscopy to monitor cytokinesis. 

The duration of the movie is 22 min, and the time interval between captures is 2 min. 

 

Movie S3 

Cytokinesis Failure Resulting in Binucleated Mcm4
Chaos3/Chaos3

 MEF. Movie S3, related to 

Figure 5, is of a Mcm4
Chaos3/Chaos3

 cell in aberrant cytokinesis. Cells were cultured in the 

presence of DNA dye DRAQ5 (0.25 µM) and subjected to fluorescence microscopy to 

monitor cytokinesis. The duration of the movie is 30 min, and the time interval between 

captures is 2 min. 
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Table S1 

Case 
Age 

(mo.) 
Location Diagnosis Immunohistochemistry 

160 15 Small intestine Lymphoma N.D. 

161 12 Small intestine Lymphoma N.D. 

  
Peripancreatic adipose 

tissue 
Histiocytic sarcoma Mac-2: +, CD3: -, B220: - 

193 11 Adipose tissue Histiocytic sarcoma Mac-2: +, CD3: -, B220: - 

194 16 
Liver and abdominal 

mass 
Histiocytic sarcoma Mac-2: + 

202 10 Liver Histiocytic sarcoma Mac-2: + 

203 15 Liver Histiocytic sarcoma N.D. 

204 14 
Peripancreatic adipose 

tissue 
Histiocytic sarcoma N.D. 

211 4 
Mammary gland and 

subcutis 
Spindle cell sarcoma N.D. 

250 15 Liver Histiocytic sarcoma N.D. 

265 10 Liver Histiocytic sarcoma N.D. 

311 10 Liver Histiocytic sarcoma N.D. 

312 11 Vertebrae Osteosarcoma N.D. 

314 11 Vertebrae Osteosarcoma N.D. 

216 15 LN of shoulder region Lymphoma CD3: ±, B220: + 

391 10 Thymus Lymphoma N.D. 

388 13 Thymus Histiocytic sarcoma Mac-2: + 

316 12 Peripancreatic mass Histiocytic sarcoma N.D. 

LN: lymph node 
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Table S2 

Case 
Age 

(mo.) 
Location Diagnosis Immunohistochemistry 

328 12 Mesenteric LN Histiocytic sarcoma Mac-2: + 

329 15 Uterus 
Endometrial 

hemangioma 
N.D. 

330 15 Intestine Lymphoma N.D. 

  Liver Histiocytic sarcoma Mac-2: + 

331 14 Mammary gland Adenocarcinoma N.D. 

332 10 Spleen Round cell sarcoma Mac2: ±, B220: ± 

224 12 Intestine Lymphoma N.D. 

  Liver, Mesenteric LN Histiocytic sarcoma N.D. 

231 14 Intestine Lymphoma, B cell 
CD3: ±, B220: ++, Pax-

5: ++ 

232 11 Mesenteric LN Histiocytic sarcoma N.D. 

221 15 Spleen Round cell sarcoma Mac-2: ± 

377 10 Uterus Spindle cell tumor N.D. 

378 12 Uterus Histiocytic sarcoma N.D. 

335 13 Tibia Osteosarcoma a N.D. 

395 16 Liver, Ovary-uterus Histiocytic sarcoma N.D. 

396 17 Vertebrae Osteosarcoma a N.D. 

469 12 
Spleen, Liver, 

Intramammary LN 
Lymphoma B220: + 

470 17 
Spleen, Liver, 

Mesenteric LN 
Lymphoma Mac-2: +, B220: ++ 

471 16 
Intestine, Spleen, 

Thoracic nodule 
Lymphoma N.D. 
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436 17 Mammary gland Adenocarcinoma N.D. 

437 7 Mammary gland Adenocarcinoma N.D. 

438 16 Spleen, Liver, LN Histiocytic sarcoma N.D. 

439 16 Intestine Lymphoma Mac-2: -, B220: + 

  Thymus Histiocytic sarcoma Mac-2: + 

LN: lymph node  
aDiagnoses were given by X-ray. 
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Figure S1, related to Figure 1 
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Figure S2, related to Figure 2 
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Figure S3, related to Figure 3 
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Figure S4, related to Figure 4 
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Figure S5, related to Figure 5 
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Figure S6, related to Figure 6 
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Movie S1 

Movie S1 can be found online at: 

http://www.sciencedirect.com/science/article/pii/S109727651100089X 
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Movie S2 

Movie S2 can be found online at: 

http://www.sciencedirect.com/science/article/pii/S109727651100089X 
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Movie S3 

Movie S3 can be found online at: 

http://www.sciencedirect.com/science/article/pii/S109727651100089X 
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Summary 

Accumulating evidence suggests that dormant DNA replication origins play an important 

role in the recovery of stalled forks.  However, their functional interactions with other 

fork recovery mechanisms have not been tested.  We previously reported intrinsic 

activation of the FA pathway in a tumor-prone mouse model (Mcm4
chaos3

) with a 60% 

loss of dormant origins.  To understand this further, we introduced a null allele of Fancc 

(Fancc
-
), encoding a member of the FA core complex, into the Mcm4

chaos3
 background.  

Primary embryonic fibroblasts double homozygous for Mcm4
chaos3

 and Fancc
-
 

(Mcm4
chaos3/chaos3

;Fancc
-/-

) showed significantly increased levels of markers of 

stalled/collapsed forks compared to either single homozygote.  Interestingly, a loss of 

dormant origins also increased the number of sites in which replication was delayed until 

prophase, regardless of FA pathway activation.  These replication defects coincided with 

substantially elevated levels of genome instability in Mcm4
chaos3/chaos3

;Fancc
-/- 

cells, 

resulting in a high rate of perinatal lethality of Mcm4
chaos3/chaos3

;Fancc
-/-

 mice and the 

accelerated tumorigenesis of surviving mice.  Together, these findings uncover a 

specialized role of dormant origins in replication completion while also identifying 

important functional overlaps between dormant origins and the FA pathway in 

maintaining fork progression, genome stability, normal development and tumor 

suppression. 
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Introduction 

Origin licensing builds a fundamental basis for genome stability during eukaryotic 

DNA replication as it provides replication origins with the competency to fire and 

restricts their firing to once per S phase
1-3

.  This process occurs during the late M to early 

G1 phases of the cell cycle, when heterohexameric complexes of the minichromosome 

maintenance proteins (MCM2-7), essential components of the replicative helicase, are 

loaded onto chromatin
4-6

.  While any genomic loci bound by MCM2-7 complexes can 

potentially act as origins, only a small fraction of them (~10%) assemble active helicases 

with their co-factors to unwind the DNA and initiate genome duplication in S phase
7,8

.  In 

fact, chromatin-bound MCM2-7 complexes exist in a large excess (10- to 20-fold) over 

the number of replication origins that actually fire in S phase
9-12

, thereby licensing 

additional origins termed dormant origins.  Although dormant origins represent the vast 

majority (>90%) of all licensed origins
13,14

, their role in DNA replication has only 

recently been revealed.  These dormant origins can be activated as “backups” under 

conditions of replication stress to compensate for slow fork progression and rescue stalled 

replication forks, thereby contributing to completion of DNA replication
13-15

. 

Using a mouse model called Mcm4
chaos3

, we demonstrated that dormant origins 

also play an important role in the rescue of stalled forks even in unchallenged S phase
16

.  

Mcm4
chaos3

 is a hypomorphic allele encoding a Phe345Ile change in the MCM4 protein, a 

subunit of the MCM2-7 complex
17

.  Cells homozygous for this allele (Mcm4
chaos3/chaos3

) 

exhibit a decreased rate of assembly of the MCM2-7 complex, leading to a ~60% loss of 
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chromatin-bound MCM2-7 complexes
16

.  This results in a significant reduction of 

dormant origins, causing the accumulation of stalled forks and increased levels of 

spontaneous micronuclei in Mcm4
chaos3/chaos3

 cells.  Reflecting intrinsic genome 

instability, Mcm4
chaos3/chaos3

 mice are highly prone to spontaneous tumors
16,17

.  These 

properties of Mcm4
chaos3/chaos3

 mice substantiate the formerly underappreciated role of 

dormant origins in stalled fork recovery
18

.  In our previous work
16

, Mcm4
chaos3/chaos3

 cells 

were also found to exhibit intrinsic activation of the Fanconi anemia (FA) pathway of 

DNA repair, though the functional relevance of this had yet to be determined. 

FA is a rare genetic disorder characterized by congenital abnormalities, bone 

marrow failure and a heightened predisposition to cancer
19,20

.  It is a genetically 

heterogeneous disease, with 16 complementation groups identified to date
19,21,22

.  Our 

current understanding is that the products of these genes coordinately function to promote 

genome stability with a specialized role in the repair of DNA inter-strand crosslinks 

(ICLs) 
20,23,24

 and certain endogenous lesions
25

.  Activation of the FA pathway is typically 

observed by mono-ubiquitination of the FANCD2 and FANCI proteins by the FA core 

complex (composed of at least 8 FA proteins), promoting their recruitment to chromatin 

and focus formation
26-29

.  Even in the absence of exogenous sources of ICLs, this 

activation occurs in normal S phase
29,30

.  Moreover, treatment of cells with a low dose of 

aphidicolin (APH), a polymerase inhibitor
31

, robustly activates the FA pathway, 

indicating a role of the FA proteins during DNA replication
32

.  Previous studies reported 

that APH-induced FANCD2/FANCI foci often form as a pair (sister foci) during the 
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G2/M phases, presumably flanking late replication intermediates at common fragile 

sites
33,34

.  These chromosomal loci are prone to breakage after partial inhibition of DNA 

replication
35

, likely due to a paucity of DNA replication origins at these sites
36,37

.  As FA 

proteins are required for the stability of common fragile sites
32

, they are likely to be 

involved in guiding successful replication of loci with fewer replication origins. 

 As Mcm4
chaos3

 homozygosity significantly decreases the total number of licensed 

origins on a genome-wide scale, it is likely to increase the number of loci lacking 

dormant origins or perhaps any origins.  We therefore hypothesized that intrinsic 

activation of the FA pathway in Mcm4
chaos3/chaos3

 cells occurs in an attempt to support 

replication fork progression at these sites.  To test this hypothesis, we introduced a null 

allele of Fancc (Fancc
-
), encoding a member of the FA core complex

38
, into the 

Mcm4
chaos3

 background.  Here, we report that loss of an intact FA pathway in 

Mcm4
chaos3/chaos3

 cells severely impairs replication fork stability even in unchallenged 

conditions.  Furthermore, a reduced number of dormant origins also increased the number 

of sites in which replication was delayed until prophase, regardless of FA pathway 

activation.  This increase in late replication intermediates as well as replication delay led 

to highly elevated levels of genome instability in Mcm4
chaos3/chaos3

;Fancc
-/- 

cells and 

almost all Mcm4
chaos3/chaos3

;Fancc
-/- 

pups died shortly after birth in an inbred C57BL/6J 

background.  While viable in a mixed genetic background, Mcm4
chaos3/chaos3

;Fancc
-/- 

mice 

still succumbed to spontaneous tumors at much younger ages than their Mcm4
chaos3/chaos3

 

littermates.  These findings confirm the role of dormant origins in stalled fork recovery 
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while also unveiling their unique function in the complete replication of the genome, as 

other pathways are not able to fully compensate in their absence.  Moreover, our results 

provide new insights into how the FA pathway functions in unchallenged conditions to 

promote genome stability. 
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Materials and methods 

Mouse strains and MEFs 

All experiments were performed using mice/cells derived from an inbred C57BL/6J 

genetic background or a C57BL/6J x C3HeB/FeJ mixed genetic background and were 

approved by the Institutional Animal Care and Use Committee (IACUC).  MEFs were 

generated from 12.5-14.5 dpc embryos and cultured using standard procedures.  All mice 

were genotyped by PCR.  The primers used are available upon request. 

 

Immunocytochemistry 

Cells were grown on coverslips for two days and then fixed using 10% formalin.  When 

RPA immunocytostaining was performed, cells were additionally pre-extracted with a 

0.5% Triton X-100 in PBS solution for about 1 minute prior to fixation.  For analyses 

involving APH treatment, cells were given doses of either 150nM or 300nM APH for 24 

hours before harvest.  Coverslips were then treated with the appropriate primary 

antibodies (4°C, overnight) and secondary antibodies (RT, 1 hour) and stained with DAPI 

(1 µg/ml, 10 minutes) before being mounted onto slides using Vectashield (Vector 

Laboratories, #H-1000) or ProLong Gold antifade reagent (Life Technologies, #P36930).  

The Axio Imager A1 (Zeiss) was used for fluorescence microscopy analysis and to 

collect all images. 

 



Luebben et al., 2014 

 

104 
 

Antibodies 

For immunocytochemistry, immunohistochemistry and western blotting procedures, we 

used anti-phospho-histone H3-AlexaFluor488 conjugate, anti-phospho-histone H3, anti-

RPA32, anti-γH2AX, anti-CENP-A (Cell Signaling; #9708, #9706, #2208, #2577, #2048, 

respectively), anti-FANCD2, anti-FANCI, anti-53BP1 (Abcam; #ab2187, #ab74332, 

#ab36823, respectively), anti-pan actin, anti-MPO (Thermo Scientific; #MS-1295-

P1ABX, #RB-373-A1, respectively), anti-F4/80, anti-Mac-2 (Cedarlane; #CL8940AP 

and #CL8942AP, respectively), anti-CD-3 (Serotec; #MCA1477), anti-B220 (BD 

Biosciences; #550286), anti-digoxigenin (Roche; #11333062910), anti-FANCD2 

(Epitomics; #2986-1), anti-PICH (Abnova; #H00054821-D01P) and Streptavidin-

AlexaFluor488 conjugate antibody (Invitrogen, #S-32354).  For the DNA Fiber assay, the 

digoxigenin-Rhodamine conjugate antibody from Roche (#11207750910) and 

Streptavidin-AlexaFluor488 conjugate antibody from Invitrogen (#S-32354) were used. 

 

DNA fiber assay and cell cycle analysis 

All techniques and methods of analysis used were performed as described previously
16,39

. 

 

EdU spots analysis 

EdU (Life Technologies, #A10044) was added to cells at a final concentration of 20µM 

for 10 minutes prior to harvest.  After fixation, cells were subjected to the Click-iT™ 
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reaction using Biotin-Azide (Life Technologies, #B10184) for 1 hour at RT, according to 

the manufacturer’s instructions.  Cells were then stained with the appropriate antibodies 

using normal immunocytochemistry techniques. 

 

Cytokinesis-block micronucleus assay and 53BP1 nuclear bodies analysis 

The cytokinesis-block micronucleus assays and 53BP1-NBs analyses were performed as 

described previously
40

.  Though the identification G1 nuclei for the analysis of 53BP1 

nuclear bodies is typically determined by those that are cyclin A-negative
41,42

, the lack of 

a cyclin A antibody that works well for mouse cells precluded use of this technique.  As 

an alternative, G1 nuclei were identified as those contained within binucleated cells 

following cytochalasin B treatment. 

 

DNA ultra-fine bridge analysis 

To measure the levels of DNA ultra-fine bridges (UFBs), another consequence of late 

replication intermediates
33,34,43

, anaphase cells were stained for the Pkl1-interacting 

checkpoint helicase (PICH) and analyzed for the presence of PICH-coated UFBs. 
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Results 

Mcm4
chaos3

 homozygosity results in a reduced number of dormant origins and a lower 

active origin density in a C57BL/6J background 

The phenotypes of Mcm4
chaos3/chaos3

 and Fancc
-/-

 mice in a C57BL/6J background have 

been relatively well characterized and share several similarities, including semi-lethality 

and a heightened predisposition to microphthalmia
39,40,44

.  We therefore generated wild-

type, Mcm4
chaos3/chaos3

, Fancc
-/-

 and Mcm4
chaos3/chaos3

;Fancc
-/-

 primary mouse embryonic 

fibroblasts (MEFs) in this inbred background to perform various types of cellular assays.  

First, we verified that Mcm4
chaos3/chaos3

 and Mcm4
chaos3/chaos3

;Fancc
-/-

 cells have reduced 

levels of chromatin-bound MCM4 compared to wild-type and Fancc
-/-

 cells, indicating a 

reduced number of licensed origins (Supplementary Figure S1A)
16

.  Consistent with our 

previous work
16

, Mcm4
chaos3/chaos3

 cells exhibited higher levels of FANCD2 foci at 

prophase compared to wild-type cells (Supplementary Figure S1B).  Expectedly, the lack 

of FANCC abolished FANCD2 chromatin loading to sub-detectable levels in both Fancc
-

/-
 and Mcm4

chaos3/chaos3
;Fancc

-/-
 cells  (Supplementary Figure S1C).  To understand DNA 

replication kinetics in these MEFs, we began our analysis with a DNA fiber assay.  

Previously, we reported that Mcm4
chaos3

 homozygosity in this inbred background not only 

results in a reduced number of dormant origins but also lowers the density of active 

origins, thereby contributing to the semi-lethality of newborn mice
39

.  To verify that this 

was also the case for Mcm4
chaos3/chaos3

;Fancc
-/-

 cells, we measured origin-to-origin 

distances (Figure 1A and B).  Compared to wild-type cells (63.3kb3.57), significantly 
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longer average origin-to-origin distances were observed in Mcm4
chaos3/chaos3

 (80.0kb4.32, 

p<0.01) and Mcm4
chaos3/chaos3

;Fancc
-/-

 cells (75.0kb3.60, p<0.05), indicating lower 

densities of active origins.  While Fancc
-/-

 cells exhibited a slightly longer average origin-

to-origin distance (68.3kb4.12), this was not statistically different from wild-type cells 

(p=0.361).  To determine if overall replication fork movement was substantially altered in 

mutant cells, fork velocities were also measured.  Average fork velocities were largely 

similar among the four genotypes, with only Fancc
-/-

 and Mcm4
chaos3/chaos3

;Fancc
-/-

 cells 

exhibiting very slightly faster and slower forks, respectively (Figure 1B). 

 

Loss of FANCC leads to a drastic increase in stalled/collapsed forks in Mcm4
chaos3/chaos3

 

cells 

The FA proteins function to support replication fork stability as well as fork restart
30,45-47

. 

Thus, Mcm4
chaos3/chaos3

;Fancc
-/-

 cells lack two important fork recovery mechanisms: 

dormant origins and another mechanism mediated by FANCC.  To investigate fork 

progression under these circumstances, we examined the focus formation of RPA32 

(Figure 2A), a marker of stalled replication forks
48,49

.  Compared to wild-type cells, 

slightly increased numbers of Mcm4
chaos3/chaos3

 and Fancc
-/-

 cells were positive for ≥5 

RPA32 foci (1.2- and 1.6-fold, respectively) though only Fancc
-/-

 cells exhibited a 

significant increase (p<0.001), similar to our previous observations
40

.  The marginal 

increase in RPA32 foci in Mcm4
chaos3/chaos3

 cells may be due to intrinsic upregulation of 
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the FA pathway, which could compensate for a loss of dormant origins in the recovery of 

stalled/collapsed forks, preventing the formation of such foci.  Indeed, loss of FANCC in 

Mcm4
chaos3/chaos3

 cells resulted in drastically increased levels of RPA32 foci (>3-fold, 

p<0.001, relative to wild-type cells).  Furthermore, the number of RPA32 foci co-

localizing with H2AX foci, a marker of DNA double strand breaks
50

, exhibited a similar 

trend with the highest increase (>3.8-fold, p<0.001, relative to wild-type cells) seen in 

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells.  These findings suggest that FANCC plays a crucial role 

in preventing stalled/collapsed forks, particularly in the absence of dormant origins.  We 

then investigated the ability of Mcm4
chaos3/chaos3

;Fancc
-/-

 cells to progress through the cell 

cycle.  Cell cycle analysis reproduced a typical profile of Mcm4
chaos3/chaos3

 cells
17,39,51

 

including a reduced S phase fraction (24.6% vs. 28.1% in wild-type, p<0.01) and G2/M 

accumulation (24.1% vs. 21.1% in wild-type, p<0.01)(Figure 2B; Supplementary Figure 

S2).  While cell cycle profiles for Fancc
-/-

 cells were indistinguishable from 

Mcm4
chaos3/chaos3

 cells, these trends were further exacerbated in Mcm4
chaos3/chaos3

;Fancc
-/-

 

cells, in which the S phase and G2/M fractions were 19.3% and 28.0%, respectively 

(p<0.001).  Mcm4
chaos3/chaos3

;Fancc
-/-

 cells therefore suffer from a greatly increased level 

of late replication intermediates, accumulating during the G2/M phases. 
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Despite FA pathway activation, Mcm4
chaos3/chaos3

 cells exhibit an increase in sites of 

isolated DNA synthesis in early M phase 

Although Mcm4
chaos3/chaos3

 cells exhibited only a marginal increase in RPA32/H2AX 

foci, they still exhibited significant G2/M phase accumulation (Figure 2B).  This may 

therefore stem from an additional defect, such as delayed completion of DNA replication.  

Recent studies reported that delayed DNA replication can be identified as sites of 

localized DNA synthesis persisting until early M phase by pulse-labeling with EdU, a 

thymidine analogue (referred to as “EdU spots”)
52,53

.  We therefore quantified EdU spots 

in prophase cells after a short pulse labeling (10 min) of EdU.  We also examined the co-

localization of EdU spots with FANCD2 foci in wild-type and Mcm4
chaos3/chaos3

 cells 

(Figure 3A), as EdU spots co-localize with FANCD2 foci
52,53

 as well as FANCI foci 

(Supplementary Figure S3A) in early M phase.  Compared to wild-type cells, a greatly 

elevated percentage (>3-fold, p<0.001) of Mcm4
chaos3/chaos3

 cells contained prophase EdU 

spots even in the untreated condition (Figure 3B).  Consistent with previous studies
52,53

, 

the majority of EdU spots indeed co-localized with FANCD2 foci in either genotype, 

resulting in a corresponding increase in the number of Mcm4
chaos3/chaos3

 cells positive for 

EdU-FANCD2 co-localizations.  This was further supported by the analysis of individual 

EdU spots, which showed that only a minor fraction failed to co-localize with FANCD2 

in either genotype (Figure 3C), possibly representing loci that are naturally late 

replicating.  Interestingly, analysis of individual FANCD2 foci revealed an almost 

exclusive increase in those co-localizing with EdU spots in Mcm4
chaos3/chaos3

 cells (Figure 
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3C).  Consistent with previous findings
52

, we also observed that treatment with a low 

dose of APH greatly elevated the numbers of both EdU spots and FANCD2 foci in both 

genotypes (Supplementary Figure 3B), yielding trends very similar to the untreated 

condition.  Taken together, these observations indicate that the elevated number of 

FANCD2 foci seen in Mcm4
chaos3/chaos3

 cells is primarily due to an increased number of 

sites exhibiting isolated DNA synthesis, though this activation is apparently insufficient 

to prevent this synthesis from being delayed until prophase.  We interpret these findings 

as follows: a loss of dormant origins not only lowers the efficiency of stalled fork 

recovery but also generates long, origin-poor regions.  The FA pathway can effectively 

compensate for the former, thus preventing the formation of RPA32/H2AX foci as seen 

in Mcm4
chaos3/chaos3

 cells (Figure 2A).  In the latter case, however, it is almost inevitable 

that fork stalling occurs and persists more frequently in origin-poor regions, thereby 

delaying the completion of DNA replication in these regions until early M phase despite 

FA pathway activation. 

 

The FA pathway exerts its role in preventing delayed DNA replication under conditions 

of replication stress 

Based on our interpretations, activation of the FA pathway should act against the 

formation of EdU spots at prophase, though its effect may be limited.  On the other hand, 

given the high level of EdU-FANCD2 co-localizations, an alternative possibility is that 

FANCD2 mono-ubiquitination is actually required for this isolated form of DNA 
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synthesis.  To distinguish between these two possibilities, we repeated our pulse-labeling 

experiments to score prophase EdU spots in all four genotypes in the untreated conditions 

(Figure 4A and B).  A reproducibly elevated percentage (>2-fold, p<0.001) of 

Mcm4
chaos3/chaos3

 cells were positive for EdU spots relative to wild-type cells, whereas 

Fancc
-/-

 cells displayed no significant difference from wild-type (p=0.251), consistent 

with the idea that mono-ubiquitinated FANCD2 is dispensable for this isolated DNA 

synthesis.  Interestingly, however, a slightly increased percentage of 

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells contained EdU spots compared to Mcm4
chaos3/chaos3

 cells 

(p<0.01), suggesting that FANCC is actually required to prevent the formation of EdU 

spots in the absence of dormant origins.  To further test the role of the FA pathway in 

preventing this delayed replication, we treated cells with a low dose of APH, which 

substantially increased the number of EdU spots in all genotypes (Figure 4C and D).  A 

significantly increased number (1.5-fold compared to wild-type cells, p<0.001) of Fancc
-

/-
 cells were now positive for ≥10 APH-induced EdU spots.  As APH is known to slow 

fork velocities
36,53

, increase the frequency of fork stalling
16,54

 and hyper-activate dormant 

origins
14,16

, it seems likely that such conditions make the role of the FA pathway more 

crucial to sustain fork progression and prevent delayed replication.  Indeed, we observed 

a sharp increase in the number of Mcm4
chaos3/chaos3

;Fancc
-/-

 cells exhibiting ≥10 APH-

induced EdU spots (1.9-fold increase compared to wild-type cells, p<0.001), with a 2-

fold higher number of APH-induced EdU spots per cell compared to all other genotypes.  

These data support the idea that FANCC, and potentially other components of the FA 
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pathway, function to prevent delayed DNA replication, particularly under conditions of 

replication stress. 

 

The frequencies of spontaneous MN and 53BP1 nuclear bodies are significantly 

increased in Mcm4
chaos3/chaos3

;Fancc
-/-

 cells 

Based on the above findings, we conclude that Mcm4
chaos3/chaos3

;Fancc
-/-

 cells suffer from 

two distinct defects: 1) a greatly increased level of stalled/collapsed forks due to the lack 

of two major fork recovery mechanisms (dormant origins and the FA pathway), and 2) an 

increased number of sites in which replication is delayed until early M phase.  To 

investigate the consequences of these accumulated late replication intermediates, we first 

looked at the formation of MN, which occurs at an elevated frequency in Mcm4
chaos3/chaos3

 

and Fancc
-/-

 cells
16,40

.  Using the cytokinesis-block MN assay
55

, we observed that 

Mcm4
chaos3/chaos3

 cells reproducibly exhibited a 2.9-fold increase in spontaneous MN 

compared to wild-type cells (p<0.001, Figure 5A).  Fancc
-/-

 cells showed an even higher 

increase (3.5-fold, p<0.001), with the most severe phenotype seen for 

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells (5.3-fold, p<0.001).  If unresolved, late replication 

intermediates can also manifest as 53BP1 nuclear bodies (53BP1-NBs) in the subsequent 

G1 phase nuclei
41,42

.  These structures co-localize with γH2AX and are often exquisitely 

symmetrical in terms of their appearance within the daughter nuclei, suggesting that they 

are derived from a common breakage event occurring during passage through M phase
41

.  

We thus measured the levels of 53BP1-NBs in G1 phase daughter nuclei contained 
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within binucleated cells using essentially the same protocol as the cytokinesis-block MN 

assay.  While Mcm4
chaos3/chaos3

 and Fancc
-/-

 cells displayed slightly increased numbers 

(1.16- and 1.5-fold, respectively) of G1 nuclei positive for 53BP1-NBs (p<0.01 and 

p<0.001, respectively) compared to wild-type, Mcm4
chaos3/chaos3

;Fancc
-/-

 cells had a 

substantial increase in 53BP1-NBs compared to either single mutant (1.9-fold, 

p<0.001)(Figure 5B).  Taken together, these findings suggest that FANCC and dormant 

origins coordinately function to prevent genome instability derived from late replication 

intermediates. 

 

Almost all B6 Mcm4
chaos3/chaos3

;Fancc
-/-

 pups die right after birth 

Given the additive effect of Fancc
-
 and Mcm4

chaos3
 in causing genome instability, we 

hypothesized that B6 Mcm4
chaos3/chaos3

;Fancc
-/-

 mice may exhibit more severe phenotypes 

than either single homozygote.  We therefore set up Fancc
+/-

 heterozygous intercrosses in 

the Mcm4
chaos3

 homozygous background to obtain B6 double homozygous mutants.  

Among 74 newborns, the numbers of pups for the three expected genotypes were not 

statistically different from the expected Mendelian ratio (p=0.640, see Table 1).  

However, 13 out of 15 double homozygous (Mcm4
chaos3/chaos3

;Fancc
-/-

) pups died shortly 

after birth, revealing a strikingly high rate of perinatal lethality.  We previously reported 

that Mcm4
chaos3

 and Fancc
-
 homozygosity each cause semi-lethality in this 

background
39,40

.  However, this cannot fully explain the high lethality of 

Mcm4
chaos3/chaos3

;Fancc
-/-

 pups, as their survival rate (13%) was substantially lower than 
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that of their Mcm4
chaos3/chaos3

;Fancc
+/+

 littermates (85%, p=7.64x10
-15

) or of Fancc
-/-

 mice 

(65%)
40

.  We also noticed that Mcm4
chaos3/chaos3

;Fancc
+/-

 pups exhibited a decreased rate 

of survival (69%) at 3 weeks of age compared to Mcm4
chaos3/chaos3

;Fancc
+/+

 pups 

(p=0.00582).  This Fancc dosage-dependent survival of Mcm4
chaos3/chaos3

 pups supports a 

synthetic lethal/sickness interaction between Mcm4
chaos3

 and Fancc
-
.  Histopathological 

analyses of Mcm4
chaos3/chaos3

;Fancc
-/-

 pups did not reveal an apparent cause of death.  Of 

the two Mcm4
chaos3/chaos3

;Fancc
-/-

 pups that survived past 3 weeks, one was euthanized for 

a non-tumor abscess at the age of 128 days while the other developed disseminated T-cell 

lymphoma in only 163 days (Supplementary Figure S4), much more quickly than the 

average tumor latency of about 12.4 months for Mcm4
chaos3/chaos3

 mice in the B6 

background
16

.  However, due to the very high rate of perinatal lethality, it has been 

extremely difficult to generate additional Mcm4
chaos3/chaos3

;Fancc
-/-

 pups even after the 

expansion of mating crosses.  Together, these data indicate that a concomitant loss of 

dormant origins and Fancc is incompatible with postnatal development in this inbred 

background. 

 

Mcm4
chaos3/chaos3

;Fancc
-/-

 mice are viable in a mixed genetic background but succumb to 

spontaneous tumors at much younger ages 

It is well known that phenotypic expression in mice is greatly influenced by genetic 

background.  We therefore reasoned that performing the same intercrosses in a different 

genetic background would allow us to obtain viable Mcm4
chaos3/chaos3

;Fancc
-/-

 mice to test 
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their tumor predisposition.  Indeed, we found Mcm4
chaos3/chaos3

;Fancc
-/-

 mice were viable 

when generated in a mixed background between C57BL/6J and C3HeB/FeJ.  Fancc
-/-

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

 mice were again born at reduced frequencies compared to the 

expected numbers (Supplementary Tables S1-2), but these differences were not 

statistically significant.  While Mcm4
chaos3/chaos3

;Fancc
-/-

 mice did not show any apparent 

developmental abnormalities, they did exhibit a slightly decreased average body weight 

(p<0.05)(Figure 6A).  A loss of dormant origins also worsened the hypogonadism 

phenotype of Fancc
-/-

 mice, as Mcm4
chaos3/chaos3

;Fancc
-/-

 mice exhibited a smaller average 

testes size (p<0.05 when compared to Fancc
-/-

 mice) with an increased number of empty 

seminiferous tubules (Supplementary Figure 5A and B).  After verifying an enhanced 

level of replication-associated genome instability in Mcm4
chaos3/chaos3

;Fancc
-/-

 MEFs in 

this background (Supplementary Figure S6), we aged cohorts of wild-type, 

Mcm4
chaos3/chaos3

, Fancc
-/-

 and Mcm4
chaos3/chaos3

;Fancc
-/-

 mice to observe the formation of 

spontaneous tumors until 14 months of age.  In agreement with previous findings
44,56

, 

>95% of wild-type and Fancc
-/-

 mice survived to the end of the study, with only one 

Fancc
-/-

 mouse exhibiting tumors at necropsy (Figure 6B).  As expected, the majority 

(~71%) of Mcm4
chaos3/chaos3

 mice succumbed to tumors before 14 months, as did ~84% of 

Mcm4
chaos3/chaos3

;Fancc
-/-

 mice.  The tumor spectrum displayed by 

Mcm4
chaos3/chaos3

;Fancc
-/-

 mice was largely similar to that of Mcm4
chaos3/chaos3

 mice, 

though the entire cohort that developed tumors before 235 days succumbed exclusively to 

lymphosarcomas (Figure 6C and Supplementary Tables S3-4).  Most of these tumors 
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were of T-cell origin (CD-3 positive), though B-cell tumors (B220 positive) were also 

observed (Supplementary Figure S7).  Notably, a myeloid leukemia was seen as well.  

Overall, Mcm4
chaos3/chaos3

;Fancc
-/-

 mice exhibited an average tumor latency of 279.7 days, 

much shorter than the 361.9 days seen for Mcm4
chaos3/chaos3

 mice.  This difference did not 

reach statistical significance (Log-Rank test, p=0.264), most likely due to great variation 

in the latencies in individual mice and gender-specific effects in this background 

(Supplementary Tables S3-4) 
57

.  However, it should be noted that a much greater 

proportion of Mcm4
chaos3/chaos3

;Fancc
-/-

 mice (~53%) developed spontaneous tumors 

before 300 days of age compared to Mcm4
chaos3/chaos3

 mice (~7%, p=1.21x10
-19

) 

suggesting that a concomitant loss of dormant origins and Fancc can accelerate 

tumorigenesis. 

  



Luebben et al., 2014 

 

117 
 

Discussion 

Exploiting the Mcm4
chaos3

 mouse model, we investigated the nature of FA 

pathway activation in the absence of dormant origins.  We hypothesized that this 

activation occurs to compensate for the rescue of stalled forks.  In agreement with our 

hypothesis, Mcm4
chaos3/chaos3

;Fancc
-/-

 cells exhibited impaired fork stability, an increased 

number of sites displaying delayed replication and greatly enhanced levels of genome 

instability.  Furthermore, we found that an intact FA pathway is required in 

Mcm4
chaos3/chaos3

 mice not only for promoting tumor suppression but also for supporting 

postnatal development under conditions in which the density of active origins is relatively 

low
39

. 

While the exact role of the FA pathway in unchallenged S phase is still largely 

unknown, a loss of Fancc in Mcm4
chaos3/chaos3

 cells clearly revealed its function in 

replication fork progression as well as stability.  In the absence of dormant origins, the 

FA core complex may facilitate translesion synthesis (TLS) to recover stalled forks
58-60

.  

Another recent study demonstrated a role of FANCD2 in BLM-mediated fork restart
47

.  

This mechanism may come into play in the absence of dormant origins.  Alternatively, if 

no appropriate choice is available for stalled fork recovery during S phase, the FA 

pathway may function to stabilize stalled forks, thereby manifesting as FANCD2/FANCI 

foci during the G2/M phases, as proposed earlier
33

.  Indeed, lack of a functional FA 

pathway leads to the degradation of nascent strands at stalled forks, supporting its role in 

fork protection
46,47,61

.  Furthermore, given the increased levels of spontaneous genome 
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instability in Fancc
-/-

 cells, it seems that there must be certain types of endogenous 

lesions that are primarily taken care of by the FA pathway rather than dormant origins.  

Fork recovery at such lesions may also be shared with HELQ, as double homozygosity 

for Fancc
-
 and Helq

gt
 greatly elevates genome instability

40
. 

In this study, we observed that an elevated level of FANCD2 focus formation in 

Mcm4
chaos3/chaos3

 cells during prophase (Supplementary Figures S1B) is primarily 

associated with the formation of EdU spots (Figure 3).  A recent study reported that 

polymerase eta deficiency induces common fragile site instability and the formation of 

EdU spots co-localizing with FANCD2 foci in early M phase, suggesting that EdU spots 

most likely represent delayed DNA replication within loci where replication 

intermediates long persist
52

.  Consistent with this idea, APH treatment predominantly 

induced EdU spots co-localizing with FANCD2 foci both in wild-type and 

Mcm4
chaos3/chaos3

 cells (Figure 3).  Despite the high rate of EdU-FANCD2 co-

localizations, an intact FA pathway is apparently dispensable for this type of DNA 

synthesis.  On the contrary, lack of a functional FA pathway actually increases the 

number of prophase EdU spots under conditions of replication stress, as seen in 

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells in the untreated condition and both Fancc
-/-

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells in the APH-treated condition (Figure 4).  These findings 

suggest the presence of an FA-independent mechanism(s) to support DNA synthesis at 

such loci until early M phase.  Such mechanisms may include HELQ, which functions 

parallel to FANCC, as we reported very recently
40

.  Moreover, it was recently shown that 
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the structure-specific endonucleases MUS81 and ERCC1 are also found at EdU spots 

along with FANCD2 but their presence on mitotic chromosomes does not depend on 

FANCC
53

.  While the exact mechanism(s) remains to be unveiled, it was demonstrated 

that depletion of these endonucleases increased the formation of MN, DNA ultra-fine 

bridges at anaphase and 53BP1-NBs
53,62

.  It will therefore be important to understand the 

roles of these endonucleases in the formation of EdU spots as well as the role of this late 

DNA synthesis in the resolution of late replication intermediates. 

Mcm4
chaos3/chaos3

 and Fancc
-/-

 cells/mice are phenotypically similar, particularly in 

the B6 background, with respect to genome instability (Figure 5) and susceptibility to 

newborn lethality and microphthalmia
39,44

.  However, Mcm4
chaos3/chaos3

 mice are highly 

prone to spontaneous tumorigenesis while Fancc
-/-

 mice are not.  One major phenotype 

that was found in Mcm4
chaos3/chaos3

 but not Fancc
-/-

 cells was an increased number of EdU 

spots in prophase in the untreated condition (Figure 4B).  We thus speculate that a 

reduction in the number of licensed origins by Mcm4
chaos3

 homozygosity not only causes 

a loss of dormant origins but also generates relatively long stretches of the genome that 

are devoid of any replication origins.  So, fork stalling within small regions lacking 

dormant origins may be fully replicated by the fork rescuing actions of the FA pathway 

described above.  However, this activity may not be sufficient in large, origin-poor loci 

so that completion of DNA synthesis in these regions is delayed until early M phase 

despite FA pathway activation, thus manifesting as a large increase in the number of 

EdU-FANCD2 co-localizations.  It is possible that a fraction of these sites may not even 
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fully complete DNA replication prior to anaphase.  Therefore, a combination of intrinsic 

chromosome instability along with an increased number of un-replicated loci could be a 

driving factor in spontaneous tumorigenesis in Mcm4
chaos3/chaos3

 mice. 

 While several mouse models have been generated to study the FA pathway, the 

majority fails to recapitulate the phenotypes of human FA patients, including tumor 

predisposition
63,64

.  We were unable to further test to what extent Mcm4
chaos3/chaos3

;Fancc
-

/-
 mice recapitulate other phenotypes of human FA patients, such as bone marrow failure.  

However, we think that Mcm4
chaos3

 homozygosity provides a unique condition in which 

to understand the role of the FA proteins as well as others in genome stability in 

unchallenged conditions, as recently shown for ATM
57

.  In particular, an FA core 

complex-independent role of FANCD2 in replication fork stability
61

 can also be 

investigated in Mcm4
chaos3/chaos3

 mice, which may clarify the role of FANCD2 in the 

formation of EdU spots.  Very recently, the first human genetic disorder caused by a 

mutant MCM4 gene was discovered
65,66

.  Cells from these patients exhibit chromosome 

fragility much like Mcm4
chaos3/chaos3

 cells.  Due to a very limited number of patients with 

this disorder, however, it is not yet unknown whether they are cancer prone.  

Nevertheless, it is quite possible that there remain undiscovered genetic disorders caused 

by mutations in MCM2-7 genes in which the physiological role of the FA pathway may 

become more apparent. 
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Table and figure legends 

Table 1 

Mcm4
chaos3/chaos3

;Fancc
-/-

 mice exhibit severe perinatal lethality in an inbred C57BL/6J 

background. 

 

Figure 1 

(A) A schematic of the consecutive dual labeling steps of the DNA fiber assay is shown 

at left.  Active replication forks were labeled with digoxigenin-conjugated dUTPs 

(250µM, red) for 20 minutes followed by labeling with biotin-conjugated dUTPs 

(250µM, green) for 30 minutes.  Fork velocity and origin-to-origin distances were 

determined as shown.  A representative image of adjacent origins is shown on the right 

with staining for digoxigenin-dUTPs (red) and biotin-dUTPs (green).  White arrowheads 

indicate the location of origins.  The scale bar is 10 µm.  (B) Box plots show the ranges 

observed for the origin-to-origin (ori-to-ori) distance (left) and fork velocity (right) 

values for each genotype.  Lines within the shaded boxes indicate the medians while the 

“+” signs show the location of the mean.  Black dots represent outliers.  The tables on the 

right show the summaries for ori-to-ori distances (top) and fork velocities (bottom).  

Significance was determined by t-test.  Asterisks denote: *p<0.05, **p<0.01 and 

***p<0.001.  NS means not significant.  WT, C3, FAC and C3;FAC refer to wild-type, 

Mcm4
chaos3/chaos3

, Fancc
-/-

 and Mcm4
chaos3/chaos3

;Fancc
-/-

, respectively. 
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Figure 2 

(A) Mcm4
chaos3/chaos3

;Fancc
-/-

 cells display a drastic increase in markers of persistently 

stalled replication forks upon exiting S phase.  Shown at left are representative images of 

all four genotypes co-stained for RPA (green) and γH2AX (red).  The average 

percentages of cells positive for 5 or more RPA foci (top right) or 5 or more RPA-

γH2AX co-localizations (bottom right) are also shown.  Error bars show the binomial 

error for the combined data set obtained from three independently performed 

experiments.  The scale bar is 10 µm.  Significance was determined by χ
2
-test.  (B)  

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells experience a heightened accumulation in the G2/M phases.  

Shown are the average proportions of cells observed within the G1, S or G2/M phases for 

all four genotypes.  Error bars show the standard error of the mean (SEM) for at least 5 

independent replicates.  Asterisks denote: *p<0.05, **p<0.01 and ***p<0.001.  WT, C3, 

FAC and C3;FAC refer to wild-type, Mcm4
chaos3/chaos3

, Fancc
-/-

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

, respectively. 

 

Figure 3 

A higher number of prophase FANCD2 foci in Mcm4
chaos3/chaos3

 cells are the result of a 

sharp increase in EdU spots that co-localize with FANCD2.  (A) Shown are 

representative images of wild-type and Mcm4
chaos3/chaos3

 cells co-stained for EdU (green) 
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and FANCD2 (red) in the untreated (UNT) condition.  Prophase cells were identified by 

prominent chromatin condensation via DAPI staining (blue).  The scale bar is 10 µm.  (B) 

At top are the percentages of prophase cells positive for EdU spots (white bars) or EdU-

FANCD2 co-localization events (grey bars).  At bottom are the number of EdU spots 

(white bars) per prophase cell and the number of EdU-FANCD2 co-localization events 

(grey bars) per prophase cell.  Error bars show the binomial error for the combined data 

sets obtained from three independently performed experiments.  Significance was 

determined by χ
2
-test.  Asterisks denote: ***p<0.001.  (C)  Shown at top are the numbers 

of EdU spots with “EdU only” (white bars) as well as the number of EdU-FANCD2 co-

localization events (grey bars) observed in 150 prophase cells.  At bottom are the 

numbers of FANCD2 foci with “FANCD2 only” (black bars) as well as the number of 

EdU-FANCD2 co-localizations (shown again as grey bars) observed in 150 prophase 

cells.  WT and C3 refer to wild-type and Mcm4
chaos3/chaos3

, respectively. 

 

Figure 4 

A loss of dormant origins increases the number of EdU spots at prophase, which is 

further enhanced by disruption of Fancc.  (A) Shown are representative images of all four 

genotypes co-stained for EdU (green) and pH3 (red).  In this experiment, staining for 

pH3, a marker of condensed chromatin 
67

, was used to confirm the scoring of nuclei at 

prophase in addition to nuclear morphology by DAPI staining.  (B) Shown are the 

average percentages of prophase cells positive for EdU spots (top) and the number of 
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EdU spots per prophase cell (bottom).  (C) As in (A), with cells treated with 300nM APH 

for 24 hours.  (D) Shown are the average percentages of prophase cells positive for 10 or 

more EdU spots (top) and the number of EdU spots per prophase cell (bottom).  Nuclei 

(A,C) were stained with DAPI (blue).  Scale bars (A,C) are 10 µm.  Error bars (B,D) 

show the binomial error for the combined data sets obtained from three independently 

performed experiments.  Significance was determined by χ
2
-test.  Asterisks denote: 

**p<0.01 and ***p<0.001.  WT, C3, FAC and C3;FAC refer to wild-type, 

Mcm4
chaos3/chaos3

, Fancc
-/-

 and Mcm4
chaos3/chaos3

;Fancc
-/-

, respectively. 

 

Figure 5 

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells show highly elevated  levels of MN and 53BP1-NBs.  (A) 

Shown are a representative image of binucleated cell positive for a micronucleus (left), 

the average percentages of binucleated cells positive for MN (middle) and a distribution 

of the number of MN per binucleated cell (right).  (B) Shown at left are representative 

images of a 53BP1-NB in a binucleated cell.  53BP1 staining is in red.  At middle are the 

average percentages of individual nuclei from binucleated cells positive for 53BP1-NBs, 

and at right are the distributions indicating the number of 53BP1-NBs per G1 phase 

nucleus.  All nuclei were stained with DAPI (blue).  All scale bars are 10 µm.  All error 

bars show the binomial error for the combined data sets obtained from three 

independently performed experiments.  Significance was determined by χ
2
-test.  Asterisks 
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denote: *p<0.05 and ***p<0.001.  WT, C3, FAC and C3;FAC refer to wild-type, 

Mcm4
chaos3/chaos3

, Fancc
-/-

 and Mcm4
chaos3/chaos3

;Fancc
-/-

, respectively. 

 

Figure 6 

(A) The average body weight of Mcm4
chaos3/chaos3

;Fancc
-/-

 mice derived in a C57BL/6J x 

C3HeB/FeJ mixed genetic background is slightly reduced.  Shown are the average body 

weights of the four genotypes in grams.  Error bars show the standard error of the means 

(SEMs) for at least 5 mice per genotype.  Significance was determined by t-test.  

Asterisks denote: *p<0.05.  (B) Mcm4
chaos3/chaos3

;Fancc
-/-

 mice succumb to tumors with a 

shorter latency than Mcm4
chaos3/chaos3

 mice in a C57BL/6J x C3HeB/FeJ mixed genetic 

background.  Shown are the tumor-free survival curves for all four genotypes.  (C) 

Shown are the tumor spectrums observed for Mcm4
chaos3/chaos3

 and Fancc
-/-

;Mcm4
chaos3/chaos3

 mice.  WT, C3, FAC and C3;FAC refer to wild-type, Mcm4
chaos3/chaos3

, 

Fancc
-/-

 and Mcm4
chaos3/chaos3

;Fancc
-/-

, respectively. 
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Table 1 

Genotype # of pups # of live pups % survival  

(all in Mcm4
chaos3/chaos3

) found at birth at birth at 3 wks at 3 wks p value 

Fancc
+/+

 20 18 17 85% - 

Fancc
+/-

 39 31 27 69% 0.00582 

Fancc
-/-

 15 2 2 13% 7.64E-15 

Total 74 51 46 62%  
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Supplementary table and figure legends 

Supplementary Table S1 

Fancc
-/-

 mice are born at a frequency approximately equal to the expected Mendelian 

ratio in a C57BL/6J x C3HeB/FeJ mixed genetic background. 

 

Supplementary Table S2 

Mcm4
chaos3/chaos3

;Fancc
-/-

 mice are born at a frequency approximately equal to the 

expected Mendelian ratio in a C57BL/6J x C3HeB/FeJ mixed genetic background. 

 

Supplementary Table S3 

Summary of Mcm4
chaos3/chaos3

 tumor histopathology in a C57BL/6J x C3HeB/FeJ mixed 

genetic background. 

 

Supplementary Table S4 

Summary of Mcm4
chaos3/chaos3

;Fancc
-/-

 tumor histopathology in a C57BL/6J x C3HeB/FeJ 

mixed genetic background. 
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Supplementary Figure S1 

(A) Western blotting reveals a substantial reduction in the levels of MCM4 in both the 

total cell extracts (left) and chromatin fractions (right) of Mcm4
chaos3/chaos3

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells.  Wild-type samples were also loaded in ratios of 0.4 and 

0.7 as a reference for the mutants.  (B) Mcm4
chaos3/chaos3

 cells display an increased number 

of FANCD2 foci in prophase.  Shown are the average percentages of prophase cells 

positive for 3 or more FANCD2 foci (top) as well as the average numbers of FANCD2 

foci per prophase cell (bottom).  Prophase cells were identified by prominent chromatin 

condensation via DAPI staining.  Error bars show the binomial error for the combined 

data set obtained from three independent experiments.  Significance was determined by 

χ
2
-test.  Asterisks denote: ***p<0.001.  (C) Western blotting shows that the amount of 

chromatin-loaded FANCD2 is below the threshold of detection in both Fancc
-/-

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells.  This was consistent in both the untreated (UNT) and 

APH-treated (300nM, 4 hrs) conditions.  Stained membranes (A,C) were used as loading 

controls.  WT, C3, FAC and C3;FAC refer to wild-type, Mcm4
chaos3/chaos3

, Fancc
-/-

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

, respectively. 

 

Supplementary Figure S2 

Representative images of cell cycle analyses are shown for all genotypes.  Cell cycle 

analysis was performed by measuring EdU incorporation in combination with propidium 

iodide staining (DNA content) by flow cytometry.  The FL2-H channel was used to 
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quantitate DNA content while the FL4-H channel was used to measure EdU 

incorporation.  Cells were categorized according to the gates shown (R2: G1; R3: S; R4: 

G2/M).  WT, C3, FAC and C3;FAC refer to wild-type, Mcm4
chaos3/chaos3

, Fancc
-/-

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

, respectively. 

 

Supplementary Figure S3 

(A) Representative images of FANCI foci co-localizing with EdU spots are shown.  

Wild-type cells in the untreated (UNT) or APH-treated (150nM, 24 hrs) conditions were 

co-stained for EdU (green) and FANCI (red).  (B) Shown at left are representative images 

of FANCD2 foci co-localizing with EdU spots.  Wild-type and Mcm4
chaos3/chaos3

 cells 

were co-stained for EdU (green) and FANCD2 (red) following treatment with APH 

(150nM, 24 hrs).  At top, middle are the average percentages of prophase cells positive 

for EdU spots (white bars) or EdU-FANCD2 co-localization events (grey bars).  At 

bottom, middle are the number of EdU spots per prophase cell as well as the number of 

EdU-FANCD2 co-localization events per prophase cell.  While the number of EdU spots 

and EdU-FANCD2 co-localizations were drastically increased in both genotypes after 

APH treatment, Mcm4
chaos3/chaos3

 cells still showed a more severe phenotype.  Shown at 

top, right are the numbers of EdU spots with “EdU only” (white bars) as well as the 

number of EdU-FANCD2 co-localization events (grey bars) observed in 150 prophase 

cells.  At bottom, right are the numbers of FANCD2 foci with “FANCD2 only” (black 

bars) as well as the number of EdU-FANCD2 co-localizations (shown again as grey bars) 
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observed in 150 prophase cells.  These data were consistent with results obtained in the 

untreated conditions.  Error bars show the binomial error for the combined data sets 

obtained from three independent experiments.  Significance was determined by χ
2
-test.  

Asterisks denote: ***p<0.001.  All nuclei were stained with DAPI (blue).  Scale bars are 

10 µm.  WT and C3 refer to wild-type and Mcm4
chaos3/chaos3

, respectively. 

 

Supplementary Figure S4 

Shown are representative images of a T-cell lymphoma from a Mcm4
chaos3/chaos3

;Fancc
-/-

 

mouse in an inbred C57BL/6JR background, including hematoxylin and eosin (H&E) 

stains (left) and immunohistochemistry using the T-cell marker CD-3 (middle) and the B 

cell marker B220 (right).  The images were taken from slightly different areas of the 

same liver.  The scale bar is 200 µm.  WT and C3 refer to wild-type and Mcm4
chaos3/chaos3

, 

respectively. 

 

Supplementary Figure S5 

(A) Mcm4
chaos3/chaos3

;Fancc
-/-

 mice display a reduced average testes size in a C57BL/6J x 

C3HeB/FeJ mixed genetic background.  Shown are the average percentages of total testes 

weight relative to total body weight.  Samples were taken from mice euthanized at 6 

weeks of age.  Error bars show the SEMs for at least 5 mice per genotype.  Significance 

was determined by t-test.  Asterisks denote: *p<0.05, **p<0.01.  (B) Histological 
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analysis by hematoxylin and eosin (H&E) staining shows a mosaic pattern of normal and 

empty seminiferous tubules in Fancc
-/-

 and Mcm4
chaos3/chaos3

;Fancc
-/-

 mice, with 

Mcm4
chaos3/chaos3

;Fancc
-/-

 mice having the most severe phenotype.  Scale bars are 1500 

µm for the whole testis sections (top) and 75 µm for the enlarged images (bottom).  WT, 

C3, FAC and C3;FAC refer to wild-type, Mcm4
chaos3/chaos3

, Fancc
-/-

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

, respectively. 

 

Supplementary Figure S6 

The number of MN, 53BP1-NBs and UFBs are also increased in Mcm4
chaos3/chaos3

;Fancc
-/-

 

cells derived from a C57BL/6J x C3HeB/FeJ mixed genetic background.  (A) Shown are 

the average percentages of binucleated cells positive for MN (left) and distributions 

indicating the number of MN per binucleated cell (right).  (B) Shown are the average 

percentages of individual G1 nuclei from binucleated cells positive for 53BP1-NBs (left) 

and distributions indicating the number of 53BP1-NBs per binucleated cell nucleus 

(right).  (C) Only Mcm4
chaos3/chaos3

;Fancc
-/-

 cells display a significantly increased number 

of PICH-coated UFBs.  Shown at left are representative images of an anaphase cell 

positive for a PICH-coated UFB.  PICH staining is in red, and chromosomes are stained 

with DAPI (blue).  At middle are the average percentages of anaphases positive for 

UFBs.  At right are the distributions for the number of UFBs per anaphase cell.  All error 

bars show the binomial error for the combined data sets obtained from at least three 

independent experiments.  Significance was determined by χ
2
-test.  Asterisks denote: 
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*p<0.05 and ***p<0.001.  WT, C3, FAC and C3;FAC refer to wild-type, 

Mcm4
chaos3/chaos3

, Fancc
-/-

 and Mcm4
chaos3/chaos3

;Fancc
-/-

, respectively. 

 

Supplementary Figure S7 

Shown at top are representative images of lymphosarcomas from Mcm4
chaos3/chaos3

;Fancc
-

/-
 mice, including H&E stains (left) and immunohistochemistry using the T cell marker 

CD-3 (middle) and the B cell marker B220 (right).  The lymphosarcoma of mouse #58 is 

of T cell origin, while that of mouse #57 is of B cell origin.  At bottom are representative 

images of a presumed myeloid leukemia from a Mcm4
chaos3/chaos3

;Fancc
-/-

 mouse (#40), 

including an H&E stain (left) and immunohistochemistry using the pan-macrophage 

marker F4/80 (middle) and the myeloid precursor marker MPO (right).  Scale bars are 

100 µm.  C3;FAC refers to Mcm4
chaos3/chaos3

;Fancc
-/-

. 
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Supplementary Table S1 

Fancc
+/-

 x Fancc
+/-

 

Genotype Expected Observed 

Fancc
+/+

 or Fancc
+/-

 105 112 

Fancc
-/-

 35 28 

Total 140 140 

Χ
2
-test: p = 0.17186 
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Supplementary Table S2 

Mcm4
chaos3/chaos3

;Fancc
+/-

 x Mcm4
chaos3/chaos3

;Fancc
+/- 

Genotype Expected Observed 

Mcm4
chaos3/chaos3

;Fancc
+/+

 or 
Mcm4

chaos3/chaos3
;Fancc

+/-
 

73.5 81 

Mcm4
chaos3/chaos3

;Fancc
-/-

 24.5 17 

Total 98 98 

Χ
2
-test: p = 0.08018 
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Supplementary Table S3 

Mouse # Sex Age 

(Days) 

Location Diagnosis Immunohistochemistry 

33 F 269 LN, liver, lung, 

spleen 

Lymphosarcoma CD3+ 

25 M 314 Abdomen Myeloid or 

histiocytic 

sarcoma 

CD3-; B220-; MPO-; 

F4/80- 

32 F 318 Long bone of 

hind leg, 

ribcage 

Osteosarcoma N.D. 

62810 F 352 Spleen, 

pancreas, liver, 

lung, fat pad 

Lymphosarcoma CD3-; B220- 

31 F 354 LN, liver, lung, 

spleen 

Lymphosarcoma N.D. 

26 M 373 Behind front leg Schwannoma N.D. 

34 F 389 Abdominal fat 

pads, pancreas 

Histiocytic 

sarcoma 

Mac-2+; F4/80+ 

27 M 408 LN, thymus Hematopoietic 

neoplasia 

Mac-2+; F4/80- 

29 M 416 Abdomen Histiocytic 

sarcoma 

Mac-2+; F4/80+ 

328 M 425 LN, pancreas Histiocytic 

sarcoma 

N.D. 

28 M 425 N.T.F.   

56 M 425 N.T.F.   

36 F 425 N.T.F.   

37 F 425 N.T.F.   
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Supplementary Table S4 

Mouse # Sex Age 

(Days) 

Location Diagnosis Immunohistochemistry 

12910 F 109 LN, liver, lung, 

spleen, kidneys, 

thymus 

Lymphosarcoma CD3+; B220- 

58 F 110 LN, liver, lung, spleen Lymphosarcoma CD3+ 

41 F 117 LN, liver, lung, spleen Lymphosarcoma CD3+ 

57 F 142 LN, liver, lung, spleen Lymphosarcoma B220+ 

44 F 197 LN, liver, lung, 

spleen, kidneys, 

thymus 

Lymphosarcoma CD3+;B220- 

49 F 234 LN, liver, lung, 

spleen, kidneys 

Lymphosarcoma CD3-; B220- 

51 F 259 Within front leg Myeloid or 

histiocytic 

sarcoma 

CD3-; B220-; MPO-; 

F4/80- 

47 F 263 LN, liver, lung, spleen Myelomonocytic 

neoplasia 

MPO+; F4/80+ 

42 F 280 LN, liver, lung, 

spleen, pancreas, 

thymus 

Lymphosarcoma; 

myeloid leukemia 

B220+ 

235 M 288 Back Schwannoma N.D. 

48 F 351 LN, liver, lung, spleen Hematopoietic CD3+; B220+ 

40 F 421 LN, liver, uterus, 

pancreas, spleen 

Myeloid leukemia MPO+ 

30 M 425 Small mass adjacent to 

testis 

Histiocytic 

sarcoma 

Mac-2+; F4/80+ 

46 F 425 LN Lymphosarcoma N.D. 

50 F 425 Abdomen, liver, 

spleen 

Histiocytic 

sarcoma 

Mac-2+; F4/80+ 

55 M 425 LN, spleen Lymphosarcoma CD3+; B220+ 

43 M 425 N.T.F.   

52 M 425 N.T.F.   

45 F 425 N.T.F.   
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Supplementary Figure S3 
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Supplementary Figure S4 



Supplementary Figure S5  Luebben et al., 2014 

148 
 

Supplementary Figure S5 



Supplementary Figure S6  Luebben et al., 2014 

149 
 

Supplementary Figure S6 



Supplementary Figure S7  Luebben et al., 2014 

150 
 

Supplementary Figure S7 



  Luebben et al., 2014 

151 
 

References 

1 Yekezare, M., Gómez-González, B. & Diffley, J. F. X. Controlling DNA 

replication origins in response to DNA damage – inhibit globally, activate locally. 

Journal of Cell Science 126, 1297-1306 (2013). 

2 Blow, J. J. & Dutta, A. Preventing re-replication of chromosomal DNA. Nat Rev 

Mol Cell Biol 6, 476-486 (2005). 

3 Sclafani, R. A. & Holzen, T. M. Cell Cycle Regulation of DNA Replication. 

Annual Review of Genetics 41, 237-280 (2007). 

4 Labib, K., Tercero, J. A. & Diffley, J. F. X. Uninterrupted MCM2-7 Function 

Required for DNA Replication Fork Progression. Science 288, 1643-1647 (2000). 

5 Pacek, M. & Walter, J. C. A requirement for MCM7 and Cdc45 in chromosome 

unwinding during eukaryotic DNA replication. EMBO J 23, 3667-3676 (2004). 

6 Shechter, D., Ying, C. Y. & Gautier, J. DNA Unwinding Is an MCM Complex-

dependent and ATP Hydrolysis-dependent Process. Journal of Biological 

Chemistry 279, 45586-45593 (2004). 

7 Moyer, S. E., Lewis, P. W. & Botchan, M. R. Isolation of the Cdc45/Mcm2–

7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork 

helicase. Proceedings of the National Academy of Sciences 103, 10236-10241 

(2006). 

8 Ilves, I., Petojevic, T., Pesavento, J. J. & Botchan, M. R. Activation of the 

MCM2-7 Helicase by Association with Cdc45 and GINS Proteins. Molecular Cell 

37, 247-258 (2010). 

9 Burkhart, R. et al. Interactions of Human Nuclear Proteins P1Mcm3 and 

P1Cdc46. European Journal of Biochemistry 228, 431-438 (1995). 

10 Rowles, A. et al. Interaction between the Origin Recognition Complex and the 

Replication Licensing Systemin Xenopus. Cell 87, 287-296 (1996). 

11 Mahbubani, H. M., Chong, J. P. J., Chevalier, S., Thömmes, P. & Blow, J. J. Cell 

Cycle Regulation of the Replication Licensing System: Involvement of a Cdk-

dependent Inhibitor. The Journal of Cell Biology 136, 125-135 (1997). 

12 Edwards, M. C. et al. MCM2–7 Complexes Bind Chromatin in a Distributed 

Pattern Surrounding the Origin Recognition Complex in Xenopus Egg Extracts. 

Journal of Biological Chemistry 277, 33049-33057 (2002). 

13 Woodward, A. M. et al. Excess Mcm2–7 license dormant origins of replication 

that can be used under conditions of replicative stress. The Journal of Cell 

Biology 173, 673-683 (2006). 

14 Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess 

Mcm2–7 are required for human cells to survive replicative stress. Genes & 

Development 21, 3331-3341 (2007). 

15 Ibarra, A., Schwob, E. & Méndez, J. Excess MCM proteins protect human cells 

from replicative stress by licensing backup origins of replication. Proceedings of 

the National Academy of Sciences 105, 8956-8961 (2008). 



  Luebben et al., 2014 

152 
 

16 Kawabata, T. et al. Stalled Fork Rescue via Dormant Replication Origins in 

Unchallenged S Phase Promotes Proper Chromosome Segregation and Tumor 

Suppression. Molecular Cell 41, 543-553 (2011). 

17 Shima, N. et al. A viable allele of Mcm4 causes chromosome instability and 

mammary adenocarcinomas in mice. Nat Genet 39, 93-98 (2007). 

18 Blow, J. J., Ge, X. Q. & Jackson, D. A. How dormant origins promote complete 

genome replication. Trends in Biochemical Sciences 36, 405-414 (2011). 

19 Crossan, G. P. & Patel, K. J. The Fanconi anaemia pathway orchestrates incisions 

at sites of crosslinked DNA. The Journal of Pathology 226, 326-337 (2012). 

20 Kottemann, M. C. & Smogorzewska, A. Fanconi anaemia and the repair of 

Watson and Crick DNA crosslinks. Nature 493, 356-363 (2013). 

21 Kashiyama, K. et al. Malfunction of Nuclease ERCC1-XPF Results in Diverse 

Clinical Manifestations and Causes Cockayne Syndrome, Xeroderma 

Pigmentosum, and Fanconi Anemia. The American Journal of Human Genetics 

92, 807-819 (2013). 

22 Bogliolo, M. et al. Mutations in ERCC4, Encoding the DNA-Repair 

Endonuclease XPF, Cause Fanconi Anemia. The American Journal of Human 

Genetics 92, 800-806 (2013). 

23 Constantinou, A. Rescue of replication failure by Fanconi anaemia proteins. 

Chromosoma 121, 21-36 (2012). 

24 Kee, Y. & D'Andrea, A. D. Expanded roles of the Fanconi anemia pathway in 

preserving genomic stability. Genes & Development 24, 1680-1694 (2010). 

25 Langevin, F., Crossan, G. P., Rosado, I. V., Arends, M. J. & Patel, K. J. Fancd2 

counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475, 

53-58 (2011). 

26 Garcia-Higuera, I. et al. Interaction of the Fanconi Anemia Proteins and BRCA1 

in a Common Pathway. Molecular Cell 7, 249-262 (2001). 

27 Sims, A. E. et al. FANCI is a second monoubiquitinated member of the Fanconi 

anemia pathway. Nat Struct Mol Biol 14, 564-567 (2007). 

28 Smogorzewska, A. et al. Identification of the FANCI Protein, a 

Monoubiquitinated FANCD2 Paralog Required for DNA Repair. Cell 129, 289-

301 (2007). 

29 Taniguchi, T. et al. S-phase–specific interaction of the Fanconi anemia protein, 

FANCD2, with BRCA1 and RAD51. Blood 100, 2414-2420 (2002). 

30 Sobeck, A. et al. Fanconi Anemia Proteins Are Required To Prevent 

Accumulation of Replication-Associated DNA Double-Strand Breaks. Molecular 

and Cellular Biology 26, 425-437 (2006). 

31 Ikegami, S., Taguchi, T., Ohashi, M., Nagano, H. & Mano, Y. Aphidicolin 

prevents mitotic cell division by interfering with the activity of DNA polymerase-

alpha. Nature 275, 458-460 (1978). 

32 Howlett, N. G., Taniguchi, T., Durkin, S. G., D'Andrea, A. D. & Glover, T. W. 

The Fanconi anemia pathway is required for the DNA replication stress response 



  Luebben et al., 2014 

153 
 

and for the regulation of common fragile site stability. Human Molecular 

Genetics 14, 693-701 (2005). 

33 Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress 

induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11, 

753-760 (2009). 

34 Naim, V. & Rosselli, F. The FANC pathway and BLM collaborate during mitosis 

to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11, 

761-768 (2009). 

35 Durkin, S. G. & Glover, T. W. Chromosome Fragile Sites. Annual Review of 

Genetics 41, 169-192 (2007). 

36 Letessier, A. et al. Cell-type-specific replication initiation programs set fragility 

of the FRA3B fragile site. Nature 470, 120-123 (2011). 

37 Ozeri-Galai, E. et al. Failure of Origin Activation in Response to Fork Stalling 

Leads to Chromosomal Instability at Fragile Sites. Molecular Cell 43, 122-131 

(2011). 

38 Whitney, M. et al. Germ cell defects and hematopoietic hypersensitivity to 

gamma- interferon in mice with a targeted disruption of the Fanconi anemia C 

gene. Blood 88, 49-58 (1996). 

39 Kawabata, T. et al. A reduction of licensed origins reveals strain-specific 

replication dynamics in mice. Mammalian Genome 22, 506-517 (2011). 

40 Luebben, S. W. et al. Helq acts in parallel to Fancc to suppress replication-

associated genome instability. Nucleic Acids Research (2013). 

41 Lukas, C. et al. 53BP1 nuclear bodies form around DNA lesions generated by 

mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13, 

243-253 (2011). 

42 Harrigan, J. A. et al. Replication stress induces 53BP1-containing OPT domains 

in G1 cells. The Journal of Cell Biology 193, 97-108 (2011). 

43 Baumann, C., Körner, R., Hofmann, K. & Nigg, E. A. PICH, a Centromere-

Associated SNF2 Family ATPase, Is Regulated by Plk1 and Required for the 

Spindle Checkpoint. Cell 128, 101-114 (2007). 

44 Carreau, M. Not-so-novel phenotypes in the Fanconi anemia group D2 mouse 

model. Blood 103, 2430 (2004). 

45 Wang, L. C., Stone, S., Hoatlin, M. E. & Gautier, J. Fanconi anemia proteins 

stabilize replication forks. DNA Repair 7, 1973-1981 (2008). 

46 Schlacher, K., Wu, H. & Jasin, M. A Distinct Replication Fork Protection 

Pathway Connects Fanconi Anemia Tumor Suppressors to RAD51-BRCA1/2. 

Cancer Cell 22, 106-116 (2012). 

47 Chaudhury, I., Sareen, A., Raghunandan, M. & Sobeck, A. FANCD2 regulates 

BLM complex functions independently of FANCI to promote replication fork 

recovery. Nucleic Acids Research 41, 6444-6459 (2013). 

48 Zou, L. & Elledge, S. J. Sensing DNA Damage Through ATRIP Recognition of 

RPA-ssDNA Complexes. Science 300, 1542-1548 (2003). 



  Luebben et al., 2014 

154 
 

49 Byun, T. S., Pacek, M., Yee, M.-c., Walter, J. C. & Cimprich, K. A. Functional 

uncoupling of MCM helicase and DNA polymerase activities activates the ATR-

dependent checkpoint. Genes & Development 19, 1040-1052 (2005). 

50 Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA 

Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139. 

Journal of Biological Chemistry 273, 5858-5868 (1998). 

51 Chuang, C.-H., Wallace, M. D., Abratte, C., Southard, T. & Schimenti, J. C. 

Incremental Genetic Perturbations to MCM2-7 Expression and Subcellular 

Distribution Reveal Exquisite Sensitivity of Mice to DNA Replication Stress. 

PLoS Genet 6, e1001110 (2010). 

52 Bergoglio, V. et al. DNA synthesis by Pol η promotes fragile site stability by 

preventing under-replicated DNA in mitosis. The Journal of Cell Biology 201, 

395-408 (2013). 

53 Naim, V., Wilhelm, T., Debatisse, M. & Rosselli, F. ERCC1 and MUS81–EME1 

promote sister chromatid separation by processing late replication intermediates at 

common fragile sites during mitosis. Nat Cell Biol 15, 1008-1015 (2013). 

54 Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR Regulates Fragile 

Site Stability. Cell 111, 779-789 (2002). 

55 Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protocols 2, 

1084-1104 (2007). 

56 Freie, B. et al. Fanconi anemia type C and p53 cooperate in apoptosis and 

tumorigenesis. Blood 102, 4146-4152 (2003). 

57 Wallace, M. D., Southard, T. L., Schimenti, K. J. & Schimenti, J. C. Role of DNA 

damage response pathways in preventing carcinogenesis caused by intrinsic 

replication stress. Oncogene (2013). 

58 Niedzwiedz, W. et al. The Fanconi Anaemia Gene FANCC Promotes 

Homologous Recombination and Error-Prone DNA Repair. Molecular Cell 15, 

607-620 (2004). 

59 Mirchandani, K. D., McCaffrey, R. M. & D’Andrea, A. D. The Fanconi anemia 

core complex is required for efficient point mutagenesis and Rev1 foci assembly. 

DNA Repair 7, 902-911 (2008). 

60 Kim, H., Yang, K., Dejsuphong, D. & D'Andrea, A. D. Regulation of Rev1 by the 

Fanconi anemia core complex. Nat Struct Mol Biol 19, 164-170 (2012). 

61 Lossaint, G. et al. FANCD2 Binds MCM Proteins and Controls Replisome 

Function upon Activation of S Phase Checkpoint Signaling. Molecular Cell 51, 

678-690 (2013). 

62 Ying, S. et al. MUS81 promotes common fragile site expression. Nat Cell Biol 15, 

1001-1007 (2013). 

63 Parmar, K., D’Andrea, A. & Niedernhofer, L. J. Mouse models of Fanconi 

anemia. Mutation Research/Fundamental and Molecular Mechanisms of 

Mutagenesis 668, 133-140 (2009). 



  Luebben et al., 2014 

155 
 

64 Tischkowitz, M. & Winqvist, R. Using mouse models to investigate the biological 

and physiological consequences of defects in the Fanconi anaemia/breast cancer 

DNA repair signalling pathway. The Journal of Pathology 224, 301-305 (2011). 

65 Hughes, C. R. et al. MCM4 mutation causes adrenal failure, short stature, and 

natural killer cell deficiency in humans. The Journal of Clinical Investigation 122, 

814-820 (2012). 

66 Gineau, L. et al. Partial MCM4 deficiency in patients with growth retardation, 

adrenal insufficiency, and natural killer cell deficiency. The Journal of Clinical 

Investigation 122, 821-832 (2012). 

67 Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates 

primarily within pericentromeric heterochromatin during G2 and spreads in an 

ordered fashion coincident with mitotic chromosome condensation. Chromosoma 

106, 348-360 (1997). 

 

 

 



Luebben et al., 2013 

 

156 
 

 

 

CHAPTER IV: Helq Acts in Parallel to Fancc to 

Suppress Replication-associated Genome Instability 

 

My contributions to this chapter 

Figures 1-6 

Table 1 

Figures S2-7 

 

 

 

 

 

This chapter is a replicate of a publication in Nucleic Acids Research (2013).  

Spencer W. Luebben, Tsuyoshi Kawabata, Monica K. Akre, Wai Long Lee, Charles S. 

Johnson, M. Gerard O’Sullivan and Naoko Shima. 



Luebben et al., 2013 

 

157 
 

Summary 

HELQ is a superfamily 2 DNA helicase found in archaea and metazoans.  It has been 

implicated in processing stalled replication forks and in repairing DNA double-strand 

breaks and inter-strand crosslinks.  Though previous studies have suggested the 

possibility that HELQ is involved in the Fanconi anemia (FA) pathway, a dominant 

mechanism for inter-strand crosslink repair in vertebrates, this connection remains 

elusive.  Here, we investigated this question in mice using the Helq
gt

 and Fancc
- 
strains.  

Compared with Fancc
-/- 

mice lacking FANCC, a component of the FA core complex, 

Helq
gt/gt

 mice exhibited a mild of form of FA-like phenotypes including hypogonadism 

and cellular sensitivity to the crosslinker mitomycin C.  However, unlike Fancc
-/-

 primary 

fibroblasts, Helq
gt/gt

 cells had intact FANCD2 mono-ubiquitination and focus formation.  

Notably, for all traits examined, Helq was non-epistatic with Fancc, as Helq
gt/gt

;Fancc
-/-

 

double mutants displayed significantly worsened phenotypes than either single mutant.  

Importantly, this was most noticeable for the suppression of spontaneous chromosome 

instability such as micronuclei and 53BP1 nuclear bodies, known consequences of 

persistently stalled replication forks.  These findings suggest that mammalian HELQ 

contributes to genome stability in unchallenged conditions through a mechanism distinct 

from the function of FANCC. 
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Introduction 

Maintaining genome stability is critical for cells, given that the genome is under 

constant attack by numerous exogenous and endogenous agents
1
.  It is inevitable that 

cells will have to proceed with genome duplication using damaged template DNA, which 

can perturb the normal progression of replication forks.  To cope with this problem, 

organisms have developed multiple mechanisms to allow the rescue of stalled replication 

forks
2
.  Such mechanisms include firing of dormant origins, translesion synthesis with 

error-prone DNA polymerases and homology-directed fork recovery
3-5

.  Evidence 

suggests that the latter two mechanisms are in part coordinated by the concerted work of 

proteins that are mutated in Fanconi anemia (FA)
6
, a rare polygenic human genetic 

disorder
7
.  FA patients exhibit genome instability, congenital abnormalities, bone marrow 

failure, hypogonadism and a heightened predisposition to cancer
7,8

.  FA is uniquely 

characterized by its cellular hypersensitivity to agents that induce DNA inter-strand 

crosslinks (ICLs)
7,9

, although it is unclear how ICL repair is functionally linked with 

stalled fork recovery in unchallenged conditions. 

 The DNA helicase HELQ was first discovered in the human and mouse genomes 

through its homology to MUS308
10

, a DNA repair enzyme required for ICL resistance in 

Drosophila melanogaster
11,12

.  Although it is unlikely that its vertebrate ortholog POLQ 

plays a major role in ICL repair
13-15

, together they make up a unique family of DNA 

polymerases that possess a helicase domain in the N-terminus in addition to a C-terminal 

polymerase domain
16-18

.  Unlike its paralog POLQ, HELQ lacks a polymerase domain, 
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and several lines of evidence indicate that HELQ performs a distinct function from 

POLQ.  HELQ is an ortholog of the Drosophila mus301 gene
19

, which is allelic to the 

female-sterile mutation spindle-C (spn-C)
20

.  Mutations in spn-C result in the failed 

repair of meiotic double-strand breaks (DSB) and activation of the meiotic checkpoint
20

, 

which was not observed in mus308 mutants.  In line with this observation, it was also 

reported that the Caenorhabditis elegans ortholog helq-1 plays a role in meiotic DSB 

repair by promoting postsynaptic RAD-51 filament disassembly
21

.  These findings 

suggest that HELQ has a role in meiotic DSB repair through homologous recombination 

(HR) in these species.  In humans, HELQ is expressed in the testes, ovaries, heart and 

skeletal muscle
22

.  However, its function is largely unknown. 

Biochemically, human HELQ exhibits ATP-dependent 3'-5' DNA helicase 

activity in vitro
10,23

.  A recent study demonstrated that human HELQ preferentially 

unwinds the parental strands of forked structures with a nascent lagging strand, and that 

this activity is stimulated by replication protein A (RPA)
23

.  These findings suggest that 

HELQ is likely to participate in the recovery of stalled or collapsed replication forks.  

Several studies have suggested that this role of HELQ is closely linked with the FA 

pathway.  A genetic study in C. elegans demonstrated that helq-1 is required for ICL 

repair and is epistatic to fcd-2
24

, an ortholog of FANCD2 whose product is mono-

ubiquitinated by the FA core complex as a key step in this pathway
25

.  However, C. 

elegans contains only a few FA proteins and lacks multiple members comprising the FA 

core complex
26

.  HELQ may belong to a primitive FA pathway in C. elegans, but its 
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evolution seems to have taken a complex path.  Paradoxically, disruption of Helq in 

chicken DT40 cells, which contain all of the FA proteins, did not confer hypersensitivity 

to ICL inducing agents
14

.  In human cells, HELQ depletion confers hypersensitivity to the 

crosslinker mitomycin C (MMC) and HR deficiency, the latter reported to be epistatic to 

FANCD2
27

.  Consistent with this observation, exogenously expressed GFP-tagged HELQ 

co-localizes with RAD51 foci as well as FANCD2 foci after treatment with the 

topoisomerase I inhibitor camptothecin (CPT)
23

.  There is little information about the link 

between HELQ and the FA pathway in mammals, particularly in the absence of 

exogenous DNA damage. 

To decipher the enigmatic connection between HELQ and the FA pathway, we 

have generated Helq deficient mice using a gene-trap allele named Helq
gt

 for phenotypic 

comparisons to mice deficient for Fancc, encoding FANCC, a component of the FA core 

complex
28

 in the same genetic background.  For all traits examined including 

hypogonadism and MMC sensitivity, we found that loss of Helq results in phenotypes 

considerably milder than Fancc deficiency.  Moreover, our data show that combined loss 

of Helq and Fancc leads to further severe phenotypes than single mutants, presenting no 

evidence for epistasis.  Importantly, the strongest inter-dependence for Helq and Fancc 

was observed for the suppression of spontaneous genome instability derived from 

replication fork failures rather than MMC resistance.  These findings collectively suggest 

that HELQ contributes to genome stability in unperturbed conditions in a manner that is 

distinct from the function of FANCC. 
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Materials and methods 

Mouse strains and MEFs 

All experiments were performed using mice from a C57BL/6J background and were 

approved by the Institutional Animal Care and Use Committee (IACUC).  MEFs were 

generated from 12.5-14.5 dpc embryos and cultured using standard procedures as 

described previously
29

.  All mice were genotyped by PCR.  The primers used are 

available upon request. 

 

Quantitative RT-PCR 

RNA was isolated from either cultured MEFs or testes tissue using the PureLink RNA 

Mini Kit (Ambion, Life Technologies) and the RNeasy Kit (QIAGEN).  cDNA was then 

synthesized using the Superscript VILO cDNA Synthesis Kit (Invitrogen, Life 

Technologies).  q-PCR analysis was performed on the LightCycler 480 (Roche) using 

primer pairs specific for exons 1-2, exons 11-12 and the chimeric mutant transcript 

spanning between exon 11 and the inserted vector.  Expression was normalized to 

glyceraldehydes 3-phosphate dehydrogenase (GAPDH). 
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Western Blotting and Immunofluorescence Microscopy 

Western blotting and immunofluorescence staining were carried out using standard 

procedures as described previously
29

. 

 

Antibodies 

For immunofluorescence and western blotting procedures, we used anti-phospho-histone 

H3, anti-RPA32, anti-γH2AX, anti-CENP-A, anti-phospho-CHK1 (Cell Signaling; 

#9706, #2208, #2577, #2048, #2341, respectively), anti-FANCD2 for foci staining, anti-

FANCI, anti-53BP1, anti-MCM4 (Abcam; ab2187 or ab108928, ab74332, ab36823, 

ab4459, respectively), anti-FANCA (Bethyl Laboratories; #A301-980A), anti-CHK1 

(Santa Cruz; sc-8408), anti-FANCD2 for western blots (Epitomics; #2986-1) and anti-

HELQ (MyBioSource; #MBS120320).  For the DNA Fiber assay, anti-digoxigenin 

antibody conjugated with rhodamine from Roche (11207750910) and the streptavidin-

AlexaFluor488 from Invitrogen (S-32354) were used. 

 

siRNA transfection in MEFs, HEK 293T and PD331 cells 

One million cells were seeded per well in a six-well dish followed by transfection with 

either 50nM (MEFs) or 25 nM (HEK 293T, PD331) of non-targeted control small 

interfering RNA (siRNA) (#D-001206-13-20, siGENOME Smart pool), HELQ siRNA 

(#M-015379-01-0005, siGENOME Smart pool) or FANCA siRNA (#M-019283-02-
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0005, siGENOME Smart pool) from Dharmacon.  This was performed using OPTI-MEM 

and Lipofectamine RNAiMAX (Life technologies) transfection reagents.  Twenty-four 

hours later, a second round of transfection was performed using the same concentration 

of siRNA, followed by 24 h culture.  Cells were then re-plated according to the analysis 

performed.  The PD331 cell lines were obtained from the Oregon Health & Science 

University Fanconi Anemia Cell Repository (Portland, Oregon). 

 

Metaphase Analysis 

MEFs were treated with 600 nM MMC for 2 h and allowed 22 h to recover before 

harvest.   For experiments using the HEK 293T cell line, cells were treated with 300 nM 

MMC for 24 h before harvest.  In all experiments, cells were treated with colcemid for 1-

2 h prior to harvest.  Following hypotonic treatment, cells were fixed with fixative (3:1 

methanol: acetic acid in volume) and dropped on slides in a humidified environment to 

optimize spreading.  Slides were mounted in 1X 4’,6-diamidino-2-phenylindole, 

dihydrochloride (DAPI) anti-fade solution the following day and blinded for analysis.  

Only metaphases with 38-41 chromosomes (MEFs) or 64-72 chromosomes (HEK 293T 

cells) were included in the analysis.  Chromosome aberrations including radials, 

gaps/breaks, fragments and ring chromosomes were scored for all experiments.  HEK 

293T cells were cultured using the same procedures used for MEFs. 
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DNA Fiber Assay 

All techniques and methods of analysis used were performed as described previously
29,30

.  

Briefly, replication forks were sequentially labeled with deoxyuridine triphosphates 

(dUTPs) conjugated with digoxigenin (digoxigenin-dUTPs) for 20 min and with biotin-

dUTPs for 30 min.  Labeled cells were dropped onto slides, fixed, and dipped into lysis 

buffer for the release and extension of DNA fibers.  Incorporated dUTPs were visualized 

by anti-digoxigenin rhodamine conjugate (Roche, Branford, CT) and streptavidin, -Alexa 

Fluor 488 (Invitrogen, Carlsbad, CA). 

 

Colony Formation Assay 

Five hundred cells were plated in 6 cm dishes along with the corresponding doses of 

MMC.  For HEK 293T cells, the bottoms of the dishes were coated with poly-L-lysine 

beforehand to aid in cell adhesion.  Colonies were stained using crystal violet after a 

period of 1 week (HEK 293T) or 2 weeks (PD331 and PD331+FANCC) and counted. 

 

MTT Assay 

The Vybrant MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) Cell 

Proliferation Assay Kit (Life Technologies) was used.  Briefly, 5 x 10
4
 (experiments with 

MEFs) or 1 x 10
4
 (experiments with PD331 cell lines) cells of each genotype were plated 

per well in a 96-well plate.  The next day, cells were either treated with the corresponding 
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drug or left untreated for 5 days before the assay was performed according to the 

manufacturer’s instructions.  A570 was used to measure relative cell proliferation while 

A670 was used as a reference for background absorbance. 

 

Cytokinesis-Block Micronucleus Assay and G1 Phase Cell Analyses 

The cytokinesis-block micronucleus (MN) assay was performed as described 

previously
29,31

, except that cells were treated with cytochalasin B (0.72 µg/ml) for 4-5 h.  

The same procedure was used for all analyses of G1 cells. 

 

Measuring HR events using the fluorescent yellow direct repeat transgenic locus system 

Wildtype and Helq
gt/gt

 MEFs carrying the FYDR transgenic locus
32

 in the hemizygous 

state were generated as described above.  Cells at passage 2 were plated, grown for three 

days and then re-plated into three separate dishes.  The corresponding drug treatments 

(untreated, MMC, CPT) were then administered the following day and washed out after 

24 hours.  After a 48-hour recovery period, cells were analyzed by flow cytometry using 

the FL1-H and FL2-H channels of the FACSCalibur (BD Biosciences). 
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Results 

Helq deficient mice carry a gene-trap allele that generates HELQ--Geo 

To generate a mouse Helq mutant, we searched the BayGenomics database for mutant 

mouse embryonic stem (ES) cell clones
33,34

.  Gene-trap vectors are designed to have a 

splice acceptor site upstream of a reporter gene, typically -Geo, a fusion gene of the -

galactosidase and neomycin resistance genes.  We found that the ES cell clone RRF112 

has an insertion of the gene-trap vector pGT0Lxf in the intron between exons 11 and 12 

of the Helq locus (Supplementary Figure S1A).  This gene-trap allele was named Helq
gt

.  

The Helq
gt

 allele is expected to create a chimeric transcript containing exons 1-11 of Helq 

and -Geo (Figure 1A), producing a truncated HELQ protein that is fused with -Geo at 

its C-terminal end (Figure 1B).  This mutant protein still retains its helicase domain but 

lacks the three C-terminal domains with highly conserved motifs thorough archaea to 

metazoans
35,36

.  It has been demonstrated that these domains are required for normal 

helicase activity in other species
36-38

.  To generate mice that carry the Helq
gt

 allele, we 

microinjected RRF112 ES cells into blastocysts from an inbred strain of C57BL/6J (B6) 

females using a standard method.  High-percentage chimera males were mated with B6 

inbred females to produce carriers of the Helq
gt

 allele, which were identified by genomic 

PCR using primer pairs that amplify the boundary sequences of the insertion site 

(Supplementary Figure S1B).  Helq
gt

 heterozygous (Helq
gt/+

) carriers appear normal in 

every aspect and are undistinguishable from wildtype (WT) mice (data not shown).  A 

congenic line of Helq
gt

 has been established by backcrossing Helq
gt/+

 mice to inbred B6 
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mice at least 10 generations.  This B6 congenic Helq
gt

 line was used for the following 

studies unless otherwise indicated. 

 

WT Helq mRNA and protein are virtually undetectable in Helq
gt

 homozygous cells 

Helq
gt/+

 mice were timed-mated to generate mouse embryonic fibroblasts (MEFs).  We 

extracted total RNA from WT and Helq
gt

 homozygous (Helq
gt/gt

) MEFs for reverse-

transcription (RT)-PCR and verified the presence of the chimeric message in Helq
gt/gt

 

MEFs and the wildtype mRNA in WT MEFs (Figure 1A) by sequencing the RT-PCR 

products (Supplementary Figure S1C).  Furthermore, quantitative (q-)RT-PCR on RNA 

from WT and Helq
gt/gt

 cells revealed that the WT transcript containing exons 11-12 was 

nearly absent in Helq
gt/gt

 cells (less than 1 % of WT) that predominantly express the 

chimeric transcript containing exon 11 and -Geo sequences (Figure 1C).  As we found 

no difference between WT and Helq
gt/gt

 cells for the levels of transcript containing exons 

1-2 far upstream of the insertion site, the presence of the gene-trap vector likely has no 

effect on Helq expression.  Next, we performed western blots on whole cell extracts from 

WT and Helq
gt/gt

 MEFs (Figure 1D).  Consistent with the q-RT-PCR results, WT HELQ 

(~120kD) was undetectable in Helq
gt/gt

 cells.  Instead, they predominantly express the 

mutant HELQ protein (HELQ--Geo).  A semi-quantitative analysis indicated that 

Helq
gt/gt

 cells express WT HELQ protein less than 10% of the levels seen in WT cells, if 

any at all (Figure 1E).  These data suggest that the splice acceptor site at the Helq
gt

 allele 
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is very efficient, leading to very little expression of normal, full-length HELQ in Helq
gt/gt

 

cells. 

 

Helq deficiency causes a mild form of hypogonadism, which is not epistatic to Fancc 

As previous studies suggested an intriguing connection of HELQ to the FA 

pathway
23,24,27

, we generated Helq
gt/gt

 mice along with WT control mice to examine 

hypogonadism, one of the most consistent phenotypes seen in the FA mouse models
39

. 

We found that Helq
gt/gt

 males have significantly smaller testes (p<0.005, t-test), ~62% of 

WT males by weight at 6 weeks of age (0.165g0.01 and 0.102g0.01 for the average 

WT and Helq
gt/gt

 testes weights, respectively, Figure 2A).  Histological analysis revealed 

that approximately 10~20% seminiferous tubules in Helq
gt/gt

 males are atrophied and 

devoid of spermatocytes and spermatogonia (Figure 2B).  This mosaic pattern of normal 

and empty seminiferous tubules is very similar to what has been seen in a number of FA 

mouse models
40-48

.  For comparison, we also generated mice homozygous for a Fancc 

allele (Fancc
-
)
28

 in the same background.  As reported earlier
28,49,50

, Fancc
-/-

 males had 

extremely small testes weighing an average of only 0.027g0.001 (only 16% of WT by 

weight, p<0.0001, t-test) with >90% of seminiferous tubules exhibiting atrophy or 

hypotrophy (Figure 2A and B).  When compared to Helq
gt/gt

 males, Fancc
-/-

 testes were 

only 26% of Helq
gt/gt

 testes by weight (p<0.0001, t-test).  These data suggest that the 

hypogonadism observed in Helq
gt/gt

 testes is not as severe as in Fancc
-/-

 testes.  To test for 

an epistatic relationship between Helq and Fancc for this trait, we generated mice doubly 
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homozygous for Helq
gt

 and Fancc
-
.  Testes from Helq

gt/gt
;Fancc

-/-
 males were even 

smaller (the average 0.021g0.002) than those from Fancc
-/-

 males (p<0.05, t-test), 

having all seminiferous tubules completely devoid of spermatogonia and spermatocytes.  

While Fancc
-/-

 and Helq
gt/gt

;Fancc
-/-

 mice are significantly smaller in size than WT and 

Helq
gt/gt

 mice, these observations still hold true after taking this into consideration 

(Supplementary Figures S2A and B).  Collectively, these findings indicate that mutations 

in Helq and Fancc are not epistatic to each other in causing hypogonadism. 

 

Female-specific sub-fertility in Helq
gt/gt

 mice is consistent with germ cell hypoplasia 

during embryogenesis 

It has been reported that hypogonadism in FA mouse models is attributed to severely 

compromised proliferation of primordial germ cells
40,41,45,51

.  This leads to sterility in a 

significant fraction of Fancc
-/-

 mice
28,49

.  However, as hypogonadism in Helq
gt/gt

 males is 

very modest, they are fertile, producing litters at size comparable to Helq
gt/+ 

males 

(Supplementary Table S1).  It should be noted that younger Helq
gt/gt

 males have a greatly 

increased fraction (>50%) of seminiferous tubules exhibiting atrophy or hypotrophy 

(Supplementary Figure S2C).  However, as they get older, the number of such tubules 

decreases.  This is most likely because surviving germ cells in Helq
gt/gt

 males can 

repopulate as spermatogonial stem cells and support fertility as previously seen in FA 

mouse models
42

.  Therefore, much like the FA genes, Helq is required for normal 

proliferation of germ cells during embryogenesis but has no effect on spermatogonial 
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stem cells at later stages.  Different from males, Helq
gt/gt

 females were more severely 

affected with hypogonadism (see Figure 2C and D).  The number of ova per ovary was 

reduced to 60.61 in Helq
gt/gt

 females compared to 313.2 in WT females (p<0.0001, t-

test).  When initially tested in a 129/B6 mixed background, four of seven Helq
gt/gt

 females 

were sterile.  Fertile Helq
gt/gt

 females tended to have small litters, with an average litter 

size of only 3.5 (n=6).  This female-specific sub-fertility is consistent with germ cell 

hypoplasia during embryogenesis, as it is believed that the total oocyte pool is determined 

at this stage.  Taken together, while Helq
gt/gt

 mice exhibit hypogonadsim that is 

phenotypically similar to FA mouse models, its underlying mechanism is distinct given 

the non-epistatic relationship between Helq and Fancc. 

 

Helq
gt/gt

 mice are born in the expected Mendelian ratio, showing no growth retardation 

As Helq
gt/gt

 males are fertile, we performed crosses between Helq
gt/gt

;Fancc
+/-

 males and 

Helq
gt/+

;Fancc
+/-

 females to efficiently generate Helq
gt/gt

;Fancc
-/-

 mice in the B6 

background.  A total of 105 mice were genotyped at 3 weeks of age (Supplementary 

Table S2).  While Helq
gt/gt

 mice were found at the expected ratio, the number of Fancc
-/-

 

mice in this background was reduced to ~65% of the expected number (17 vs 26.25, 

p<0.05, 2-test) as described previously
52

.  Only 7 Helq
gt/gt

;Fancc
-/-

 mice were observed 

at this age but this number was not statistically different from 13.125, the expected 

number (p>0.05, 2-test).  This relatively small number of Helq
gt/gt

;Fancc
-/-

 mice is most 
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likely attributed to the sub-lethality of Fancc
-/-

 mice in this background.  As shown in 

Figure 2E, we also found that Fancc
-/-

 mice are significantly smaller in size (average 

weight of 7.4g0.61) compared to WT (8.7g0.15) and Helq
gt/gt

 mice (8.8g0.39).  

Helq
gt/gt

;Fancc
-/-

 mice were even smaller than Fancc
-/-

 mice, weighing 6.0g0.71 on 

average, though this difference did not reach statistical significance likely due to the 

small number of mice examined.  Overall, Helq
gt/gt

 mice are quite healthy, exhibiting 

phenotypes milder than Fancc
-/-

 mice.  It was reported that Fancc
-/-

 mice in the B6 

background are essentially tumor-free
53

.  Similarly, a small-scale aging study with 11 

Helq
gt/gt

 mice (5 males and 6 females) in this background showed no significant increase 

in spontaneous tumor incidence up to 21 months of age.  This was not surprising, given 

the milder phenotypes of Helq
gt/gt

 mice compared to Fancc
-/-

 mice. 

 

Mono-ubiquitination and focus formation of FANCD2 are intact in Helq
gt/gt

 cells 

Our data so far did not support epistasis between Helq and Fancc.  Therefore, we next 

tested the role of Helq in FANCD2 focus formation, a signature of FA pathway 

activation
25

.  For this purpose, we used primary WT and Helq
gt/gt

 MEFs, as Fancc
-/- 

and 

Helq
gt/gt

;Fancc
-/-

 cells, both lacking a functional FA core complex, do not form FANCD2 

foci
25

.  As shown in Figure 3A and B, no significant difference was observed in the 

percentage of cells positive for FANCD2 foci between WT and Helq
gt/gt

 cells even after 

treatment with the crosslinker MMC.  The same was true after treatment with aphidicolin 

(APH), a replication inhibitor and robust inducer of FANCD2 and FANCI foci
54

 (Figure 
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3C and D).  Focus formation of FANCD2/FANCI at prophase, markers of unresolved 

replication intermediates
55

, were also unchanged between these two genotypes in 

response to MMC or APH (Supplementary Figure S3A and B).  Agreeing with these data, 

mono-ubiquitination of FANCD2 was also robustly induced in Helq
gt/gt

 cells following 

treatment with either MMC or APH (Figures 3E and F).  In comparison, no mono-

ubiquitinated FANCD2 could be detected in Fancc
-/- 

and Helq
gt/gt

;Fancc
-/-

 cells.  These 

data collectively suggest that Helq is not required for FANCD2 mono-ubiquitination or 

focus formation. 

 

HELQ plays a minor role in MMC resistance in a manner non-epistatic with FANCC 

Previous studies reported that HELQ is required for ICL resistance in worms and 

humans
24,27

 but not in chicken DT40 cells
14

.  Therefore, we tested Helq
gt/gt

 cells for MMC 

hypersensitivity, another hallmark of FA cells
6
.  For this line of experiments, we used 

primary MEFs with the following four genotypes, WT, Helq
gt/gt

, Fancc
-/-

, and 

Helq
gt/gt

;Fancc
-/-

.  First, we examined MMC-induced chromosome aberrations.  

Representative metaphase spreads for each genotype after MMC treatment are shown in 

Figure 4A.  Although we scored 120 metaphases per experimental group, the total 

number of MMC-induced chromosome aberrations was not statistically different between 

Helq
gt/gt

 and WT cells (Figure 4B and C).  However, Helq
gt/gt

 cells did exhibit a slight but 

significant increase in radials (9.2%2.6 as opposed to 5.0%2.0 in WT), a type of 

complex chromosome aberrations that occur frequently in MMC-treated FA cells (Figure 
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4A and D).  Consistent with their hypersensitivity to MMC, the majority of Fancc
-/-

 cells 

exhibited chromosome aberrations (72.5%4.09, Figure 4B) with a drastic increase in 

radials (36.7%4.42, Figure 4D).  Intriguingly, Helq
gt/gt

;Fancc
-/-

 cells showed statistically 

higher levels of chromosome aberrations including radials (84.5%3.35 and 46.7%4.57 

in Figure 4B and D, respectively) compared to Fancc
-/-

 cells.  These data suggest that 

Helq
gt/gt

 cells are not as extremely sensitive to MMC as Fancc
-/-

 cells.  However, as 

Helq
gt/gt

;Fancc
-/-

 cells showed a significantly higher number of MMC-induced 

chromosome aberrations than Fancc
-/-

 cells, HELQ contributes to MMC resistance 

through a mechanism that is distinct from the function of FANCC.  Given the mild 

sensitivity of Helq
gt/gt

 cells to MMC, this mechanism is likely to be a secondary 

alternative to the FA pathway.  Finally, we tested the effect of MMC on the proliferation 

of these cells using a MTT assay.  In agreement with the metaphase analysis, a 5 days 

culture in multiple low doses of MMC significantly reduced the proliferation of Fancc
-/-

 

and Helq
gt/gt

;Fancc
-/-

, but not Helq
gt/gt

, cells (Figure 4E).  While Helq
gt/gt

;Fancc
-/-

 cells 

appeared to display an even greater reduction in proliferation than Fancc
-/-

 cells, this did 

not reach statistical significance.  Together, these data are consistent with the idea of 

HELQ performing a minor role in MMC resistance. 
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HELQ depletion leads to only mild MMC sensitivity compared with FANCA-

depleted/FANCC-deficient human cells 

Although Helq
gt/gt

 cells apparently lack normal full-length HELQ, they do express the 

mutant HELQ--Geo protein.  Therefore, we wondered whether the mild MMC 

sensitivity of Helq
gt/gt

 cells truly reflects a consequence of HELQ deficiency.  To test this 

possibility, we depleted HELQ and/or FANCA, another FA core complex member
56

, in 

human HEK 293T cells via small interfering RNAs (siRNA, see Supplementary Figure 

S4A).  At two different doses, FANCA depletion, but not HELQ depletion, led to MMC 

hypersensitivity as measured by colony formation assay (Supplementary Figure S4B).  

Similar results were obtained for MMC-induced chromosome aberrations 

(Supplementary Figures S4C and D).  To further confirm these results, we also performed 

siRNA-mediated depletion of HELQ in PD331 cells (Supplementary Figure S4E), a 

human cell line deficient for FANCC, or their complemented counterparts 

(PD331+FANCC).  In a colony formation assay, HELQ-depleted PD331+FANCC cells 

exhibited modestly decreased survival following MMC treatment (at 300nM) compared 

to control siRNA-treated counterparts, though this was still very mild compared with that 

of the PD331 cells (Supplementary Figure S4F).  Only when measured by MTT assay (5 

days culture, 15-45 nM doses) could we observe a clear non-epistatic relationship 

between HELQ and FANCC (Supplementary Figure S4G).  Together, these data 

collectively support the idea that HELQ plays a minor, backup role in MMC resistance in 

mammalian cells that is most likely non-epistatic to FANCC. 
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A loss of HELQ and/or FANCC alters the distribution of replication fork speed in 

unperturbed S phase, increasing persistent stalled forks 

Several studies have suggested that HELQ and its orthologs have a role in the recovery of 

stalled or collapsed replication forks
23,38,57

.  As we noticed a modest but significant 

increase in spontaneous chromosome aberrations in Fancc
-/-

 and Helq
gt/gt

;Fancc
-/-

 cells 

(Figure 4B), we examined replication fork speed in WT, Helq
gt/gt

, Fancc
-/-

, and 

Helq
gt/gt

;Fancc
-/-

 cells in unperturbed S phase using the DNA fiber technique 

(Supplementary Figure S5A)
29

.  Although the mean fork speeds were not different among 

the four genotypes (Figure 5A), the distributions of fork speed values were significantly 

different (p<0.001, Kolmogorov-Smirnov test, Supplementary Figure S5B).  

Categorizing fork speeds into three ranges (slow, mid and fast), we found that compared 

to WT cells, Helq
gt/gt

 cells exhibited a slight increase of forks in mid-range speed and a 

decrease in slow forks (Figure 5B).  Fancc
-/-

 cells had a higher frequency of faster forks 

with a decrease of mid-speed forks.  Increases in mid-speed and faster forks in these cells 

might have contributed to faster median fork speeds in these cells (Figure 5A).  

Helq
gt/gt

;Fancc
-/-

 cells displayed increases in both faster and slower fork speeds, 

indicating that their fork movement is greatly altered from WT cells even in unchallenged 

S phase.  Although counterintuitive, an increase in faster forks may suggest an increase in 

fork stalling events, as we previously reported
29

.  This is due to the number of fork 

termination events.  Faster forks that terminate within the duration of the assay likely 
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escape detection.  Thus, an increase in fork stalling leads to a decreased number of fork 

termination events, thereby leaving a greater number of faster forks visible for 

measurement.  To address if this was the case, we next looked at RPA32 foci, markers of 

stalled replication forks (Figure 5C)
58,59

.  Compared to WT cells (7.06%0.61), increased 

percentages of Helq
gt/gt

 and Fancc
-/-

 cells (9.20%0.61 and 12.5%0.88, respectively) 

were positive for RPA32 foci (Figure 5D), with an even further increase observed in 

Helq
gt/gt

;Fancc
-/-

 cells (15.6%0.98).  These differences were all significant to one 

another (p<0.001, 
2
-test).  The number of RPA32 foci co-localizing with H2AX foci, a 

marker of DSBs
60

, was also significantly increased in Helq
gt/gt

 and Fancc
-/-

 cells 

(5.46%0.48 and 7.44%0.70, respectively) compared to WT cells (4.08%0.47).  

However, unlike RPA32 foci, there was no significant increase in RPA/H2AX co-

localizing foci in Helq
gt/gt

;Fancc
-/-

  cells (8.02%0.73) compared to Fancc
-/-

 cells.  These 

data present a new line of evidence that Helq and Fancc are not epistatic to each other in 

the recovery of stalled/collapsed replication forks even in unchallenged S phase. 

 

Helq and Fancc are independently required to prevent the formation of spontaneous MN 

Persistent stalled forks can lead to micronucleus (MN) formation if unresolved before M 

phase entry
29,61

.  Therefore, we measured spontaneous MN levels using the cytokinesis-

block MN assay (Figure 6A), a standard assay for this purpose
31

.  Compared to WT cells 

(4.33%0.48, see Figure 6B), significantly increased numbers of Helq
gt/gt

 (9.56%0.98) 
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and Fancc
-/-

 (14.0%1.16) cells contained spontaneous MN (p<0.001, 
2
-test for both).  

Helq
gt/gt

;Fancc
-/-

 cells exhibited a >6-fold increase (26.1%1.47) compared to WT cells 

and this number was also statistically higher than that of Fancc
-/-

 cells (p<0.001, 
2
-test).  

These data indicate that Helq and Fancc function in a non-epistatic manner to prevent 

spontaneous MN likely through contributing to the recovery of stalled forks.  We 

exploited this modest but significant increase in spontaneous MN in Helq
gt/gt

 cells to 

validate that this allele accurately reflects the consequences of loss of HELQ function.  

We performed siRNA-mediated knockdown of Helq (or Helq
gt

) transcripts in WT and 

Helq
gt/gt

 MEFs, respectively (Supplementary Figures S6A and B).  This resulted in 

significantly increased spontaneous MN levels in WT cells (p<0.001, 
2
-test) but not 

Helq
gt/gt

 cells (Supplementary Figure S6C), suggesting that the HELQΔ-β-Geo mutant 

protein is likely devoid of any activity.  Unresolved replication intermediates can cause 

the formation of MN through two mechanisms; non-disjunction of sister chromatids and 

chromosome/chromatid breaks.  These two mechanisms can be distinguished by staining 

MN for the centromeric marker CENP-A
62

 (Supplementary Figure S6D).  We found that 

both types of MN were increased in these mutant cells with similar ratios (Supplementary 

Figure S6E).  We also measured MMC-induced MN in these cells.  Because of the 

relatively higher levels of spontaneous MN in mutant cells, we subtracted spontaneous 

MN frequency values from those in the MMC treatment to obtained differences (numbers 

in the white bars in Figure 6B).  These were then compared to evaluate the effect of 

MMC on MN formation.  Such values were very similar between WT and Helq
gt/gt

 cells 
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(7.44 and 7.22, respectively), while Fancc
-/-

 cells showed a 2-fold larger value (14.1) at 

the same dose used for the metaphase analysis (Figure 4).  These findings are consistent 

with the idea that the FA pathway is a major pathway for MMC resistance for which 

HELQ performs only a minor role.  Helq
gt/gt

;Fancc
-/-

 cells showed a value (15.0) that was 

not much higher than that of Fancc
-/-

 cells.  We think this may be due to the extreme 

sensitivity of Helq
gt/gt

;Fancc
-/-

 cells to MMC.  As the majority of them have multiple 

abnormal metaphase chromosomes (Figure 4C), a fraction of them may not complete M 

phase to form MN in the subsequent G1 phase, making this value smaller.  Unlike 

spontaneous conditions, MMC increased exclusively CENP-A- MN (Supplementary 

Figure S6E).  We also examined CPT-induced MN (Supplementary Figure S6F).  Both 

Helq
gt/gt

 and Fancc
-/-

 cells showed significantly increased levels of CPT-induced MN 

(14.2 and 14.2, respectively) compared to WT cells (9.93).  The largest increase was 

observed in Helq
gt/gt

;Fancc
-/-

 cells (16.2).  However, we were unable to determine 

epistasis for this, due to the limited sensitivity of the MN assay. 

 

Helq and Fancc are not epistatic to suppress the formation of 53BP1 nuclear bodies 

Recently, it was shown that unresolved replication intermediates can rupture during 

passage through M phase, leading to the formation of what are known as 53BP1 nuclear 

bodies (53BP1-NB) in G1 phase cells
63,64

.  Interestingly, such bodies are often exquisitely 

symmetrical in terms of their appearance within the daughter nuclei (Figure 6C).  To 

score 53BP1-NB, G1 phase cells are typically identified as cyclin A negative
63,64

.  
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However, owing to the lack of a cyclin A antibody that works well for mouse cells, we 

used the cytokinesis-blocking reagent, cytochalasin B, to identify G1 phase daughter 

nuclei as those contained within binucleated cells (Figure 6C).  Although there was no 

significant difference in the percentage of 53BP1-NB positive nuclei between WT and 

Helq
gt/gt

 cells (33.3%1.67 and 34.2%1.68, respectively), the number of nuclei 

containing 53BP1-NB was statistically higher in Fancc
-/-

 cells (37.8%1.71, p<0.01, 
2
 

test) (Figure 6D).  Much like spontaneous MN formation (Figure 6B), Helq
gt/gt

;Fancc
-/-

 

cells showed a drastic increase in 53BP1-NB containing nuclei (54.1%1.77) compared 

to Fancc
-/-

 cells (p<0.001, 
2
 test) with more nuclei containing multiple 53BP1-NB 

(Figure 6E).  These data are consistent with the non-epistatic relationship between Helq 

and Fancc in preventing genome instability derived from persistent stalled forks. 

 

Helq
gt/gt

 cells display recombinant frequencies at the FYDR locus that are comparable 

with wildtype 

Given its involvement in meiotic DSB repair in flies and worms
20,21

, we postulated that 

HELQ may function downstream of the FA pathway in HR, similar to other proteins such 

as BRCA2 and PALB2
65,66

.  Supporting this idea, it has been reported that depletion of 

HELQ in human cells lowers HR efficiency
27

.  To test this, we used the FYDR transgenic 

locus system
32

 to measure the levels of spontaneous, MMC-induced and CPT-induced 

HR events in Helq
gt/gt

 MEFs (Supplementary Figures S7A and B).  Under all conditions 
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tested, Helq
gt/gt

 cells showed levels of recombination that were comparable with WT 

(Figure 6F and Supplementary Figure S7C), suggesting the possibility that HELQ is not a 

major player in HR. 
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Discussion 

In this study, we have investigated a possible involvement of HELQ in the FA 

pathway using the Helq
gt

 strain as a model.  We showed that primary Helq
gt/gt

 MEFs are 

capable of FANCD2 mono-ubiquitination and focus formation (Figure 3).  By phenotypic 

comparison to Fancc
-/- 

mice/cells in the same genetic background, we found that Helq
gt/gt

 

mice/cells exhibit a mild form of FA-like phenotypes such as hypogonadism (Figure 2) 

and MMC sensitivity (Figure 4).  Importantly, double mutants for Helq
gt 

and Fancc
-
 had 

more severe phenotypes than single mutants (Table 1).  These findings are in stark 

contrast to the complete epistasis reported for Fanca/Fancc and Fanca/Fancg in 

mice
50,67

.  Collectively, our data show that Helq and Fancc are not epistatic to one 

another for any trait tested. 

Although our data strongly indicate that HELQ and FANCC function in parallel, 

it remains possible that HELQ could function in HR as a downstream step in the FA 

pathway.  If this is the case, then the non-epistatic relationship between Helq and Fancc 

implicates that the FA core complex and HR machinery have a complicated, non-linear 

relationship as seen previously for fancc and brca2 in chicken DT40 cells
68

.  However, 

using the FYDR transgenic locus system, we found that HELQ’s role in HR is likely to be 

non-essential or minor (Figure 6F).  This is further supported by the fact that (i) Helq
gt/gt

 

mice are fully viable as opposed to early embryonic lethality seen for disruption of major 

HR genes
69

, (ii) loss of HELQ results in only modest sensitivity to MMC (Figure 4), and 

(iii) Helq
gt/gt

 males are fertile, showing no apparent meiosis defects.  Alternatively, it may 
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be that the role of HELQ in HR is only visible when a major player in HR is 

compromised.  Thus, the precise role of HELQ in HR requires further investigation. 

Our data show that loss of Helq in mice results in phenotypes considerably milder 

compared with those seen in Fancc
-/-

 mice (Table 1).  This observation was not limited to 

Helq
gt 

homozygosity, as HELQ depletion in human HEK 293T cells did not cause a 

statistically higher level of MMC-induced chromosome aberrations or affect cellular 

survival as measured by colony formation assay (Supplementary Figure S4A-D).  

Furthermore, HELQ-depleted PD331+FANCC cells exhibited only modestly reduced 

cellular survival at 300 nM MMC (colony formation assay) (Supplementary Figure S4F).  

Although our data show a consistent trend towards HELQ and FANCA/FANCC being 

non-epistatic in human cells, the minor role of HELQ in MMC resistance may have 

prevented it from being manifested as statistically significant, except in the MTT assay 

(Supplementary Figure S4G). 

It is noteworthy that HELQ orthologs do not exist in bacteria or yeast but archaea 

have HELQ-like helicases (HELQa)
70

.  Atomic structures of HELQa from three species 

revealed the presence of five structural domains in HELQ, which are also conserved in 

HELQ in metazoans
36,38,71

.  Mutagenesis studies have demonstrated that normal helicase 

activity requires the three C-terminal domains
36,72

, which are missing from HELQ--

Geo in Helq
gt/gt 

mice (Figure 1B).  Therefore, it is likely that HELQ--Geo is also 

devoid of helicase activity.  Furthermore, the presence of -Geo is also likely to 
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jeopardize its enzymatic activity.  In line with this, siRNA-mediated knockdown of the 

Helq
gt

 transcript in Helq
gt/gt

 cells did not lead to increased levels of spontaneous MN 

(Supplementary Figure S6C).  Furthermore, given the normal phenotypes of Helq
gt/+ 

mice, we do not think that this allele confers any dominant-negative effect.  Future 

studies using a null allele may give definitive answers for these issues. 

Although there are definitely certain differences, HELQa and mammalian HELQ 

share similar biochemical properties with preference for structures resembling stalled 

replication forks, suggesting their role in stalled fork recovery
23,57,73

.  Consistent with this 

idea, loss of HELQ caused an increase in stalled forks even in unchallenged conditions, 

and this role of HELQ was not epistatic to Fancc (Figure 5D).  The non-epistatic 

relationship for Helq and Fancc is much clearer for the formation of spontaneous MN 

and 53BP1-NB (Figure 6), which are derived from persistent stalled forks, rather than 

MMC-induced chromosome aberrations (Figure 4).  Therefore, we propose that the major 

role of HELQ is the rescue of stalled forks in normal S phase.  Given that HELQ and the 

FA core complex function in parallel, elucidating such a role of HELQ may provide clues 

to decipher the function of the FA pathway in physiological conditions beyond ICL 

repair.  Furthermore, as HELQ remains functional in FA mutant cells, it could potentially 

be exploited to provide a therapeutic benefit against cancers with FA pathway disruption. 

Recent genome-wide associations studies have identified single nucleotide 

polymorphisms at loci within or near HELQ that are associated with increased risks for 

several different cancers including upper aerodigestive tract cancers and head and neck 
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cancers
74-77

.  Our study was unable to detect an increased incidence of spontaneous 

tumors in Helq
gt/gt 

mice.  This could be due to several different factors, such as genetic 

background and species difference.  The majority of FA mouse models do not show a 

strong cancer phenotype, despite the FA pathway’s tumor suppressive role in humans
39

.  

Therefore, it may be necessary to test the role of Helq in tumor suppression in a 

sensitized background. 
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Table and figure legends 

Table 1 

Summary of phenotypes following Helq and/or Fancc disruption.  “-“ indicates no 

significant change from wildtype, while “+”, “++” & “+++” refer to progressively more 

severe phenotypes.  “+/-“ refers to a small but significant effect.  N.D. means not 

determined. 

 

Figure 1 

Characterization of the Helq
gt

 allele.  Diagrams (drawn to scale) depicting the transcripts 

(A) and resulting peptides (B) for the wildtype (WT) Helq and Helq
gt

 alleles.  The HELQ 

protein is split into five domains, the first two of which contain the well conserved motifs 

of the DEAD/DEAH helicase box.  The Helq
gt

 allele has most of domain 3 and all of 

domains 4 and 5 replaced by -Geo.  (C) qRT-PCR analysis using total RNA extracted 

from WT or Helq
gt/gt

 (H
gt/gt

) MEFs is shown.  Data for the wildtype transcript containing 

exons 11 and 12 (top), the chimeric transcript containing exon 11 and the gene-trap 

vector (middle), and transcript containing exons 1 and 2 upstream of the insertion site 

(bottom) are shown.  Helq
gt/gt

 MEFs have less than 1/100
th

 of the levels of the wildtype 

Helq mRNA compared to WT cells (see top).  Experiments were duplicated using RNA 

samples from different MEF lines to confirm reproducibility.  A representative qRT-PCR 

data set is shown.  (D) Western blotting shows no detectable levels of wildtype HELQ 
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protein in Helq
gt/gt

 MEFs.  A band corresponding to the HELQ
Δ
-β-Geo fusion peptide 

appears at the predicted molecular weight of ~230kDa only in the lysate from Helq
gt/gt

 

cells.  (E) Loading differing ratios of protein reveals that the amount of wildtype HELQ 

protein (indicated by arrow) is extremely low in Helq
gt/gt

 MEFs.  Asterisk indicates non-

specific bands.  A stained membrane was used as a loading control for (D) and (E).   

 

Figure 2 

Helq
gt/gt

 mice exhibit a hypogonadism phenotype reminiscent of mouse models of 

Fanconi anemia.  (A) Helq
gt/gt

, Fancc
-/-

 and Helq
gt/gt

;Fancc
-/-

 males show significantly 

reduced testes weights at 6 weeks of age.  At least 5 males were observed per genotype.  

(B) Histological analysis by hematoxylin and eosin (H&E) staining shows a mosaic 

pattern of normal and empty seminiferous tubules in Helq
gt/gt

, Fancc
-/-

 and 

Helq
gt/gt

;Fancc
-/-

 mice, with the respective phenotypes becoming increasingly worse.  

Scale bars are 1500 µm for the whole testis sections (top) and 75 µm for the enlarged 

images (bottom).  (C) Helq
gt/gt

 females exhibit smaller ovaries with a reduced number of 

follicles at 3 weeks of age.  Six ovaries from 3 wildtype females and 10 ovaries from 5 

Helq
gt/gt

 females were observed.  (D) H&E staining of ovaries from wildtype and Helq
gt/gt

 

females.  Example ova-containing follicles are indicated by arrows.  Scale bars are 500 

µm.  (E) Helq
gt/gt

 mice display normal body weights at weaning age, unlike Fancc
-/-

 and 

Helq
gt/gt

;Fancc
-/-

 mice which are significantly smaller.  In (A), (C) and (E), error bars 

represent the standard error of the means (SEMs) and significance was determined by t-
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test.  Statistical significance at p<0.05, p<0.01, and p<0.001 are indicated as *, ** and 

***, respectively.  WT, H
gt/gt

, Fac
-/-

 and H
gt/gt

;Fac
-/-

 refer to wildtype, Helq
gt/gt

, Fancc
-/-

 

and Helq
gt/gt

;Fancc
-/-

, respectively. 

 

Figure 3 

FANCD2 mono-ubiquitination and focus formation remain intact in Helq
gt/gt

 cells.  

Shown are representative images of FANCD2 foci (green) in response to MMC (A) or 

APH (C) in WT and Helq
gt/gt

 cells.  Cells were harvested immediately following 

treatment except for the 2 hours treatment of 1200nM MMC, in which cells were given 

22 hours of recovery time before harvest.  Nuclei were stained with DAPI (blue).  Scale 

bar is 10 µm.  The average percentages of cells positive for FANCD2 foci in response to 

MMC or APH are shown in (B) and (D), respectively.  (E) Western blotting shows that 

Helq
gt/gt

 cells exhibit normal FANCD2 mono-ubiquitination in response to MMC.  The 

defect observed in Fancc
-/-

 and Helq
gt/gt

;Fancc
-/-

 cells is shown for a better comparison.  

(F) Helq
gt/gt

 cells do not display any defect in FANCD2 mono-ubiquitination in response 

to APH.  Cells were treated with 300 nM APH for either 4 hrs (4H) or 24 hrs (24H) prior 

to harvest.  Error bars (B, D) represent the binomial error for the combined data set.  A 

stained membrane and MCM4 were used as loading controls in (E) and (F), respectively.  

W, H, F and H;F in (E, F) refer to wildtype,  Helq
gt/gt

, Fancc
-/-

 and Helq
gt/gt

;Fancc
-/-

 cells, 

respectively.  UNT refers to untreated cells. 
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Figure 4 

Helq
gt/gt

 cells display modest sensitivity to MMC.  (A) Shown are representative images 

of DAPI-stained metaphase spreads from all genotypes following MMC treatment (600 

nM MMC for 2 hrs followed by 22-hr recovery before harvest).  White arrowheads 

indicate chromosome aberrations.  Enlarged images of radial structures from the Fancc
-/-

 

and Helq
gt/gt

;Fancc
-/-

 samples are shown at bottom.  Scale bar is 10 µm.  (B) Shown are 

the average percentages of metaphases positive for chromosomal aberrations in the 

untreated (left) or MMC-treated (right) conditions.  For each experimental group, 120 

metaphases were scored.  (C) A histogram displaying the number of aberrations per 

metaphase for each genotype after MMC treatment is shown.  (D) The average 

percentages of metaphases positive for radial structures after MMC treatment are shown.  

(E) The MTT assay reveals that Helq
gt/gt

 cells display little, if any MMC sensitivity 

compared to Fancc
-/-

 or Helq
gt/gt

;Fancc
-/-

 cells.  Cells were treated with the indicated 

doses of MMC for 5 days prior to analysis.  Error bars show either the binomial error of 

the combined data set (B, D) or the SEMs for at least three independent experiments (E).  

Significance was determined by either 
2
-test (B, D) or t-test (E).  Statistical significance 

at p<0.05, p<0.01, and p<0.001 is indicated as *, ** and ***, respectively.  WT, H
gt/gt

, 

Fac
-/-

 and H
gt/gt

;Fac
-/-

 refer to wildtype, Helq
gt/gt

, Fancc
-/-

, and Helq
gt/gt

;Fancc
-/-

 

respectively. 
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Figure 5 

A combined loss of Helq and Fancc greatly alters the distribution of replication fork 

speeds and leads to increased levels of RPA/H2AX foci.  (A) Box plots show the range 

of fork speed values for the four genotypes.  The line through the middle of the shaded 

box represents the median while the “+” sign shows the location of the mean (values 

shown at bottom along with the number of tracts, N, analyzed).  (B) Separating fork 

speed values into slow, mid and fast forks reveals statistically significant differences 

among the ratios of the four genotypes (p<0.001, 
2
-test).  Error bars show the binomial 

error.  (C) Shown are representative images of cells from all four genotypes co-stained 

for RPA (green) and γH2AX (red).  Nuclei were stained with DAPI (blue).  For RPA foci 

analysis, cells were pre-extracted prior to fixation using a 0.5% Triton X-100 solution.  

Scale bar is 10 µm.  (D) The average percentages of cells positive for RPA foci (top) or 

RPA/γH2AX co-localization events (bottom) are shown.  Error bars show the binomial 

error for the combined data set.  Statistical significance (determined by 
2
-test) at p<0.01 

and p<0.001 are indicated as ** and ***, respectively.  WT, H
gt/gt

, Fac
-/-

 and H
gt/gt

;Fac
-/-

 

refer to wildtype, Helq
gt/gt

, Fancc
-/-

, and Helq
gt/gt

;Fancc
-/-

 respectively. 

 

Figure 6 

Helq suppresses multiple forms of spontaneous genome instability in a manner that is not 

epistatic with Fancc, while Helq
gt/gt

 cells show levels of recombination comparable to 
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wildtype.  (A) Shown are representative images of binucleated cells with or without 

micronuclei (MN, indicated by white arrows).  Nuclei and MN were stained with DAPI 

(blue).  Scale bar is 10 µm.  (B) Shown are the average percentages of binucleated cells 

positive for spontaneous MN (left) or MMC-induced MN (right).  For the latter, the 

levels for the untreated condition are shown in gray with numbers in the white box 

showing the increase after MMC treatment.  At least three independent experiments were 

performed and a total of >900 cells were observed per experimental group.  (C) 

Simultaneous disruption of Helq and Fancc results in a significant increase in 53BP1-

NB.  Shown are representative images of binucleated cells with or without nuclei positive 

for 53BP1-NB (red).  Nuclei were stained with DAPI (blue).  Scale bar is 10 µm.  (D) 

Shown are the average percentages of nuclei positive for 53BP1-NB.  (E) A histogram 

detailing the number of 53BP1-NB per nucleus is shown.  Four independent experiments 

were performed and a total of >750 cells were observed per experimental group.  (F) No 

significant difference in the number of HR events was detected between wildtype and 

Helq
gt/gt

 MEFs as measured by the FYDR transgenic locus system.  Shown are the 

average numbers of EYFP
+
 recombinants per 10

6
 cells analyzed.  Scale bars in (B,D) 

show the binomial error of the combined data sets while those in (F) show the SEMs for 

data obtained from at least 7 different embryos per genotype.  Statistical significance was 

determined by either 
2
-test (B,D) or t-test (F).  p<0.05, p<0.01 and p<0.001 are 

indicated as*, ** and ***, respectively. WT, H
gt/gt

, Fac
-/-

 and H
gt/gt

;Fac
-/-

 refer to 

wildtype, Helq
gt/gt

, Fancc
-/-

, and Helq
gt/gt

;Fancc
-/-

 respectively. 
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Table 1 

Trait Wildtype Helq
gt/gt

 Fancc
-/-

 Helq
gt/gt

;Fancc
-/-

 

Sub-lethality - - + + 

Growth retardation - - + ++? 

Tumor - - -
53 

N.D. 

Hypogonadism - + ++ +++ 

MMC sensitivity - +/- ++ +++ 

MN formation - + ++ +++ 

53BP1-NB formation - - + ++ 

HR (measured by FYDR) - - N.D. N.D. 
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Supplementary table and figure legends 

Supplementary Table S1 

Helq
gt/gt

 males are fertile, producing about the same average litter size as Helq
gt/+

 males. 

 

Supplementary Table S2 

Helq
gt/gt

 mice are born in the expected Mendelian ratio but Fancc
-/- 

mice show sub-

lethality. 

 

Supplementary Figure S1 

Structure of the Helq
gt

 allele.  (A) A diagram (drawn to scale) depicting the insertion of 

the gene-trap vector (pGT0Lxf) into the mouse Helq locus is shown.  Exons are shown as 

rectangles and the coding region is filled with black.  The region corresponding to the 

DEAD/DEAH box is indicated by the thick double-sided arrow.  The gene-trap vector 

consists of the En2 (engrail 2) intron and the subsequent splice acceptor site (SA), as well 

as a -Geo reporter gene followed by a polyadenylation signal (pA).  (B) PCR using 

genomic DNA from Helq
gt/gt

 mice reveals the insertion of the gene-trap vector (8.6kb) 

within the intron between exons 11-12.  Sequencing chromatograms are shown with the 

shaded area highlighting sequence from the vector.  Primer pairs p1 & p3 and p5 & p6 

indicated in (A) were used to map the beginning and end of the insertion, respectively.  

Right after the end of the vector insertion, a 13-bp sequence in the intron was replaced 



  Luebben et al., 2013 

200 
 

with an 8-bp sequence of unknown origin.  (C) RT-PCR on total RNA from testes shows 

the presence of the wildtype (with exons 11 and 12) and chimeric transcripts.  The 

sequencing chromatogram on the left is sequence from the wildtype transcript showing 

the junction between exons 11 and 12 (amplified with primers p1 and p2).  On the right is 

the sequence of the junction between exon 11 and the vector amplified using primers p1 

and p4.  Shaded areas indicate the end of the exon 11 sequence.  Information on all 

primers is available upon request. 

 

Supplementary Figure S2 

Helq
gt/gt

 mice are normal in size but display a significant reduction in testes size.  (A) 

Shown are the average body weights of mice from the four genotypes at the age of testes 

analysis (6 weeks of age).  (B) Shown is the average testes weight as a percentage of total 

body weight for the four genotypes.  Bars in (A) and (B) show the SEMs for  5 mice. 

Statistical significance (determined by t-test) at p<0.05, p<0.01 and p<0.001 are indicated 

as *, ** and **, respectively.  WT, H
gt/gt

, Fac
-/-

, H
gt/gt

;Fac
-/-

 refers to wildtype, Helq
gt/gt

, 

Fancc
-/-

, Helq
gt/gt

;Fancc
-/-

, respectively.  (C) The mosaic pattern of seminiferous tubules 

is more apparent in testes of Helq
gt/gt

 mice at 3 weeks of age.  Shown are H&E images of 

whole testis (top) and seminiferous tubules (bottom) from widltype (WT) and Helq
gt/gt

 

mice.  Scale bars are 1500 m for the whole testis sections and 75 m for the enlarged 

images. 
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Supplementary Figure S3 

Helq
gt/gt

 cells show normal levels of FANCD2 and FANCI focus formation in prophase.  

Shown are the average percentages of cells positive for 2 FANCD2 (A) or FANCI (B) 

foci at prophase.  Prophase cells were identified as those which displayed bright staining 

for phospho-Histone H3 (Ser10) and had not yet proceeded to prometaphase.  APH 

treatment was 150 nM for 24 hrs.  MMC treatment was 1.2 M for 2 hrs followed by 22-

hr recovery in fresh media.  Experiments were repeated twice with different MEF lines.  

At least 140 prophases were scored per experimental group.  Bars show the binomial 

error for the combined data set. 

 

Supplementary Figure S4 

HELQ depletion causes only mild MMC sensitivity compared to FA core complex-

depletion/deficiency in human cell lines.  (A) Western blotting shows that siRNA pools 

targeting HELQ (siHELQ) and/or FANCA (siFANCA) efficiently deplete HELQ and 

FANCA, respectively, to sub-detectable levels in HEK 293T cells, while a control siRNA 

pool (siCONT) has no effect.  (B) Depletion of HELQ does not confer MMC 

hypersensitivity in HEK 293T cells.  Shown are the results of two independently 

performed colony formation assays at the indicated doses of MMC.  Treatment with 

MMC was for 2 hours, followed by a one-week culture period.  (C) Shown are 

representative images of metaphase spreads from HEK 293T cells following 24 hours 

treatment with 300nM MMC.  Enlarged images show representative radial structures 
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observed in the siFANCA (bottom left) and siHELQ;siFANCA (bottom right) samples.  

Scale bar is 10 µm.  (D) FANCA depletion, but not HELQ depletion, leads to a 

statistically significant increase in metaphase chromosomal aberrations in response to 

MMC.  Shown are the average percentages of metaphases positive for chromosomal 

aberrations (top) or radial structures (middle).  The average number of aberrations per 

metaphase is shown at bottom.  At least 40 metaphases were scored per experimental 

group.  (E) siHELQ efficiently depletes HELQ to sub-detectable levels in the PD331 (or 

PD331+FANCC complemented) cell lines, while siCONT has no effect.  (F) Depletion of 

HELQ confers modest MMC hypersensitivity in the PD331+FANCC cell line.  Shown 

are the results of two independently performed colony formation assays at the indicated 

doses of MMC.  Treatment with MMC was for 2 hours, followed by a two-week culture 

period.  (G) An MTT assay reveals that HELQ depletion further decreases the 

proliferation of PD331 (FANCC-deficient) cells, suggesting non-epistasis between HELQ 

and FANCC.  MMC treatment was for 5 days at the indicated doses.  A stained 

membrane was used as a loading control in (A,E).  Error bars in (B, F, G) show the SEMs 

for at least three independent experiments while those in (D) indicate the binomial error.  

Statistical significance was determined by either t-test (B, F, G) or 
2
-test (D).  

Significance at p<0.01 and p<0.001 are indicated as ** and ***, respectively. 
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Supplementary Figure S5 

(A) A diagram depicting the DNA fiber assay is shown.  In this assay, ongoing 

replication forks are observed via the sequential incorporation of digoxigenin- (red) or 

biotin (green)-conjugated dUTPs.  Fork speed measurements are then made by measuring 

the distance between the start of the red tract to the start of the green tract.  (B) The 

distributions of fork speed values for the four genotypes are shown.  Slightly different 

patterns between the four genotypes result in statistically significant differences as 

measured by Kolmogorov-Smirnov test.  (p<0.001 indicated as ***).  WT, H
gt/gt

, Fac
-/-

, 

H
gt/gt

;Fac
-/-

 refers to wildtype, Helq
gt/gt

, Fancc
-/-

, Helq
gt/gt

;Fancc
-/-

, respectively. 

 

Supplementary Figure S6 

(A) qRT-PCR analysis using total RNA reveals that siHELQ was able to efficiently 

deplete both the wildtype Helq transcript (E 11-12, top) in wildtype MEFs as well as the 

chimeric mutant transcript (Chimeric, bottom) in Helq
gt/gt

 MEFs by ~70% compared to 

siCONT-treated cells.  Experiments were duplicated using RNA samples from different 

MEF lines to confirm reproducibility.  A representative qRT-PCR data set is shown.  (B) 

Western blotting shows that siHELQ depletes HELQ or HELQ
Δ
-β-Geo to sub-detectable 

levels in wildtype or Helq
gt/gt

 MEFs, respectively.  A stained membrane was used as a 

loading control.  (C) Depletion of HELQ
Δ
-β-Geo does not have any effect on the levels of 

spontaneous MN in Helq
gt/gt

 MEFs.  The average percentages of binucleated cells 

positive for MN are shown.  Experiments were repeated using different MEF lines so that 
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600 cells were observed per experimental group.  (D) Shown are representative images of 

binucleated cells with MN (stained with DAPI, blue) that are either positive for CENP-A 

staining (CENP-A+, red) or negative for CENP-A staining (CENP-A-).  White arrows 

point to MN.  Scale bar is 10 µm.  (E) Compared to WT cells, Helq
gt/gt

, Fancc
-/-

 and 

Helq
gt/gt

;Fancc
-/-

 cells display an increase in both types of MN in untreated conditions 

(left), but an increase of CENP-A- MN in Helq
gt/gt

 cells is not statistically significant.  

MMC treatment (600 nM for 2 hrs followed by 22-hr recovery) leads primarily to a 

higher number of CENP-A- MN (right).  (F) The average percentages of binucleated cells 

positive for MN are shown after CPT treatment (250nM for 6 hrs followed by 18-hr 

recovery).  The levels for the untreated condition are duplicated on the right in gray for 

better comparison.  Numbers in the white box show the increase above untreated 

conditions.  Experiments were repeated at least three times using different MEF lines so 

that >600 cells were observed per experimental group.  Error bars in (C, E, F) show the 

binomial error for the combined data set.  Significance (determined by χ
2
-test) at p<0.05, 

p<0.01, and p<0.001 are indicated as *, ** and ***, respectively.  WT, H
gt/gt

, Fac
-/-

 and 

H
gt/gt

;Fac
-/-

 refer to wildtype, Helq
gt/gt

, Fancc
-/-

, and Helq
gt/gt

;Fancc
-/-

 respectively. 

 

Supplementary Figure S7 

Helq
gt/gt

 cells do not display any significant changes in recombinant frequencies at the 

FYDR locus compared to wildtype cells.  (A) The FYDR transgenic locus contains two 

tandem repeats of incomplete eYFP expression cassettes (jagged lines indicate deleted 



  Luebben et al., 2013 

205 
 

sequence information).  An HR event at this locus can restore eYFP expression following 

either of two different methods of resolution: gene conversion as the result of a non-

crossover event (top) or unequal sister chromatid exchange as the result of a crossover 

(bottom).  Using wildtype and Helq
gt/gt

 MEFs that carry this locus in the hemizygous state 

allows for the detection of HR events only during and/or after this locus has replicated.  

(B) Shown are sample flow cytometry plots from wildtype FYDR non-carrier MEFs (left) 

and wildtype hemizygous FYDR carrier MEFs (right).  eYFP signals were detected using 

the FL1-H and FL2-H channels and counted using the “R2” gate.  (C) The distributions 

of the number of eYFP
+
 recombinants (per 10

6
 cells analyzed) from are shown.  Two 

samples were excluded from the data as outliers (number of recombinants in the 

untreated condition >25). 
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Supplementary Table S1 

Cross Number of pairs Number of litters Average litter size 

Helq
gt/+

 female x Helq
gt/+

 male  4 5 7.60.75* 

Helq
gt/+

 female x Helq
gt/gt

 male 6 15 6.30.62* 

*No significant difference was observed between the average litter sizes by t-test. 
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Supplementary Table S2 

Genotype Fancc
+/+

 or Fancc
+/-

 Fancc
-/-

 Total number Expected number 

Helq
gt/+

 40 10 50 52.5 

Helq
gt/gt

 48 7 55 52.5 

Total number 88 17* 105  

Expected number 78.75 26.25*   

* The observed number of 17 was significantly different from the expected number of 

26.25 (p<0.05 
2
-test). 
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Supplementary Figure S4 
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Final discussion 

Dormant origins, genome instability and cancer 

 In contrast to previous studies, which suggested that dormant origins are only 

required under conditions of replicative stress
1-3

, our findings using the Mcm4
chaos3

 mouse 

model have clearly shown their integral role in chromosome stability and tumor 

suppression even in unchallenged conditions.  These functions are apparently achieved 

through two distinct mechanisms.  First, dormant origins can be activated adjacent to 

stalled forks as the simplest form of fork recovery.  This role overlaps with several 

different mechanisms, such as the FA pathway, which work in parallel.  Second, dormant 

origins also preclude the presence of long, origin-poor loci that would otherwise be 

unable to finish replication prior to mitosis.  This function is unique and cannot be fully 

compensated by other mechanisms. 

 This latter finding was made possible by closely investigating the intrinsic FA 

pathway activation that occurs in Mcm4
chaos3/chaos3

 cells.  In our original study (Kawabata 

et al., 2011) we assumed that the elevated number of FANCD2 foci in prophase was an 

indication of persistently stalled forks, as proposed by others
4,5

.  However, our later 

analysis (Luebben et al., 2014) clearly showed that this increase in FANCD2 foci can be 

attributed solely to those that co-localize with EdU incorporation.  This indicates that 

such sites are very late-replicating rather than completely stalled, and may remain 

unreplicated before chromosome segregation at anaphase.  We interpret this finding such 

that the ~60% reduction in chromatin-bound MCMs caused by Mcm4
chaos3

 homozygosity 
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results in long stretches of the genome that are devoid of any origins and cannot be 

replicated except by distant incoming forks. 

 These observations fit well with a pair of studies showing that fragility at the 

FRA3B and FRA16C loci is dictated by a paucity of origin initiation events
6
 or an 

inability to activate additional origins following fork stalling
7
, respectively.  It is thus 

easy to imagine how Mcm4
chaos3

 homozygosity could generate additional “fragile sites” at 

genomic regions where origin levels are already limiting.  Indeed, initial studies 

characterizing the Mcm4
chaos3

 model found a significant increase in chromosome breaks 

following APH treatment
8
.  Based on our findings, it will be important to determine if 

there is a significant correlation between site-specific fragility and the levels of 

chromatin-bound MCMs. 

Although the Mcm4
chaos3

 model represents a unique case, what it has taught us 

about dormant origins may have major implications toward our understanding of human 

cancers.  It is now understood that oncogene-induced replication stress, which disrupts 

normal DNA replication kinetics, is a major source of cancer-driving chromosome 

instability
9
.  This includes genetic changes that deregulate the G1/S transition, as seen in 

the majority of human cancers
10,11

.  It may therefore be that an accelerated G1/S 

transition during the early stages of cancer could leave the chromatin under-licensed
12,13

, 

leading to under-replication as seen in the context of Mcm4
chaos3

 homozygosity. 

As cancer cells progress into later stages, the expression of MCM proteins is very 

often upregulated to help them maintain their high proliferative status
14-16

.  Meanwhile, in 
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normal cells, entry into S phase is inhibited by a “licensing checkpoint” only when the 

number of licensed origins is extremely low (5-10% of normal levels)
17-20

.  Putting these 

ideas together, it is tempting to speculate that an acute, modest reduction in licensing 

could be used to selectively kill cancer cells.  In fact, it has been shown that licensing 

inhibition can achieve the efficient killing of cancer cells while having negligible effects 

on normal cells
17,21,22

.  Therefore, it seems likely that a temporary, substantial knockdown 

of MCMs could exploit the replication stress in late-stage cancer cells as an effective 

therapeutic strategy.  We believe the Mcm4
chaos3

 model provides a useful model to test 

this hypothesis. 

Finally, it is worth noting that mutations in human MCM4 were recently found to 

be responsible for a rare, recessive genetic disorder causing growth retardation, adrenal 

failure and natural killer cell deficiency
23-25

.  Cells derived from these patients were 

shown to display a higher number of chromosome breaks after treatment with replication 

inhibitors
25

, similar to what was seen in Mcm4
chaos3/chaos3

 cells
8
.  However, they also 

exhibited normal levels of chromatin-bound MCMs, suggesting that the causative 

mutations may confer a very different defect on MCM4 function.  We therefore think it is 

important for these patients to be carefully monitored for cancer development throughout 

their lifetimes. 
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A loss of dormant origins reveals roles of the FA pathway in stalled fork recovery and 

replication completion 

To determine the functional significance of the intrinsic FA pathway activation in 

Mcm4
chaos3/chaos3

 cells, we disrupted the FA pathway in this background via a null allele of 

Fancc (Fancc
-
).  As expected, Mcm4

chaos3/chaos3
;Fancc

-/-
 double mutant cells revealed a 

distinct, overlapping function of FANCC in the recovery of spontaneously stalled forks.  

This function proved to be even more important in the absence of HELQ or upon a 

reduction in the number of dormant origins, highlighting how cells utilize a multi-layered 

system to maintain fork progression.  Several studies have confirmed the FA pathway’s 

role in protecting stalled forks from breakage and MRE11-mediated degradation
26-28

, 

though how exactly this is achieved remains a mystery.  One possibility is that the 

binding of monoubiquitinated FANCD2/FANCI to stalled forks starting at mid-S phase 

simply provides a protective function until mitosis.  Another possibility is that the FA 

pathway plays a direct role in fork rescue/restart.  For example, the loss of FANCC could 

compromise the FA core complex’s unique role in stimulating efficient TLS
29-31

.  Recent 

work has also revealed that FANCD2 is required for BLM-mediated fork restart
32

, though 

the role of the FA core complex in this process has yet to be determined. 

Our studies have brought to light a novel, yet perhaps related function of the FA 

pathway: replication completion.  While recent work by Bergoglio et al. found that 

FANCD2 foci localized to mitotic EdU spots
33

, our study is the first to show that an 

increased number of EdU spots occurs in prophase cell nuclei when FA pathway 

activation is compromised.  This function was only revealed under conditions of 
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replicative stress, including a loss of dormant origins or low levels of APH treatment.  

This could perhaps be a manifestation of the FA core complex’s role in recruiting TLS 

enzymes, as deficiency for Pol η led to a similar increase in mitotic EdU spots
33

.  The 

authors of this study found that this was because Pol η was more efficient at synthesizing 

past difficult-to-replicate CFS sequences than the replicative polymerases.  It could also 

be that FANCD2 itself plays a yet underappreciated role in the recruitment of TLS 

enzymes
34

.  Finally, it was shown that FANCD2 displays in vitro nucleosome-assembly 

activity in response to ICLs
35

.  This function of FANCD2 might allow for replication to 

resume at late replication intermediates during the G2/M phases.  For now, more 

biochemical studies are needed to determine the precise role(s) of the FA pathway in 

replication completion. 

Finally, two recent studies revealed exciting new information that mitotic 

FANCD2 foci co-localize with the structure-specific endonucleases MUS81-EME1 and 

XPF-ERCC1
36,37

.  These groups found that down-regulation of these nucleases led to a 

lack of CFS breaks, and that this paradoxically increased the levels of genomic instability 

manifesting as MN, anaphase brides, UFBs and 53BP1-NBs.  Therefore, it appears that 

CFS breakage is a programmed cellular event in which unresolved replication 

intermediates can be enzymatically processed to prevent potentially more severe forms of 

genomic instability.  Seeing as FANCD2 localizes at these sites during mitosis and has 

been observed to regulate other nucleases
38-42

, it might have been easy to imagine the FA 

pathway as being necessary for this processing.  However, it was clearly shown that cells 
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deficient for FANCC had no defect in the mitotic localization of MUS81 or ERCC1
36

, 

indicating that the FA pathway likely doesn’t directly regulate this step. 

One very important question still remains.  How does the role(s) of the FA 

pathway in replication relate to the clinical phenotypes of FA?  Could under-replication 

be the underlying factor causing bone marrow failure or cancer predisposition?  

Intriguingly, it is now well-understood that CFSs occur in a cell type-specific manner
6,43

, 

suggesting that cellular differentiation programs might lead to certain chromosomal 

regions having a lower number of initiation events in certain cell types.  Indeed, we 

observed that double homozygosity for Mcm4
chaos3

 and Fancc
-
 led to extremely high 

perinatal lethality in an inbred C57BL/6J background, which has an intrinsically lower 

density of active origins
44

.  It is therefore tempting to postulate that perhaps 

hematopoietic stem cells could have a unique hyper-dependence upon the FA pathway to 

finish replication, the loss of which triggers cell death and manifests as bone marrow 

failure.  Furthermore, based on the accelerated tumor latency observed in 

Mcm4
chaos3/chaos3

;Fancc
-/-

 mice, it may be even more likely that this has a role in FA-

associated cancers, whereby the cell types in which malignancy originates (e.g. myeloid 

cells in AML, squamous epithelial cells in head and neck cancers) could also suffer from 

under-replication in the absence of the FA pathway. 
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HELQ plays an important role in suppressing replication-associated genome instability 

 After utilizing the Helq
gt

 mouse model to investigate the function of mammalian 

HELQ, one role that stands out is its requirement for the recovery of spontaneously 

stalled replication forks.  This role proved essential for the suppression of MN and 

53BP1-NBs and works in parallel to the FA pathway component FANCC.  These 

findings were in agreement with the study of Adelman et al.
45

, who reported that cells 

derived from the same mouse model (called Helq
ΔC/ΔC

 in their study) displayed a 

significantly higher number of MN as well as asymmetric replication tract lengths, a 

measure of fork stalling events.  Because this function can be observed under normal, 

physiological conditions, it may best explain the hypogonadism phenotype clearly 

observed by both groups.  So while HELQ is unlikely to be one of the unassigned 

complementation groups of FA, it may still have very important roles in human health, 

such as that described recently for REV7
46

.  Future studies investigating why certain stem 

cell types are prone to replication-associated genome instability will be very important to 

understanding both the role of HELQ and the clinical manifestations of FA. 

 

The roles of HELQ in ICL repair, HR and tumor suppression remain unclear 

While Adelman et al. reported on the characterization of the exact same Helq 

mouse model, a third study by Takata et al. investigated the role of human HELQ using 

knockout cell lines
47

.  In general, both groups uncovered many findings very similar to 

ours, including HELQ’s role in ICL resistance and germ cell maintenance, with 
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Helq/HELQ being non-epistatic to Fancd2/FANCD2 for either phenotype.  In addition to 

our data, both studies also identified interacting partners of HELQ by mass spectrometry, 

including ATR, RPA, the FANCD2-FANCI heterodimer and the RAD51 paralogs, which 

are required for efficient HR
48-51

. 

Despite these similarities, there were also several discrepancies between these 

three studies that merit closer examination.  First, there were marked differences in the 

extent to which Helq/HELQ deficiency was reported to confer ICL hypersensitivity.  

While we showed that both Helq
gt/gt

 cells as well as HELQ siRNA-treated human cells 

were only modestly sensitive to MMC, Adelman et al. reported striking hypersensitivity 

in the very same mouse model as well as with siRNA-treated human cells.  Using their 

knockout human cell lines, Takata et al. reported modest hypersensitivities that seem to 

more closely resemble our findings.  Together, it appears that HELQ probably does not 

play a major role in ICL repair in mammals, acting only as a backup to the FA pathway. 

 A second major difference can be seen in regards to HELQ’s role in HR.  

Adelman et al. provided multiple lines of evidence to suggest that HELQ is an important 

HR factor, including the persistence of MMC-induced DSBs in Helq
ΔC/ΔC

 cells, reduced 

HR efficiency in HELQ siRNA-treated human cells as measured by a GFP reporter assay 

and the hypersensitivity of both cell types to poly-ADP ribose polymerase (PARP) 

inhibitors, a signature of HR-deficient cells
52,53

.  On the contrary, our in vivo analysis 

using the FYDR transgenic locus system clearly showed that the absence of Helq does not 

overtly affect spontaneous or damage-induced HR levels in mice.  In addition, the human 
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HELQ knockout cell lines used by Takata et al. did not show any reduction in the levels 

of spontaneous or MMC-induced sister chromatid exchange, a measure of crossover 

events resulting from HR.  Together with the fact that, unlike Helq, most major HR genes 

are embryonic lethal in mice
54

 and that Helq
gt/gt

 males do not exhibit any meiotic defect, 

it is very difficult to imagine Helq/HELQ being a major HR gene at this time.  A minor or 

backup role of HELQ should be tested in the future. 

Finally, in contrast to our finding that Helq
gt/gt

 mice exhibit no observable cancer 

phenotype, Adelman et al. reported that the same mouse model in their hands displayed a 

significant number of ovarian tumors and pituitary adenomas.  Upon closer examination, 

however, this phenotype was actually very mild as the vast majority of the mice exhibited 

tumor-free survival beyond 500 days of age.  Furthermore, a significant fraction of the 

wildtype mice in their study exhibited the same types of tumors at reduced frequencies.  

The fact that their mouse model was maintained in a mixed genetic background rather 

than a pure, inbred background like the C57BL/6J background we used could also 

explain some of the discrepancies between our studies.  Still, a possible tumor 

suppressive role of HELQ in humans should not be overlooked as many FA genes which 

have little effect on mouse tumorigenesis
55

 are found mutated in several sporadic human 

cancers
56

.  Indeed, multiple genome-wide association studies have already identified 

SNPs in HELQ that are associated with upper-aerodigestive tract cancers and head and 

neck cancers
57-61

. 
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The frequency of EdU spots, not MN, correlates more closely with cancer development 

 One thought-provoking observation from these studies is the lack of correlation 

between MN and cancer development.  For example, while Fancc
-/-

 (and especially 

Helq
gt/gt

;Fancc
-/-

) MEFs exhibited even higher MN frequencies than Mcm4
chaos3/chaos3

 

cells, these mice did not display any significant tumor phenotypes.  This is interesting as 

the Mcm4
chaos3

 allele was originally identified in a genetic screen for increased levels of 

MN in erythrocytes with the idea that such chromosome instability might be an accurate 

marker of cancer susceptibility
62

.  Since then, other studies have suggested that the 

defective replication and reintegration of micronucleus DNA could be a significant driver 

of the aneuploidy and/or chromosome pulverization observed in cancer
63

.  However, our 

results in mice do not support this. 

Rather, what distinguished Mcm4
chaos3/chaos3

 cells from others was the number of 

late-replicating loci, manifesting as EdU spots in prophase.  It is thus tempting to 

speculate that an inability to finish replication at these sites could lead to deletions in the 

resulting daughter cells, which may not otherwise be detected by the MN or 53BP1-NBs 

assays.  Over time, such deletions could lead to the loss of tumor suppressor genes or 

cause other genetic alterations that drive Mcm4
chaos3

 tumorigenesis. 
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Future directions 

What are the consequences of late-replicating loci? 

 Our findings indicate that the cancer phenotype of Mcm4
chaos3/chaos3

 correlates 

better with an increased number of EdU spots rather than an increase in MN per se.  This 

suggests that late-replicating/un-replicated regions may lead to a different form of 

genomic instability that has serious consequences for cancer progression.  We have 

begun to test this by developing a series of pulse-chase experiments to determine the fate 

of late-replicating regions after prophase.  By treating cells with a 10 minute pulse of 

EdU labeling and then waiting 90 minutes prior to fixation, we found that EdU detection 

could be achieved on metaphase spreads.  Strikingly, we found that EdU spots can often 

be observed to co-localize at chromosome breaks and radial structures.  Importantly, the 

frequency of such events was significantly elevated in Mcm4
chaos3/chaos3

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

 mutant cells, and the majority of breaks in APH-treated cells 

contained EdU staining.  Furthermore, dual labeling with fluorescent probes targeting 

mouse-specific fragile sites shows that a number of EdU-associated breaks occur at these 

sites.  These preliminary findings strongly indicate that late-replicating regions, rather 

than stalled forks per se, are the major precursor to chromosome breakage at CFSs, in 

agreement with recent findings
36

. 

 We have also utilized EdU pulse-labeling to determine the relationship between 

EdU spots and G1 phase markers of chromosome instability, namely MN and 53BP1-

NBs.  After a 10 minute pulse-labeling with EdU, cells were given 4 hours to progress 
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into G1 phase.  G1 phase nuclei were then easily identified as those contained within 

binucleated cells using a protocol similar to the cytokinesis-block MN assay.  Punctate 

EdU spots were observed in wildtype, Mcm4
chaos3/chaos3

, Fancc
-/-

 and 

Mcm4
chaos3/chaos3

;Fancc
-/-

 cells in similar ratios to those observed at prophase.  However, 

the vast majority of these spots did not reside in the MN or 53BP1-NBs of these cells, 

suggesting that the majority of either of these markers do not arise directly from late-

replicating/un-replicating regions.  In addition, it is possible that EdU spots could 

manifest as a different form of genomic instability all together, like large deletions.  

While not as easily detectable as MN and 53BP1-NBs, such significant losses of genetic 

information could have a much greater effect on driving Mcm4
chaos3

 tumorigenesis.  

Future studies using array-based comparative genomic hybridization technology may be 

able to adequately address this intriguing possibility. 

 

What are the distinct functions of the FA core complex and FANCD2? 

 Although the FA pathway is usually described as being one linear pathway, there 

is an abundance of evidence to suggest otherwise.  As additional interactions and 

functions are identified for each component, this pathway grows more and more complex, 

blurring our understanding of what FA pathway functions correspond to FA disease 

phenotypes.  For example, one study reported that the levels of genomic instability are 

higher in Fancd2
-/-

 mice when compared to Fancg
-/-

 mice, and that double homozygosity 

for these alleles results in embryonic lethality
64

.  Therefore, distinguishing the separate 
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roles of individual FA pathway components is essential for us to more fully understand 

the FA pathway’s role in genome stability. 

 One important study that could be done would be to test the effects of Fancd2 

nullizygosity in a Mcm4
chaos3/chaos3

 mutant background, as we have done for Fancc.  This 

would allow us to determine if the fork recovery mechanism performed by FANCC is 

mediated by FANCD2 or if it involves a distinct pathway (like FA core complex-

stimulated TLS).  We have already used such a strategy to test the genetic interaction 

between Mcm4
chaos3

 and Brca2
Δ27

, a hypomorphic truncation allele of Brca2
65

, revealing 

a synthetic lethal interaction between the two.  It would be interesting to see if 

Mcm4
chaos3/chaos3

;Fancd2
-/-

 mice are viable in a C57BL/6J inbred genetic background and 

if their tumor latency is significantly different than that of Mcm4
chaos3/chaos3

;Fancc
-/-

 mice. 

 

Is HELQ part of the downstream FA pathway? 

 Our data clearly indicate that HELQ is dispensable for FANCD2 

monoubiquitination and is unlikely to be part of the FA core complex.  However, this 

does not rule out the possibility of HELQ being a part of the downstream FA pathway.  

This would not be difficult to imagine seeing as the majority of the downstream FA 

members play a critical role in HR and that multiple studies (excluding our own) have 

implicated HELQ as either playing a role in HR
45,66-68

 or associating with HR factors
45,47

.  

As a preliminary investigation, we have recently generated mice doubly mutant for the 

Helq
gt

 and Brca2
Δ27

 alleles to test for epistasis.  Thus far, the data indicate that the two 
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are non-epistatic for germ cell maintenance as well as suppressing replication-associated 

genome instability (MN and 53BP1-NBs).  Although this does not completely rule out a 

potential role of HELQ in HR, this coincides with all our previous findings that HELQ is 

unlikely to be an essential HR factor or to function within the FA pathway. 

 

Does Helq have any significant tumor-suppressive role in mice? 

 Because Helq
gt/gt

 mice did not exhibit any tumor phenotype in our hands, we 

hypothesized that a more sensitized background, such as Mcm4
chaos3

 homozygosity, might 

reveal a significant tumor suppressive role of Helq, much like it did for Fancc.  However, 

our preliminary results clearly show that Mcm4
chaos3/chaos3

;Helq
gt/gt

 double mutants do not 

display any significant difference in tumor latency compared to Mcm4
chaos3/chaos3

 single 

mutants.  These data make it more difficult to implicate Helq as having a significant role 

in suppressing murine tumorigenesis at this time. 

 

Can manipulation of HELQ activity provide a therapeutic benefit for FA patients? 

 Though it appears unlikely that HELQ is another FA gene, our findings do 

provide an intriguing possibility that it could be a therapeutic target for treating FA, as 

HELQ should be present in the cells of FA patients and work in parallel to the FA 

pathway to maintain genome stability.  Our data suggest that down-regulation or 

disruption of HELQ as a method of killing cancer cells in FA would probably not be an 
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effective strategy, as Helq
gt/gt

;Fancc
-/-

 cells were fully viable and exhibited even greater 

genomic instability.  However, strategies to up-regulate HELQ expression have potential 

to mitigate genomic instability in FA patient cells, as HELQ is normally so lowly 

expressed in humans
69

.  Importantly, it seems unlikely that this would have any negative 

effect on cells.  Transfecting FA patient cells with a robust HELQ expression vector and 

measuring its effects on genomic instability would be an effective first step in testing this 

possibility.  Finally, it should be investigated whether the proteins found to interact with 

HELQ (such as the RAD51 paralogs) are also needed for stalled fork recovery in a 

manner that is non-epistatic to FA pathway members, as these also could be targeted for 

therapeutic benefit. 
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