
Essays on Scheduling Models in Service Systems

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

FEI LI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DIWAKAR GUPTA

July, 2014

c© FEI LI 2014

ALL RIGHTS RESERVED

Acknowledgements

I am deeply indebted to my advisor Professor Diwakar Gupta, who brought me great

opportunity to dig into several interesting research topics, and has provided me consis-

tent supports and encouragements. Thanks to him, I had the great fortune to pursue

my Ph.D. study at the University of Minnesota. Besides knowledge and skills that he

passed to me and his other students, I am greatly inspired by Professor Gupta’s attitude

and passion in research. On many occasions his passion helped us find new paths when

the research seemed to be at a dead end, and led to findings that I had not expected.

I would like to express my sincere gratitude to my thesis committee members, Pro-

fessors John Carlsson, Shuzhong Zhang and Henry Liu, for their careful reading and

valuable comments on my dissertation. I have also received great instructions and ad-

vices from Professor John Carlsson in my research.

My gratitude extends to my officemates: Hao-Wei Chen, Wen-Ya Wang, Zhi Zhang

and Yibin Chen. Elder officemates Hao-Wei and Wen-Ya have given me a lot of support

in the early years of my Ph.D study when I had a struggling time. And the support and

numerous fruitful discussions with fellows Zhi Zhang and Yibin Chen have stimulated

a lot of exiting ideas in work.

I am greatly indebted to my parents, Yijian Li and Yi Luo, who always stand there

and give me unlimited love and support.

This dissertation is devoted in part to my previous advisors, Professor Baoding Liu

in Tsinghua University, and Professor Bharath Rangarajan who had left University of

Minnesota. I could never start my Ph.D. study without their great help.

The material reported in this thesis is based upon work supported in part by an

award from the National Science Foundation under grant no. CMMI-1332680 (PI:

Diwakar Gupta).

i

Dedication

This work is dedicated to my parents.

ii

Abstract

Scheduling has been a fundamental area in Operations Research and is receiving

increasing attention. Growing scale of operations and increasing availability of data

in different industries drive the need for efficient and practical solutions for scheduling

resources under customized circumstances. In this thesis, we address three different

scheduling problems that come from transit industry and healthcare industry respec-

tively. According to the special features encountered in each industry, we build fixed job

scheduling models for the reserve driver scheduling and work assignment problems for

transit industry, and resource-constrained bin packing models for the surgery reschedul-

ing problems in healthcare. Three separate but related chapters constitute the main

body of the thesis.

Among the three models, two models are deterministic and are proved to be NP-

hard. The other model is an online version of the reserve driver work assignment prob-

lem. Our target is to provide algorithms that run in polynomial or pseudo-polynomial

time and can beat the best-known algorithm in terms of worst-case performance guaran-

tee. For the offline reserve driver scheduling and work assignment problem, we provide

an algorithm with approximation ratio between [1− 1/e, 19/27]; and for the online re-

serve driver work assignment problem, we build a randomized algorithm with O(log ∆)

competitive ratio, where ∆ is the ratio of the longest to the shortest job in duration. For

the surgery rescheduling problem the model is not widely studied and we are the first to

provide an algorithm and a lower bound with performance guarantee—the worst-case

performance guarantee is 3/2 for the approximation algorithm, and 2/3 for the lower

bound.

We not only are interested in theoretical results but also care about practical use

of our algorithms. All algorithms are experimented with real data and we benchmark

with either the current industry performance or a greedy algorithm/policy.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables vi

List of Figures viii

1 Introduction 1

2 Reserve Driver Scheduling and Work Assignment Problem: Day-before 5

2.1 Introduction . 5

2.2 Model Formulation, Complexity and Special Cases 12

2.2.1 One-Operator Cases . 15

2.3 Heuristics . 18

2.3.1 The Greedy Approach (A1) . 19

2.3.2 The Two-Stage Approach (A2) 21

2.3.3 The Decomposition-Based Approach (A3) 28

2.4 Numerical Experiments . 32

2.5 Concluding Remarks . 41

3 Reserve Driver Work Assignment Problem: Day-of 42

3.1 Introduction . 42

3.2 Preliminaries . 48

iv

3.2.1 The Myopic Algorithm for Single-Processor Cases 50

3.2.2 The Finite-Step Marriage Problem 51

3.3 A Randomized Algorithm for Single-Processor Online FJS 53

3.3.1 The Competitive Ratio Bound 54

3.4 Multiple-Processor Online FJS . 62

3.5 Numerical Experiments . 66

3.6 Concluding Remarks . 71

4 Improving Operating Room Schedules 75

4.1 Introduction . 75

4.2 Literature Review . 79

4.3 Data . 83

4.4 Notation and Model Formulation . 90

4.4.1 Model Formulation . 94

4.5 One Shift Type . 97

4.5.1 Step 1: Surgeon Types . 97

4.5.2 Step 2: Lower Bound Construction 100

4.5.3 Step 3: Feasible Solution Construction 101

4.6 Two Shift Types . 103

4.6.1 Step 1: Surgeon Types When 1/2 < α < 2/3 104

4.6.2 Step 2: Lower Bound Construction When 1/2 < α < 2/3 106

4.6.3 Step 3: Feasible Solution Construction When 1/2 < α < 2/3 . . . 108

4.6.4 Two Shift Types with 0 < α ≤ 1
2 115

G.5 Two Shift Types with 2/3 ≤ α < 1 116

4.7 Numerical Experiments and Insights . 119

4.8 Extensions and Concluding Remarks . 128

5 Conclusions 131

References 133

v

List of Tables

2.1 Notation Used in Formulation . 13

2.2 The Correspondence Between the W-MCP and the OFJS-WS 29

2.3 Distribution of Job Durations (Percent) 33

2.4 Distribution of Job Numbers (Percent) 34

2.5 Distribution of Job Start Times (Percent) 35

2.6 Distribution of Job Numbers (Percent) 36

2.7 Distribution of Operator Numbers (Percent) 37

2.8 Job Statistics by Garage (C.V. = Coefficient of Variation) 37

2.9 Percent Gap Between Upper and Lower Bounds 38

2.10 Percent of Report Time Matches: PP-OFJS-S versus CPLEX 38

2.11 Comparison of Algorithms’ Performances 39

3.1 Notation Used in Formulation . 46

3.2 Notation . 72

3.3 Performance Comparison – Myopic versus An(α, dT) 73

3.4 Job Duration Summary (minutes), SD= Standard Deviation 73

3.5 Driver Shift Start Time Summary . 73

3.6 Parameter Selection Using Training Data Set 74

3.7 Performance Comparisons Using Test Data Set 74

4.1 Basic Data Summary . 84

4.2 Result of the Mixed-Effects Multiple Linear Regression Analysis 87

4.3 Performance Statistics . 89

4.4 Additional Notation . 92

4.5 Notation Used in Model Formulation . 95

4.6 Additional Notation . 99

vi

4.7 Surgeon Types . 104

4.8 Lower Bound (LB) and Feasible Solution (F) Costs 110

4.9 Lower Bound (LB) and Feasible Solution (F) Costs 117

4.10 OR Efficiency Metrics . 121

4.11 Impact on Surgeons . 125

4.12 Effect of Consolidating Same-doctor Cases 127

4.13 Impact of Using Two Shifts . 128

vii

List of Figures

2.1 A Shortest-Path Transformation Of The Problem With four Jobs 16

2.2 A Graphical Representation Of Job Start And End Times In Example 1. 20

2.3 Critical Times. Note That t5 = t1 + s, t6 = t2 + s. 22

2.4 Step 1 of 3-Operator Example. 31

2.5 Step 2 of 3-Operator Example. 31

2.6 Complementary Cumulative Frequency of Assigned Work in Minutes . . 40

3.1 A (∆ + 1)-Competitive Case . 51

3.2 Construction of S1, S1 = {j1, j2, j4, j5} 56

3.3 The first job of Sk is j4 following Rule 2.2.1 56

3.4 The first job of Sk is j5 following Rule 2.2.2 57

3.5 Largest yk (when all jobs in Sk are type-1) 58

3.6 When no job in S̄ has duration (1/α)djm or larger. 60

3.7 When at least one job in S̄ has duration (1/α)djm or larger (j3 in this case). 60

3.8 Job Durations and Daily Frequency . 67

3.9 Demand Profile by Time of Day . 67

3.10 Daily Driver Availability and Job-to-Driver Ratio 68

4.1 Volume versus Complexity . 86

4.2 LB Construction Example (splits are shown by dotted lines) 100

4.3 Feasible Solution Construction when |J(µ)| = 1 102

4.4 Feasible Solution Construction When Surgeon µ’s Chain is Split Twice . 102

4.5 When Surgeon µ’s Chain is Split Exactly Once 103

4.6 LB Construction Algorithm . 106

4.7 Distribution of Open Intervals in Planned Schedule 122

4.8 Number of ORs In Use by Time of Day 123

viii

Chapter 1

Introduction

Resource scheduling problems arise in almost all service industries. This thesis focuses

on two problems from the transit industry and one from the healthcare industry. The

resources being scheduled are reserve drivers in the transit industry setting and oper-

ating rooms in the health care setting. The objective of scheduling, broadly defined, is

to match demand with availability of resources in a fashion that minimizes operating

costs while meeting a variety of constraints. Constraints can arise from problem set-

ting, e.g. off-line or online, from start and end times, e.g. fixed or variable, as well as

from scheduler ability to preempt previous assignments. Problem settings can also vary

in terms of identical or different resource requirements, and the latter may be either

deterministic or random.

There is a huge literature on scheduling topics. This thesis consists of three self-

contained chapters on three different scheduling models. Each chapter is written as a

separate paper and contains its own motivation as well as literature review. A common

feature of all three studies is our focus on providing implementable algorithms with

worst-case performance guarantees. Chapters 2 and 3 develop solutions for the reserve

drivers’ scheduling problem for large transit agencies. It uses data from a collaborating

transit agency. Chapter 4 focuses on a model for improving surgery schedules. It utilizes

data from three hospitals. We briefly summarize the contents of each chapter in the

remainder of this introduction.

Reserve Driver Scheduling and Work Assignment: Day-before

When open work caused by unplanned events such as bus breakdowns, inclement

1

2

weather and driver (operator) absenteeism needs to be covered by reserve drivers, an

instance of the operational fixed job scheduling problem or interval scheduling problem

arises. Jobs may not be preempted once assigned. That is, each work piece, which is

referred to as a job, requires one operator who must work continuously between specified

start and end times to complete the job. According to work rules, each reserve operator

may be assigned up to w hours of work, which may not to be continuous so long as

the total work time is within a s-hour time window of that operator’s shift start time.

Parameters w and s are called allowable work-time and spread-time, respectively.

Our decisions are operators’ shift start times and assignments of each piece of work

while honoring work-time and spread-time constraints, such that the amount of work

covered as part of regular duties is maximized. This problem is solved one day before

each day of operations and concerns known pieces of work.

In Chapter 2, we establish the mathematical model for the day-before reserve op-

erator scheduling and assignment problem, and argue that the problem is NP-hard.

Next, we present different heuristic approaches for solving the problem, and analyze

their worst-case performance ratio. We present numerical experiments using data from

a large transit agency, which show that the average performance of the decomposition

algorithm is good when applied to real data.

Reserve Driver Scheduling and Work Assignment: Day-of

In Chapter 3, we consider online reserve driver work assignment during the day of

operations. During the day, open work pieces open need to be assigned either to reserve

drivers or to overtime in an online fashion. That is, assignment decisions must be made

sequentially without information about future job requests and the scheduler may need

to select a particular driver when multiple drivers can perform a job.

The objective is to maximize the amount of work covered as part of regular duties.

Note that in the online problem we are given drivers with fixed shift start and end times.

Different from the day-before problem, we do not decide the shift start times and only

decide which of the available drivers to assign each piece of work.

We propose a randomized online algorithm that carries a performance guarantee

relative to the best offline solution and simultaneously performs better than any de-

terministic algorithm. We also provide numerical experiments with both real data and

randomly generated instance to show the performance of our algorithm.

3

Surgery Rescheduling: Chapter 4 considers rescheduling of non-urgent surgeries in

order to reduce the number of ORs concurrently staffed during the day.

In healthcare industry, doctors, nurses, and other staff work together to assure qual-

ity and efficiency of patients’ care, hence scheduling is very important and complicated.

Operating rooms (ORs) in US hospitals generate about 70% of a hospital’s revenues.

Surgery schedules are made through a complicated process. Many hospitals allocate

blocks of OR time to individual or groups of surgeons as guaranteed allocation, who

book surgeries one at a time in their blocks. The booking procedure frequently results in

unused time between surgeries. Realizing that this presents an opportunity to improve

OR utilization, hospitals manually reschedule surgery times one or two days before each

day of surgical operations, in order to decrease OR staffing costs, which are mainly

determined by the number of concurrently staffed ORs.

We formulate the rescheduling problem as a variant of the bin packing problem with

interrelated items, which are the surgeries performed by the same surgeon. We develop

a lower bound (LB) construction algorithm and prove that the LB is at least (2/3) of

the optimal staffing cost, for the cases with one or two shift lengths. Our analytical

results form the basis of a branch-and-bound algorithm. Besides the theoretical analysis,

results from numerical experiments are provided at the end of Chapter 4.

In this thesis, each chapter has a unique notation, which is defined within that chap-

ter. Also, the metrics for worst-case performance are not the same across all chapters.

Instead, according to the type of the model, we define the metrics differently in each

chapter.

Summary of Contributions: We summarize the key contributions of the following

three Chapters here. In the Chapter “Reserve Driver Scheduling and Work Assignment:

Day-before” we introduce the best-known polynomial-time algorithm for operational

fixed job scheduling problem with spread and work time constraints and fixed number

of shift splits, and we show that its approximation ratio is within [1 − 1/e, 19/27]. In

the Chapter “Reserve Driver Scheduling and Work Assignment: Day-of” we extend

the previous best-known result for single-processor online fixed job scheduling problem

under the setting of known job duration bounds. The proposed single-processor ran-

domized algorithm has competitive ratio of O(log ∆). Moreover, we provide the first

approach of multiple-processor online FJS with different processor remaining times and

4

the algorithm preserves the competitive ratio of O(log ∆). In the Chapter “Surgery

Rescheduling”, we dig deep into the bin packing problem with interrelated items, and

provide (2/3) lower bounds with both single bin size and two bin sizes. Based on this

result we develop effective B&B algorithm for surgery rescheduling problems.

Roadmap Comments: Before proceeding to the three Chapters that constitute the

main body of this thesis, several things need to be kept in mind. First, notation is

unique and redefined in each chapter. Second, the metrics of worst-case performance

are not uniform. Instead, according to the type of the models and norms adopted in

the literature, we define the metrics differently in each chapter.

Chapter 2

Reserve Driver Scheduling and

Work Assignment Problem:

Day-before

2.1 Introduction

The fixed job scheduling problem (FJS), introduced in [1], concerns the optimal assign-

ment of jobs to operators, where each job has a fixed start time and a fixed end time,

and each operator can process at most one job at a time ([2]). Instances of FJS arise in

many applications. For example, the problem of scheduling aircraft maintenance jobs

that are required to be completed within fixed time windows ([3]), and the problem of

scheduling bus operators ([4]) are both instances of the FJS.

There are two broad categories of FJS: tactical and operational. In the tactical FJS

(denoted as TFJS), the objective is to determine the minimum number of operators

needed to cover all jobs. There is no a priori limit on the number of available operators.

In contrast, in the operational FJS (denoted as OFJS), the number of available operators

is fixed and the objective is to maximize a total reward. In this setting, the assignment of

a job to an available operator produces a reward (usually proportional to its duration),

whereas jobs that remain unassigned do not produce a reward.

Spread-time and work-time constraints are two major types of constraints in FJS

5

6

problems. Spread-time is the maximum time span of an operator’s workday. That is,

given a spread-time limit s, if an operator is scheduled to start work at t0 on a particular

day, then she or he may be assigned work between t0 and (t0 + s), but not outside this

interval of time. Work-time is the maximum amount of time that an operator may be

required to work within the allowed spread time. We denote work-time limit by w.

Operators may voluntarily choose to work more than w hours each day, but in such

cases they receive overtime pay. We affix letters S and W to TFJS or OFJS to identify

problem instances with appropriate constraints. For example, OFJS-S represents the

OFJS problem with spread-time constraints only (i.e. w = s), and TJFS-W means the

TFJS problem with work-time constraints only (i.e. w is finite but s can be arbitrarily

large), and OFJS-WS means the OFJS with both types of constraints (i.e. w ≤ s <∞).

Note that w cannot exceed s if a spread-time limit is specified.

This paper is motivated by an instance of the OFJS-WS that arises in the context

of extraboard bus operator (equivalently, reserve bus driver) scheduling and work as-

signment at a large transit agency. The work rules require that the agency may not

assign more than 8 hours of work to operators within a 12-hour spread. Assignments

that violate these rules are counted as overtime1 , which may be accepted by the op-

erator on a voluntary basis. Such rules are common in the transit industry and call

for methodologies to solve OFJS-WS because neither OFJS-W nor OFJS-S can provide

satisfactory solutions for problems of practical interest.

Extraboard operators are not assigned regular duties in advance, but cover work that

arises because of planned and unplanned time off, bus breakdowns, weather, and special

events such as a state fair or a major league game. On their duty days, extraboard

operators are paid wages for a full shift (typically 8 hours) regardless of how much work

is actually assigned to them within their work hours. Open work that is not covered

by extraboard operators is assigned to operators who indicate their willingness to work

overtime. If neither extraboard nor overtime operators are available to cover a piece

of work, then that results in dropped service. [5] show that the size of extraboard

workforce including vacation coverage can be as high as 26% of the total workforce size

for large transit systems. Because labor costs are a significant portion of the total cost

of providing transit services, it is important for transit agencies to utilize the extraboard

1 The hourly overtime rate is higher than regular hourly wages.

7

operators efficiently.

The assignment of work to extraboard operators typically occurs in two stages.

In the first stage, which we model in this paper, a dispatcher assigns open work to

extraboard operators one day before the day on which open work needs to be performed.

Extra work also arises during a day, which is assigned dynamically to either available

extraboard operators or to overtime operators. Such problems belong to the class of

online scheduling problems. We focus on the day-before problem and do not consider

the day-of problem in this paper because the two problems require different solution

methodologies. The latter is a topic of ongoing research efforts by the authors. Transit

agencies set aside a subset of extraboard operators who are used exclusively for day-of

assignments (referred to as on-call duty). For this reason, we also do not model the

impact of day-before assignments on the transit agency’s ability to meet the day-of

demand.

Specifically, we are concerned in this paper about the report times of extraboard

operators and the assignment of jobs to operators, which occurs a day before each day’s

start of operations. We use the term report times to mean start of work shifts. Report

times of extraboard operators may be different each day and they are finalized one day

before. Given a set of open jobs that are known one day before, our objective is to

maximize the amount of work assigned to extraboard operators during their regular

shifts by choosing shift start times and deciding which pieces of work to assign to

which extraboard operators. We assume that pieces of work that are not assigned

to extraboard operators are performed by bus drivers in overtime. Because ample

availability of overtime was observed in data from a collaborating transit agency, we do

not model cases in which service may be dropped.

A different way to understand the scope of the problem we study in this paper

is to place it within the hierarchy of extraboard workforce planning and management

problems consisting of operational, tactical and strategic levels; see, for example, [6].

Within this hierarchy, we focus on dispatch decisions that belong to the lowest — i.e. the

operational level. Examples from the other two levels include extraboard workforce

sizing, run cutting methods and the determination of the daily number of operators

who would be scheduled to serve as extraboard. [7], [8] and [9] contain additional

institutional background on workforce management challenges in the context of transit

8

operations.

Instances of the OFJS-WS problem arise in many application areas and are of general

interest to operations engineers and managers. First, we draw attention to the fact

that all types of public transportation operations need extra operators to take care of

contingencies and avoid gaps in service. Examples include bus, rail, ferry and passenger

airline operations. Work assignment problems similar to what we study in this paper

arise in each of these settings. In addition, OFJS-WS problems arise in the context of

periodic batch scheduling of jobs on parallel machines. Because jobs and machines could

represent different entities in different application areas, there are numerous applications

of the OFJS-WS. For example, jobs could be groups of orders that need machining or

repair, or deferrable surgeries that need operating room time, or computer programs

that need processor time.

OFJS-W, OFJS-S and OFJS-WS are all NP-hard problems, which makes it difficult

to compare the difficulty of solving each problem. Consider, for example, the OFJS-S

problem. [10] show that this problem is NP-hard by arguing first that one can solve any

instance of the TFJS by repeatedly solving the same instance of the OFJS with 1, · · · ,m

operators, where m is the number of jobs. In the previous sentence, the words “same

instance” mean an instance of the problem with the same set of jobs, and w and s, if w

and s are specified. The NP-hardness of OFJS-S then follows from [11]. Therefore, to

explain the need for focusing attention on OFJS-WS, we present two arguments. First,

OFJS-WS is different from OFJS-W because it also considers spread constraints. It

is also different from OFJS-S because the work-time constraints limit the amount of

work that may be assigned within a spread. Therefore, solutions methods developed in

previous studies, discussed below, are not applicable to OFJS-WS. Second, OFJS-S and

OFJS-W are both special cases of OFJS-WS and only the latter captures the actual

constraints faced by transit agencies.

[2] provide a review of the fixed job scheduling literature, which is also referred to

as the interval scheduling problem. The authors divide papers into four groups based

on model features and objective. These categories are as follows.

(1) All jobs must be performed and the objective is to minimize the number of

machines used.

(2) The number of machines is fixed and the objective is to maximize total weight

9

of jobs assigned.

(3) Job start times are not fixed, and the objective is either to maximize total weight

or number of jobs, or to minimize the number of machines used to cover all jobs.

(4) Jobs are scheduled online (one at a time) or previously scheduled jobs may be

preempted, and the objective is either one of the two objectives mentioned in (3).

Our study falls into the second group above. In what follows, we discuss key papers

belonging to groups one, two and four. We do not discuss papers belonging to group

three because fixed start and end times of jobs is an important feature of OSJF-WS

and methods that do not assume fixed start/end times are not relevant in our setting.

Significant contributions in the first group include [11], [12], [13], and [4]. [11] show

that the TFJS-S problem is NP-hard. [12] study the TFJS-W, show that it is NP-hard,

prove a 2-upper-bounding property of its preemptive version, and provide a branch-and-

bound algorithm to solve it. [13] propose several approximation algorithms for solving

different versions of the TFJS, including greedy algorithms and preemption-based al-

gorithms. [4] study the bus driver scheduling problem, which can be considered as an

instance of the TFJS with work and spread-time constraints, relief point constraints, as

well as other work rules, but do not provide an algorithm with guaranteed approxima-

tion ratio. Because the tactical version of FJS problem is different from the operational

version, the above algorithms do not apply to the extraboard driver scheduling problem

we consider. In addition, there have been a variety of applied papers on the topic. For

example, [14] list different objective functions that transit agencies try to optimize and

summarize heuristics that have been applied to these problems, including the greedy

randomized adaptive search procedure ([15]) and genetic algorithms ([16]). However,

none of these algorithms provides an approximation ratio for OFJS-WS problem in-

stances, which is the focus of this paper.

Next, we consider the papers in the second group. [17], consider scheduling n jobs

with fixed start and end times to k non-identical machines with the goal of maximizing

the value of all jobs assigned (value could be duration). When machines are identical,

i.e. each job can be processed by any machine, the authors argue that the problem can

be solved in O(n2 log n) time. When machines are not identical, i.e. each job can be

processed by a subset of machines2 , the authors provide an exact algorithm that runs in

2 Note, processing ability may be the result of available time of each machine.

10

O(nk+1) time. The main difference is that this formulation assumes machine availability

(i.e. shift start and end times in our setting) is known and that machines do not have

both work and spread time constraints. We infer the latter implicit assumption from the

fact that the authors assume the subset of machines that can process each job is known.

This is only possible when w = s in our setting. Spread and work time constraints

are two features of our model that are simultaneously important in our setting, which

makes our problem formulation different from that in [17].

The second group of papers is also related to the k-track assignment problem, in

which k machines (possibly with different spreads) are given and the objective is to

schedule the maximum number of jobs with fixed start and end times. [18] give an

O(nk−1k!kk+1)-algorithm to solve the standard k-track problem with n jobs and k iden-

tical machines. [19] provide an optimal online algorithm for the k-track assignment

problem with identical time windows. [20] provide an online greedy algorithm that

guarantees to lose no more than (k− 1) jobs relative to the optimal schedule. However,

these algorithms do not apply to our setting because the k-track assignment problem

maximizes the total number of jobs assigned, not the total weight or duration of as-

signed jobs. The solution to the k-track assignment problem would be useful in our

setting if all jobs had the same weight. That is not the case. Also, we need to consider

both spread and shift time constraints of operators, which makes are problem setting

different.

Many researchers have proposed algorithms for solving variants of the FJS problem.

It is therefore appropriate to ask if these methods can be adapted to solve the OFJS-

WS. We argue next that straightforward adaptation will not work for the OFJS-WS

problem. Consider, for example, the greedy heuristic included in [13], which is shown to

have an approximation ratio of 3. Although a greedy approach is a reasonable approach

for solving the TFJS, it can be arbitrarily bad compared with the optimal solution if

applied to certain instances of the OFJS. We present arguments to support our claim

at a later point in this paper. Similarly, if we were to adapt the branch-and-bound

algorithm from [10], we would encounter a combinatorial number of starting nodes,

which would limit the suitability of such approaches when the size of the extraboard

workforce is large.

As yet another example, consider the branch-and-price approach in [21], which was

11

used to solve the OFJS-S. This algorithm requires the ability to repeatedly solve the

one-operator instance of the OFJS-S. Unfortunately, this approach is not suitable for

the OFJS-WS because as we show later in this paper, the OFJS-WS with one-operator

is NP-hard. We also introduce the notion of limited shift splits under which the one-

operator case can be solved in polynomial time. Even with the limited shift split re-

quirement in place, the approach would be computationally demanding, requiring O(m5)

operations rather than the O(m2) operations needed to solve the OFJS-S version of the

problem ([21]).

More recently, some researchers have focused on online scheduling problems belong-

ing to the fourth group. [22] consider both OFJS-S and TFJS-S problems. For OFJS-S,

the authors provide a randomized algorithm with expected reward at least (1 − 1/e)

of the optimum, but this performance is not guaranteed in every run of the algorithm.

Our decomposition algorithm can be applied to OFJS-S and it is a deterministic algo-

rithm. That is, its performance does not vary for the same problem parameters and it

guarantees a performance of at least (1− 1/e) of the optimum every time it is applied.

We believe ours is a more implementable and stronger result for the transit agencies’

problem setting.

In this paper we first show that the OFJS-WS is NP-hard. Then we provide three

heuristics for solving the OFJS-WS. The first heuristic is a duration-first greedy algo-

rithm, which assigns the longest unassigned job at each step. We show that the greedy

algorithm’s approximation ratio is zero. We next show that the preemptive and partial

credit version of the OFJS-S is solvable in polynomial time. Combining this result and

an algorithm provided by [3], we construct a two-stage algorithm. The third algorithm

solves the OFJS-WS with limited shift splits. We first establish that the one-operator

case of the OFJS-WS with limited shift splits is polynomially solvable, and then prove

that a decomposition approach based on maximizing one operator’s assignment at a

time has an approximation ratio that lies in [1 − 1/e, 19/27]. This algorithm and the

approximation ratio also apply to the OFJS-S. Thus, our third algorithm improves upon

a result reported in [11] about the approximation ratio of an algorithm designed to solve

the OFJS-S.

The contribution of this paper is three fold: (i) it presents three algorithms for

solving the OFJS-WS, (ii) it establishes approximation ratios for the recommended

12

decomposition based algorithm, and (iii) it uses real data from a large transit agency

to compare the three algorithms. Its methodological novelty lies in developing heuristic

methods, analyzing the limited shift splits version of the OFJS-WS that is observed in

practice, and establishing a deterministic (1 − 1/e)-approximation algorithm for that

case.

The organization of the remainder of this paper is as follows. In Section 2.2 we

introduce a mathematical formulation of the OFJS-WS problem and establish complex-

ity results. In Section 2.3 we introduce three heuristics for solving the OFJS-WS and

investigate whether approximation ratios can be provided in each case. We present

numerical experiments that utilize data from a large transit agency in Section 2.4 and

conclude the paper in Section 4.8.

2.2 Model Formulation, Complexity and Special Cases

While OFJS-WS is a broad class of problems with many variants, our model formulation

and solution methods are motivated by the application domain of extraboard drivers

scheduling. For example, we assume that w and s take reasonable finite values and that

operators do not take too many (unpaid) splits during a day. That is, our algorithm is

allowed to split the working time into only a limited number of pieces within the spread.

Additional modeling assumptions are included in this Section. For the version of the

OFJS-WS of practical interest, we provide a (1 − 1/e)-approximation algorithm that

runs in polynomial time.

In this section we present a mathematical formulation of an instance of the OFJS-

WS, establish its complexity, and identify special cases that can be solved in polynomial

time. We assume that jobs are sorted by start time. The notation used in describing a

formal model is presented in Table 4.5, and key assumptions of the model are as follows.

13

(0, tmax) = start and end time of a day of operation. At the collaborating transit agency,

daily operations started at 3:30 AM and ended at 2:00 AM the following day.

t ∈ {0, · · · , tmax} = time index.

n = number of operators.

i ∈ {1, · · · , n} = operator index

m = number of jobs

j ∈ J = {1, · · · , m} = job index; J = job index set

(sj , ej) = start and end times of job j, with s1 ≤ s2 ≤ · · · ≤ sm

w = work-time limit

s = spread-time limit

dj = ej − sj = duration of job j

Ij(s) = set of jobs that cannot be assigned to the same operator who performs job j

= {k > j : sk < ej or ek − sj > s}
xij = binary decision variables; xij = 1 if job j is assigned to operator i,

and 0 otherwise

Table 2.1: Notation Used in Formulation

Assumption 1:

Time is discrete.

Assumption 2:

Operators are identical in skill. That is, any operator can perform any job.

Assumption 3:

All operators are subject to the same work-time and spread-time limits, denoted by

w and s, respectively.

Assumption 4:

Parameter values belong to the following ranges: 1 ≤ s ≤ tmax and dj ≤ w ≤ s,

for all j ∈ J . This means that no job takes longer than the regular shift length of an

operator.

Assumption 5:

A job that is not covered by available extraboard operators during their regular

work time is assigned on an overtime basis. The cost of overtime is proportional to the

duration of the job assigned in overtime.

The above assumptions were supported by data from the collaborating transit agency.

For example, 1-minute was the smallest unit of time and jobs whose lengths exceeded

the work-time limit of 8 hours were assigned first to those operators who were willing to

accept overtime. Assignment of such jobs thus occurred independently of the extraboard

operator scheduling and work assignment problem addressed in this paper.

In Table 4.5, Ij(s) is the set of jobs that are incompatible with job j, for each j ∈ J .

It contains indices of all jobs that would either overlap with job j or violate spread-time

14

constraints if offered to the same operator.

We are now ready to present a formulation of the OFJS-WS.

z = Max{xij}

∑

1≤j≤m

dj
∑

1≤i≤n

xij (2.1)

subject to:
∑

1≤i≤n

xij ≤ 1, j = 1, · · · ,m (2.2)

xij + xik ≤ 1, j = 1, · · · ,m− 1, i = 1, · · · , n, k ∈ Ij(s) (2.3)

∑

1≤j≤m

djxij ≤ w, i = 1, · · · , n (2.4)

xij ∈ {0, 1}, i = 1, · · · , n, j = 1, · · · ,m (2.5)

The objective function (2.1) maximizes total duration of assigned jobs. Recall that the

OFJS-WS comprises of dispatch decisions that arise after the number of operators is

determined. That is, the wages of extraboard operators are sunk. Therefore, it makes

sense to maximize the total amount of work assigned to extraboard operators, which is

equivalent to minimizing overtime.

Constraints (2.2) ensure that each job is assigned no more than once. Constraints

(2.3) guarantee that jobs assigned to the same operator neither overlap nor violate

spread-time constraints. Note that we only need to consider (m − 1) jobs with their

incompatible sets because the last job’s incompatible relations are already included in

the incompatible sets of jobs whose labels are smaller than m. Constraints (2.4) are

the work-time constraints, and constraints (2.5) specify that xij variables are binary. In

situations where w = s, i.e. when the problem is an instance of the OFJS-S, the above

formulation remains intact except that constraints (2.4) are no longer needed.

Theorem 1 in [10] shows that the OFJS-S is NP-hard. The proof of this argument

is based on the observation that the OFJS-S is NP-hard if the TFJS is NP-hard for

problems in which dj ≤ w, j = 1, · · · ,m. The condition dj ≤ w, j = 1, · · · ,m means

that we need at most m operators to cover all m jobs. From this observation and the

fact that the TFJS-S is NP-hard (see proof in [11]), the authors argue that the OFJS-S

15

is NP-hard. By using a similar argument, it follows that the OFJS-W is also NP-hard

because TFJS-W has been proved to be NP-hard in [12]. Finally, the OFJS-WS is

NP-hard because it includes all instances of the OFJS-W as special cases.

2.2.1 One-Operator Cases

We have observed that dispatchers rarely assign work in a manner that results in more

than one split (scheduled idle period) within an extraboard operator’s work shift. That

is, within a spread, operators are usually idled at most once. This is because multiple

splits are undesirable from operators’ viewpoint. Even in situations where more than one

split occurs, the maximum number of such splits is bounded and small. That is, limiting

splits is a reasonable assumption in the application domain for our model. Therefore,

we also analyze problem instances with one operator and a limit on the number of shift

splits, and show that such problems can be solved in polynomial time. We use the fact

that one-operator k-split OFJS-WS is polynomially solvable to develop a heuristic that

decomposes the n-operator scheduling problem into n one-operator problems. This

heuristic is presented in the Section 2.3.3. However, we begin this section with the

OFJS-WS (unlimited splits) one operator instance and argue that this version of the

problem is NP-hard.

Lemma 2.2.1. The one-operator case of the OFJS-WS is NP-hard.

Proof: Consider an instance of the subset sum problem with m items. Let dj be item

values. The subset problem is to find a subset of the m items such that sum of their

values is equal to w.

Next, consider the following recognition version of the one-operator case of the OFJS-

WS. For each item j, with duration dj , start times sj are such that s1 = 0, ej = sj +dj ,

and sj+1 = ej, for j = 1, · · · ,m−1. Let work time-limit equal w, and spread-time limit

equal s = em − s1. The recognition version of the problem is to find an assignment to

one operator such that the operator’s working time is w. Note that if the maximization

version of the above problem is polynomially solvable, then so is recognition version. In

particular, by solving the maximization version and checking if the optimal value equals

w, we solve the recognition version.

16

In the above instance of the OFJS-WS, there are no overlapping jobs and spread-

time limit is large enough that it will not be violated. This means that constraints

(2.3) and (2.4) that deal with overlapping jobs and spread-time limit may be removed

from the formulation presented in (2.1) – (2.5) without affecting this instance of the

OFJS-WS. At this point, it should be clear that the recognition version of one operator

case and the subset sum problem are equivalent. Because the subset sum problem is

NP-hard ([23]), the one-operator case of the OFJS-WS is also NP-hard. �

In contrast to Lemma 2.2.1, the one-operator case of the OFJS-S is polynomially

solvable ([10]). In what follows, we discuss a transformation of the OFJS-S to the

shortest-path problem, which is utilized in subsequent analysis.

We construct a directed graph utilizing the following steps; see Figure 2.1 for an

illustration. First, we draw a time line and place 2×m points on the line. These points

represent the start and end times of jobs. The length of the line segment between any

two points is the difference between the corresponding time epochs. We also connect

each job’s start and end times by an additional arc. The weight of this arc is set equal

to zero. Note that the direction of each arc is from left to right (start time to end time

of each job).

d1=5
d2=4

d3=7
d4=10

0 0 0 0

3 2 1 1 2 3 1 2 3 1 2

Graph

Possible shifts

Jobs

Figure 2.1: A Shortest-Path Transformation Of The Problem With four Jobs

17

Because there are m jobs, there are at most m choices of shift start times (which

are simply the job start times). For each possible shift start time, we cut the graph

to match with the shift length and find a shortest path from its leftmost node to its

rightmost node. From the shortest path solution, we observe which zero-weight arcs are

picked. Those correspond to the jobs that are assigned to the operator. We repeat this

procedure for all possible shift start times and the solution with the highest value is

the optimal solution of single-operator OFJS-S. Since the complexity of solving shortest

path problem is O(m2) and we solve it O(m) times, the time needed to solve the single-

operator OFJS-S is within O(m3).

Next, we show that the one-operator case of the OFJS-WS is also solvable in poly-

nomial time if the number of shift splits is at most k, although the run time grows

exponentially in k.

Lemma 2.2.2. If there is a limit k on the number of shift splits, then the one-operator

case of the OFJS-WS can be solved in O(m2k+3) time.

Proof: It is easy to see that the best choice of a split would be such that the operator’s

split (idle period) would start at the end time of one job, and end at the start time

of another job. So we have periods of continuous working time spaced by idle periods.

With at most k splits, there are at most 2k jobs that form the bookends of idle periods.

There are at most
(

m
2k

)

= O(m2k) ways in which this can be done. This is an upper

bound of the number of possible shifts and it may include invalid splits. An invalid split

occurs, for example, when the end time of the first job is greater than the start time of

the second job. Because it is difficult to find the precise number of valid splits, we use

an upper bound in our arguments.

With m jobs there are O(m) possible combinations of operator shift start times. For

each combination of shift start time and the choice of 2k idle-period bookend jobs, we can

obtain the best assignment by solving a shortest-path problem, which requires O(m2)

steps. This means that overall, the one-operator case of the OFJS-WS with bounded

number of shift splits, can be solved in at most O(m2k+3) steps. Hence proved. �

Next, we provide the pseudo-code for an algorithm that can be used to solve the

one-operator case of OFJS-WS with at most k shift splits. This algorithm is used as

part of Heuristics A2 and A3 in Section 2.3.

18

Algorithm for solving k-split one-operator OFJS-WS

1 for j = 1 to m

2 consider sj as the start of the spread and sj + s as the end of the spread

3 for all possible k pairs of jobs

4 each pair of jobs j1, j2 determines a possible split: if ej1 < sj2 then it defines a

split (ej1 , sj2); if ej1 ≥ sj2 then it does not define a split;

5 if splits overlap, then combine them into one (large) split;

6 if a split exceeds the spread (either starts earlier than sj or ends later than

sj + s), then cut the split such that it lies entirely within the spread;

7 calculate the total duration of splits. If the total duration exceeds s − w, then

sort the splits by start time, and in this sequence keep as many splits as possible

while ensuring that the total duration of splits does not exceed s − w. Use ds to

denote the total duration of the selected splits;

8 adjust the end of the spread such that the end equals sj + w + ds;

9 the spread is cut into at most (k + 1) segments. Consider each segment as a

single spread and solve the one operator OFJS-S on each segment. Combine these

solutions to obtain the optimal assignment for the current spread with current

splits. When a better assignment is found, keep that as the current best solution.

10 when all possible spreads and splits have been evaluated, report the best solution.

2.3 Heuristics

Given that the OFJS-WS is NP-hard, it is natural to spend effort on developing approx-

imate solution techniques. In what follows, we develop three heuristics for solving the

OFJS-WS, which are labeled as A1, A2 and A3. In all three cases, we are interested in

three characteristics of the algorithms, namely: speed, worst-case performance and aver-

age performance. The goodness of heuristics is often measured by their approximation

19

ratio ([24]). For sake of completeness, we include a formal definition of approxima-

tion ratio in the following paragraph. Because algorithms with good approximation

ratio do not sometimes have good average performance, we develop multiple heuristics

and experiment with real data to understand the speed, and average and worst-case

performance trade-offs implied by each algorithm.

Approximation Ratio: Different versions of approximation ratios are used widely.

we use the reciprocal of the definition given in [25, p. 400]. That is, an algorithm

achieves an approximation ratio ρ for a maximization problem if, for every instance, it

produces a solution of value at least ρ · OPT , where OPT is the value of the optimal

solution.

2.3.1 The Greedy Approach (A1)

[4] and [13] both introduce algorithms based on the idea of assigning jobs to operators

in a greedy fashion. Jobs are sorted according to some rule (e.g. by duration or by start

time) and then assigned to available operators in that order.

Our greedy algorithm sorts jobs by duration and then assigns them in this sequence.

The first job assignment always activates a new operator. For subsequent jobs, whenever

a job cannot be assigned to one of the operators that has been activated before, the

algorithm activates a new operator. If all n operators are active, and the job cannot be

assigned to any available opeartor, then it is performed using overtime. If a job can be

assigned to multiple operators, there are many possible ways to break the resulting tie.

Our algorithm breaks the tie by assigning such jobs to operators who were activated

the earliest. A pseudo code for the greedy algorithm is shown below.

Pseudo-code for A1: Let Pu, Pa, and Pf denote, respectively, the set of unassigned

operators, active operators, and full operators. Operators whose shifts are fully utilized

are called full operators. A greedy algorithm can be constructed as follows.

A1: The Greedy Heuristic

1 sort jobs according to the chosen criterion;

2 set j = 1 and i = 0;

3 while j ≤ m and i < n

4 search for the set P ⊂ Pa of active operators that can cover j;

5 if P = ∅ and Pu 6= ∅, then set i = i + 1 and assign job j to operator i;

20

else if P = ∅ and Pu = ∅, then do not assign job j;

else select an operator in P and assign j to the operator;

6 update Pu, Pa and Pf ;

7 set j = j + 1;

8 end

Approximation Ratio:

The Example below shows that the greedy algorithm’s approximation ratio can be

arbitrarily close to zero.

Example: Consider an instance of the OFJS-WS with one operator, w = (m − 1)d,

and s = md, where m is the number of jobs and d is the duration of jobs 2, 3, · · · ,m.

Job 1’s duration is d+ ǫ, and the job start times are as follows: s1 = 0, e1 = d+ ǫ, s2 =

md, ej = sj + d, and sj+1 = sj + d, for j = 2, 3, · · · ,m. A graphical representation of

this problem (with m = 5) is shown in Figure 2.2.

The optimal assignment to one operator would consist of jobs 2, 3, · · · ,m. But if we

sort jobs by duration we would assign job 1 to the operator and cannot thereafter assign

any other jobs because all other jobs violate spread-time constraint. Hence the greedy

algorithm assigns d + ǫ units of work whereas the optimal value is (m− 1)d. Then, the

approximation ratio is (d + ǫ)/[(m − 1)d], which goes to 0 as m → ∞ and ǫ→ 0. The

same argument would also apply if we were to sort jobs by start times, because job 1

had the earliest start time.

-

6

s1 = 0 t

-�

s2 e2|s3· · · e4|s5e5

s

d + ǫ d d d d
Jobs

e1

Figure 2.2: A Graphical Representation Of Job Start And End Times In Example 1.

21

2.3.2 The Two-Stage Approach (A2)

As the name suggests, the two-stage heuristic solves the OFJS-WS in two stages. The

first stage determines the report times of operators, whereas the second stage consists

of an iterative upper and lower bounding approach that assigns jobs to operators whose

report times have been fixed. We use the best lower bound as the heuristic solution.

The successive bounding approach serves to improve the quality of the solution.

The first stage uses the solution of a polynomially-solvable relaxation of the OFJS-S.

This relaxation is called the preemptive and partial-credit version of the OFJS-S, which

we denote in this paper as the PP-OJFS-S. Preemption means that jobs may be divided

into several parts and each part may be covered by a different operator. Partial credit

indicates the setting in which credit is applied even when a job is only partially covered.

For example, if partial credit were granted, we would be able to divide a 2-hour job into

two pieces of 1-hour each, cover a 1-hour piece without covering the remainder, and still

count that as finishing 1 hour of productive work. We use PP-OFJS-S, rather than the

PP-OFJS-WS to obtain report times because the former can be solved in polynomial

time, In contrast, we are not able to show that the PP-OFJS-WS can be solved in

polynomial time even with limited shift splits.

Report times are assumed to be known in the second stage in which we assign jobs

to operators. Note that the second stage problem is still NP-hard ([26]). In this stage,

we develop an iterative approach for solving the OFJS-WS with fixed report times and

limited shift splits. This approach is based on the well-known subgradient optimization

procedure (see e.g. [27] and [3]). In what follows, we describe the two stages in detail.

The first stage: Because the PP-OFJS-S is central to the first stage, we begin by

formulating the PP-OFJS-S and then show that it is solvable in polynomial time. For

any instance of the OFJS-S, we first define δt to be the stacking of pieces of work at

each t ∈ {0, · · · , tmax}. In particular, δt = |{j : sj ≤ t ≤ ej}| is the total number of

jobs that need to be covered at time t. Then we define S := {sj : j ∈ J} as the set of

job start times and T := S ∪ (S + s) ∪ {ej : j ∈ J} as the set of critical time points.

Clearly, S is the set of all possible operator report times, and T contains all job start

and end times and all possible start and end times of operator shifts.

Figure 2.3 is a depiction of how the critical times are obtained. In this diagram,

t1 through t4 are jobs’ start and end times, so they are automatically critical times.

22

In addition, t5 = t1 + s and t6 = t2 + s are two additional critical times. We assume

that the time points in T are sorted chronologically. Let p = |T |. Then we can write

T = {tk}
p
k=1 where tk < tk+1. Moreover, for any t ∈ T we define ctk := tk+1 − tk

(ctp := 0) as the weight of time interval [tk, tk+1).

-
tt1 t2 t3 t4t5 t6

-�

-�
s s

Figure 2.3: Critical Times. Note That t5 = t1 + s, t6 = t2 + s.

Let yt be the number of operators who begin their shifts at time t, for t ∈ S. Because

there are n operators to schedule, we must have
∑

t∈S yt ≤ n. Let nt denote the number

of operators who are on-duty during [t, t + 1]. Then, nt should count all the operators

whose report times are within [t−s+1, t], or τ : τ ≤ t ≤ τ +s−1, which can be written

as nt =
∑

τ∈S: τ≤t≤τ+s−1 yτ . Next, we define xt as the total number of jobs that can be

covered at each t ∈ T . With preemptive assignment and partial credit, xt and yt are

related as follows: xt = min{nt, δt}, and the PP-OFJS-S can be formulated as shown

in (2.6) – (2.11).

Max{xt,yt}

∑

t∈T

ctxt (2.6)

subject to:

xt −
∑

τ∈S: τ≤t≤τ+s−1

yτ ≤ 0 (2.7)

xt ≤ δt, t ∈ T (2.8)
∑

t∈S

yt ≤ n (2.9)

xt ≥ 0, integer, t ∈ T (2.10)

yt ≥ 0, integer, t ∈ S (2.11)

Lemma 2.3.1. Preemptive and partial credit version of the OFJS-S is polynomially

solvable.

23

Proof: We prove Lemma 2.3.1 by arguing that the coefficient matrix of constraints in

the formulation shown in (2.6)-(2.11) is totally unimodular. Let x denote a vector of

xts and y denote a vector of yts. Then, the constraints in (2.7)-(2.11) can be written as

follows.

A

(

x

y

)

≤ b

x ∈ Z
|T |
+

y ∈ Z
|S|
+

The coefficient matrix A and the column vector b have the following structures:

A =









A11 A12

A21 A22

A31 A32









, and b =









b1

b2

b3









,

where

A11 = A21 =



































1
. . .

. . .

. . .

. . .

. . .

1



































|T |×|T |

,

A12 =

































−1

−1 −1
...

. . .
. . .

−1 · · · · · · −1
. . .

. . .
...

. . .
...

−1

































|T |×|S|

,

A22 = (0)|T |×|S| , A31 = (0 · · · 0)1×|T |, A32 = (1 · · · 1)1×|S|,

b1 = [(0, · · · , 0)1×|T |]
T , b2 = [(δ1, · · · , δtmax)1×|T |]

T , and b3 = (n), where [·]T indicates

transpose of matrix.

24

It is easy to see that AT satisfies the condition in Theorem 5.23 in [28, p.103]3 for

being a totally unimodular matrix. We include the theorem below and show how AT

satisfies the key condition.

Theorem 2.3.2. (from [28, p.103]) A matrix A = (aij ∈ Zm×n) is totally unimodular

if and only if for every R ⊆ {1, . . . ,m} there is a partition R = R1 ∪ R2 such that
∑

i∈R1
aij −

∑

i∈R2
aij ∈ {−1, 0, 1} for all j = 1, . . . , n.

We write the transpose of A as follows:

AT =

(

AT
11 AT

21 AT
31

AT
12 AT

22 AT
32

)

.

The lower part of AT is called the “interval matrix”. That is, each column contains either

all zeros or one consecutive block of either all ones or all minus ones. Then, within a

subset R of A, the rows that belong to the lower part of AT contain consecutive blocks

of ones or minus ones in each column. Therefore, we can partition rows in R that

belong to the lower part of AT such that the odd rows belong to R1 and the even rows

belong to R2, to satisfy the condition
∑

i∈R1
aij −

∑

i∈R2
aij ∈ {−1, 0, 1} for every j.

Moreover, because AT
31 and AT

22 are zero matrices and AT
11 is an identity matrix, the

rows in R that belong to the upper part of AT can be assigned to R1 and R2 such that
∑

i∈R1
aij −

∑

i∈R2
aij ∈ {−1, 0, 1} remains intact for every j.

We have shown that AT , hence also A, is totally unimodular. As a result, a linear

relaxation of the PP-OFJS-S has an integer solution and the problem is solvable in

polynomial time by solving its LP-relaxation. This completes the proof. �

At the end of the first stage, we obtain operator report times, which are used in the

second stage. The job assignments obtained by solving the PP-OFJS-S are ignored.

The second stage: Let r = (r1, · · · , rn) be the report times obtained from Stage 1 of

the two-stage algorithm. Next, we present both upper and lower bounding approaches

that can be iteratively improved. The upper bound is obtained by relaxing constraints

(2.2) within the OFJS-WS formulation presented in (2.1)-(2.5). We employ a set of

non-negative multipliers u = {u1, · · · , um}, one for each constraint in (2.2), resulting in

the addition of the penalty term
∑

1≤j≤m uj

(

∑

1≤i≤n xij − 1
)

to the objective function.

3 [28] stated that this theorem was originally proved in [29].

25

Let z(u, r) denote the optimal value of the objective function given penalty terms u and

report time vector r. Then, a formulation of the Lagrangian relaxation of the OFJS-WS,

which we denote by LR-OFJS-WS, is as follows:

z(u, r) = Max{xij}

∑

1≤j≤m

(dj − uj)
∑

1≤i≤n

xij +
∑

1≤j≤m

uj (2.12)

subject to:

xij + xik ≤ 1, j = 1, · · · ,m− 1, i = 1, · · · , n, k ∈ Ij (2.13)
∑

1≤j≤m

djxij ≤ w, i = 1, · · · , n (2.14)

xij = 0, j ∈ Ri(s) i = 1, · · · , n (2.15)

xij ∈ {0, 1}, i = 1, · · · , n, j = 1, · · · ,m (2.16)

The terms Ri(s) in constraints (2.15) denote the sets of jobs that cannot be assigned to

operator i given that operator’s report time selected in Stage 1 and spread s. Specifically,

given report time ri from the first stage, Ri(s) = {j : sj < ri or ej > ri + s}. Note

that the set Ij in (2.13) is slightly different from the set Ij(s) in (2.3) because only the

indices of overlapping jobs are included in Ij. Spread-time violations are avoided via

constraints (2.15). For this reason, we no longer show s as an argument of Ij in (2.13).

Upon examining the LR-OFJS-WS, we observe that it can be decomposed into n

independent assignment problems, one for each operator i. Therefore, the LR-OFJS-WS

can be solved by repeatedly solving one-operator problems, each of which is polynomially

solvable when the number of permissible shift splits is finite (see Lemma 2.2.2). Before

describing additional details of this approach, we provide an intuitive explanation behind

the decomposition that results from the LR-OFJS-WS formulation.

Constraints (2.2) guarantee that a job would not be assigned to more than one

operator. By relaxing constraints (2.2), it becomes feasible in the LR-OFJS-WS to make

such assignments. In other words, after some jobs are assigned to one or more operators,

we are still able to choose jobs from the original set of jobs for the remaining operators.

This immediately means that optimal assignment to each operator is independent of

other operators’ assignments and the problem decomposes into independent problems

for each operator. Each assignment of job j improves the value of the objective function

by (dj − uj), which can be affected by changing uj . In particular, a higher value of uj

26

makes it less desirable to multiply assign job j to several operators. This observation is

the basis of a procedure for updating uj that can iteratively improve the upper bound

obtained via the LR-OFJS-WS.

Recall from (1) that the optimal value of the OFJS-WS is denoted by z (see 2.1). It

is straightforward to argue that z(u, r) ≥ z for any u ≥ 0 ([27]). This means that solving

the LR-OFJS-WS by decomposition is a polynomial-time upper-bounding procedure for

the OFJS-WS when the number of allowable shift splits is bounded. Next, we present

a lower bounding formulation, which is used for updating u iteratively in an attempt to

improve our solution.

The lower-bounding algorithm assigns jobs to each operator one at a time such that

jobs assigned in an earlier step of the algorithm are deleted from the set of available

jobs for each new operator. The process continues until all operators are considered one

by one. Job weights (dj − uj) are used to assign jobs, but actual weights dj are used to

calculate the overall value of the objective function once assignments are made. At the

end of each iteration, the lower bound obtained is compared to the previous best lower

bound (largest value of lower bounds obtained in previous iterations) and the new value

is kept if it is higher, or else the previous best value is retained. We use the notation

z(u, r) to denote the lower bound obtained at an arbitrary iteration.

Next, we describe the two-stage algorithm below. We use k as iteration count and

attach superscript (k) to each term to denote iteration number. The maximum number

of iterations is denoted by N . The algorithm stops when [z(u, r)−z(u, r)]/z(u, r) either

reaches or drops below a predetermined threshold denoted by δ, or the maximum number

of iterations N are exhausted.

A2: The Two-Stage Heuristic

1 (First stage) solve the PP-OJFS-S with spread limit s; obtain a set of operator

report times;

2 (Second stage) set the weight of each job equal to duration; set iteration count k = 0

and set u
(k)
j = 0;

3 while [z(u, r)(k) − z(u, r)(k)]/z(u, r)(k) > δ and k ≤ N

4 execute the upper-bounding procedure and record the total assigned value z(u, r)(k)

and assignments x
(k)
ij ;

execute the lower-bounding procedure and record the highest lower bound at iteration

27

k denoted by z(u, r)(k);

5 execute the multiplier updating procedure (see next paragraph);

6 set k = k + 1;

7 end

8 report xijs that correspond to the best lower bound.

Multiplier updating procedure: The key to the second-stage approximation al-

gorithm is the choice of the Lagrangian multipliers u. Although it has not been

proved that there exist u such that z(u, r) = z, the Lagrangian relaxation method

is widely used and performs well for many problem categories ([27]). Because z(u, r) is

a piece-wise linear function of u, and one of its subgradients is known to be the vector

(
∑

i xi1 − 1, · · · ,
∑

i xim − 1), we are able to utilize a commonly-used approach for the

multiplier updating, which is described next.

Let uj = max(0, uj + λ(
∑

i xij − 1)), where xij is a solution of the upper-bounding

procedure, and λ =
µ(z(u,r)−z(u,r))
∑

j(
∑

i xij−1)2
. In the previous expression, µ is referred to as the

step-size parameter. When implementing a two-stage algorithm, µ is set equal to an

initial value (we used 1) and its value is halved each time when the gap between z(u, r)

and z(u, r) does not decrease after carrying out a certain number of iterations (we used

5).

Approximation Ratio: We were unable to establish an approximation ratio for the

two-stage heuristic. However, the successive bounding approach is expected (although

not guaranteed) to improve the solution at each iteration, resulting in good overall

performance. In the upper bounding procedure, each job is allowed to be assigned

multiple times. If this happens, the value (
∑

i xij−1) will be positive and the multiplier

updating procedure will increase uj , which will cause a decrease in the value (dj − uj).

This makes job j less attractive in future iterations of the algorithm in both upper-

bounding and lower-bounding procedures. Conversely, if job j is not assigned, then

its value (dj − uj) will increase and the job will become a more attractive candidate

for assignment in the next iteration. The updating step presents an opportunity to

reduce the value of the upper bound and to increase the value of the lower bound at

each iteration. For these reasons, the two-stage algorithm performed well in numerical

experiments with real data (see Section 2.4).

28

2.3.3 The Decomposition-Based Approach (A3)

The third approach we propose uses a decomposition to solve the OFJS-WS. The idea is

to decompose the n-operator assignment problem into n separate one-operator cases. We

assume a limited split setting. Recall that such problems can be solved in polynomial

time, as shown in Section 2.2.1. At each iteration we introduce a new operator and

obtain the best assignment with the remaining jobs. In the following description of A3

we use J̃ to denote the set of unassigned jobs and i to denote the current operator being

scheduled.

A3: The Decomposition Heuristic

1 set J̃ = J and i = 0;

2 while J̃ 6= ∅ and i < n

3 introduce a new operator;

4 maximize assignment to the operator by using limited split one-operator algorithm

(see Section 2.2.1);

5 update J̃ and set i← i + 1;

6 end

Algorithm Complexity: Because the limited split one-operator algorithm runs in

O(m2k+3) time (see Lemma 2.2.2), it is clear that Algorithm A3 also runs in O(nm2k+3)

time. It is polynomial in m and n, but its run time increases exponentially in k.

Approximation Ratio: Finding the exact approximation ratio of a decomposition

algorithm for solving the FJS class of problems is difficult. For example, [13] attempted

to do so for the TFJS-S, but did not find a precise approximation ratio. Instead, [13]

presented an instance of the TFJS-S and used its solution to argue that the approxi-

mation ratio could not be larger than 3/2. Recall that the TFJS-S is a minimization

problem and therefore the approximation ratio is never smaller than 1, and a higher

approximation ratio implies worse performance in this case. Similar to these earlier

papers, we are also unable to establish a precise approximation ratio for the OFJS-WS.

Instead, we define f(p) = 1− [(p− 1)/p]p and show that the approximation ratio lies in

[f(∞), f(3)] with f(∞) = 1− 1/e and f(3) = 19/27.

To establish the main result in this section, we begin by arguing that the OFJS-WS

can be viewed as a special case of the weighted maximum coverage problem (W-MCP)

([30]). An arbitrary instance of the W-MCP has a finite universe set Ω, a positive weight

29

wj for each element in Ω, a collection A = {S1, S2, · · · , Sℓ} ⊂ 2Ω of ℓ subsets of Ω, and

a designated number n. The objective of the W-MCP is to find a subcollection A′ with

cardinality at most n, such that the number of elements covered by A′ is maximized.

Below, we present a greedy algorithm for solving W-MCP due to [31], which is known

to have an approximation ratio of at least (1− 1/e).

The correspondence between the W-MCP and the OFJS-WS is illustrated in Table

2.2.

Table 2.2: The Correspondence Between the W-MCP and the OFJS-WS

W-MCP OFJS-WS

Candidate Set A (given) J (not given)

Candidate Set Size ℓ Given Determined by (sj , ej), ∀ j ∈ J ,

w, s, and number of shift splits

Search for Exhaust all Elements Solve One-Operator case

the best Candidate in the remainder of A with the remaining job set

Greedy Algorithm for W-MCP ([31])

1 Repeat n times:

2 find one element S′ in A that yields the largest increment of the current objective

function if added to the solution.

3 add S′ to the solution, and delete S′ from A.

In the following proposition we establish the correspondence between the OFJS-WS

and the W-MCP and argue that A3 is a version of the greedy algorithm for solving

the W-MCP. From [31], it then follows that A3 has an approximation ratio of at least

(1− 1/e).

Proposition 2.3.3. ρ(A3) ≥ 1− 1/e.

Proof: We perform the following transformation from the OFJS-WS to the W-MCP.

Let the set of jobs be the universal set Ω and dj be the weight of the j-th element, for

j = 1, · · · ,m. Define the candidate set J = {S1, S2, · · · , Sℓ}, in which Sk is a set of

jobs that can be assigned to an operator, and ℓ is the total number of possible sets. Let

30

the number of operators n be the number of subsets we can choose. Given this setup,

the correspondence between the W-MCP and the OFJS-WS is straightforward.

Note that the set of all possible one-operator assignments J is determined by jobs’

start and end times, w, s, and the number of splits allowed. Therefore it is difficult

to calculate ℓ without obtaining all feasible assignments to a single-operator problem.

Fortunately, it is not necessary to know all elements of J to implement a greedy ap-

proach in our setting. If we were to select subsets Si in a greedy way in the W-MCP,

then that would be equivalent to finding the best single-operator assignments from re-

maining jobs in J at each assignment step. This can be accomplished in polynomial

time when the number of splits is finite (see Lemma 2.2.2). This means that A3 is

equivalent to the greedy algorithm in [31]. Therefore, from [31], we immediately have

that ρ(A3) ≥ 1− 1/e. �

In order to establish a good upper bound, we need to construct examples whose

approximation ratio is as close as possible to the lower bound established in Proposition

2.3.3. Note that the lower bound can be viewed as the limiting case of a sequence

f(p) = 1 − [(p − 1)/p]p, p ≥ 1, in the limit as p → ∞. If we find an example with

performance f(p̂) for some p̂, then that establishes a good upper bound for all p ≤ p̂

because f(p) is a decreasing sequence. If we find such examples for every p, then the

lower bound is tight.

In what follows, we describe an example with approximation ratio f(p) for p = 3,

i.e. the approximation ratio is f(3) = 19/27. Note that p is not a parameter of this

example. In particular, it does not relate to either the number of jobs or the number

of operators. Unfortunately, the approach used to construct this class of examples does

not extend to cases with p > 3. Therefore, we were not able to find even sharper bounds

on the approximation ratio of the decomposition algorithm proposed here.

Proposition 2.3.4. ρ(A3) ≤ 19/27

Proof of Proposition 2.3.4: We construct an example with 3 operators, s = w = 9,

and 9 jobs. The 9 jobs are divided into 3 groups each including 3 jobs. The start and

end times of each job in group 1 are respectively: (0, 3 − ǫ), (3 − ǫ, 5) and (5 + 4ǫ, 9)

with durations 3− ǫ, 2 + ǫ and 4− 4ǫ. Jobs in group 2 and 3 have the same sequence of

durations, except that the start times are shifted by 3 − ǫ for group 2 and 2(3 − ǫ) for

31

group 3.

The jobs are shown in Figure 2.4 in which each row represents one group of jobs.

Given this layout, it is easy to see that an optimal solution is to have each operator

cover a group of jobs.

-

6

0 t

Group 1

Group 2

Group 3

s

e1|s2 e2 s3 e3

3− ǫ 2 + ǫ 4− 4ǫ

3− ǫ 2 + ǫ 4− 4ǫ

3− ǫ 2 + ǫ 4− 4ǫ

-�

Figure 2.4: Step 1 of 3-Operator Example.

-

6

0 t

Group 1

Group 2

Group 3

s

s2 e2 s3 e3
-�

2 + ǫ 4− 4ǫ

2 + ǫ 4− 4ǫ

2 + ǫ 4− 4ǫ

Figure 2.5: Step 2 of 3-Operator Example.

Next, consider what would happen if the decomposition algorithm is used to obtain

the best solution for the first operator. With that approach, the optimal one-operator

solution will be to assign all three jobs with duration 3 − ǫ to the first operator. The

remaining jobs available for assignment to the second operator appear as shown in

Figure 2.5. Note that two jobs of duration 2 + ǫ cannot be combined with a job with

duration 4− 4ǫ because of the spread-time constraint. Therefore, at this step, the best

one-operator assignment is to assign the three jobs with duration 2 + ǫ to operator 2.

Finally, at the last step only the longest jobs remain. Since any two of the longest

32

jobs cannot be assigned to one operator because of overlap or spread-time violation, the

third operator only covers a single job of duration 4− 4ǫ.

Combining the results from the above steps, we see that A3 returns an objective

value of 19−8ǫ, whereas the optimal value is 27−12ǫ. That is, the approximation ratio

can be made arbitrarily close to 1− (2/3)3 via the choice of ǫ. This completes the proof

of the Proposition. �

2.4 Numerical Experiments

We received extraboard operations data for five randomly-picked months from a large

transit agency that served as a research partner for this study. The agency had 5 garages

and each month’s data came from a different garage. The data included all jobs that

were assigned to either extraboard operators or on an overtime basis. The agency rarely

dropped service. In fact, there were no examples of dropped service in our data set,

which meant that the jobs in our data set represented the entire demand for extraboard

services. From the data, we identified the subset of jobs that were known to be open a

day before each day of operations and calculated the number of extraboard operators

available to serve those jobs. Recall that a certain number of operators are placed on

call duty each day – i.e. they are only assigned jobs that arise during the course of the

day. We did not include those operators in our study.

Because extraboard operators’ wages are sunk, transit agency attempts to assign as

much work as possible in their regular work time. Our algorithms mimic this objective.

The transit agency also considers overtime availability constraints on certain days of the

year, e.g. the Christmas day when overtime availability is limited. Our algorithms ignore

overtime availability constrains. Thus, they are close approximation of the problem

faced by the dispatcher on most days of the year.

For each given day, the data sometimes contained one or more 8-hour long jobs. We

excluded such jobs from the data and reduced the number of available operators on that

day by the same amount. This was done because assigning each 8-hour long job to a

single operator is trivially an optimal strategy, irrespective of other assignments. The set

of jobs we worked with were the jobs that were left after this process of elimination. On

many weekends and some weekdays, the number of individual 8-hour long jobs exceeded

33

the number of extraboard operators available to perform such duties. We excluded such

days from our experiments altogether, which left 100 instances of the problem from

the 5 months of data. In table 4.3 we summarize the data. Empirical distributions of

job start times and job durations, job numbers, and operator numbers, are provided in

Tables 2.3 – 2.7.

Table 2.3: Distribution of Job Durations (Percent)

Duration (Minutes)Garage 1Garage 2Garage 3Garage 4Garage 5

≤ 30 1.1 1.8 3.1 7.0 1.5
31-60 0.8 5.0 1.5 4.4 0.8
61-90 0.4 5.8 9.4 7.5 1.1
91-120 2.4 10.5 16.4 10.6 6.8
121-150 4.0 6.8 4.9 4.6 4.6
151-180 7.2 7.5 7.1 9.8 5.3
181-210 10.3 6.8 13.0 9.0 7.7
211-240 9.5 6.8 2.2 5.1 9.0
241-270 4.8 8.1 2.0 3.0 4.5
271-300 6.0 4.2 3.2 1.4 10.8
301-330 7.3 3.2 1.2 3.0 6.0
331-360 6.6 3.0 0.5 4.8 6.0
361-390 3.7 7.3 6.1 2.8 4.7
391-420 0.9 2.9 4.0 0.4 3.6
421-450 1.5 4.4 3.5 2.9 2.1
451-480 1.5 5.1 2.4 1.8 2.4
≥ 481 10.3 5.3 10.1 13.7 8.2

each column sums to 100

Table 4.3 shows that there was a great deal of variation in open jobs from one day

to another. The average job duration was different for each garage and lay between 3

and 4 hours. The job durations were quite variable – the coefficient of variation was

more than 0.5 for 3 out of 5 garages. The number of available extraboard operators

and the number of jobs also varied a great deal. Together this suggests an environment

in which there is no particular pattern of open jobs and each day’s problem requires a

tailor-made solution.

We used CPLEX (version 10.0.0) to solve the model presented in (2.1) – (2.5). This

solution served as a benchmark for comparison with solutions obtained from the three

34

Table 2.4: Distribution of Job Numbers (Percent)

Job NumberGarage 1Garage 2 Garage 3 Garage 4 Garage 5

≤ 50 0 0 80.9 (21-30)25 (21-30) 0
51-60 4.8 0 14.3 (31-40)60 (31-40) 0
61-70 9.5 0 4.8 (41-50) 10 (41-50) 9.1
71-80 19.0 0 0 5 (51-60) 54.5
81-90 19.0 0 0 0 36.4
91-100 14.3 0 0 0 0
101-110 9.5 0 0 0 0
111-120 4.8 0 0 0 0
121-130 0 18.2 0 0 0
131-140 9.5 9.1 0 0 0
141-150 4.7 4.5 0 0 0
151-160 4.7 18.2 0 0 0
161-170 0 18.2 0 0 0
171-180 0 13.6 0 0 0
181-190 0 4.5 0 0 0
191-200 0 9.1 0 0 0
≥ 201 0 4.5 0 0 0

each column sums to 100

35

Table 2.5: Distribution of Job Start Times (Percent)

Start Time Garage 1Garage 2Garage 3Garage 4Garage 5

3:30-3:59 AM 1.7 0.4 4.6 1.4 0.2
4:00-4:29 AM 2.7 2.4 0.2 0.8 0.8
4:30-4:59 AM 3.3 5.6 5.6 2.5 7.7
5:00-5:29 AM 5.6 2.6 7.8 3.3 11.3
5:30-5:59 AM 5.4 11.0 2.9 5.7 7.9
6:00-6:29 AM 9.2 5.0 9.1 5.0 6.4
6:30-6:59 AM 3.3 4.4 5.1 7.7 4.8
7:00-7:29 AM 2.5 1.2 2.2 0.7 0.7
7:30-7:59 AM 1.3 0.2 0.7 1.9 0.1
8:00-8:29 AM 3.5 1.1 5.9 8.6 2.0
8:30-8:59 AM 4.0 1.3 6.1 1.9 1.6
9:00-9:29 AM 2.2 1.1 1.2 2.3 2.3
9:30-9:59 AM 1.4 2.3 4.7 1.2 0.4

10:00-10:29 AM 4.6 2.2 2.0 1.8 1.9
10:30-10:59 AM 2.5 1.5 1.3 2.8 0.8
11:00-11:29 AM 2.8 2.9 0.7 1.9 2.5
11:30-11:59 AM 1.1 2.1 6.4 1.2 4.3
12:00-12:29 PM 3.6 3.4 0.7 3.3 2.1
12:30-12:59 PM 0.8 2.4 1.0 2.3 2.0
1:00-1:29 PM 3.0 1.6 0.8 3.7 2.7
1:30-1:59 PM 6.8 1.7 0.5 4.4 5.1
2:00-2:29 PM 7.6 4.7 2.0 4.4 9.2
2:30-2:59 PM 4.7 2.8 6.6 1.7 5.8
3:00-3:29 PM 5.6 5.4 6.2 6.6 4.9
3:30-3:59 PM 3.1 9.4 5.7 6.6 3.3
4:00-4:29 PM 2.0 7.7 5.7 8.0 1.2
4:30-4:59 PM 0.3 2.2 0.8 2.1 0
5:00-5:29 PM 0.0 0.3 5.1 0.3 0.1
5:30-5:59 PM 0.4 0.9 0.2 1.2 0
6:00-6:29 PM 0.1 0.2 0.3 0.8 1.2
6:30-6:59 PM 0.9 0.4 0.3 2.3 0.8
7:00-7:29 PM 0.4 1.2 1.2 1.0 1.5
7:30-7:59 PM 1.5 1.1 0.3 0.1 1.1
8:00-8:29 PM 1.8 0.8 0 0.1 2.8
8:30-8:59 PM 0 2.0 0.2 0 0.1
9:00-9:29 PM 0 0.2 0.3 0 0
9:30-9:59 PM 0 0.6 0.2 0 0

10:00-10:29 PM 0 0.3 0 0 0
10:30-10:59 PM 0 0.8 0 0 0
11:00-11:29 PM 0 0 0 0 0
11:30-11:59 PM 0 0.8 0 0 0

each column sums to 100

36

Table 2.6: Distribution of Job Numbers (Percent)

Job Number Garage 1 Garage 2 Garage 3 Garage 4 Garage 5

≤ 30 0 0 80.9 25 0
31-40 0 0 14.3 60 0
41-50 0 0 4.8 10 0
51-60 4.8 0 0 5 0
61-70 9.5 0 0 0 9.1
71-80 19.0 0 0 0 54.5
81-90 19.0 0 0 0 36.4
91-100 14.3 0 0 0 0
101-110 9.5 0 0 0 0
111-120 4.8 0 0 0 0
121-130 0 18.2 0 0 0
131-140 9.5 9.1 0 0 0
141-150 4.7 4.5 0 0 0
151-160 4.7 18.2 0 0 0
161-170 0 18.2 0 0 0
171-180 0 13.6 0 0 0
181-190 0 4.5 0 0 0
191-200 0 9.1 0 0 0
≥ 201 0 4.5 0 0 0

each column sums to 100

37

Table 2.7: Distribution of Operator Numbers (Percent)

Operator NumberGarage 1Garage 2Garage 3Garage 4Garage 5

1-2 0 0 0 0 0
3-4 0 0 4.8 0 0
5-6 0 0 19.0 0 0
7-8 0 0 42.8 5 0
9-10 4.8 0 23.8 20 4.5
11-12 14.3 0 9.5 20 13.6
13-14 47.6 0 0 35 18.2
15-16 9.5 4.5 0 15 22.7
17-18 23.8 4.5 0 5 31.8
19-20 0 9.1 0 0 9.1
21-22 0 27.3 0 0 0
23-24 0 13.6 0 0 0
25-26 0 22.7 0 0 0
27-28 0 9.1 0 0 0
29-30 0 9.1 0 0 0
≥ 31 0 4.5 0 0 0

each column sums to 100

Table 2.8: Job Statistics by Garage (C.V. = Coefficient of Variation)

Min Max Avg Std. Dev C.V.

Garage 1 (21 days) number of daily jobs 24 50 37 6.5 0.18
job duration (min) 21 480 226 87.3 0.38

number of operators 16 24 19 2.4 0.13

Garage 2 (20 days) number of daily jobs 51 81 70 7.9 0.11
job duration (min) 15 480 205 116.4 0.57

number of operators 19 34 26 4.3 0.17

Garage 3 (21 days) number of daily jobs 27 49 37 6.2 0.17
job duration (min) 16 480 191 111.0 0.58

number of operators 8 17 13 2.1 0.16

Garage 4 (19 days) number of daily jobs 26 64 38 9.3 0.24
job duration (min) 20 480 177 109.8 0.62

number of operators 13 20 16 2.3 0.14

Garage 5 (19 days) number of daily jobs 38 57 48 5.2 0.11
job duration (min) 20 480 239 96.1 0.40

number of operators 15 25 19 2.6 0.14

38

heuristic algorithms introduced in Section 2.3. All experiments were performed on a PC

with Intel Core 2 CPU 6600 2.40 GHz processor and 4 GB of RAM. CPLEX failed to

converge to an optimum solution in 33 out of the 100 problem instances after running

for 30 minutes, which was set as a criterion for stopping CPLEX. In the 33 instances,

we used the best feasible solution at the time of stopping as benchmark and recorded

the upper and lower bounds to calculate percent gap. A summary of the percent gap

between bounds in the 33 cases is shown in Table 2.9 below.

Table 2.9: Percent Gap Between Upper and Lower Bounds

Min (%) Max (%) Avg (%) Std.Dev (%)

0.1 4.3 1.4 1.3

To evaluate algorithm A2 we first compare the report times obtained by solving the

PP-OFJS-S problem with the report times provided by CPLEX in Table 2.10. We see

that the two results do not match often – in fact the number of times the two report

times match is generally well below 50%. Still A2 performs quite well in terms of total

amount of work assigned to extraboard operators in regular time because it finds near-

optimal work assignments for each set of report times in the second stage. This suggests

that the overall good solutions exist for multiple selections of report times.

Table 2.10: Percent of Report Time Matches: PP-OFJS-S versus CPLEX

Garage (# of days) Min (%) Max (%) Avg (%) Std.Dev (%)

Garage 1 (21) 17.6 62.5 40.1 11.6
Garage 2 (20) 22.2 73.7 45.0 14.9
Garage 3 (21) 16.7 85.7 51.3 16.2
Garage 4 (19) 18.5 66.7 44.8 15.5
Garage 5 (19) 16.7 62.5 33.9 12.2

The purpose of numerical experiments was to identify an algorithm that performed

well relative to the CPLEX solution and that was also fast. We calculated three perfor-

mance metrics for this purpose: two of these measured the relative quality of the solution

produced and one measured speed. The metrics were: (1) Algorithm solution/CPLEX

39

solution (in percent), (2) Percent of times that the algorithm solution is ≥ 99% of the

CPLEX solution, and (3) Computation time (in seconds). The results are reported in

Table 2.11. A quick look at this table reveals that A1 runs quite fast, but produces the

worst average performance among the three algorithms. A2 has much better average

performance than A1, but runs much slower. Algorithm A3 produces good average per-

formance and runs fast at the same time. Moreover, A3 is the only algorithm that has

a proven non-zero approximation ratio. Therefore, the experiments support the claim

that algorithm A3 is the best among the three algorithms evaluated.

Table 2.11: Comparison of Algorithms’ Performances

Metric Garage A1 A2 A3

1 88 92 98
Solution from algorithm
Solution from CPLEX

2 96 95 98

(percent) 3 94 92 96
4 96 97 98
5 92 97 99

1 6 11 44
Frequency that algorithm returns 2 5 23 41
≥ 99% of CPLEX solution 3 5 32 16

(percent) 4 6 39 44
5 0 45 86

1 2.1 240 3.4
2 2.4 320 4.6

Computation time (Sec) 3 1.7 120 2.9
4 2.0 170 3.3
5 2.7 290 5.0

To further compare the three algorithms, we developed complementary cumulative

frequency plots of the number of minutes assigned by each method – see Figure 2.6.

Complementary cumulative frequency is 100% minus the cumulative frequency of as-

signed time for each algorithm. Roughly speaking, if an algorithm’s performance is to

the right, then that implies a superior performance. We observe in Figure 2.6 that A3 is

to the right of A1 and A2 for nearly all values of assigned work. For example, we draw a

vertical line in Figure 2.6 at 4000 minutes to draw attention to the fact that whereas A1

and A2 assign more than 4000 minutes of work in about 20% of all problem instances,

40

A3 does so in nearly 34% of instances. Therefore, the performance of A3 dominates the

performance of the other two heuristics in the usual stochastic order4 . This algorithm

runs fast and does not require the transit agency to invest resources in purchasing a

commercial optimization software such as CPLEX. The data also shows that the use

of A3 could save somewhere between 1.2 to 6.5 hours of overtime on weekdays. The

average saving per day per garage is 3.6 hours. Using average overtime wage rate of $42,

which we obtained from our research partner, this implies approximate annual savings

of $196, 560 (which is obtained by calculating 5× 52 × 5× 3.6× 42).

Figure 2.6: Complementary Cumulative Frequency of Assigned Work in Minutes

2000 4000 6000

A1

A2 A3

CPLEX

Time assigned (minutes)

C
om

p
le

m
en

ta
ry

C
u

m
u

la
ti

ve
F

re
q
u

en
cy

(%
)

0

0
20

40
60

80
10

0

4 A random variable X is stochastically smaller than another random variable Y in the usual order,
written X ≤st Y , if E[φ(X)] ≤ E[φ(Y)] for all non-decreasing functions φ for which the expectations
exist (see [32] and [33] for further details).

41

2.5 Concluding Remarks

The paper is motivated by extraboard operator scheduling and work assignment prob-

lems that are faced by transit agencies on a daily basis. We present a model and three

algorithms for solving the operational fixed job scheduling problem with work-time and

spread-time constraints (OFJS-WS). We show that the OFJS-WS is NP-hard. We prove

that A3, a decomposition-based approach, has an approximation ratio that lies in the

range [1 − 1/e, 19/27]. We perform numerical experiments using data from the collab-

orating transit agency and show that our algorithm provides close-to-optimal solutions

and has the potential to improve extraboard work assignments. Ongoing efforts by the

authors are focused on solving the day-of scheduling problems, and improving under-

standing of the relationship between the day-before scheduling and the day-of scheduling

problems.

Chapter 3

Reserve Driver Work Assignment

Problem: Day-of

3.1 Introduction

Transit agencies (bus, light rail, subway, ferry) use reserve drivers to cover work that

arises from planned and unplanned time off, equipment breakdowns, weather, and spe-

cial events. On their duty days, some reserve drivers cover another driver’s full shift

(typically 8 hours) or some combination of open pieces of work (which we also refer to

as jobs) that are known in advance, while the rest are placed on call duty. Moreover,

if a reserve driver covers some pieces of work that are known in advance but has open

time in his or her shift, then for those periods of time, he or she is considered to be on

call duty. A dispatcher assigns open work as it arises either to available on-call drivers,

or to drivers that indicate their willingness to take overtime work assignments, giving

rise to an online interval scheduling problem ([2] and [34]). This problem, also known as

the fixed job scheduling problem (FJS) ([1]), is the focus of our paper. In particular, we

develop an approach for solving the reserve driver scheduling problem that takes into

account transit agency objectives.

Given that the wages of all reserve drivers are already committed, performance is

measured by the amount of work covered by on-call drivers. Transit agencies would

prefer a methodology that maximizes the worst case performance and at the same time

competes well with straw man approaches in terms of average performance. In order to

42

43

realize good performance, the agency may strategically assign some work to overtime

drivers even when the same piece of work could be assigned to an on-call driver because

that may reduce opportunity cost (i.e. allow the assignment of a longer future job to

that driver). This gives rise to the key tradeoff considered in this paper – the extent

to which the proposed algorithm acts either myopically (i.e. assigns all feasible jobs) or

strategically (i.e. assigns jobs that minimize opportunity cost). Before describing our

solution strategy for this problem, we explain the problem scenario in detail in the next

several paragraphs.

Open work due to planned absences (training, union meetings, and vacations), and

special events such as a major league game are known in advance. However, open

work due to equipment breakdowns, weather-related delays, accidents, drivers calling

in sick just before the start of their shifts, and unexpectedly high volume of riders

on some routes are not known in advance. Our focus in this paper is on jobs whose

specifications are revealed just before their start time and the scheduler must make an

instantaneous decision whether to assign them to an on-call driver or to an overtime

driver without information about future job requests. All jobs have fixed start and end

times, drivers work in shifts, and each driver can process at most one job at a time.

Also, previously assigned jobs may not be preempted because of the effort involved

in driver and equipment mobilization. Hourly overtime wages are higher than hourly

regular wages and many drivers have part-time appointments. As a consequence, if

agencies choose an appropriate number of reserve drivers, they typically have ample

supply of drivers willing to perform occasional extra work in overtime. For example, in

the data provided to us by Metro Transit, the agency responsible for the bulk of transit

operations in the Twin Cities of Minneapolis and Saint Paul, there were no instances of

dropped service on account of unavailability of overtime. We assume ample availability

of overtime in this paper.

Examples of online interval scheduling problems arise in the context of scheduling

jobs on parallel machines in a whole host of make-to-order or on-demand-processing

environments. Jobs and machines represent different entities in different application

areas. For example, jobs could be orders that need machining or repair, or deferrable

surgeries that need operating room time, or computer programs that need processor

time. The instances of such problems that we study are economically important. To

44

underscore this point, we provide some statistics from transit industry. According to

[5], approximately 26% (on average) of the total workforce size of large transit agencies

consists of reserve drivers. Metro Transit shared bus driver data with the authors for the

period March–August, 2010. In this period, Metro Transit operated three large and two

small garages and employed approximately 1500 bus drivers, of which approximately

30% were reserve drivers. The average utilization of on-call drivers was between 50% and

60%, depending on the garage (see [35] for details). Still, the daily overtime usage during

weekdays was well over 100 hours in each of its three large garages. At approximately $42

per hour, this added tens of thousands of dollars in overtime cost daily. Our algorithm

has the potential to reduce overtime costs relative to the myopic approach and benefit

transit agencies across the United States.

Because we are motivated by providing an implementable solution to the reserve

driver scheduling problem, our strategy for solving this problem is different from that

in the literature. We provide a review of the literature at a later point in this section.

But first, we describe our solution strategy.

Nearly all previous papers dealing with online interval scheduling problem focus on

proving the worst-case performance guarantee. In contrast, taking cue from practi-

tioners, our objective is to develop an algorithm that carries a worst-case performance

guarantee and at the same time performs well in terms of average performance. We use

real data and demonstrate the practical value of the proposed algorithm for reserve-

driver scheduling. Second, we consider features that are relevant in transit agency

application domain. In particular, we model the possibility that multiple drivers may

be able to perform a particular job, and the fact that the minimum and the maximum

job duration are known. These considerations result in several innovations, which we

describe next.

Because the minimum and maximum job durations are known in the reserve driver

scheduling problem context, we are able to find optimal coin-flip probabilities that de-

termine whether a job will be assigned to a reserve driver or an overtime driver. In

contrast, previous papers focus on finding a sequence of probabilities whose sum con-

verges to 1 and that lead to a provable approximation ratio bound. In technical terms,

we use the marriage problem framework introduced in [36] to propose a finite-step mar-

riage problem, whose solution serves as a building block of our approach for solving the

45

single-driver problem scenario.

Another innovation in this paper is that our algorithm considers multiple drivers with

different remaining shift lengths at the time a job arrives. We found that algorithms

that ignored this fact led to poor average performance. To overcome this shortcoming,

we introduce two parameters in our algorithm. These parameters are denoted as dT

and α. The first parameter, dT , serves to strike a balance between the myopic and

strategic approaches. Essentially, the algorithm behaves myopically if a job duration is

dT or longer. The second parameter α specifies the criterion for considering the next

job following a rejection. If the next job is not at least α times the previously rejected

job, then it is rejected outright. Otherwise, it is considered for assignment according

to prescribed coin-flip probabilities. The introduction of these two parameters allows

our algorithm to realize good average performance, in addition to having a guaranteed

worst-case performance.

We decompose the online FJS problem into two subproblems. The first subproblem

considers which driver should be assigned to each arriving job. The second subprob-

lem decides whether to accept or reject a job for each driver. This is essentially the

single-driver case. When presenting our approach in the sequel, we present the second

subproblem first because it solves the simpler single-driver problem. We review the

relevant literature next.

There are many papers that deal with the online FJS and interval scheduling prob-

lems. In the literature, many papers use the term processor to refer to the server,

i.e. the reserve driver in our setting. Therefore, we also use processor when describing

the literature.

[37] provided an algorithm to deal with the single-processor cases with preemption.

Several later papers that address this class of problems deal with special cases, which

allow the authors to obtain sharper performance bounds. For example, if the set of jobs

is such that when job j1 arrives before j2 it also ends before j2, then a 3-competitive

algorithm is provided in [38]. Rather than describe all such papers in detail, we list the

features of key papers in Table 3.1. This is not an exhaustive list. The papers contain

either proofs of competitive ratios (CRs) of proposed algorithms, or lower bounds of

competitive ratios (CBs) for all possible algorithms, or both.

46

Paper Main Features Result

Machine Weight and Preemption Others

Environment duration

[37] (1) (3) (4) (8) CR=4

[39] (2) (3) (8)

[40] (1) (3) (8) CR= (2 +
√
3)

[38] (1) (3) (8) (10) CR=3

[41] (1) (3) (5) (7) CB=4(1 + ρ)*

[42] (2) (4) (9) (8) CR=3.618, CB=4/3

[43] (2) (3) (6) (11) CR=4, CB=4

[44] (2) (4) (8) CR=O(log k)

(k = wmax/wmin)

[45, 46] (1) (3) (7) CR=O(∆)

(1) single-processor, (2) multiple-processor, (3) weight=duration, (4) weight 6=duration,

(5) preemption-restart, (6) preemption-resume, (7) preemption-penalty, (8) no penalty

(9) identical duration, (10) non-decreasing job sequence, (11) jobs not fixed but have deadline.

dmin, dmax are the minimum and maximum job durations;

wmax , wmin are the maximum and minimum importance factors;

ρ is the penalty factor.

Table 3.1: Notation Used in Formulation

Papers on online FJS problem with preemption mainly study when and how the

preemption action needs to be performed, which is not relevant in the non-preemptive

cases. Instead, it is important in settings such as ours to decide whether or not to

accept a job when the driver is available. Papers that consider preemption with penalty

may obtain solutions that contain no preemption if the penalty is large, but the best

known algorithm in such cases is O(∆)-competitive ([45]), where ∆ is used to denote

dmax/dmin, the ratio of maximum and minimum job durations.

Papers that deal with realtime scheduling in which job start time is not fixed but

each job has a fixed duration and deadline ([43]) are also related to the online FJS

problems. These papers focus on (1) either single ([40]) or multiple processors ([42]),

(2) either deterministic ([37]) or random algorithms ([41]), and (3) either establishing

the competitive ratio ([37]), or providing a bound on the competitive ratio ([41]) of

a particular algorithm. Key model features include (1) whether job weight is propor-

tional to duration ([37]), and (2) types of preemption—(a) preemption-restart ([41]), (b)

preemption-resume ([43]), and (c) preemption with penalty ([41], [45], [46]). For models

in which job weights are not proportional to durations, [44] introduce a parameter called

the importance factor of a job. Each job is then defined by three parameters: (w, d, e),

where d is the duration, e the deadline, and w the importance. The importance ratio

is defined as k := wmax/wmin. [47] provide guaranteed offline algorithms for different

settings of real-time scheduling problems.

47

In this paper, we build on the work of [36], who provide an algorithm that can be

used to solve single driver online FJS without preemption and that has a performance

ratio of O((log ∆)1+ǫ). As mentioned earlier, the authors identify a converging infinite

sequence of coin-flip probabilities that leads to the above mentioned performance ratio

bound. [48] extend the result of [36] in two ways. First, the authors show that multiple

different acceptance probability sequences {f(1), f(2), · · · } can be used to form different

randomized algorithms if
∑

1/f(n) converges, and that a competitive ratio bound of

1/O(log(f(n)) can be achieved. Second, the paper extends the result into multiple

identical processor case. There are two key differences between these papers and our

approach. First, we find the optimal coin-flip probabilities. Second, we consider non-

identical processors and introduce two additional parameters to realize a good average

performance.

[49] considers the problem of online scheduling of continuous media streams, in

which each job requires a fixed processing time and a portion of bandwidth. This can

be considered as the model with multiple identical processors and jobs that require

different numbers of parallel machines to process. [49] prove a competitive ratio lower

bound of O((log ∆)/(1−r)), where r is the maximum fraction of the server’s bandwidth

that a job can demand.

[49] first show that the greedy polity is O(∆) competitive. Then the authors show

that the O(log ∆) is a lower bound of all possible random or deterministic algorithms.

Finally the authors provide algorithms with O((log ∆)/(1 − r)) competitive ratio with

known minimum and maximum lengths of jobs. The idea of the algorithm is as fol-

lows. Divide the available bandwidth into ⌈log ∆⌉ partitions evenly. Then, suppose

the min/max lengths of jobs are dmin and dmax respectively: partition the interval

[dmin, dmax] into ⌈log ∆⌉ parts, with ℓ-th interval being [2ℓ−1dmin, 2
ℓdmin). That is, di-

vide durations into exponential levels. Then, for an upcoming job j, if the duration

j lands in the i-th interval, then it can use i parts of the pre-divided bandwidth, or

i/O((log ∆)/(1 − r)) share of bandwidth. So if job j does not require more than that,

accept it; otherwise, reject it.

We pursue alternate approaches in this paper. To our knowledge, no previous pa-

per has examined the problem with multiple processors who might have different shift

lengths. The referred papers do not consider the case where processors have different

48

available time windows.

The rest of this paper is organized as follows. We introduce common notation and

assumptions, the myopic algorithm and the finite-step marriage game in Section 3.2.

Then, in Section 3.3, we study the first subproblem. The second subproblem, i.e. the

job-to-processor allocation problem, is analyzed in Section 3.4. These two parts together

complete our recommended algorithm. Numerical experiments are presented in Section

3.5 and we conclude the paper in Section 3.6.

3.2 Preliminaries

In the remainder of this paper, we use the terms processor and driver interchangeably.

An arbitrary instance I of the online FJS with multiple processors is characterized by a

finite set of jobs and processor shifts. Each processor’s shift is a time window denoted by

(ai, bi) where i is the processor index and processors are sorted such that a1 ≤ · · · ≤ an.

When a driver’s shift is cut up because of previous assignments, each available period

of the driver can be treated as a separate driver with start and end times of the shift

equal to the start and end times of available time window. Processor i cannot accept

any job that starts before ai or ends after bi. Parameters sj and ej denote the start

and end times of job j, job indices are sorted by their start times (i.e. sj ≤ sj+1 for

all j). The duration of each job dj = ej − sj is its weight or reward. For the purpose

of performance evaluation, we only consider instances I that contain jobs that can be

performed by at least one processor during his or her shift. The number of processors

and their shift start and end times are known, but not the number of jobs in I, although

that is limited.

At each job’s arrival epoch, an online algorithm allocates the job to one of the

processors, and then decides whether to accept or reject this job based only on the

current state of the processor and features of the job. In contrast, an offline algorithm

knows the entire sequence of job requests in advance of making assignment decisions.

For an arbitrary randomized algorithm A, let W (A, I) denote the random total reward

(i.e. the sum of durations of jobs that are processed) realized upon completion of an

arbitrary run of A on I. Because W (A, I) may vary each time A is applied to the

same problem instance I, we use E[W (A, I)] to benchmark the performance of A. Let

49

z(I) be the value obtained from applying an optimal offline algorithm, which assumes

complete information about all jobs in I before scheduling any job. Algorithm A is

called β-competitive if β · E[W (A, I)] ≥ z(I) for any instance I. The smallest value of

β such that the above inequality holds for every I is the exact competitive ratio of A

(see, e.g. [36]).

Because the offline version of our problem is NP hard ([50]), we replace z(I) by an

upper bound U(I) and E[W (A, I)] by a lower bound F (A, I). That is, for an algorithm

A, rather than calculate CR(A) = maxI{z(I)/E[W (A, I)]}, we estimate the upper

bound CB(A) = maxI{U(I)/F (A, I)} ≥ CR(A). Our efforts therefore focus on finding

U(I)/F (A, I) and on designing algorithm A that results in provably smallest possible

value of CB(A).

We summarize all notation used in this paper in Table 3.2 and thereafter list as-

sumptions underlying our models. These assumptions are justified by the intended

application of our models to reserve-driver scheduling problem. For example, the dis-

patcher knows that no job would be shorter than about half an hour (dmin), or longer

than the typical shift length of 8 hours (dmax). When two or more jobs start at the same

time, we assume that either the sequence in which they need to be assigned to drivers

is known, or generated randomly. In constructing proofs of various claims throughout

this paper, we remove all “empty spaces” to simplify our analysis. That is, when there

is a period with no demand between two jobs, we remove such time periods between the

two jobs and also remove the corresponding time period from every processor’s shift.

Similarly, if a shift start time ai is earlier than s = minj{sj}, the start time of the first

job in I, or a shift end time bi is later than e = maxj{ej}, the finish time of the latest

ending job in I, then portions of shifts (ai, s) and (e, bi) are also removed. Note that such

“empty spaces” can be recognized one by one as successive jobs are revealed. Because

no jobs can be assigned during empty spaces caused by either the pattern of arrivals in

I or driver shifts, removal of such spaces does not affect the total work assigned by any

algorithm in both online and offline versions.

Assumption 1: Each job’s arrival epoch coincides with its start time.

Assumption 2: Jobs in progress may not be preempted by a new arrival.

Assumption 3: All rejected jobs are covered by overtime drivers.

Assumption 4: A job’s weight is equal to its duration.

50

Assumption 5: The minimum and the maximum job durations are known.

3.2.1 The Myopic Algorithm for Single-Processor Cases

The myopic (greedy) algorithm accepts every job when it arrives so long as the processor

is capable of processing that job. It has a finite competitive ratio as shown below.

Lemma 3.2.1. The competitive ratio of the myopic algorithm is (∆ + 1).

Proof: In this proof we assume without loss of generality that dmin = 1 and therefore

∆ = dmax/dmin = dmax. The statement of the lemma is proved by establishing two

claims. The first claim is that the competitive ratio of the myopic algorithm cannot be

better (smaller) than (∆ + 1). The second claim is that for any ǫ > 0, there exists an

instance in which the myopic algorithm assigns no more than (1 + ǫ)/(∆ + 1) of the

optimal assignment.

Each algorithm produces periods in which the driver is busy and periods in which

he or she is idle. After empty spaces are removed, the first job arrives at t = 0. If the

dispatcher uses a myopic algorithm, then the arrival of the first job must start a busy

period because the myopic algorithm will accept that job. Observe that no busy period

can be shorter than dmin = 1. Moreover, because dmax = ∆ and idle periods under a

myopic algorithm result from job overlap, all idle periods must be shorter than ∆. If

we take any two connected busy and idle periods, we have that at least 1/(∆ + 1) of

the sum of their durations must be busy. This proves the first claim.

For the second claim, we draw attention to an instance of the problem illustrated in

Figure 3.1, where ǫ > 0 is arbitrary. Job 1: (0, 1 + ǫ), Job 2: (ǫ/2, 1 + ǫ/2), and Job 3:

(1 + ǫ/2, 1 + ∆ + ǫ/2). In this instance, the myopic algorithm results in the driver being

busy for the duration (1 + ǫ).

Jobs j2 and j3 overlap j1 and cannot be taken after j1 is taken. But the optimal solution

is to take jobs j2 and j3 with total duration (∆ + 1). This proves the second claim. �

The arguments presented in the proof of Lemma 3.2.1 can be used to establish that

(∆ + 1) is the best (smallest) competitive ratio that any deterministic algorithm can

achieve. We believe such arguments are well known, but we include them here for sake

of completeness. Every deterministic algorithm can be placed into one of two classes

when a job with duration (dmin + ǫ) arrives, and the processor is idle – Class 1 contains

51

Job j1

1 + ǫ

0

1
ǫ
2 Job j2

∆

Job j3

Figure 3.1: A (∆ + 1)-Competitive Case

algorithms that accept that job and Class 2 contains algorithms that reject it. Next,

we compare their performance in two instances: (1) the example shown in Figure 3.1,

and (2) the example in which the job with duration (dmin + ǫ) is the only job. We see

that algorithms in Class 1 by accepting the first job have a competitive ratio of (∆ + 1),

whereas Class-2 algorithms by rejecting the first job have a competitive ratio of ∞,

establishing that the best competitive ratio must be (∆ + 1).

Next we present a variant of the [36]’s marriage problem that utilizes known duration

bounds and obtains a better CR.

3.2.2 The Finite-Step Marriage Problem

In the marriage problem presented in [36], a host selects a number N , which the player

doesn’t know. At step k, the host offers the player a reward of 2k for k = 1, · · · , N . At

any step, the player can choose to accept the offer which terminates the game. If the

player doesn’t accept any offer in all N steps, the game terminates and the player gets

zero. [36] proposed a policy, according to which the player would accept at step k with

probability 1/[k1+ǫζ(1 + ǫ)], for k = 1, · · · ,∞, where ζ(1 + ǫ) =
∑∞

i=1 1/i1+ǫ. Observe

that
∑∞

i=1 1/i1+ǫ converges for any positive ǫ, so the policy is well-defined. Because the

proposed policy accepts the offer at step N with probability 1/[N1+ǫζ(1 + ǫ)], it is at

most O(N1+ǫ)-competitive, which is O((log ∆)1+ǫ)-competitive because ∆ = 2N−1.

The finite-step marriage problem is similar to the classical marriage problem intro-

duced in [36] with the difference that there is a maximum-possible number of turns

K ≥ 2 and this fact is known to both the player and the host. Another difference is

that each successive offer is not necessarily twice as large as the previous one. Rather

52

it can be any multiple α > 1 of the previous offer. Starting from turn 1, the host offers

the player αk at turn k. The host also picks the number of turns N , N ≤ K. The player

does not know N but knows that N cannot be greater than K. The player can accept

only once. If the player does not accept in N turns, then the game ends and the player

receives zero.

Suppose the player decides to take the offer at turn N̂ . If N̂ > 1, then all those cases

in which N < N̂ yield zero reward, which has an infinite competitive ratio. If N̂ = 1,

then the ratio of the performance relative to the best outcome is 1/αN−1. That is, the

only deterministic strategy that yields a finite competitive ratio is N̂ = 1. Choosing

to accept at the first turn results in a competitive ratio of αN−1, which is bounded by

αK−1. Next, we investigate whether the player can earn a greater expected reward by

adopting a randomized strategy.

Suppose the player flips a coin at each turn to decide whether to accept or reject

the host’s offer at that turn. Then, a randomized strategy consists of conditional prob-

abilities pk, k = 1, · · · ,K, of accepting the offer at step k if the game proceeds to step

k. Lemma 3.2.2 identifies an optimal randomized strategy and we also establish its

performance bound.

Lemma 3.2.2. The optimal randomized strategy for solving the finite-step marriage

problem consists of coin-flip probabilities p1 = α/[K(α−1)+1] and pk = 1/(K−k+1),

k = 2, · · · ,K. This strategy is K(α−1)+1
α -competitive, i.e. O(log ∆) competitive because

K = log ∆ + 1.

Proof: Let ck denote the probability that the game terminates at step k. Clearly,

pk and ck are related as follows: pk = ck/(
∑K

i=k ci), k = 1, · · · ,K. The problem of

finding pk’s is equivalent to that of finding a set of probabilities {c1, · · · , cK} satisfying
∑

k ck = 1. The performance ratio if N = k is Rk :=
∑k

i=1 α
i−kci such that R1 = c1

and Rk = Rk−1/α+ck, for k = 2, · · · ,K. The player would choose ck’s to maximize the

worst-case performance, i.e. solve max[min{R1, · · · , RK}], subject to
∑

k ck = 1, and

ck ≥ 0. This is achieved by setting all Rk’s equal, i.e. Rk = α/[K(α − 1) + 1] for every

k, which gives c1 = α/[K(α− 1) + 1] and ck = (α− 1)/[K(α− 1) + 1] for i = 2, · · · ,K.

Such a strategy leads to a competitive ratio of [K(α−1)+1]/α. Given ck’s, it is easy to

calculate the coin-flip probabilities shown in the statement of the lemma. Hence proved.

�

53

3.3 A Randomized Algorithm for Single-Processor Online

FJS

The proposed algorithm, labeled A(α, dT), has two discretionary parameters α and

dT . Parameter α > 1 determines which jobs are considered by the processor and

dmin < dT < dmax is a threshold duration such that for jobs with duration dT or

greater, algorithm A(α, dT) uses a greedy approach (accept if feasible), and for jobs

with duration less than dT , A(α, dT) decides based on an approach similar to that in

the finite-step marriage game. Thus, dT determines the extent to which A(α, dT) is

conservative (close to myopic) or risk taking (close to marriage problem). It should be

clear that A(α, dmin) is identical to the myopic approach. We label a job as type-1 if its

duration is smaller than dT , and as type-2 if its duration is at least dT .

When job j arrives at time t in an arbitrary instance of single-processor online FJS,

it may find the processor in one of three states: clear, virtually busy, and busy. Busy

indicates that job j overlaps a job that is being processed at t. Virtually busy means

that job j overlaps a job that was considered but not accepted because it was not long

enough and there was an unfavorable coin flip, and clear means neither of the above. A

job that causes the driver to be virtually busy is referred to as a virtually taken job.

Algorithm A(α, dT) upon finding the processor in clear state will accept the arriving

job if its duration is at least dT . Otherwise, this arrival starts the equivalent of a

finite-step marriage game. Each such epoch resets a counter that we call the D-level.

The value of D-level counter equals δ := ⌈logα(dmax/dj1)⌉, where dj1 is the duration

of the job that starts the marriage game. Next, suppose a job j arrives at time t, the

processor is virtually busy, and the current D-level is δ. Let v denote the index of the

virtually taken job at t. Define parameter ℓ := ⌊logα(dv/dj1)⌋ as the degree of the

current virtually taken job. To ascertain whether dj is sufficiently large relative to dv,

we compare r := ⌊logα(dj/dj1)⌋ and ℓ. If r > ℓ, then dj is deemed sufficiently large

and the algorithm would consider job j as a candidate job. This means, it will flip a

coin to decide whether to accept or reject j. Otherwise, it will reject j. The coin-flip

probabilities are determined as follows.

If following j1, each overlapping job is exactly α times as long as its predecessor,

then from the marriage problem analogy j1 should be taken with probability pδ1 :=

54

α/[δ(α − 1) + 1] and each subsequent job with probability (α − 1)/[δ(α − 1) + 1]. (It

should be clear that δ is analogous to K in the finite-step marriage problem.) But jobs

do not necessarily arrive in such a pattern. For example, the job following virtually

taken j1 may be α3 times the duration of j1. In such cases, we award the second job

the sum of probabilities that correspond to the duration αdj1 , α
2dj1 , and α3dj1 . That

is, we calculate the r value to determine which equivalent turn index the new job j

belongs to and compare it with the turn index of job v. Note that the turn index in

the equivalent finite-step marriage problem is calculated relative to j1 and that the turn

index associated with v is labeled ℓ. If r > ℓ, we calculate the corresponding coin-flip

probability. The coin-flip probability is the ratio of the number of the slots from ℓ to r

divided by the total number of slots from ℓ to δ, i.e. (r − ℓ)/(δ − ℓ). These arguments

lead to Algorithm A(α, dT), below, which can be implemented in real time.

Pseudo-code for Algorithm A(α, dT)

0 when job j arrives at time t:

1 if processor is processing a job, then reject j

2 end

3 if processor is clear or virtually busy and j is type-2, then accept j.

4 end

5 if processor is clear and j is type-1, then calculate the D-level δ and flip a coin: accept j with

probability pδ1 = α/[δ(α− 1) + 1] or virtually take j with probability 1− pδ1.

Set j1 = jv = j and ℓ = 0.

6 end

7 if processor is virtually busy and dj < dT , then calculate r = ⌊logα(dj/dj1)⌋:

8 if r ≤ ℓ, then reject j

9 else flip a coin for job j: accept j with probability (r − ℓ)/(δ − ℓ) and virtually take j with

probability 1− (r − ℓ)/(δ − ℓ). Set jv = j and ℓ = r.

10 end

11 end

3.3.1 The Competitive Ratio Bound

The derivation of the competitive ratio bound hinges upon finding U(I) ≥ z(I) and

F (A, I) ≤ E[W (A, I)]. To accomplish this task, we construct disjoint subsets (S1, S2, · · ·)

55

of jobs in I that have the following properties. First, the construction allows us to esti-

mate an upper bound on the time period between each Sk and Sk+1, which we denote

by yk such that
∑

k |Sk| + yk ≥ e − s, the relevant span of I (see the discussion just

before Section 3.2.1). We use |Sk| to denote the time period covered by the set Sk. Sec-

ond, by construction, sets Sk have the property that the minimum expected amount of

work that A(α, dT) assigns to the processor within each Sk is independent and identical

across all subsets. Therefore, the fraction of work that A(α, dT) assigns within each

(|Sk|+yk) is no less than U(I)/F (A, I). The former is then our estimate of CB(A). We

begin with the rules for constructing sets Sk.

Rules for adding a job to Sk

1.0 Suppose j is the last-added job in Sk. Then add ĵ > j to Sk if:

1.1 ĵ overlaps j and

1.2 either dĵ ≥ αdj or dĵ ≥ dT

Jobs are added to Sk following Rule 1 until there are no qualifying jobs left.

Rules for initiating Sk (finding the first job in Sk)

2.0 If k = 1, then j1 (the first job in I) begins S1 by definition.

Suppose k ≥ 2, and let j be the last-added job in Sk−1.

Find the lowest-indexed job ĵ > j to begin Sk such that

2.1 either: dĵ ≥ dT ,

or: (dĵ < dT) and for every job ℓ indexed between j and ĵ that overlaps ĵ,

2.2.1 either ℓ does not overlap any job in Sk−1,

2.2.2 or dĵ ≥ αdℓ.

We illustrate the application of these rules with the help of several examples. In

Figure 3.2, we present an example in which I results in a single chain S1. For this

example, we have α = 2, dT = 4.5, and 5 jobs with the following durations: dj1 = 1,

dj2 = 2, dj3 = 2, dj4 = 4, and dj5 = 5. Job j1, being the first job is automatically

included in S1. Next, job j2 is included because dj2 ≥ αdj1 . Continuing to apply the

rules for composing chains, we find that j3 is not included because dj3 < αdj2 , j4 is

included because dj4 ≥ αdj2 , and finally, j5 is included because dj5 > dT . There are no

other jobs and this terminates the process of forming chains. In this example, job j3

does not belong to a chain.

Next, we present another example in Figures 3.3 that explains the construction of

Sk after finalizing Sk−1. The same logic applies to the construction of an arbitrary Sk+1

56

j1

j2
dj2 ≥ αdj1

j3 dj3 < αdj2 , so j3 /∈ S1

j4 dj4 ≥ αdj2

j5 dj5 > dT

-t

?

?

?

S1

?

Figure 3.2: Construction of S1, S1 = {j1, j2, j4, j5}

following Sk. In such cases, the tricky part is finding the “starting job” of Sk because

the formation of the chain is identical to that in the earlier example. In Figure 3.3, we

see that j3 does not qualify as the starting job of Sk. Job j3 fails because dj3 < αdj2

and j3 overlaps Sk−1. Job j4 does not overlap j3 and any other job in Sk−1. It starts

Sk. Note that job j3 does not belong to any chain.

j1

j2

Sk−1

j3

Sk

j4 does not overlap j3 which overlaps Sk−1

j4

-t

Figure 3.3: The first job of Sk is j4 following Rule 2.2.1

Similarly, Figure 3.4 shows another example in which job j5 starts Sk. In this

example, job j3 does not belong to Sk because it overlaps Sk−1 (Rule 2.2.1). Job

j4 overlaps j3, and dj4 < αdj3 . So j4 also cannot begin Sk (Rule 2.2.2). However,

dj5 ≥ αdj3 . Therefore, j5 satisfies Rule 2.2.2 and starts Sk. Note that jobs j3 and j4 do

not belong to any subset.

57

j1

j2

Sk−1

j3 j3 /∈ Sk−1 because dj3 < αdj2

j4 j4 /∈ Sk because dj4 < αdj3 and j3 overlaps Sk

j5 j5 ∈ Sk follow 2.2.2 dj5 ≥ αdj3

-t

Figure 3.4: The first job of Sk is j5 following Rule 2.2.2

As seen in examples above, the first job in Sk must be such that during the execution

of A(α, dT), it cannot be rejected on account of its relationship with jobs in Sk. Two

cases arise. If the last job in Sk has duration less than dT , then the first job j of Sk+1

must meet the following criteria: either its duration is at least dT , or if its duration is

less than dT , then any j′ that overlaps j either does not overlap a job in Sk or αdj′ < dj .

If the duration of the last job in Sk is at least dT , then the first job of Sk+1 is the first

job that does not overlap Sk. This method of construction avoids interaction among

jobs in Sk and we can analyze the amount of work assigned in each Sk independently.

Lemma 3.3.1. The time periods yk between consecutive pairs Sk and Sk+1 can be

calculated as follows.

Case (1) If all jobs in Sk are type-1, then yk cannot be greater than (α2 + α)|Sk|.

Case (2) If there is at least one type-2 job in Sk, then yk cannot be greater than |Sk|.

Proof: Our proof for Case (1) follows the logic presented in [36] but generalizes it for

an arbitrary α > 1 and known duration bounds ([36] considers only the α = 2 case). No

job that overlaps with Sk can be longer than α|Sk| because otherwise it should belong

to Sk. Therefore, any job starting outside Sk with duration at least α2|Sk| qualifies to

be the first job of Sk+1. In the extreme case, a job with duration α|Sk| − ǫ overlaps Sk,

and another job with duration α2|Sk| − ǫ overlaps the previous job, giving rise to the

maximum yk of (α + α2)|Sk| – an example is shown in Figure 3.5. A type-2 job also

58

qualifies to be the starting job of Sk+1, but in that case, yk is smaller leaving intact the

worst-case argument presented above.

Sk

j1 : dj1 < α|Sk|
j2 : d2 < α2|Sk|

Sk+1

-t

Figure 3.5: Largest yk (when all jobs in Sk are type-1)

In Case (2), Sk contains at least one type-2 job and we select the first job that does

not overlap any job that overlaps Sk as the first job of Sk+1. The worst case in this

situation is one in which a job with duration (dT − ǫ) overlaps both Sk and Sk+1. In

this case yk is at most (|Sk| − ǫ), which happens when Sk contains only one job with

duration dT . �

Note that the statement in Lemma 3.3.1 remains intact for the last set, indexed by

κ. In that case, yκ is defined as the time period between the end of Sκ and e, the end

of I.

Lemma 3.3.2. The minimum expected amount of work assigned in each Sk can be

calculated as follows.

Case (1) If all jobs in Sk are type-1, then the expected amount of work A(α, dT) will

assign on the region covered by Sk is at least (α−1)2|Sk|/{α
2[(α−1) logα ∆1+1]}.

Case (2) If there are type-2 jobs in Sk, then the expected amount of work A(α, dT)

will assign on the region covered by Sk is at least (α − 1)|Sk|/{(∆2 + α
α−1)[(α −

1) logα ∆1 + 1]}.

Proof: The proof of Case (1) uses arguments similar to those presented in [36], which

considers the α = 2 case. We provide a proof with arbitrary α for sake of completeness.

Let jm be the last job of an arbitrary subset Sk and let σ be a feasible schedule of

work assignments. Because in this case, all jobs are of type 1, it follows that djm < dT .

59

For an arbitrary run of the algorithm A(α, dT), when presented with jm, one of the

following cases may occur.

(a) processor is clear;

(b) processor is busy processing a job labeled jℓ, and either

(b.1) djm < αdjℓ , or

(b.2) djm ≥ αdjℓ ;

(c) processor is virtually processing a job labeled jℓ, and either

(c.1) djm ≥ αdjℓ , or

(c.2) djm < αdjℓ .

In Case (a), A(α, dT) will flip a coin for jm with success probability pδ1 = α/[(α −

1)δ + 1]. That is, jm is assigned with probability at least α/[(α − 1)δ + 1].

In Case (b.1), jℓ whose duration is at least 1/α times the duration of jm, would have

been taken with probability at least (α− 1)/[δ(α − 1) + 1].

To evaluate Case (b.2), we consider all jobs that arrive within (sjℓ , sjm), i.e. the

interval between the start times of jobs jℓ and jm, and use S̄ to denote this set. If there

exist some jobs in S̄ with duration greater than (1/α)djm , we denote the set of such

jobs by S̄′. If S̄′ is not empty, then there exists at least one job j in the set S̄′ ∪ {jm}

with the property: ⌊logα(dj/dj1)⌋ > ⌊logα(djℓ/dj1)⌋, where j1 is the index of the job

that started the finite-step marriage problem sequence associated with jℓ. Pick the first

job satisfying this property in the set S̄′ ∪ {jm} and refer to it as j′ℓ. Then, j′ℓ, with

duration at least (1/α)djm , would be taken with probability at least (α−1)/[δ(α−1)+1].

Alternatively, S̄′ may be empty because all jobs in Sℓ have duration less than (1/α)djm .

Then jm would be taken with probability at least (α − 1)/[δ(α − 1) + 1]. These two

cases are shown in Figures 3.6 and 3.7.

In Case (c.1), a coin flip would decide if jm is accepted. That is, jm would be

taken with probability at least (α− 1)/[δ(α − 1) + 1]. In Case (c.2), a coin was flipped

(unsuccessfully) at an earlier job arrival epoch resulting in jℓ being virtually taken. Job

jℓ could have been taken with probability at least (α− 1)/[δ(α − 1) + 1]. Note that djℓ

is at least (1/α)djm .

60

j1

j2

j3

j4

jm

S̄

-t

Figure 3.6: When no job in S̄ has duration (1/α)djm or larger.

j1

j2

j3

j4

jm

S̄

-t

Figure 3.7: When at least one job in S̄ has duration (1/α)djm or larger (j3 in this case).

61

Now we consider the fact that |Sk| ≤ djm(1 + α−1 + α−2 + · · ·) < (α
α−1)djm , which

means djm > (α−1
α)|Sk|. Putting together the above arguments, we have shown that a

job of duration at least (1/α)(α−1
α)|Sk| would be accepted with probability (α−1)/[δ(α−

1) + 1]. That is, a lower bound of expected work performed is (α − 1)2|Sk|/{α
2[δ(α −

1) + 1]}.

For Case (2), let j denote the first type-2 job in Sk. Then, j divides Sk into two

parts: every job before j is of type-1 and every job starting with j is type-2. Two cases

now arise:

(2.1) If all type-2 jobs overlap a type-1 job, we have |Sk| < (∆2 + α
α−1)dj . This is the

worst case in which dj = dT , job j overlaps the longest-possible job within the set

of type-1 jobs, and another job with dmax = ∆2dj also overlaps job j. So the part

of Sk that contains type-1 jobs cannot be longer than α
α−1(dT − ǫ), and the part

that contains type-2 jobs cannot be longer than ∆2dj .

The probability that j is accepted equals the probability that all type-1 jobs are

virtually taken. This probability is at least (α−1)/[(α−1) logα ∆1+1]. Therefore,

the expected assigned time in this case is at least (α − 1)|Sk|/{(∆2 + α
α−1)[(α −

1) logα ∆1 + 1]}.

(2.2) If not all type-2 jobs overlap a type-1 job, then the myopic approach kicks in as

soon as A(α, dT) encounters its first type-2 job that can be assigned. Whether

the type-1 job that overlaps a type-2 job is assigned depends on the random

realization of A(α, dT), but we know for sure that either the first type-2 job that

overlaps type-1 job will assigned, or the first type-2 job that does not overlap a

type-1 job will be assigned. After it accepts the first type-2 job, the algorithm

will accept every non-overlapping job that is of duration at least dT in a myopic

fashion. This implies that it yields a 1
∆2+1 worst-case performance on part of Sk

covered by type-2 jobs. On the part covered by type-1 jobs, the algorithm still

assigns at least (α− 1)2/{α2[(α− 1) logα ∆1 + 1]} of the covered time. It is easy

to see that both 1
∆2+1 and (α − 1)2/{α2[(α − 1) logα ∆1 + 1]} are greater than

(α− 1)/{(∆2 + α
α−1)[(α − 1) logα ∆1 + 1]}. Hence proved. �

From Lemma 3.3.1 and 3.3.2 we find that in Case (1), Algorithm A(α, dT) assigns at

least (α − 1)2|Sk|/{α
2[(α − 1) logα ∆1 + 1]} and the distance between Sk and Sk+1

62

is at most (α2 + α)|Sk|. Similarly, in Case (2), Algorithm A(α, dT) assigns at least

(α− 1)|Sk|/{(∆2 + α
α−1)[(α− 1) logα ∆1 + 1]} and the distance between Sk and Sk+1 is

at most |Sk|. Upon combining these arguments we obtain our main result in this paper,

presented in Theorem 3.3.3 below.

Theorem 3.3.3. The following is an upper bound of the competitive ratio of A(α, dT)

κ
.
= max{

(α3 − 1)α2[(α− 1) logα ∆1 + 1]

(α− 1)3
,

2(∆2 + α
α−1)[(α − 1) logα ∆1 + 1]

α− 1
}.

Clearly, Algorithm A(α, dT) is O(∆2 log ∆1)-competitive for the single-processor cases.

We investigate how one would choose α and dT in Section 3.5 after developing perfor-

mance bounds for the multiple-processor cases.

Before closing this section, we point out that there may be other algorithms that

achieve a competitive ratio bound of O(log(∆)). For example, one can divide the du-

ration range in intervals (2idmin, 2
i+1dmin] and set the acceptance probability for each

interval to be (1/ log2 ∆). Our algorithm is better for two reasons. First, we select

acceptance probabilities based on optimizing the finite-step marriage problem. Second,

our algorithm is more flexible with parameters (α, dT), which can be chosen to maximize

performance. We use an example next to underscore the importance of using optimal

coin-flip probabilities. Assume that job durations occur in lengths of 2k, k = 1, · · · ,K,

all jobs in I overlap, and shorter job always arrive first. Using the framework of a

finite-step marriage problem with at most K steps, Lemma 3.2.2 provides acceptance

probabilities that have a competitive ratio of (K+1
2) upon setting α = 2. In contrast,

if we were to use uniform acceptance probability of (1/ log2 K), then the competitive

ration would have been K. That is, in this example, our approach could provide twice

as good worst-case performance.

3.4 Multiple-Processor Online FJS

Our recommended algorithm for dealing with problem instances involving multiple pro-

cessors is denoted by An(α, dT), where n is the number of processors. As mentioned

earlier, the problem is decomposed into two subproblems. We discussed in Section 3.3

how A(α, dT) decides whether the processor that receives the job will accept it or not.

In this section we focus on how to assign arriving jobs to different processors.

63

Let F (j) = {i : ai ≤ sj < ej ≤ bi} be the set of processors that can perform

job j. For each processor, we keep track of the set of allocated jobs. This set is

denoted by Ci. In addition, we define τi as the end time of the last-ending job in Ci,

i.e. τi = maxj∈Ci{ej}. Here allocated means that a job is routed to processor i but it

may or may not be accepted. The decision to accept the job is made after the allocation

decision. The act of allocating a job j to processor i may make it necessary to update

τi, because j may now be the last-ending job in Ci.

An(α, dT) selects a processor in F (j) that has the smallest τ value among processors

in F (j). We refer to this part of An(α, dT) as the allocation Procedure G (as shown

below). Every job is allocated by G because every job can be processed by at least

one processor and G does not consider potential overlap with previously allocated jobs

when allocating a job to a processor.

Allocation Procedure G

Step 0 when job j arrives at time t, identify F (j) = {i : sj ≥ ai, ej ≤ bi},

Step 1 find i = min{k : τk ≤ τk′ for every k, k′ ∈ F (j), k 6= k′},

allocate job j to processor i and update τi.

We show next that G guarantees the utilization of at least half of the optimal number

of processors that could be utilized at each time epoch t. To do so, we establish the

connection between our allocation problem and the bipartite matching problem and

argue that the optimal value of the bipartite matching problem is an upper bound

of the number of processors that can be allocated. Then, we arrive at the desired

conclusion by showing that the allocation procedure always allocates at least half of the

upper bound.

For an arbitrary time t ∈ [s, e], we define J(t) = {j : sj ≤ t < ej} as the set of jobs

that need processing at t, and P (t) = {i : ai ≤ t < bi} as the set of processors that

are available at t. We associate a node with each job in J(t) and with each processor

in P (t). Then we connect two nodes, one associated with a job j and the other with a

processor i, with an undirected edge if and only if job j can fit in processor i’s shift, i.e. if

ai ≤ sj < ej ≤ bi. This exercise gives rise to a bipartite graph. The relevant matching

64

problem is to find the maximum number of unconnected edges1 . The maximum

matching problem thus defined is related to the job-to-processor allocation problem as

shown in Lemma 3.4.1.

Lemma 3.4.1. For each t, let w(t) be the number of matched pairs in an optimal

solution to the maximum matching problem. Then, in any job-to-processor allocation

procedure, the number of processors that are allocated at least one job at time t cannot

be greater than w(t).

Proof: Because we focus on time t, the relevant sets of jobs and processors are those that

belong to J(t) and P (t), respectively. For a given job-to-processor allocation, assume

m′(t) processors are allocated at least one job. Then, by choosing one allocated job

from each of the m′(t) allocated processors, we can find m′(t) job-to-processor pairs,

and this corresponds to an m′(t)-matching. Because w(t) is the optimal value of the

bipartite matching problem, it immediately follows that m(t)′ ≤ w(t). �

Next we establish the competitive ratio of the allocation procedure. For this purpose,

we note that if for some processor i, τi ≥ t, then that processor is already matched in the

equivalent bipartite matching problem. That is, allocating a job to processor i does not

increase the number of matched processors. In contrast, τi < t indicates that processor i

is not matched at time t and allocating a job to that processor does increase the number

of matched processors.

Lemma 3.4.2. The number of processors allocated by Procedure G at time t is at least

w(t)/2.

Proof: Let m′(t) denote the number of processors that are allocated at least one job at

t. Procedure G chooses a feasible processor with the smallest τ when a new job arrives.

This implies that this procedure always selects an unmatched processor that connects

to the current job whenever an unmatched processor exists. Then, the statement of the

Lemma follows from the well-known result that a greedy algorithm that picks a new

edge (excluding those already selected), achieves a performance bound of at least 1/2

1 Note that a connected edge means either that a job is assigned to more than 1 processors or that
a processor handles more than 1 jobs at the same time t. Connected edges therefore represent infeasible
assignments in our problem setting, which must be avoided.

65

([51]). If there are no unmatched processors at t, then m′(t) = w(t), completing the

proof. �

Next, we provide an example to show that the performance bound in Lemma 3.4.2

is tight.

Theorem 3.4.3. Procedure G is 2-competitive and no allocation procedure can be better

than 2-competitive.

Proof: We showed in Lemma 3.4.2 that G cannot be worse than 2-competitive. In this

proof, we provide an example to establish that the bound is tight and that no allocation

procedure can be better than 2-competitive.

Suppose there are two processors, labeled P1 and P2, with shift start and end times

(0, 10) and (4, 14), and three jobs, labeled ji, i ∈ {1, 2, 3}, with start and end times

(1, 6), (4, 9), and (7, 12). Note that job j1 can be allocated only to processor P1 and job

j3 only to processor P3. It should be clear that upon executing Procedure G, j1 will

be allocated to P1, and j2 and j3 to P2. Next, we observe that at t = 8, job j2 can be

matched with P1 and j3 with P3. That is, w(8) is 2 but Procedure G allocates only P2

at t = 8. This proves that 2 is the exact competitive ratio of Procedure G.

Next, consider time points 5 and 8. It is easy to see that w(5) = w(8) = 2. Given

that j1 can be allocated only to P1 and j3 only to P3, if a procedure allocates j2 to P1,

then m′(5) = 1, whereas if it allocates j2 to P2, then m′(8) = 1. That is, no allocation

procedure can achieve more than half of w(t) simultaneously for both time points 5 and

8. Put differently, no procedure can be better than 2-competitive. �

Corollary 3.4.4. Procedure G is an optimal procedure when either processor shifts are

identical or shift lengths are unlimited.

Proof: Recall that no job in I arrives earlier than the shift start time of at least one

processor and ends later than the shift end time of at least one processor. When

processor shifts are either identical or unlimited, it means that every job can be allocated

to every processor. In the bipartite graph, this means that each j in J(t) is connected to

every i in P (t) by an edge. In this instance, w(t) = min{|P (t)|, |J(t)|}, and Procedure

G will allocate w(t) processors. The claim is based on the argument that Procedure G

will allocate each arriving job to a processor indexed i that has τi < t, if such a processor

66

exists. Note that if all processors are already matched, then w(t) = |P (t)| proving the

claim above. By picking a processor that has not been matched before, Procedure G

increases the number of matches each time until that number reaches min{|P (t)|, |J(t)|}.

�

With a 2-competitive allocation procedure in hand, we can establish the overall

competitive ratio of our approach in Theorem 3.4.5.

Theorem 3.4.5. An upper bound of the competitive ratio of An(α, dT) is

2×max{
(α3 − 1)α2[(α − 1) logα ∆1 + 1]

(α− 1)3
,
2(∆2 + α

α−1)[(α− 1) logα ∆1 + 1]

α− 1
}.

3.5 Numerical Experiments

We obtained data concerning call driver operations for five randomly-picked months

from Metro Transit. The agency had 5 garages and each month’s data came from a

different garage. The data included all jobs that were assigned to either call operators

or on an overtime basis. The agency did not drop service in the period for which we

obtained the data, which meant that the jobs in our data set represented all open work.

We considered each day as an independent instance, and excluded weekends from our

experiments because weekends have a special service schedule. This left 100 problem

instances, one for each weekday of operations (5 garages × (≈) 20 days per garage).

The shortest job was approximately half an hour long, and the longest job possible

was 8 hours long, with a few exceptions. These exceptions include cases when absentee

drivers worked a non-standard shift (either 9- or 10-hour shift) or when there are very

short pieces of work. Because the exceptions are rare, we set ∆ = 16 in our experiments.

Figure 3.8(a) in shows a box plot of job durations by garage. We see that Garage 1 and

5 have jobs with more variable durations and that Garage 3’s job durations do not vary

as much. The available time of each driver is a continuous 8-hour period, but drivers

start at different time of day, in order to cover the work day of about 20 hours. The

shift start and end times are read from data.

Box plots in Figures 3.8(b) and 3.10 show the variation in problem size by garage.

The daily number of on-call reserve drivers ranged from 7 to 18 and the daily number of

jobs ranged from 8 to 36. The job-to-driver ratio also varied significantly across garages.

67

0
20

0
40

0
60

0

1 2 3 4 5

J
o
b

D
u
ra

ti
o
n

(m
in

u
te

s)

Garage

(a) Job Durations by Garage

10
15

20
25

30
35

1 2 3 4 5

D
a
il
y

N
u
m
b
e
r
o
f
J
o
b
s

Garage

(b) Daily Number of Jobs by Garage

Figure 3.8: Job Durations and Daily Frequency

We graphed the demand profile by time of day for Garages 1 and 3 in Figure 3.9 and

found differences in the pattern of job arrival times. Figure 3.9 was obtained by dividing

time into 15-minute intervals and counting the number of jobs that were active in each

interval across all weekdays for each garage. We observed that every garage experienced

two peaks each day, but Garage 3’s peaks were sharper. Pattern differences observed

in Figures 3.8-3.9 influence the performance of our algorithm, which we explain later in

this section.

0
50

10
0

5AM 10AM 3PM 8PM 1AM

N
u
m
b
e
r
o
f
J
o
b
s

Time

(a) Garage 1

0
50

10
0

15
0

20
0

5AM 10AM 3PM 8PM 1AM

N
u
m
b
e
r
o
f
J
o
b
s

Time

(b) Garage 3

Figure 3.9: Demand Profile by Time of Day

68

5
10

15
20

1 2 3 4 5

N
u
m
b
e
r
o
f
D
ri
v
e
rs

p
e
r
D
a
y

Garage

(a) Driver Numbers by Garage

1
1.

5
2

2.
5

3

1 2 3 4 5

J
o
b
-t
o
-D

ri
v
e
r
R
a
ti
o

Garage

(b) Job-to-Driver Ratio by Garage

Figure 3.10: Daily Driver Availability and Job-to-Driver Ratio

For comparing performance of our algorithm, we chose myopic approach as the straw-

man policy. There are several reasons for doing so. First, the myopic approach is the

most commonly used approach in practice. Second, in addition to ensuring that work

assignment algorithms have bounded worst case performance, transit agency managers

are also interested in achieving good average performance. Myopic or greedy algorithms

generally produce good average performance and in some cases, it can be proved that

their worst-case performance is also good, e.g. in the maximum coverage problem ([52]),

the greedy algorithm achieves theoretically best worst-case performance ([53]). Finally,

the myopic approach is the most conservative policy that accepts jobs in their arrival

sequence so long as a feasible assignment is possible. Our algorithm contains a parameter

dT that provides a hedge between myopic and strategic approaches.

For each garage, we searched for the best parameters by comparing the results

for different combinations of (α, dT), where α ∈ [1.1, 2.4] (in increments of 0.1) and

dT ∈ [90, 240] (in increments of 10 minutes). We used two different search criteria. In

one case, α and dT were chosen to maximize worst-case performance of the randomized

algorithm, and in the other case to maximize its average performance. Note that selected

parameters vary by garage, which is caused by differences in patterns of job durations,

frequency, and driver availability as explained in Figures 3.8-3.9. Also, the performance

of optimal values (α∗ and d∗T) was generally not significantly different from other values

of α and dT that were close to the optimal values. Both sets of results are reported in

69

Table 3.3. For each day, we simulated 10 runs of An(α, dT) to obtain an estimate of its

expected performance. We report the percentage of total job time that each algorithm

assigns averaged over 20 days of data for each garage. Columns 2–4 show comparisons

when parameters of the randomized algorithm were selected to maximize worst-case

performance and columns 5–7 show similar results for average performance. Finally,

columns 8–9 show the average advantage from the randomized algorithm. We observe

that the use of the randomized algorithm could save a total of 1091 minutes, or 18.2

hours, of overtime daily. At approximately $42 per hour in overtime wages, this could

save approximately $190,925 annually (assuming 250 week days in a year).

In addition to experiments based on actual service days, we also simulated problem

instances by sampling from the set of all jobs and driver shifts in our data set. There

were three reasons for performing such experiments. First, we could in this way gener-

ate many more than 100 problem instances. Second, we could design experiments with

different problem sizes: i.e. numbers of jobs and drivers. Third, we could test the per-

formance of the algorithm in a realistic setting by selecting parameters α and dT based

on a training data set and testing the realized performance over randomly generated

test data.

Problem instances in our experiments have different jobs-to-driver ratios but preserve

the ranges we observed in the data. Specifically, we observed that the daily minimum,

median and maximum numbers of drivers in the 100 problem instances were 8, 13, and

17. Similarly, the daily minimum, median and maximum job-to-driver ratios were 1.0,

1.6, and 2.3. Therefore our simulated instances have 9 different combinations. These

are: 8 processors with 8, 13, or 18 jobs; 13 processors with 13, 21, or 30 jobs, and 17

processors with 17, 27, or 39 jobs (see Tables 3.6 and 3.7).

Tables 3.4 and 3.5 show a summary of simulated data. We consider each day as

one sample that gives rise to that day’s average job duration and average shift start

time. Then, treating each of these averages as a single observation, we calculated the

summary statistics in Tables 3.4 and 3.5. To explain these statistics further, we discuss

two example. In Table 3.4, the minimum average duration of 66 means that among 300

days of simulated data with 8 jobs, the minimum daily average duration was 66 minutes.

Similarly, in Table 3.5, among 300 simulated days with 8 drivers, the minimum daily

average shift start time was 5:01 AM.

70

We generated 300 random instances for each set of parameters independently as

training and test data. Parameters α and dT were selected to maximize randomized

algorithm’s worst-case performance on the training data. The same values, denoted

by α∗ and d∗T , were then applied to the test data. Similar to Table 3.3, this involved

searching for best α and dT over a range of possible values (α ∈ [1.1, 2.4] in increments

of 0.1 and dT ∈ [90, 240] in increments of 10). The selected parameters provided the best

worst-case performance (which is shown in parentheses in Tables 3.6 and 3.7), and the

average performance was based on the same parameters. For each problem instance,

we simulated An(α, dT) ten times to estimate the expected performance. The num-

ber of repetitions were limited because of computational burden and because expected

performance was quite stable over ten simulations.

Table 3.7 shows that An(α∗, d∗T) performs better on both worst-case and average

performance in all problem instances relative to the myopic approach. The relative

advantage of our approach, which we call Daily Advantage in Table 3.7, was measured

as average percentage of extra work assigned and as additional average minutes of work

assigned on each day of operations with each set of parameters. For transit agencies

with large garages (i.e. with many jobs and drivers), the randomized algorithm has

the potential to save significant overtime costs. The performance of both algorithms

in experiments involving the simulated data is not as good as with real data because

in the simulated data, drivers’ shift schedules were determined by a random pick. In

contrast, dispatchers assigned start times one day before each day of operations and

they were able to better match shift starts to the time-of-day pattern of job arrivals in

their respective garages.

Table 3.7 suggests that the job-to-driver ratio affects relative performance. As ex-

pected, the average percentage of work assigned decreases as the job-to-driver ratio

increases. However, generally more work is assigned when there are more drivers and

concomitantly more jobs. This is not surprising because with more jobs and more

drivers, there are more opportunities to benefit from the use of randomized algorithm.

71

3.6 Concluding Remarks

Transit agencies use reserve drivers to cover work that arises from planned and un-

planned time off, equipment breakdowns, weather, and special events. In this paper,

we developed a randomized algorithm that can be used to improve utilization of reserve

drivers who take care of unanticipated work. In the highly random environment of re-

serve driver scheduling, a decision algorithm needs to tradeoff the reward that would

be realized if the current job is accepted against a potentially higher reward from a

future job, which may be rejected on account of the earlier decision. Because both the

timing and durations of such jobs vary significantly from one day to the next, a reason-

able objective for transit agencies is to try to achieve the best worst-case performance.

Our randomized algorithm guarantees performance no worse than a certain threshold

of the best possible performance, where the latter is realized if all pieces of work are

known before making work assignments and such assignments are made optimally. The

algorithm strategically assigns some work to overtime drivers to improve overall utiliza-

tion of reserve drivers. The randomized algorithm is easy to implement and could help

transit agencies reduce personnel costs.

Although the focus of this paper on algorithm development, it offers some general-

izable insights. First, by considering only those jobs whose lengths are increasing in a

geometric sequence, the randomized algorithm leads to worst-case performance that is

of order log ∆. This implies that the performance of our algorithm does not degrade

substantially when job durations cover a wide range. In contrast, the best deterministic

algorithm has performance of order ∆, which does degrade linearly. This establishes

that the desirability of using randomized algorithms increases with ∆. Second, ∆ affects

the likelihood of finding a value of α that makes the virtual algorithm more competitive

than the myopic approach. The larger the value of ∆, the larger this likelihood. How-

ever, with a relatively large value of α, a randomized algorithm takes more risk (rejects

more jobs) and could perform poorly on average. This risk can be counterbalanced

by introducing a parameter such as dT . That is, randomized algorithms, which choose

optimal α and dT , are likely to result in desirable outcomes for other highly random

scheduling environments.

72

Table 3.2: Notation

n = number of processors
i = processor index; i ∈ {1, · · · , n}

(ai, bi) = start and end time of the shift of processor i, where ai < bi
j = job index

(sj, ej) = start and end times of job j, where sj < ej
dj = duration (weight) of job j; dj = ej − sj

dmin = minimum job duration
dmax = maximum job duration

∆ = dmax/dmin

α = criterion for candidacy of a job when processor is virtually taken
dT = threshold duration
∆1 = dT /dmin

∆2 = dmax/dT
j1 = index of a job that starts a marriage problem sequence
v = current virtually taken job index
ℓ = ⌊logα dv/dj1⌋; degree of current virtually taken job

(⌊·⌋ returns the integer floor)
r = ⌊logα dj/dj1⌋; degree of current job
δ = ⌈logα dmax/dj1⌉ is called the D-level corresponding to j1

(only if dj1 < dT , ⌈·⌉ returns the integer ceiling)
yk = distance between Sk and Sk+1

Ci = considered set of processor i
F (j) = {i : sj ≥ ai, ej ≤ bi}: the set of processors that can perform j

τi = maxj∈Ci{ej}
t = an arbitrary time epoch

J(t) = {j : sj ≤ t < ej}: the set of jobs that cross t
P (t) = {i : ai ≤ t < bi}: the set of processors whose shifts cross t
w(t) = the optimal value of bipartite matching problem defined at t

73

Table 3.3: Performance Comparison – Myopic versus An(α, dT)

Garage Worst Case Average Daily Advantage
Number Myopic (α∗, d∗T) An(α∗, d∗T) Myopic (α∗, d∗T) An(α∗, d∗T) Percent Minutes

1 27.1 (1.7, 210) 35.0 50.5 (1.5, 200) 53.6 6.1 285
2 51.8 (1.8, 140) 57.5 68.5 (1.9, 200) 70.6 3.1 167
3 48.8 (1.4, 110) 53.8 69.4 (1.6, 210) 71.8 3.5 110
4 38.1 (1.3, 120) 48.0 65.0 (1.5, 170) 69.7 7.2 206
5 42.8 (1.4, 210) 46.0 61.3 (1.9, 240) 65.0 6.0 323

Performance = percentage of total work assigned.

Table 3.4: Job Duration Summary (minutes), SD= Standard Deviation

of Jobs Min Max Mean SD

8 66 340 175 55
13 80 307 175 39
17 90 290 173 34
18 98 314 172 34
21 91 293 173 35
27 84 247 171 29
30 98 286 173 36
39 88 307 172 34

Table 3.5: Driver Shift Start Time Summary

of Drivers Min Max Mean

8 5:01 AM 12:34 PM 8:52 AM
13 5:10 AM 12:41 PM 8:56 AM
17 6:08 AM 12:18 PM 9:00 AM

74

Table 3.6: Parameter Selection Using Training Data Set

Jobs, Performance (α∗, d∗T) Performance
Drivers Myopic An(α∗, d∗T)

8, 8 56.1 (16.8) (1.5,160) 59.8 (19.6)
13, 8 45.6 (17.5) (1.4,230) 54.2 (22.4)
18, 8 36.8 (13.8) (1.6,230) 50.2 (18.2)
13, 13 60.8 (24.1) (1.4,230) 63.6 (24.6)
21, 13 47.4 (23.3) (1.1,140) 61.7 (36.0)
30, 13 36.2 (13.9) (1.2,210) 53.9 (27.8)
17, 17 60.5 (27.8) (1.1,190) 66.8 (31.8)
27, 17 48.5 (19.5) (1.9,230) 63.2 (32.1)
39, 17 37.6 (18.5) (1.9,120) 59.0 (32.9)

Performance = percentage of total work assigned.

Table 3.7: Performance Comparisons Using Test Data Set

Jobs, Performance (α∗, d∗T) Performance Daily Advantage
Drivers Myopic An(α∗, d∗T) Percent Minutes

8, 8 55.8 (10.5) (1.5,160) 58.8 (17.1) 5.4 42
13, 8 45.0 (12.2) (1.4,230) 53.6 (15.6) 19.1 193
18, 8 36.4 (9.5) (1.6,230) 49.8 (10.9) 36.8 417
13, 13 59.1 (13.2) (1.4,230) 62.8 (22.5) 6.3 83
21, 13 46.4 (16.7) (1.1,140) 60.4 (25.3) 30.2 508
30, 13 36.9 (17.8) (1.2,210) 55.9 (27.8) 51.5 986
17, 17 61.0 (23.2) (1.1,190) 67.8 (29.6) 11.1 200
27, 17 48.8 (15.8) (1.9,230) 62.3 (24.2) 27.7 630
39, 17 40.5 (19.5) (1.9,120) 59.1 (32.2) 45.9 1255

Performance = percentage of total work assigned.

Chapter 4

Improving Operating Room

Schedules

4.1 Introduction

Operating rooms (ORs) in US hospitals generate about 70% of revenues and 20-40%

of operating costs while operating at a staffed capacity utilization of 60-70% ([54]).

ORs are also responsible for a significant proportion of hospital admissions ([55]) and

a recent estimate puts the cost of a staffed OR at approximately $15-20 per minute

([56]). Therefore, hospitals spend considerable administrative resources to ensure that

OR time is used efficiently. A typical scenario in many hospitals is that each day

the OR management team looks at the two-day-ahead surgical schedule, and tries to

manually revise case start times to reduce the number of operating rooms that would

need to run concurrently. This reduces staffing costs. At this point in time, there is

already a surgical schedule in place with planned start times and planned surgical case

lengths. The latter are provided by scheduling software used by hospitals, with some

adjustments based on discussions with the surgeons at the time of booking procedures.

The management team treats the surgical case lengths as fixed, changing only the case

start times. The purpose of the model we develop is to aid in this daily schedule revision

process.

Although regular staff salaries are already committed, staff can be asked to either

change their work schedules, or work in a different area of the hospital. Because hospitals

75

76

regularly use extra and overtime shifts to meet staffing needs, reducing OR staffing

requirements reduces overall staffing costs. Alternatively, freed-up OR time can be used

to increase case volumes and revenue.

The OR rescheduling problem mentioned above is a variant of the bin-packing prob-

lem with bins being the staffed ORs and items or jobs being the surgeries. The goal is

to minimize the weighted sum of bins used (i.e. cost of staffed ORs), where the weight

of a bin is proportional to its size. Two features of the OR rescheduling problem that

make it different from problem formulations studied in the literature are (1) surgeries

performed by the same surgeon must not overlap, and (2) hospitals may employ staff

with different shift lengths. The bin-packing and therefore the OR rescheduling prob-

lems are NP hard. Therefore, we establish a lower bound on the cost of staffing ORs

that is guaranteed to be at least (2/3) of the optimal staffing cost for any subset of

surgeries. The lower bound is used in a branch-and-bound algorithm developed to solve

the rescheduling problem. Upon testing our approach on data obtained from three

hospitals, we identify significant opportunities for reducing OR staffing costs. We also

analyze resulting OR schedules to study how rescheduling would affect surgeons’ work

days, delays in surgery start times, and overtime usage.

OR management practices vary from one hospital to another. We present the ensuing

institutional background as broadly representative of common practices at US hospitals

that allocate periodically occurring (e.g. weekly, biweekly or monthly) blocks of OR time

to individual or groups of surgeons as guaranteed allocation. Surgeons holding blocks

may book surgeries in their blocks up until the auto-release date. On the auto-release

date, which may occur between 0 to 14 days in advance of the day of surgery, any unused

block time reverts back to the hospital. This OR time may be used either by surgeons

who do not have assigned blocks or by those whose demand exceeds their block times,

or for urgent and emergent cases. Non-block surgeons’ cases are typically booked on a

first-come-first-served basis. Different hospitals may follow different approaches to deal

with urgent cases. Some schedule urgent blocks with zero auto-release dates, whereas

some others reserve dedicated ORs for urgent and emergent cases. All hospitals also

try to “fit” urgent cases into available open times between scheduled non-urgent cases.

Finally, any remaining urgent cases are scheduled as add-on cases at the end of shifts,

incurring overtime charges.

77

Because staffed OR utilization is low even after hospitals’ manual attempts to reorga-

nize surgery schedules (see Section 4.3 for details), we focus in this paper on developing

an algorithm that would allow hospitals to accommodate the same number of surgeries

with fewer staffed ORs by reworking the case start times. Such rearrangements are often

feasible because blocks typically have 2 to 5 day auto-release dates and surgeons are will-

ing, within reason, to accept some changes to the start times of their cases. Moreover,

patients are typically asked to arrive several hours before the start of their surgeries to

prevent delays due to peri-operative activities, which facilitates rescheduling.

Our algorithm for improving OR schedules significantly reduces the number of open

times between scheduled non-urgent cases. Therefore, upon implementing this approach,

hospitals would need to schedule dedicated ORs for handling urgent cases. The man-

agement team would need to commit to having these ORs staffed before knowing the

true urgent and emergent demand. We evaluate the performance of our algorithm both

with and without accounting for urgent cases. In each case, our approach results in

significant total cost savings, including overtime charges. There is emerging evidence

in biomedical literature that dedicated urgent/emergent ORs also help improve health

outcomes – see, e.g. [57].

We develop a specialized algorithm for the OR rescheduling problem, rather than

use a general-purpose optimization software, because the latter neither provide insights

into the nature of a surgeon’s cases that trigger the use of a staffed OR, nor solve

all instances of problems encountered at typical hospitals. Moreover, a recent sur-

vey of hospital executives found that top among information technology solutions that

hospital executives believed might help improve OR operations was “scheduling: bet-

ter/accurate scheduling” ([58]), and recent healthcare innovations – e.g. accountable

care organizations (ACO) and bundled payment care improvement initiative (BPCI) –

allow hospitals and physicians to find efficiency enhancing strategies and share rewards

that come from reduced costs ([59], [60] and documents posted on the BPCI web site

at http://innovation.cms.gov/initiatives/bundled-payments/). Our approach

may be viewed as an attempt to quantify the benefit of cooperation. The ability to

quantify such gains is a needed first step before developing models for gain sharing.

Another feature of our approach is that the developed algorithm can be integrated with

a hospital’s OR scheduling software via an Application Programming Interface.

http://innovation.cms.gov/initiatives/bundled-payments/

78

A key contribution in this paper lies in establishing a performance guarantee for a

lower bound on the cost of staffing ORs to accommodate a given set of surgeries in the

presence of overlap-avoidance constraints. We present an example next to highlight the

difficulty involved in doing so. Suppose 6 surgeons are scheduled to operate on a partic-

ular day and the hospital uses a single shift of length T . Suppose the first five surgeons

need to perform three surgeries, each with duration (4/15)T , for a total duration of

(4/5)T . The sixth surgeon needs to perform five surgeries with duration (1/5)T each,

for a total duration of T . If we ignore the constraint that surgeries performed by the

same doctor must not overlap, we will find that a lower bound and optimal solution is

to use 5 rooms, one for each of the first five surgeons with (1/5)T in each room assigned

to the sixth doctor. However, this solution is not feasible because at least one of the

six doctors’ surgeries cannot be assigned in a way that they do not overlap. In fact,

a feasible solution for scheduling ORs is to use six rooms. This happens because each

of the six doctors must be working at (1/2)T regardless of how his or her surgeries are

arranged.

We develop a framework to overcome the problem illustrated in the above example.

This framework involves three steps. In step one, we classify connected sequences of

surgeries that we call “chains.” We also classify doctors into different categories based

on the properties of chains formed by their surgeries. Surgeon classification is used in

step two to assign surgeries to ORs in a particular sequence, which not only produces

a lower bound but also helps us in step three to recover a feasible solution that is no

more than (3/2) of the lower bound.

Because our algorithm may increase surgeons idle or unused time, we test the quality

of our solution by applying our algorithm to data from three hospitals. This leads to

several insights. First, rescheduling works as expected by flattening the peak number

of concurrently staffed ORs and scheduling surgeries uniformly throughout the day.

We also find that efficiency is greater when a hospital has the flexibility to schedule

some long shifts because that leads to more efficient packing of surgical cases. Second,

efficiency gains come at the expense of increased staff overtime, surgeon idle time, and

the total amount of time that surgeons spend at the hospital. We quantify the impact

of rescheduling on surgeons and staff and find that savings from efficiency gains are

high, suggesting that hospitals may be able to obtain surgeons’ cooperation through an

79

appropriate gain sharing plan.

literature in Section 4.2, summarize data from three hospitals in Section 4.3, for-

mulate the model in Section 4.4, and present key analytical results in Sections 4.5 and

4.6. Numerical experiments that utilize real data are presented in Section 4.7 and we

conclude the paper in Section 4.8.

4.2 Literature Review

There are three bodies of literatures that are related to our work. These are OR/surgery

scheduling, bin packing, and resource-constrained scheduling. We position our work next

in relation to each of these literatures.

Surveys of OR scheduling literature are provided in several recent papers; see, for

example, [61], [62], [63], [64], and [65]. OR capacity planning problems fall into six

broad categories: (i) determining the number of ORs and the equipment/capability of

each OR, (ii) determining staffing needs and corresponding shift lengths, (iii) assigning

blocks of OR time to surgeon groups or individual surgeons, (iv) putting in place booking

rules for the use of OR time and the release of exclusive blocks, (v) rescheduling, and

(vi) coping with day-of-surgery variations. Planning problems in each category arise

with different frequency and therefore relevant models need to consider different levels

of granularity and time scales. For instance, the problem of determining the number

of ORs and equipment may be revisited once every few years and relevant models may

consider aggregate demand over a quarter or a year. It may be appropriate for such

models to assume that surgeries are packed in a fluid fashion. In contrast, when choosing

planned start times of surgeries, resulting schedules must fit surgeries into available shift

lengths.

Surgery scheduling problems, i.e. problems mentioned in items (iv) and (v) above,

can be categorized in several different ways. For example, by the assumed booking

protocol (online or offline), by procedure lengths (constant or random), and by urgency

status (emergent/urgent or non-urgent) ([65]). Online scheduling occurs when surgeries

are booked one at a time. Offline means all requests for surgeries that need to be per-

formed on a particular day are known before determining scheduled procedure lengths

and the sequence in which surgeries will be performed. In many US hospitals, surgeries

80

are booked in an online fashion, booking clerks assume that estimated case lengths are

constant, and non-urgent cases are booked first, followed by urgent and emergent cases.

Case length estimates may depend on a whole host of factors including the surgery

types, patients’ characteristics, and track records of surgeons performing the surgeries.

When surgeons holding blocks book non-urgent cases, they determine the sequence in

which surgeries will be performed. In contrast to what is common in practice, the Op-

erations Management literature focuses primarily on the problem of determining the

scheduled duration and the sequence of surgeries assuming surgeries are booked offline.

Most papers in the scheduling literature consider only one urgency type, i.e. they focus

either entirely on non-urgent cases, or entirely on urgent/emergent cases. Articles that

consider both types, e.g. [66], do not model discrete surgery durations. That is, they

assume that surgeries can be scheduled in a fluid fashion.

Uncertain actual surgery duration is an important consideration in surgery planning

and scheduling. Consequently, many papers focus on the problem of estimating time

allowances for different surgical procedures. Two variants of such models exist. All

models assume an offline scheduling environment. In the first case, surgery durations

are random but their distributions are assumed known or it is assumed that actual

durations can be sampled from an existing database of surgery durations. In the second

case, surgery durations are unknown. Examples of models of the former type can be

found in [67], [68, 69], and [70], whereas an example of the latter can be found in [71].

In these models, overlap-avoidance constraints are absent, which is a key feature of

the analysis presented in this paper. The absence of overlap-avoidance constraints is

justified by considering either only one OR, or assuming that surgeons work in the same

OR on a single day. In contrast, our data show that surgeons routinely operate in several

rooms on a given day. Also, our objective is not to determine optimal time allowances

for different surgical procedures. Instead, we focus on creating surgery schedules that

require fewer staff shifts upon assuming that hospitals’ estimates of case lengths are not

affected by sequencing of cases. This assumption is commonly made by practitioners.

We present supporting evidence in Section 4.3.

The above-mentioned problem types, the importance of considering uncertainty,

81

scheduling constraints, and possible concern for smoothing downstream resources (e.g. hos-

pital beds) give rise to many variants of the surgical scheduling problem. Because struc-

tured reviews exist that discuss each problem class, we do not describe these problem

instances in detail, except to point out that none of the existing models addresses the

problem of rescheduling surgeries to minimize staffing costs. There are a few papers,

however, that consider the difficulty of scheduling surgeries when surgeons perform mul-

tiple surgeries on the same day and overlap avoidance is an important consideration.

We discuss these papers below.

[72] model the constraint that scheduled surgeries performed by the same surgeon

must not overlap. The authors formulate the daily surgery scheduling problem as a

two-stage hybrid flow-shop problem with the objective of minimizing the cost induced

both by the ORs and the recovery rooms. A hybrid genetic algorithm is proposed to

solve this model. The paper does not provide either bounds or performance guarantees,

which are key elements of our approach. [73] consider the surgery allocation problem in

an ambulatory surgical center. The authors formulate the sequencing step as a variant

of the two-stage no-wait flow shop scheduling problem. A tabu search based heuristic

is used to find a near-optimal solution. Once again, neither bounds nor performance

guarantees are established.

Turning next to the bin-packing and machine scheduling literatures, we find several

problem formulations that have elements in common with the problem studied in this

paper. Our problem is closer to bin-packing as opposed to machine-scheduling (see [74]

for a survey of machine-scheduling literature) because our goal is to find the minimum

number of ORs (bins) needed to fit all procedures. In contrast, in machine scheduling

problems, the number of machines is known and the goal is to minimize the makespan,

i.e. to complete all work at the earliest possible time. However, our problem has some

features of machine scheduling because we do have the constraint that procedures done

by the same surgeon cannot overlap.

[75] provide a review of the online and offline approximation algorithms for bin pack-

ing. Our setting is offline and our problem is significantly different from the standard

bin-packing problem because we incorporate overlap-avoidance constraints. Upon plac-

ing such constraints, existing offline bin-packing algorithms may not even find a feasible

solution if applied to our problem because same-surgeon jobs may overlap. Overlap

82

avoidance provides a natural segue into a discussion of papers on bin packing with con-

flicts ([76]). Given a set of items, the goal in such problem formulations is to find a

partition of items such that items that are predefined to be in conflict cannot be placed

in the same bin. Conflicts in this setting are “horizontal” – i.e. they need to be avoided

when certain items are placed in the same bin. In contrast, in our problem, the conflicts

are “vertical” – i.e. overlap in time must be avoided across all bins for jobs performed

by the same surgeon.

Many papers in the bin-packing literature present online algorithms, i.e., heuristi-

cally pack items one at a time (see [75], and [77]). The online bin-packing literature also

includes problems with variable-sized bins (see [78], and [79]), which is relevant because

we consider different shift lengths. In this literature, it is not common for papers to

focus on developing lower bounds on the number of bins needed. This is the case in

part because online algorithms do not rely on a branch-and-bound type approach and

the need to develop lower bounds does not arise. In contrast, we provide lower bounds

for the relevant problem formulation and show that it is no less than (2/3) times the

cost of a feasible solution.

Key papers on resource-constrained scheduling are [80], [81], and [82], who define

the problem as that of minimizing the makespan of a set of unit-length independent jobs

that cannot be scheduled before their start times on identical processors. Each job needs

a certain amount of each resource from a set of available resources. All resources are

available throughout the planning horizon, but the available quantity of each resource is

bounded. [82] provide a (1 + ǫ)-approximation algorithm for such problems. Even with

the unit job-length assumption, the approximation algorithm studied in these works

does not apply to our setting because of two reasons. The first reason is that these

models assume that the number of machines (ORs in our model) is fixed, and minimize

the finish time of jobs (i.e. makespan). A guaranteed bound of the scheduling problem

does not result in a guaranteed bound to our problem of minimizing the number of

ORs. Second, we consider a model with two shift lengths, which makes our problem

significantly different from the resource-constrained scheduling problem.

Another related stream of work concerns resource-constrained project scheduling in

which each activity has a potentially different processing time and the goal is to minimize

83

the makespan; see the survey in [83]. Papers in this literature usually develop branch-

and-bound algorithms. The lower bounds on the makespan are calculated by solving

a relaxed problem, e.g. by relaxing the resource constraints ([84]), or the precedence

constraints and allowing preemption ([85]). The key difference relative to our approach

is that the lower bound in these papers is for makespan, which does not translate into

a lower bound for the number of bins needed.

4.3 Data

We obtained surgical scheduling data from three hospitals, which included scheduled

surgery start times, scheduled procedure lengths, surgeon codes, names of surgical ser-

vices and surgical groups, dates and times when surgeries were booked, OR numbers,

actual surgery start times and durations, and assigned staff codes. Note that a partic-

ular surgical service, which is also sometimes called a surgical department, could have

multiple surgical groups with block assignments. Our data did not contain patient, sur-

geon or staff identifying information. Only one hospital kept records of cancelations and

only for those cases that were canceled on the day of surgery. We obtained block sched-

ules and auto release time information separately because these data are not stored in

computerized scheduling records. Table 4.1 summarizes these data. Non-urgent refers

to deferrable surgeries that are booked at least two days in advance of the day when they

are performed. Non-urgent cases are booked primarily on non-holiday weekdays. All

cases include non-urgent cases, cases scheduled on weekends, and those scheduled within

2 days of each surgery day, i.e. urgent and emergent cases. We use a 2-day threshold

because the auto-release date is at least 2 days for the vast majority of surgical groups

in all hospitals.

Hospital 1 had the largest number of ORs, whereas Hospital 2 had the smallest.

Hospital 3 had the most number of surgical services, followed by Hospital 1, and then

Hospital 2. Before the auto-release date, the blocked OR time was 60% of OR capacity

in Hospital 1, 100% in Hospital 2 and 84% in Hospital 3. Hospital 1 used two shift

lengths – 8 hours and 12 hours, whereas the other two hospitals used a single shift

length. However, the shift lengths were different in Hospitals 2 and 3. The presence of

two shift lengths provides greater flexibility in scheduling cases, but it also complicates

84

Table 4.1: Basic Data Summary
Hospital 1 Hospital 2 Hospital 3

All Non-urgent All Non-urgent All Non-urgent

Working Days 364 257 252 213 530 379
No. of ORs 18 10 14
Percent of OR 60% 100% 84%
time blocked
Shift lengths 8 or 12 hr 8 hr 10 hr
Scheduled 10,191 7,483 10,866 9,446 12,394 8,875
Surgeries
Cancelations 222 167 N/A N/A
Surgical 14 3 17
Services
Surgeons 209 187 106 102 82 82

N/A means data were not available.

Cancellations for Hospital 1 refer to those cases that were cancelled on the surgery day.

the corresponding optimization problem. The three hospitals differed a great deal in

the mix of surgeries performed and the volume of each major surgery type (see what

follows for details1).

Figure 4.1 shows volume and complexity encountered in the three hospitals. We show

service volume (as percent of the number of procedures done) and procedure time (mean,

and 95% confidence intervals).

The operating characteristics are quite different across the three hospitals. As can

be seen in Figure A-1, Hospital 2 performed a limited set of procedure types, specifically

ENT, ophthalmology, and orthopedics. Their caseload tended to be high volume, low

complexity procedures with short mean procedure times and small variability around

the mean. Because of this surgical case mix, Hospital 2 performed more non-urgent

surgeries per day (44.35) compared to the other hospitals (29.12 for Hospital 1 and

23.42 for Hospital 3), but still had lower room utilization (56.8%) compared to Hospital

1 In order to demonstrate this visually, we plot the range of procedure durations (complexity)
and volume (percent of total number of procedures) in Figure 4.1. This figure is divided into three
parts because two of the three hospitals support surgical services with very small volumes but highly
variable surgical procedure durations. The horizontal axis shows mean procedure duration and the
95% confidence interval of scheduled procedure durations of each surgery type. The vertical axis shows
the volume of each surgery type in terms of percent of all procedures performed. Not surprisingly,
complexity decreases as volume increases.

85

1. Hospital 2 also had a larger percentage of its surgeons performing multiple surgeries

per day (76%), with each of these surgeons performing almost 5 surgeries per day on

these days.

Hospitals 1 and 3 performed a more varied set of procedure types compared to

Hospital 2. Hospital 1 provided some surgical procedures types that, although low in

volume, have relatively long average procedure times with large variability. Also, for

the same surgical procedures types (e.g. cardiology), Hospital 1’s average surgical times

were longer, suggesting that they may be doing more complex surgical cases relative to

Hospital 3. In spite of this likely higher case complexity in Hospital 1, its operating

room utilization of 65.7% is higher than that of Hospital 3, at 51.4%.

However, in Hospital 3, 63% of its surgeons performed more than one procedure on

the days they operated, compared with 34% in Hospital 1. In addition, for surgeons who

performed more than one case per day, the average number of daily cases performed by

these surgeons was almost one case more in Hospital 3 compared to Hospital 1 (3.72

cases compared to 2.75 cases on average). Thus, Hospital 3 may face more scheduling

challenges trying to accommodate these surgical practice patterns.

In Table 4.2, we report results of the mixed effects generalized linear regression model

described in the last paragraph of Section 4.3. This analysis was performed by using

the xtmixed procedure in STATA 12.1. Table 4.2 shows that surgeon effect is signifiant

in Hospitals 2 and 3. Also, in those hospitals, the actual duration is not significantly af-

fected by the surgery sequence number, after controlling for the surgeon effect. However,

in Hospital 1, surgeon effect is not significant and both surgery sequence number and

the difference between actual and planned start times are significant. Note, however,

that the effect of these factors is not high in practical terms. For example, if actual start

time is 60 minutes later than planned, then that will increase actual duration, relative

to planned, by approximately 2.94 minutes. Similarly, when performing surgeries that

occur later in the sequence, surgeons tend to speed up relative to the planned start time.

However, because the number of surgeries performed in each OR on any particular day

is quite small, the practical effect of surgery sequence number is quite small. To be more

specific, in Hospital 1, the maximum sequence number was 8, with a mean sequence

number of 2. Only about 3% of surgeries had a sequence number equal to or greater

than 5. For a surgery with sequence number 5, actual duration will be shortened by

86

10%

20%

30%

1
2 1 11

2 2 21
2 3 31

2 4 41
2 5 51

2 6 61
2Procedure Time (hour)

Hospital 1

Hospital 2

Hospital 3

General

Gynecology

NeurologyOphthalmology
Orthopedics

Urology

ENTENT

General

Ophthalmology Orthopedics

(a) Service Volume Between 10 and 20%

1%

2%

3%

4%

5%

6%

7%

1
2 1 11

2 2 21
2 3 31

2 4 41
2 5 51

2 6 61
2Procedure Time (hour)

Hospital 1

Hospital 2

Hospital 3

Plastic

Cardiovascular

ENT

Podiatry

Urology

Orthopedics

Cardiovascular

Gynecology

Neurosurgery
Obstetrics

Plastics

Podiatry

Urology

Vascular

(b) Service Volume Between 1 and 10%

0
0%

0.1%

0.2%

0.3%

0.4%

0.5%

1
2 1 11

2 2 21
2 3 31

2 4 41
2 5 51

2 6 61
2Procedure Time (hour)

Hospital 1

Hospital 3

Dental
Gastroenterology

Oral

Spine

Anesthesiology

Gastroenterology

Oral

Pulmonary

Radiology

(c) Service Volume Between 0 and 1%.

Figure 4.1: Volume versus Complexity

87

about 9 minutes, relative to the planned duration, on account of the order in which

surgeries are performed.

Table 4.2: Result of the Mixed-Effects Multiple Linear Regression Analysis

Hospital 1 Hospital 2 Hospital 3

Random Effect: Standard Deviation Standard Deviation Standard Deviation

Surgeon (Intercept) 2.22 10.96 34.47
Residual 42.67 31.88 44.60

Prob > χ̄2 0.110 <0.001∗ <0.001∗

Fixed Effects: Est. S.E. P.V. Est. S.E. P.V. Est. S.E. P.V.

(Intercept) 1.86 1.68 0.268 13.64 1.52 <0.001∗ 34.38 4.76 <0.001∗

Planned Duration 0.957 0.006 <0.001∗ 0.799 0.006 <0.001∗ 0.744 0.008 <0.001∗

Surgery Sequence -1.866 0.538 0.001∗ -0.239 0.128 0.062 -0.227 0.308 0.462
in Room
Start Time 0.049 0.018 0.006∗ 0.010 0.008 0.205 -0.006 0.010 0.561
Difference

Delay Reason -1.838 1.585 0.246 -0.349 0.774 0.652 1.776 1.069 0.097
Indicator

Prob > Wald χ̄2 <0.001∗ <0.001∗ <0.001∗

Standard Deviation: Standard deviation of the random intercepts.
Est.: Estimate, S.E.: Standard Error of the Estimate, P.V.: p-value of Wald statistic.
∗: Significant at 0.05 level.

Next, in Table 4.3 we report the current performance statistics of the three hospitals.

Note that all three hospitals use some form of manual rescheduling and the results shown

in Table 4.3 are obtained after such efforts. Data show that historical utilization was

highest in Hospital 1 (60-65% range) and lowest in Hospital 3 (48-52% range). We

explain how we calculate utilization as follows.

For Hospitals 2 and 3, we calculate the percent of time that is scheduled surgery

time (including clean-up and change over time) within the 8-hour or 10-hour shifts.

The daily utilization is the ratio of the total scheduled surgery time within shift to

the total available time of shifts used. Hospital 1 has two shifts (8-hour and 12-hour),

which makes the calculation of utilization more complicated. Because staff often work

overtime and we do not know from the data which OR is assigned 12-hour shift and

which OR is assigned 8-hour shift, we employ a heuristic calculation: a shift is treated

as a 12-hour shift if the scheduled surgery time during the four extra hours (in excess

88

of 8 hours) is greater than 2 hours; otherwise it is treated as an 8-hour shift. After

determining the shift lengths this way, we calculate the daily utilization as the ratio of

scheduled surgery time within shifts and the total available time according to the shift

lengths.

On any given day, at least a third of the surgeons perform multiple surgeries. If we

count surgeon-days (each surgeon performing cases on a particular day counts as a single

surgeon-day), then in the vast majority of surgeon days, surgeons perform multiple cases

(87-99% in the third to last row of Table 4.3). Recall that multiple cases give rise to

the key difficulty in rescheduling because cases that belong to the same doctor must not

overlap2 . Although many surgeons perform multiple surgeries on their OR day, the

number of surgeries performed by a single surgeon are often small. The average number

of cases per MD per day lies between 2.76 and 3.76 for non-urgent cases. We utilize this

fact in constructing our approach for efficiently solving the rescheduling problem. Data

also reveal that the number of surgeons who operate in multiple rooms on any given

day ranges from 1 to 8 among the three hospitals.

All three hospitals in our data seem to choose planned surgery times that are good

estimates of actual surgery times. Between 68 and 70 percent of surgeries at the three

hospitals finish within the allotted time. Among surgeries that take longer than sched-

uled, the amount of extra time needed is on average between 22 and 41 minutes. We

found that hospitals schedule slightly more time on average than the actual duration.

This is not surprising because the cost of delays, which result in patient inconvenience,

surgeon idleness, and staff overtime, is high.

Because rescheduling changes the sequence in which surgeries are performed, it is

important to test whether it will be appropriate to continue to use original planned

durations. In order to do so, we fitted each hospital’s data to separate generalized

linear mixed models. The dependent variable in each model was the actual surgery

duration. The independent variables belonged to two groups. The surgeon ID was

the random effect (intercept). The fixed effects were the the planned duration, the

sequence number of a surgery in its assigned OR, the difference between actual and

planned surgery start times, and an indicator that was set to 1 if the difference in

2 In practice, if a surgeon has a helper, he or she may overlap procedures scheduled in different ORs.
However, usually this creates a short overlap (in our data, usually 10 minutes or less), which we ignore
in our rescheduling procedure.

89

Table 4.3: Performance Statistics
Hospital 1 Hospital 2 Hospital 3

All Non-urgt All Non-urgt All Non-urgt

AVG Number of 10.7, 3.2* 11.9, 1.6* 9.0 8.6 8.6 7.9
ORs used
SD ORs used 2.5 1.5* 1.9 1.1* 1.5 1.3 1.5 1.2

Utilization 61.56 65.24 58.76 54.06 47.69 49.34
AVG (%)
Utilization 17.54 8.65 16.55 9.14 40.61 29.57
SD (%)

MDs/day 17.29 18.23 10.73 11.04 8.64 8.65
AVG
MDs/day 9.44 4.10 4.89 2.92 4.53 2.23
SD

MDs With > 1 6.06 6.19 7.90 8.35 5.33 5.43
Case/day AVG
MDs With > 1 4.04 2.39 4.06 2.52 3.27 1.98
Case/day SD

MD-days With 88 98 87 99 93 99
> 1 Case (%)

AVG Cases/ 2.75 2.76 5.10 4.98 3.76 3.72
MD/day†
SD Cases/MD/day† 1.38 1.39 4.15 4.11 2.21 2.26
MD/day†
AVG=Average, SD=Standard Deviation, MD = Surgeon.

* Shifts marked with an asterisk are long shifts, † Only MDs with > 1 case/day were counted.

start times could be attributed to the surgeon (e.g. when the surgeon arrived late) and

0 otherwise. Results of this analysis are shown in Table 4.2. In Hospitals 2 and 3,

we found that the surgeon random effect was strong and that after controlling for the

surgeon effect, only planned duration had a significant fixed effect. In particular, this

implies that actual surgery durations in Hospitals 2 and 3 are not affected by surgery

sequence number and early or late start relative to planned start time. Hospital 1 was

different in the sense that the surgeon effect was not strong, and planned surgery times,

90

surgery sequence number, and difference between actual and planned start times were all

significant. However, the coefficients of surgery sequence number and difference in start

time were small, indicating that their practical impact on actual durations was small.

We use this analysis to support our assumption in Section 4.4 that original planned

durations will continue to be good estimates of the actual durations after rescheduling.

4.4 Notation and Model Formulation

We model a hospital with multiple ORs staffed by anesthesiologists, nurses and health

technicians for either αT (called short shift) or T minutes (called long shift), where

α ≤ 1. Note that α = 1 means that there is only one shift type. In this section, we

formulate the rescheduling problem for a particular day, which we call the tagged day.

The number of surgeries (jobs) to be scheduled on the tagged day is known. A job j

is characterized by its physician index µ(j), duration dj and originally scheduled start

time s0j . For each surgeon indexed i, J(i) denotes the set of jobs that are performed

by that surgeon, and J is the set of all jobs. We make the following assumptions to

develop a parsimonious model.

Assumption 1: Time is discrete and 1 minute is a unit of time.

Assumption 2: All ORs are interchangeable and there are no equipment constraints.

Assumption 3: There are enough staff for both long and short shifts and enough ORs

to accommodate all procedures.

Assumption 4: The relationship between scheduled and actual surgery durations re-

mains unchanged when surgeries are rescheduled.

Assumption 1 is justified by the fact that scheduled surgery durations are measured

in whole minutes. Assumptions 2 – 4 are made for mathematical tractability. We

discuss extensions of our model that allow us to relax Assumption 2 in Section 4.8. The

availability of ORs in Assumption 3 is typically not an issue in problems of practical

interest because there is a feasible solution that schedules all surgeries on the tagged

day into available rooms. Assumption 3 is therefore equivalent to the assumption that

the OR manager can choose any number of long shifts when rescheduling. We consider

practical constraints on the availability of long shifts when describing our branch-and-

bound algorithm as follows. Finally, Assumption 4 is consistent with practice and

91

justified by the analysis presented at the end of Section 4.3.

The Branch & Bound (B&B) Algorithm

We modify the standard branch-and-bound algorithm to account for two shift types.

We first obtain an upper bound on the number of long shifts that can be used. A

theoretical bound is the number of surgeons who operate on any given day. However,

because we already have a feasible solution, a much better practical bound is provided

by either (1) the number of shifts that the existing schedule uses, or (2) the maximum

number of long shifts available in a particular hospital. For a fixed upper limit, n̄, we

run the branch-and-bound procedure at most (n̄+1) times: once for each iteration index

i, where i goes from 1 to (n̄ + 1), and in the i-th iteration, we fix the first (i− 1) shifts

to be long shifts. Furthermore, during execution of the algorithm, if we find that in the

k-th run there is a feasible solution in which the first (k − 1) long shifts accommodate

all work, then we do not need to consider additional iterations. Note that which shift

indices are assigned to long shifts and which are assigned to short shifts is not relevant

because the B&B algorithm exhausts all possible assignments with (i− 1) long shifts in

iteration i.

Each iteration finds an optimal assignment with a fixed number of long shifts. Within

each iteration, we use backtracking to undo a recently assigned job and place it at the

end of the queue of available jobs. Backtracking is performed when (1) there is no

feasible assignment of the current job either in existing rooms or in a new room because

of same-surgeon overlap, or (2) the sum of the current partial assignment’s cost and

the lower bound on the cost of assigning the remaining jobs is not strictly smaller than

the current best feasible solution. Note that we calculate a lower bound cost for the

remaining jobs at each job assignment epoch. In this way, backtracking searches all

possible assignments for a fixed number of long shifts within each iteration.

The algorithm terminates at each iteration if either (1) the global lower bound

calculated at the beginning of the iteration is achieved by a feasible solution, or (2) all

possible assignments are exhausted, or (3) the maximum number of steps is reached.

We set the maximum number of steps equal to 100,000. Our implementation of the

algorithm required average, standard deviation and maximum run times of (158, 231,

686), (23, 111, 865), and (4, 27, 243) seconds for the three hospitals data when run on a

PC with 2.40 GHz processor and 4 GB of RAM. We present the algorithm in a pseudo

92

code below.

The Branch & Bound (B&B) Algorithm: Pseudo Code

We introduce several additional notation for clarity, then present the algorithm in a

pseudo code below.

Table 4.4: Additional Notation

JA = set of currently assigned job
JU = J \ JA; currently unassigned job set
L(J) = lower bound cost for job set J
L0 = L(J); global lower bound
L(JU) = current partial lower bound
Cc = cost of current partial solution

L̃ = Cc + L(JU) = current lower bound

For each problem instance, we take all jobs, arrange them in an arbitrary sequence, and

then index them starting with 1. Unassigned job set JU is repeatedly updated during

the execution of the algorithm. These updates cause jobs to be shuffled as explained

below. When we decide to assign a job, we always take the first job in JU . When a job

is unassigned, it is always placed at the end of JU , i.e. in the last position.

1 while iteration limit is not reached

2 calculate L0 = L(J). if a feasible solution is found such that Cc = L0, terminate.

3 if job indexed 1 starts in empty shift indexed 1 for the second time in an iteration,

terminate. (all possible solutions are considered)

4 if JA = J (all jobs are scheduled), update the stored best solution (including job

assignments). Let C∗ denote the cost associated with the current best solution.

5 calculate partial lower bound L(JU) and add to the current cost C to acquire

L̃ = Cc + L(JU).

6 if [L̃ > C∗], then first Backtrack and then go to 3.

93

7 else Branch and then go to 3.

10 end

Branch: add the first job in JU to JA, and construct the compact feasible solution

with JA. We explain what we mean by a compact solution in the sequel.

Backtrack: Un-schedule the last-scheduled job. Place the job at the end of jU . If this

results in emptying the current room, then remove that room from the current solution.

Compactness means that we use the smallest number of rooms to assign all jobs.

Specifically, if job i is sequenced in front of job j, then in the assignment, either i and j

are in different rooms such that the room index of i is smaller, or, if i and j are in the

same room, then i is earlier than j. During the execution of our algorithm, each feasible

solution is compact. The algorithm exhausts all possible sequences if no backtracking

occurs. We explain this with the help of an example below.

Example: suppose we have 5 jobs, JU = {1, 2, 3, 4, 5} at the beginning, and the

first sequence is 1 − 2 − 3 − 4 − 5. Then, the algorithm would backtrack leading to

JA = (1 − 2 − 3 − 4) and JU = (5). Next, if it branches, it will obtain the previous

solution. Therefore, it will backtrack once more resulting in JA = (1 − 2 − 3) and

JU = (5, 4). At this point, it is possible to branch and generate a different solution.

Specifically, it is possible to get JA = (1− 2− 3− 5− 4), JU = ∅. Note that these steps

exhaust all permutations that follow 1-2-3.

The algorithm maintains this routine and similarly exhausts all permutations that

follow 1-2 next, and then all those that follow 1. At this point, the initial sequence

would change such that every job could be the first job in the the sequence. This way,

all permutations will be exhausted, unless some other stopping criterion is triggered

first.

Our goal in rescheduling is to choose a set of new start times, denoted sj, that reduce

the staffing cost. Before rescheduling, we remove all jobs that have dj > T because it

is trivially optimal to assign those surgeries to single long shifts. 3 . That is, in the

3 Note that dj is the scheduled surgery duration, which may not equal the realized duration. We
use realized duration only to calculate the impact of rescheduling on different performance metrics, but
not for rescheduling purposes.

94

rescheduling problem dj < T for each j ∈ J . A key decision variable in our formulation

is yj,t, which is 1 if job j is rescheduled to start at time t, and 0 otherwise. In particular,

if yj,t = 1, then sj = t is the new start time of surgery j. To prevent overlap among

surgeries performed by the same surgeon, we introduce binary variables pjk, which equal

1 if jobs j and k are performed by the same surgeon and j is scheduled before k, and 0

otherwise. When µ(j) = µ(k), pjk +pkj = 1 must hold because either job j is performed

before job k, or its opposite occurs. Because each job that is active (being performed)

at time t must be scheduled in a separate OR, the minimum number of staffed ORs

required at time t equals ht =
∑

j

∑

τ :τ≤t≤τ+dj
yj,τ , the number of active jobs, where

the inner sum identifies if a job j is active at time t and the outer sum counts all active

jobs. An arbitrary job j is active at time t if it started at time τ and t occurs no later

than dj after τ . Problem parameters and decision variables are summarized in Table

4.5 for convenience.

4.4.1 Model Formulation

With the above notation in hand, we formulate the OR rescheduling problem as the

following integer program.

z∗ = min αn1 + n2 (4.1)

Subject to:

∑

t

tyj,t + djpjk − Tpkj ≤
∑

t

tyk,t, ∀j, k such that µ(j) = µ(k) (4.2)

pjk + pkj = 1, ∀j, k such that µ(j) = µ(k) (4.3)

n1 + n2 ≥ ht, t = 1, · · · , αT (4.4)

n2 ≥ ht, t = αT + 1, · · · , T (4.5)

ht ≥
∑

j

∑

τ :τ≤t≤τ+dj

yj,τ , t = 1, · · · , T (4.6)

∑

t

yj,t = 1, ∀j (4.7)

pjk ∈ {0, 1}, ∀j, k such that µ(j) = µ(k) (4.8)

yj,t ∈ {0, 1}, ∀j, t (4.9)

The objective (4.1) minimizes staffing cost, i.e. the total number of staffed ORs after

95

Table 4.5: Notation Used in Model Formulation

Parameters
αT, T = shift lengths, α ≤ 1
t = time index, t ∈ {1, · · · , T}
m = number of jobs (surgeries) scheduled on the tagged day
J = job index set, J = {1, · · · ,m}
dj = scheduled duration of job j
s0j = originally scheduled start time of job j

µ(j) = index of the surgeon who performs job j
J(i) = set of jobs that are performed by surgeon i
dΣ(i) =

∑

j∈J(i) dj = the sum of job durations of surgeon i

Decision variables
ni = number of type-i shifts used after rescheduling, i = 1, 2
yj,t = 1 if job j starts at time t, 0 otherwise
sj = new start time of job j
pjk = 1 if jobs j and k are performed by the same doctor and j is

scheduled before k, 0 otherwise
ht = the minimum number of ORs that need to be staffed at time t
z∗(J) = minimum cost of serving jobs in set J

Other notation
L = lower bound
z = cost associated with a feasible solution, L ≤ z∗ ≤ z

96

weighting the shorter staff lengths by a factor α. Constraints (4.2) can be explained

as follows. Suppose jobs j and k belong to the same surgeon. Then, either pjk or pkj

must equal 1 (from Constraint 4.3). Suppose pjk = 1. Then, Constraint (4.2) ensures

that sj + dj ≤ sk because sj =
∑

t tyj,t and sk =
∑

t tyk,t. Conversely, if pkj = 1, then

Constraint (4.2) reduces to sj −T ≤ sk, which is trivially true because sj ≤ T and start

times are non-negative. Constraints (4.2) thus enforce a non-overlapping ordering of

job start times if they belong to the same surgeon. Constraints (4.6) count the number

of active jobs at each time t and Constraints (4.4) and (4.5) ensure that the number of

ORs needed is at least equal to the maximum of ht across all t. Constraints (4.7) are

needed to ensure that each job is assigned a start time. Finally, Constraints (4.8) and

(4.9) require that pjk and yj,t must be binary variables.

The OR rescheduling problem (4.1) – (4.9) is NP hard because upon ignoring con-

straints (4.2) and (4.3) and setting α = 1, we obtain the well known bin-packing prob-

lem. Therefore, we focus in this paper on developing a lower bound with a performance

guarantee, which is utilized in a branch-and-bound algorithm.

Lemma 4.4.1. The problem of rescheduling ORs, as shown in (4.1) – (4.9), is NP

hard.

Sketch of Proof: The proof is straightforward. The statement of the Lemma follows

from arguments that reduce our problem to the bin-packing problem, which is known

to be NP hard ([86]). This reduction requires that we ignore constraints (4.2) and (4.3)

and set α = 1. �

The practical difficulty of solving the rescheduling problem (4.1) – (4.9) with a

general-purpose software such as CPLEX would depend on the unit of time. A common

unit of time used by hospitals is 1 minute, but it would be possible to consider 5 and

10-minute intervals as units of time. In order to gain an understanding of the complexity

of the problem formulated above, we solved instances of the OR schedule-improvement

problem using CPLEX when time was incremented in units of 1, 5 and 10 minutes.

With 1-minute time increments, the problem formulation had approximately 15 to

20 thousand integer variables (depending on the Hospital), and CPLEX did not solve

any instance of the problem for Hospital 1, approximately 60% for Hospital 2, and

100% for Hospital 3 after running overnight. With 5-minute increments, the number of

97

variables were approximately 3 to 4 thousand, and CPLEX solved all problem instances

for Hospitals 2 and 3, and 80% of instances for Hospital 1. With 10-minute increments,

the number of variables were approximately 1,500 to 2,000, and CPLEX solved all

instances of problems encountered at Hospitals 2 and 3, and 95% of instances at Hospital

1.

Note that for Hospital 1, CPLEX does not solve all instances of the problem even

after running overnight with 10-minute increments. For that hospital, the optimality

gap (difference between the best solution and a bound) with 1-min-increment instances

was 2.5%, and with 5-min-increment instances was 1.5%. Similar statistics for Hos-

pital 2 with 1-min-increment instances was 2.3%. The hospitals in our sample would

be considered small to medium-sized hospitals in terms of number of beds and ORs.

Therefore, we conclude that general-purpose optimization software are not a reliable

means of solving typical OR rescheduling problem.

4.5 One Shift Type

Our approach consists of three steps. In the first step, we develop a classification of sur-

geon types. We do not differentiate between those surgeons who have block assignments

and those who do not. Taking advantage of the surgeon classification, we construct a

staffing cost lower bound L in the second step. Finally, in the third step, we develop a

procedure for recovering a feasible schedule z from the lower bound construction such

that z ≤ (3/2)L, which immediately leads to the conclusion that the constructed lower

bound is at least (2/3) of the optimal solution. Put differently, we use the argument

that L
z∗ ≥

L
z ≥ 2/3.

4.5.1 Step 1: Surgeon Types

Suppose Y is a set of q ≥ 1 jobs with indices {j1, · · · , jq}, then a chain of jobs in Y

satisfies the property that sjk + djk = sjk+1
, where sj1 is arbitrary. In other words, any

arbitrary connected sequence of jobs is called a chain. Note that Y could be either all

jobs of a particular surgeon, or a subset of his or her jobs, and that sjq + djq < T .

Definition 4.5.1. A chain of jobs in Y is called an O-chain with respect to shift length

T if upon splitting the chain in the middle, i.e. at a point t = (sjq + djq + sj1)/2, one

98

of the following two properties holds (1) either no job is cut into two pieces, or (2) if a

job is cut, then upon taking the job that is cut and assigning it to either the first or the

second piece of the chain, both sides of the chain are no longer than (T/2) in at least

one of the two assignments.

From the above definition, it should be clear that if an O-chain is split at a point

that is not the midpoint of the chain, and if the job that is cut (if any) is combined with

either one of the two pieces of the chain, then at least one of these two pieces (after

combining the cut job) must be no more than (T/2). This is an important property of

O-chains that we use later in this paper.

Definition 4.5.2. P2||Cmax(Y) refers to a two-machine minimum makespan problem

([87]) for job set Y . In the minimum makespan problem formulation, there are no

overlap avoidance constraints, such as constraints (4.2) and (4.3) in the OR rescheduling

problem. The optimization problem can be written as C2(Y) = minCmax, subject to
∑

j xijdj ≤ Cmax, i = 1, 2,
∑

i xij = 1, ∀j ∈ Y , xij ∈ {0, 1}, ∀i, j. The decision

variable xij equals 1 if job j is assigned to machine i, and 0 otherwise.

We use P2||Cmax(Y) to identify those surgeon types whose jobs can be arranged in an

O-chain. Note that P2||Cmax(Y) is also NP hard ([86]). However, in the OR reschedul-

ing context, we find that surgeons who perform multiple surgeries on a particular day

perform a relatively small number of surgeries (typically in single digits, see Table 4.3

in Section 4.3) and pseudo-polynomial algorithms exist for solving such problems (for

example, via dynamic programming algorithm for an equivalent knapsack problem with

size (dΣ/2) – see [88]). Therefore, in the intended application of our approach, the

P2||Cmax problem that arises is easy to solve.

Definition 4.5.3. Consider an arbitrary surgeon indexed i with job set J(i). This

surgeon is referred to as an A-type if and only if C2(J(i)) > T/2. Similarly, a surgeon

is O-type if and only if C2(J(i)) ≤ T/2.

Clearly, a surgeon may be either A-type or O-type, but not both. The importance

of this surgeon classification is that if a surgeon is A-type, then there does not exist an

O-chain of his or her jobs. Conversely if a surgeon is O-type, then there must exist at

least one O-chain of his or her jobs. We prove this preliminary result in Lemma 4.5.4,

99

but before doing so, we summarize the additional notation used in this Section in Table

4.6. In this table, we introduce notation Sk to denote the index set of k-type surgeons

and nk to denote the number of k-type surgeons, where k ∈ {A,O}. A proof of Lemma

4.5.4 is provided as follows.

Proof of Lemma 4.5.4: We prove each statement separately. Suppose the surgeon is

A-type. This means C2(J(i)) > T/2. If we find an O-chain of J(i), then that implies

we can divide jobs into two parts such that both parts are at most (T/2) in length.

This is a contradiction because then C2(J(i)) > T/2 cannot be true. That is, when

C2(J(i)) > T/2, it is not possible to find an O-chain of surgeon i’s jobs.

Next, suppose the surgeon is O-type. Solve P2||Cmax(J(i)) to obtain minimum

makespan assignments to two machines such that each assignment is no more than

(T/2). Take the jobs assigned to each machine and organize them into an arbitrary

connected sequence (i.e. a chain). Because each chain is obtained from the solution to

the P2||Cmax(J(i)), either the two chains are of equal length or differ by at most the

duration of one job. Therefore, if we combine the two chains to form a chain of all jobs in

J(i) and then split it in the middle, either no job will be split (which satisfies Property 1

of O chains), or if a job is split, it will belong to the chain of either machine 1 or machine

2. Then, by keeping the split job in the chain to which it was originally assigned by

P2||Cmax(J(i)), we satisfy Property 2 of O-chains. This completes the proof.

Table 4.6: Additional Notation

Chain = a connected sequence jobs
P2||Cmax(J) = the two-machine makespan-minimization problem with job set J
C2(J) = the optimal value of P2||Cmax(J)
A-type surgeon = surgeon i whose jobs satisfy the property: C2(J(i)) > T/2
O-type surgeon = surgeon i whose jobs satisfy the property: C2(J(i)) ≤ T/2
Sk = the index set of k-type surgeons, where k ∈ {A,O}
nk = number of k-type surgeons, where k ∈ {A,O}

Lemma 4.5.4. Given a surgeon i with job index set J(i), the following statements are

true.

100

1. If surgeon i is A-type, then there does not exist an O-chain of jobs in J(i).

2. If surgeon i is O-type, then there exists at least one O-chain of jobs in J(i).

4.5.2 Step 2: Lower Bound Construction

A key step in the construction of lower bound involves arranging surgeons’ jobs in a

chain and filling them in available empty spaces of previously activated operating rooms

in a fluid fashion. We refer to this step as fluid filling. Essentially, this means that we

use all open time in a staffed room before choosing to staff more rooms and do not

worry about the fact that this procedure may cause a particular surgeon’s chain to be

split, i.e. placed in more than one room. Splitting may cause a conflict, which means at

least one job is placed in multiple rooms and/or some same-surgeon jobs overlap. We

focus in Section 4.5.3 on eliminating all splits, and thus eliminating all conflicts. In the

LB construction algorithm, shown in a graphical form in Figure 4.2, we ignore splits.

LB Algorithm

Step 1: Arrange A-type surgeons’ jobs in arbitrary chains and place them in separate

rooms, using nA rooms. Each room may have some unused time. The remaining

surgeons are all O-type surgeons.

Step 2: Arrange O-type surgeons’ jobs in arbitrary O-chains and assign these chains

one at a time to available rooms in a fluid fashion. Use extra rooms as needed if

spaces left in nA rooms are not enough to fit jobs of all O-type surgeons.

A-type surgeons O-chains

Figure 4.2: LB Construction Example (splits are shown by dotted lines)

101

A count of the number of shifts needed is L := nA +

⌈∑
j /∈SA

dj−(nAT−
∑

j∈SA
dj)

T

⌉+

,

where the notation ⌈·⌉ denotes the integer ceiling of its argument. In order to prove

that L is a valid lower bound, we first prove that at least one job of an A-type surgeon

must cross (T/2) in any feasible assignment of his or her jobs. This is a crucial step

because it immediately implies that each A-type surgeon requires at least one room.

Lemma 4.5.5. If a surgeon is A-type, then in any feasible solution, one of the surgeon’s

jobs crosses (T/2). That is, there must exist one job jk such that sjk < T/2 < sjk +djk .

Proof: We prove the result by contradiction. Suppose there is no sjk such that sjk <

T/2 < sjk +djk . Then, (T/2) divides the surgeon’s jobs into two non-overlapping parts.

Each of these parts need not be scheduled in a single room. In one part, each job starts

and ends before (T/2) and in the other part, each job starts and ends after (T/2). This

implies that C2(J(i)) ≤ T/2 and contradicts the definition of A-type surgeons. Hence

proved.

L is a valid lower bound because at least nA rooms are needed for A-type surgeons

and O-type surgeons’ jobs are assigned in a fluid manner. Lemma 4.5.6 presents this

result.

Lemma 4.5.6. L = nA +

⌈∑
j /∈SA

dj−(nAT−
∑

j∈SA
dj)

T

⌉+

is a valid lower bound.

Proof: Lemma 4.5.5 shows that the number of rooms used cannot be smaller than nA.

Therefore, the total residual capacity after accommodating A-type surgeons cannot be

smaller than (nAT −
∑

j∈SA
dj). Then, in the best case the capacity (nAT −

∑

j∈SA
dj)

will be completely filled by O-type surgeons’ jobs, and the additional rooms needed

cannot be greater than

⌈∑
j /∈SA

dj−(nAT−
∑

j∈SA
dj)

T

⌉+

.

4.5.3 Step 3: Feasible Solution Construction

Next, we obtain a feasible solution from L that uses no more than (1/2)L more ORs.

Our main result is presented in Theorem 4.5.7 below.

Theorem 4.5.7. L is a (2/3)-lower bound. Specifically, there exists a feasible solution

z such that L ≥ (2/3)z ≥ (2/3)z∗ for every instance of the OR rescheduling problem.

102

Proof: The LB algorithm causes at most (L−1) O-type surgeons’ chains to be split (see

Figure 4.2 for an example). We show next that splits can be removed by considering

the following three cases. In these arguments, µ denotes an arbitrary O-type surgeon

whose O-chain is split by the fluid-filling routine.

1. |J(µ)| = 1, i.e. surgeon µ has only one job, labeled k. Because C2(J(µ)) ≤ T/2,

it follows that job k can be scheduled in a new room and it will occupy no more

than (T/2) of that room’s time. That is, we can eliminate the assignment conflict

of one room by adding at most (1/2) more room. This is shown graphically in

Figure 4.3.

(a) LB Assignment (b) Feasible Solution

Figure 4.3: Feasible Solution Construction when |J(µ)| = 1

2. |J(µ)| > 1 and surgeon µ’s O-chain is split at least twice (i.e. occupies time in at

least three different ORs). In this case, we take all jobs in J(µ) and schedule them

in a new room. This resolves potential scheduling conflict of at least two rooms,

each of which would have contained pieces of O-chain of the same surgeon. Thus,

for each room whose assignment conflict is resolved, this step adds at most (1/2)

extra room. An example showing the LB and feasible solution construction when

a surgeon’s O-chain is split twice is shown in Figure 4.4.

(a) LB Assignment (b) Feasible Solution

Figure 4.4: Feasible Solution Construction When Surgeon µ’s Chain is Split Twice

103

3. |J(µ)| > 1 and surgeon µ’s O-chain is split only once. If the split does not cause a

job to be cut, then conflict may arise because surgeon µ’s jobs may overlap. Such

conflict can be avoided relatively easily by scheduling the two pieces of surgeon

µ’s jobs at opposite ends of the two rooms. Next, we consider the case in which

splitting causes a job to be cut.

Using Definition 4.5.1 and the discussion that follows this definition, we can argue

that upon taking the split job and combining it with one of the two pieces of the

O-chain, at least one piece must be no more than (T/2). We remove the piece

that is less than (T/2) and assign it to a new room, utilizing at most (1/2) extra

room to resolve the conflict – see example in Figure 4.5. Moreover, we schedule

this surgeon’s jobs at the two ends of the ORs that contain his or her jobs to avoid

overlap.

(a) LB Assignment: Double hatched
part is ≤ T/2

(b) Feasible Solution Uses ≤ 1/2 Ex-
tra Room

Figure 4.5: When Surgeon µ’s Chain is Split Exactly Once

In all cases discussed above, the task of turning the surgery schedule of a room into a

feasible schedule adds at most half extra room. That is, we require at most ⌈12 (L− 1)⌉

additional room to obtain a feasible assignment, which establishes our claim. �

The above procedure gives us a (3/2)-approximation algorithm.We use this approach

to generate the initial feasible solution in our implementation of the branch-and-bound

algorithm.

4.6 Two Shift Types

The proof of the lower bound’s performance guarantee requires three cases to be con-

sidered separately: (1) α ≤ 1/2, (2) 1/2 < α < 2/3, (3) 2/3 ≤ α < 1. In each case, we

define surgeon types, then develop a LB construction algorithm, and finally an approach

to convert the LB into a feasible solution that is at most 3/2 of the lower bound.

104

4.6.1 Step 1: Surgeon Types When 1/2 < α < 2/3

We start by defining surgeon types in Definition 4.6.1. A summary of the defining

characteristics of surgeon types is presented in Table 4.7.

Definition 4.6.1. C-type: A surgeon i is called C-type if and only if C2(J(i)) > αT .

Clearly, for C-type surgeons, d∑(i) > αT .

B1-type: A surgeon i is called B1-type if and only if (1) d∑(i) > αT and (2) 1
2T <

C2(J(i)) ≤ αT . Furthermore, a B1-type surgeon is said to belong to Group-1

if d∑(i) − C2(J(i)) > (1−α
2)T , and to Group 2 otherwise. That is, for B1-type

surgeons who are in Group 2, d∑(i)− C2(J(i)) ≤ (1−α
2)T ;

B2-type: A surgeon i is called B2-type if and only if (1) d∑(i) ≤ αT and (2) 1
2T <

C2(J(i)) ≤ αT .

A1-type: A surgeon i is called A1-type if and only if (1) d∑(i) > αT and (2) 1
2αT <

C2(J(i)) ≤ 1
2T .

A2-type: A surgeon i is called A2-type if and only if (1) d∑(i) ≤ αT and (2) 1
2αT <

C2(J(i)) ≤ 1
2T .

O(α)-type: A surgeon i is called O(α)-type if and only if C2(J(i)) ≤ 1
2αT . In this case,

d∑(i) ≤ αT must be true as well.

Table 4.7: Surgeon Types

Duration Makespan (C2(J(i)))
Sum (d∑) (0, 12αT] (12αT,

1
2T] (12T, αT] (αT, T]

(0, αT] O(α) A2 B2 N/A
(αT, T] N/A A1 B1 C

The above classification is a partition, i.e. each surgeon must belong to exactly one

type and the types are exhaustive. Recall from Table 4.6 that Sx and nx denote, respec-

tively, the subset and number of x-type surgeons, where now x ∈ {A1, A2, B1, B2, C}.

We also use gi to denote the number of B1-type surgeons that belong to Group-i.

105

Analogous to Lemma 4.5.4, we list properties of each surgeon type in Lemma 4.6.2.

Proof of Lemma 4.6.2: We prove the three statements in the Lemma one by one.

1. Suppose there exists a feasible solution in which surgeon i is either C, or B1, or

B2-type, and none of his or her jobs cross t1 = 1
2T . Then t1 = 1

2T divides surgeon-i’s

jobs into two parts – the first part consists of jobs assigned before t1 and the second part

of jobs after t1. Neither part is more than 1
2T and surgeon-i’s jobs can be arranged in

an O-chain. But this indicates that we have a feasible solution to P2||Cmax(J(i)) with

makespan no more than 1
2T , which contradicts the definition of a C, or B1, or B2-type

surgeon.

Similarly, if surgeon-i’s jobs do not cross t2 = αT , then t2 also divides his or her

jobs into two parts such that neither part is more than αT . This also contradicts the

definition of a C, or B1, or B2-type surgeon.

If there exists an O-chain or an O(α)-chain of surgeon-i’s jobs, then that means we

can divide that surgeon’s jobs into two parts and each part is smaller than either 1
2T or

1
2αT . This indicates that we have a feasible solution to P2||Cmax(J(i)) with a makespan

no more than either 1
2T or 1

2αT , which is once again a contradiction.

2. The argument in this case is identical to the argument we presented for O-type

surgeons in Lemma 4.5.4. We do not repeat the argument here for sake of brevity.

3. The argument for the existence of an O(α)-chain can be obtained by replacing T

by αT in the proof of Lemma 4.5.4. This completes the proof.

Lemma 4.6.2. Given surgeon i with job index set J(i), the following statements are

true.

1. If the surgeon is either C-type, or B1-type, or B2-type, then in any feasible as-

signment, jobs of this surgeon must cross t1 = 1
2T and t2 = αT . There does not

exist an O or O(α)-chain of J(i).

2. If the surgeon is either A1 or A2-type, then there exists an O-chain of J(i).

3. If the surgeon is O(α)-type, then there exists an O(α) and also an O-chain of J(i).

Immediate consequences of Lemma 4.6.2 are as follows: (1) in any feasible assignment

of jobs to rooms, the number of long shifts used cannot be smaller than nC ; and (2)

in addition to nC , every feasible assignment must use at least (nB1 + nB2) short shifts.

106

We use these properties in Section 4.6.3 to prove asymptotic performance of our lower

bound. But first, we show how to construct the lower bound in Section 4.6.2.

4.6.2 Step 2: Lower Bound Construction When 1/2 < α < 2/3

The construction of the lower bound in this case is more complicated than in Sec-

tion 4.5.2 because we can not argue that we need long shifts to accommodate B1-type

surgeons. This is best illustrated with a simple example. Suppose all B1 surgeons’

portfolios consist of two jobs: one of duration αT , and the other of duration ǫ = 1

minute. Then, for all problems of practical interest (specifically, when nB1 ≪ T), we

can accommodate B1 surgeons in nB1 rooms with short shifts and one room with a long

shift. We may not need to introduce new long rooms because the ǫ-duration jobs may

fit into the leftover spaces in nC shifts. Therefore, we can only argue that we need at

least nB1 rooms with short shifts. We describe our LB construction procedure next. A

graphical representation of this algorithm can be found in Figure 4.6.

C-shifts

B2-shifts

B1-shifts

Shifts from A1, A2

Shifts from O(α)

Figure 4.6: LB Construction Algorithm

LB Algorithm

Step 1: Arrange each C-type surgeon’s jobs in an arbitrary chain and place the chain

in a separate room with long shift. Each of the nC rooms with shift length T may

have unused time.

107

Step 2: Arrange each B2-type surgeon’s jobs in arbitrary chains and place the chain

in a separate room with short shift. Each of the nB2 rooms with shift length αT

may have unused time.

Step 3: Arrange B1-type surgeons such that those in Group 1 are assigned first. Upon

solving P2||Cmax(J(i)) for the ith B1-type surgeon, the optimal solution splits

J(i) into two chains consisting of whole jobs such that the longer chain is at least

(1/2)T , but no more than αT , and the shorter chain is [d∑(i)−C2(J(i))] in length.

Place the longer chains into separate short shifts, starting with Group-1 surgeons

first.

Step 4: From the first unfilled shift in the above steps, use fluid filling to place the short

chains (also called pieces) of B1-type surgeons, starting with Group-1 surgeons

first. If the shifts introduced in Steps 1, 2 and 3 are all filled up, expand the shifts

introduced in Step 3 from short to long shifts to fill the rest of the second pieces.

Note that we do not need to introduce new shifts because at most nB1 long shifts

are needed to accommodate all B1-type surgeons.

Step 5: From the first unfilled shift in the above steps, use fluid filling to place the

A1, A2 and O(α)-type surgeons in this sequence. Arrange each A1 and A2-type

surgeon’s jobs into an O-chain and each O(α)-type surgeon’s jobs into an O(α)-

chain before fluid filling. Do not alter the length of a previously activated shift. If

the unused time of existing shifts is not enough, introduce new long shifts until all

A1 and A2-type surgeons are placed. Thereafter introduce new short shifts until

all O(α)-type surgeons are placed.

Step 6: If no new shift is introduced in Step 5, then

n′
B1

= ⌈

∑

i∈SC∪SB2
∪SB1

d∑(i)− (nC + αnB2 + αnB1)T

(1− α)T
⌉

B1-type shifts are extended. In this case, report

L = nC + αnB2 + αnB1 + n′
B1

(1− α) (4.10)

as the lower bound. Otherwise, report

L =
∑

d∑(i)/T (4.11)

108

as the lower bound.

We need two separate constructs in Step 6 because if Step 5 does not introduce new

shifts, then in addition to nC + αnB2 + αnB1 , the lower bound must extend n′
B1

short

shifts, giving rise to Equation (4.10). In contrast, if we introduce new shifts in Step 5,

then the weighted number of shifts used is not necessarily a lower bound because it may

be possible to use fewer shifts by choosing a different combination of short and long

shifts. The latter depends on the value of α. Because we need a bound that works for

all α ∈ (1/2, 2/3), we use (4.11), the number of rooms needed when all jobs are filled in

a fluid fashion as a lower bound. These arguments also help establish that L is a valid

lower bound.

Lemma 4.6.3. The amount L obtained from the LB Algorithm is a valid lower bound

for any instance of the OR rescheduling problem.

4.6.3 Step 3: Feasible Solution Construction When 1/2 < α < 2/3

In this section, we describe a method for constructing a feasible solution and show that

the ratio of the lower bound and the feasible solution costs is asymptotically at least

(2/3) in Theorem 4.6.6. For brevity, we refer to x-type surgeons as x surgeons and to

shifts that were introduced in LB Algorithm to accommodate x surgeons as x-shifts,

where x ∈ {C,B1, B2, A1, A2, O(α)}. The most complicated part in our algorithm is the

treatment of B1 surgeons. Therefore, we present a preliminary result first to facilitate

the proof of Theorem 4.6.6.

Definition 4.6.4. In fluid filling procedure of B1 surgeons’ second pieces, let r(i) denote

the index of the first unextended B1-shift in which the second piece of i-th surgeon begins

to fill. We define r(i) = 0 if the second piece of the i-th B1 surgeon begins to fill in

either C-shift or B2-shift, and r(i) =∞ if the second piece begins to fill in the extended

part of a B1-shift.

Lemma 4.6.5. If there exists a B1 surgeon (suppose the (̂i+ 1)-th B1 surgeon; î can be

0) such that r(̂i+1) ≥ î+1, then for any i > î, we must also have r(i) ≥ i. Furthermore,

109

the number of extended B1 shifts is at least









∑nc+nB2
+nB1

i=nc+nB2
+î+1

d∑(i)− (nB1 − î)αT

(1− α)T









.

Proof: To avoid dealing with trivial cases, we focus on situations in which r(i) is finite.

We prove the first claim in Lemma 4.6.5 by contradiction. Suppose there exists i > î

such that r(i) < i. Then, from the (̂i + 1)-th to the i-th surgeon, the second pieces of

those surgeons are all filled in the left-over spaces of the unextended B1-shifts r(̂i + 1)

to r(i). Let the number of surgeons from the (̂i + 1)-th to the i-th be n′. That means

we fill all of these n′ B1 surgeons’ jobs into at most n′ short shifts. This is impossible

because d∑(i) > αT for each B1 surgeon.

Second pieces of surgeons whose indices range from (nc + nB2 + î + 1) to (nc +

nB2 + nB1) are filled into unextended B1 shift starting from shift indexed r(̂i + 1). The

total amount of work of these surgeons is
∑nc+nB2

+nB1

i=nc+nB2
+î+1

d∑(i). The empty space in

remaining unextended B1 shifts is no more than (nB1 − î)αT because r(̂i + 1) ≥ î + 1

and each unextended shift is αT in length. Therefore, the amount of work that needs

to be placed in extended B1 shifts is at least (
∑nc+nB2

+nB1

i=nc+nB2
+î+1

d∑(i) − (nB1 − î)αT).

Finally, because each extended B1 shift adds (1 − α)T capacity, these arguments help

establish the second claim.

We are now ready to prove our main result of this Section, presented in Theorem

4.6.6.

Theorem 4.6.6. L is an asymptotic 2
3 lower bound.

Proof: The LB algorithm places B2 and C surgeons’ jobs in separate rooms. These

assignments are feasible. However, the assignment of remaining surgeons’ jobs may

result in conflicts. In what follows we consider different surgeon types in the order in

which their jobs are assigned to rooms by the LB algorithm. In each case, we find the

ratio of the costs incurred in the LB solution and the feasible solution. But before doing

so, we summarize our results in Table 4.8. Similar to Theorem 4.5.7, our approach

consists of eliminating assignments that result in splits, because splits may lead to

conflicts.

110

Table 4.8: Lower Bound (LB) and Feasible Solution (F) Costs
Surgeon Type Shifts Involved LB & Feasible Relationship

(Full or Partial) Solution Cost

C & B2 Shifts that do not LB0 & F0 LB0 = F0 ≥ (2/3)F0

split any surgeon

Group-1 (1) C & B2-shifts, LBg1 & Fg1 LBg1 ≥ (2/3)Fg1

B1 (2) unextended first g1 B1-shifts,

(3) extended parts of B1-shifts

Group-2 (1) C & B2-shifts, LBg2 & Fg2 LBg2 ≥ (2/3)(Fg2 − 1)

B1 (2) unextended last g2 B1-shifts

A1 (1) C & B2-shifts, LBA1
& FA1

LBA1
≥ (2/3)(FA1

− 2)

(2) B1-shifts & A1-shifts

A2 (1) C & B2-shifts, LBA2
& FA2

LBA2
≥ (2/3)FA2

(2) B1-shifts, A1, & A2-shifts

O(α) (1) C & B2-shifts, LBO(α) & FO(α) LBO(α) ≥ (2/3)FO(α)

(2) B1-shifts, A1, A2, & O(α)-shifts

All All Shifts LB & F LB ≥ (2/3)(F − 4)*

*a shared -1 is included for the case when the last extended

B1 shift splits an A1, A2, or O(α) surgeon.

111

[B1 surgeons:] Using the properties of Group-1 and Group-2 surgeons, we propose the

following procedure for recovering a feasible solution for B1 surgeons whenever their

second pieces are split by the LB algorithm.

For each Group-1 surgeon, extend the shift introduced by his or her first piece (if it is

not extended already) and place both the first and the second pieces in this shift.

This means that for every Group-1 surgeon, the extra cost is at most (1− α)T .

For every two Group-2 surgeons, extend one of their short shifts (if neither is extended

already) and place the second pieces of two surgeons in the extended part. Because

for Group-2 surgeons, d∑(i) − C2(J(i)) ≤ (1−α
2)T , we increase cost by at most

(1− α)T for every two such surgeons.

First, we consider all possibilities regarding where the second pieces of B1 surgeons

may be placed. According to the LB algorithm, they may be filled sequentially in C

shifts, B2 shifts, unextended B1 shifts and extended B1 shifts. It is clear that if all B1

shifts are extended, the space would be enough for all B1 surgeons’ work, so they do

not need additional shifts. By Definition 4.6.4, we know that the second pieces of the

first to the î-th B1 surgeons fill in C, B2 and first to the î-th B1 shifts. We consider

two cases. Case (1): î ≤ g1, and Case (2): î > g1. Recall that gi denote the number of

Group-i B1 surgeons, i = 1, 2.

Case (1): î ≤ g1. Divide g1 into four groups: k0 surgeons whose second pieces are filled

in C shifts but not split; k1 surgeons whose second pieces are split by C-shifts; the next

k2 = î − k1 − k0 surgeons whose second pieces are filled in either B2 or unextended

B1-shifts; and the remaining k3 = (g1 − î) surgeons.

The assignment of jobs of the k0 surgeons in the LB algorithm is feasible: their first

pieces are placed between 0 and αT , and their second pieces are placed between αT and

T with no split. Therefore, we do not change the assignment in the feasible solution

construction.

Next, consider k1 surgeons whose second pieces are split by a C-shift. Because each

C-shift can only split a surgeon once, at least k1 C-shifts are considered here. In the

feasible solution construction, we place each such surgeon into his or her own shift,

extending it into long shift if it has not been extended. So the additional capacity

112

needed is at most (1 − α)T . The ratio of the lower bound to the feasible solution cost

is therefore no less than

k1T

(k1 + k1(1− α))T
=

1

2− α
≥

2

3
, ∀ α ∈ (

1

2
,
2

3
). (4.12)

Focusing next on the k2 surgeons whose second pieces are filled in either B2 or B1-

shifts., we find that each such second piece is at least ((1 − α)/2)T in duration and

the amount of open space in B2 or B1-shifts is at most (α − 1/2)T . Therefore, for k2

surgeons, we need at least ⌈ k2(1−α)
2(α−1/2) ⌉ shifts. Note that here all the B2 shifts and the

unextended B1 shifts indexed from 1 to î are included. If this is not true, then the

(̂i+ 1)-th B1 surgeon’s second piece will fill in a shift indexed before (̂i+ 1)-th B1 shift,

violating the definition of î. In the LB, the cost of placing these surgeons’ jobs is at

least (⌈ k2(1−α)
2(α−1/2) ⌉αT . Upon converting to a feasible solution, the total cost increases by

at most (1− α)k2T . So, the ratio of LB to feasible solution costs is

⌈ k2(1−α)
2(α−1/2)⌉αT

⌈ k2(1−α)
2(α−1/2) ⌉αT + k2(1− α)T

≥

k2(1−α)
2(α−1/2)αT

k2(1−α)
2(α−1/2)αT + k2(1− α)T

=
(1− α)α

(1− α)α + (1− α)(2α − 1)
=

α

3α− 1
≥

2

3
, ∀ α ∈ (

1

2
,
2

3
) (4.13)

At this point, k3 Group-1 surgeons remain. According to Lemma 4.6.5, the presence

of these surgeons requires that we extend at least ⌈

∑nc+nB2
+g1

i=nc+nB2
+î+1

d∑(i)−k3αT

(1−α)T ⌉ B1-shifts.

Note that we do not count those jobs of Group-2 surgeons that need to be placed in

extended shifts when calculating the lower bound. That is, in the lower bound, the cost

associated with k3 Group-1 surgeons is at least

⌈

∑nc+nB2
+g1

i=nc+nB2
+î+1

d∑(i)− k3αT

(1− α)T
⌉(1 − α)T + k3αT ≥

nc+nB2
+g1

∑

i=nc+nB2
+î+1

d∑(i) ≥ (2/3)k3T.

(4.14)

The first inequality comes from removing the integer ceiling and canceling k3αT . In the

last inequality, we have used the fact that d∑(i) > (2/3)T for each Group-1 surgeon.

In the feasible solution, the cost is k3T because each Group-1 surgeon is assigned to

a separate room with long shift. Therefore, (4.12), (4.13) and (4.14) together lead to

LBg1 ≥ (2/3)Fg1 .

113

For Group-2 surgeons, the lower bound incurs a cost of at least g2αT because these

surgeons require at least one short shift each. As mentioned earlier, we do not count

the amount of Group-2 surgeons’ work that is placed in extended B1 shifts. A feasible

solution is obtained by extending at most (g2/2) shifts into long shifts because at least

two Group-2 surgeons’ second pieces can be fitted in (1 − α)T . Therefore, the cost for

Group-2 surgeons in a feasible solution is (g2αT + ⌈12g2⌉(1− α)T).

When g2 is even, the ratio of the lower bound to the feasible turns out to be

LBg2

Fg2

=
g2αT

g2αT + ⌈12g2⌉(1− α)T
=

2α

1 + α
≥

2

3
, ∀ α ∈ (

1

2
,

2

3
). (4.15)

Similarly, when g2 is odd, we have

LBg2

Fg2

=
g2αT

g2αT + ⌈12g2⌉(1− α)T
=

g2αT

g2αT + 1
2(g2 + 1)(1 − α)T

=
2g2α

g2(1 + α) + 1− α

=
2α

(1 + α) + 1
g2

(1− α)
. (4.16)

This means LBg2 ≥ (2/3)(Fg2 − 1) when g2 is odd. So (4.15) and (4.16) together lead

to LBg2 ≥ (2/3)(Fg2 − 1).

Case (2): î > g1. The arguments we presented above work when there are no k3 Group-1

surgeons, which is the consequence of having î > g1. We omit details in the interest of

brevity.

[A1 surgeons:] Jobs belonging to A1 surgeons can be placed into four types of shifts: (1)

long shifts consisting of C-shifts, (2) extended B1-shifts (3) B2 or B1-type short shifts,

and (4) long shifts introduced for A1 surgeons. Because C2(J(i)) ≤ (1/2)T when i is

the index of an A1 surgeon, we are able to organize their jobs into O-chains before fluid

filling into long shifts. Then, following the proof given in Theorem 4.5.7, we can recover

a feasible solution in scenarios (1), (2) and (4) that is at most (3/2) of the lower bound,

with one exception that we discuss below.

In case (2), the last extended B1 may split an A1 surgeon’s chain. When that

happens, we arrange a new long shift in the feasible solution. And this issue may

happen for A2 or O(α) surgeon also, but only one surgeon can be split. So we include a

shared “-1” in the feasible solution cost in our calculation of the ratio of LB to F . See

the footnote in Table 4.8.

114

In addition to the problem identified above, it may happen that an A1 surgeon’s

chain is split at the end of a long shift as well as a short shift, e.g. when filling in C

and B2-type shifts. When we obtain a feasible solution by placing all of the surgeon’s

work in a long shift, this results in a lower-bound to feasible solution ratio of (1 + α)

to (2 + α), which is smaller than (2/3). However, the above situation may occur at

most twice since the long-to-short transition can only happen between C and B2 shifts

and extended and unextended B1 shifts. Therefore, the performance guarantee remains

(2/3) in an asymptotic sense.

Next, we analyze Case (3), i.e. when A1 surgeons’ jobs are filled in short shifts.

Recall that the amount of empty space in each B2-shift or short B1-shift is smaller

than (α − (1/2))T because C2(J(i)) > (1/2)T for B2 and B1 surgeons. Also, we have

d∑ > αT for any A1 surgeon. Let v denote the number of A1 surgeons whose jobs are

placed into these short shifts. Therefore, we would have needed at least ⌈vα/(α−(1/2))⌉

such short shifts for each A1 surgeon. For each A1 surgeon split, we can find a feasible

solution by placing all of his or her work into a separate long shift. Then, the ratio of

the LB to the feasible solution cost is

⌈v(α
α− 1

2

)⌉α

⌈v(α
α− 1

2

)⌉α + v
≥

v(α
α− 1

2

)α

v(α
α− 1

2

)α + v
≥

2

3
, ∀ α ∈ (

1

2
,

2

3
). (4.17)

Together with the fact that the situation in which the (2/3) ratio is violated can cause

at most two fewer shifts in the LB, we have LBA1 ≥ (2/3)(FA1 − 2).

[A2 surgeons:] Jobs belonging to A2 surgeons can be placed into three types of shifts: (1)

long shifts consisting of C-shifts and extended B1-shifts, (2) B2 or B1-type short shifts,

and (3) long shifts introduced for either A1 or A2 surgeons. From arguments similar

to those presented above, it suffices to focus on Case (2). Because B2 surgeons’ jobs

consume at least (1/2)T within B2 and short B1 shifts, when A2 surgeons’ jobs are

assigned to them, each surgeon’s jobs must take at least two shifts (because
1
2
αT

(α− 1
2
)T

> 2).

We recover a feasible solution by placing each A2 surgeon’s jobs into a separate short

shift. This means the ratio of LB to feasible cost is at least 2αT
3αT = 2

3 . This gives us

LBA2 ≥ (2/3)FA2 .

[O(α) surgeons:] The O(α) surgeons have the property that any two splits can be recov-

ered with a single short shift. This argument is identical to what we presented in Theo-

rem 4.5.7. We omit details in the interest of brevity. Here we have LBO(α) ≥ (2/3)FO(α) .

115

By taking sum of all parts, we have LB ≥ (2/3)(F − 4), as shown in Table 4.8.

That is, the ratio of the sum of lower bound and the sum of feasible solution costs is

asymptotically (2/3). Hence proved.

In the above we have completed the lower bound construction for 1
2 < α < 2

3 . The

idea for the other two cases are similar but the constructions also need special care. We

explain the procedures in the following two subsections.

4.6.4 Two Shift Types with 0 < α ≤ 1
2

When 0 < α ≤ 1
2 , the surgeon types, the LB algorithm, and the construction of a

feasible solution are very similar to what we presented in Section 4.5. We provide the

details below.

Step 1: Surgeon Types We utilize the definitions of A- and O-type surgeons from

Section 4.5 (see Definition 4.5.3). No new surgeon types are needed in this case.

Step 2: Lower bound Construction The LB algorithm involves the following steps.

LB Algorithm

Step 1: Arrange A-type surgeons’ jobs in arbitrary chains and place them in separate

long rooms (one room per surgeon), such that each shift starts at the same time.

This step uses nA rooms and each room may have unused time. The remaining

surgeons are all O-type surgeons.

Step 2: Arrange O-type surgeons’ jobs in arbitrary O-chains and assign these chains

one at a time using the fluid filling routine.

Step 3: If only nA shifts are used, then return L = nA as the lower bound. If L̂ > nA

shifts are used, then only the last shift can have unused time. Return L = L̂− 1

as the lower bound if the last shift has unused time, otherwise return L = L̂.

Lemma 4.6.7. L is a valid lower bound.

Proof: Using arguments similar to those in Lemmas 4.5.5 and 4.5.6, we argue that the

number of long shifts used cannot be smaller than nA. Therefore, if in Step 3, the first

case occurs, then L = nA is trivially a valid lower bound. If the second case occurs,

then we remove the last shift from L̂ with the result that L is no more than the total

duration of all jobs. Once again, it is a valid lower bound.

116

Step 3: Feasible Solution Construction

Theorem 4.6.8. L
z∗ ≥

L̂
z∗ −

1
z∗ ≥

2
3 −

1
z∗ . That is, L is an asymptotic 2/3-lower bound.

Proof: It suffices to prove that L̂
z∗ ≥

2
3 . The LB Algorithm results in at most (L̂ − 1)

O-type surgeons’ jobs to be cut. From arguments similar to those presented in Theorem

4.5.7, we can recover a feasible assignment of O-type surgeons’ jobs by introducing at

most ⌈12(L̂− 1)⌉ long shifts. This guarantees that L̂
z∗ ≥

2
3 .

G.5 Two Shift Types with 2/3 ≤ α < 1

For α ∈ [2/3, 1), we use the same surgeon classification and lower bound construction

methods that were introduced in Sections 4.6.1 and 4.6.2. Therefore, we do not repeat

them here. Note that the validity of the lower bound, proved in 4.6.2, does not depend

on the value of α. Therefore, it only remains to show how to construct a feasible solution

and that its associated cost is not more than (3/2) of the lower bound. We proceed to

do that next.

Feasible Solution Construction

Theorem 4.6.9. L is an asymptotic 2
3-lower bound.

Proof: Recall that when constructing the lower bound, we may use empty spaces in C-

and B2-shifts to accommodate other types of surgeons in a fluid manner, causing some

of the assignments to be infeasible. We focus on how to recover a feasible solution from

such assignments. Similar to Theorem 4.6.6, we also present the sketch of the proof in

Table 4.9.

[B1-type surgeons:] In LB construction, we use at least nB1 short shifts to accommodate

the longer pieces of chains of B1 surgeons’ jobs. Next, the second (shorter) pieces may

be placed into the four classes of shifts in the following sequence: C-shifts, B2-shifts,

B1-shifts, and the extended portions of B1-shifts. These assignments are made such

that Group 1 surgeons’ jobs are assigned first.

A straightforward way to construct a feasible assignment of B1-type surgeons’s jobs

(which we refer to as recovering a feasible solution) is to extend the nB1 short shifts and

place these surgeons’ jobs in separate long shifts. Then, the LB cost is at least nB1αT

and the feasible solution cost is at most nB1T . Their ratio is no less than α, which is

no less than (2/3).

117

Table 4.9: Lower Bound (LB) and Feasible Solution (F) Costs

Surgeon Type Shifts Involved LB & Feasible Relationship

(Full or Partial) Solution Cost

C & B2 Shifts that do not LB0 & F0 LB0 = F0 ≥ (2/3)F0

split any surgeon

B1 (1) C & B2-shifts, LBB1
& FB1

LBB1
≥ (2/3)FB1

(2) unextended first g1 B1-shifts,

(3) extended parts of B1-shifts

A1 (1) C & B2-shifts, LBA1
& FA1

LBA1
≥ (2/3)(FA1

− 2)

(2) B1-shifts & A1-shifts

A2 (1) C & B2-shifts, LBA2
& FA2

LBA2
≥ (2/3)FA2

(2) B1-shifts, A1, & A2-shifts

O(α) (1) C & B2-shifts, LBO(α) & FO(α) LBO(α) ≥ (2/3)FO(α)

(2) B1-shifts, A1, A2, & O(α)-shifts

All All Shifts LB & F LB ≥ (2/3)(F − 3)*

*a shared -1 is included for the case when the last extended

B1 shift splits an A1, A2, or O(α) surgeon.

[A1-type surgeons:] The analysis for A1-type surgeons is identical to what we presented

in Theorem 4.6.6. We do not repeat these arguments for sake of brevity.

Recall that we also addressed the case when the last extended B1 split one A1, A2

or O(α) surgeon. Similar to Theorem 4.6.6, we include a shared “-1” in the feasible

solution cost in our calculation of the ratio of LB to F .

[A2-type surgeons:] Because each A2 surgeon has property (1/2)αT < C2 < (1/2)T ,

we treat them as O surgeons if split at long shifts. For brevity we do not repeat the

argument. Next we only focus on A2 surgeons whose chains are split by short shifts.

By the LB Algorithm, these short shifts can only be B2 or unextended B1-shifts, since

all A1 and A2-shifts are long and these surgeons cannot be split by an O(α)-shift. We

combine every two A2 surgeons whose chains are split by short shifts and consider each

pair of surgeons in the following way.

Because each A2 surgeon has the property (1/2)αT < C2 < (1/2)T , we take an

118

optimal solution of P2||Cmax of each A2 surgeon’s jobs and call the longer part the

first piece and the shorter part the second piece. Note that the second piece may be

empty. For every two A2 surgeons, we combine their first pieces and call the combination

an E-type pseudo surgeon. Similarly, we also combine their second pieces and call the

combination an F -type pseudo surgeon. The job duration of each E-type surgeon cannot

exceed T because C2 ≤ T/2. E surgeons have the property that d∑ > αT , which means

that these surgeons are similar to A1-type. F surgeons have the property that d∑ < αT

and C2 <
1
2αT , which makes them analogous to O(α)-type surgeons.

When filling A2-type surgeons’ jobs in a fluid manner, we can also assume that all

the first pieces of A2-type surgeons are assigned before all the second pieces, since that

sequence does not influence the lower bound. Now, to construct a feasible solution, we

treat E pseudo surgeons the same as A1 surgeons and F pseudo surgeons the same as

O(α) surgeons. The feasible solution construction for both types is described in the

proof of Theorem 4.5.7. Hence, we do not include the proof of (2/3) performance of the

lower bound. However, because each E and F pseudo surgeon has jobs belonging to two

surgeons, an extra operation is needed, in order to ensure that each A2-type surgeon’s

jobs do not overlap. We perform the following operations without changing the cost to

ensure that each A2 surgeon does not have overlap in the feasible solution.

1. Ensure that each E-type pseudo surgeon’s two pieces lie on different sides of

(1/2)T . As for A1 surgeons, when E-type pseudo surgeon is split in short shifts,

we construct feasible solution by placing the surgeon’s entire work into a new

long shift. This guarantees (2/3) lower bound performance and ensures that we

can place the two pieces as described. Because E-type surgeons have property

d∑ > αT , each E pseudo surgeon that is placed in short shifts must be split.

2. Some F pseudo surgeon may not be split. If an F surgeon is not split in B2

or unextended B1 shift, that shift includes at least three pieces: the B2 surgeon

or the B1 surgeon’s first piece; the first piece of the F pseudo surgeon, and the

second piece of the F pseudo surgeon. These three pieces are not split. Now the

B2 surgeon or the B1 surgeon’s first piece is placed on the left. In feasible solution

construction, we do not incur extra cost, but do the following to avoid overlapping

of the involved A2 surgeons: we switch position such that the B2 surgeon or the B1

119

surgeon’s first piece is in the middle, and the two pieces of the F pseudo surgeon

are on left and right side. This way, we ensure that the two pieces lie on different

sides of (1/2)T since the B2 surgeon or the B1 surgeon’s first piece is longer than

(1/2)T .

3. Since F pseudo surgeons’ work can be very short, there can be cases in which

more than one F pseudo surgeons are placed in the same B2 or unextended B1

shift without being split. In such cases we can still arrange the position such that

the B2 surgeon or the B1 surgeon’s first piece is in the middle, and each F pseudo

surgeon’s two pieces lie in both sides.

4. Some F pseudo surgeons may be split. If an F pseudo surgeon is split twice or

more times, we introduce a new short shift and place the F surgeon entirely in the

new shift. Let d1 and d2 denote the durations of the two pieces. We can ensure

that the two pieces are placed from the two ends of the shift. That is, the first

piece is placed from 0 to d1, and the second place is placed from (αT − d2) to αT .

Here, although one piece of the F pseudo surgeon may cross (1/2)T , we can avoid

overlapping as by switching sides. Switching ensures that if an A2 surgeon’s first

piece is in the upper left side, then his or her second piece is in the lower right

side. If they overlap, then that means the duration sum of the surgeon is greater

than αT , which violates the definition of A2 surgeon.

[O(α) surgeons:] The argument for O(α)-type surgeons is identical to what we presented

in Theorem 4.5.7. We omit details in the interest of brevity.

At this point in time, we have considered all possible cases and shown how to recover

a feasible solution such that in each case, the ratio of the lower bound to the cost of

feasible solution is asymptotically no less than (2/3). Hence proved.

4.7 Numerical Experiments and Insights

We implemented our approach on data from the three hospitals and tabulated two

types of impacts: (1) on staffing costs, and (2) on surgeons. These experiments reveal

the essential tradeoffs for hospitals considering gainsharing with physician groups to

120

realize staffing cost reductions. We begin with the results related to efficiency (hospital

perspective), which are presented in Table 4.10.

In Table 4.10, we first calculate efficiency gains from non-urgent cases only. Later,

we consider the combined effect of both urgent and non-urgent cases. Because the data

contained instances in which urgent cases were “fitted” in open time between non-urgent

cases, and this were not possible after rescheduling (which created a more tightly packed

schedule), we included the cost of staffing dedicated rooms for urgent and emergent cases

in the second part of our analysis. In Table 4.10, “before” refers to statistics based on

data obtained from the hospitals and “after” refers to similar statistics obtained after

applying our rescheduling algorithm. Note that all three hospitals exhibit substantial

decrease in staffed OR requirements for non-urgent cases and concomitant gains in

utilization. Planned utilization gains range from 23 to 34 percent with Hospitals 2 and

3 showing above 30 percent gains. The realized utilization is calculated using actual

case lengths as opposed to planned case lengths. In these calculations, we included

delays that were caused in the original schedule by the surgeon arriving late. However,

delays that were caused by the sequence of surgeries were recalculated based on the new

sequence. We also kept day-of-surgery cancelations intact when calculating the effect of

rescheduling.

The realized utilization gains are smaller. The difference comes from the fact that

the new schedule uses significantly fewer rooms. Therefore, idleness introduced in the

revised schedule by late surgeon-arrival, sequence-related delays, and surgeries com-

pleting earlier than planned, occupy a much greater percent of the total staffed time.

The number of staffed ORs are calculated using the planned case lengths and we count

the amount of overtime that would be needed to accommodate non-urgent cases in the

original and revised schedules. Savings are counted only when an OR is not staffed for

the entire day and overtime costs are subtracted from such savings. The numbers we

report are average daily savings.

The last five rows of Table 4.10 show the impact of considering urgent and emergent

cases. Using a simple local search, we find the fixed number of dedicated ORs that

would minimize the cost of scheduling urgent and emergent cases for each hospital.

Hospitals would commit to staffing these rooms and their staffing costs would be incurred

regardless of realized urgent/emergent demand. The optimal number of dedicated rooms

121

Table 4.10: OR Efficiency Metrics

Hospital 1 Hospital 2 Hospital 3
Non-Urgent Only Planned Realized Planned Realized Planned Realized

Utilization (before) 65.24 60.41 54.06 50.68 49.34 45.66

Utilization (after) 88.22 80.83 86.78 75.61 83.55 69.15

of staffed ORs (before) 11.9, 1.6* (14.3) 8.3 7.7

of staffed ORs (after) 4.0, 4.6* (10.9) 5.7 4.5

Daily Overtime (before) 281 305 36

Daily Overtime (after) 133 321 280

$ Savings/day 29,970 18,360 23,310

With Urgent Cases

of staffed ORs (before) 10.7, 3.2* (15.5) 9.0 8.7

of staffed ORs (after) 6.0, 4.6* (12.9) 6.7 5.5

Daily Overtime (before) 281 + 170 = 451 305 + 60 = 365 36 + 70 = 106

Daily Overtime (after) 133 + 380 = 513 321 + 90 = 411 280 + 200 = 480

$ Savings/day 17,325 15,525 20,385

$ Savings/day are based on $15/minute of regular OR time and $22.5/minute of overtime
∗Entries marked with an asterisk show ORs with long shifts.
Numbers in parentheses show equivalent number of 8-hour shift.

were 2 (8-hour shifts) for Hospital, 1 (8-hour shift) for Hospital 2 and 1 (10-hour shift)

for Hospital 3. Urgent cases are scheduled as compactly as possible in the order of

arrival. Cases that cannot be accommodated in dedicated rooms are scheduled as add-

on cases at the end of shift and incur overtime charges. Note that projected savings

decline, but remain substantial nonetheless. Notwithstanding potential cost savings,

dedicated ORs for urgent/emergent cases may also improve health outcomes because

urgent cases no longer have to wait until a suitable opening in the existing schedule of

non-urgent cases (see [57]).

We notice in Table 4.10 that the effect on the use of overtime is quite different in

the three hospitals. Overtime use decreases in Hospital 1, remains about the same in

Hospital 2, and increases in Hospital 3. This can be explained based on structural dif-

ferences among these hospitals. Hospital 1 has the ability to use long shifts. Therefore,

by planning to staff more ORs with long shifts, as our algorithm recommends, it can

reduce the use of overtime while at the same time reducing the requirement to staff

a large number of concurrent rooms. Hospital 2 does not have this flexibility and its

use of overtime increases as one would expect. Hospital 3 has long open times between

122

surgeries in the original schedule. This results in an unusually low overtime usage in

the original schedule. Such open times are eliminated by our algorithm, resulting in

overtime use that is similar to that in other hospitals.

One of the key structural differences among the three hospitals is the relative size

of open intervals between scheduled cases in the data. We find that Hospital 3 tends to

leave larger intervals open. This difference explains, to some extent, the differences in

the realized performance of the rescheduling algorithm. We illustrate the differences by

plotting the proportion of total idle time (in the planned schedule) that is accounted for

by a certain count of open intervals, after these intervals are arranged from the longest

to the shortest – see Figure 4.7, which shows the distribution of open intervals. We

find that Hospital 1 requires a stochastically larger number of intervals to achieve the

same proportion of idle time within its schedule. Put differently, it tends to leave open

small intervals of unused time between procedures. In contrast, Hospital 3 leaves larger

chunks of open time and Hospital 2 lies somewhere between these two.

.2
.4

.6
.8

1

0 10 20 30 40

Hospital 1 Hospital 2
Hospital 3

No. of Open Intervals

P
ro

p
o
rt
io
n

o
f
T
o
ta

l
Id

le
T
im

e

Figure 4.7: Distribution of Open Intervals in Planned Schedule

How are the number of staffed ORs affected by the rescheduling procedure? Table

4.10 suggests that surgeries are packed more efficiently and that Hospital 1 will need

more long shifts. In order to provide greater insight into how greater efficiency is

realized, we plot the profile of number of ORs in use in each 15-minute interval of the

day from 7:30 AM till 7:30 PM in Figure 4.8. What we show here are the average

123

number of ORs in use based on original and rescheduled start times and actual surgery

durations. We also show 95% confidence intervals because the actual usage of ORs

changes from one day to the next.

0
5

10
15

7:30 10:00 12:30 15:00 17:30 20:00
Time

O
R
s
In

U
se

(a) Hospital 1
2

4
6

8
10

7:30 10:00 12:30 15:00
Time

O
R
s
In

U
se

(b) Hospital 2

0
2

4
6

8

7:30 10:00 12:30 15:00 17:30
Time

O
R
s
In

U
se

(c) Hospital 3

Figure 4.8: Number of ORs In Use by Time of Day

In Figure 4.8, dash-dotted lines show original schedule and solid lines show revised

schedules.

A common trend across all hospitals is the flattening of OR-use requirements.

Rescheduling creates more uniform utilization of ORs throughout the day, which al-

lows the hospital to staff fewer ORs concurrently and achieve greater utilization. We

also see that Hospital 1 benefits from planning to open more long rooms than it cur-

rently does. In cases such as these, the hospital administration may need to work with

nursing coordinators to identify staff who are willing to work long shifts.

Practitioners are also interested in knowing how rescheduling affects the work day

124

of surgeons. In order to present this information in a succinct manner, we developed

a number of metrics to compare before and after rescheduling results. These results

are summarized in Table 4.11. OR managers may be concerned that a denser packing

of surgical procedures may lead to greater surgeon delays. We calculate three types

of delays. Type 1 delays occur when the affected doctor is delayed by late finish of

a preceding procedure performed by a different surgeon, Type 2 delays occur when

the affected doctor is delayed but he or she performed the previous case in a different

OR, and Type 3 delays occur when the affected doctor is running late for an earlier

procedure performed by the same surgeon in the same room. Clearly, Type 1 delays

are more serious from doctors’ perspectives than Type 2 or Type 3 delays. Calculations

reported in Table 4.11 show that doctors operating in Hospital 1 and 2 can expect

greater frequency of Type 1 delays, but the average number of minutes delayed will

be smaller. This happens because our algorithm schedules procedures performed by

doctors with multiple cases and long durations in the same room. For reasons explained

via Figure 4.7, Hospital 3 is different. Doctors in that hospital will experience relatively

more Type-1 delays because in the original schedule, they experience very small delays

on account of having large chunks of unused times between scheduled procedures. The

differences between mean delays are statistically significant (p-values are close to zero

in all three cases).

The effect on Type 2 and Type 3 delays are quite different. Generally, both the

frequency and mean delays increase upon rescheduling. Similarly, the total time that

a doctor spends performing surgeries (from the start time of their first case to the end

time of their last case), which we call spread, increases as a result of rescheduling.

Upon performing statistical tests, we found the mean differences to be statistically

significant between before and after mean spreads across all hospitals. We also find

that rescheduling will cause a significant proportion of doctors to either report earlier

or later than the first case in their original schedule. Also, rescheduling will cause

surgeons to have more idle time in between surgical procedures. We found that the

average daily increase in surgeons’ idleness across all surgeons amounted to 249 minutes

in Hospital 1 (with SD = 577 minutes), 272 minutes in Hospital 2 (SD = 570 minutes)

and 376 minutes in Hospital 3 (SD = 343 minutes).

Doctors often decide the sequence in which they prefer to perform surgeries on their

125

Table 4.11: Impact on Surgeons

Hospital 1 Hospital 2 Hospital 3

Before After Before After Before After

Type-1 Delay

Count (%) 557 (9%) 1352 (21%) 300 (4%) 3023 (38%) 85 (1%) 1470 (17%)

Avg (min) 95 80 88 78 53 124

Type-2 Delay

Count (%) 931 (15%) 709 (11%) 395 (5%) 2216 (28%) 178 (2%) 616 (7%)

Avg (min) 45 220 62 193 46 244

Type-3 Delay

Count (%) 676 (11%) 442 (7%) 2411 (30%) 731 (9%) 1586(19%) 1716 (20%)

Avg (min) 36 32 51 84 79 97

Spread

Avg (min) 248 280 250 324 279 337

SD 149 173 151 198 157 232

Early Report Time (planned)

Count (%) 1465 (37%) 1386 (60%) 765(24%)

Avg (min) 174 114 165

Late Report Time (planned)

Count (%) 1688 (46%) 753 (33%) 1316(41%)

Avg (min) 207 117 198

Avg = average, SD = standard deviation

Type-1: Same room different MD; Type-2: Same MD different room; Type-3: Same room same MD

126

OR day. Rescheduling may produce an undesirable sequence. However, if a doctor’s

cases are scheduled consecutively, it will be possible for that doctor to rearrange the

sequence of his or her surgeries without affecting the overall schedule. When a doctor has

multiple long cases, our algorithm favors placing that doctors’ jobs in the same room.

In order to calculate the flexibility that a hospital will have to re-sequence surgeries

according to a doctor’s wishes after running our algorithm, we calculated the percent

of total surgery durations that occur in connected sequences. Connected means that

the procedures are done by the same doctor and are placed consecutively in the same

room. We found that in Hospital 1 and 2, 53.3 and 81.2 percent of surgery durations

occurred in connected sequences in the original schedule. In contrast, after running our

algorithm, these percentages were 59.9 and 86.9, respectively. Therefore, for these two

hospitals, there will be flexibility to re-sequence surgeries if desired. Hospital 3 is once

again different. In that hospital, 84.4 percent of surgery durations were in connected

sequences in the data, whereas our algorithm produces a schedule in which 65.4 percent

of the surgery durations occur in connected sequences. We believe that these differences

relate to the way in which Hospital 3 scheduled cases and the case-mix of doctors who

perform surgeries at that hospital.

The impact on doctors has to be weighed against the potential savings. Across the

3 hospitals, daily savings are sufficiently high that we believe it is not inconceivable

that doctors will find it attractive to allow more flexible scheduling of their cases. The

three hospitals may have available up to $119, $68, and $62 per physician idle minute,

respectively, to share with physicians or alternatively incur as additional cost of having

salaried physicians idle. The exact details of gain-sharing plan need to be worked out

separately in each situation because hospitals are likely to have a mix of independent

and employed physicians. It is also possible to place additional constraints on the degree

to which case start times may be changed. That will reduce the extent of savings, but

may lead to greater doctor participation. We discuss extensions of our work in the next

section.

In an effort to gain further managerial insights, we analyzed whether combining

a surgeon’s jobs into one single job would result in similar savings. The resulting

formulation is simpler because overlap-avoidance constraints can be eliminated. We

used CPLEX to solve that model with 5-minute time increments, and compared the

127

resulting staffing cost with that from optimal solutions without combining cases – see

Table 4.12. The reason why we used 5-minute increments is that CPLEX is not able to

solve quite a few instances of the problem for Hospital 1 with 1-minute increments when

we do not consolidate a surgeon’s cases. That is, the benchmark scenario against which

we compare the effect of consolidation requires us to consider 5-minute increments.

Savings are calculated based on $15 per minute. Thus, not combining same-doctor

cases into a single long case will save about 1 staffed OR every 2 weeks in Hospitals 1

and 2, and about 2 staffed ORs every 2 weeks in Hospital 3.

Table 4.12: Effect of Consolidating Same-doctor Cases

Cases Cases % Difference $ Difference
not combined combined

H 1 (equivalent 8-hr shifts) 10.5 10.6 1% $720/day
H 2 (8-hr shifts) 5.2 5.3 2% $720/day
H 3 (10-hr shifts) 4.2 4.4 5% $1800/day

Next, we considered what would happen if we were to allow a small overlap between

end time of one procedure and the start time of the next procedure, so long as both

procedures are performed by the same surgeon. Such overlap is sometimes possible

when a surgeon is assisted by another. However, upon solving cases with and without

permissible 10-minute overlap, we found no difference in the optimal number of ORs

needed. The key reason behind this finding is that cost is determined by the number of

concurrent ORs used, which was not affected upon allowing a 10-minute overlap.

Finally, we analyzed the impact of using two shift types in Hospitals 2 and 3, which

currently use a single shift type. For concreteness, the shift lengths chosen were 8 and

12 hours. Results are shown in Table 4.13. In Column 3 of Table 4.13, we provide

the number of 8 and 12 hour shifts that would be needed. The quantity in brackets

shows the equivalent number of original shifts. We show percentage and dollar savings

in Columns 4 and 5.

The potential savings from rescheduling need to be weighed against the impact on

surgeons. Across the three hospitals, daily savings are sufficiently high that we believe it

is not inconceivable that doctors will find it attractive to allow more flexible scheduling

128

Table 4.13: Impact of Using Two Shifts
Original shift Two shift structure % Difference $ Difference

structure (Equivalent original shifts)

H 2 5.22×8hr 3.1×8hr, 1.1×12hr, (4.78×8hr) 8% $3200/day
H 3 4.23×10hr 3.0×8hr, 1.4×12hr, (4.06×10hr) 4% $1500/day

of their cases. The three hospitals may have available up to $70, $57, and $54 per

physician idle minute, respectively, to share with physicians or alternatively incur as

additional cost of having salaried physicians idle. The exact details of gain-sharing plan

need to be worked out separately in each situation because hospitals are likely to have

a mix of independent and employed physicians. It is also possible to place additional

constraints on the degree to which case start times may be changed. That will reduce the

extent of savings, but may lead to greater doctor participation. We discuss extensions

of our work in the next section.

4.8 Extensions and Concluding Remarks

Practitioner considerations may lead to alternate formulations and further extensions

of our work. Surgeons may wish to have all of their cases scheduled within a short time

window, i.e. without too many breaks in between so they can utilize their time more

effectively. A surgeon may also wish to have all of his or her cases scheduled either in

the AM or the PM block if the total duration is no more than 4 hours. We refer to

such constraints as spread constraints. Our branch-and-bound algorithm can deal with

such constraints, and our lower bounds will be valid, but its worst-case performance

will be reduced to (1/2) from (2/3). The key to obtaining a bound with guaranteed

performance is that each time a chain is split, we place the chain (which includes all

of a surgeon’s jobs) into a new empty room. This way, we recover feasibility by using

at most twice as many rooms as in the lower bound. Investigation of better ways of

constructing lower bounds and feasible solutions are topics for future research.

Some hospitals have specialized equipment in some rooms, but not all rooms, which

gives rise to a constraint that certain cases can be scheduled only in some rooms. If

129

the rooms with specialized equipment are not used for routine cases, then the problem

of rescheduling cases can be divided into two separate problems and solved using our

methodology. However, when rooms with specialized equipment are also routinely used

for cases that do not require such equipment, the problem of rescheduling cases remains a

challenge. Similarly, some hospitals have limited copies of movable equipment that they

wheel from one OR to another. In this case, it would be necessary to make sure that the

number of concurrently scheduled cases that require a particular piece of equipment do

not exceed the number of available pieces of that equipment, creating an an additional

non-overlapping constraint. Such constraints are also difficult to deal with. In both

scenarios, our branch-and-bound algorithm and lower bounds will remain valid, but

the worst-case performance guarantee will not apply. We believe such problem settings

provide important areas for future work.

Consistent with common practice, we assume that at the time when surgeries are

rescheduled, the hospital does not consider using strategic overtime. In some instances,

it may be more economical to use a small amount of overtime and avoid staffing a room

for the entire shift length. Rescheduling with the use of strategic overtime is a hard

problem, which requires a great deal of information about work rules and availability of

scheduled overtime. One of the primary reason why hospitals do not consider strategic

overtime is that rescheduling is done at least two days before the surgery date. Many

more surgeries will be booked after the rescheduling is done, which may use open time in

staffed rooms and also lead to the use of overtime anyway. That is, there is a potential

that the empty space in an OR that is not well utilized will be required for other

surgeries that are scheduled late. If we allow strategic overtime, our theoretical bounds

may not remain intact. We believe considering extensions of our model with strategic

overtime is another area for future research.

The analysis presented in this paper leads to several managerial insights. First, it

shows that significant improvements in OR utilization are possible. Hospitals that are

able to obtain cooperation from their surgeons can increase case volumes with the same

number of ORs and lower staffing costs, or open up block time for additional surgeons.

Second, our analysis identifies patterns of surgical case durations that should be placed

in a single OR and those that may be spread across multiple rooms. These patterns

can be explained to OR schedulers and may lead to better initial schedules. Third, the

130

analysis shows that the use of an appropriate number of long shifts is beneficial. In

particular, Hospital 1 in our data sample used two shift lengths. Upon rescheduling,

we found that Hospital 1 realized the greatest efficiency gains, which is likely due to

the fact that our algorithm selected an optimal number of long shifts. A take away

for hospital executives is to determine the optimal mix of short and long shifts, and to

incentivize staff to work long shifts.

Chapter 5

Conclusions

Each Chapter contains a conclusion section. In what follows, we briefly summarize

the similarities and differences across the three Chapters and discuss future work to

conclude this thesis.

Motivated by improving reserve driver performance, offline operational fixed-job

scheduling models are studied for the day-before reserve driver scheduling and work as-

signment problems in Chapter 2. With knowledge of all jobs that need to be performed,

we consider different heuristics, and we are able to show that one algorithm has approx-

imation ratio between [1 − 1/e, 19/27]. In the day-of reserve driver work assignment

problem, we do not have information of future jobs so we consider the online model.

With this difference, we cannot apply most of the approaches from the model for the

day-before problem. As a result, future job durations are categorized into intervals with

exponentially increasing sizes, and the worst-performance we could achieve is worse than

the day-before model which is an offline model.

In our surgery rescheduling model, unlike the two models for the driver scheduling

problems, only the job durations are fixed but we can decide the job start times. Also,

each job is attached to a surgeon. Furthermore, we cannot reject any job, (in reserve

driver scheduling, reject indicates assigning to overtime) and our objective is to minimize

the number of ORs used. The main idea of our approach comes from bin packing

literature, and to adapt the same-doctor constraints, we introduce a classification of

surgeons which can be done by solving a parallel machine scheduling problem or a

knapsack problem. The main contribution is finding performance-guaranteed lower

131

132

bound, and a performance-guaranteed upper bound or approximation algorithm and a

branch-and-bound algorithm as byproducts.

In conclusion, two fixed-job scheduling models and a bin-packing model with resource

constraints are studied. Among the three models, two models are deterministic and

one is online. The majority of our study and the main contributions are algorithms

with guaranteed worst-case performance. To our knowledge, all theoretical results are

currently the best guarantees for such problems. Experiments on real data are also a

common feature of the three Chapters. Our work is not only theoretically interesting

but also practically useful, because all models are motivated by real-world problems.

Moreover, our models are theoretically more general than the scope of their motivating

problems, so our algorithms can potentially adapt to scheduling and work assignment

problems in many other industries with appropriate adjustments.

Each of the three problems is theoretically difficult and therefore not solved to opti-

mality in polynomial time. Instead, we present algorithms with provable approximation

ratios and in what follows we discuss future work that remains for each of our models.

For the day-before reserve driver scheduling and assignment problem, we have yet

to find the exact approximation ratio of our algorithm. The difficulty of preemptive but

non partial credit version of OFJS-S is still open problem in the future. For the day-of

reserve driver work assignment, how to schedule the shifts for the day-of reserve drivers

is one of the directions that may be pursued in the future.

For surgery rescheduling, more challenges remain open. First, more types of spread

constraints may arise. Some surgeons may require that all of their cases scheduled

within a shorter time window, i.e. without too many breaks in between so they can

utilize their time more effectively. A surgeon may also wish to have all of his or her

cases scheduled either in the AM or the PM block if the total duration is no more than

4 hours. Second, equipment constraints can also arise. If there are not enough copies

of the equipment, it may be necessary to make sure that the number of concurrently

scheduled cases that require a particular equipment do not exceed the number available.

Also, strategic overtime use may need to be addressed. Although these constraints can

be potentially dealt with in the branch-and-bound algorithm, our current bounds may

not be valid or the worst-case performance guarantee may be compromised.

References

[1] I. Gertsbakh and H. I. Stern. Minimal resources for fixed and variable job schedules.

Operations Research, 26(1):68–85, 1978.

[2] A.W.J. Kolen, J.K. Lenstra, C.H. Papadimitriou, and F.C.R. Spieksma. Interval

scheduling: A survey. Naval Research Logistics, 54(5):530–543, 2007.

[3] L. G. Kroon, M. Salomon, and L. N. Van Wassenhove. Exact and approximation

algorithms for the operational fixed interval scheduling problem. European Journal

of Operational Research, 82:190–205, 1995.

[4] S. Martello and P. Toth. A heuristic approach to the bus driver scheduling problem.

European Journal of Operational Research, 24:106–117, 1986.

[5] C. P. DeAnnuntis and W. P. Morris. Transit extraboard manage-

ment - optimum sizing and strategies final report. 2007. URL:

http://www.nctr.usf.edu/pdf/77707.pdf.

[6] H. N. Koutsopoulos. Scheduling of extraboard operators in transit systems. Trans-

portation Sciences, 24(2):87–105, 1990.

[7] L. C. MacDorman and J. C. MacDorman. The transit extraboard: some opportu-

nities for cost savings. APTA Annual Meeting, 1982.

[8] J. L. Perry and L. Long. Extraboard scheduling, workers compensation, and oper-

ators stress in public transit: research results and managerial implications. Trans-

portation Research Record, 1002:21–28, 1984.

133

134

[9] L. C. MacDorman. Extraboard management: procedures and tools. National Coop-

erative Transit Research and Development Program, Synthesis of Transit Practice

Report No. 5, 1985.

[10] D. T. Eliiyi and M. Azizoglu. Spread time considerations in operational fixed job

scheduling. International Journal of Production Research, 44(20):4343–4365, 2006.

[11] M. Fischetti, S. Martello, and P. Toth. The fixed job schedule problem with spread-

time constraints. Operations Research, 35(6):849–858, 1987.

[12] M. Fischetti, S. Martello, and P. Toth. The fixed job schedule problem with

working-time constraints. Operations Research, 37:395–403, 1989.

[13] M. Fischetti, S. Martello, and P. Toth. Approximation algorithms for fixed job

schedule problems. Operations Research, 40(S):96–108, 1992.

[14] H. R. Lourenco, J. Paixao, and R. Portugal. Multiobjective metaheuristics for the

bus driver scheduling problem. Tansportation Science, 35(3):331–343, 2001.

[15] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search heuristic.

Journal of Global Optimization, 6:109–133, 1995.

[16] F. Sivrikaya-Serifoglu and G. Ulusoy. Parallel machine scheduling with earliness

and tardiness penalties. Computers and Operations Research, 26:773–787, 1999.

[17] E. M. Arkin and B. Silverberg. Scheduling jobs with fixed start and end times.

Discrete Applied Mathematics, 18(1):1–8, 1987.

[18] P. Brucker and L. Nordmann. The k-track assignment problem. Computing, 52:97–

122, 1994.

[19] U. Faigle and W. M. Nawijn. Note on scheduling intervals on-line. Discrete Applied

Mathematics, 58:13–17, 1995.

[20] U. Faigle, W. Kern, and W. M. Nawijn. A greedy on-line algorithm for the k-track

assignment problem. Journal of Algorithms, 31:196–210, 1999.

135

[21] O. Solyali and O. Ozpeynirci. Operational fixed job scheduling problem under

spread time constraints: a branch-and-price algorithm. International Journal of

Production Research, 47(7):1877–1893, 2009.

[22] R. Bhatia, J. Chuzhoy, A. Freund, and J. Naor. Algorithmic aspects of bandwidth

trading. ACM Trans. Algorithms, 3(1):1–19, February 2007.

[23] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the

theorey of NP-completeness. W. H. Freeman, 1979.

[24] D. S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publish-

ing Company, 20 Park Plaza, Boston, MA, 02116, 1997.

[25] S. Arora and C. Lund. Hardness of approximations. Chapter 10 in Approxima-

tion algorithms for NP-hard problems, Editor: Hochbaum, D. S., PWS Publishing

Company, 20 Park Plaza, Boston, MA, 02116, 1997.

[26] A. W. J. Kolen and L. G. Kroon. On the computational complexity of (maximum)

shift class scheduling. European Journal of Operational Research, 64:138–151, 1993.

[27] M. L. Fisher. The lagrangian relaxation method for solving integer programming

problems. Management Science, 27(1):1–18, 1981.

[28] B. Korte and J. Vygen. Combinatorial optimization: theory and algorithms.

Springer, 2006.

[29] A. Ghouila-Houri. Caractérisation des matrices totalement unimodulaires. Comptes

rendus hebdomadaires des Séances de l’Académie des Sciences, 254:1192–1194,

1962.

[30] S. Khuller, A. Moss, and S. J. Naor. The budgeted maximum coverage problem.

Information Processing Letters, 70:39–45, 1999.

[31] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to

optimize float: an analytic study exact and approximate algorithms. Management

Science, 23:789–810, 1977.

136

[32] M. Shaked and J.G. Shanthikumar. Stochastic Orders and Their Applications.

Academic Press, New York, 1994.

[33] A. Müller and D. Stoyan. Comparison Methods for Stochatic Models and Risks.

John Wiley & Sons, Chichester, 2002.

[34] M.Y. Kovalyov, C.T. Ng, and T.C.E. Cheng. Fixed interval scheduling: Mod-

els, applications, computational complexity and algorithms. European Journal of

Operational Research, 178(2):331–342, 2007.

[35] D. Gupta, F. Li, and N. Wilson. Extraboard workforce planning for bus transit

operations. CURA Reporter, 41(3-4):11–18, 2011.

[36] R. J. Lipton and A. Tomkins. Online interval scheduling. Proceedings of the fifth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 302–311, 1994.

[37] G. J. Woeginger. Online scheduling of jobs with fixed start and end times. Theo-

retical Computer Science, 130(1):5–16, 1994.

[38] H. Miyazawa and T. Erlebach. An improved randomized online algorithm for a

weighted interval selection problem. Journal of Scheduling, 7(4):293–311, 2004.

[39] Ulrich Faigle and Willem M Nawijn. Note on scheduling intervals on-line. Discrete

Applied Mathematics, 58(1):13–17, 1995.

[40] S. Seiden. Randomized online interval scheduling. Operations Research Letters,

22:171–177, 1998.

[41] S. P. Y. Fung. Lower bounds on online deadline scheduling with preemption penal-

ties. Information Processing Letters, 108(4):214–218, 2008.

[42] S. P. Y. Fung, C. K. Poon, and F. Zheng. Online interval scheduling: randomized

and multiprocessor cases. Journal of Combinatorial Optimization, 16(3):248–262,

2008.

[43] S. Baruah, G. Koren, B. Mao, B. Mishra, A. Raghunathan, L. Rosier, and

D. Shasha. On the competitivenes of on-line real-time task scheduling. The Journal

of Real-time Systems, 4(2):125–144, 1992.

137

[44] G. Koren and D. Shasha. An optimal on-line scheduling algorithm for overloaded

uniprocessor real-time systems. SIAM Journal on Computing, 24:318–339, 1995.

[45] F. Zheng, W. Dai, P. Xiao, and Y. Zhao. Competitive strategies for on-line produc-

tion order disposal problem. Proc. of 1st International Conference on Algorithmic

Applications in Management, pages 46–54, 2005.

[46] F. Zheng, Y. Xu, and E. Zhang. On-line production order scheduling with preemp-

tion penalties. Journal of Combinatorial Optimization, 13(2):189–204, 2007.

[47] Amotz Bar-Noy, Sudipto Guha, Joseph Naor, and Baruch Schieber. Approximating

the throughput of multiple machines in real-time scheduling. SIAM Journal on

Computing, 31(2):331–352, 2001.

[48] Ulrich Faigle, R Garbe, and Walter Kern. Randomized online algorithms for max-

imizing busy time interval scheduling. Computing, 56(2):95–104, 1996.

[49] Minos Garofalakis, Yannis Ioannidis, Banu Özden, and Avi Silberschatz. Com-

petitive on-line scheduling of continuous-media streams. Journal of Computer and

System Sciences, 64(2):219–248, 2002.

[50] F. Li and D. Gupta. The extraboard operator schedul-

ing and work assignment problem. IIE Transactions, 2013,

http://www.tandfonline.com/doi/pdf/10.1080/0740817X.2014.882036.

[51] B. Korte and D. Hausmann. An analysis of the greedy algorithm for independence

systems. Annals of Discrete Mathematics, 2:65–74, 1978.

[52] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,

45(4):634–652, 1998.

[53] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to

optimize float: an analytic study exact and approximate algorithms. Management

Science, 23:789–810, 1977.

[54] R. L. Jackson. The business of surgery. Health management Technology, pages

20–22, 2002.

138

[55] C.J. DeFrances and M.J. Hall. 2005 National hospital discharge survey. Adv Data,

385:1–19, 2007.

[56] A. Macario. What does one minute of operating room cost? Journal of Clinical

Anesthesia, 22:233–236, 2010.

[57] T. Bhattacharyya, M. S. Vrahas, S. M. Morrison, E. Kim, R. A. Wiklund, R. M.

Smith, and H. E. Rubash. The value of the dedicated orthopaedic trauma operating

room. J Trauma, 60(6):1336–40, 2006.

[58] Anonymous. Survey: hospital executives nationwide facing op-

erating room case volume increases, seeking greater efficiency

through healthcare information technology (HIT), 2012. available at

sisfirst.com/news-and-resources/pressreleases/survey, Downloaded

Oct 25, 2013.

[59] Anonymous. Affordable care act to improve quality of care for peo-

ple with medicare, 2011. U.S. Department of Health and Human Ser-

vices News Room, For Immediate Release March 31, 2011, available at

http://www.hhs.gov/news/press/2011pres/03/20110331a.html, Downloaded

Oct 21, 2013.

[60] S.M. Shortell. Bending the cost curve: A critical component of health care reform.

JAMA, 302(11):1223–1224, 2009.

[61] D. Gupta. Surgical suites’ operations management. Production and Operations

Management, 16(6):689–700, NOV-DEC 2007.

[62] D.N. Pham and A. Klinkert. Surgical case scheduling as a generalized job shop

scheduling problem. European Journal of Operational Research, 185:1011–1025,

2008.

[63] P.T. Vanberkel, R.J. Boucherie, E.W. Hans, J.L. Hurink, and N. Litvak. A survey

of health care models that encompass multiple departments. International Journal

of Health Management and Information, 1(1):37–69, 2010.

sisfirst.com/news-and-resources/pressreleases/survey
http://www.hhs.gov/news/press/2011pres/03/20110331a.html

139

[64] B. Cardoen, E. Demeulemeester, and J. Beliën. Operating room planning and

scheduling: A literature review. European Journal of Operational Research,

201(3):921–932, 2010.

[65] F. Guerriero and R. Guido. Operational research in the management of the oper-

ating theatre: a survey. Health care management science, 14(1):89–114, 2011.

[66] Y. Gerchak, D. Gupta, and M. Henig. Reservation planning for elective surgery

under uncertain demand for emergency surgery. Management Science, 42(3):321–

334, 1996.

[67] B. Denton and D. Gupta. A sequential bounding approach for optimal appointment

scheduling. IIE Transactions, 35(11):1003–1016, 2003.

[68] E. Hans, G. Wullink, M. van Houdenhoven, and G. Kazemier. Robust surgery

loading. European Journal of Operational Research, 185(3):1038–1050, 2008.

[69] M.A. Begen and M. Queyranne. Appointment scheduling with discrete random

durations. Mathematics of Operations Research, 41(2):845–854, 2009.

[70] M.A. Begen, R. Levi, and M. Queyranne. Technical note: A sampling-based ap-

proach to appointment scheduling. Operations Research, 60(3):675–681, 2012.

[71] Q. Kong, C.Y. Lee, C.P. Teo, and Z Zheng. Scheduling arrivals to a stochastic

service delivery system using copositive cones. Operations Research, 61(3):711–

726, 2013.

[72] H. Fei, N. Meskens, and C. Chu. A planning and scheduling problem for an operat-

ing theatre using an open scheduling strategy. Computers & Industrial Engineering,

58(2):221–230, 2010.

[73] V.N. Hsu, R. de Matta, and C.Y. Lee. Scheduling patients in an ambulatory

surgical center. Naval Research Logistics (NRL), 50(3):218–238, 2003.

[74] J. B lażewicz, W. Domschke, and E. Pesch. The job shop scheduling problem: Con-

ventional and new solution techniques. European journal of operational research,

93(1):1–33, 1996.

140

[75] E.G. Jr. Coffman, M.R. Garey, and D.S. Johnson. Approximation Algorithms for

Bin Packing: A Survey. Chapter 2 in Approximation Algorithms for NP-Hard

Problems, Editor: Hochbaum, D., PWS Publishing, 20 Park Plaza, Boston, MA,

02116, 1999.

[76] L. Epstein and A. Levin. On bin packing with conflicts. In Approximation and

Online Algorithms, pages 160–173. Springer, 2007.

[77] G. Galambos and G.J. Woeginger. On-line bin packing: a restricted survey.

Zeitschrift für Operations Research, 42(1):25–45, 1995.

[78] C. Chu and R. La. Variable-sized bin packing: tight absolute worst-case perfor-

mance ratios for four approximation algorithms. SIAM Journal on Computing,

30:2069–2083, 2001.

[79] S. Seiden, R. Van Stee, and Epstein L. New bounds for variable-sized online bin

packing. SIAM Journal on Computing, 32(2):455–469, 2003.

[80] M.R. Garey, R.L. Graham, D.S. Johnson, and C. Yao. Resource constrained

scheduling as generalized bin packing. Journal of Combinatorial Theory (A),

21(3):257–298, 1976.

[81] J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan. Scheduling subject to re-

source constraints: classification and complexity. Discrete Applied Mathematics,

5(1):11–24, 1983.

[82] A. Srivastav and P. Stangier. Tight approximations for resource constrained

scheduling and bin packing. Discrete applied mathematics, 79(1):223–245, 1997.

[83] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-

constrained project scheduling: Notation, classification, models, and methods. Eu-

ropean Journal of Operational Research, 112(1):3–41, 1999.

[84] J.P. Stinson, E.W. Davis, and B.M. Khumawala. Multiple resource–constrained

scheduling using branch and bound. AIIE Transactions, 10(3):252–259, 1978.

141

[85] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm for

the resource-constrained project scheduling problem based on a new mathematical

formulation. Management Science, 44(5):714–729, 1998.

[86] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory

of NP-Completeness. Freeman, San Fransisco, C.A., 1979.

[87] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

[88] D. Bertsimas, J.N. Tsitsiklis, and J. Tsitsiklis. Introduction to Linear Optimization.

Athena Scientific, 1997.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Reserve Driver Scheduling and Work Assignment Problem: Day-before
	Introduction
	Model Formulation, Complexity and Special Cases
	One-Operator Cases

	Heuristics
	The Greedy Approach (A1)
	The Two-Stage Approach (A2)
	The Decomposition-Based Approach (A3)

	Numerical Experiments
	Concluding Remarks

	Reserve Driver Work Assignment Problem: Day-of
	Introduction
	Preliminaries
	The Myopic Algorithm for Single-Processor Cases
	The Finite-Step Marriage Problem

	A Randomized Algorithm for Single-Processor Online FJS
	The Competitive Ratio Bound

	Multiple-Processor Online FJS
	Numerical Experiments
	Concluding Remarks

	Improving Operating Room Schedules
	Introduction
	Literature Review
	Data
	Notation and Model Formulation
	Model Formulation

	One Shift Type
	Step 1: Surgeon Types
	Step 2: Lower Bound Construction
	Step 3: Feasible Solution Construction

	Two Shift Types
	Step 1: Surgeon Types When 1/2 < < 2/3
	Step 2: Lower Bound Construction When 1/2 < < 2/3
	Step 3: Feasible Solution Construction When 1/2 < < 2/3
	Two Shift Types with 0 < 12
	Two Shift Types with 2/3 < 1

	Numerical Experiments and Insights
	Extensions and Concluding Remarks

	Conclusions
	References

