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Abstract

Magic boxes are a 3-dimensional generalization of magic rectangles, which in turn are

a classical generalization of the magic square. In this paper, two new generalizations

of the magic box are introduced: the magic box set and the magic hollow box. Several

necessary conditions and several sufficient conditions for the existence of these structures

are examined, as well as conditions which preclude the existence of these structures.
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Chapter 1

Introduction

There is no science that teaches the harmonies of nature more clearly than

mathematics, and the magic squares are like a mirror which reflects the

symmetry of the divine norm immanent in all things, in the immeasurable

immensity of the cosmos and in the construction of the atom not less than

in the mysterious depths of the human mind.

—Paul Carus

Discovered by the ancients, studied for centuries, and still the topic of research today,

the magic square has intrigued great minds throughout the world over the greater part

of the last millennium [1]. The oldest known magic square is the Lo Shu, preserved

in ancient Chinese literature. German artist Albrecht Dürer engraved the first known

European magic square in his 1514 work Melancholy. J.W. Göthe presented a magic

square of order 3 in his epic Faust. Benjamin Franklin was also known to have toyed with

constructing magic squares. Rigorous mathematical study of magic square construction

began in 1687 by the French aristocrat Antoine de la Loubère [2][3].

A magic square of order n is an n×n array containing the natural numbers 1, 2, 3, . . . , n2

arranged such that the sum of the numbers along any row, column, or main diagonal

is a fixed constant. The so-called magic constant for a magic square is the same for
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rows, columns, and main diagonals, and it is easy to see that this constant is n(n2+1)
2

[4]. Magic squares are known to exist for every square where n 6= 2 [5].

One basic generalization of the magic square is the magic rectangle. An m × n

magic rectangle is an m×n array containing the natural numbers 1, 2, . . . ,mn arranged

such that the sum of the entries in each row is constant and the sum of each column

is another constant (different constants if m 6= n) [6]. Note that there is no diagonal

requirement as there are with magic squares. Magic rectangles can only exist when the

two dimensions are the same parity and are both greater than 1, and it is known within

these parameters that a magic rectangle exists when at least one dimension is greater

than 2 [7].

Another natural generalization of the magic square is the magic cube. A magic cube

of order n is an n × n × n cubical array containing the natural numbers 1, 2, . . . , n3

arranged such that the sums of the entries along each row, column, and pillar (rows in

every dimension) and each of the four great diagonals are the same constant number.

The magic constant for a magic cube is n(n3+1)
2 [2]. It is known that a magic cube of

order n exists for all n 6= 2 [4].

Mathematicians have relaxed and implemented restrictions for both magic squares

and magic cubes to create new, similar structures. When we consider relaxing or aug-

menting the condition on the diagonal sums for squares and cubes, we derive the ideas of

semi-magic (no diagonal sums are considered) and super-magic (all diagonals, not just

the four great diagonals, of a cube must have the same constant sum as the rows) [3].

Semi-magic is an idea that applies to squares, rectangles, cubes, and rectangular prisms,

whereas super-magic can only apply to squares, cubes, and hypercubes. Another ana-

logue of the magic square and magic cube involves the relaxation of the requirement of

using natural numbers. Kermes and Penner introduce the notion of using real numbers

as entries of the semi-magic cube, and also discuss the use of entries from an Abelian

group [3].
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A further generalization is the magic box. As this is closely related to the topic of

this paper, we will introduce more precise notation here. A magic box of size (a, b, c),

which we will denote as MB(a, b, c), is an a×b×c array containing the natural numbers

1, 2, . . . , abc arranged such that the sums of the entries along each of the a rows is some

constant, the sums of the entries along each of the b columns is a (perhaps different)

constant, and the sum along each of the ab pillars is also a (perhaps different) constant.

Magic boxes can only exist when the three dimensions are the same parity. For even

dimensions, a magic box exists if two of the dimensions are greater than 2 [6]. For

odd dimensions, a magic box exists if two of the dimensions share a common factor

[6]. Some magic boxes of pairwise relatively prime odd dimensions are known to exist,

but it remains an open question whether there exists a magic box with arbitrary odd

dimensions [8].

Another generalization is magic cubes and magic boxes of higher dimensions. Thomas

Hagedorn refers to these shapes in general as magic n-rectangles [6]. A magic n-rectangle

of size (m1,m2, . . . ,mn) is an m1 × · · · × mn array containing the natural numbers

1, 2, . . . ,m1m2 · · ·mn arranged such that the sums of the entries along each row in each

of the n dimensions is some constant. As is the case with magic rectangles, the row sum

for one dimension may be different from the row sum for a different dimension. Very

little research has been done on these structures, but once again, all dimensions must

be the same parity. For even dimensions, a magic n-rectangle exists if no two of the

dimensions equal 2 [6]. There are no published results for odd dimensions for boxes of

dimension 4 or higher.

We can make a further generalization of the magic square in two dimensions, called

a magic rectangle set. A magic rectangle set MRS(a, b; c) is a collection of c arrays

of size a × b containing the natural numbers 1, 2, . . . , abc arranged such that the sums

of the entries along each row in each rectangle sums to the same constant and each

column in each rectangle sums to another constant. It is known that a magic rectangle

set MRS(a, b; c) exists for every c if a and b are even and ab > 4 (i.e. both a and b
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cannot equal 2) [9]. It is also known that MRS(a, b; c) exists when a, b, and c are odd,

a > 1, and gcd(a, b) > 1 [10].

It is from the magic rectangle set that we make a new generalization in three di-

mensions, called the magic box set. A magic box set MBS(a, b, c; d) is a collection of d

arrays of size a× b× c containing the natural numbers 1, 2, . . . , abcd arranged such that

the entries along each row in each rectangle sum to a constant number ρ, the entries

along each column in each rectangle sum to a constant number σ, and the entries along

each pillar in each rectangle sum to a constant number π. It is usually the case that

ρ 6= σ 6= π; repeats can only happen when at least two of a, b, c are equal.

Yet another three-dimensional generalization of the magic rectangle arises when we

consider a structure formed by linking n rectangles of size a× c along an edge, creating

a regular n-gon with side length a and height c. The choice of notation reminds us that

c is the height of each column. The middle of the structure is hollow; hence we will

refer to this structure as a magic hollow box, and we will denote it as MH(n, a, c). We

look to fill this structure with the numbers 1, 2, . . . , n(a− 1)c (the number of total cells

in such an object) such that each row sums to a constant ρ and each column sums to a

constant σ.



Chapter 2

Problems

2.1 Problems Regarding Magic Box Sets

When we consider the magic box set, the chief question to answer is this: for which

a, b, c and d does a magic box set MBS(a, b, c; d) exist? We will now make an important

observation which answers many cases of this question.

Observation 2.1. If a magic 4-rectangle MR(a, b, c, d) exists, then a magic box set

MBS(a, b, c; d) exists.

This observation is clear: we can slice MR(a, b, c, d) into d “slices” of size a× b× c.
Since the magic 4-rectangle is magic along all four dimensions, it is certainly magic

along any three dimensions. Hence, each a × b × c slice is also magic along all three

dimensions.

Using this observation, we will call on the following theorem proved by Thomas R.

Hagedorn in [6] in order to partially solve our problem.

Theorem 2.2. If mi are positive even integers with (mi,mj) 6= (2, 2) for i 6= j, then a

magic n-rectangle MR(m1,m2, . . . ,mn) exists.

Hagedorn proves in the same paper that the converse is also true, namely, that

MR(m1,m2, . . . ,mn−2, 2, 2) does not exist. Hence we have our first result.

5
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Theorem 2.3. If a, b, c, and d are even and at most one of a, b, c, d equals 2, then

MBS(a, b, c; d) exists.

Proof. This theorem follows directly from Theorem 2.2 and Observation 2.1.

There are therefore only four cases left to examine for the existence ofMBS(a, b, c; d).

Problem 2.4. If c is even, does MBS(2, 2, c; d) exist?

Problem 2.5. If a and b are even and greater than 2, does MBS(a, b, 2; 2) exist?

Problem 2.6. If a, b, c are even and d is odd, does MBS(a, b, c; d) exist?

Problem 2.7. If a, b, c are odd (in which case d must be odd), does MBS(a, b, c; d)

exist?

2.2 Problems Regarding Magic Hollow Boxes

This is an entirely new generalization of the magic square which has not been explored.

Therefore, we focus our efforts on answering two questions.

Problem 2.8. Which values of n, a, or c guarantee that MH(n, a, c) does not exist?

Problem 2.9. For which n, a, c does MH(n, a, c) exist?



Chapter 3

New Results on Magic Box Sets

As we seek to determine the existence of certain magic box sets, it is useful to determine

the constant row, column, and pillar sums that the magic box sets must have. The

computation of these constants is trivial, and we list them here.

1. The row sum ρ is b
2(abcd+ 1).

2. The column sum σ is a
2 (abcd+ 1).

3. The pillar sum π is c
2(abcd+ 1).

We now examine Problems 2.4 and 2.5, where we consider the existence ofMBS(2, 2, c; d)

and MBS(a, b, 2; 2). We arrive at the following theorems, which completely solve these

problems.

Figure 3.1: A box with a rows, b columns, and c layers

7
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Theorem 3.1. If c is even, MBS(2, 2, c; d) does not exist.

Proof. Suppose that a = b = 2, and that MBS(2, 2, c; d) exists. Then ρ = (2·2·cd+1) =

(4cd+1) = σ. We need to construct four 2×2×4 boxes using the numbers 1, 2, . . . , 4cd

to create MBS(2, 2, c; d). Place 1 anywhere in any box. Then, to reach the necessary

row sum, we must place 4cd in the adjacent cell. However, to achieve the necessary

column sum, we must place 4cd in the cell directly below 1. This requires us to use the

number 4cd twice, which violates the definition of a magic box. By contradiction, the

proof is complete.

Theorem 3.2. Suppose a ≤ b, a and b are even, and neither a nor b equals 2. Then

MBS(a, b, 2; 2) exists.

Proof. We begin by taking a magic box MB(a, b, 2), which we know exists from [6]. Let

xi,j,k denote the entry of MB(a, b, 2) in the (i, j, k)th cell, where 1 ≤ i ≤ a, 1 ≤ j ≤ b,

and 1 ≤ k ≤ 2. We use this box to construct our base box Ba×b×2, defining the (i, j, k)th

entry of Ba×b×2 as yi,j,k = 2(xi,j,k − 1). It is clear that the sum of each row in Ba×b×2

is 2ab(2ab−1)
2 · 1a = b(2ab− 1), the sum of each column is a(2ab− 1), and the sum of each

pillar is 2(2ab− 1).

Figure 3.2: Latin cube of order 2

Now we construct a set of 2 residual boxes, RB1 and RB2, with entries r1i,j,k and

r2i,j,k, respectively, for 1 ≤ i ≤ a, 1 ≤ j ≤ b, and 1 ≤ k ≤ 2. We construct RB1 by

piecing together a
2 × b

2 = ab
4 copies of the Latin cube in Figure 3.2, where r11,1,1 = 1.

Then define RB2 by r2i,j,k = 1 + [(r1i,j,k + 1) (mod 2)]. Now each row, column, and pillar
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of RB1 and RB2 contains exactly half of its entries as ones and the other half as twos.

It is clear then that the rows sum to 3
2b, the columns sum to 3

2a, and the pillars sum to

3.

We finish our construction by defining a magic box set MBS(a, b, 2; 2), where the

(i, j, k)th entry in the dth box is rdi,j,k + yi,j,k, where 1 ≤ d ≤ 2, 1 ≤ i ≤ a, 1 ≤ j ≤ b,

and 1 ≤ k ≤ 2. It should be clear by construction that the sum of every row in

MBS(a, b, 2; 2) is b(2ab− 1) + 3
2b = b

2(4ab+ 1), the sum of every column is a(2ab− 1) +

3
2a = a

2 (4ab + 1), and the sum of every pillar is 2(2ab − 1) + 3 = 4ab + 1. Moreover,

by construction, every number between 1 and 4ab appears in the set exactly once.

Therefore, the construction is complete.

We can generalize this theorem and its proof to prove the existence of MBS(a, b, c; d)

when d divides a, b, and c, provided that the magic box MB(a, b, c) exists. The real

power in this theorem is that d can be even or odd.

Theorem 3.3. If a magic box MB(a, b, c) exists and d is a common divisor of a, b, and

c, where d ≥ 2, then MBS(a, b, c; d) exists.

Proof. We first take a magic box MB(a, b, c). Let xi,j,k denote the entry of MB(a, b, c)

in the (i, j, k)th cell, where 1 ≤ i ≤ a, 1 ≤ j ≤ b, and 1 ≤ k ≤ c. We use this

box to construct a base box Ba×b×c, defining the (i, j, k)th entry of Ba×b×c as yi,j,k =

d(xi,j,k−1). It is clear that the sum of each row in Ba×b×c is abd
2a (abc−1) = bd

2 (abc−1),

the sum of each column is ad
2 (abc− 1), and the sum of each pillar is cd

2 (abc− 1).

Now we construct a set of n residual boxes, RBn, where n = 1, 2, . . . , d with entries

rni,j,k, where 1 ≤ i ≤ a, 1 ≤ j ≤ b, and 1 ≤ k ≤ c. We will use the Latin cubes of order

d to construct the residual boxes, where LCn(d) is a Latin cube of order d with entries

lne,f,g = (n+e+f+g) (mod d), where 1 ≤ n ≤ d, and 1 ≤ e, f, g ≤ d, with the provision

that all 0 entries are changed to d. We now construct each RBn by “tiling” together

a
d · bd · cd = abc

d3
copies of LCn(d).
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Since the sum along a row of LC(d) is d(d+1)
2 , we see that the sum of each row of

RBn is b
d · d2(d+ 1) = b

2(d+ 1), the sum of each column is a
2 (d+ 1), and the sum of each

pillar is c
2(d+ 1). It should also be clear that for a fixed triple (i, j, k), the set of entries

{rni,j,k}dn=1 form the set {1, 2, . . . , d} (this follows directly from the definition of entries

in LC(d) and how they depend on n).

Now we build our magic box set MBS(a, b, c; d), where the entries of the nth box

are defined as zni,j,k = rni,j,k + yi,j,k. Then the sum of every row of each box is bd
2 (abc−

1) + b
2(d + 1) = b

2(abcd + 1), the sum of every column is a
2 (abcd + 1), and the sum of

every pillar is c
2(abcd + 1). We see from the construction that every number between

1 and abcd appears in the set of boxes exactly once, since the base box has entries

{0, d, 2d, . . . , abcd−d} and over the course of the set of boxes we add 1, 2, . . . , d to every

cell, filling in the “gaps.” Moreover, since the row, column, and pillar sums of the nth

box in the set is independent of n, MBS(a, b, c; d) is magic and the construction is

complete.

Observe that Theorem 3.2 also follows directly as a corollary to Theorem 3.3. Hence,

Theorem 3.3 completely solves Problem 2.5, and partially solves Problems 2.6 and 2.7.

Now, we continue by solving further cases in Problem 2.6, where a, b, and c are even

and d is odd.

Theorem 3.4. If a, b, c are even and no two of a, b, c equal 2, then MBS(a, b, c; d) is

magic if, without loss of generality, a ≡ 0 (mod 4) and {a2 , b, c} contains no pair of 2’s.

Proof. Suppose a, b, and c are even, and no two of a, b, c equal 2. We know from [6] that

MBS(a2 , b, c; 2d) is magic. Then, we can rearrange these boxes by pairing the boxes

together. From here, we can stack one box on top of the other in each pair, and the

result is a set of d boxes of size a × b × c, where each box clearly has constant row,

column, and pillar sums. Hence we have constructed MBS(a, b, c; d).

Theorem 3.4 covers quite a few cases: if a, b, c > 2 and one of a, b, c is divisible by

4, then MBS(a, b, c; d) exists for any odd d. Recall that if b = c = 2, MBS(a, b, c; d)



11

does not exist by Theorem 3.1. Some cases excluded from the results of Theorem 3.4

are when a, b, c ≡ 2 (mod 4), and when, without loss of generality, a = 2, b = 4, and

c ≡ 2 (mod 4). This does not preclude the existence of a magic box set in these cases:

we simply have not been able to apply any of our previous results toward these cases.

We will now consider Problem 2.7, where a, b, c, and d are odd. We will prove a

powerful result on the existence of a magic 4-rectangle, based on Hagedorn’s analogous

result in three dimensions in [6]. In order to reach this result, we must introduce the

notions of a Kotzig Array and a Latin box, and prove some lemmas regarding their

existence.

Definition 3.5. A Kotzig Array of size a× b is an a× b array with the property that

each row contains the numbers 1, 2, . . . , a, each occurring exactly once, and the entries

of each column sum to the same constant.

Definition 3.6. A Latin box of size a× a× b has the properties that each a× a face of

the box is a Latin square and the entries of each 1× b column sum to some constant c.

This is a three-dimensional analogue to a Kotzig Array.

Lemma 3.7. A Latin box of size m×m× 2 exists for m odd.

Proof. The first layer is an m×m Latin square. The second layer is the complement of
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the first layer, such that the column sum is m+ 1 for each column. Since the mapping

of numbers in {1, 2, . . . ,m} to {1, 2, . . . ,m} is a bijection, the second layer must also be

a Latin square.

Lemma 3.8. A Latin box of size m×m× 3 exists when m is odd.

Proof. Begin by constructing a Latin square with entries l1ij , where 1 ≤ i, j ≤ m1. Then

the second layer is computed by

l2ij =


l1ij + dm2 e if l1ij < dm2 e

l1ij − bm2 c if l1ij > bm2 c

To construct the third layer, we consider the column sums from the first two layers.

We will notice that the set {l1ij + l2ij : 1 ≤ j ≤ m} forms an arithmetic progression with

a difference of one for each i. To see this, first consider the numbers in the first layer

from 1 to bm2 c. The temporary column sums for these columns are formed by

(3.1)
l1ij + l2ij = l1ij + (l1ij + dm

2
e)

= 2l1ij + dm
2
e

Similarly, the temporary column sums for the numbers dm2 e to m are given by

2l1ij − b
m

2
c (3.2)

Using (3.1) and (3.2), we fill out the following table of temporary sums.
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l1ij 2l1ij + dm2 e l1ij 2l1ij − bm2 c

1 2 + dm2 e dm2 e 1 + dm2 e
2 4 + dm2 e dm2 e+ 1 3 + dm2 e
...

...
...

...

bm2 c (m− 1) + dm2 e m− 1 (m− 2) + dm2 e
m m+ dm2 e

Hence we can arrange all of the integers from 1 to m, each occurring exactly once,

in the ith row of the third layer to obtain a constant sum for all columns. The column

sum will be 3(m+1)
2 . Since the temporary column sums uniquely depend on l1ij , the third

layer will also be a Latin square.

3.1 Example: Construction of 5× 5× 3 Latin box

We demonstrate the construction in the proof of Lemma 3.8 for a 5× 5× 3 Latin box.

1. Construct any 5× 5 Latin square as the top layer.

2. Construct the second layer based off of the entries in the top layer. Add dm1
2 e =

d52e = 3 to the corresponding entry in the top layer if the top layer’s number is 1

or 2. Subtract bm1
2 c = 2 from the corresponding entry in the top layer if the top

layer’s number is 3, 4, or 5.

• i.e. 1 7→ 4, 2 7→ 5 and 3 7→ 1, 4 7→ 2, 5 7→ 3

3. Notice that the column sums (between layers) along each row (up-down and left-

right along one layer) of the top two layers are 4, 5, 6, 7, and 8.

4. Assign 1, 2, 3, 4, and 5 in the columns whose sums are 8, 7, 6, 5, and 4, respectively.

• Using the second layer’s entries to build the third layer, 1 7→ 5, 2 7→ 3, 3 7→
1, 4 7→ 4, and 5 7→ 2
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(a) Top layer (b) Middle layer

(c) Bottom layer

Figure 3.3: A 5× 5× 3 Latin box

5. Now each column has a sum of 9, and each row in every layer has a sum of 15.

Lemma 3.9. A Latin box of size m×m× n exists for m,n both odd.

Proof. If n = 1, then we just have a Latin square. Suppose n > 1. Then we know that
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Figure 3.4: All rows sum to 15, all columns sum to 9

n = 2k + 3 for some k and we can construct the desired Latin box by stacking k copies

of a Latin box of size (m×m× 2) and one Latin box of size (m×m× 3). The existence

of these pieces follows directly from Lemmas 3.7 and 3.8.

These lemmas will now allow us to prove the following theorem about a specific class

of 4-rectangles.

Theorem 3.10. A 4-rectangle of size (m,m,m, n) is magic if m ≥ 3, n ≥ 2, and m ≡ n
(mod 2).
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Proof. If m,n are even and m > 2, then the 4-rectangle of size (m,m,m, n) is magic by

[6]. Hence we will assume m,n are odd and greater than 1.

Define a base box Rm×m×n, which is magic [6], and let T be a Latin box of size

m×m×n. Denote the entries of Rm×m×n by ri,j,k, and the entries of T be ti,j,k, where

1 ≤ i, j ≤ m and 1 ≤ k ≤ n. Then we will construct a 4-dimensional box S with

dimensions m×m×m×n and with entries si,j,k,l = ri+j,k,l +m2n(ti−j,k,l− 1). Observe

that 1 ≤ si,j,k,l ≤ m2n + m2n(m1 − 1) = m3n. We will now show that each entry of S

is distinct.

Suppose si,j,k,l = si′,j′,k′,l′ . Then, because of the entries where ti−j,k,l − 1 = 0, we

have si,j,k,l = ri+j,k,l = ri′+j′,k′,l′ = si′,j′,k′,l′ . Since R is a magic box, its entries are

distinct. This implies that k = k′, l = l′, and i + j ≡ i′ + j′ (mod m). It follows that

ti−j,k,l = ti′−j′,k′,l′ = ti′−j′,k,l, which implies that i − j ≡ i′ − j′ (mod m), since m is

odd and the entries in each column of T are distinct. These two congruences imply that

i = i′ and j = j′. Hence S is a magic 4-rectangle of size (m,m,m, n).

The following corollary applies Theorem 3.10 to the topic of magic box sets.

Corollary 3.11. If p ≥ 3 and q are both odd, or if p ≥ 3 is even and q is anything,

then MBS(p, p, p; q) exists.

Proof. Suppose p ≥ 4. If p is even, then MBS(p, p, p; q) exists according to Theorem 3.4.

Now assume p, q are odd and p ≥ 3. If q = 1, then MBS(p, p, p; q) is equivalent

to a magic cube of order 3, and exists according to [4]. Now consider q ≥ 3. From

Theorem 3.10, we know a magic 4-rectangle of size (p, p, p, q) exists. We can create a set

of q boxes of size p× p× p by separating the layers of the 4-rectangle along the fourth

dimension. Each of these boxes will clearly have constant row sums, column sums, and

pillar sums, since a MBS(p, p, p; q) is less restrictive than a magic 4-rectangle of size

(p, p, p, q).

The next theorem is another partial solution to Problem 2.7, where a, b, c, and d are

odd, and also can be applied to Problem 2.6, where a, b, and c are even and d is odd.
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Theorem 3.12. If p ≥ 3 and p is a common divisor of a, b, and c, then MBS(a, b, c; d)

exists.

Proof. Suppose a, b, c, and d are even. Then, if no two of a, b, c equal 2, MBS(a, b, c; d)

exists by [6] and Theorem 3.2.

Now suppose a, b, c and d are odd. Let q = d · abc
p3

. Observe then that q is odd. By

Corollary 3.11, we know that MBS(p, p, p; q) exists. We will construct our magic box

set by grouping together the boxes in MBS(p, p, p; q).

We will “stack” a
p boxes in one dimension, b

p boxes in the second dimension, and c
p

boxes in the third dimension to create a set of boxes of size a × b × c. It is clear that

the number of boxes in our constructed set is d:

q

(abc)/p3
=
d · (abc)/p3

(abc)/p3
= d

Note that by construction, each of the new boxes must also be magic.

The remaining case is when a, b, and c are even and d is odd. The aforementioned

construction works in this case as long as abc
p3

is odd, that is, as long as a ≡ b ≡ c ≡ 2

(mod 4). If, without loss of generality, a ≡ 0 (mod 4), then MBS(a, b, c; d) exists

if a > 4, according to Theorem 3.4. We now consider the “worst” case where, say,

a = 4, b = 2, and c ≡ 2 (mod 4). This case is covered by neither Theorem 3.4 nor this

proof so far; it is not necessary, however, since by assumption a, b, and c must share
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a common divisor greater than 2. Hence all cases have been covered and the proof is

complete.

We now turn our attention to a different type of construction in order to prove the

existence of more magic box sets, this time where d has a “small” divisor that is greater

than 1.

Theorem 3.13. Suppose a ≤ b ≤ c, a, b, c, and d are odd, MB(a, b, c) exists, and d has

a divisor larger than 1 but smaller than a. Then MBS(a, b, c; d) exists.

Proof. This is a proof by construction.

Begin with a magic box MB(a, b, c), using the entries 0, . . . , abc − 1 instead of the

typical 1, 2, . . . , abc. Multiply every element of this box by d, and then add 1 to each

entry. Call this our base box. Notice that the entries of the base box are 1, d+ 1, 2d+

1, . . . , abcd− d+ 1.

Now suppose d = pq, where p ≤ a. Construct a p × q Kotzig Array (using the

numbers 0, 1, . . . , pq− 1). Now lift the Kotzig Array by adding 0 to each element in the

bottom row, q to each element in the second row, 2q to the third row, and so on, until

finally adding (p− 1)q to each element in the top row.

We will use the first p× 1 column of the lifted Kotzig Array to determine a cube of

order p which will have constant row, column, and pillar sums (somewhat analogous to

a Latin Cube, although not using consecutive numbers). We will refer to this cube as

an l-cube. We will then use different orderings of the rows of this l-cube to construct p

distinct boxes of size a× b× c.

To construct one residual box out of one l-cube:

• Have an empty a× b× c box.

• Place the l-cube in the front upper left corner of the box.
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• The first p entries in the column immediately to the right of the l-cube are chosen

so that, when added to the adjacent entry in the last column of the l-cube, the

sum is d− 1.

• The first p entries in the row immediately below the l-cube are chosen in exactly

the same manner as the columns to the right.

• Fill the subsequent columns to the right (rows below) such that the sum of each

entry with its immediate neighbor to the left (above) is d− 1.

• Fill the remaining space on the front face of the box such that the sum of each

entry with its immediate neighbor to the left is d − 1. This completes the front

face.

• Complete the next p− 1 faces using the same process as above.

• Complete the top face using the process above.

• Complete subsequent faces working downward using the process above.

To create the second residual box, peel the top layer of the l-cube and place it at the

back, and follow the process above to create a second residual box. Iterate this process

to construct p total residual boxes.

Iterate this process for the other q − 1 columns of the lifted Kotzig Array in order

to obtain qp = d residual boxes. Since each residual box is determined by one distinct

l-cube, the d residual boxes are also distinct (entrywise). Furthermore, each entry lijk

takes on each of the values 0, 1, 2, . . . , d − 1 exactly once in the set of d l-cubes, and

therefore each entry rijk takes on each of the values 0, 1, . . . , d− 1 in the set of residual

boxes.

Observe that, by construction, the residual boxes all have the same constant row

sum, column sum, and pillar sum.
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Use these d residual boxes to construct MBS(a, b, c; d) by simply adding the base

box to each residual box, using enrywise addition. It is easy to see from the construction

that the entries in this set of boxes are 1, 2, . . . , abcd. Hence the set of boxes is magic.

3.2 Example of Construction in Proof of Theorem 3.13

We will use the construction in the proof of Theorem 3.13 to complete most of the

construction for MBS(3, 7, 11; 15) in a series of images. We do not construct a base box

here, but we do give examples of how to construct the residual boxes. The base box

will be MB(3, 5, 7) using numbers 0 through 3× 5× 7− 1, with every entry multiplied

by 15, and then with 1 added to each cell. The construction is completed by adding the

base box entry-wise to each of the 15 residual boxes.



Lifting a 3 × 5 Kotzig Array and selecting the first column

Latin cube of order 3 from the first column



Latin cube in the corner of first residual box

Filling in adjacent entries



Filling out the edges of the box

Filling in one face of the box



The first complete residual box



The three distinct Latin cubes from the first column of the Kotzig Array



The last column of the Kotzig Array and a Latin cube constructed from it

A residual box constructed from the last column of the Kotzig Array
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We derive several useful corollaries from Theorem 3.13.

Corollary 3.14. If d has a divisor greater than 1 and less than or equal to a, b, or c,

and gcd(a, b) > 2, then MBS(a, b, c; d) exists.

Proof. This follows directly from Theorem 3.13 and Theorem 2.2 (MB(a, b, c) exists if

gcd(a, b) > 2).

For the next corollary, we need a lemma proven by Hagedorn in [6].

Lemma 3.15. If α, a, b, and c are odd and MB(a, b, c) exists, then MB(αa, b, c) exists.

Corollary 3.16. If α, a, b, and c are odd, MB(a, b, c) exists, and d′|d such that 1 <

d′ ≤ αa, b, or c, then MBS(αa, b, c; d) exists.

Proof. This follows directly from Lemma 3.15 and Theorem 3.13.

Corollary 3.17. For every odd a, b, c, d where gcd(a, b) > 1, there is an α such that

MBS(αa, b, c; d) exists.

We now use a construction similar to the construction in the proof of Theorem 3.13

in order to prove another powerful theorem. Theorem 3.18 will allow us to reduce

Problem 2.7, the case where a, b, c, and d are odd.

Theorem 3.18. If MB(a, b, c) exists and a, b, c, d are odd, then MBS(a, b, c; d) exists.

Proof. Suppose that a ≤ b ≤ c. We will use MB(a, b, c) to construct MBS(a, b, c; d).

Begin with a magic box MB(a, b, c), using the entries 0, . . . , abc−1 instead of the typical

1, 2, . . . , abc. Multiply every element of this box by d, and then add 1 to each entry.

Call this our base box B. Notice that the entries of the base box B are 1, d + 1, 2d +

1, . . . , abcd − d + 1, and that B has constant row, column, and pillar sums, since it

is based on MB(a, b, c). It is easy to check this: for example, simply find the total

sum of all the numbers in B and divide by the number of rows a and the number of
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layers c. This yields a row sum ρB = b
2(abcd − d + 2). Similarly, B has column sum

σB = a
2 (abcd− d+ 2) and pillar sum πb = c

2(abcd− d+ 2).

Now construct an a× d Kotzig Array, using the numbers 0, 1, 2, . . . , d− 1 in each of

the a rows of the array. The constant column sum of this array is simply the total sum

of all elements of the array divided by the number of columns, or

(d− 1)d

2
· a · 1

d
=
a(d− 1)

2
.

We will use the first a× 1 column of the Kotzig Array to determine a cube of order

a which will have constant row, column, and pillar sums (somwhat analogous to a Latin

cube, although we do not use consecutive numbers). We refer to this cube as an l-cube.

Construct a single residual box R1 using this l-cube following the method in the proof

of Theorem 3.13. Use the second column of the Kotzig Array to construct a second

l-cube and form R2, and so on, until we have d residual boxes, R1, R2, . . . , Rd. The row,

column, and pillar sums of each Ri are simple to calculate. By construction, the sum of

each row and pillar is the row/column sum of the l-cube plus several pairs of numbers,

where each pair sums to d− 1. The column sum of Ri is simply the column sum of the

l-cube. Using this method, we find the row, column, and pillar sums explicitly for each

Ri:
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ρR =
a(d− 1)

2
+

(b− a)(d− 1)

2

=
(a+ b− a)(d− 1)

2

=
b(d− 1)

2

σR =
a(d− 1)

2

πR =
a(d− 1)

2
+

(c− a)(d− 1)

2

=
(a+ c− a)(d− 1)

2

=
c(d− 1)

2
.

Now add each of the residual boxes Ri to B using entrywise addition to create a

set of d boxes. Notice that by construction, when given any specific cell, each value

1, 2, . . . , d appears exactly once in that cell among the set {R1, R2, . . . , Rd}. For this

reason, our set of d boxes (adding B to each Ri) contains every value 1, 2, . . . , d, d +

1, d + 2, . . . , 2d, . . . , abcd − d + 1, abcd − d + 2, . . . , abcd − d + d = abcd, each occurring

exactly once. Furthermore, each of the boxes has a constant row, column, and pillar

sum:
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ρB+R =
b(abcd− d+ 2)

2
+
b(d− 1)

2

=
b

2
(abcd− d+ 2 + d− 1)

=
b

2
(abcd+ 1)

σB+R =
a(abcd− d+ 2)

2
+
a(d− 1)

2

=
a

2
(abcd+ 1)

πB+R =
c(abcd− d+ 2)

2
+
c(d− 1)

2

=
c

2
(abcd+ 1).

According to the general formulas for ρ, σ, and π for some MBS(a, b, c; d), ρB+R =

ρ, σB+R = σ, and πB+R = π. Hence the construction of MBS(a, b, c; d) is complete.

Notice that Problem 2.7 is now reduced to the following: for which odd a, b, c does

MB(a, b, c) exist? Luckily, Hagedorn proved some results about this problem in [6],

which we will incorporate into our next theorem. But first, we will demonstrate the

construction in the proof of Theorem 3.18.

3.3 Example of Construction in proof of Theorem 3.18

In this subsection, we will partially demonstrate the construction in the proof of Theo-

rem 3.18 (to build MBS(3, 9, 11; 7)) using a series of images. Since it is almost exactly

the same as the construction in the proof of Theorem 3.13, we will construct only

one residual box. The construction is completed by adding the base box entry-wise to

each of the 7 residual boxes. The base box is MB(3, 9, 11) using numbers 0 through

3× 9× 11− 1, with every entry being multiplied by 7, then adding 1 to each cell. We

are left with a set of 7 distinct boxes which satisfy the definition for MBS(3, 9, 11; 7).



A 3 × 7 Kotzig Array

Selecting the first column

Latin cube constructed from the first column



Latin cube in the corner of first residual box

The first complete residual box
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Theorem 3.19. If a ≤ b ≤ c, a, b, c, d are odd, and gcd(a, b) > 1 or gcd(b, c) > 1, then

MBS(a, b, c; d) exists.

Proof. Since gcd(a, b) > 1 or gcd(b, c) > 1, MB(a, b, c) exists according to Theorem 2.2.

Then, if d ≤ a, MBS(a, b, c; d) exists according to Theorem 3.13. If d > a, then

MBS(a, b, c; d) exists according to Theorem 3.18.

We now make an interesting observation: the construction in the proof of Theo-

rem 3.18 does not use the fact that a, b, and c are odd: it was included in the assump-

tions simply because that was the case we were focused on. Hence, we make a powerful

generalization.

Theorem 3.20. If a, b, and c are the same parity, d is odd, and MB(a, b, c) exists,

then MBS(a, b, c; d) exists.

Proof. Follow the construction in the proof of Theorem 3.18.

This concludes our new results regarding magic box sets. For a summary of how

these results compare to each other and to known results, and to see which problems

remain open in this area, refer to Chapter 5.
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Magic Hollow Boxes
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Figure 4.1: You can think of this as 4 joined rectangles, or as 2 stacked squares

In this section we examine a new generalization of magic squares, the magic hollow

box. Recall from the introduction that this structure can be imagined as n rectangles

of dimension a× c, joined along the length c edges to form a stack of c regular n-gons.

We look to fill this structure with the numbers 1, 2, . . . , n(a− 1)c (the number of total

cells in such an object) such that each row sums to ρ and each column sums to σ. See

Figure 4.1 for an example of a square (n = 4), with a = 4 and c = 2.

It turns out that Figure 4.1 will prove very useful in constructing squares of more

34
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layers. For convenience, we will refer to these objects as MH(n, a, c). It is also expedient

to view this object as a stack and look at it from the top. This way we can distinguish

layers that all have an equal number of cells filled with numbers.

This is a completely new generalization of the magic square, and the first natural

question to arise is that of existence.

Problem 4.1. For which n, a, and c does some MH(n, a, c) exist?

We observe from Figure 4.1 that MH(4, 4, 2) exists. We will use this figure in a

construction to prove the existence of MH(4, 4, c).

Theorem 4.2. MH(4, 4, c) exists for all even c.

Proof. Given some even c, we will form a general construction using Figure 4.1.

It is useful to know the column and row sums.

σ =
sum of all cells

# of columns

=
1
2(n(a− 1)c)(n(a− 1)c+ 1)

n(a− 1)

=
c(nc(a− 1) + 1)

2

=
c(4c(3) + 1)

2

=
c

2
(12c+ 1)

ρ =
a× column sum

# of layers

=
4σ

c

=
4 · c2(12c+ 1)

c

= 2(12c+ 1).

We start the construction with a set of c unlabeled square layers stacked on top of

each other. We will fill in the boundaries of each of these squares in a manner which
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will produce MH(4, 4, c). For convenience, we will refer to the cells of each square layer

(from top to bottom) as either corners or edges (non-corners). Refer again to Figure 4.1.

Place this in the middle two layers of the unlabeled stack. Now, we need the row sums

of both of these layers to equal ρ, but it is clear that as is, the row sums are 50. We will

address this by adding the same constant to each entry in Figure 4.1. This constant

must be

col sum− (col sum of 4.1) · (# of copies of 4.1 that fit in the empty structure)

# of layers

=
σ − 25 · c2

c

=
c
2(12c+ 1)− 25c

2

c

=
c
2(12c+ 1− 25)

c

=
c
2(12c− 24)

c

= 6c− 12.

Observe that the row sum of each of these two middle layers will be 50+4(6c−12) =

2 + 24c = 2(12c + 1) = ρ. We must now fill in the remaining unlabeled layers. Fill in

the corners of the layer directly below the middle by adding 12 to the numbers in the

corners immediately above it, and fill in the edges by subtracting 12 from the numbers

in the edges immediately above them. We iterate this process, working down to the

bottom layer. We then start from the middle again and work up, but this time we will

subtract 12 from the corners in the layer immediately below and add 12 to the number

in the edges in the layer immediately below. Iterate this process, working up.

Observe that in each layer, the row sum differs from ρ by 12 − 12 − 12 + 12 = 0,

so each row sums to ρ. Now we check the column sum. We note that the pairwise
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column sum of the middle two layers is 25 + 2(6c − 12) = 12c + 1. Now move up

one layer from the temporary top (the top of the filled structure) and down one layer

from the temporary bottom (the bottom of the filled structure). The pairwise column

sum of these two layers must also be 12c + 1, since we add 12 to the corners below

and subtract them up top, and we add 12 to the edges up top and subtract 12 from

the edges below. If we iterate this process of checking the pairwise column sums, we

see that each pair has column sums of 12c + 1. Therefore, the total column sum is

(12c+ 1) · (# of pairs) = (12c+ 1) · c2 = σ.

Since all rows sum to ρ and all columns sum to σ, the final step is to show that each of

the numbers from 1, . . . , 12c appears exactly once. It is convenient to classify the num-

bers {1, 2, . . . , 12} as b numbers (since they are in the bottom half of {1, 2, . . . , 24}), and

the numbers {13, 14, . . . , 24} as t numbers (occurring in the top half of {1, 2, . . . , 24}).
Then, if we look at the completed structure in terms of b’s and t’s, we see that the

corners in the top c
2 layers and the edges in the bottom c

2 layers are all b numbers

plus a constant (where the constant is a multiple of 12). The spaces not occupied by b

numbers are occupied by t numbers plus a constant (where the constant is a multiple

of 12). We now look at what values we have in the structure. In the top and bottom

layers, the b values take on every number in the set {1, 2, . . . , 12}. In the second from

the top and second from the bottom layers, the b values take on the original b values

plus a constant of 12, therefore taking on every number in the set {13, 14, . . . , 24}. The

b values in the third from the top and third from the bottom layers are the original b

values plus 24, taking on every number in the set {25, 26, . . . , 36}. Continuing with this

reasoning, we look at the middle two layers. The b values of these two layers are the

original b values plus 12( c2 − 1) = 6c− 12, which comes out to every number in the set

{6c−11, 6c−10, . . . , 6c}. Hence the b values cover every number in the set {1, 2, . . . , 6c}
exactly once.

Now we look at the t values. The original t values are 13, 14, . . . , 24, but by

construction, the t values in the center two layers take on the original t values plus



38

12( c2 − 1) = 6c− 12, or every number in the set {6c+ 1, 6c+ 2, . . . , 6c+ 12}. If we move

up one layer and down one layer, the t values of these next two layers take on the orig-

inal t values plus 12( c2) = 6c, or every number in the set {6c+ 13, 6c+ 14, . . . , 6c+ 24}.
Following this reasoning, we see that the t values in the top and bottom layers take on

the original t values plus a constant of 12(c − 2) = 12c − 24, or every number in the

set {12c − 11, 12c − 10, . . . , 12c}. Hence, between the b’s and the t’s throughout the

layers, we find every number from 1, 2, . . . , 12c exactly once in the structure. Hence our

construction does indeed produce MH(4, 4, c).

See Figures 4.2 and 4.3 for an example of this construction.

A natural next step is to explore what happens if we keep the side lengths at 4

(a = 4) and change the shape from a square to polygon with more sides. We now prove

several results regarding the existence of MH(n, 4, 2).

Theorem 4.3. MH(n, 4, 2) exists for n ≡ 2 (mod 4), where n ≥ 6.

Proof. This is a proof by construction. Note that there are (4− 1)n = 3n numbers per

layer, and 6n numbers in the overall structure. The second layer will be the complements

of the first layer, such that the column sums all add up to 6n+ 1. We observe that the

magic row sum ρ is 2(3 · n · 2 + 1) = 2(6n+ 1).

We will begin by selecting the n corner pieces for the top layer. Write down a list

of the numbers 1, 2, . . . , 3n; the numbers we will put in the corners will be the middle n

numbers from this list (n+1, . . . , 2n). Now, place the lowest corner number, n+1 (which

is odd), in any arbitrary corner. Next, travel around the n-gon counterclockwise, visiting

every other corner. Place the odd corner numbers in these corners, so that when we

travel counterclockwise around the n-gon, we will have n+1, gap, n+3, gap, . . . , gap, 3n−
1.

Find n + 1 again. Travel on a line through the center of the n-gon to the opposite

corner. In this corner, place n+ 2. Work in a counterclockwise cycle, placing the even
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(a) Start with MH(4, 4, 2) (b) Use the middle to build up and
down

Figure 4.2: First steps: construction of MH(4, 4, 6).

corner numbers in ascending order in the empty corners. Write in the corners of the

second layer by taking the complements of the first layer.

We will now deal only with the second layer. We need to fill in the edges of this

second layer such that the entries of each row sum to ρ. Let’s call ρ −∑2
i=1 corneri

the needed edge sum for a given side of the n-gon. Notice that the placement of the
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(a) Use the top and bottom to build
the new layers

(b) A compressed look at MH(4, 4, 6)

Figure 4.3: Conclusion: construction of MH(4, 4, 6).

corner pieces in this second layer gives us the needed distinct edge sums of 5n
2 + 2, 5n2 +

4, . . . , 3n + 1, 3n + 3, . . . , 3n + n
2 = 7n

2 , and we have two sides that require each given

needed edge sum. We have already used the numbers n + 1, n + 2, . . . , 2n and their

complements: we will use the numbers 1, 2, . . . , n, 2n + 1, 2n + 2, . . . , 3n to fill in the

edges of the second layer, and their complements in the first layer. We will meet the

required edge sums and place them in their appropriate locations:
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• (n2 − 1) + (2n+ 3) and (n2 − 2) + (2n+ 4) equal 5n
2 + 2.

• (n2 − 3) + (2n+ 7) and (n2 − 4) + (2n+ 8) equal 5n
2 + 4.

...

• 2 + (3n− 3) and 1 + (3n− 2) equal 3n− 1.

• n+ (2n+ 1) and (n− 1) + (2n+ 2) equal 3n+ 1.

• (n− 2) + (2n+ 5) and (n− 3) + (2n+ 6) equal 3n+ 3.

• (n− 4) + (2n+ 9) and (n− 5) + (2n+ 10) equal 3n+ 5.
...

• (n2 + 1) + (3n− 1) and n
2 + 3n equal 7n

2 .

We then place these pairs of numbers along the appropriate row of the second layer

of the n-gon, and their complements directly above them in the first layer. It is clear

that the column sum for every column is 6n + 1, and by construction, each row has a

row sum of 2(6n+ 1). Thus the construction is complete.

4.1 Example of Construction in Proof of Theorem 4.3

We will use the construction in the proof of Theorem 4.3 to build MH(6, 4, 2). Refer

to Figure 4.4 for a visual construction.

1. We use the numbers n+ 1, . . . , 2n (that is, 7, 8, . . . , 12) for the corners.

2. Starting with 7 in an arbitrary corner, go counterclockwise to every other corner,

placing 9 and 11.

3. We then go straight across from 7 and place 8.

4. Travel counterclockwise, placing 10 and 12 in the open corners.
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(a) Lay the odd corners (b) Lay the even corners

(c) Place the corners of the bottom (d) Find the appropriate pairs of edge pieces

Figure 4.4: Construction of MH(6, 4, 2), following the proof of 4.3.

5. Fill in the corners of the second layer, which are 30, 27, 26, 29, 28, 25 when read

clockwise.

6. Notice that the remaining sums that we need are 5n
2 +2, 5n2 +2, 5n2 +4, 5n2 +4, 5n2 +

6, 5n2 + 6, which are 17, 17, 19, 19, 21, 21.

7. Notice that 2 + 15 and 1 + 16 equal 17.

8. Notice that 6 + 13 and 5 + 14 equal 19.

9. Notice that 4 + 17 and 3 + 18 equal 21.
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10. Place the above edge pieces in the second layer where appropriate.

11. Place the edge piece complements in the first layer.

Now the construction is complete.

Theorem 4.4. MH(n, 4, 2) exists for n ≡ 0 (mod 4).

Proof. We once again do a proof by construction. Draw a regular n-gon. Separate

the numbers 1, 2, . . . , 6n into two categories: 1, 2, . . . , 3n and their complements, which

are 6n, 6n − 1, . . . , 3n + 1, respectively. Reserve the numbers n + 1, n + 2, . . . , 2n for

the corners of the top layer, their respective complements for the second layer, and the

numbers 1, 2, . . . , n and 2n+ 1, . . . , 3n for the edges of the second layer.

Construct the first layer by laying the corners first. Pick an arbitrary corner, and

lay down the odds in ascending order (beginning with n + 1) at every other corner,

traveling counterclockwise. Now find the location of n + 1. Traveling clockwise from

here, fill in all of the gaps with the even corner numbers in ascending order (beginning

with n + 2). Now fill in the second layer’s corners using the complements of the first

layer.

Observe that for every row, the edge sum that we need in the second layer is equiv-

alent to the sum of the corners in the first layer of that row (this is true because the

second layer’s corners are the complements of the first). These needed edge sums in

the second layer are (n + 1) + (n + 2) = 2n + 3 (looking to the right of n + 1), and

(n+ 1) + 2n = 3n+ 1 (looking to the left of n+ 1), and (3n2 + 1) + (3n2 + 2) = 3n+ 3.

From the construction, it is possible to see that we need one sum of 2n+ 3, n
2 − 1 sums

of 3n+ 3, and n
2 sums of 3n+ 1 at every other edge. This is actually very easy to see if

we consider the n-gon as a 3-colorable n-cycle. Color one edge with the “color” 2n+ 3.

Then color the remaining edges with “colors” 3n+ 1 and 3n+ 3, where no two adjacent

edges have the same color. In this manner, it is easy to see that we end up with n
2 sums

of 3n + 1 and n
2 − 1 sums of 3n + 3. By the placement of the corners, we see that the
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needed edge sums are indeed placed as was just described. We will now examine how

to meet these needed edge sums in the second layer.

• 1 + (2n+ 2) = 2n+ 3.

• 2 + (3n − 1), 4 + (3n − 3), . . . , n + (2n + 1) all equal 3n + 1. These are pairs of

evens from 2, . . . , n and odds from 2n+ 1, . . . , 3n− 1, so we have found n
2 sums of

3n+ 1.

• 3 + (3n), 5 + (3n− 2), . . . , (n− 1) + (2n+ 4) all equal 3n+ 3. These are pairs of

odds from 3, . . . , n−1 and evens from 2n+4, . . . , 3n, so we have found n
2 −1 sums

of 3n+ 3.

Place the pairs of numbers in the appropriate edges of the second layer in order to

satisfy the row sum ρ = 2(6n+ 1). Place their complements directly above them in the

first layer to complete the construction.

4.2 Example of Construction in Proof of Theorem 4.4

(a) Lay the odd corners (b) Lay the even corners

Figure 4.5: First steps: construction of MH(8, 4, 2).
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(a) Place the corners of the bottom

Figure 4.6: Further construction of MH(8, 4, 2).

(a) Find the appropriate pairs of edge pieces (b) Place the complements of the edge pieces on
the top

Figure 4.7: MH(8, 4, 2), following the proof of 4.4.

We will use the construction in the proof of Theorem 4.4 to build MH(8, 4, 2). Refer

to Figures 4.5, 4.6, and 4.7 for a visual construction.

1. We use the numbers n + 1, . . . , 2n (which are 9, 10, . . . , 16) for the corners of the

first layer.
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2. Place 9 in an arbitrary corner. Working counterclockwise and visiting every other

corner, place 11, 13, 15.

3. Now place 10 immediately to the right of 9, and working clockwise, place 12, 14,

16 in the open corners.

4. Fill in the corners of the second layer with the complements of the corners of the

first (column sum σ = 49), which read clockwise as 40, 39, 34, 37, 36, 35, 38, 33.

5. Notice that the edge sums that we need for the second layer are 2n+3, 3n+1, 3n+3,

or 19, 25, 27.

6. We need one sum of 19, n
2 = 4 sums of 25, and n

2 − 1 = 3 sums of 27.

7. Notice that 1 + 18 = 19.

8. Notice that 2 + 23, 4 + 21, 6 + 19, 8 + 17 all equal 25.

9. Notice that 3 + 24, 5 + 22, 7 + 20 all equal 27.

10. Place the above edge pieces in the second layer where appropriate.

11. Place the complements of the edge pieces in the first layer.

Now the construction is complete and the resulting object is MH(8, 4, 2).

Theorem 4.3 and Theorem 4.4 prove that MH(n, 4, 2) exists for all even n ≥ 4. We

will see from Theorem 4.5 that MH(n, 4, 2) also exists for all odd n ≥ 3.

Theorem 4.5. MH(n, 4, 2) exists for all odd n, where n ≥ 3.

Proof. This is another proof by construction, and somewhat simpler than the last two.

Draw a regular n-gon. Separate the numbers 1, 2, . . . , 6n into two categories: 1, 2, . . . , 3n

and their complements, which are 6n, 6n − 1, . . . , 3n + 1, respectively. Reserve the

numbers n+1, n+2, . . . , 2n for the corners of the top layer, their respective complements
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for the second layer, and the numbers 1, 2, . . . , n and 2n+ 1, . . . , 3n for the edges of the

second layer.

Construct the first layer by laying the corners first. Place n+1 in an arbitrary corner,

and travel around the n-gon clockwise, placing n + 2, n + 3, . . . , 2n in each corner, in

ascending order. Now fill in the second layer’s corners using the complements of the

first layer.

Observe that for every row, the edge sum that we need in the second layer is equiva-

lent to the sum of the corners in the first layer of that row (this is true because the second

layer’s corners are the complements of the first). These needed edge sums in the second

layer are (n+1)+(n+2) = 2n+3, (n+2)+(n+3) = 2n+5, . . . , (2n−1)+2n = 4n−1

and 2n+ (n+ 1) = 3n+ 1. We satisfy the needed edge sums as follows:

• 2 + (2n+ 1) = 2n+ 3

• 3 + (2n+ 2) = 2n+ 5

• 4 + (2n+ 3) = 2n+ 7
...

• n+ (3n− 1) = 4n− 1

• 1 + 3n = 3n+ 1.

Place these pairs of edges where needed in the second layer, and then complete the

first layer with the complements of the second layer. By construction, all columns have

equal sums and all n rows on both layers have the same sum. Therefore the construction

is complete.

4.3 Example of Construction in proof of Theorem 4.5

We use the construction in the proof of Theorem 4.5 to build MH(3, 4, 2). Refer to

Figure 4.8 for a visual construction.
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(a) Lay the corners (b) Lay the complements

(c) Find appropriate edge pairs (d) Lay the complements

Figure 4.8: Construction of MH(3, 4, 2).

1. We use the numbers n + 1, . . . , 2n (which are 4, 5, 6) for the corners of the first

layer.

2. Place 4 in an arbitrary corner. Working clockwise, place 5 and 6.

3. Fill in the corners of the second layer with the complements of the first layer

(column sum σ = 19), which read clockwise as 15, 14, 13.

4. Notice that the edge sums that we need for the second layer are 2n+ 3, . . . , 4n−
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1, 3n+ 1 (which are 9, 11, 10.

5. Notice that 2 + 7 = 9.

6. Notice that 3 + 8 = 11.

7. Notice that 1 + 9 = 10.

8. Place the above pairs of edges in the appropriate row of the second layer.

9. Place the complements of the edge pieces in the first layer.

Now the construction is complete and the resulting object is MH(3, 4, 2).

It is particularly interesting to note that this construction works for all n, odd as well

as even. The first two constructions are much more challenging, although certainly worth

mentioning as it is also interesting to consider how many different constructions there

are for such objects. For an example of the construction in the proof of Theorem 4.5,

but with an even n, we will construct MH(8, 4, 2) using this method.

4.4 Example of Construction in Proof of Theorem 4.5,

where n is even

Here we will use the construction in the proof of Theorem 4.5 to construct MH(8, 4, 2).

Refer to Figures 4.9, 4.10, and 4.11 for a visual construction.

1. We use the numbers n+ 1, . . . , 2n = 9, 10, . . . , 16 for the corners of the first layer.

2. Place 9 in an arbitrary corner. Working clockwise, place 10, 11, . . . , 16.

3. Fill in the corners of the second layer with the complements of the first layer

(column sum σ = 49).
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(a) Lay the corners (b) Place complements on the bottom

Figure 4.9: First steps: construction of MH(8, 4, 2).

(a) Identify needed edge sums

Figure 4.10: Next step: construction of MH(8, 4, 2).

4. Notice that the edge sums that we need for the second layer are 2n + 3, 2n +

5 . . . , 4n− 1, 3n+ 1 (which are 19, 21, 23, 25, 27, 29, 31, 25).

5. Notice that 2 + 17 = 19.

6. Notice that 3 + 18 = 21.
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(a) Find the appropriate pairs of edge pieces

Figure 4.11: MH(8, 4, 2), following the proof of Theorem 4.5.

7. Notice that 4 + 19 = 23.

8. Notice that 5 + 20 = 25.

9. Notice that 6 + 21 = 27.

10. Notice that 7 + 22 = 29.

11. Notice that 8 + 23 = 31.

12. Notice that 1 + 24 = 25.

13. Place the above pairs of edges in the appropriate row of the second layer.

14. Place the complements of the edge pieces in the first layer.

Now the construction is complete and the resulting object is MH(8, 4, 2).

Corollary 4.6. MH(n, 4, 2) exists for all n ≥ 3.
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We will use this result and an analogue to the proof of Theorem 4.2 to achieve a

much stronger result.

Theorem 4.7. MH(n, 4, c) exists for all n and all even c.

Proof. Given some even c, we will construct MH(n, 4, c) using Corollary 4.6.

We will first derive the column sum and row sum of MH(n, 4, c), which can be done

as follows:

σ =
sum of all cells

# of columns

=
1
2(n(a− 1)c)(n(a− 1)c+ 1)

n(a− 1)

=
c(nc(a− 1) + 1)

2

=
c(nc(3) + 1)

2

=
c

2
(3nc+ 1)

ρ =
a× column sum

# of layers

=
4σ

c

=
4 · c2(3nc+ 1)

c

= 2(3nc+ 1).

We start the construction with a set of c unlabeled layers of regular n-gons stacked

on top of each other. We will fill in the boundaries of each of these n-gons in a manner

which will produce MH(n, 4, c). For convenience, we refer to the cells of each layer (from

top to bottom) as either corners or edges (non-corners). Refer again to the construction

in Theorem 4.5, and use it to construct MH(n, 4, 2). Place this in the middle two layers

of the unlabeled stack. Now, we need the row sums of both of these layers to equal

ρ = 2(3nc + 1), but it is clear that as is, the row sums are equal to 2(6n + 1). We

achieve a row sum of ρ by adding the same constant to each entry in the middle of the
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stack. This constant must be

col sum− (col sum of MH(n, 4, 2)) · (# of copies of MH(n, 4, 2) that fit)

# of layers

=
σ − (6n+ 1) · c2

c

=
c
2(3nc+ 1)− (6n+1)c

2

c

=
c
2(3nc+ 1− (6n+ 1))

c

=
c
2(3nc− 6n)

c

=
3n(c− 2)

2
.

Observe that the row sum of each of these two middle layers will be

2(6n+ 1) + 4

(
3n(c− 2)

2

)
= 12n+ 2 + 2(3nc− 6n)

= 12n+ 2 + 6nc− 12n

= 6nc+ 2

= 2(3nc+ 1)

= ρ.

We must now fill in the remaining unlabeled layers. Fill in the corners of the layer

directly below the middle by adding 3n to the numbers in the corners immediately above

it, and subtract 3n from the numbers in the edges immediately above it. We iterate this

process, working down to the bottom layer. We then start from the middle again and

work up, but this time we will subtract 3n from the corners in the layer immediately
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below and add 3n to the number in the edges in the layer immediately below. Iterate

this process, working up.

Observe that in each layer, the row sum differs from ρ by 3n− 3n− 3n+ 3n = 0, so

each row sums to ρ. Now we check the column sum. We note that the pairwise column

sum of the middle two layers is

(6n+ 1) + 2

(
3n(c− 2)

2

)
= 6n+ 1 + 3n(c− 2)

= 6n+ 1 + 3nc− 6n

= 3nc+ 1.

Now consider the next layer up and the next layer down. The pairwise column

sum of these two layers must also be 3nc + 1, since we add 3n to the corners below

and subtract them up top, and we add 3n to the edges up top and subtract 3n from

the edges below. If we iterate this process of checking the pairwise column sums, we

see that each pair has column sums of 3nc + 1. Therefore, the total column sum is

(3nc+ 1) · (# of pairs) = (3nc+ 1) · c2 = σ.

Since all rows sum to ρ and all columns sum to σ, the final step is to show is

that each of the numbers from 1, . . . , 3nc appears exactly once. It is convenient to

classify the numbers {1, 2, . . . , 3n} as b numbers (since they are in the bottom half of

{1, 2, . . . , 6n}), and the numbers {3n+ 1, 3n+ 1, . . . , 6n} as t numbers (occurring in the

top half of {1, 2, . . . , 6n}). Then, if we look at the completed structure in terms of b’s and

t’s, we see that the corners in the top c
2 layers and the edges in the bottom c

2 layers are

all b numbers plus a constant (where the constant is a multiple of 3n). The spaces not

occupied by b numbers are occupied by t numbers plus a constant (where the constant is

a multiple of 3n). We now look at what values we have in the structure. In the top and

bottom layers, the b values take on every number in the set {1, 2, . . . , 3n}. In the second
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from the top and second from the bottom layers, the b values take on the original b values

plus a constant of 3n, therefore taking on every number in the set {3n+1, 3n+2, . . . , 6n}.
The b values in the third from the top and third from the bottom layers are the original b

values plus 2 ·3n, taking on every number in the set {6n+1, 6n+2, . . . , 9n}. Continuing

with this reasoning, we look at the middle two layers. The b values of these two layers

are the original b values plus 3n( c2 − 1) = 3n c
2 − 3n, which comes out to every number

in the set {3n c
2 − 3n+ 1, 3n c

2 − 3n+ 2, . . . , 3n c
2 − 3n+ 3n = 3n c

2}. Hence the b values

cover every number in the set {1, 2, . . . , 3n c
2} exactly once.

Now we look at the t values. The original t values are 3n + 1, 3n + 2, . . . , 6n, but

by construction, the t values in the center two layers take on the original t values plus

3n( c2 − 1) = 3n c
2 − 3n, or every number in the set {3n c

2 + 1, 3n c
2 + 2, . . . , 3n c

2 + 3n}.
If we move up one layer and down one layer, the t values of these next two layers take

on the original t values plus 3n c
2 , or every number in the set {3n c

2 + 3n + 1, 3n c
2 +

3n+ 2, . . . , 3n c
2 + 6n}. Following this reasoning, we see that the t values in the top and

bottom layers take on the original t values plus a constant of 3n(c− 2) = 3nc− 6n, or

every number in the set {3nc − 6n + 3n + 1 = 3nc − 3n + 1, 3nc − 3n + 2, . . . , 3nc}.
Hence, between the b’s and the t’s throughout the layers, we find every number from

1, 2, . . . , 3nc exactly once in the structure. Hence our construction does indeed produce

MH(n, 4, c).

4.5 Example of Construction in Proof of Theorem 4.7

As an example of this construction, we will build MH(5, 4, 4) (see Figures 4.12 and 4.13

for a visual of the construction). We can think of this as either four stacked pentagons

or as five 4× 4 squares attached along edges. The first step in the construction requires

us to have a copy of MH(5, 4, 2). We will use one that can be obtained using the

construction in the proof of Theorem 4.5. Following the construction in the proof of

Theorem 4.7, we proceed with the following steps:
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(a) Start with MH(5, 4, 2) (b) Add 15 everywhere

Figure 4.12: First steps: construction of MH(5, 4, 4).

1. Begin with an stack of 4 empty pentagons. Fill in the middle with a copy of

MH(5, 4, 2).

2. Add 3n(c−2)
2 = 3·5(4−2)

2 = 15 to every entry in the middle two layers.

3. To get the bottom layer, add 3n = 15 to each of the corners of the layer above it,

and subtract 15 from each of the edges above it.

4. To get the top layer, subtract 3n = 15 from each of the corners in the layer below

it, and add 15 to each of the edges below it.
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(a) Use the middle to build the top and bottom (b) MH(5, 4, 4)

Figure 4.13: Conclusion: construction of MH(5, 4, 4).

The resulting object is MH(5, 4, 4).

At this point, we have considered only even values for c. We now consider odd c

values.

Lemma 4.8. If n is even and c is odd, then MH(n, 4, c) does not exist.
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Proof. We must only consider the column sum σ for this proof.

σ =
sum of all cells

# of columns

=
nc(4− 1) · (nc(4− 1) + 1)

2 · n(4− 1)

=
c

2
(nc(3) + 1).

Since c is odd and n is even, (3nc + 1) is odd. Hence, σ is not an integer. Thus,

MH(n, 4, c) does not exist.

Another natural generalization arises here: what do we know about the existence of

MH(n, a, c) for a > 4? We will first explore which values of n, a, and c preclude the

existence of MH(n, a, c), and then study existence of MH(4, a, c).

Theorem 4.9. If a is odd, then MH(n, a, c) does not exist.

Proof. Suppose a is odd and MH(n, a, c) does exist. We will consider the column and

row sums.

σ =
sum of all cells

# of columns

=
nc(a− 1) · (nc(a− 1) + 1)

2 · n(a− 1)

=
c

2
(nc(a− 1) + 1)

and

ρ =
aσ

c

=
a(nc(a− 1) + 1)

2
.

Since a is odd, nc(a− 1) is even, and nc(a− 1) + 1 is odd. Hence,

a(nc(a− 1) + 1) = odd× odd = odd
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and therefore ρ is not an integer. This contradicts the assumption that MH(n, a, c)

exists, and the proof is complete.

Theorem 4.10. If n and a are even and c is odd, then MH(n, a, c) does not exist.

Proof. Suppose that a and n are even and c is odd, and MH(n, a, c) exists. Consider σ

given in the proof of Theorem 4.9:

σ =
c

2
(nc(a− 1) + 1).

Since n is even, nc(a− 1) is even and nc(a− 1) + 1 is odd. Then, since c is odd,

c(nc(a− 1) + 1) = odd× odd = odd

and therefore σ is not an integer. This contradicts the assumption that MH(n, a, c)

exists, and the proof is complete.

Because of Theorem 4.9, we will henceforth consider a as an even number greater

than 2. We will now make two observations based on all of our previous theorems.

Observation 4.11. If n is even and c is even, then MH(n, a, c) may exist.

Observation 4.12. If n is odd, then MH(n, a, c) may exist as long as c ≥ 3 (i.e. c can

perhaps be odd).

Our next step is to explore the existence for MH(4, a, c), where a and c are even

(Theorem 4.9, Theorem 4.10). We will break this down further, considering the cases

where a ≡ 2 (mod 4) and a ≡ 0 (mod 4).

Lemma 4.13. If a ≡ 2 (mod 4), then MH(4, a, 2) exists.

Proof. We will consider the case where a = 6 at the end of the proof. For now, suppose

a > 6. Begin by building exactly half of each layer in the first step, using the numbers
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1, 2, . . . , 4(a−1) (the entire completed structure will contain the first 2 ·4(a−1) natural

numbers, so in this first step we are placing the lower half of the numbers). Place 12 of

these numbers in the layers as shown in Figure 4.14.

4a-
7

4a-
4

4a-
6

1
4a-

9
. . . ...

4a-
11

2

4a-
5

4

4a-
10

. . ....
4a-

8
3

Figure 4.14: The first 12 numbers placed.

We now turn our attention to placing the following numbers: a+3, a+4, . . . , 3a−10.

We see that this list has 3a − 10 − (a + 3) + 1 = 2a − 12 numbers. Create the pairs

(a+ 3, 3a− 10), (a+ 4, 3a− 11), etc., where each pair has a sum of 4a− 7. The number

of pairs that we have is a− 6 ≡ 2− 6 ≡ 0 (mod 4). Place one quarter ((a/2− 3)/2) of

these pairs in each of the four edges of the top layer.

Now we have to place the numbers 5, 6, . . . , a + 2, 3a − 9, . . . , 4a − 12, which all

go in the bottom layer. Notice that we can also group these numbers into the pairs

(5, 4a−12), . . . , (a+2, 3a−9), with each pair summing to 4a−7. There are 4·(a/2−1)/2
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pairs in total. We will place one quarter ((a/2 − 1)/2) of these pairs into each of the

four edges of the bottom layer.

To complete our construction, we place the complements of all of the numbers we

have already placed into the corresponding cell in the opposite layer. We define the

complements as we have before: each pair of complements will sum to 1 + 2 · 4(a− 1) =

8a− 7 (this is σ from the proof of Theorem 4.9). Our structure clearly has a constant

column sum, which is σ. We check the row sum (where ρ = a
2 (8a − 7), from the proof

of Theorem 4.9), starting with the top row of the top layer.

First part = (4a− 6) + 1 + (4a− 9) +
a/2− 3

2
· (4a− 7)

=

(
2 +

a/2− 3

2

)
(4a− 7)

=

(
a/2 + 1

2

)
(4a− 7).

Second part =
a/2− 1

2
· (complement of 4a− 7) + 4a

=
a/2− 1

2
(12a− 7) + 4a.

Top row sum =
a/2 + 1

2
(4a− 7) +

a/2− 1

2
(12a− 7) + 4a

=
a/2− 1

2
(4a− 7 + 12a− 7) + 4a− 7 + 4a

=
a/2− 1

2
(16a− 14) + 8a− 7

= (
a

2
− 1)(8a− 7) + 8a− 7

=
a

2
(8a− 7)

= ρ.
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It is easy to check that the other three sides also sum to ρ, and by construction, each

layer will have the same row sum. Hence, the object we have created is MH(4, a, 2),

and our construction is complete. If a = 6, then a + 3 = 9 and 3a − 10 = 8, so we

cannot follow the second step of the construction. Hence, we ignore that step, realizing

that it does not alter the guaranteed magicness of the construction (we can still place

(a/2 − 3)/2 = 0/2 = 0 pairs along each edge of the top layer, as the construction calls

for). Thus, this construction is also valid when a = 6.

4.6 Example of construction in the proof of Lemma 4.13

Figure 4.15: Follow the template in Figure 4.14.

Refer to Figures 4.15, 4.16, and 4.17 to view the construction of MH(4, 10, 2) fol-

lowing the construction in the proof of Lemma 4.13.

Lemma 4.14. If a ≡ 0 (mod 4), then MH(4, a, 2) exists.

Proof. This proof is similar to that of Lemma 4.13, but a bit trickier. The case

MH(4, 4, 2) is given in Figure 4.1. Now consider a ≥ 8. Begin by building exactly

half of each layer in the first step, using the numbers 1, 2, . . . , 4(a− 1) (the entire com-

pleted structure will contain the first 2 · 4(a − 1) natural numbers, so in this first step
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Figure 4.16: Fill out the first half of each side with pairs that sum to 33.

Figure 4.17: Filling in complements. Row sum is 365, column sum is 73.

we are placing the lower half of the numbers). Place 28 of these numbers in the layers

as shown in Figure 4.18.

We now turn our attention to placing the following numbers, which is very similar

to the second step of the construction in Lemma 4.13: a+ 1, a+ 2, . . . , 3a−8, excluding

the eight numbers 2a−7, . . . , 2a. We see that this list contains 2a−16 elements. Create

the pairs (a + 1, 3a − 8), (a + 2, 3a − 9), . . . , (2a − 8, 2a + 1), where each pair sums to

4a−7. Notice that we have created a−8 ≡ 0 (mod 4) pairs. Place one quarter (a/4−2)

of these pairs in each of the four edges of the top layer.
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Figure 4.18: The first 28 numbers placed.

Now we must place the numbers 9, 10, . . . , a, 3a − 7, 3a − 6, . . . , 4a − 16, which all

go in the bottom layer. Notice that we can group these numbers into the pairs (9, 4a−
16), (10, 4a− 17), . . . , (a, 3a− 7), where each pair sums to 4a− 7. The number of pairs

that we have is a − 9 + 1 = a − 8 ≡ 0 (mod 4). Place one quarter (a/4 − 2) of these

pairs in each of the four edges of the bottom layer.

To complete our construction, place the complements of all of the numbers we have

already placed into the corresponding cell in the opposite layer. We define the comple-

ments as we have before: each pair of complements will sum to 1 + 2 · 4(a− 1) = 8a− 7
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(this is σ from the proof of Theorem 4.9). Our structure clearly has a constant col-

umn sum, which is σ. We check the row sum (where ρ = a
2 (8a − 7), from the proof of

Theorem 4.9), starting with the top row of the top layer.

First part = (4a− 6) + 4 + (2a− 2) + (4a− 8) + (a/4− 2) · (4a− 7)

= 10a− 12 + (a/4− 2)(4a− 7).

Second part = (4a+ 5) + (6a− 6) + (8a− 15) + 4a+ (a/4− 2)(12a− 7)

= 22a− 16 + (a/4− 2)(12a− 7).

Top row sum = 10a− 12 + (a/4− 2)(4a− 7) + 22a− 16 + (a/4− 2)(12a− 7)

= 32a− 28 + (a/4− 2)(16a− 14)

= 4(8a− 7) + (a/2− 4)(8a− 7)

=
a

2
(8a− 7)

= ρ.

It is easy to check that the other three sides also sum to ρ, and by construction, each

layer will have the same row sum. Hence, the object we have created is MH(4, a, 2),

and our construction is complete.

Theorem 4.15. MH(4, a, c) exists if and only if a and c are even.

Proof. To prove the only if direction, suppose MH(4, a, c) exists. Then a and c must

be even according to Theorems 4.9 and 4.10.

To prove the if direction, suppose a and c are even. We know that MH(4, a, 2) exists

as a direct result from Lemmas 4.13 and 4.14. We will mimic the construction in the

proof of Theorem 4.7 to achieve our result.

We will first derive the column sum and row sum of MH(4, a, c), which can be done

as follows:
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σ =
sum of all cells

# of columns

=
1
2(n(a− 1)c)(n(a− 1)c+ 1)

n(a− 1)

=
c(nc(a− 1) + 1)

2

=
c(4c(a− 1) + 1)

2

=
c

2
(4c(a− 1) + 1).

ρ =
a× column sum

# of layers

=
aσ

c

=
a · c2(4c(a− 1) + 1)

c

=
a

2
(4c(a− 1) + 1).

Start the construction with a set of c unlabeled layers of regular n-gons stacked on

top of each other. We will fill in the boundaries of each of these n-gons in a manner

which will produce MH(4, a, c). As before, it is convenient to classify the numbers

{1, 2, . . . , 4(a−1)} as b numbers (since they are in the bottom half of {1, 2, . . . , 8(a−1)}),
and the numbers {4a− 3, 4a− 2, . . . , 8(a− 1)} as t numbers (occurring in the top half

of {1, 2, . . . , 8(a− 1)}). Refer again to the constructions in Lemmas 4.13 and 4.14, and

use one of them to construct MH(4, a, 2). Place this in the middle two layers of the

unlabeled stack. We now identify the locations of the b numbers and the t numbers,

and we will henceforth refer to these specific cells (and their corresponding cells in each

layer) as either b cells or t cells. Now, we need the row sums of both of these layers to

equal ρ = a
2 (4c(a−1)+1), but it is clear that as is, the row sums are equal to a

2 (8a−7).

We achieve a row sum of ρ by adding the same constant to each entry in the middle of
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the stack. This constant must be

col sum− (col sum of MH(4, a, 2)) · (# of copies of MH(4, a, 2) that fit)

# of layers

=
σ − (8a− 7) · c2

c

=
c
2(4c(a− 1) + 1)− (8a− 7) c2

c

=
c
2((4c(a− 1) + 1)− (8a− 7))

c

=
c
2(4c(a− 1)− 8a+ 8)

c

= 2c(a− 1)− 4a+ 4.

Observe that the row sum of each of these two middle layers are

a

2
(8a− 7) + a(2c(a− 1)− 4a+ 4)

=
a

2
(8a− 7) +

a

2
(4c(a− 1)− 8a+ 8)

=
a

2
(4c(a− 1)− 8a+ 8 + 8a− 7)

=
a

2
(4c(a− 1) + 1)

= ρ.

We must now fill in the remaining unlabeled layers. Fill in the t cells of the layer

directly below the middle by adding 4(a− 1) to the numbers in the t cells immediately

above it, and fill in the b cells in this layer by subtracting 4(a− 1) from the numbers in

the b cells immediately above it. We iterate this process, working down to the bottom

layer. We then start from the middle again and work up, adding 4(a− 1) to the t cells

in the layer immediately below and subtracting 4(a− 1) from the number in the b cells
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in the layer immediately below. Iterate this process, working up.

Observe that in each layer, there is an equal number of b cells and t cells. Hence,

the row sum differs from ρ by 4(a − 1) + 4(a − 1) · · · − 4(a − 1) · · · − 4(a − 1) = 0, so

each row sums to ρ. Now we check the column sum. We note that the pairwise column

sum of the middle two layers is

(8a− 7) + 2(2c(a− 1)− 4a+ 4)

= (8a− 7) + 4c(a− 1)− 8a+ 8

= 4c(a− 1) + 1.

Now consider the next layer up and the next layer down. The pairwise column sum

of these two layers must also be 4c(a− 1) + 1, since we add 4(a− 1) to the t cells below

and subtract them up top, and we add 4(a−1) to the b cells up top and subtract 4(a−1)

from the b cells below. If we iterate this process of checking the pairwise column sums,

we see that each pair has column sums of 4c(a − 1) + 1. Therefore, the total column

sum is (4c(a− 1) + 1) · (# of pairs) = (4c(a− 1) + 1) · c2 = σ.

Since all rows sum to ρ and all columns sum to σ, the final step is to show is that

each of the numbers from 1, . . . , 4c(a − 1) appears exactly once. If we look at the

completed structure, we see that the every entry is simply a value of MH(4, a, 2) plus

a constant (where the constant is a multiple of 4(a− 1)). In the top and bottom layers,

the b values take on every number in the set {1, 2, . . . , 4(a − 1)}. In the second from

the top and second from the bottom layers, the b values take on the original b values

(from MH(4, a, 2)) plus a constant of 4(a− 1), therefore taking on every number in the

set {4a− 3, 4a− 2, . . . , 8a− 8}. The b values in the third from the top and third from

the bottom layers are the original b values plus 2 · 4(a − 1), taking on every number

in the set {8a − 7, 8a − 6, . . . , 12a − 12}. Continuing with this reasoning, we look at

the middle two layers. The b values of these two layers are the original b values plus

4(a − 1)( c2 − 1) = 4(a − 1) c2 − 4(a − 1), which comes out to every number in the set
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{4(a−1) c2−4(a−1)+1, 4(a−1) c2−4(a−1)+2, . . . , 4(a−1) c2−4(a−1)+4(a−1) = 2c(a−1)}.
Hence the b values cover every number in the set {1, 2, . . . , 2c(a− 1)} exactly once.

Finally, look at the t values. The original t values are 4a− 3, 4a− 2, . . . , 8a− 8, but

by construction, the t values in the center two layers take on the original t values plus

4(a−1)( c2−1) = 4(a−1) c2−4(a−1), or every number in the set {2c(a−1)+1 = 4(a−1) c2+

1, 4(a− 1) c2 + 2, . . . , 4(a− 1) c2 + 4(a− 1)}. If we move up one layer and down one layer,

the t values of these next two layers take on the original t values plus 4(a−1) c2 , or every

number in the set {4(a−1) c2 +4(a−1)+1, 4(a−1) c2 +4(a−1)+2, . . . , 4(a−1) c2 +8a−8}.
Following this reasoning, we see that the t values in the top and bottom layers take on the

original t values plus a constant of 4(a−1)(c−2) = 4c(a−1)−8a−8, or every number in

the set {4c(a−1)−8a−8+4(a−1)+1 = 4c(a−1)−4a−3, 4c(a−1)−4a−2, . . . , 4c(a−1)}.
Hence, between the b’s and the t’s throughout the layers, we find every number from

1, 2, . . . , 4c(a − 1) exactly once in the structure. Hence our construction does indeed

produce MH(n, 4, c).



Chapter 5

Conclusion and Discussion

5.1 Magic Box Sets

In Chapter 2, we stated several open problems regarding magic box sets. We now

recapitulate how the theorems in Chapter 3 have answered these problems.

Result 5.1. If a, b, c are even, and at least two of a, b, c equal 2, MBS(a, b, c; d) does

not exist.

This is a result of Theorem 3.1, and completely answers Problem 2.4.

Result 5.2. If a, b, c are even, exactly one of a, b, c equals 2, and d = 2, MBS(a, b, c; d)

exists.

This is a result of Theorem 3.2, and completely answers Problem 2.5.

Result 5.3. If a, b, c are even (where at most one equals 2) and d is odd, MBS(a, b, c; d)

exists.

This is a result of Theorem 3.20, and along with Result 5.1 completely answers

Problem 2.6.

Result 5.4. If a, b, c are odd (in which case d must be odd), and MB(a, b, c) exists,

then MBS(a, b, c; d) exists.
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This requires a, b, and c to be greater than 1. We also know that MB(a, b, c) exists

if gcd(a, b) > 1. This result is Theorem 3.18, and partially solves Problem 2.7. This

leaves the following open problems.

Problem 5.5. Does MBS(a, b, c; d) exist for any arbitrary quadruple of odd integers

a, b, c, d (where a, b, c are greater than 1)?

It is an open question whether MB(a, b, c) exists for any arbitrary triple of odd

integers a, b, c (all greater than 1). When a, b, and c are odd and greater than 1, then

the existence of MB(a, b, c) implies the existence of MBS(a, b, c; d). Hence, these two

questions, while not equivalent, go hand in hand. It also leads us to our next problem.

Problem 5.6. Does there exist a quadruple of odd integers a, b, c, and d (all greater

than 1) for which MBS(a, b, c; d) exists, but MB(a, b, c) does not exist?

Of course, this problem becomes trivial if MB(a, b, c) exists for all triples of odd

integers a, b, c, where a, b, and c are greater than 1.

5.2 Magic Hollow Boxes

We turn our attention to the subject of Chapter 4, the magic hollow box. We summarize

our results here. Keep in mind that n ≥ 3, otherwise our structure would not be 3-

dimensional.

Result 5.7. If a is odd, MH(n, a, c) does not exist.

This is the result of Theorem 4.9.

Result 5.8. If n is even and c is odd, MH(n, a, c) does not exist.

This is the result of Theorem 4.10.

Result 5.9. MH(n, 4, c) exists for all n and all even c.

This is the result of Theorem 4.7.
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Result 5.10. MH(4, a, c) exists for all even a and all even c.

This is the result of Theorem 4.15.

These results leave the following open problems.

Problem 5.11. If n is odd, a is even, and c is odd, does MH(n, a, c) exist?

Problem 5.12. If a and c are even, for which n does MH(n, a, c) exist?

I have not been successful at finding any examples to help formulate even a conjecture

regarding Problem 5.11.

With regard to Problem 5.12, I have constructedMH(3, 6, 2), MH(6, 6, 2), MH(8, 6, 2),

and MH(3, 8, 2) (refer to the figures in Appendix A). These objects all share the same

very general structure (exactly half of the entries in each layer are b’s and t’s, as de-

scribed in the proof of Theorem 4.15). They can be used to construct MH(3, 6, c),

MH(6, 6, c), MH(8, 6, c), and MH(3, 8, c) for any even c by generalizing the construc-

tion in the proof of Theorem 4.15.

Because of these results, I make the following conjecture.

Conjecture 5.13. If a and c are even, then MH(n, a, c) exists for all n ≥ 3.
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Appendix A

More Magic Hollow Boxes

Figure A.1: MH(3, 6, 2).
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Figure A.2: MH(6, 6, 2).

Figure A.3: MH(8, 6, 2).
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Figure A.4: MH(3, 8, 2).
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