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Abstract 

 Within this study, fish of two ecosystems are investigated: 1) shallow water fishes 

in waters located in proximity to Duluth-Superior Harbor and 2) open water fishes. 

Investigation of the former includes a comparison of the invasive round goby to the 

logperch and black bullhead to surmise any physiological visual advantage for the 

intruding species. The latter investigation compares the siscowet, kiyi, and deepwater 

sculpin visual sensitivity to the downwelling light available at depth.  

 Electroretinography was used to formulate spectral sensitivity curves for 

interspecific comparison. In both studies, fish visual sensitivity matched that of 

downwelling light available in the respective environments. Logperch showed greater 

visual depth than the round goby. Siscowet and kiyi visual depth profiles overlapped and 

deepwater sculpin retained vision at greater depths. Diurnal vision for all species is 

possible in shallow depths but it is likely that deepwater fishes rely on other sensory 

modalities during most predator-prey interactions.  
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Chapter 1: Introduction 

 

1.1 Open water food web of Lake Superior 

 

The open water of Lake Superior is host to complex interactions among species. 

Siscowet, (Salvelinus namaycush siscowet) the most abundant predator in the lake, prey 

primarily on deepwater sculpin (Myoxocephalus thompsoni) and occasionally on kiyi 

(Coregonus kiyi) (Isaac 2010). Mysis (Mysis duluviana), a crustacean found at the center 

of the offshore food web, is the main prey item of deepwater sculpin and kiyi (Figure 1). 

Mysis are primarily responsible for the recycling of nutrients from benthic waters to the 

surface via consumption of bottom dwelling organisms and surface plankton  

(Ahrenstorff et al. 2011). Mysis consumption by deepwater sculpin and kiyi must remain 

at relative equilibrium to preserve the current nutrient cascade. The open lake system is 

dominated by this simple food web consisting of siscowet, deepwater sculpin, kiyi, and 

mysis. Drastic changes in the abundance of one species could manifest in the alteration of 

energy dynamics and nutrient flow within the system. 

Overabundance of siscowet is a rising problem in the open waters of Lake 

Superior (Hansen et al. 1995). Although predation of kiyi by siscowet appears to be 

sustainable, siscowet are consuming deepwater sculpin at an alarming rate (Gamble 

2010). The deepwater sculpin on average constituted 60-79% of the prey weight 

consumed by the siscowet. Data suggest deepwater sculpin are the sole contributor of the 

siscowet fall diet (Gamble et al. 2011). Diminishing sculpin populations may lead to a 

rise in mysis populations, changing the flow of nutrients through the system. 

Additionally, as sculpin abundance continues to decline, siscowet may shift their diet 

preference, causing a drastic decline in kiyi, and potentially other open water fishes. 
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The sensory mechanisms used by siscowet, kiyi, and deepwater sculpin in 

foraging remain undocumented. To predict future trends in fish populations and allow for 

optimal management of lake organisms, better understanding of these mechanisms must 

be achieved.  

1.2 Diel vertical migration in Lake Superior fish 

Movement of the siscowet in response to diel vertical migration (DVM) by its 

prey subjects these organisms to low intensity light environments (Thurston 1962). DVM 

is a phenomenon involving the upward movement of organisms in the water column at 

night and downward movement during the day. The exact motive of this behavior is 

unknown, but predator avoidance, prey capture, and competition may influence the 

pattern (Ahrenstorff et al.2011). Some migration patterns shift with ontogenetic changes. 

Juvenile siscowet (< 225 mm) in the Apostle Island region of Lake Superior, undergo diel 

bank migration (DBM), moving from deep water during the day to shallow banks at night 

(Gorman et al. 2012). Juvenile siscowet in this region occupy shallower habitats, 

indicating a preference for increased depth with age (Figure 2). Adult siscowet, however, 

remain in open waters and perform DVM. In the western arm of Lake Superior however, 

juvenile siscowet exhibit normal DVM behavior and do not undergo DBM (Ahrenstorff 

et al. 2011). This may suggest differences in behavior regionally within Lake Superior.  

Siscowet can be found at the bottom of Lake Superior, as low as 407 m during the 

day. Diet studies found terrestrial insects in the siscowet stomach contents suggesting 

their ability to reach surface waters at night (Sitar et al. 2008). Despite differing depths 

ontogenetically and diurnally, it remains evident that siscowet dwell in minimal light 

intensity areas.  
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Night trawls at 30 m caught kiyi, a fish traditionally thought to stay in benthic 

waters (Hrabik et al. 2006). This suggests that kiyi are following the migration of mysis 

(Ahrenstorff et al. 2011) and are undergoing DVM for prey capture.  Ontogenetic shifts 

do not manifest in changes in kiyi migration patterns (Figure 2). Kiyi distribution ranges 

from 25 m to below 325 m and varies between seasons (Hrabik et al. 2006; Ahrenstorff et 

al. 2011). As discussed with siscowet behavior, DVM patterns also place kiyi in a 

constant low light intensity isolume. Deepwater sculpin inhabit depths between 15 and 

407 m (Figure 2); this keeps these fish in variable, low light intense environments as 

well.  

1.3 Shallow water species 

While the open waters of Lake Superior retain this native dominated food web, 

shallow water organisms contend with invaders. Introduced to the Great Lakes in 1990 

via ship ballast water (Jude et al. 1992), the round goby (Neogobius melanostomus) 

population quickly expanded, dominating the near shore waters of Lake Superior by 1995 

(Jude 1997). With high fecundity due to superior egg fitness (Kovtun 1978; MacInnis & 

Corkum 2000) and aggressive behavior, the round goby outcompetes both native and 

noninvasive colonizers in this aquatic system.  

 Round goby mating behavior maximizes egg production and viability. The male 

round goby will lure several females to a self-constructed nest with acoustic, olfactory, 

and visual cues (Protasov et al.1965; Gammon et al., 2005; Stammler & Corkum, 2005, 

Rollo et al. 2007). After egg deposition, the male round goby will guard the nest until the 

eggs hatch, enabling higher egg viability (Rollo et al. 2007). Round goby courtship 

occurs multiple times during the year with females spawning up to six times every 18 
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days between April and September (Jude et al. 1992). Sexual maturity is reached between 

one and two years of age for females and after 2 years for males (Jude et al. 1992). These 

characteristics allow the species to rapidly spread and quickly populate new territories. 

 The logperch is a native benthic species threatened by the round goby’s presence 

in Lake Superior. Logperch declines seen in other areas of the Laurentian Great Lakes 

have been correlated with the round goby presence (French & Jude 2001). Both logperch 

and juvenile round gobies consume dipterans, Caenis spp., and amphipods, causing 

competition for resources. Although mature round gobies will consume bivalves and 

ephemeropteran nymphs, absence of these prey will cause the invasive to continue to 

consume small invertebrates, further limiting logperch resources (Ray and Corkum 1997; 

French & Jude 2001). Additionally, the consumption of eggs by the round goby is 

thought to be the main contributor to recent logperch decline within the Great Lakes 

(French & Jude 2001).  

 The logperch and round goby generally use similar substrate for habitat. Found 

commonly on rocky shorelines, both organisms rely on crevices for shelter and predation. 

The logperch will actively search for food on rubble substrate by turning over small rocks 

with its protrusive nose (Greenberg 1991). The round goby will also feed in similar 

territory, and will monopolize substrate space with its nest guarding behavior. Despite 

this preference for rocky substrate, the logperch has been extirpated from this habitat in 

Duluth-Superior Harbor, forced to use sandy bottom substrate for habitat (Leino & 

Mensinger, unpublished). This shift in habitat use is added evidence that the round goby 

has a deleterious effect on the native logperch. 
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 The black bullhead is a native benthic fish that is seemingly unaffected by the 

presence of the round goby largely in part due to the rarity with which these two species 

occupy the same habitat (Kornis et al. 2013). MN-DNR has reported declining numbers 

for the black bullhead since 1993 (2012 report). This decline is unlikely caused by round 

goby presence. Like the round goby, the black bullhead is active at night. Additionally, 

the black bullhead commonly resides in turbid waters and captures prey in muddy 

substrates (Darnell & Meierotto 1965; Johnson et al. 2008). This subjects the black 

bullhead to low light intensity environments while attempting to capture prey. 

Accustomed to low light intensities, the black bullhead retina may be adapted for visual 

sensitivity in minimal light conditions. Comparison of black bullhead spectral 

sensitivities to the sensitivity of the native logperch and invasive round goby may reveal 

differences in visual perception in these three species. 

1.4 Fish vision 

The fish visual system has been investigated for better understanding of optical 

function in varying light environments (Wald 1936; Denton & Warren 1957; Wald et al. 

1957; Crescitelli 1991; Guthrie & Muntz 1993; Hrabik et al. 2006). The many functions 

of the fish eye include perception of predators, identification of mates, detection of prey, 

and sensing contrast of objects against ambient backgrounds. The perception of these 

complex images is dictated by the highly variable habitats in which each species evolved 

(Crescitelli 1991; Guthrie and Muntz 1993). Horodysky et al. (2010) characterized the 

light and spectral sensitivities of four piscivores common to coastal and estuarine systems 

in the western North Atlantic using electroretinography. The benthic species exhibited 

higher sensitivity to light intensity and had a broader range of wavelength perception 
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compared to pelagic fishes. Decreased light availability in benthic environments requires 

bottom-dwelling organisms to have increased sensitivity. Pelagic fishes, acquainted with 

more variable photic environments, showed larger differences in their day versus night 

perception when compared to benthic fish (Horodysky et al. 2010). This corresponds 

with the increased variability in light intensity and ambient wavelengths present in 

pelagic waters compared to benthic waters over the course of a day. 

Differences in visual sensitivity are most likely due to difference at the cellular 

level within the retina. An examination of spectral sensitivity of 17 species of Cottoids in 

Lake Baikal revealed differences in retinal cell organization and size (Bowmaker et al. 

1994). Surface species (species inhabiting depths of 1-120 m) possessed retinas with 

double cones, single cones, and rods arranged in a square mosaic. The rods and cones of 

these fish were thin and long (cone diameter 2-4 µm, cone length 10-15 µm; rod diameter 

2 µm, rod length 90 µm).  More pelagic species (50-450 m) possessed larger cones (cone 

diameter 9 µm, cone length 45 µm), with double cones arranged in a row and single 

cones irregularly spaced. Rods in these species were short but thick (rod diameter 4 µm, 

rod length 30 µm). In deeper dwelling species (100-1000 m), rods were long and thick 

(some lengths up to 165 µm) while double and single cones were thick and medium in 

length (cone diameter 5-6 µm, length 20 µm). Their arrangement was loose and 

disorganized. Cones were absent in abyssal fish (200-1500 m) and rods were thick (70-

120 µm) (Bowmaker et al. 1994). These changes in photoreceptor morphology reflect 

limited light availability with depth. At great depth, rod photoreceptors alone are present 

due to cone insensitivity. Decrease in organization of the retinal cells with depth may 

suggest the inefficiency of structured mosaic at capturing sparse photons; alternatively, 
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the lack of organization may imply reliance on another sensory modality in prey 

detection with minimal energy allocated to retinal maintenance. Regardless, the varying 

shapes and sizes of retinal components with depth reflect differences in the visual 

systems of fish present in the lake.  

 

1.5 The “Sensitivity Hypothesis” 

The “sensitivity hypothesis” proposed by Clarke (1936) discusses the visual 

capabilities of fish with increasing depth. As light penetrates the water column, scattering 

and absorption prevent different wavelengths from traveling to equal depths (Jerlov 

1968). The sensitivity hypothesis suggests that fish remaining at greater depths need only 

be sensitive to those ambient wavelengths in order to visually detect their prey and avoid 

predators. Organisms occupying more than one isolume will be more sensitive to the 

wider range of wavelengths present in the varying light environments they inhabit 

(Clarke 1936). Therefore, Clarke’s work suggests a shift in the visual systems of fish 

corresponding to wavelengths present in the fish’s environment. Munz (1958) and 

Denton and Warren (1957) continued to build on this hypothesis and noticed a blue shift 

in bathypelagic organisms compared to marine surface species. Since the properties of 

light in marine waters favor the relatively slow attenuation of blue wavelengths, their 

findings supported the “sensitivity hypothesis” for the investigated pigments. 

Bowmaker et al. (1994) similarly supported the sensitivity shift principle outlined 

in the “sensitivity hypothesis” by noting a decrease in λmax for species residing in greater 

depths. The study of Lake Baikal, the deepest lake in the world at 1600 m, allowed 

Bowmaker et al. (1994) to study a wide variety of species at various depths for 
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comparion of λmax values in these differing light conditions. While surface species 

contained single cones with a λmax just over 540 nm and a rod λmax around 515 nm, 

abyssal fish had a cone λmax below 500 nm and a rod λmax at 500 nm. While this shift is 

expected with the light attenuation in the water column, the data challenge the 

“sensitivity hypothesis”. The slowest attenuating wavelengths within the system fall 

between 550-600 nm. According to the sensitivity hypothesis, abyssal fish should have 

λmax values adapted for these wavelengths most prevalent at depth. This may support the 

alternative hypothesis to the sensitivity hypothesis that states some fish utilize a λmax 

offset to the predominant ambient environment. With offset sensitivity, fish may have 

increased ability to detect contrast within the environment, and may be able to better 

detect predators and prey as a result (McFarland & Munz 1975; Munz 1976; Douglas et 

al. 1995) 

 

1.6 Retinal Pigments 

 Photoreceptors are responsible for initial absorption of light in the retina. 

Pigments within these photoreceptors are responsible for the absorption of specific 

photons found in the electromagnetic spectrum. The diversity of these pigments is greater 

in bony fishes than in all other vertebrates combined (Munz & McFarland 1977). 

Scotopic pigments can be classified into two groups: rhodopsins and porphyropsins. 

Rhodopsin, based on vitamin A1, is the visual pigment responsible for perception of 

relatively short wavelengths between 467 and 526 nm, while porphyropsin, based on 

vitamin A2, aids longer wavelength perception between 502 and 551 nm (Dartnall & 

Lythgoe 1965; Munz & McFarland 1977). Rhodopsin forms as a result of the binding of 
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11-cis retinene with an opsin molecule (Wald et al. 1957). The cis configuration becomes 

all trans upon photobleaching and returns to its original structure upon dark adaption 

(Wald et al. 1957). Porphyropsin consists of 11 cis-3-dehydroretinal chromophore bound 

to an opsin molecule and undergoes a similar transformation upon bleaching (Bowmaker 

et al. 1988). While rhodopsin has been found extensively in marine teleost species (Wald 

1939; Denton & Warren 1957; Munz & MacFarland 1973; Crescitelli et al. 1985; 

Bowmaker et al. 1988), porphyropsin is often used alone or in conjunction with 

rhodopsin in freshwater species (Dartnall & Lythgoe 1965). The proportions with which 

these pigments are found within organisms vary among individuals. Changes in the ratio 

of rhodopsin to porphyropsin in individuals containing both pigments can change based 

on hormonal fluctuations, temperature, and light regime (Munz & McFarland 1977; 

Levine & MacNichol 1979; Beatty 1984) 

Jokela-Määttä et al. (2007) studied the evolutionary divergence of these pigments 

in fish species found in both marine and freshwater systems. Their findings supported 

modification of the rod structure over thousands of years of isolation from conspecifics. 

Microspectrophotometry revealed differences between chromophore components in 

Baltic fish (fish subjected to longer wavelengths) compared to conspecifics of the east 

coast of Scotland, the west coast of Norway, and the Adriatic Sea (truly marine fish 

subjected to shorter wavelengths). While fish in long wavelength environments exhibited 

porphyropsin alone or both porphyropsin and rhodopsin chromophores, marine fishes 

strictly possessed rhodopsin. No divergence was seen between Baltic fish and fish from 

Lake Vesijärvi, Lake Päijänne, and Lake Tuusulanjärvi as these waters are all shifted 

towards longer wavelengths (Jokela-Määttä et al. 2007). 



 

10 

 

Through these studies, it is evident that fish populations are able to adapt to their 

environmental settings over time indicating the importance of the visual system in daily 

function. While the sensitivity hypothesis for vitamin A1 pigments has been supported 

extensively (Clarke 1936; Munz 1956; Denton & Warren 1957; Jokela-Määttä et al. 

2007) with few criticisms (Bowmaker et al. 1994), evidence for its application in regard 

to vitamin A2 pigments is not well studied (Jokela-Määttä et al. 2007).  

 

1.7 Particles Bending Light 

Visibility underwater is made difficult by the inherent properties of light. Even in 

pure water, light bends as the photons transfer from a gaseous to a liquid median.  As the 

angle of the sun changes, and the intensity of light changes throughout the day, variation 

in light angles and attenuation change (Guthrie and Muntz 1993). Air quality, cloud 

cover, and time of year are also factors that affect light levels in the water column 

(Bukata et al. 1995; Jerlov 1968). Additionally, the line of sight of the fish’s eye will 

change the perceived image (Levine et al. 1979). Longer optical paths will be subjected 

to greater spectral shifts as photons are more likely to scatter over a longer distance. Thus 

proximity of the fish to the light source, as well as the ocular orientation of the species, 

changes the ability to perceive images with high acuity. 

Variability of light properties in aquatic environments is not limited to distance. 

Light absorbing materials are found in all aquatic ecosystems. Scattering and absorption 

occur as a result of numerous factors including the concentration of chlorophyll a, 

dissolved organic carbon levels, colored dissolved organic material, and suspended solids 

(Effler et al. 2010; Guthrie and Muntz 1993). To account for the scattering and 
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absorption of light due to the inherent properties of light as well as particulates in the 

water, coefficients are empirically gathered to determine the attenuation or extinction of 

light in the water column (Figure 3). The attenuation of light in a specific aquatic 

environment can be calculated using Beer’s Law: 

E(z, λ) = E(0, λ)e
-(k

(λ)
z) 

                                          (1) 

where E denotes the downwelling irradiance at depth z for wavelength λ and k(λ) 

represents the irradiance attenuation coefficient of that wavelength. Lower irradiance 

attenuation coefficient values correlate with deeper penetration through the water 

column. Irradiance attenuation coefficients in marine systems exhibit rapid red 

wavelength attenuation and blue wavelength attenuation occurs more slowly than green 

shifted light. Marine systems are therefore referred to as blue-shifted. Freshwater systems 

vary in attenuation based on water clarity. Red light extinction occurs at greater depths in 

murky fresh waters compared to oligotrophic fresh water systems. Clear freshwater 

systems allow for the slow attenuation of green light while blue light diminishes at 

shallower depths (Jerlov 1968; Munz 1976; Walmsley et al. 1979). Freshwaters are 

generally green-shifted based on their light availability at depth.  

 Different species have developed different adaptations to overcome variability in 

the intensity of light. Pelagic piscivores, for example, tend to rely on contrast between 

prey and their backgrounds for predation; plantivores however develop higher visual 

acuity to capture smaller prey (Hansen et al. 2013, Breck 1993). Differences in visual 

capabilities among species are highly variable due to differing adaptations to changes in 

light properties. 
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 Lake Superior is an oligotrophic aquatic system with low standing stocks of 

phytoplankton, zooplankton and fish. The oligotrophic nature of the lake gives rise to 

high beam transmittance and low beam attenuation (Bukata et al. 1995). Light attenuates 

more slowly than in more eutrophic systems due to the decreased abundance of scattering 

particles (DOC, chlorophyll a, etc.) (Bukata et al. 1995; Jerlov 1968). Lowest lake wide 

transmission values are seen in the winter, while the highest values are exhibited in mid-

summer (Bukata et al. 1995). 

 

1.8 Electroretinography and Ocular Function 

 Electroretinography is a minimally invasive procedure used to characterize the 

spectral sensitivity of the retina via electrode implantation in live specimen. By 

measuring electrical potentials of the retina, assessment of photoreceptor (a-wave) and 

bipolar cell and Müller cell (b-wave) sensitivities can be performed. Two electrodes are 

required to record retinal information: the recording electrode and the ground electrode. 

The recording electrode senses the electrical activity of the retina. The ground electrode 

decreases the level of background noise and acts as an electrical reference; measurement 

of the electrical difference between the recording electrode and the reference levels 

detected by the ground electrode reveals retinal cell sensitivity to a specified wavelength 

of light (Grimnes and Martinsen 2008; Kettenmann and Grantyn 1992; Mensinger and 

Powers 1999). This data is displayed as an electroretinogram (Figure 4). The initial 

hyperpolarization indicates photoreceptor activity while the depolarization demonstrates 

the initiation of bipolar and Müller cells. In darkness, photoreceptors, rods and cones, 

exhibit a constant influx of sodium accompanied by efflux of sodium and potassium 
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downstream (Figure 5a). When a photon reaches the photoreceptor, sodium influx is 

inhibited causing an overall loss in potential with the continued downstream release of 

sodium and potassium (Figure 5b). This negative potential generates hyperpolarization 

known as the a-wave (Figure 4). In the absence of light, photoreceptors also release 

glutamate to inhibit bipolar cell activity. ON bipolar cells continually receive glutamate 

until the photoreceptor receives a photon of light (Figure 6). Glutamate release is 

inhibited in the presence of light, and ON bipolar cells depolarize in response to the 

absence of glutamate (Shiells et al. 1981). This depolarization was thought to be the main 

contributor to the b-wave. Recent studies show that depolarization of the Müller cells via 

potassium uptake (Wen and Oakley 1990) plays a stronger role in the formation of the b-

wave.  

While rod and cone photoreceptor physiology is very similar, rod sensitivity is 

approximately 30 times greater than cone sensitivity (Kingsley 2000). Although light 

attenuation in water favors specific wavelengths of light (blue in marine systems and 

green in freshwater systems), ambient light levels are reduced with increasing depth. Dim 

light environments restrict cone perception due to cone insensitivity. Thus, although 

water acts as a monochromator, selecting specific wavelengths of light, light intensity 

dictates organismal perception, initiating rod photoreceptor activity in scotopic 

environments (Kingsley 2000). 

 Electroretinography has been used to test visual perception of certain wavelengths 

at different intensities in fish to detect photoreceptor activation. Mensinger and Powers 

(1999) used the technique to assess retinal cell function after impairment by the 

metabolic poison, ouabain. Regeneration of photoreceptor and inner nuclear layer cells 
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was detected over time by increased a and b-waveforms. Electroretinography improves 

understanding of ocular function in situ whereas procedures involving the removal of the 

eye and dissection of its components may only shed light on ionic movement or 

compounds present at the point of tissue fixation. By using live specimen and subjecting 

them to multiple wavelengths of light at varying light intensities, a more complete 

understanding of retinal cell activity can be achieved. 

 

1.9 Study Objectives and Hypothesis 

As siscowet, kiyi, and deepwater sculpin all survive in minimal light intensities, 

the objective of this study is to investigate their visual sensitivity using 

electroretinography to determine if vision is a feasible mechanism of prey detection. 

Siscowet and kiyi undergo DVM placing them in more variable light intensities than 

found at the bottom of the lake. It is hypothesized that siscowet and kiyi will have similar 

spectral sensitivity curves reflecting increased sensitivity to a wider range of 

wavelengths. The λmax of deepwater sculpin is expected to be shifted towards the shorter 

wavelengths available at depth. Deepwater sculpin should also have a higher sensitivity 

to light intensity as previously observed in benthic fish (Horodysky et al. 2010).  

This study also investigates the visual sensitivity of shallow water species in Lake 

Superior. As the round goby is a relatively recent immigrant to the Great Lakes, its visual 

sensitivity should be adapted to its native location in Caspian Sea. Investigation of black 

bullhead and round goby spectral sensitivities may reveal adaptation to low light 

intensities, while comparison to the logperch may reveal differences in visual perception. 

Calculation of the wavelengths available at depth and comparison of the fish visual 
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capabilities at depth can help evaluate the accuracy of the visual sensitivity hypothesis. 

Comparison of the light environment in the Caspian Sea to that of Lake Superior may 

reveal information of the evolutionary adaptations of the round goby. Additionally, 

understanding the role of vision in these species will increase accuracy of models of fish 

populations in Lake Superior. Management strategies can be adapted accordingly. 
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Figure 1: Food web of the open waters of Lake Superior. Thickness of arrow 

represents significance of prey item in predator diet. Species of interest to this study 

are highlighted. (Figure adapted from Gamble 2010). 



 

17 

 

 
 

Figure 2: Movement of the open water Lake Superior fishes. Adult siscowet 

exhibit DVM while juveniles undergo DBM. Kiyi of all age classes perform 

DVM. Sculpin are pelagic in their first year of life but settle to the lake bottom at 

varying depths when mature. (Figure adapted from Gorman et al. 2012). 
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Figure 3: Irradiance attenuation coefficient values per wavelength at 

differing values of kPAR (Figure adapted from Jerome et al. 1983). 

KPAR values 0.3 and 0.5 resemble that of Duluth harbor in summer and 

fall, respectively (Schertzer et al. 1978). 
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Figure 4: Depiction of and electroretinogram. The a-wave is representative of 

photoreceptor hyperpolarization while the b-wave demonstrates Müller cell 

depolarization. Response is measured from the trough of the a-wave to the peak of 

the b-wave. Adapted from Neuringer et al. (1994). 
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         A              B 

Figure 5: Rod photoreceptors. A) Photoreceptor in darkness receiving sodium influx. 

cGMP gated ionophores all sodium movement into the cell. Glutamate release occurs 

to inhibit downstream bipolar cells in the absence of light. B) Photoreceptor in the 

presence of light. cGMP disassociates from sodium channels and hyperpolarization 

results with the constant loss of positive potassium ions in the cell body. Glutamate is 

no longer released. (Figure adapted from Kingsley 2000). 
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Figure 6: Signaling cascade from photoreceptor to optic nerve. A1) Rod cell in 

the absence of light. A2) Rod releases glutamate. A3) ON bipolar cell is 

inhibited (A4) preventing release of downstream neurotransmitter. A5) 

Ganglion cell fails to receive signal and no signal is relayed to the brain. B1) 

Rod photoreceptor in the presence of light. B2) Glutamate secretion is 

prohibited. B3) ON bipolar cell is activated and B4) downstream 

neurotransmitter is released. B5) Signal is carried from the ganglion cell to the 

optic nerve (Figure adapted from Kingsley 2000). 
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Chapter two: Comparative Physiology of Round Goby, Logperch, and Black 

Bullhead Visual Sensitivities 

 

 

Overview 

The round goby (Neogobius melanostomus) is an invasive fish to the Laurentian 

Great Lakes that originated in the Ponto-Caspian region.  It has negatively affected a 

number of native fish species primarily through its high fecundity and aggressive 

behavior. The behavioral ecology of the round goby is well documented, however, its 

sensory physiology remains largely unexplored. Since the round goby evolved in a 

different optic environment than found in Lake Superior, understanding the capabilities 

of its visual system is crucial to predict range expansion into turbid tributaries or deeper 

water.  Electroretinography was used to determine the spectral sensitivity of the round 

goby in comparison to two native benthic species: logperch (Percina caprodes) and the 

black bullhead (Ameiurus melas) catfish. The logperch and the round goby demonstrated 

similar spectral sensitivity with broad sensitivity between 400 and 575 nm. The black 

bullhead by contrast demonstrated narrow spectral sensitivity shifted to higher 

wavelengths between 525 and 600 nm. The native fish appear to have visual advantages 

over the round goby as logperch show a broader spectral sensitivity especially in the 

prevalent downwelling wavelengths and the black bullhead maintains a visual advantage 

in murky, red shifted waters. The shallows of the Caspian Sea display a light intensity 

profile similar to that of Duluth Harbor.  Despite the round goby’s adaptation to similar 

aquatic conditions, they do not have a visual advantage when compared to the logperch’s 
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sensitivity as evidenced by the shallower visual depth profiles and narrower spectral 

sensitivity. 

Introduction 

Introduced to the Great Lakes in 1990 via ship ballast water (Jude et al. 1992), the 

round goby population quickly expanded, spreading to near shore waters of Lake 

Superior by 1995 (Jude 1997). Originating in the Ponto-Caspian region, the round goby 

thrives in the Laurentian Great Lakes (Kovtun 1978; Ricciardi & MacIsaac 2000; 

MacInnis & Corkum 2000; Balshine et al. 2005; Bergstrom et al. 2008). With superior 

egg fitness lending to higher fecundity (Kovtun 1978; MacInnis & Corkum 2000), 

aggressive behavior, and an opportunistic diet (French & Jude 2001), the round goby 

outcompetes natives in this aquatic system.  

Laboratory studies demonstrated the round goby’s ability to outcompete logperch 

for shelter whether it was the established fish within the tank or an intruder (Balshine et 

al. 2005). But while the round goby can better acquire shelter due to its high level of 

aggression, round goby reaction and strike distance was decreased in high light intensities 

compared to the logperch (Bergstrom and Mensinger 2008). Despite this sensory 

disadvantage, the round goby maintained a competitive advantage over the logperch for 

resources within an artificial stream.  These laboratory studies reflect an ecological trend; 

the round goby has demonstrated the ability to colonize regions of the Great Lakes, 

causing declines in native populations and even extirpating species from their original 

habitat. The round goby’s presence has corresponded with dramatic declines in mottled 

sculpin, johnny darter, and logperch populations (Jude et al. 1995; Lauer et al. 2004; 

Riley et al. 2008). 
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Round gobies will also consume the eggs of logperch as well as other species 

including lake trout (Salvelinus namaycush) (Chotkowski & Marsden 1999; Jonas et al. 

2005), lake sturgeon (Acipenser fulvescens) (Nichols et al. 2003), and smallmouth bass 

(Micropterus dolomieu) (Steinhart et al. 2004). The consumption of eggs by the round 

goby is thought to be the main contributor to recent logperch decline within the Great 

Lakes (French & Jude 2001). Egg consumption is also expected to severely threaten the 

lake trout recruitment rate with the round goby population expansion (Fitzsimons et al. 

2009). 

In the shallow waters of Duluth–Superior Harbor, the native logperch (Percina 

caprodes) competes with the round goby (Neogobius melanostomus) for resources. 

Logperch populations declined in the St. Clair River following the round goby invasion 

and although the logperch population remains robust in the soft bottom community of the 

Duluth-Superior Harbor, the fish have been extirpated from near shore rocky areas (Leino 

& Mensinger 2014). Smaller gobies and logperch both consume small invertebrates such 

as dipterans, Caenis spp., and amphipods and the more aggressive round gobies maintain 

a competitive advantage over the logperch for these prey resulting in declines of logperch 

populations (French & Jude 2001). Recent in situ case studies demonstrated the logperch 

were outcompeted for resources in both rocky and soft-bottom habitats when round 

gobies were added. The population inhabiting the off shore sandy bottoms of Duluth-

Superior Harbor currently remains similar to pre-invasion levels (Leino & Mensinger 

unpublished).   

 Integrated pest management approaches such as using models to predict future 

invasions and locate susceptible areas of invasion hold promise for control or eradication 
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of round gobies.  However, to optimize these strategies, it is imperative to understand the 

natural history, behavioral ecology, and sensory physiology of the invasive species.  The 

impact of the sea lamprey has been partially mitigated by understanding its olfactory 

system.  Recent work on the behavioral ecology of the common carp, has promoted 

innovative control measures.  Investigating sensory physiology may allow novel controls 

to exploit invasive species weaknesses. Bergstrom and Mensinger (2009) compared the 

sensory systems of the logperch to the round goby using behavioral tests in varying light 

conditions. In individual trials, the logperch demonstrated a visual advantage over the 

round goby with larger strike distances in higher light intensities. However, when forced 

to compete interspecifically, the round goby was able to outcompete the native fish for 

prey. Therefore, while the round goby does not appear to have a visual or 

mechanosensory advantage, it is still able to acquire prey at levels equaling or exceeding 

those of native fish. A further comparison of the physiological properties of these fishes 

is necessary to understand the success of the round goby. 

The native benthic black bullhead remains fairly unaffected by the round goby 

invasion (Kornis et al. 2013). Tolerance to low oxygen availability, high carbon dioxide 

levels, and high pollutants enables the black bullhead to survive in environments 

inhospitable to many species of fish (Kornis et al. 2013). Like the round goby, adult 

black bullhead exhibit higher levels of activity at night, allowing this species to avoid 

competition with diurnal feeders (Darnell & Meierotto 1965; Johnson et al. 2008). 

Residing in turbid conditions, the black bullhead has adapted to capturing prey in visually 

challenging situations.  
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 When foraging at night, the black bullhead and round goby consume prey under 

minimal light intensities (Darnell & Meierotto 1965; Johnson et al. 2008) whereas the 

diurnal logperch consumes prey in more light intense conditions (Bergstrom et al. 2009). 

In smaller lakes and shallow aquatic environments, the black bullhead experiences a 

visual disadvantage with increased levels of turbidity (Braig & Johnson 2003). 

Differences between the visual capabilities of the round goby, the native logperch, and 

black bullhead may suggest superior visual sensitivity of one species, enabling more 

successful prey capture, predator avoidance, and mate localization. Electrophysiology 

was employed to determine if the round goby has a physiological advantage over the 

declining logperch or the black bullhead.  

 

Materials and methods 

Round gobies [66 to 111 mm total length (TL)] were captured using 40.6 cm (0.6-

cm square mesh, 3.0 cm diameter opening) galvanized minnow traps baited with thawed 

fish remnants (Lake Superior Fish Company, Superior, WI) in the Duluth-Superior 

Harbor in the summer of 2012. Logperch (50 to 60 mm TL) were collected via beach 

seine (20 m length with 6.4 mm mesh net and 3.2 mm mesh purse) on a sandy shoreline 

in Duluth-Superior Harbor also during the summer of 2012. Black bullheads were 

captured via angling in Hartley Pond, Duluth, MN in the summer of 2013.  Fish were 

housed by species in aerated glass aquarium filtered with Tetra Power Filters (model 

PF10, Tetra Holding, Inc., Blacksburg, VA), Marineland Penguin
®
 mini filters (model 

PF99, United Pet Group, Blacksburg, VA) and Aquaclear 70 Power (model HG10615, 

Marine Depot, Garden Grove, CA) filtration systems. All tanks were kept at 
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approximately 20°C.  Fish were fed Nelson’s Silver Cup
TM

 sinking trout pellets (Harrietta 

Hills, Harrietta, Michigan) every other day and water quality was monitored according to 

animal care protocols. Fish were kept on a 12 hour light and 12 hour dark schedule, 

illuminated by a combination of natural and fluorescent light.   

 

Electroretinogram Preparation 

Fish were anesthetized via submersion in 0.002-0.006% MS-222 in 0.003 M 

buffer (4.5% sodium phosphate dibasic, 1.06% potassium phosphate monobasic in 

distilled water, Sigma Chemical Co., St. Louis, MO).  Following initial anesthetization, 

the sedated fish was placed on a sponge in a 44.5 x 11.0 x 9.0 cm acrylic tank and the fish 

was submerged up to the ventral border of the eyes. The experimental tank was placed in 

an opaque metal Faraday cage (77.0 x 67.0 x 96.0 cm) and the front door of the cage was 

lowered after electrode insertion to block instrument lights in the dark room.  A 15°C 

solution of 0.002-0.007% MS-222 was circulated over the gills through an intraoral tube 

for the duration of the experiment. Water was chilled to the average temperature of Lake 

Superior in late August and early September (GLERL 2011) using the 420 W Teco 

SeaChill® Aquarium Chiller (Teco® model SCTR20, Ravenna, Italy). 

Electroretinogram Collection 

A constant current power supply (Newport
®
 model 68938) powered the 100 W 

quartz tungsten-halogen lamp (Newport
®
 model 6333, Stratford, CT) to provide the light 

stimulus for the experiments. The light stimulus duration was regulated by an Oriel
®
 

Electronic Shutter (model 76994, Stratford, CT) in conjunction with the Oriel
®
 Shutter 

Controller (model 76995).  The wavelength of light per stimulus was selected using a 
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monochromator (1.56 mm slit) (Newport
®
 model 77250) and neutral density filters (0.1 

to 3.0) were used to diminish the intensity of the light stimulus. A fiber optic light pipe 

(Newport
®
 model 77632) delivered the light to the fish’s eye. The intensity of the light 

was measured using a radiant power energy meter (Ophir
®

 model 70260) and probe 

(Ophir
®
 model 70268). 

A small incision was made in the limbus and with a 3 mm surgical stab knife and 

a 200 µm silver-silver chloride recording electrode was inserted into the vitreous. The 

reference electrode was placed on the epidermis on the frontal bone midway between the 

eyes. ERGs were amplified using World Precision Instrument, Inc. amplifier (1000x, 1 

Hz low pass, 3 kHz high pass, model DAM50; Sarasota, FL), filtered using a digital 60 

Hz notch filter, recorded with PowerLab 4SP (AD Instruments, Castle Hill, Australia), 

and stored using Lab Chart
®
7 (AD Instruments, Castle Hill, Australia) software on a 

portable computer. Data were collected between 1015 and 1715 to minimize affect of 

circadian rhythms. Fish were dark adapted for 30 minutes after electrode insertion, prior 

to testing.  Flashes of monochromatic light (200 ms duration) were presented at 30 s 

intervals and wavelengths were presented in 10 or 25 nm intervals from  400 to700 nm 

with wavelength presentation order randomly determined for each trial.  

Minimum Criterion Response  

Minimal b-wave amplitudes were consistently encountered in response to short 

wavelengths (≤ 425 nm) and therefore the b-wave amplitude at 400 nm was set as the 

minimal criterion response for each fish.  Longer wavelengths were reduced in intensity 

by neutral density filters until the b-wave amplitude equaled the criterion amplitude 

established at 400 nm, and the irradiance needed to reach the criterion amplitude was 
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used to generate spectral sensitivity curves for each species. B-wave amplitudes were 

calculated from baseline and criterion responses ranged from 6 and 167 mV by 

measuring from the baseline to the top of b-wave.  Neutral density filters were used to 

decrease light intensity to match the criterion response.  The irradiance needed for the 

criterion response was calculated for each wavelength to produce the spectral sensitivity 

curves.  

Light Attenuation Calculation 

Beer’s Law: 

E(z, λ) = E(0, λ)e
-(k

(λ)
z)    

(1)
 

where E denotes the downwelling irradiance at depth z for wavelength λ and k(λ) 

represents the irradiance attenuation coefficient of λ was used to calculated light 

irradiance at depth. For the western arm of Lake Superior, kPAR ranges between 0.3 and 

0.5 were used to estimate downwelling irradiance and a kPAR=1.0 was used for Duluth-

Superior Harbor=0.3 and kPAR=0.5 (Schertzer et al. 1978). The depth at which light of 

each wavelength is present at one percent surface irradiance was then calculated using 

Beer’s Law.  

Estimates of light transmission in the Caspian Sea were obtained from shallow 

near shore, offshore (3km), and open water (15km offshore) (Gholamalifard et al.2013). 

Based on this data, the Caspian Sea has kPAR values of approximately 0.3, 0.5, and 0.7 for 

the shallow water, offshore water, and deep water, respectively. To find the depth of 

penetration for each wavelength to one percent of the surface irradiance, the attenuation 

coefficient corresponding to wavelength (λ) in the specific aquatic location was used. 
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Visual Depth Profiles 

To estimate the depth at which fish can see, the minimum energy required to 

illicit an ERG was substituted for E(z, λ) in Beer’s Law (Equation 1) for each wavelength 

tested.  Crater Lake solar irradiance values (Tyler and Smith 1970) were used in visual 

depth calculations as this lake at similar latitude to Lake Superior and thus experiences 

similar irradiances. Since lunar values were not available for Crater Lake, the lunar to 

solar irradiance ratio was calculated using values from Eniwetok Atoll (Munz and 

McFarland 1973; McFarland and Munz 1975) and applied to Crater Lake solar values to 

estimate lunar irradiance. The minimum irradiance needed to evoke a b-wave in the dark 

adapted retina was used to determine visual sensitivity.  

 

Results 

Round goby spectral sensitivity peaked between 450 and 525 nm with slightly 

reduced sensitivity to 400 to 425 nm.  There was sharp decline in sensitivity to 

wavelengths greater than 550 nm. Logperch displayed similar broad spectral sensitivity 

however sensitivity was relatively unchanged from 400 to 550 nm before dropping 

sharply to higher wavelengths.  In contrast, the black bullhead showed broad sensitivity 

between 500 and 600 nm with reduced sensitivity to both shorter and longer wavelengths 

(Figure 1). 

Light Attenuation in Duluth waters and the Caspian Sea 

 To illustrate the differences in underwater light environments, the depths that at 

which surface irradiance is reduced to one percent was calculated for three areas in Lake 

Superior and the Caspian Sea.  Maximum transmission was by 550 to 575 nm light with 
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rapid attenuation of shorter and longer wavelengths.  The offshore sites in both Lake 

Superior and the Caspian Sea provided the deepest light penetration.   

 At its clearest (kPAR=0.3), Duluth Bay allowed deepest penetration of light with 

one percent of 550 nm surface irradiance occurring deeper than 20 m. The speed of light 

extinction increased in more turbid waters (kPAR=0.5) causing the depth of attenuation to 

decrease to approximately 13 m. Duluth-Superior Harbor waters (kPAR=1.0) only allowed 

one percent of 575 nm light to penetrate to 7 m. One percent of the surface irradiance of 

wavelength 575 nm attenuated to 18 m in the deep waters of the Caspian Sea. In the 

Caspian shallows, one percent of 575 nm light reached less than 8 m. Offshore Caspian 

water light attenuation profiles resembled that of Duluth Bay (kPAR=0.5). Similarly, the 

Caspian shallows closely resembled that of Duluth-Superior Harbor. 

Visual Depth Profiles 

 Based on ERG measurement and light attention, the maximum depth at which 

sufficient irradiance is available to mediate fish visual interactions were calculated under 

three transmission conditions: Duluth Bay (kPAR=0.3 and kPAR=0.5) and an estimate of 

Duluth-Superior Harbor (kPAR=1.0) were analyzed for each species. Diurnal conditions 

allowed for visual depth profile calculations while insufficient surface irradiance under 

nocturnal conditions prevented the construction of nocturnal visual depth profiles. 

 The logperch displayed marginally greater sensitivity than the round goby under 

all conditions with both fish more sensitive than the black bullhead.  Irradiance was 

sufficient for vision at 550 nm light under sunny, summer conditions to 37 and 40 m 

depths for the round goby and logperch, respectively with the black bullhead estimated to 

retain vision to approximately 24 m.  However, at shallower depths the black bullhead 
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was more sensitive to long wave length light than the round goby.  Higher kPAR values 

and nocturnal conditions reduced the depth at which sufficient light is available for vision 

accordingly. 

Discussion 

 The round goby and logperch have similar broad spectral sensitivity curves that 

show high sensitivity to 400 nm to 550 nm and are tuned to prevailing available 

irradiance in the water column.  The black bullhead shows red shifted peak sensitivity 

with relatively low sensitivity to short wavelength light.  The logperch vision is very 

similar to the round goby and neither species appears to have a significant advantage 

based on spectral sensitivity curves.  

 The ERG has long been used to assess spectral sensitivity by determining the 

electrical potential of the retina.  In light adapted retinas, ERG waveforms include an a-

wave generated by the photoreceptor hyperpolarization upon initiation of a light stimulus, 

and a b-wave, originating from Müller cells and bipolar cells depolarization (Wen & 

Oakley 1990).  When dark adapted the a-wave is absent and allows a more precise 

determination of the b-wave amplitude.  To assess species visual advantage in high 

turbidity environments, dark adapted retinae were tested. 

 The ERG provides a mechanism for minimally invasive sampling.  Since the ERG 

only detects electrical differences within the eye, a caveat to this procedure is the 

inability to monitor brain activity and subsequently image formation. Thus since the 

central visual pathway and neural activity is not analyzed, ERGs cannot be directly 

correlated with image perception. However, b-wave formation is required to initiate the 

ionic cascade leading to neuronal image formation. Therefore if sufficient light is 
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absorbed by the photoreceptors and the bipolar and Müller cells are stimulated, the 

electrical potential of the retina changes; this change suggests that fish can centrally 

detect light and therefore, may be able to perceive an image.  Additionally, the position 

and distance between the recording and ground electrodes insures that current will be lost 

before detection of retinal electrical potential.  Therefore, it is likely that visual sensitivity 

reported here is reduced compared to the actual sensitivity of the organism.  For the 

purposes of this paper, visual sensitivity is defined as the minimal irradiance sufficient to 

elicit a b-wave in a dark adapted retina. 

Fish Sensitivity 

Previous studies on predator-prey interactions showed that the logperch have 

greater reaction and strike distances in comparison to the round goby, suggesting that 

logperch possess a sensory advantage.  However, these were done under white light 

conditions and did not accurately recreate the spectral composition of the water column at 

depth.  If the logperch and round goby have different spectral sensitivities, it could reflect 

an additional advantage for the logperch.  Additionally, it could allow predictions of 

where the logperch could flourish and where the round goby may be limiting.  Long term 

studies in the Duluth-Superior Harbor demonstrated that although logperch have been 

extirpated from the rocky community, they are still present in pre-round goby numbers on 

the soft sediment and their enhanced sensory system may partially offset round goby 

aggressiveness.  

The spectral sensitivities of logperch, round goby, and black bullhead can be 

compared based on the shape of the data curves. While increasing along the y axis 

indicates higher sensitivity, these data should not be compared interspecifically in the 
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context of individual wavelengths; an incorrect interpretation of this data would assert 

that logperch display greater retinal sensitivity as this data set appears higher on the 

sensitivity axis (Figure 1). Comparing the sensitivities in this manner is misleading 

because of differences in MCRs between species resulting from variability in signal 

strength and noise levels. Instead, the shapes of the curves shed light on the visual 

capabilities of each species.  

Both the round goby and logperch exhibit relatively high sensitivity in the lower 

wavelengths (400-500 nm) compared to their sensitivity to the longer wavelengths 

between 600 and 700 nm, suggesting possible UV light sensitivity. The black bullhead 

demonstrates insensitivity to these short wavelengths suggesting insensitivity to UV light 

in this species. Round goby sensitivity began decreasing after 525 nm while logperch 

sensitivity remained relatively high until 575 nm. Black bullhead sensitivity did not 

decrease until after 600 nm. Due to the broader spectral sensitivity, the logperch may 

have the most versatile visual sensitivity of the three species, capable of perception of a 

broad range of light environments. The longer wavelength shift in visual perception seen 

in the black bullhead may be the result of the high turbidity environment commonly 

inhabited by the species. As more turbid, freshwater conditions favor higher wavelength 

attenuation (Jerlov 1968; Walmsley et al. 1979; Shaoying et al. 2009;), the black 

bullhead may have an advantage in murkier environments as it is able to better perceive 

longer wavelengths than the other two species. 

Poor sensitivity to the longest wavelengths of these three species corresponds 

with the isolume where they dwell. Benthic fish are subjected to a wide array of 

wavelengths depending upon their depth. Typically, shallow water species are likely to 
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encounter the entire visual spectrum, however the intensity of red shifted light 

representative of the longer wavelengths is diminished closer to the water’s surface 

(Jerlov 1968; Munz 1976; Walmsley et al. 1979). Murky waters with increased 

concentrations of suspended particulate matter, however, allow some red wavelengths to 

penetrate, and filter the lower wavelengths (Walmsley et al. 1979; Shaoying et al. 2009). 

As a result, these turbid waters enable red light to attenuate more slowly than blue and 

green light. The logperch and round goby are appropriately insensitive to red 

wavelengths as these are not predominant in shallow clear waters (Jerlov 1968; Jerome et 

al. 1983; Schertzer et al. 1978; Walmsley et al. 1979; Fahnenstiel et al. 1984; Shaoying 

et al. 2009). The black bullhead sensitivity is shifted towards the red wavelengths 

corresponding with those present in the murky waters of its habitat. 

Fish Sensitivity and Light Attenuation in Duluth Bay, Duluth Harbor, and the Caspian 

Sea 

 As the round goby evolved in the Ponto-Caspain basin, it is important to compare 

the optical environment with Lake Superior.  The similar properties in both environments 

may be attributable to why the round goby has flourished.  The offshore waters of the 

Caspian Sea and the waters of Duluth Bay in the fall (kPAR=0.5) have similar light 

transmission properties.  The Caspian shallows and Duluth-Superior Harbor also have 

very similar spectral properties.  Given the spectral environment, it is somewhat 

surprising that both species show relatively strong sensitivity to shorter wavelengths as 

these are rapidly attenuated in the deeper, clear offshore waters. 

 The light environments of Duluth-Superior Harbor and the Caspian shallows are 

similar in their estimated depth profiles (Figure2) with Duluth-Superior Harbor showing 
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slight depth limitation in the red-shifted wavelengths greater than 575 nm.  The round 

goby should be equally adapted to conditions in Duluth-Superior Harbor compared to 

native fishes since the species evolved in a similar light environment.  

 Comparison of visual sensitivity to light depths reveals inconsistencies. 

Interestingly, the round goby and logperch visual sensitivity curves do not resemble the 

depth of light attenuation at one percent surface irradiance depth curves (Figure 5). The 

six aquatic systems reveal fast attenuation of the shorter wavelengths (400-500 nm). 

Round goby and logperch vision however does not correspond with this diminished light 

intensity. The visual sensitivity of these two fishes remains fairly high at the lower 

wavelengths; peak sensitivity is only slightly higher than the sensitivity at shorter 

wavelengths. Visual sensitivity should be closely related to the prevailing wavelengths at 

depth to maximize visual perception and minimize energy allocated to the visual system 

according to the sensitivity hypothesis proposed by Clarke (1936). Since the slope of one 

percent surface irradiance decreases in these shorter wavelengths with increases in kPAR 

values, the fish may be adapted to waters with kPAR values higher than 1.0. Their 

insensitivity to longer, red-shifted wavelengths prevalent in high turbidity waters, 

however, is inconsistent with adaptation to such high turbidity. 

 Black bullhead sensitivity corresponds with wavelengths below 500 nm in the six 

aquatic systems shown. Although the bullhead’s sensitivity peak is shifted slightly higher 

than the most predominant wavelengths in these waters, the diminishment of sensitivity 

at the longest wavelengths corresponds with the extinction of the longer wavelengths in 

these aquatic systems. This might suggest that the black bullhead is more closely 

specialized to the predominant wavelengths in these systems, and possibly those with 
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higher turbidity, while the logperch and round goby utilize a generalized visual 

perception. 

 The discrepancy between logperch and round goby visual sensitivity and 

predominant wavelengths available at depth may be an adaptation to living in varying 

light environments. Marine ecosystems allow the slowest attenuation of blue light (Jerlov 

1968). The increased sensitivity in the short wavelengths may be an adaptive relic of a 

marine ancestor. Visual perception of light is made possible by pigments in the retina. 

These variable pigments are sensitive to a particular wavelength, λmax. Bony fish have a 

higher diversity of visual pigments than all other vertebrates combined, likely due to the 

highly variable light environments of aquatic ecosystems. Rhodopsin visual pigments are 

responsible for perception of shorter wavelengths and can have λmax from 467 to 526 nm 

(Munz & McFarland 1977). Many marine fishes rely solely on rhodopsin pigments for 

scotopic perception (Wald et al. 1957; Dartnall & Lythgoe 1965; Jokela-Määttä et al. 

2007). Freshwater fishes posses porphyropsin visual pigments whose λmax falls between 

502 and 551 nm (Munz & McFarland 1977). Freshwater fishes may rely solely on 

porphyropsin or implement both porphyropsin and rhodopsin pigments for scotopic 

perception (Dartnall & Lythgoe 1965; Bowmaker et al. 1988; Jokela-Määttä et al. 2007). 

In fishes that use two different pigment types, ratios of the two pigments vary between 

species (Jokela-Määttä et al. 2007). The relatively broad spectral perception of the 

logperch and the round goby may suggest use of rhodopsin pigments as well as 

porphyropsin, while the black bullhead sensitivity may be dependent only on 

porphyropsin activity. 

Visual depth profiles 
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 Both the round goby and the logperch are able to perceive the majority of the 

visual spectrum (425 to 575 nm) past 16 m in full sunlight in Duluth Bay’s clear water 

(kPAR=0.3). As these two species are shallow water dwellers, their vision is likely 

minimally diurnally in waters with kPAR=0.3. Residing in Duluth-Superior Harbor, fish 

experience reduced visual capabilities at depth diurnally. All three fishes are able to see 

slowly attenuating wavelengths past 8 m, but vision is reduced to shallow waters towards 

the ends of the visible spectrum. The logperch retains an advantage over the round goby 

and black bullhead with the capability to perceive light up to 13 m in this turbid 

environment; the round goby and black bullhead experience restriction to vision at 

approximately 12 and 8 m, respectively. Although active nocturnally, neither the black 

bullhead nor the round goby is sensitive enough to perceive the minimal surface 

irradiance provided by the moon. Vision is not feasible for any of these three shallow 

dwellers, nocturnally. The round goby migrates to deeper waters in the winter reaching 

depths greater than 120 m (Walsh et al. 2007). These results indicate that the round goby 

would experience visual impairments at these depths. Residing at 75 m in abundance, 

(Walsh et al. 2007), the round goby would be unable to perceive even peak wavelengths. 

Other sensory modalities would be necessary for predator avoidance at these depths in 

winter conditions. 

Interspecific comparison of the round goby and the logperch visual sensitivity 

reveals an advantage for the logperch. Logperch are able to perceive light at greater 

depths under each condition suggesting a higher visual sensitivity throughout the visual 

spectrum. Occupying the rocky shoreline of Duluth-Superior Harbor at shallow depths 

above 8 m, both the logperch and the round goby face some limitation to their visual 
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sensitivity in sunny conditions, but vision in the peak wavelengths is retained. The 

increased sensitivity of the logperch, specifically between wavelengths 475 and 575 nm, 

suggests a visual advantage at depth compared to the round goby allowing the logperch to 

see slightly deeper in the varying conditions of Duluth-Superior Harbor. The behavioral 

aggression exhibited by the round goby may drive logperch to further depths where they 

will experience less competition for resources with the visually insensitive round goby. 

Both the round goby and the logperch demonstrate a visual sensitivity at greater 

depths compared to the black bullhead, although this visual depth advantage diminishes 

in the longer wavelengths. This is most likely the result of the black bullhead’s adaptation 

to murkier habitats. While black bullheads have been found in Duluth-Superior Harbor, 

their preferred habitat lies in still streams with soft bottoms (Braig & Johnson 2003). 

These environments are highly turbid, containing a higher concentration of suspended 

particulate matter, resulting in low light intensity (Shaoying et al. 2009; Walmsley et al. 

1979). Shorter wavelengths are quickly extinguished and therefore not used by the black 

bullhead in visual perception. Longer wavelengths are absorbed by the black bullhead 

visual pigments instead. 

 The round goby’s success in invading and proliferating in Lake Superior cannot 

be attributed to a physiological advantage in terms of vision; no visual advantage over the 

logperch in Duluth waters is apparent. Conversely, the native logperch demonstrates a 

visual advantage based on the broader spectral range of perception as well as deeper 

estimated visual depth profiles. Based on electroretinograms, both fish appear to have 

similar visual sensitivity profiles to each other throughout the visual spectrum. Deeper 

visual depth profiles seen in the logperch indicate versatile functionality to varying 
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aquatic conditions compared with the other two fishes. Both the logperch and round goby 

have sensitivity spectrums shifted in favor of shorter wavelengths compared to the red 

shifted spectral sensitivity of the black bullhead.  
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Figure 1: Comparison of round goby, logperch, and black bullhead spectral 

sensitivity curves. Round goby (n=11) data is represented by black circles, 

logperch (n=4) data is represented by white circles and black bullhead 

(n=5) data is shown with black triangles. Data are represented with 25 nm 

increments of wavelength. Standard error bars are presented. 
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Figure 2: Comparison of the depth of one percent surface 

irradiance in two different turbidities of Duluth Bay, one turbidity 

of Duluth-Superior Harbor, and three sites in the Caspian Sea. 

Duluth waters are represented as crosses and Caspian Sea waters 

are circles (shallows), triangles (offshore) and squares 

(deepwater). Less turbid Duluth Bay (kPAR=0.3) uses a solid line 

while a more turbid Duluth Harbor (kPAR=0.5) is uses a dotted 

line. Duluth-Superior Harbor uses a dashed line. Depth decreases 

with an increase on the y-axis. 
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Figure 3: Visual depth profiles of round goby (black circles), logperch (white circles), and black bullhead (black triangles) with 

1% surface irradiance for varying levels of kPAR under diurnal conditions. A) Profiles for kPAR=0.3 representative of clear Duluth 

Bay conditions. B) Profiles for kPAR=0.5 representative of turbid Duluth Bay conditions. C) Profiles for kPAR=1.0 representative 

of Duluth Harbor. Wavelength is represented on the x axis and depth decreases with increase along the y axis. 
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Figure 4: An electroretinogram of a dark adapted round goby in 

response to 700 nm light. The a-wave is not present in dark adapted 

fish. The b-wave seen at 500 ms is representative of the depolarization 

of the Muller cells. This wave is reduced in experimentation to reach a 

minimum criterion response. 
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Figure 5: Fish spectral sensitivity plotted against one percent light profile 

calculations. Duluth Bay conditions are represented circles with solid and dotted 

lines corresponding with kPAR=0.3 and kPAR=0.5, respectively. Duluth-Superior 

Harbor is represented as inverted triangles. Caspian shallows and offshore waters 

are plotted as triangles and squares, respectively. Caspian deepwater is 

represented by squares with dotted and dashed lines. Round gobies are 

represented as circles without lines, logperch are represented as inverted triangles 

without lines, and black bullheads are squares without lines. Depth is plotted 

increasingly on the left y-axis, irradiance is shown on the right y-axis, and 

wavelength is found increasing along the x-axis. Spectral sensitivity values are 

for shape comparison rather than interspecific intensity comparison. 
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Chapter 3: Visual Sensitivity of Deepwater Fishes in Lake Superior 

Overview 

 The predator-prey interactions in the offshore food web of Lake Superior have 

been well documented but the sensory systems mediating these interactions remain 

unknown.  The deepwater sculpin, (Myoxocephalus thompsoni), siscowet (Salvelinus 

namaycush siscowet), and kiyi (Coregonus kiyi) inhabit low light level environments.  To 

investigate the potential role of vision in predator-prey interactions, electroretinography 

was used to determine visual sensitivity for each species.  Spectral sensitivity curves 

revealed peak sensitivity at 525 nm for each species.  To determine if sufficient light is 

available to mediate predator prey interactions at depth, visual sensitivity was correlated 

with the intensity of downwelling light in Lake Superior to construct visual depth profiles 

for each species.  Sufficient daytime irradiance exists for visual interactions to 

approximately 100 m depth for siscowet and kiyi and 140 m for the deepwater sculpin 

during summer months.  Nocturnal vision, however, is not feasible at any depth, for any 

of the three offshore fish due to insufficient surface irradiance.  Visual interactions are 

therefore limited to daytime interactions at depths that are relatively shallow to the fish 

depth distributions. Thus, it is likely that all three organisms utilize another sensory 

modality for nighttime predation and visual daytime predation is limited to relatively 

shallow depths (<100 m). 

 

Introduction 
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 Lake Superior is the largest of the Laurentian Great Lakes and home to 38 fish 

species, including 19 nonnative species (Habermann et al. 2012), with the majority of 

these fishes inhabiting the shallow, nearshore waters or surrounding watersheds.  The 

cold deep, oligotrophic offshore waters of Lake Superior are depauperate with fish 

densities less than 1.14 kg/ha (Gorman et al. 2012).  Although many invasive aquatic 

species have been introduced and have disrupted and/or become integrated into shallow 

water community, the deep waters of Lake Superior remain dominated by native species 

(Gamble et al. 2011).  Piscivorous fish including burbot (Lota lota) and siscowet lake 

trout (Salvelinus namaycush siscowet) dominate the highest trophic levels and prey 

predominately on deepwater sculpin (Moxocephalus thompsonii) and/or kiyi (Coregonus 

kiyi) (Isaac et al. 2012).  The deepwater sculpin and kiyi, along with the cisco 

(Coregonus artedi) form the second trophic level, and consume various zooplankton such 

as mysis (Mysis relicta), scuds (Diporeia spp.), cladocerans, and copepods (Gamble et 

al.2011; Auer et al.2013).  

This relatively simple food web dominates the deep, oligotrophic water of Lake 

Superior.  The diel vertical migrating (DVM) zooplankton, Mysis relicta, is the primary 

conduit for energy flow from benthic waters to the surface, as it feeds diurnally on 

benthic detritus and then consumes surface phytoplankton and zooplankton during its 

nightly ascent (Beeton & Bowers 1982; Ahrenstorff et al. 2011).  Two planktivorous fish, 

deepwater sculpin and kiyi prey primarily on the mysis, however the deepwater sculpin 

will also consume benthic amphipods (Diporea spp) (Auer & Kahn 2004;Gamble et al. 

2011).  The siscowet is the most abundant piscivore in the lake (Sitar et al. 2008; Gorman 
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et al. 2012) and its feeding habits are dictated by diurnal vertical migrations of the 

planktivores (Ahrenstorff et al. 2011).   During the day, the siscowet remain in deepwater 

(>140 m) and prey primarily on the benthic sculpin, while at night, they vertically 

migrate to consume kiyi which in turn are following the migration of mysis (Hrabik et al. 

2006; Gamble et al. 2011; Gorman et al. 2012; Isaac et al. 2012; Ahrenstorff et al.  

2012).  

 However, little is known about the nature of the predatory-prey interactions and 

the role that vision plays in mediating these interactions.  While olfactory and auditory 

cues may be used for long range detection of prey, short range interactions usually are 

mediated by the mechanosensory lateral line or visual input (Pitcher 1993).  Vision is 

often the main sensory modality in shallow, sun lit waters while the lateral line may 

dominant in turbid and/or low light environments.  To understand the role of vision, it is 

important to know both visual and spectral sensitivity of the organisms and the intensity 

and spectral composition of downwelling irradiance.  Predator-prey or population models 

often contain little to no sensory information and by incorporating sensory physiology 

into these traditional fisheries models, more accurate models can be developed to better 

predict population structure and dynamics.   

The fishes that comprise the deep water food web spend the majority of their time 

in a dimly lit or dark environment.  Following a pelagic larval stage, deepwater sculpin 

become benthic fish and remain at depths ranging from 15 to 407 m (Wells 1968; 

Mansfield et al.1983; Selgeby 1988; Geffen & Nash 1992) with the majority of the Lake 

Superior population inhabiting depths below 70 m.  In contrast, siscowet (surface to 407 
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m) and kiyi (25 to 325 m) are midwater water fish that undergo diel vertical migration 

(DVM) (Hrabik et al. 2006; Stockwell et al. 2010; Ahrenstorff et al. 2011).  However, as 

they inhabit deep waters during the day and only ascend into shallow waters at night, they 

spend the majority of time in light limited environments.   

The visual pigment sensitivity hypothesis (Clarke 1936) suggests that fish visual 

sensitivity corresponds with the light environment inhabited by the fish due to the 

adaptation of visual pigments.  Many marine fishes provide support for this hypothesis 

(Denton & Warren 1957; Munz 1958; Munz & McFarland 1973; McFarland & Munz 

1975; Crescitelli et al. 1985; Partridge et al.1988; Jokela-Määttä et al. 2007; Horodysky 

et al. 2010) and exhibit peak sensitivity to wavelengths in the blue range of the visible 

spectrum because oceanic water filters out both shorter and longer wavelengths (Jerlov 

1968).  The rhodopsin visual pigment, based on vitamin A1, allows for the detection of 

these blue shifted wavelengths. However, freshwater systems favor the transmittance of 

green shifted light due to the high concentration of chlorophyll and other particulate 

matter (Jerlov 1968; Lythgoe & Partridge 1989).  The visual pigment porphyropsin, 

based on vitamin A2, is present in freshwater fish allowing visual perception in these 

green shifted waters (Bridges 1972).  Freshwater fish utilize porphyropsin exclusively, or 

in conjunction with rhodopsin for visual perception (Munz & McFarland 1973; Hunt et 

al. 1996).  

The visual sensitivity hypothesis has less supporting evidence for fish in 

freshwater systems compared to those in marine systems (Munz 1976; Crescitelli et al. 

1985); historically, deep sea fishes received more attention for their visual ability at depth 
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than did freshwater fish, causing a gap in the knowledge between marine and freshwater 

fishes (Lythgoe & Partridge 1989).  The clear, offshore water of Lake Superior provides 

light attenuation approaching that of the open ocean and offers an opportunity to examine 

deep water fishes in a freshwater system.  Given the similarity between Lake Superior 

and marine environments, fishes may exhibit spectral sensitivities similar to marine fishes 

based on the use of rhodopsin.  Conversely, porphyrospin may shift visual sensitivity to 

green-shifted wavelengths predominant in freshwater systems (Wald 1939; Crescitelli 

1991).   

The goal of the current study was to determine the potential role of the visual 

system in mediating predator-prey interactions.  Electroretinography was performed on 

three species of deep water fish found in Lake Superior to determine dark adapted 

spectral sensitivity to compare each visual system to the prevailing light environment.  

The fishes’ visual sensitivity was combined with estimates of the transmission of light in 

Lake Superior to model the depths at which vision may mediate predator prey 

interactions.  

 

Materials and Methods 

Fish Collection 

Siscowet, deepwater sculpin, and kiyi were collected via daytime bottom trawls in 

the Apostle Islands region of Lake Superior, east of Stockton Island (Lat: 6° 54.751 

Long: 90° 30.611) on November 13, 2012 and June 26, 2013.  Fish were collected at 

depths ranging from 100 to 117 m during 10 minute bottom trawls using a 12 m Yankee 
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bottom trawl.  Immediately after removal from the net, fish were submerged in a solution 

of lake water containing of 0.0024 % tricaine methanesulfonate (MS-222, Sigma 

Chemical Co., St. Louis, MO), 0.026 % Stresscoat
®
 (Mars Fishcare North America Inc., 

Chalfont, PA), and 0.5 % Instant Ocean
® 

(Aquarium Systems Inc., Mentor, OH) in 570 L 

plastic holding tanks in 6°C water.  After 2 minutes, kiyi and siscowet swim bladders 

were deflated using 14 gauge veterinary needles (QC Supply, Schuyler, NE), the 

incisions treated with betadine (Purdue Products L.P., Stamford, CT), and the fishes 

placed back in the holding tanks.  After an additional five minutes, fish were transferred 

to two 285 L transportation tanks at 6°C containing lake water solutions of 0.0002 % 

MS-222, 0.026 % Stresscoat
®
, and 0.5 % Instant Ocean

®
.  These tanks were then 

transported to the University of Minnesota Duluth.  Throughout the entire capture and 

transport process, the water was aerated with compressed O2 via 5” Deluxe Bubble 

Disks
TM

 (Penn Plax
®
, Hauppauge, NY).  

At the University of Minnesota Duluth, the sculpin, kiyi, and siscowet were 

placed into 40 L, 575 L, and 1900 L aquaria, respectively, equipped with mechanical, 

chemical and biological filtration using Penn-Plax Cascade
TM 

1500 canister filters.  Prior 

to arrival, all tanks were aerated with compressed O2 with for three days.  Instant ocean
®
 

was added to all tanks to achieve 0.5% salt concentration.  Carbon filtration was used 

during oxygen treatment, but was removed upon Stresscoat
®
 treatment.  Tanks were 

treated with 0.026 % Stresscoat
®
 one day prior to fish arrival and were aerated with pure 

oxygen for four days after arrival, and carbon filtration resumed seven days post trawl.  

Water temperatures were maintained between 3 and 6°C, and all tanks were illuminated 
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indirectly by dim red light (Sunbeam 40 W red light bulb) when experimenter vision was 

necessary (cleaning tanks and selecting fish).  Water quality (pH, temperature, ammonia, 

nitrate, nitrite, and oxygen concentration) was monitored twice daily for the first 2 weeks, 

daily for weeks 3 and 4, and twice weekly thereafter.  Fish were illuminated by red light 

(15 W bulb with Kodak GBX-2 dark red safelight filter), consistent with the minimal 

light conditions of their natural habitat.  Feeding was initiated 48 hours after arrival and 

fishes were provided frozen mysis, with kiyi and siscowet supplemented with live mysis 

when available.  Food was provided every other day and uneaten food was removed from 

tanks the next day.  Procedures for animal care and handling conformed to institutional 

animal care protocols (Protocol 1205A13881). 

Electroretinogram Preparation 

All experimental procedures were conducted in a dark room illuminated by dim 

red light (15 W light bulb with Kodak GBX-2 dark red safelight filter).  Siscowet, kiyi, 

and deepwater sculpin were anesthetized with buffered (4.5 % sodium phosphate dibasic, 

1.1 % potassium phosphate monobasic in diH2O, Sigma Chemical Co., St. Louis, MO) 

0.002 % MS-222.  Fish were immobilized by an intramuscular injection of pancuronium 

bromide (0.001 to 0.1 %; 0.0004 - 0.0030 % of body weight) dissolved in 0.9 % NaCl.  

Fish then were placed on a moist sponge in a 45 x 11 x 9 cm experimental tank and 

submerged up to the ventral border of the eyes.  The experimental tank was housed 

within an opaque metal Faraday cage (77 x 67 x 96 cm) to eliminate instrumentation light 

from interfering with dark adaptation.  Buffered 0.002 % MS-222 maintained at 4°C (420 

W Teco SeaChill® Aquarium Chiller, Teco® model SCTR20, Ravenna, Italy) was 
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circulated continuously over the gills through an intraoral tube to maintain the surgical 

plane of anesthesia throughout the experiments.  

Electroretinogram Collection 

Light stimulus was provided by a 100 W quartz tungsten-halogen lamp 

(Newport
®
 model 6333, Stratford, CT) powered by a constant current power supply 

(Newport
®
 model 68938). The stimulus duration was regulated by an Oriel

®
 Electronic 

Shutter (model 76994) and Controller (model 76995).  The light was passed through a 

monochromator (Newport
®
 model 77250) with a 1.56 mm slit.  Neutral density filters 

(0.1 to 3.0) were used to regulate intensity.  A fiber optic light pipe (Newport
®
 model 

77632) was used to transmit the light to the eye.  Light intensity was measured using a 

radiant power energy meter (Ophir
®
 model 70260) and probe (Ophir

®
 model 70268).  A 

0.20 mm diameter silver-silver chloride recording electrode was inserted into the vitreous 

of the eye through an incision at the limbus, and a reference electrode was placed in the 

center of the frontal bone between the eyes.  ERGs were amplified using World Precision 

Instrument, Inc. amplifier (1000x, 1 Hz low pass, 3 kHz high pass, model DAM50; 

Sarasota, FL), filtered using a 60 Hz notch filter, recorded with PowerLab 4SP (AD 

Instruments, Castle Hill, Australia), and stored using Lab Chart
®
7 (AD Instruments, 

Castle Hill, Australia) software on a portable computer.  

All fishes were dark adapted for 30 minutes prior to testing.  A 200 ms flash of 

monochromatic light was used to elicit the ERG.  Wavelengths tested were from 400 to 

700 nm at 25 nm intervals with the presentation order randomly determined.  Stimulus 

intervals were determined for each species by presenting consecutive flashes to control 
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fish to determine the delay required to produce the same response amplitude to minimize 

photobleaching.  Interflash intervals ranged from 30 s for the kiyi to 190 s for the 

deepwater sculpin.  

The b-wave amplitude of the ERG was used as the response criterion (Figure 1).   

Minimal b-wave amplitudes were consistently encountered in response to short 

wavelengths (≤ 425 nm) and therefore the b-wave amplitude at 400 nm was set as the 

minimal criterion response for each fish.  Longer wavelengths were reduced in intensity 

by neutral density filters until the b-wave amplitude equaled the criterion amplitude 

established at 400 nm, and the irradiance needed to reach the criterion amplitude was 

used to generate spectral sensitivity curves for each species.   

Light Attenuation Calculation 

Beer’s law was used to estimate light attenuation and intensity at depth.  Seasonal 

changes in water clarity result in different kPAR values for Lake Superior with clearer 

water present in the spring and summer (kPAR=0.1) and fall months characterized by a 

reduction in water clarity (kPAR=0.3) (Jerome et al.1983).  Data for winter months were 

not available; however ice and snow cover can limit surface irradiance (Leppäranta et al. 

2003) and combined with low sun angles and short days, is probably the period of 

minimal light availability at depth.  Crater Lake solar irradiance values (Tyler & Smith 

1970) were used in visual depth calculations as this lake at similar latitude to Lake 

Superior and thus experiences similar irradiances. Since lunar values were not available 

for Crater Lake, the lunar to solar irradiance ratio was calculated using values from 

Eniwetok Atoll (Munz & McFarland 1973; McFarland & Munz 1975) and applied to 
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Crater Lake solar values to estimate lunar irradiance. The minimum irradiance needed to 

evoke a b-wave in the dark adapted retina was used to determine visual sensitivity.  

Results 

Spectral sensitivity  

 Visual spectral sensitivity curves for dark adapted siscowet, kiyi, and deepwater 

sculpin were constructed using ERG responses to monochromatic light.  All three fishes 

exhibited maximum sensitivity at 525 nm with relatively broad sensitivity from 500 to 

550 nm with markedly decreasing sensitivity to wavelengths <475 nm and >575 nm 

(Figure 2). 

Visual depth profiles 

 To illustrate the spectral composition of downwelling irradiance under different 

aquatic conditions, depth profiles were generated for one percent surface irradiance in 

Lake Superior.  The clearer spring and summer water (kPAR=0.1) showed maximum 

transmission of 500 nm light (Figure 3A) while the increase in the fall attention 

coefficient (kPAR=0.3) shifted the predominant downwelling irradiance to 550 nm (Figure 

3B).  

 Visual depth profiles were created to approximate the maximum depth at which 

fish can respond to downwelling irradiance.  All three species had the capability of 

detecting 500 nm light to depths greater than 90 m during the day in the off shore waters 

of Lake Superior (kPAR=0.1).  Longer wavelengths (≥ 600 nm) were rapidly attenuated 

and not detectable deeper than 20 m (Figure 3A).  Deepwater sculpin displayed greater 
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sensitivity between 475 to 550 nm but outside of these wavelengths, all three species had 

approximately equal sensitivity.  

 Visual depth profiles changed shape and depth with decreased water clarity 

(kPAR=0.3).  Downwelling daytime irradiance would be sufficient to elicit ERGs to 

approximately 24 m for the siscowet and kiyi and 32 m for deepwater sculpin (Figure 

3B).  Again, all species demonstrated similar profiles, with the deepwater sculpin 

retaining a slight advantage in detection of wavelengths between 475 and 550 nm.  While 

deepwater sculpin and siscowet profiles reach greatest depth at 525 nm, the kiyi depth 

profile was greatest at 550 nm.  

 Profiles could not be generated for nocturnal conditions in either turbidity as the 

surface irradiance was less than that required to illicit a physiological response in all three 

species of fish. 

Discussion 

 The fishes occupying the offshore waters of Lake Superior exhibited similarity in 

their spectral sensitivities curves with peak sensitivity at 525 nm that were correlated to 

the predominant downwelling wavelengths.  Based on visual sensitivity and light 

attenuation estimates in Lake Superior, sufficient daytime irradiance exists to mediate 

visual interactions in the upper layers of the lake (<100 m).  Sufficient downwelling 

irradiance is not available under nocturnal conditions to elicit ERG responses in any of 

the fish tested for any depth.   

The fishes were trawled from 100 to 115 m during both day and night and thus 

were exposed to sunlight or deck lights upon capture.  Marine midwater fish and 



 

57 

 

crustaceans can suffer eye damage when exposed to these light conditions (Loew 1976; 

Frank et al. 2012) and the effects of light on the visual sensitivities of the Lake Superior 

fishes are uncertain.  However, every effort was made to maintain fish under dim red 

light conditions following capture, and all animals displayed a robust ERG when tested. 

Control sculpins and siscowet were maintained months in captivity without detectable 

changes in visual or spectral sensitivity so any light damage that may have occurred to 

the retina probably was minimal.  However, the kiyi were less robust and were unable to 

regulate buoyancy resulting in short survival times (generally less than one week).  Due 

to their compromised state, they were tested first and also exhibited strong response to 

the light.  However, given their compromised physiology and the shorter recovery period 

under dim light, their data should be treated with a degree of caution. 

 Due to both specialized morphological retina adaptation and the clarity of open 

ocean water, it has been estimated that mid water fish can detect downwelling light to 

1000 m (Dartnall 1975; Guthrie 1986).  However, most lakes contain more particles in 

the water, such as non-algal particulates and colored dissolved organic matter (Guthrie & 

Muntz 1993; Effler et al. 2010) that decrease light attenuation and shifts the downwelling 

spectral irradiance to longer wavelengths than in salt water.  Estimates of fish visual 

sensitivity at depths greater than 100 m are rare for freshwater fishes.  The deep, 

oligotrophic Lake Superior provides an excellent venue to understand fish visual 

capabilities in clear freshwater systems. 

 The ERG has long been used to assess spectral sensitivity by determining the 

electrical potential of the retina.  In light adapted retinas, ERG waveforms include an a-
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wave generated by the photoreceptor hyperpolarization upon initiation of a light stimulus, 

and a b-wave, originating from Müller cell and bipolar cell depolarization (Wen & 

Oakley 1990).  When dark adapted, the a-wave is absent and allows a more precise 

determination of the b-wave amplitude.  As the Lake Superior fish inhabit minimal light 

environments, the dark adapted retina was more consistent with environmental conditions 

and was used to assess visual sensitivity. 

 The ERG provides a mechanism for minimally invasive sampling and allows the 

fish to be used also in behavioral studies.  While it is an effective tool to measure spectral 

sensitivity, it does not assess the central visual pathways and brain centers involved in 

image formation, and therefore cannot be directly correlated with image formation.  

However, for the b-wave to be induced, sufficient light must be absorbed by the 

photoreceptors to stimulate the bipolar and Müller cells to allow the electrical potential of 

the retina to be detected, strongly suggesting that fish can centrally detect these light 

levels.  Additionally, the current path to the extracellular electrodes must travel through 

the vitreous and epidermis and the position and distance between the electrodes insures 

that current will be lost before detection.  Therefore, it is highly probable that visual 

sensitivity may be greater than values reported.  However, given the challenge of 

capturing and maintaining these deep water species, the ERG provides the best proxy to 

assess visual sensitivity in these fishes. Therefore, for the purposes of this paper, visual 

sensitivity is defined as the minimal irradiance sufficient to elicit a b-wave in a dark 

adapted retina. 
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 The spectral sensitivity curves showed all three species had broad spectral 

sensitivities that correlate with prevailing downwelling light in Lake Superior.  The 

spring and summer water column is very clear containing less particulate matter than fall 

and allows greater light transmission to depth with 500 nm reaching maximal depths.  

The optic properties of the water column shift in the fall with a greater suspension of 

particulate matter that increases light absorbance and changes the peak spectral 

transmission shifts to 550 nm.  Thus the spectral sensitivity for all three species at 525 

nm is well adapted to the light environment. 

 The reduced visual sensitivity in all fishes in the longer wavelengths is consistent 

with their deep water environment because red light is quickly attenuated in the water 

column (Jokela-Määttä; Jerlov 1968).  Similarly, shorter wavelengths are absorbed 

relatively close to the water’s surface in freshwater systems, although attenuation of 400 

to 450 nm light occurs more slowly than longer wavelength red light (Clarke 1936; Jerlov 

1968; Jokela-Määttä et al. 2007).  Thus the visual pigments in the fish are most sensitive 

to the prevailing spectrum and are consistent with Clarke’s sensitivity hypothesis. 

 These findings offer a unique investigation into the utility of vision within a local 

environment through comparison of spectral sensitivities to the calculated light available 

within the system.  Many studies of fish vision have investigated spectral sensitivity 

using electroretinography to understand whole retina function (Horodysky et al. 2008) or 

other procedures such as microspectrophotometry to understand the maximum 

wavelength of perception for retinal components (Denton & Warren 1957; Dartnall & 

Lythgoe 1965; Crescitelli et al. 1985; Bowmaker et al. 1988; Bowmaker et al. 1994; 
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Utne-Palm & Bowmaker 2006). Few studies, however, compare the spectral sensitivities 

of fishes to a detailed profile of the light available in the natural environment (Douglas & 

Partridge 1997; Marshall et al. 2003; Warrant 2004). 

 Deep water marine fishes are often physiologically compromised or blinded by 

deck or sun light which destroys the retina so the maximum depths at which midwater 

fishes can see is based on retina histology rather than determined by in situ experiments.  

This has resulted in a wide knowledge base of evolutionary adaptation of the eye to low 

light levels at depth, but information about the maximum depth of vision is lacking for 

most species.   

 Clarke (Clarke 1936) estimated the depths at which Lepomis retained vision in 

various aquatic environments and postulated that these estimates serve as accurate 

estimates for other fish with similar visual sensitivity.  In these estimations, Clarke 

combined light information of several aquatic ecosystems (Juday & Birge 1931; Birge & 

Juday 1932; Erikson 1933; Oster & Clarke 1935) with data regarding the visual 

capability of Lepomis (Grundfest 1932). The peak sensitivity of Lepomis (Grundfest 

1932) is approximately 10 log units less than diurnal irradiance found by Oster and 

Clarke (1935). Clarke (1936) thus calculated the average depth required to reduce light 

by 1 log unit in each aquatic ecosystem and multiplied by 10 to find the total depth of 

vision for each body of water for Lepomis. The Sargasso Sea revealed the greatest 

estimation of depth of vision for fish similar to Lepomis for the estimated aquatic bodies; 

vision is possible for these fish at depths up to 430 m.  Using Clarke’s methods, the 

maximum depth Lepomis detects light in the open waters of Lake Superior 110 m. 
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Although the wavelength detected differs (Lepomis is most sensitive to 540 nm while 

peak depth of vision for the kiyi, siscowet, and deepwater sculpin is 500 nm under clear 

conditions), this places Lepomis vision at a maximum depth equal to siscowet, with a 

slight advantage of approximately 10 m over kiyi, and a disadvantage of approximately 

30 m to deepwater sculpin. While our calculations utilize spectral sensitivity and light 

attenuation factors to find maximum depth of vision per wavelength, the results are 

comparable with peak depth values that are based on more general calculations.  

 Kiyi and siscowet visual profiles suggest a broad range of perception from 450 to 

550 nm allowing for vision deeper than 60 m during the day.  However, since these 

species typically reside in deeper waters during the day, the visual range may be limited 

to between 475 and 500 nm light.  Insufficient nocturnal surface irradiance exists to allow 

for visual capabilities for any of the three species.  

Deepwater sculpin diurnal vision varies slightly from those of the diel vertical 

migrants between 475 and 550 nm light; the sculpin is able to perceive light up to 40 m 

deeper than the two pelagic fish in this wavelength band.  This correlates with a 

specialized spectral sensitivity to these wavelengths of light with diminished visual 

sensitivity in the wavelengths at the extremes of the visible spectrum.  The deepwater 

sculpin likely has a visual adaptation to wavelengths between 475 and 550 nm because 

these wavelengths are predominant at depth.  Remaining at the lake bottom, deepwater 

sculpin need not expend energy on a broadly sensitive visual system as wavelengths at 

the extremes of the visible spectrum are unlikely to penetrate to greater depths. With this 

specialized visual system and visual advantage at depth, the deepwater sculpin may be 
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able to avoid predation by the siscowet.  This advantage may diminish at the greatest 

depths of Lake Superior where the deepwater sculpin’s eye is insensitive; individuals 

may be vulnerable to predation at night as the visual system is not sensitive to low 

nocturnal illumination and individuals dwelling below 145 m during the day may also 

experience difficulty in visual perception.  

Calculations for the visual depth profiles of Lake Superior fishes and the 

irradiance profile of Lake Superior used solar irradiance values from Crater Lake, Oregon 

(Tyler & Smith 1970).  These data were used as they represented a complete spectral 

irradiance data set for diurnal illumination at latitude similar to that of Lake Superior.  

However, as nocturnal irradiances at this location were not available, a ratio of nocturnal 

to diurnal irradiance (Munz & McFarland 1977) was used to calculate approximate 

nocturnal illumination for this location.  

 Under diurnal conditions, much of the population of these offshore fishes has 

insufficient light to utilize visual cues for predator avoidance and prey capture and 

minimal nocturnal irradiance prevents the use of the visual system.  While other sensory 

modalities may be important for long range detection, most short range predator prey 

interactions are mediated by the mechanosensory lateral line and/or vision.  Teleosts are 

certainly capable of finding prey in complete darkness, although, at best range, the 

mechanosensory lateral line range is estimated to be one or two body lengths; 

neurophysiological studies with free swimming fish feeding on natural prey suggest even 

shorter distances of less than a body length (Palmer et al. 2005).  Vision can extend this 

range; however, optical conditions in the aquatic environment can be highly variable and 
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limiting to the visual system.  Future studies implementing these spectral sensitivity 

findings can be incorporated into laboratory studies investigating fish reaction distance 

under diminishing availability of light.  By simulating environmental conditions, foraging 

mechanisms for offshore fish can be further understood. 
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Figure 1: An electroretinogram recorded from a kiyi in response to 550 nm light. 

The b-wave seen at 500 ms is representative of the depolarization of the Müller 

cells. This wave is reduced in experimentation to reach a minimum criterion 

response. 
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Figure 2: The average irradiance (units) needed to invoke the criterion 

response is plotted versus wavelength.  Spectral sensitivity curves of kiyi 

(black circles), siscowet (white circles), and deepwater sculpin (black 

triangles). 
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Figure 3: Visual depth profiles of kiyi (black circles), siscowet (white circles), and deepwater sculpin 

(black triangles) in comparison to one percent surface irradiance calculations (white triangles) in diurnal 

conditions with (A) kPAR=0.1 and (B) kPAR=0.3. Depth decreases with increases along the y-axis. Increase 

on the x-axis corresponds with increasing wavelength. 
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Figure 4: Comparison of fish visual depth profiles to depth ranges. Diurnal 

values for kPAR=0.1 are used for the visual depth profiles. Vertical lines 

represent the depth ranges of fish throughout day and nighttime and are 

presented here independent of wavelength for comparison to visual depth 

profiles. Lines for kiyi (black circles), siscowet (white circles), and deepwater 

sculpin (black triangles) demonstrate visual depth profiles (horizontally) and 

depth range (vertical). 
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