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Abstract
The importance of timely applications and decisions in dynamic environments, has led to the

integration of intelligent networks to increase efficiency and end-user satisfaction in various

application domains including telecommunication and power grid networks. Contemporary

intelligent networks require advanced statistical signal processing and optimization tools to

learn, infer and control their operation. This integration poses new challenges and has wit-

nessed the emergence of novel resource management and learning techniques to cope with

dynamics. In addition, in order to have implementable resource management algorithms,

it is crucial to model the underlying sources of uncertainty in the optimization framework.

This thesis develops algorithms for resource allocation under channel uncertainty in cog-

nitive radio (CR) communication networks and contributes to demand coordination under

uncertainty in power networks.

Demand coordination through real-time pricing is addressed first by capitalizing on the

uncertainty involved in the consumption behavior of consumers. Prerequisite to the demand

coordination task is learning the uncertainty present in power consumption data. The de-

pendency of consumers’ consumption behavior on the announced prices and their neighbors’

behavior, is modeled through graphical models. In particular, the electric vehicle (EV) con-

sumers are considered and the adopted model also captures dynamics of EV consumers’

time-varying charging decisions. Leveraging the online convex optimization (OCO) frame-

work, an online algorithm for tracking the model is devised. With minimal assumptions on

the structure of the temporal dynamics, and while accounting for the possibly adversarial

consumption behavior of consumers, the proposed online algorithm provides performance

guarantees. The probability distributions obtained through the tracking algorithm are then

deployed as input to stochastic economic profit maximization for real-time price setting.

Learning in the presence of missing data is a pervasive problem in statistical data anal-

ysis. Next, attention is turned to tracking the dynamic charging behavior of EV consumers,

when at each time slot some of the consumers’ consumption decisions are possibly missing.

The problem amounts to online classification with missing labels. An online algorithm is

proposed to wed real-time estimation of the missing data with learning of complete data in

the OCO framework.

As regards CR networks, this thesis introduces novel resource allocation algorithms

for orthogonal frequency-division multiple access (OFDMA) CR under channel uncertainty

where the unique approaches can be fitted to a class of large-scale robust mixed-integer
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problems. Due to the lack of cooperation of the licensed system, CRs must resort to less

efficient channel estimation techniques thus incurring an inevitable channel estimation er-

ror. It is shown that CR interference constraints under channel uncertainty can be cast

as chance constraints. On the other hand, instead of just modeling the user rates by loga-

rithmic functions of transmit-powers, justified under ideal Gaussian coding, practical finite-

alphabet constellations are adopted which leads to an optimization objective of a weighted

sum of mutual information. When multiple users are present, due to the combinatorial

search for optimal subcarrier assignment, the problem is non-convex and hard to solve, as

the optimization variables are coupled across all subcarriers. To circumvent the resulting

computational hurdle, tight and conservative approximations of the chance constraint are

introduced to break the coupling and enforce separability per subcarrier. The separable

problem across subcarriers opens the door to the dual decomposition approach, which leads

to a near-optimal and computationally efficient solution.
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Chapter 1

Introduction

1.1 Motivation and Context

Resource management is a vital task in different application domains, including power grid

and telecommunication networks, because it is concerned with the utilization and allocation

of available resources.

Under the assumption that the system model parameters and input data are certain,

the optimal solution to resource allocation offers what one could term as “nominal” solu-

tion. However, in practice, the input data and the model parameters are obtained from

measurements or predictions that inevitably incur errors and uncertainty. Hence, deploying

the nominal solutions into real-world scenarios makes the implementation infeasible.

There are two main approaches that are typically considered for optimization with un-

certain parameters [37]. When the uncertain parameters are regarded as random, statistical

knowledge such as their mean and covariance, or their distribution is assumed, which leads

to probabilistic formulations. A deterministic alternative is to adopt a robust optimization

framework, where a bounded uncertainty region is postulated. In certain cases, the two

approaches can be shown to be intimately related [5]. In addition, to capture the stochastic

nature and interdependencies of data, a general methodology is built upon probabilistic

models that can accommodate uncertainty and statistical errors associated with the data.

Probabilistic graphical models combine graph theory with probability theory to yield an
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encompassing multivariate statistical modeling approach [55].

Recent advances in the so-termed smart grid embrace information technologies for the

electrical power network to address the aging infrastructure challenges. The objective and

features of the smart grid vision are fourfold: (a) two-way communication; (b) advanced

monitoring and optimization; (c) integration of renewables and electric vehicles (EVs); and

(d) environmental awareness and sustainability. Through a two-way communication, the

utility company aims at an optimal coordination of the generation and load demand to

ensure high consumer satisfaction and guaranteed reliability in addition to making some

revenue. Prerequisite to the demand coordination task is availability of reliable analytics,

i.e., it is instrumental to learn the consumers’ consumption patterns and model the uncer-

tainty in power consumption data. In addition, the consumption patterns of the consumers

are time-varying which needs to be accounted for in order to obtain a reliable demand

coordination.

By the same token, growing demands for higher data rate in wireless communications

to support high quality-of-service multimedia applications, necessitate an optimal manage-

ment of resources. In order to utilize a large swath of bandwidth efficiently, the intelligent

technology of cognitive radio (CR) networks has been introduced. CRs can be unlicensed

users that need to acquire the information of the RF operational environment in order to

smartly coordinate, manage resources and follow the spectral changes in order to mitigate

any interference caused to the spectrum license holders. Furthermore, as the license holder

system is usually unaware of CRs operation, there is no cooperation from the primary user

(PU) system in the channel estimation which leads to some channel uncertainty. The lit-

erature in CR resource management is extensive [67], [65], [14], [58]. However, deploying

orthogonal frequency-division multiple access (OFDMA) as an efficient technique for CR

technology, makes the resource allocation under uncertainty a non-trivial task.

This thesis develops models and algorithms for efficient resource management under

uncertainty in both smart power grid and CR networks. In addition, online algorithms

are devised to learn the temporal variations and the dynamics of the underlying network

structure. The particular motivation, context, tools, and contributions of this thesis are
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described in Section 1.2 for the smart power grid context, and in Section 1.3 for the CR

network paradigm.

1.2 Resource Allocation in Power Grid Networks

The power grid consists of three major functional components: (i) the electricity generation

facilities; (ii) the transmission lines, which transfer electricity from the generation part

to the neighborhoods; and (iii) the distribution network, which uses distribution lines to

bring electricity to the customers. The connections between these parts are made at the

substations. The main feature of the smart grid is the existence of a two-way communication

between the utility company and the customers. In fact, through smart meters in consumers

premises the utility company is updated of the detailed consumption information such as

time-of-use.

Recently, there has been also growing interest in electric vehicles (EVs), which are

expected to be widely deployed by 2050 [28]. EV penetration may contribute to alleviating

dependence on fossil fuel and drastically reducing greenhouse gas emissions. EV owners

may also benefit from lower energy cost in the face of spiking gasoline prices.

Currently, there are three levels of charging EVs. Level 1 charging is the slowest and

supports 120V sockets for charging. Level 2 is faster and uses 240V sockets. Level 1 and

2 are both considered as AC chargers. Level 3, also known as fast charging, is much faster

than the other two levels. In level 3 a DC charger converts AC to DC off the car [68].

Despite the fact that the EVs are considered as elastic load in the network (since, their

charging time can be quite flexible), uncoordinated EV charging can aggravate load peaks

due to, e.g., concentrated charging demand before commuting hours, resulting in higher

generation cost for the utility company to avoid shortages. EV charging impacts on the

power grid have been addressed in [39], [33], [13].

Clearly, it is advantageous for the utility company to have EV consumers charge their

vehicles during periods that the renewable generation output is high. Therefore, charging

coordination of EVs in the smart grid network is a crucial task.
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1.2.1 Online Learning of Consumption Behavior of EV Consumer

Charging coordination of EVs is vital for the smart grid network operation. In order to

elicit desirable electricity consumption patterns, various time-based pricing schemes have

been proposed. By allowing the electricity price to vary over different hours of a day,

consumers are encouraged to shift inessential loads to the periods of low prices, which

generally correspond to off-peak hours [38]. There is extensive literature on scheduling the

time and rate of EV charging [17–19,36,45,46,53]. Generation and EV charging costs were

minimized in [46] under power flow constraints. With the goal of shifting EV loads to fill

the overnight demand valley, a distributed algorithm for day-ahead charging rate schedules

was proposed in [18]. The EV charging schedule was optimized in [53] by minimizing load

variance and maximizing load factor.

Prerequisite to the demand coordination task is availability of reliable analytics. In ad-

dition to essential loads and price forecasting, it is instrumental also to learn the consumers’

behavioral patterns. In [22], smart grid consumers’ price elasticity was estimated using a

linear regression model with price changes as regressors and the corresponding shift in total

demand as the response. The price responsiveness is useful, for instance, when one desires

to set the prices optimally with various objectives such as minimizing the generation cost

or maximizing revenue of the utility company.

However, existing techniques for acquiring price elasticity fall short of capturing the

following important aspects. First, the dynamics of consumer preferences over time have

been not accounted for. In practice, price elasticity might change abruptly and even in an

adversarial manner, as the consumers may also react so as to maximize their own profit.

Secondly, the spatial dependencies of consumer behaviors, e.g., the correlations present in

the behaviors of consumers in geographic proximity, have not been exploited.

Chapter 2 addresses the problem of estimating the probability with which each con-

sumer will charge his/her EV, paying the announced price and given all the past prices and

the corresponding observed behaviors, while accounting for possible spatial dependencies

among consumption behavior of consumers. The adopted model captures the dependency

of EV consumers’ charging decisions on the announced electricity price. As the charging
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decisions can be best described by discrete values (e.g., “charging” or “not charging”), a

logistic regression-type framework is employed. To capture the stochastic nature and inter-

dependencies of consumption behavior of consumers, the dependency structure is encoded

as a graph, and the overall model corresponds to a conditional random field (CRF) [32].

CRF model

Graphical models are powerful tools for analyzing the interdependencies among a large

number of random variables defined over graphs to represent their conditional dependence.

Consider an undirected graph G = (V,E), where the vertex set V := {1, 2, . . . ,M} cor-

responds to the nodes in the graph, and edges (i, j) ∈ E capture the proximity between

nodes i and j. Collect in vectors bt and ρt variables {bti}Mi=1 as labels and {ρti}Mi=1 as input

features, respectively. The CRF models the conditional probability distribution function

(pdf) p(bt|ρt). In short, p(bt|ρt) is a CRF with respect to G if it obeys the Markov property

for every ρt. This means that conditioned on ρt, for any i, j ∈ V , label bti is independent

of label btj given the neighbors {btk : (i, k) ∈ E}. Intuitively, this means that given the

features ρt, the neighbors of bti contain all the information needed for predicting bti, and

other variables are irrelevant.

Let ψi,j(b
t
i, b

t
j) denote feature functions quantifying the dependency between nodes i

and j. In addition, functions φi(b
t
i, ρ

t
i) model the dependency of bti on the input variable ρti.

Parameters θti and θti,j are introduced for φi and ψi,j , respectively, to capture the strengths

of these dependencies. With θt := [θti ,θ
t
i,j ], the conditional pdf can thus be modeled as

pθt(b
t|ρt) =

1

Z(ρt)

∏
i∈V

e〈θ
t
i ,φi(b

t
i,ρ

t
i)〉

∏
(i,j)∈E

e〈θ
t
i,j ,ψi,j(b

t
i,b
t
j)〉 (1.1)

where 〈·, ·〉 denotes the inner product, and

Z(ρt) :=
∑

bt∈SN

∏
i∈V

e〈θ
t
i ,φi(b

t
i,ρ

t
i)〉

∏
(i,j)∈E

e〈θ
t
i,j ,ψi,j(b

t
i,b
t
j)〉 (1.2)

is a normalization factor, also known as the partition function. Computing the partition

function incurs high computational complexity, especially as the number of nodes increases.

For instance, in a binary labeling case, the computation of the partition function involves

a summation of 2M terms. However, there are techniques for approximating the partition

function in an efficient manner [61].
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In terms of algorithm implementation, online algorithms are preferred over batch al-

ternatives for real-time streaming analytics. In addition, as the consumers may also act

strategically to maximize their own benefit (and mend their price responsiveness accord-

ingly), the online algorithm should provide performance guarantee even in an “adversarial”

setting. Furthermore, the consumers’ charging decisions are typically correlated across time

in practice. In this thesis, an online algorithm is developed to estimate the relevant model

parameters, based on an online convex optimization (OCO) framework, which provides

performance guarantees with minimal assumptions on the structure of temporal dynam-

ics [44]. The proposed algorithm yields probability distributions and a belief propagation

(BP) iteration to effect a message passing algorithm for efficient computation of marginal

probabilities. As explained next, the probability distributions are then used as input for

stochastic economic dispatch or revenue maximization.

1.2.2 Real-time Price Setting

Chapter 2, introduced models and algorithms to capture the consumers’ charging decisions.

Since the CRF model provides the probability distribution of the charging decisions given

the prices, one can subsequently formulate a risk-limiting stochastic optimization problem

to tailor the EV charging demand in some desirable fashion. Here, for simplicity, a price

setting formulation is considered to maximize the utility’s net profit, which is the utility’s

revenue collected from the customers minus the power generation cost.

There are prior works on stochastic revenue maximization accounting for elasticity and

load uncertainty in real-time pricing [62], [56]. A demand elasticity model is considered

in [62] to optimize the utility function (area under price-demand curve) and minimize the

generation costs for real-time pricing. However, in addition to ignoring consumption depen-

dencies of consumers, the parameters of the load elasticity model are assumed to be known

and are not learned over time. Real-time pricing in [56] entails maximization of utility mi-

nus cost functions. To capture load uncertainty however, the load is modeled with a typical

load plus a random variable. By online learning of the consumers’ price responsiveness and

their consumption dependency, while allowing for strategic action of consumers, Chapter 2
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introduces a new approach for an optimal control of consumers total charging consumption

with the pertinent goal of maximizing revenue.

1.2.3 Online Learning with Missing Data

Chapter 3 deals with the case when some of the consumers’ charging decisions are missing.

Missing data occur in a broad range of application domains including the smart grid. In

practice, due to experimental limitations and errors only a portion of the data of large

networks can be observed. Hence, it is instrumental to develop algorithms that can learn

from partially observed data. CRF models are usually trained by maximizing the log-

likelihood of completely labeled training data (pairs of input and output). Missing data are

problematic and the most common approach is to drop the variables with missing labels in

the algorithm. In practice, this is restrictive as it may result in biased results.

This chapter adopts a CRF framework to model the dependency of EV consumers’

charging decisions as in Chapter 2. It is assumed that incomplete charging decisions of

consumers which belong to an associated set of binary decisions (e.g., “charging” or “not

charging”) are sequentially observed by the utility company. At each time step, the observed

charging decisions include misses, where the number and locations of the misses may even

change over time. Then, with an inference of the misses per time t, an online learning

algorithm in an OCO framework is developed to estimate the relevant model parameters,

which allows for strategic behavior of consumers [44].

1.3 Resource Allocation in Uncertain CR-OFDMA Net-

works

Due to the increasing demand for high-speed wireless data access, efficient utilization of

the limited frequency spectrum has become crucial. The cognitive radio (CR) technology

puts forth a promising proposal to mitigate the scarcity of spectral resources by allowing

unlicensed transmitters to use underutilized licensed bands in an opportunistic fashion. To

avoid interfering licensed primary user (PU) systems and capture spectrum opportunities
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efficiently, CRs must adapt to the spectrum occupancy dynamically and intelligently.

There are a number of coexistence models to implement the CR concept [66]. In the

so-called spectrum overlay scenario (also termed interweave in [21]), CRs detect frequency

bands unoccupied by PUs through spectrum sensing, and exploit those “spectrum holes”

using dynamic resource allocation. Under a spectrum underlay model, CRs may transmit

concurrently with PUs sharing the same bands, provided that the interference experienced

by the PUs is controlled to a tolerable level, say, comparable to that of the ambient noise

and interference.

In order to utilize a broad swath of spectrum flexibly, CR systems often employ multi-

channel architectures such as orthogonal frequency-division multiple access (OFDMA). Key

resource allocation (RA) issues in OFDMA radios include optimal assignment of subcarriers

to individual users, and optimal power loading across the subcarriers. Extensive research

has been carried out on this important topic, with recent applications to CR scenarios.

A heuristic algorithm based on the multi-dimensional knapsack problem was proposed for

OFDM CRs in [64]. A weighted sum-rate maximization problem has been considered in [2].

Channel estimation in CR systems is challenging, since the CRs gain access to the

medium only intermittently, and the incumbent PU system often does not explicitly support

channel estimation for CR systems. In addition, CRs might not have prior knowledge of

PU signal characteristics, and thus are forced to resort to less efficient channel estimation

techniques. Nevertheless, PU transmissions must be strictly protected from the interference

due to CRs. Therefore, it is widely recognized that RA for CRs must account for channel

uncertainty.

There are a couple of approaches that are typically considered for optimization with

uncertain parameters [37].

Typically, uncertainty in the parameters of an optimization problem is captured either

deterministically or statistically [5]. Under the deterministic approach, bounded-uncertainty

parameter sets are assumed, and the worst-case solution immunized to all elements in the

uncertainty set is sought. When the parameters are viewed as random, chance constraints

are constructed from the distributions of the parameters. It can be shown that a determin-
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istic robust optimization approach is intimately related to the chance-constrained approach

under special circumstances.

Specifically, let
∑N

n=1 g
(n)p(n) ≤ Imax denote the constraint of interest, where Imax ≥ 0

is a given constant, p(n) for all n are deterministic and the uncertainty in vector g :=

[g(1) g(2) . . . g(N)]T is captured by an ellipsoidal uncertainty region given by

G :=
{
ḡ + ∆g : ∆gTC−1

g ∆g ≤ Ω2
}

(1.3)

where ḡ is the nominal value of g, ∆g the deviation from the nominal value, Cg a symmetric

positive definite matrix, and Ω ≥ 0 a given constant. Then, a robust constraint guarantees∑N
n=1 g

(n)p(n) ≤ Imax for all possible g ∈ G; that is,

N∑
n=1

g(n)p(n) ≤ Imax for all g ∈ G. (1.4)

Alternatively, one can note that (1.4) is equivalent to

ḡTp + max
∆g:∆gTC−1

g ∆g≤Ω2
∆gTp ≤ Imax. (1.5)

Upon defining∆g̃ := C
− 1

2
g ∆g, and invoking Cauchy-Schwarz’s inequality as

∆gTp = ∆g̃TC
1
2
g p ≤ ||∆g̃||2||C

1
2
g p||2 ≤ Ω

√
pTCgp, (1.6)

one can easily confirm that (1.4) is equivalent to

p ∈ C :=

{
p

∣∣∣∣Imax − ḡTp ≥ Ω
√

pTCgp

}
(1.7)

which is a second-order cone constraint [5].

Also, one can arrive at (1.7) by assuming that g is jointly Gaussian with mean ḡ and

covariance Cg, and considering the chance constraint given by

Pr

{
N∑
n=1

g(n)p(n) > Imax

}
≤ ε (1.8)

which enforces the probability that
∑N

n=1 g
(n)p(n) exceeds Imax is at most ε.
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Yet another connection to the chance-constrained problem can be made by assuming

that {g(n)} are random and independent of one another, and have finite support such that

g(n) − ḡ(n) ∈ [−ĝ(n), ĝ(n)] for all n. Then, a conservative approximation of (1.8) is again

given by (1.7) with Cg being a diagonal matrix whose n-th diagonal entry equals to (ĝ(n))2,

and Ω :=
√

2 log
(

1
ε

)
[37].

CR interference constraints under channel uncertainty can be cast as chance constraints.

The upshot is that the chance-constrained framework can embrace a rather broad range of

modeling perspectives, based on either statistical or deterministic approaches. Thus, the

formulation and solution methodology in this thesis can readily accommodate practical

system requirements and deployment scenarios.

However, chance constraints are typically more difficult to handle than their determin-

istic counterparts, as they may be either nonconvex, or tough to verify as being convex.

Moreover, it is sometimes difficult to express these constraints in closed form. In such cases,

convex approximation of chance constraints is of practical merit.

Probabilistic interference constraints were considered for a CR power control problem

in [15], where uncertainty in composite fading channels comprising shadowing and Nak-

agami fading was accounted for. RA problems for generic OFDMA systems with channel

uncertainty have also been investigated extensively [1, 59]. However, not many works have

addressed the RA problems for OFDMA-based CRs under channel uncertainty. A heuristic

RA algorithm for OFDMA CR systems has been reported in [26], where the sum rate was

maximized under power, interference, and average bit error rate constraints. However, the

algorithm accounted for uncertainties only in the channels between the CR base station

(BS) and the CR mobile stations (MSs), but not between the CR-BS and the PU. CR-PU

channel uncertainty was considered in an OFDM setup by [52], but the subcarrier assign-

ment issue for OFDMA was not addressed. Both channel estimation and spectrum sensing

errors were taken into account for OFDMA CRs in [58] under a spectrum overlay model,

in which the bands occupied by the PUs are completely avoided.

Chapters 4 and 5 introduce novel resource allocation algorithms for OFDMA CRs under

channel uncertainty. Although important components of the proposed algorithms, such as
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the Lagrange relaxation technique, robust optimization, and rate maximization for practical

constellations, have received much attention in the literature, it must be emphasized that

bringing these together for OFDMA CR RA under channel uncertainty incurs significant and

novel challenges. On a high level, the contributions can be put in the following perspective.

It is widely accepted that the Lagrange relaxation technique is a powerful tool for OFDMA

RA. It is also generally recognized that robust optimization is an important framework to

address RA problems with uncertain data. The critical question is whether it is possible

to combine these two to tackle the challenging OFDMA RA problem for CRs. Chapters 4

and 5 offer a positive answer to this intriguing query, with associated trade-offs carefully

examined. Moreover, the resulting contributions may have impact beyond the particular

RA task treated here, as they can further be used to efficiently tackle a class of large-scale

robust mixed-integer programming problems involving second-order cone constraints.

1.3.1 Resource Allocation in OFDMA CR Uplink

Chapter 4 addresses the RA task for OFDMA uplink CRs with uncertain CR-to-PU chan-

nels. A weighted sum-rate maximization problem is formulated subject to a probabilistic

interference constraint and maximum transmit-power constraints for the CR users. The

Bernstein method is adopted to approximate the probabilistic constraint by a convex con-

straint. Even after the approximation, the overall problem is still nonconvex due to the

combinatorial assignment of users to each subcarrier. By employing appropriate bounds,

the approximation emerging from the interference constraint can be further made separable

across subcarriers. This opens the door to the dual decomposition approach, which leads

to a near-optimal and computationally efficient solution [35]

1.3.2 Resource Allocation in OFDMA CR Downlink

The work in Chapter 5 considers an OFDMA CR network operating in a spectrum under-

lay set-up. A weighted sum rate maximization problem is formulated for a CR-BS that

transmits to a set of CR-MSs, while respecting a strict interference constraint to protect

PUs when the channel estimate between the CR-BS and the PU receiver contains uncer-
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tainty. It turns out that the interference constraint can be converted to a second-order

cone constraint, which is convex. However, the overall optimization problem is still non-

convex in general due to the combinatorial search necessary for subcarrier assignment. It

is well known that when an OFDMA RA problem has separable structure, the duality gap

vanishes as the number of subcarriers grows large [35, 43]. To induce such a separable

structure, a tight linear approximation for the interference constraint is introduced at a

modest (polynomial) increase in the problem dimension. The approximated problem can

then be readily solved using the dual decomposition method, which leads to a near-optimal,

computationally efficient algorithm.

Different from Chapter 4, in which the user rates are modeled by logarithmic func-

tions of transmit-powers, justified under ideal Gaussian coding, practical finite-alphabet

constellations are adopted in Chapter 5. The optimization objective is a weighted sum of

mutual information for individual CR-MSs. As the rate does not grow without bound even

when the transmit-power is increased, a mercury/water-filling step is introduced rather than

the conventional water-filling step [34]. The dual problem is solved using the relationship

between the minimum mean-square error (MMSE) and the derivative of mutual informa-

tion [23]. Instead of the chance-constrained formulation pursued in Chapter 4, a robust

optimization framework is adopted in Chapter 5, and the close relationship between the

two is delineated. A suboptimal benchmark algorithm is also considered, which aims at a

locally optimal solution. A time complexity analysis for the proposed algorithm is provided

as well.

Chapter 4 tackles OFDMA uplink problem was tackled, which entails a significantly

different set of challenges than the downlink case. While conservative approximations of

probabilistic interference constraints with strictly positive gaps are employed in Chapter 4,

Chapter 5 pursues an arbitrarily tight approximation of robust interference constraints.
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Chapter 2

Online Learning and Price Setting

for EV Charging Response

In this chapter, the spatial dependence of the of EV consumers’ charging decisions on the

announced electricity price, are modeled using a CRF where the dependency structure is

encoded a graph. Subsequently, an online algorithm is developed to estimate the relevant

model parameters, based on OCO framework. The proposed algorithm yields probability

distributions suitable for stochastic economic dispatch or revenue maximization, which are

then used for the optimal the real-time price setting. The proposed model and algorithm

are verified using synthetic and semi-real charging data. The material in this chapter draws

from [51], [50].

2.1 Modeling and Problem Statement

The goal of a load serving entity is to shape the EV charging load imposed to the distribution

grid in some desirable way, so as to minimize the generation cost, or maximize the net

profit. One way of achieving this is to set the electricity prices for individual consumers

appropriately in order to influence the consumers’ EV charging behavior. For this, it is first

necessary to estimate how responsive individual consumers are at each time to different

prices presented to them.
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Consider M EV owners, who desire to charge their EVs via a distribution network. Let

bti ∈ S := {0, 1} indicate the charging behavior of consumer i at time t; i.e., bti = 1 when

consumer i is charging his EV at time t, and bti = 0, otherwise.1 Similarly, ρti denotes the

electricity price during time slot t for consumer i. To capture spatial dependence (e.g.,

behavioral dependence of consumers living in the same neighborhood, or having similar

income levels), an undirected graph G = (V,E) is introduced, where the vertex set V :=

{1, 2, . . . ,M} corresponds to the consumers, and edges (i, j) ∈ E capture the dependence

between consumers i and j. Since the edges are undirected, it is assumed that (i, j) ∈ E if

(j, i) ∈ E.

It is assumed that the customer premises are equipped with smart meters so that bi-

directional communication between the utility and the consumers is feasible. Leveraging

such an advanced metering infrastructure, the utility announces prices {ρti} to all consumers

i ∈ V at the beginning of slot t = 1, 2, . . .. Subsequently, the charging decisions {bti} of the

consumers are reported back to the utility at the end of slot t.

In this context, the following problem is of interest: estimate the probability with which

each consumer i ∈ V will charge the EV at time t paying for price {ρti}, given past prices

{ρτi , i ∈ V, τ = 1, . . . , t − 1}, and the corresponding observed charging behaviors {bτi , i ∈

V, τ = 1, . . . , t − 1}, while accounting for possible spatial dependencies in {bti} captured

by G.

A CRF model for EV charging behavior To solve the aforementioned problem, the

framework of CRF is adopted [32]. Collect in vectors bt and ρt variables {bti}Mi=1 and

{ρti}Mi=1, respectively. The CRF models the conditional probability distribution function

(pdf) p(bt|ρt). In short, p(bt|ρt) is a CRF with respect to G if it obeys the Markov property

for every ρt. This means that conditioned on ρt, for any node pair (i, j) ∈ V , behavior bti

is independent of btj given the neighbors btk ∈ N(i) := {k : (i, k) ∈ E}.

Let ψi,j(b
t
i, b

t
j) denote the feature functions quantifying the dependency in charging

behavior of consumers i and j. In addition, functions φi(b
t
i, ρ

t
i) model the dependency of bti

1Multiple charging rates can be accommodated straightforwardly by increasing the number of labels in

S.
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on price ρti. Parameters θti and θti,j are introduced for φi and ψi,j , respectively, to capture the

strengths of these dependencies. With θt := [θti , i ∈ V ; θti,j , (i, j) ∈ E], the price-conditional

behavior pdf can be modeled as

pθt(b
t|ρt) =

1

Z(ρt)

∏
i∈V

eθ
t
iφi(b

t
i,ρ

t
i)
∏

(i,j)∈E

eθ
t
i,jψi,j(b

t
i,b
t
j) (2.1a)

Z(ρt) :=
∑

bt∈SM

∏
i∈V

eθ
t
iφi(b

t
i,ρ

t
i)
∏

(i,j)∈E

eθ
t
i,jψi,j(b

t
i,b
t
j) (2.1b)

where Z(ρt) is a normalization factor, also known as the partition function. Motivated by

the CRF model pdf involved with logistic regression, we adopt the function

φi(b
t
i, ρ

t
i) := btiρ

t
i. (2.2)

Furthermore, inspired by the Ising model for modeling dependencies of binary random

variables [57],

ψi,j(b
t
i, b

t
j) := btib

t
j (2.3)

is chosen. Now the problem of finding pθt(b
t|ρt) given {ρτi , bτi , i ∈ V, τ = 1, . . . , t − 1}

translates to estimating θt at each time t.

2.2 Online Learning of Load Elasticity

Compared to batch algorithms that process the entire collection of data to obtain the desired

estimates, online algorithms feature the capability to process data one by one in a sequential

fashion. To develop an online algorithm for estimating θt, the approach here utilizes OCO,

which requires minimal assumptions on the temporal dynamics of θt, and can provide

provable performance guarantees even in adversarial settings [44], [24], [69]. Such guarantees

against adversarial players are meaningful because the consumers may act strategically to

maximize their own benefit (and mend their price responsiveness accordingly). Next, OCO

framework is outlined.
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2.2.1 OCO Framework

OCO can be viewed as a multi-round game with a forecaster and an adversary. The loss

functions `t(·) associated with the forecasts for t = 1, 2, . . . , T , and the feasible set Θ are

assumed convex. In round t, the forecaster chooses θ̂t ∈ Θ, after which the adversary

reveals `t(·), incurring loss `t(θ̂t) for the t-th round. Performance of the online actions {θ̂t}

is assessed through the so-termed regret given by

RT =

T∑
t=1

`t(θ̂t)−min
θ∈Θ

T∑
t=1

`t(θ) (2.4)

which represents the relative cumulative loss of the online forecaster after T rounds, com-

pared to an optimal offline minimizer, which has the advantage of hindsight. Online convex

programming algorithms provide ways to generate the sequence {θ̂t}Tt=1 to achieve a regret

that is sublinear in T .

2.2.2 Online Learning of Load Elasticity

In our context, the forecaster is the utility company and the adversaries are the EV owners.

The loss is represented by the negative log-likelihood function

`t(θt) := − log pθt(b
t|ρt) (2.5)

which is not revealed to the utility company until the utility predicts θ̂t and announces ρt

based on θ̂t, since only then can the consumers respond with their charging decisions bt.

Note that the chosen loss `t(θt) in (2.5) with pθt(b
t|ρt) as in (2.1a) is convex [40]. A

popular online convex programming algorithm relies on the online mirror descent (OMD)

iteration, which is a projected subgradient method with the Bregman divergence used as

a proximal term. It yields an efficient first-order algorithm with sublinear convergence

rate [54]. Vector θ̂t+1 is obtained recursively in OMD as

θ̂t+1 = arg min
θ
〈∇`t(θ̂t),θ〉+

1

µt
D(θ̂t‖θ) (2.6)

where µt denotes a step size, and D(·‖·) represents the Bregman divergence. The Bregman

divergence associated with the `2-norm is simply given by D(θ̂
t‖θ) = 1

2‖θ − θ̂
t‖2. Upon
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substituting this into (2.6), the OMD update boils down to an online gradient descent given

by

θ̂t+1 = θ̂t − µt∇`t(θ̂t). (2.7)

To evaluate the gradient in (3.2), for the likelihood in (2.5) and the pdf in (2.1a), it is shown

in Appendix 2.6.1 that

∂`t

∂θti
= E{btiρti|ρt} − btiρti, ∀i ∈ V (2.8)

∂`t

∂θti,j
= E{btibtj |ρt} − btibtj , ∀(i, j) ∈ E (2.9)

where the expectation is with respect to pθ̂t(b
t|ρt).

Since bti is a Bernoulli variable, it follows that

E{btiρti|ρt} = ρtipˆθ
t(bti = 1|ρt) (2.10)

E{btibtj |ρt} = pθ̂t(b
t
i = 1, btj = 1|ρt). (2.11)

These marginal conditional probabilities can be efficiently evaluated by employing the belief

propagation (BP) algorithm [61]. Starting with some initial messages, the BP algorithm

performs message passing between nodes. The messages are updated iteratively till con-

vergence or for a fixed number of iterations. The obtained messages can then be used for

computing exact marginal probabilities for tree structured graphs. In graphs with loops,

one needs to resort to the loopy belief propagation (LBP) algorithm [61], which often yields

good approximations of marginals.

Let mij(b
t
i) denote the message passed from node i to node j for (i, j) ∈ E. Then, based

on the standard BP update rules, the updated messages mij(b
t
j) and the marginals p(bti|ρt)

and p(bti, b
t
j |ρt) are obtained as summarized in Table 2.1 [61]. The main computational

burden of the BP algorithm lies in the message update step, which is O(|S|2) for each pair

of nodes. This is considerably better than the O(|S|M ) complexity incurred by computing

marginals through direct summation over all variables.

The overall online algorithm for estimating θt+1 is summarized in Table 2.2. Steps 5

and 6 confirm that θ̂
t+1

is dependent on past values of {θτ}tτ=1, and thus on {bτ ,ρτ}tτ=1 as
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1: Initialize m
(0)
ij (btj) = 1 for all i, j ∈ V and btj ∈ S.

2: For n = 1, 2, ...,MAX ITER

Perform for all i, j ∈ V and btj ∈ S:

3: Update: m
(n)
ij (btj)←

∑
bti∈S

exp
(
θtiφi(b

t
i, ρ

t
i)
)
exp

(
θti,jψi,j(b

t
i, b

t
j)
) ∏
ν∈N(i)\{j}

m
(n−1)
νi (bti)

4: Normalize: m
(n)
ij (btj)← ζ−1

1 m
(n)
ij (btj), where ζ1 :=

∑
btj∈S

m
(n)
ij (btj)

5: Next n

6: Set mij(b
t
j) = m

(MAX ITER)
ij (btj) for all i, j ∈ V and btj ∈ S.

7: Compute beliefs:

p̃(bti|ρt) = exp
(
θtiφi(b

t
i, ρ

t
i)
) ∏
j∈N(i)

mji(b
t
i)

p̃(bti, b
t
j |ρt) = exp

(
θtiφi(b

t
i, ρ

t
i)
)

exp
(
θtjφj(b

t
j , ρ

t
j)
)

exp
(
θti,jψi,j(b

t
i, b

t
j)
) ∏
ν∈N(j)\{i}

mνj(b
t
j)∏

o∈N(i)\{j}
moi(b

t
i)

8: Normalize:

p(bti|ρt) = ζ−1
2 p̃(bti|ρt), where ζ2 :=

∑
bti∈S

p̃(bti|ρt)

p(bti, b
t
j |ρt) = ζ−1

3 p̃(bti, b
t
j |ρt), where ζ3 :=

∑
bt
i
∈S p̃(b

t
i,b
t
j |ρt)

p(btj |ρt)

Table 2.1: A BP algorithm for computing {p(bti|ρt)} and {p(bti, btj |ρt)}.

well. Therefore, (3.2) makes use of the information in the entire input history. An instance

of price setting algorithm for step 3 will be discussed in Sec. 2.3.

Clearly, consumers’ charging decisions are correlated across time in practice. Compared

to stochastic approximation alternatives [31], the novel algorithm based on online convex

programming requires minimal assumptions on the structure of temporal correlation of

data (charging decisions). In addition, the framework accommodates strategic actions of

the consumers [44].
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2.2.3 Performance Analysis

The algorithm in Table 2.2 yields a regret bound that is sublinear in T , as described in the

following proposition.

Proposition 2.1 Let Ne := |E| denote the number of edges in E. If max{|θti |, |θti,j |} ≤ θ0

and |ρti| ≤ ρ0 for all t, i ∈ V , and (i, j) ∈ E, then for {θ̂t} obtained from the algorithm in

Table 2.2, it holds that

RT ≤ θ0

√
2(Mρ2

0 +Ne)T = O(
√
T ). (2.12)

Proof: See Appendix 2.6.2. Regarding practicality of the assumptions, it is natural

to assume that the prices are bounded. In addition, to account for consumers that do

not respond to price changes (corresponding to θti = ±∞), one can use a sufficiently large

bound for max{|θti |, |θti,j |} in practice. Thus, the conditions in Proposition 1 can be readily

satisfied.

2.2.4 Dynamic Logistic Regression Benchmark

If one neglects the spatial dependencies by setting θi,j = 0 for (i, j) ∈ E, the CRF model

reduces to M parallel logistic regression models; that is [cf. (2.1a)]

pθt(b
t|ρt) =

1

Z(ρt)
exp

(∑
i∈V

θtib
t
iρ
t
i

)
=

M∏
i=1

eθ
t
ib
t
iρ
t
i

1 + eθ
t
iρ
t
i

. (2.13)

To obtain online estimates of {θti}, the algorithm in Table 2.2 is again applicable, but the

gradient evaluation can be performed without using BP, simply as

∂`t

∂θti
=

ρtie
θtiρ

t
i

1 + eθ
t
iρ
t
i

− btiρti, i ∈ V. (2.14)

2.3 CRF-Based Real-Time Price Setting

So far, we have developed models and algorithms to capture consumers’ EV charging deci-

sions. Since the CRF model provides the probability distribution of the charging decisions
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1: Initialize θ̂1

2: For t = 1, 2, . . . do

3: Set prices ρt based on θ̂t.

4: Collect EV charging decisions bt.

5: Compute ∇`t(θ̂t) using BP.

6: Update θ̂t+1 = θ̂t − µt∇`t(θ̂t)

7: Next t

Table 2.2: Overall online algorithm.

given the prices, one can now formulate a risk-limiting stochastic optimization problem to

tailor the EV charging demand in some desirable fashion. Here, a price setting formulation

for maximizing the utility’s net profit is considered, where the profit equals the revenue

collected from customers minus power generation cost.

Let PEV denote the charging rate for a single EV, and ηti represent the aggregate base

load of household i at time t. Then,

dttot :=

M∑
i=1

(PEV b
t
i + ηti) (2.15)

uttot :=
M∑
i=1

ρti(PEV b
t
i + ηti) (2.16)

correspond to the total demand and payment due to M consumers at time t, respectively.

The generation cost is modeled as quadratic in total power P as αP 2+βP+γ, where α, β

and γ are constants. Then, the problem of interest is to maximize the expected net profit

while the chance of the total load exceeding certain threshold is smaller than a specified

risk level. Formally, this corresponds to

(P1) max
0�ρt�ρ̄

E{uttot − [α(dttot)
2

+ βdttot + γ]|ρt} (2.17a)

subject to Pr{dttot > Pmax|ρt} ≤ ε (2.17b)

where the expectation is with respect to pθ̂t(b
t|ρt) and ρ̄ is the vector of maximum allowable

prices. Eq. (2.17b) ensures that the probability of aggregate load exceeding Pmax is less than
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ε. The expectation in (2.17a) can be evaluated as

U t(ρt) := E{uttot − [α(dttot)
2

+ βdttot + γ]|ρt}

=
M∑
i=1

ρtiPEV − α
P 2

EV + 2PEV

M∑
j=1

ηtj

− βPEV
 pθ̂t(bti = 1|ρt)

− α
M∑
i=1

M∑
j=1
j 6=i

P 2
EV pθ̂t(b

t
i = 1, btj = 1|ρt) +

M∑
i=1

(ρti − β)ηti − α

(
M∑
i=1

ηti

)2

− γ (2.18)

using the marginal probabilities pθ̂t(b
t
i = 1|ρt) and pθ̂t(b

t
i = 1, btj = 1|ρt) obtained from the

BP algorithm.

In order to obtain a tractable closed-form approximation of the risk constraint (2.17b),

the central limit theorem is invoked, which holds for a sum of dependent random variables

under appropriate mixing conditions [7,9,41]. Specifically, dttot is approximated as Gaussian-

distributed with mean and variance given as

µ̄t(M) := E{dttot|ρt} =
M∑
i=1

[
pˆθ

t(bti = 1|ρt)PEV + ηti

]
(2.19)

(
σt(M)

)2
:= var{dttot|ρt}

= P 2
EV

M∑
i=1

pˆθ
t(bti = 1|ρt) +

M∑
j=1
j 6=i

pˆθ
t(bti = 1, btj = 1|ρt)−

M∑
j=1

pˆθ
t(bti = 1|ρt)pˆθ

t(btj = 1|ρt)


(2.20)

respectively. Based on this approximation, one can replace (2.17b) with

µ̄t(M)− Pmax + σt(M)Q−1(ε) ≤ 0 (2.21)

where Q(·) is the standard Gaussian tail function. Thus, the optimization problem to solve

is

(P2) max
0�ρt�ρ̄

U t(ρt) subject to (2.21). (2.22)

Since the conditional marginals are log-concave with respect to ρt [3], (P2) is not convex

in general. In the next section, locally optimal solutions to (P2) are sought using the

“fmincon” function in the MATLAB package.
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Figure 2.1: Spatial dependency graph for the simulated test.

2.4 Numerical Tests

The performance of the proposed algorithm was verified via numerical tests. Both fully

simulated data and semi-real data were utilized.

2.4.1 Simulated Data

A set of 13 EV owners was considered, whose spatial dependencies were captured by graph

G in Fig. 2.1. Given the true CRF parameters θ∗t, the charging decisions bt were the

samples from the CRF model in (2.1a)–(2.3), with ρt chosen as explained next. The values

of θ∗t were changed occasionally but otherwise were kept fixed over time; see Fig. 2.2(a),

which depicts θ∗t. To test the tracking performance of the proposed method, three simple

strategies for selecting ρt independent of estimated parameters are considered here: s1)

constant prices; s2) time-of-use (ToU) prices; and s3) random prices. For the constant

pricing setup, ρti was set to 1 for all consumers and held constant across time. For ToU

pricing, the following was used:

ρti =



$0.508, 7am-2pm

$0.880, 2pm-8pm

$0.722, 8pm-11pm

$0.508, 11pm-7am

∀i ∈ V. (2.23)

In random pricing, the prices were randomly selected from a uniform distribution over [0, 1].

Prices were updated every 12 minutes, which corresponds to the duration of one time slot.
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Figure 2.2: True and estimated model parameters θt.

A step size µt = 0.72 was used. Fig. 2.2 shows true and estimated parameters for the

different pricing strategies. It can be seen that the parameters are tracked approximately.

Fig. 2.3 depicts the squared prediction error of the parameters, averaged over M +Ne =

25 parameters. For all price setting mechanisms, the errors tend to decrease as iterations

progress, while sharp changes in the prediction error result whenever the parameter values

are changed abruptly.

A comparison of pθ̂t(b
t
revealed|ρt) with pθ∗t(b

t
revealed|ρt) per iteration is shown in Fig. 2.4.

It can be seen that the joint probability of the charging decisions is tracked very well.

Once the joint probabilities p(bt|ρt) have been estimated, the expected value of the total

load can be readily found as P̄ ttot := PEV
∑M

i=1 pθ̂t(b
t
i = 1|ρt). The predicted total loads are

depicted in Fig. 2.5, where the CRF-based estimates and the logistic regression-based ones

are plotted together for comparison. The CRF-based algorithm achieves the performance

gain by incorporating spatial dependencies.
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Figure 2.3: Average squared prediction error for CRF parameters.
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Figure 2.4: Joint probability of consumer charging decisions.
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Figure 2.6: Charging demand of 25 households [16].

2.4.2 Semi-real Data

To validate the proposed methods in a more realistic setting, the experimental data of

charging demand collected from 25 Northern California households in [16] were used in the

tests. The project ran from August 2008 to April 2010, and the collected data have been

aggregated to a single summary week. The charging power flow of EV, was assumed to

be PEV = 1.4 kW in all the experiments. Fig. 2.6 depicts the daily total demand data

collected every 10 minutes with the price held equal at all times and for all consumers; that

is, ρti = 1, ∀i, t. The three curves in Fig. 2.6 correspond to the highest demand dtmax at each

time t, the lowest demand dtmin, and their average

d̄ttot :=
dtmax + dtmin

2
. (2.24)

To evaluate the proposed model, data that capture consumers’ charging behaviors in

response to price changes are necessary. For this, a reasonable consumer behavioral model

is concocted as delineated next, which is then fitted such that when the prices are held fixed

at ρti = 1, the total demand curves as shown in Fig. 2.6 are obtained.
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Figure 2.7: Spatial dependency graph for semi-real data.

Consumer behavior model

A simple consumer behavior model is adopted, where consumer i charges when the price ρti

is less than some threshold τ ti . That is, bti is modeled as

bti =


1, if ρti < τ ti

0, otherwise

(2.25)

for i ∈ V and t = 1, 2, . . .. Note that τ ti < 0 can model the case where the EV i is fully

charged.

Let τ t := [τ t1, . . . , τ
t
M ] and P ttot := PEV

∑M
i=1 b

t
i. In order to capture the spatial depen-

dency of charging behaviors, τ t is sampled from a Gaussian distribution with mean µt and

covariance Σt, where Σt encodes the dependency graph G shown in Fig. 2.7, via

[Σt]ij =


rtij , if (i, j) ∈ E

rtii, if i = j

0, otherwise

(2.26)
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Figure 2.8: Real and simulated total charging demands.

with rtij > 0 for i, j ∈ V . Using again the central limit theorem for dependent random

variables, P ttot can be approximated to follow a Gaussian distribution with mean µtS and

variance (σtS)2. To fit the model to the real data when ρti = 1 for all i, t, the positive

definiteness of Σt as well as the following relations are used to determine parameters {rtij}:

µtS = d̄ttot (2.27)

σtS =
dtmax − dtmin

4
. (2.28)

Fig. 2.8 shows the result of the fitting. The dotted curve shows the total charging

demand obtained through the model in (2.25)–(2.26) averaged over 28 realizations, and the

solid curve represents d̄ttot due to the real data. It can be seen that real charging demand

matches well with the value obtained from the proposed behavior model.

Online model parameter learning

The performance of the proposed online learning algorithm was tested using the semi-real

data. Fig. 2.9 shows the average predicted total charging demands P̄ ttot (averaged over 28

realizations) using the CRF and logistic regression models, based on the input generated

from the model in (2.25)–(2.26) under constant pricing. The model parameters {θt} were

tracked using the algorithm in Table 2.2. It can be seen that the prediction is very accurate
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Figure 2.9: Predicted average total charging demands.

when the CRF model is used. However, similar to the case of simulated data, the logistic

regression model produces predictions that are quite off from the true values. Note that

the initial performance degradation seen in the CRF curve is due to the transient effect in

tracking, which depends on the initial value of θt.

Real-time pricing

Finally, the real-time price setting formulation discussed in Sec. 2.3 is tested. Here, ε = 0.001

and Pmax was set to 5 kW, and ρ̄ = [2, 2, . . . , 2] was used. The case of zero base load was

considered; i.e. ηti = 0 for all i and t. The generator parameters were chosen to be α = 0.15,

β = 0.4 and γ = 0. In addition to the most general price setting formulation (P2), a special

case of setting the prices equal to all consumers was also considered. That is,

ρ1 = ρ2 = · · · = ρtM = ρt (2.29)

was enforced in (P2) at each time t. Fig. 2.10 depicts the net profit and the total EV charging

load under real-time pricing. The dash-dot curve in Fig. 2.10(a) is the net profit obtained

from model (2.25) when prices are set through (P2), and the dashed curve corresponds to

the case of equal pricing under (2.29). For comparison, the net profit under fixed pricing at

ρti = 1 for all i and t as in the real data is also plotted in the solid curve. From Fig. 2.10(a), it
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Figure 2.10: Net profit and total charging demand under real-time pricing.
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Figure 2.11: Real-time prices.

can be observed that the profit is generally much improved by employing real-time pricing,

compared to the curve for which fixed pricing was used. However, since the tracking is

not perfect, and the solutions to (P2) may suffer from local optima, the profit does not

always stay at the optimum. The load curve in Fig. 2.10(b) clearly shows that the demand

is flattened by real-time pricing, as the economically favorable operating point is tracked.

Interestingly, it is noted that adopting identical prices across customers incurs almost no

performance loss.

Fig. 2.11 depicts {ρ∗ti } for the individual customers i ∈ V from solving (P2) in the solid

curves, as well as ρt from (P2) with the additional constraint (2.29) in the thick dashed

curve. Neglecting the initial transient, it can be seen that the prices increase at high demand

and decrease at low demand as expected.

2.5 Conclusions

An algorithm to track the elasticity of individual EV charging loads was developed. Such in-

formation is essential for setting the electricity prices in real time to coordinate EV charging.

The probabilities with which individual EV consumers charge their vehicles when presented
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with real-time prices were obtained based on a CRF model, in which the spatial dependency

of the customers’ behavior was captured. Without explicit models for temporal dynamics,

an online learning algorithm to estimate the CRF parameters was derived in the framework

of OCO. The CRF model was then applied as an input to an stochastic profit maximiza-

tion problem for real-time price setting. The performance of the proposed algorithms was

corroborated using simulated and semi-real data.



2.6 Appendices 33

2.6 Appendices

2.6.1 Derivation of (2.8) and (2.9)

Differentiating the − log of the pdf in (2.1) yields

∂`t

∂θti
=
∂ logZ(ρt)

∂θti
− btiρti, ∀i ∈ V

∂`t

∂θti,j
=
∂ logZ(ρt)

∂θti,j
− btibtj , ∀(i, j) ∈ E

where after substituting Z(ρt) from (2.1b), it follows

∂ logZ(ρt)

∂θti
=

1

Z(ρt)

∑
bt

btiρ
t
i exp

 N∑
i=1

θtib
t
iρ
t
i +

∑
i,j∈E

θti,jb
t
ib
t
j


= E{btiρti|ρt}, ∀i ∈ V

∂ logZ(ρt)

∂θti,j
=

1

Z(ρt)

∑
bt

btib
t
j exp

 N∑
i=1

θtib
t
ib
t
j +

∑
i,j∈E

θti,jb
t
iρ
t
i


= E{btibtj |ρt}, ∀(i, j) ∈ E

thus completing the proof.

2.6.2 Proof of Proposition 2.1

The regret of online gradient descent algorithm for convex loss function, `t(θt), is bounded

by [44]

RT (θ) :=
T∑
t=1

`t(θt)−
T∑
t=1

`t(θ) ≤ 1

2µt
‖θ‖2 + µt

T∑
t=1

‖∇`t‖2. (2.30)

Since bti ∈ {0, 1}, 0 ≤ pθt(b
t
i = 1|ρt) ≤ 1, and 0 ≤ pθt(b

t
i = 1, btj = 1|ρt) ≤ 1, it follows from

(2.9) and (2.8) that the gradients are bounded as

−ρti ≤
∂`t

∂θti
≤ ρti ∀i ∈ V (2.31a)

−1 ≤ ∂`t

∂θti,j
≤ 1 ∀(i, j) ∈ E. (2.31b)
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Upon assuming that the price is bounded, i.e., |ρti| ≤ ρ0 for all t, i ∈ V , it follows that

‖ρt‖2 ≤ Mρ2
0. Letting Ne := |E| denote the number of edges in E, it then holds that

‖∇`t‖2 ≤Mρ2
0 +Ne. If max{|θti |, |θti,j |} ≤ θ0 and we further choose µt = θ0√

(2(Mρ20+Ne)T
, the

regret boils down to

RT ≤ θ0

√
2(Mρ2

0 +Ne)T = O(
√
T ). (2.32)
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Chapter 3

Online Learning of EV Consumers’

Charging Behavior with Missing

Data

This chapter adopts a conditional random field model to capture the dependency of EV

consumers’ charging decisions [51]. It is assumed that even incomplete charging decisions

of consumers which belong to an associated set of binary decisions (e.g., “charging” or

“not charging”) are sequentially observed by the utility company. At each time step, the

observed charging decisions may include misses, where the number and locations of the

misses may change over time. Then, an online learning algorithm in the OCO framework is

developed to infer missing data and subsequently estimate the relevant model parameters,

which allows for strategic behavior of consumers [44]. The material in this chapter draws

from [47].

3.1 Problem Statement

Consider N EV consumers in the distribution network. Suppose that any two consumers are

connected with an edge if they are geographically adjacent, thus forming the graph G(V,E),

where V and E represent the set of vertices and edges, respectively. It is further assumed
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that the consumers are equipped with smart meters so that they can communicate with the

utility company and thus respond to price variations. Let S ,{0, 1}, with {bti ∈ S, i ∈ V }

indicating the charging behavior of EV consumer i at time t, i.e., bti = 1 if the consumer is

charging, and zero otherwise. Suppose that the time horizon consists of T slots, where T is

a finite positive integer. At the beginning of time slot t ∈ {1, 2, ..., T}, the utility announces

a price ρti for consumer i over time slot [t, t+ 1).

Motivated by the CRF model pdf involved with logistic regression, we adopt a scalar

function φi(b
t
i, ρ

t
i) = btiρ

t
i. Furthermore, inspired by the Ising model for modeling depen-

dencies of binary random variables, we choose ψi,j(b
t
i, b

t
j) = btib

t
j [57].

With θt , [θti , i ∈ V ; θti,j , (i, j) ∈ E], αt , {ρtiθti}i∈V , Φt , {θti,j}i∈V,j∈V , (2.1a) can be

rewritten as

pθt(b
t|ρt) =

eα
tTbt+bt

T
Φtbt

Z(ρt,θt)
. (3.1)

It is assumed that there are no self-loops (self-dependency) in the graph, which corresponds

to setting the diagonal elements of Φt to zero. The problem of interest is to estimate

the probability with which each consumer i ∈ V will charge his EV at time t + 1 paying

price {ρt+1
i }, given past prices {ρτi , i ∈ V, τ = 1, . . . , t}, and partially observed correspond-

ing charging behavior {bτi , i ∈ Oτ , τ = 1, . . . , t}, where Oτ denotes the set of consumers

with observed charging decisions. Similarly, let Mτ represent the set of consumers whose

charging decisions are missing.

3.2 Dynamic Learning of CRF with Misses using OCO

It was shown in Chapter 2 that when all bt are known, then an estimate of θt+1 is simply

obtained by

θ̂t+1 = θ̂t − µt∇`t(θ̂t). (3.2)

However, if some of bt are unknown, then bt consists of bto = {bto ∈ S, o ∈ Ot}, and

btm = {btm ∈ S, m ∈ Mt}, where bto and btm denote the observed and missing charging
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decisions of consumers, respectively. Then, `t(θt) cannot be evaluated since it depends on

missing data.

An approach to dealing with misses is based on past data to obtain an estimate of btm.

To this end, an online approach for estimation and prediction of btm and θt+1, is proposed

which is briefed next.

3.2.1 Online Learning with Sequential Estimation of Missing Data

This section addresses online missing data estimation and CRF parameter learning. The

number and locations of the missing data are allowed to be time varying. Acquiring the

predicted θ̂t from time t− 1, ρt, and bto, the problem of estimating btm is

b̂tm = arg max
u∈{0,1}|M

t|
log pθ̂t(b

t
o,u|ρt, θ̂t). (3.3)

Upon defining ˆ̀t := − log pθt(b
t
o, b̂

t
m|ρt), the vector θ̂t+1 is obtained from

θ̂t+1 = θ̂t − µt∇ˆ̀t(θ̂t). (3.4)

With Pt denoting an orthonormal permutation matrix (or any permutation operator), for

which [bto,b
t
m]T = Ptbt, the charging data can be sorted as observed and missed. Accord-

ingly, define

αtP := Ptαt

b̂P := Ptb̂t−1

Φt
P := PtΦtPtT (3.5)

where b̂t−1 is the vector of consumers’ charging behavior at time t − 1, including the

estimated misses. Then, bt
T
Φtbt in (3.1) can be substituted by [bto,b

t
m]Φt

P [bto,b
t
m]T .

Assuming that Φt is symmetric,1 it can be easily shown that Φt
P preserves symmetry.

Then (3.3) can be equivalently written as

b̂tm = arg max
u∈{0,1}|Mt|

αtm
T
u + 2bto

T
Φt
omu + uTΦt

mmu (3.6)

1Even if not symmetric, one can symmetrize it by substituting the matrix Φt entries by θ́i,j =

(θi,j + θj,i)/2, ∀i, j ∈ V.
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where using MATLAB notations, Φt
om, Φt

mm, αtm, and u∗m are given by

Φt
om := Φt

P (1 : |O|, N − |O|+ 1 : N) (3.7)

Φt
mm := Φt

P (N − |O|+ 1 : N,N − |O|+ 1 : N) (3.8)

u∗m := b̂P (N − |O|+ 1 : N) (3.9)

αtm := αtP (N − |O|+ 1 : N). (3.10)

The optimization in (3.6) is an integer programming problem and in general non-convex,

as the entries of u are constrained to be binary. A common approach to avoid the hurdle of

binary assignment is to relax the constraint u ∈ {0, 1}|M
t| with 0 � u � 1, where the vector

inequality is element-wise. However, under the assumption that there are no self-loops in

the graph, the diagonal elements of Φt are zero and Φt(similarly, Φt
mm) is in general non-

positive definite. Therefore, due to the quadratic term in (3.6), the overall optimization

problem with relaxed constraint is still non-convex. To tackle this non-convexity, we resort

to an approximation of the quadratic function.

The second-order Taylor approximation of the quadratic function, uTΦt
mmu, at any

point in its domain, e.g., b̄, is obtained from

uTΦt
mmu u b̄TΦt

mmb̄ + 2〈u− b̄,Φt
mmb̄〉+ (u− b̄)

T
Φt
mm(u− b̄) (3.11)

From (3.11), it can be easily shown that uTΦt
mmu can be lower-bounded by

uTΦt
mmu ≥ b̄TΦt

mmb̄ + 2〈u− b̄,Φt
mmb̄〉 − γ‖u− b̄‖2 (3.12)

where γ := max{|λmin(Φt
mm)|, |λmax(Φt

mm)|}, and λmin(Φt
mm) and λmax(Φt

mm) are the small-

est and largest eigenvalues of Φt
mm, respectively.

Employing the lowerbound in (3.12) and relaxing the constraint u ∈ {0, 1}|M
t

with

0 � u � 1, estimates of the misses follows

b̂tm = arg max
0�u�1

αtm
T
u + 2bto

T
Φt
omu + 2uTΦt

mmb̄− γ‖u− b̄‖2. (3.13)

Then, a closed-form solution of u can be obtained as

[û]i = [ti]
1
0, i ∈Mt (3.14)



3.3 Expectation-maximization Benchmark 39

1: Initialize α0 = 0, Φ0 = 0× I, b0 = 1N×1

2: For t=1,2,... do

3: Acquire ρt and bt and find the locations of misses in bt

4: Based on step 3, form the permutation matrix Pt

5: Find Φt
om, Φt

mm, u∗m, and αtm using (3.7)-(3.10)

6: b̄ = u∗m

7: Obtain b̂tm from (3.14) and evaluate ∇ˆ̀t(θ̂t)

8: Update θ̂t+1 = θ̂t − µt∇ˆ̀t(θ̂t)

Table 3.1: Overall algorithm.

where

ti :=

[
0.5αtm + Φt

om
T
bto + Φt

mmb̄ + γb̄

γ

]
i

, i ∈Mt (3.15)

and [u]ba , min{max{u, a}, b}. Using b̂tm from (3.14), θ̂t+1 can then be obtained by (3.4).

The overall algorithm based on the approximation of the quadratic term is given in

Table 5.1.

3.3 Expectation-maximization Benchmark

When estimates of the misses are not available, the marginal distribution of the observed

data can be obtained by simply discarding the missing data. Therefore, analogous to the

case with complete data, θ̂t+1 can be estimated using (3.2) except that the loss function `t

is replaced by

`tpartial(θ
t) := − log pθt(b

t
o|ρt) (3.16)

where pθt(b
t
o|ρt) =

∑
btm

pθt(b
t
o,b

t
m|ρt). One can rewrite `tpartial(θ

t) as
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`tpartial(θ
t) =− log

∑
btm

pθt(b
t
o,b

t
m|ρt)

p
θ̂t

(btm|ρt,bto)
p
θ̂t

(btm|ρt,bto)

= −Ep
θ̂t

(btm|ρt,bto){log
∑
btm

pθt(b
t
o,b

t
m|ρt)

p
θ̂t

(btm|ρt,bto)
}. (3.17)

Upon invoking Jensen’s inequality a lower bound of the marginal log-likelihood, can be

obtained as

log
∑
btm

pθt(b
t
o,b

t
m|ρt)

p
θ̂t

(btm|ρt,bto)
p
θ̂t

(btm|ρt,bto)

≥
∑
btm

[log pθt(b
t
o,b

t
m|ρt)− log pθ̂t(b

t
m|ρt,bto)]pθ̂t(b

t
m|ρt,bto). (3.18)

It can be seen that the term log pθ̂t(b
t
m|ρt,bto)pθ̂t(b

t
m|ρt,bto) can be evaluated at θ̂t and is

not involved in θt estimation. Then, the prediction of θt+1, boils down to an expectation

maximization (EM) step with the following loss function and gradient

`tEM (θt) := −
∑
btm

log pθt(b
t
o,b

t
m|ρt)pθ̂t(b

t
m|ρt,bto) (3.19a)

∇`tEM (θt) = −
∑
btm

∇ log pθt(b
t
o,b

t
m|ρt)pθ̂t(b

t
m|ρt,bto). (3.19b)

Intuitively, EM first fills in the misses with probability pθ̂t(b
t
m|ρt,bto), and then applies an

online learning algorithm to filled-in data.

It is worth noting that in addition to the computational complexity of evaluating

pθt(b
t
m|ρt,bto), the summation required to incorporate all possible values for the misses

in the parameter estimation renders EM algorithm computationally expensive, especially

when the number of misses and the dimension of the problem increases.

3.4 Numerical Tests

3.4.1 Synthetic Data

The performance of the proposed algorithm was verified via numerical tests. A set of 10 EV

owners was considered, whose spatial dependencies were captured by the graph G shown in
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Figure 3.1: Spatial dependency graph for synthetic data.

Fig. 3.1. The set of consumers whose charging decisions was not collected, namely,Mt, was

uniformly sampled from V . The price ρt was set to 1 for all consumers and held constant.

It is assumed that θt changes at t = 110 and t = 220, and remains fixed for the rest of

iterations.

Fig. 3.2 depicts the normalized prediction error of the parameters of the pdf in (3.1),

averaged over 20 realizations. It is observed that when 70% of data are missing, with the

proposed online algorithm, the errors tend to decrease as iterations progress, while sharp

increases in the prediction error result whenever the parameter values are changed abruptly.

Similar trend can be seen when 30% of the data are missing. However, as expected the case

with 30% misses has a small gap with the error obtained with full data case, while the gap

is larger when there are 70% misses. It can be also seen that the EM-based online algorithm

exhibits performance similar to proposed algorithm when only 30% of data are missing, but

incurs more errors than the proposed one when the number of misses increases. In addition,

the EM-based online algorithm does not track the abrupt parameter changes, adequately.

The expected value of the total charging load is given by

P ttot := PEV

N∑
i=1

pθ̂t(b
t
i = 1|ρt) (3.20)

where PEV = 1kW is the load due to charging of a single EV. The predicted total charging

loads are depicted in Fig. 3.3, where the proposed and EM-based algorithms are plotted

together for comparison purposes. It can be seen that both EM and the proposed algorithm

track the true total consumption when 30% of data are missing. However, with 70% misses

the proposed algorithm outperforms the EM-based algorithm.
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Figure 3.2: Normalized prediction error.
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Figure 3.3: Total charging load
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Figure 3.4: Total charging demand with missing data

3.4.2 Semi-real Data

The experimental data of total home charging power demand for 25 Northern California

households as shown in Figures 2.6 and 2.8 is used. As explained in Chapter 2, the con-

sumers’ decisions at each time are sampled from

bti =


1, if ρti < τ ti

0, otherwise

∀i ∈ V. (3.21)

It is assumed that PEV = 1.4 and the set of consumers whose charging decisions was not

collected, namely, Mt is uniformly sampled from V . Fig. 3.4 depicts the total estimated

charging of consumers when there are misses in the consumers’ charging decisions. It can

be seen that the predicted demand using the CRF-based model with no misses fits well the

true charging demand. It is further observed that the proposed algorithm with the misses

being replaced by their estimates, tracks well the true demand, while the gap between the

predicted demand with 20% misses and the true demand is small. However, the gap grows

as the number of misses increases, as expected.

In Fig. 3.5 the solid line depicts the predicted total charging demand obtained by the

proposed algorithm when the number of misses changes, while the dashed line and the
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Figure 3.5: Total charging demand with a change in the number of misses

dotted dash line represent the predicted total charging demand with the number of misses

fixed at 60% and 20%, respectively. It can be seen that when the number of misses changes,

the predicted total charging demand tracks the changes in the missing data and touches

the right curve.

3.5 Conclusions

The problem of learning the consumers’ charging behavior with missing data was considered.

A CRF-based model for capturing the probabilities with which individual EV consumers

charge their vehicles was introduced. The collected charging data from individual customers

were allowed to include misses, which is natural to expect in the charging data collected

from the network of consumers. Then, instead of neglecting the misses or filling them with

all possible values, an estimate of the misses was first obtained. Incorporating the estimates

and without explicit models for the temporal dynamics of consumption behavior, an online

algorithm for learning the consumers dependency network parameters and elasticity was

developed. The performance of the proposed algorithm was verified by numerical tests

using synthetic and semi-real data.
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Chapter 4

Resource Allocation for OFDMA

CR under Channel Uncertainty in

uplink

This chapter addresses the RA task for OFDMA uplink CRs with uncertain CR-to-PU

channels. A weighted sum-rate maximization problem is formulated under a probabilistic

interference constraint and maximum transmit-power constraints for the CR users. The

Bernstein method is adopted to approximate the probabilistic constraint by a convex con-

straint. Even after the approximation, the overall problem is still nonconvex due to the

combinatorial assignment of users to each subcarrier. By employing appropriate bounds,

the approximation emerging from the interference constraint can be further made separable

across subcarriers. This opens the door to the dual decomposition approach, which leads

to a near-optimal and computationally efficient solution [35]. The material in this chapter

draws from [48], [49].

4.1 Modeling and Problem Statement

Consider the uplink mode of a network comprising K CR users communicating with their

BS using OFDMA over N subcarriers. The instantaneous channel gain g̃
(n)
k between CR
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user k ∈ K , {1, 2, . . . ,K} and the CR BS on subcarrier n ∈ N , {1, 2, . . . , N} is assumed

to be acquired accurately via conventional channel estimation techniques. It is further

assumed that during the spectrum sensing phase, the presence of an active PU has been

detected. It is straightforward to handle multiple PUs in the framework to be proposed. In

order to limit the interference inflicted to the PU, the channels from the CR users to the

PU must be known. Let g
(n)
k denote the channel gain from the k-th CR to the PU receiver

on subcarrier n. Due to lack of cooperation from the PU system, it is difficult to estimate

g
(n)
k precisely. To capture this uncertainty, g

(n)
k is modeled as a random variable.

A relevant RA problem is to maximize the weighted sum of all CR throughputs under

the transmit-power constraints (one per CR), and the PU interference constraint. Let p(n)

denote the transmit-power loaded on subcarrier n, where 0 ≤ p(n) ≤ P (n)
max. Let p and Pmax

be the vectorized versions of {p(n)} and {P (n)
max}, respectively. Also, let k(n) ∈ K represent

the index of the user served on subcarrier n, and define k , [k(1), . . . , k(N)]T . With wk

denoting the positive weight for user k ∈ K, the following chance-constrained optimization

problem is of interest.

(P1) max
0�p�Pmax,k∈KN

∑
n∈N

wk(n) log
(

1 + g̃
(n)
k(n)p

(n)
)

(4.1)

subject to
∑

n∈N :k(n)=k

p(n) ≤ Pk,max, k ∈ K (4.2)

Pr

{∑
n∈N

g
(n)
k(n)p

(n) < Imax

}
≥ 1− ε (4.3)

where (5.6) is the per-CR power constraint, and (4.3) enforces that the interference power

at the PU stays below Imax with probability no less than 1− ε with ε ∈ (0, 1) denoting the

desired upper-bound on the probability that the interference threshold is exceeded. In case

of more than one PUs present, multiple PU protection constraints analogous to (4.3) can

be imposed. The widely accepted constraint is to control the “interference temperature”

such that the interference experienced by the PU system is below a certain threshold on

the order of the background noise and interference.

The feasible set of (4.3) can be either convex or nonconvex, depending on the distribution

of g
(n)
k [37]. For example, Pr

{
aTu < b

}
≥ 1 − ε is convex for ε < 1/2, if [aT bT ]T has a
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symmetric logarithmically concave density [37]. However, even if (4.3) is convex, it may

not be straightforward to express it in closed form, rendering the optimization problem

intractable. Moreover, the overall problem would be still nonconvex due to the combinatorial

search over k needed for the subcarrier assignment to CR users.

In the following, a convex approximation of (4.3) is advocated. In particular, the ap-

proximation is made conservative in the sense that the approximate constraint implies the

original constraint (4.3). This will be achieved by using the Bernstein method [5, 37]. By

judiciously choosing the form of the approximation, one can also ensure that the approxi-

mate constraint is separable in n. Then, an efficient near-optimal solution will be obtained

via dual decomposition [12,35].

4.2 Approximation of Chance Constraints

4.2.1 Bernstein Approximation

A useful class of approximation techniques for chance constraints known as Bernstein ap-

proximations is briefly reviewed in the present context [5,37]. Consider a chance constraint

of the form

Pr

{
f0(p) +

N∑
n=1

ζnfn(p) < 0

}
≥ 1− ε (4.4)

where p is a deterministic parameter vector, and {ζn} are random variables with marginal

distributions denoted as {πn}. Suppose that one desires to meet this constraint for a given

family of {ζn} distributions, under the following assumptions.

as1) {fn(p)} are affine in p for n = 0, 1, . . . , N ;

as2) {ζn} are independent of each other; and

as3) {πn} have a common bounded support of [−1, 1]; that is, −1 ≤ ζn ≤ 1 for all n =

1, . . . , N .
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Under these assumptions, the following constraint constitutes a conservative substitute and

thus implies (4.4)

inf
ρ>0

[
f0(p) + ρ

N∑
n=1

Ωn

(
ρ−1fn(p)

)
+ ρ log

(
1

ε

)]
≤ 0 (4.5)

where Ωn(y) , max
πn

log
(∫

exp(xy)dπn(x)
)
. Moreover, it is guaranteed that (4.5) is con-

vex [5, 37]. The approximation is useful when {Ωn(y)} can be evaluated efficiently. In

general, one can consider an upper-bound for Ωn(y) given by

Ωn(y) ≤ max{µ−n y, µ+
n y}+

σ2
n

2
y2, n = 1, . . . , N (4.6)

where µ−n , µ+
n with −1 ≤ µ−n ≤ µ+

n ≤ 1 and σn ≥ 0 are constants that depend on the

given families of probability distributions. Some examples are given in [5, Table 1], where

the useful prior knowledge includes the support, unimodality (with respect to the center

of the support), and symmetry of the distribution, as well as the ranges of the first- and

the second-order moments. Using more prior knowledge leads to tighter approximation.

Replacing Ωn(·) in (4.5) with this upper-bound, and invoking the arithmetic-geometric

inequality, yields

f0(p) +
N∑
n=1

max{µ−n fn(p), µ+
n fn(p)}+

√
2 log

1

ε

(
N∑
n=1

σ2
nfn(p)2

) 1
2

≤ 0 (4.7)

as a convex conservative surrogate for (4.4).

Suppose now that the distributions of g
(n)
k have bounded supports [a

(n)
k , b

(n)
k ].1 The

case with unbounded supports will be treated in Sec. 4.2.2. Introduce constants α
(n)
k ,

1
2(b

(n)
k − a

(n)
k ) 6= 0 and β

(n)
k , 1

2(b
(n)
k + a

(n)
k ) to normalize the supports to [−1, 1] per as3);

that is,

ζ
(n)
k ,

g
(n)
k − β(n)

k

α
(n)
k

∈ [−1, 1]. (4.8)

Then, letting f0(p) = −Imax +
∑N

n=1 β
(n)
k(n)p

(n) and fn(p) = α
(n)
k(n)p

(n) for n ∈ N , it follows

that (4.4) is equivalent to (4.3). Thus, substituting these into (4.7), and noting that p(n) ≥ 0,

1In practice, the channel estimation techniques often yield not only the channel gain estimates, but also

the associated confidence interval, from which one can effectively bound the channel gains.
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one obtains

− Imax +
N∑
n=1

β
(n)
k(n)p

(n) +
N∑
n=1

µ
(n)+
k(n) α

(n)
k(n)p

(n) +

√
2 log

1

ε

(
N∑
n=1

(σ
(n)
k(n)α

(n)
k(n)p

(n))
2

) 1
2

≤ 0.

(4.9)

The overall RA problem corresponding to (P1) with (4.3) replaced by (4.9) is still

nonconvex due to the combinatorial search for the optimal k over KN , which is a nonconvex

set. In fact, as the variables p(n) are coupled nonlinearly through the last term in (4.9),

the search complexity grows rapidly as N increases. To mitigate these issues, we consider

adopting the dual decomposition method, which is applicable when the problem has a

separable structure; that is, after relaxing coupling constraints through Lagrange relaxation,

the problem must decompose into subproblems that can be solved independently. To bring

about such a separable structure, we further approximate (4.9) by noting that the last

term in (4.9) involves the `2-norm of the vector [σ
(1)
k(1)α

(1)
k(1)p

(1), . . . , σ
(N)
k(N)α

(N)
k(N)p

(N)], and

that ‖x‖2 ≤
√
N‖x‖∞ for any x ∈ RN . Thus, the constraint becomes

N∑
n=1

γ
(n)
k(n)p

(n) +

√
2N log

1

ε
max
n∈N

σ
(n)
k(n)α

(n)
k(n)p

(n) ≤ Imax (4.10)

where γ
(n)
k(n) , µ

(n)+
k(n) α

(n)
k(n) + β

(n)
k(n).

Alternatively, one can appeal to the fact that ‖x‖2 ≤ ‖x‖1 to obtain yet another sub-

stitute for (4.3) as

N∑
n=1

γ
(n)
k(n)p

(n) +

√
2 log

1

ε

N∑
n=1

|σ(n)
k(n)α

(n)
k(n)p

(n)| ≤ Imax. (4.11)

Both (4.10) and (4.11) are amenable to dual decomposition, as will be discussed in Sec. 5.3.

In the sequel, (P1) with (4.3) replaced by (4.9), (4.10) and (4.11) will be referred to as the

`2-, `∞-, and `1-approximate problems, respectively.

Even when the channel distribution is known, if the corresponding chance constraint is

nonconvex or hard to express analytically, it may be reasonable to apply Bernstein approxi-

mation for tractability, as long as conditions as1)–as3) are met, which include boundedness

of the support of the distribution. The case of distributions with an unbounded support is

discussed next.
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4.2.2 Extensions to Channels with Unbounded Support

In the preceding discussion, Bernstein approximations were applied to bounded channel

gains. While this may be reasonable considering the finite dynamic ranges of the A/D

converters in the radios, presuming too large a range for the uncertain parameters might

lead to a very loose approximation of the chance constraint. An alternative approach is

developed here when the channel distributions are known (as opposed to the preceding case

where the family of possible distributions was assumed to be known.)

Upon defining I ,
∑

n g
(n)
k(n)p

(n), it is possible to express Pr {I < Imax} in (4.3) as

Pr {I < Imax|a ≤ g ≤ b}Pr {a ≤ g ≤ b}

+ Pr {I < Imax|g < a or g > b}Pr {g < a or g > b} (4.12)

where g , [g
(1)
k(1), ..., g

(N)
k(N)]

T , a , [a
(1)
k(1), ..., a

(N)
k(N)]

T and b , [b
(1)
k(1), ..., b

(N)
k(N)]

T are appropriate

constants determined such that

δ , Pr {a ≤ g ≤ b} ∈ (1− ε, 1). (4.13)

Then, noting that the second term in (4.12) is no larger than (1 − δ), and thus neglecting

this term, (4.3) can be approximated conservatively as

Pr{I < Imax |a ≤ g ≤ b} ≥ 1− ε
Pr{a ≤ g ≤ b}

=
1− ε
δ

, 1− ε′ (4.14)

which can now be approximated by (4.10) or (4.11) with ε replaced by ε′. For concreteness,

consider the cases with and without channel estimation over Rayleigh fading channels.

Without Channel Estimation

Suppose first that channel estimation is not attempted. Then, one has only the prior

knowledge that the probability density function (p.d.f.) of g
(n)
k is exponential with mean

ḡ
(n)
k as

f
g
(n)
k

(x) =
1

ḡ
(n)
k

exp

(
− x

ḡ
(n)
k

)
. (4.15)
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It then follows from the independence assumption that

Pr{a ≤ g ≤ b} =
N∏
n=1

Pr
{
a

(n)
k(n) ≤ g

(n)
k(n) ≤ b

(n)
k(n)

}

=
N∏
n=1

exp

−a(n)
k(n)

ḡ
(n)
k(n)

− exp

− b(n)
k(n)

ḡ
(n)
k(n)

 = δ. (4.16)

Since the peak of the p.d.f. of g
(n)
k is located at the origin, it is natural to choose the

lower-bound as a = 0. To determine b, Pr
{

0 ≤ g(n)
k(n) ≤ b

(n)
k(n)

}
is enforced to be constant

across n. Then, b is obtained as

b
(n)
k(n) = ḡ

(n)
k(n) log

1

1− δ
1
N

, n ∈ N . (4.17)

With Channel Estimation

Consider now that OFDM channel estimation is performed using the minimum mean-square

error (MMSE) estimator under Rayleigh fading [60]. The complex channel coefficient vector

of the k-th user, hk = {h(n)
k }

N
n=1, can be modeled as

hk = ĥk + h̃k (4.18)

where ĥk is the channel estimate, and h̃k zero-mean Gaussian-distributed estimation error.

The covariance matrix of h̃k is given by [60]

Σh̃k
=

Nσ2
h

L+ 1
FLFH

L (4.19)

where (L+ 1) is the number of paths in the fading channel, σ2
h is a parameter that depends

on the system parameters including Doppler spread and the noise variance at the receiver,

and FL is the N × (L + 1) DFT matrix with (n, `)-th entry given by 1√
N
e−j

2π
N

(n−1)(`−1).

Therefore, hk is distributed as circularly symmetric complex Gaussian with mean ĥk and

covariance Σh̃k
. It is assumed that hk is independent across k.

Upon defining ĝ
(n)
k ,

∣∣ĥ(n)
k

∣∣2, the random variable g
(n)
k =

∣∣h(n)
k

∣∣2 is non-central Chi-

square with two degrees of freedom and non-centrality parameter
2ĝ

(n)
k

σ2
h

, with its p.d.f. given

by

f
g
(n)
k

(x) =
1

σ2
h

exp

(
−
ĝ

(n)
k + x

σ2
h

)
I0

(
2

σ2
h

√
ĝ

(n)
k x

)
. (4.20)
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To apply Bernstein’s approximation, it is further assumed here that {h(n)
k } are independent

across n. This essentially holds true when the number of subchannels is close to the number

of paths. However, even if this is not the case, the numerical tests in Sec. 5 will verify

that the interference constraints are approximated conservatively. Proceeding under the

assumption, one obtains

Pr{a ≤ g ≤ b} =
N∏
n=1

Pr
{
a

(n)
k(n) ≤ g

(n)
k(n) ≤ b

(n)
k(n)

}

=

N∏
n=1

Q

√√√√2ĝ

(n)
k(n)

σ2
h

,

√√√√2a
(n)
k(n)

σ2
h

−Q

√√√√2ĝ

(n)
k(n)

σ2
h

,

√√√√2b
(n)
k(n)

σ2
h


 = δ (4.21)

where Q(·, ·) is Marcum’s Q-function. Similar to the case without channel estimation, we

choose to set the factors in the product in (4.21) equal across n. Since the mode of the

distribution of g
(n)
k(n) is tightly upper-bounded by ĝ

(n)
k(n) [42], it is natural to set a

(n)
k(n) =

ĝ
(n)
k(n) − ǧ

(n)
k(n) and b

(n)
k(n) = ĝ

(n)
k(n) + ǧ

(n)
k(n) for 0 ≤ ǧ(n)

k(n) ≤ ĝ
(n)
k(n) such that

Q


√√√√2ĝ

(n)
k(n)

σ2
h

,

√√√√2(ĝ
(n)
k(n) − ǧ

(n)
k(n))

σ2
h

−Q

√√√√2ĝ

(n)
k(n)

σ2
h

,

√√√√2(ĝ
(n)
k(n) + ǧ

(n)
k(n))

σ2
h

 = δ
1
N (4.22)

is satisfied. If such ǧ
(n)
k(n) does not exist due to small

2ĝ
(n)
k(n)

σ2
h

(or, equivalently, large channel

uncertainty), it is prudent to choose a
(n)
k(n) = 0 and find b

(n)
k(n) from

Q


√√√√2ĝ

(n)
k(n)

σ2
h

,

√√√√2b
(n)
k(n)

σ2
h

 = 1− δ
1
N . (4.23)

It is worth noting that even if the channel p.d.f.’s are known to be either exponential

or non-central Chi-square, it is not straightforward to express the p.d.f. of I in closed

form [10,11], which underlines the usefulness of the proposed approach.

Remark 4.1 It can be checked that when the channel estimation error vanishes, the ap-

proximated chance-constraints (4.9)–(4.11) fall back to the desired deterministic interference

constraint, namely,
∑

n∈N ĝ
(n)
k(n)p

(n) ≤ Imax. To see this, first note that ǧ
(n)
k(n) → 0 as σ2

h → 0

from (4.22). Thus, α
(n)
k(n) and β

(n)
k(n) approach 0 and ĝ

(n)
k(n), respectively. Substituting these

into (4.9)–(4.11) yields the desired result.



4.3 Resource Allocation Algorithms 53

4.3 Resource Allocation Algorithms

The OFDMA RA problems with separable structure can be tackled efficiently in the dual

domain. In this approach, the overall problem is divided into multiple smaller per-subcarrier

subproblems, which can be solved separately, coordinated by the range multipliers. More-

over, it can be shown that the duality gap vanishes as the number of subcarriers in-

creases. This approach has been widely applied to the RA problems for multi-carrier

systems [12,35,63].

The `1-approximate problem is clearly separable in n. As for the `∞-approximate prob-

lem, by introducing auxiliary variables u , [u1, . . . , uN ]T , the following separable con-

straints can be shown to be equivalent to (4.10).

N∑
n=1

γ
(n)
k(n)p

(n) +

√
2 log

1

ε

N∑
n=1

un ≤ Imax (4.24)

√
Nσ

(n)
k(n)α

(n)
k(n)p

(n) ≤
N∑

n′=1

un′ , n ∈ N (4.25)

This can be seen from the following argument. Suppose that (4.25) is slack for all n ∈ N

at the optimum. Then, the sum
∑N

n′=1 un′ can be decreased by small amount without any

penalty in the objective. However, this makes (4.24) less tight, leading to net increase in the

objective (unless the power constraint (5.6) is already tight), which contradicts the initial

assumption of being at the optimum.

We continue the derivation of the RA algorithm using (4.24) and (4.25). The case of

the `1-approximation will be discussed briefly in Sec. 4.3.2.
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4.3.1 Algorithm for the `∞-Approximate Problem

Introducing dual variables λ , [λ1, λ2, . . . , λN ]T ≥ 0, µ , [µ1, µ2, . . . , µK ]T ≥ 0 and ν ≥ 0

to relax (4.25), (5.6), and (4.24), respectively, one can write the Lagrangian as

L(p,u;λ,µ, ν) =
∑
n∈N

wk(n)

[
log
(

1 + g̃
(n)
k p(n)

)
−
(
νγ

(n)
k(n) + µk(n) + λn

√
Nσ

(n)
k(n)α

(n)
k(n)

)
p(n)

+

(∑
n′∈N

λn′ − ν
√

2 log
1

ε

)
un

]
+ νImax +

∑
k∈K

µkPk,max (4.26)

Therefore, the dual function is

D(λ,µ) = sup
0�p�Pmax,u,k∈KN

L(p,u;λ,µ, ν)

= sup
0�p�Pmax

k∈KN

∑
n∈N

Ln(p(n), k(n)) + νImax +
∑
k∈K

µkPk,max

where

Ln(p(n), k) , wk log
(

1 + g̃
(n)
k p(n)

)
− t(n)

k p(n) (4.27)

t
(n)
k , νγ

(n)
k + µk + λn

√
Nσ

(n)
k α

(n)
k (4.28)

and ν :=
(
2 log 1

ε

)− 1
2
∑

n′∈N λn′ . The dual problem is thus

inf
λ�0,µ�0

D(λ,µ) . (4.29)

It can be seen from (5.27) that the optimization can be decoupled to per-tone problems

given by

max
0≤p(n)≤P (n)

max,k(n)∈K
Ln(p(n), k(n)). (4.30)

If k(n) = k, the optimal power loading p∗(n)[k] can be shown to be

p∗(n)[k] =

[
wk

t
(n)
k

− 1

g̃
(n)
k

]P (n)
max

0

, n ∈ N (4.31)
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where [·]ba , min{max{0, a}, b}. The optimal user allocation k∗ is then given by

k∗(n) ∈ arg max
k∈K

Ln(p∗(n)[k], k), n ∈ N (4.32)

and the optimal power loading by

p∗(n) = p∗(n)[k∗(n)], n ∈ N . (4.33)

The dual problem (5.28) can be solved using, e.g., the subgradient method, or the ellip-

soid method, which require the subgradient of D(·) w.r.t. [µTλT ]T . One such subgradient

is

−



∑
n∈N :k(n)=1

p(n) − P1,max

...∑
n∈N :k(n)=K

p(n) − PK,max

−Imax+
∑
n∈N

γ
(n)
k(n)

p(n)√
2 log 1

ε

+
√
Nσ

(1)
k(n)α

(1)
k(n)p

(1)

...

−Imax+
∑
n∈N

γ
(n)
k(n)

p(n)√
2 log 1

ε

+
√
Nσ

(N)
k(N)α

(N)
k(N)p

(N)



. (4.34)

The overall RA algorithm based on the ellipsoid method is described in the following.
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Algorithm 1:

1: Initialize Σ and θ , [µT λT ]T ;

and set V = N +K for the `∞-approximation.

[Alternatively, θ , [µT ν]T , and set V = K + 1

for the `1-approximation].

Set tolerance τ

2: Repeat

3: If θ < 0 for some entries i ∈ I

set d =
∑

i∈I ei (ei is the i-th canonical basis)

4: Otherwise:

5: Find k∗ and p∗ from (4.31)–(4.32)

[Alternatively use (4.35)–(4.36)]

6: Set d as (5.35) [Alternatively, use (4.37)]

7: If
√

dTΣd < τ , stop.

8: Perform the ellipsoid update:

9: d← d/
√

dTΣd

10: θ ← θ −Σd/(V + 1)

11: Σ← V 2

V 2−1

(
Σ− 2

V+1ΣddTΣ
)

4.3.2 Algorithm for the `1-Approximate Problem

The `1-approximate problem can be similarly solved by the dual method. Introduce

(K + 1) dual variables µ and ν to relax (5.6) and (4.11), respectively, and let s
(n)
k ,

ν
(
γ

(n)
k +

√
2 log 1

εσ
(n)
k α

(n)
k

)
+ µk. Then, one can obtain the optimal power loading as

p∗(n)[k] =

[
wk

s
(n)
k

− 1

g̃
(n)
k

]P (n)
max

0

, n ∈ N (4.35)

and the optimal user allocation k∗ as

k∗(n) ∈ arg max
k∈K

log(1 + g̃
(n)
k p(n))− s(n)

k p∗(n)[k], n ∈ N . (4.36)
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A subgradient of the dual function w.r.t. [µT ν]T is given by

−



∑
n∈N :k(n)=1

p(n) − P1,max

...∑
n∈N :k(n)=K

p(n) − PK,max

−Imax +
∑
n∈N

(
γ

(n)
k(n) +

√
2 log 1

εσ
(n)
k(n)α

(n)
k(n)

)
p(n)


. (4.37)

The overall algorithm is implemented by following the alternative steps in the brackets in

Algorithm 1 presented in Sec. 4.3.1.

Remark 4.2 A discussion on the complexity order of the proposed algorithms is in order.

One must consider the total number of operations per iteration multiplied by the number of

iterations required for convergence. The number of iterations needed to obtain an ε-optimal

solution using the ellipsoid method with V variables is O
(
V 2 log 1

ε

)
[8]. In the algorithm

for the `∞-approximation problem, the number of variables is (N +K). At each iteration,

(4.31) and (4.32) need to be performed KN times, in addition to (N + K)2 operations

needed for the ellipsoid update. The overall complexity order is thus O((N +K)4). On the

other hand, the algorithm for the `1-approximate problem involves (K + 1) dual variables,

leading to a complexity order of O(K3N +K4).

4.3.3 Suboptimal Algorithm

To obtain a performance benchmark, a suboptimal RA algorithm based on alternating

maximization is derived. A suboptimal algorithm is a reasonable alternative used in a

number of works such as [27]. Note that the algorithm still aims to solve the `2-, `∞-, and

`1-approximate problems that result from applying the Bernstein method. The algorithm

involves the following steps.

1) Initialize the power loading; e.g., set p(n) := min{ 1
N mink Pk,max, P

(n)
max}, n ∈ N .

2) For each subcarrier n ∈ N , find the user k∗ that maximizes wk log(1 + g̃
(n)
k p(n)) and

allocate subcarrier n to that user, i.e., k(n) := k∗
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3) For fixed k obtained from step (2), optimize over p by solving the convex problem,

using e.g., the interior-point method or the subgradient method

4) Repeat steps (2)–(3) until convergence.

It can be shown easily that the objective function does not decrease per iteration, thus

guaranteeing convergence.

4.3.4 Algorithms Based on the Central Limit Theorem

A yet another set of algorithms are derived here to approximately solve (5.5)–(4.3) without

resorting to Bernstein’s approximation when the mean ĝ
(n)
k and the variance (v

(n)
k )2 of the

channel gains g
(n)
k are known. They will be useful in Sec. 5.4 to characterize the performance

degradation due to the conservatism introduced by Bernstein’s approximation. The idea

is to apply the central limit theorem to the interference power
∑

n∈N g
(n)
k(n)p

(n) in (4.3)

and approximate it as a Gaussian random variable with mean
∑

n∈N ĝ
(n)
k(n)p

(n) and variance∑
n∈N (v

(n)
k(n)p

(n))2 (again assuming independence). Then, (4.3) can be expressed as

−Imax +
∑
n∈N

ĝ
(n)
k(n)p

(n) +Q−1(ε)

(∑
n∈N

(v
(n)
k(n)p

(n))2

) 1
2

≤ 0 (4.38)

Note the resemblance of (4.38) and (4.9). In particular, they both involve the `2-norm of

vector [v
(1)
k(1)p

(1), . . . , v
(N)
k(N)p

(N)]. Thus, one can readily derive separable surrogates based on

the `∞- and the `1-norms, given by [cf. (4.10) and (4.11)]∑
n∈N

ĝ
(n)
k(n)p

(n) +Q−1(ε) max
n∈N

v
(n)
k(n)p

(n) ≤ Imax (4.39)

∑
n∈N

ĝ
(n)
k(n)p

(n) +Q−1(ε)
∑
n∈N
|v(n)
k(n)p

(n)| ≤ Imax (4.40)

respectively.

4.4 Numerical Tests

The proposed RA algorithms were tested via numerical experiments. The wideband chan-

nels g̃
(n)
k and g

(n)
k were simulated as 4-path Rayleigh fading channels. The pathloss exponent
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Figure 4.1: Average weighted sum-rates without channel estimation.

was set to α = 2. Since the pathloss exponent in practice is usually larger than 2, this choice

corresponds to a worst-case scenario in terms of PU interference. The parameters µ
(n)+
k ,

µ
(n)−
k and σ

(n)
k for the Bernstein approximations were chosen from [5, Table 1] using the

known first- and second-order moments of the truncated channel gains. Specifically, the

values of µ
(n)+
k and µ

(n)−
k are set as (cf. (4.8))

µ
(n)+
k = µ

(n)−
k = E

{
g

(n)
k − β(n)

k

α
(n)
k

∣∣∣∣∣a(n)
k ≤ g(n)

k ≤ b(n)
k

}
. (4.41)

Then, upon defining η
(n)
k , E

{(
g
(n)
k −β

(n)
k

α
(n)
k

)2∣∣∣a(n)
k ≤ g(n)

k ≤ b(n)
k

}
, and

qµ,η(t) ,
log

(
(1−µ)2 exp

t(µ−η2)
1−µ +(η2−µ2) exp(t)

1−2µ+η2

)
, if t ≥ 0

log

(
(1+µ)2 exp

t(µ+η2)
1+µ

+(η2−µ2) exp(−t)
1+2µ+η2

)
, otherwise

(4.42)
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Figure 4.2: Average weighted sum-rates with and without channel estimation.

the values of σ
(n)
k are obtained from solving

σ
(n)
k = min

{
c ≥ 0 : q

µ
(n)+
k ,η

(n)
k

(t) ≤ µ(n)+
k t+

c2t2

2
,∀t
}
. (4.43)

Unless stated otherwise, the value of δ was set to 1− 0.5ε, two CR users were experimented

with w1 = 0.2 and w2 = 0.8, and the results were averaged over 80 realizations of g̃
(n)
k . The

CR users were located equidistant from the CR BS throughout the tests.

Fig. 4.1 depicts the average weighted sum-rates for different values of ε without channel

estimation for both Bernstein approximation-based and Gaussian approximation-based al-

gorithms. The CR users are located equidistant from the PU. The solid line without markers

is for the case when {g(n)
k } are perfectly known. In this case, the chance constraint (4.3)

boils down to a deterministic constraint
∑

n∈N g
(n)
k(n)p

(n) < Imax, and thus the sum-rates

do not depend on ε. The solid and dashed lines with markers correspond to the Bernstein

approximation-based and the Gaussian approximation-based algorithms, respectively. The

curves marked with squares, circles and diamonds were obtained by solving the `2-, `∞-, and

`1-approximate problems, respectively. Note that in the case of the `2-approximate prob-
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Figure 4.6: Average weighted sum-rates for K = 6 and N = 16.

lem, exhaustive search over k was performed, as the dual decomposition technique could not

be applied. It can be observed that the average weighted sum-rates increase as ε increases,

since larger ε renders the chance constraint more lenient. Also, it can be seen that the curves

corresponding to the `∞- or the `1-approximate problems are very close to the ones from the

`2-approximate problem, underlining the usefulness of the dual decomposition-based low-

complexity solutions. Interestingly, the `∞-approximation seems to yield a slightly better

performance than the `1-approximation with Bernstein approximation, while the perfor-

mance differences are quite negligible in the Gaussian approximation case. However, as

discussed in Remark 4.2, the `1-approximation incurs lower computational complexity than

the `∞-approximation.

There is a large gap between the performance based on perfect channel knowledge and

the robust RA performance. As can be seen, the Gaussian approximation yields much

improvement in the weighted sum-rates, compared to Bernstein approximation. However,

even the Gaussian approximation can achieve only a small portion of what can be achieved

under perfect channel knowledge. This illustrates that the major portion in the perfor-
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Table 4.1: Average run times.

ε 0.01 0.1 0.5

Suboptimal algorithm 7.4782 sec 6.0122 sec 6.1220 sec

Dual method with `∞-approximation 3.7597 sec 3.6138 sec 3.3216 sec

Dual method with `1-approximation 0.7312 sec 0.7102 sec 0.7060 sec

Table 4.2: Simulated values of Pr{I < Imax} for Bernstein and the Gaussian approximations.

1− ε 0.9 0.5 0.3

Bernstein approx. with `2 without channel est. 0.9995 0.9600 0.8925

Bernstein approx. with `∞ without channel est. 1 0.9720 0.9526

Bernstein approx. with `1 without channel est. 0.9988 0.9600 0.9201

Bernstein approx. with `2 with channel est. (σ2
h = 0.5) 0.9967 0.9155 0.8234

Bernstein approx. with `∞ with channel est. (σ2
h = 0.5) 0.9998 0.9662 0.9226

Bernstein approx. with `1 with channel est. (σ2
h = 0.5) 0.9997 0.9655 0.8988

Gaussian approx. with `2 without channel est. 0.7785 0.6981 0.6718

Gaussian approx. with `∞ without channel est. 0.8310 0.7266 0.6982

Gaussian approx. with `1 without channel est. 0.8575 0.7602 0.7217
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Figure 4.7: Comparison with suboptimal algorithm.

mance degradation may be attributed to the uncertainty in the channel, rather than the

conservatism in Bernstein approximation.

The said gap can be alleviated by employing channel estimation, as shown in Fig. 4.2

for σ2
h = 0.5. The figure depicts the case where user 1 is twice farther from the PU than

user 2. Among the curves obtained with channel estimation, the performance-complexity

trade-offs similar to what appeared in the case without channel estimation are observed.

Fig. 4.3 shows the average weighted sum-rate performance as σ2
h is varied when both

CR users are in the same distance from the PU. Two sets of curves corresponding to ε = 0.1

and ε = 0.01 are presented. It is seen that as the channel estimation accuracy improves

(smaller σ2
h), the performance of the RA algorithms also increases. As was discussed in

Remark 4.1, the gap will eventually close as σ2
h vanishes. Similar trends are observed in

Fig. 4.4, where the sum-rate performance versus ε is plotted with different values of σ2
h, all

with user 1 located twice farther away from the PU than user 2 is.

The sensitivity of the weighted sum-rate performance to the choice of δ is examined

in Fig. 4.5 for ε = 0.01 and 0.1 for two different network topologies. It is seen that the
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Figure 4.8: The case of unknown p.d.f.

performance is maximized at about δ = 1 − 0.5ε and is quite robust to the choice of δ.

Interestingly, such an observation seems to hold regardless of the experimented network

topologies and whether channel estimation is performed.

We also tested the case with K = 6 CR users with {wk} set to [0.1, 0.2, 0.3, 0.2, 0.1, 0.1]

using N = 16 subcarriers. Fig. 4.6 plots the weighted sum-rates averaged over 40 real-

izations of g̃
(n)
k . Due to the prohibitive complexity of exhaustive search required for the

`2-approximate problem, only the results for the `∞- and the `1-approximate problems are

reported. The overall trend remains unchanged from the two-user case.

To highlight the effectiveness of the dual decomposition-based approach, the perfor-

mance of the suboptimal algorithm is compared to the proposed algorithms under channel

estimation with σ2
h = 0.5 in Fig. 4.7 for the two-user case with CR user 1 twice farther from

the PU than CR user 2.

The suboptimal algorithm is seen to be inferior to the proposed dual method-based algo-

rithm both for the `∞- and the `1-approximate problems, although the gaps are small. On

the other hand, the algorithms differ much in terms of computational complexity. Table 4.1

presents the average run times for the algorithms, where the experiments were done using
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a 2.13-GHz Intel CPU with 2 GB of RAM. It can be seen that the suboptimal algorithm

takes much longer than the proposed algorithms until convergence. In fact, the subopti-

mal algorithm spent a lot of time to solve the convex subproblems, while the number of

iterations were actually small.

To confirm that the interference constraint (4.3) is satisfied by the proposed methods,

actual values of Pr{I < Imax} are listed in Table 4.2 for the case with CR users equidistant

from the PU, for different target values 1−ε. It is clearly seen that the interference constraint

is enforced conservatively with Bernstein approximation. (Although the achieved values of

Pr{I < Imax} are often quite off from the prescribed target (1 − ε), this should not be

interpreted as severe suboptimality of the proposed algorithms, because the performance

must be ultimately gauged in terms of the weighted sum rates; see Fig. 2 and the associated

discussion in this section.) However, it is seen that the Gaussian approximation approach

does not always yield a solution feasible for the chance constraint, especially when ε is

small. Therefore, the modest performance degradation as was seen in Fig. 4.1 may be

thought of as the price to pay for guaranteed feasibility while maintaining tractability and

accommodating a large class of distributions for uncertain parameters.

To illustrate the performance obtained when the channel p.d.f. is bounded but not

known precisely, the average weighted sum-rate curves are plotted in Fig. 4.8 when the CR-

to-PU channel gains belong to a bounded interval [0, 7.38] for both CR users. The curve

with circle markers represents the case where the support as well as the unimodality and

the symmetry information are used. The curve with the diamonds corresponds to the case

where the information that the mean lies in [0.9, 1.1] was used in addition to the support

information. The curve with the squares depicts the case of using the known mean and

variance in addition to the support information. It can be seen that the performance is

improved by employing more prior knowledge on the distribution.

4.5 Summary

Weighted sum-rate maximization of an OFDMA CR uplink was considered, where the

power loading and the user assignment over individual subcarriers are performed while
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ensuring that the interference power experienced at the PU location is less than a prescribed

threshold. Since the channel gains between CR transmitters and PU receivers often cannot

be estimated accurately, the PU interference constraint was cast as a chance constraint.

As the resulting optimization problem is intractable, two layers of approximations were

introduced. First, a convex conservative surrogate of the chance constraint was employed

using Bernstein approximation, to bypass the need to analytically represent the chance

constraint, even without precise knowledge of the distribution of uncertain channel gains.

Secondly, due to the combinatorial complexity of searching for the optimal user assignment,

approximation involving the `1- or the `∞-norms were employed so that the OFDMA RA

problems possess separable structures, and can be tackled in the dual domain. Although

such approximations indeed introduce conservatism, this is a side-effect often shared by

a broad class of robust optimization approaches, and arguably constitutes the price paid

to obtain guaranteed feasible solutions to chance-constrained OFDMA CR RA problems

at an affordable complexity. Algorithms based on the dual decomposition method were

developed for the cases with and without channel estimation. Numerical tests showed that

the proposed algorithms outperformed a benchmark suboptimal algorithm in terms of both

weighted sum-rate performance and computational complexity. It was also shown that the

performance degradation due to the approximation introduced for enforcing the separability

is rather insignificant.
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Chapter 5

Resource Allocation for OFDMA

CR under Channel Uncertainty in

Downlink

In this chapter, an OFDMA CR network downlink operating in a spectrum underlay set-

up is addressed. A weighted sum rate maximization problem is formulated for a CR base

station (BS) that transmits to a set of CR mobile stations (MSs), while respecting a strict

interference constraint to protect PUs when the channel estimate between the CR-BS and

the PU receiver contains uncertainty. It turns out that the interference constraint can

be converted to a second-order cone constraint, which is convex. However, the overall

optimization problem is still non-convex in general due to the combinatorial search necessary

for subcarrier assignment. It is well known that when an OFDMA RA problem has a

separable structure, the duality gap vanishes as the number of subcarriers grows large [35,

43]. To induce such a separable structure, a tight linear approximation for the interference

constraint is introduced at a modest (polynomial) increase in the problem dimension. The

approximated problem can then be readily solved using the dual decomposition method,

which leads to a near-optimal, computationally efficient algorithm. The material in this

chapter draws from [29], [30].
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5.1 Modeling and Problem Statement

Consider a CR-BS allocating resources to K CR-MSs (users) employing OFDMA using

N subcarriers. The channel gain h
(n)
k ≥ 0 between the CR-BS and the k-th CR-MS for

each k ∈ K := {1, 2, . . . ,K}, and each subcarrier n ∈ {1, 2, . . . , N} is assumed to have

been acquired accurately via conventional channel estimation techniques. Suppose also

that during the sensing phase, the CR-BS has detected the presence of an active PU. Let

p(n) denote the transmit-power loaded on subcarrier n, and P
(n)
max the maximum transmit-

power allowed on subcarrier n. Vectors p and Pmax collect {p(n)} and {P (n)
max}, respectively.

Also, let k(n) ∈ K represent the index of the user served on subcarrier n, and define

k := [k(1), . . . , k(N)]T .

Rather than employing ideal Gaussian signaling, practical discrete constellations are

adopted. Thus, the received signal for user k on subcarrier n is modeled as

y
(n)
k =

√
h

(n)
k p(n)x

(n)
k + v

(n)
k (5.1)

where x
(n)
k is the unit-average-power input signal on subcarrier n drawn from a practical

constellation of user k, where the inputs for different users and subcarriers are assumed to

be independent. Random variables {v(n)
k } represent independent and identically distributed

(i.i.d.) complex Gaussian noise with mean 0 and variance 1. The mutual information for

user k on subcarrier n is denoted as I(n)
k (γ) := I

(
x

(n)
k ;
√
γx

(n)
k + v

(n)
k

)
, where γ represents

the received signal power-to-noise power ratio (SNR). Let wk denote the positive weight

of user k ∈ K. Then, a relevant RA objective is to maximize a weighted sum of mutual

information
∑N

n=1wk(n)I
(n)
k(n)(h

(n)
k p(n)) of the CR system, while adhering to a transmit-power

constraint, and a PU interference constraint.

To model the PU interference constraint, let g(n) ≥ 0 denote the channel gain from the

CR-BS to the PU receiver on subcarrier n. Unlike the channels between CR transceivers, it

is difficult to estimate {g(n)} precisely, due to the lack of cooperation from the PU system.

Thus, {g(n)} are assumed uncertain.

In this work, a deterministic robust optimization approach is adopted. Specifically, it

is assumed that the uncertainty in vector g := [g(1) g(2) . . . g(N)]T can be captured by an
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ellipsoidal uncertainty region given by

G :=
{
ḡ + ∆g : ∆gTC−1

g ∆g ≤ Ω2
}

(5.2)

where ḡ is the nominal value of g, ∆g the deviation from the nominal value, Cg a symmetric

positive definite matrix, and Ω ≥ 0 a given constant. Then, a robust interference constraint

guarantees tolerable interference to the PU system for all possible g ∈ G; that is,

N∑
n=1

g(n)p(n) ≤ Imax for all g ∈ G. (5.3)

which was shown to be equivalent to

p ∈ C :=

{
p

∣∣∣∣Imax − ḡTp ≥ Ω
√

pTCgp

}
(5.4)

which is a second-order cone constraint [5]. Then, the following optimization problem is of

interest:

(P1) max
0�p�Pmax,k∈KN

N∑
n=1

wk(n)I
(n)
k(n)(h

(n)
k p(n)) (5.5)

subject to

N∑
n=1

p(n) ≤ Pmax (5.6)

ḡTp− Imax + Ω
√

pTCgp ≤ 0. (5.7)

Note that (P1) is convex provided K = 1, i.e., for a single-user system. In the general case

of multiple users with K > 1, (P1) is non-convex due to the combinatorial assignment of

users on each subcarrier.

When an OFDMA RA problem has a separable structure, in which the Lagrangian dual

can be decomposed into per-subcarrier subproblems, it can be shown that the duality gap

vanishes as the number of the subcarriers increases [6, 43]. This implies that the problem

can be solved near-optimally in polynomial time for sufficiently large N . However, due to

the coupling of p(n) belonging to different subcarriers n in (5.7), (P1) does not possess this

separable structure. The novel approach here is to enforce such a structure by approxi-

mating (5.7) by a set of linear constraints. To this end, a general result that approximates

second-order cone constraints by polyhedral constraints is employed, which is outlined next.
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5.2 Polyhedral Approximation of Second-Order Cones

Motivated by the availability of efficient large-scale linear program (LP) solvers, a second-

order cone program was tackled via an approximate LP in [4]. To this end, it was shown

that the second-order Lorentz cone

LN :=
{

(y0,y) ∈ R× RN : ||y|| ≤ y0

}
(5.8)

admits a polyhedral approximation of accuracy δ, comprising variables and constraints

whose number is polynomial in N and log(1/δ); see also [20] for a refinement of this result.

Here, we briefly recap the idea behind this approximation.

Direct construction of a polyhedral approximation circumscribing LN in the (N + 1)-

dimensional space is bound to have its number of facets growing exponentially with the

dimension N , which implies that it needs an exponentially growing number of linear in-

equalities to define. The key idea is to reduce the number of inequalities by lifting the

polyhedron to a higher-dimensional space by introducing additional variables, and consid-

ering its projection onto the (N + 1)-dimensional subset. Since a projection of a higher-

dimensional polyhedral set can significantly multiply the number of facets, this approach

yields a relaxation that is “efficient” in the sense that it is very tight, yet it is defined using

a relatively small number of constraints and extra variables.

The first step is to decompose the (N + 1)-dimensional Lorentz cone LN to a number of

3-dimensional Lorentz cones using the “tower of variables” concept. Suppose for simplicity

that N = 2d for some integer d. Then, by introducing a vector of N/2 new variables

ρ(1) :=

[
ρ

(1)
1 , ρ

(1)
2 , . . . , ρ

(1)
N
2

]T
, where the superscript (`) in ρ(`) denotes the `-th layer of the

“tower,” the cone LN can be equivalently written as

LN =

{
(y0,y) ∈ R× RN : ∃ρ(1) ∈ R

N
2 ,

N∑
n=1

ρ
(1)
i

2
≤ y2

0,

y2
2i−1 + y2

2i ≤ ρ
(1)
i

2
, i = 1, 2, . . . ,

N

2

}
(5.9)

=
{

(y0,y) ∈ R× RN : ∃ρ(1) ∈ R
N
2 , (y0,ρ

(1)) ∈ L
N
2 ,

(ρ
(1)
i , y2i−1, y2i) ∈ L2, i = 1, 2, . . . ,

N

2

}
. (5.10)
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Decomposing further the
(
N
2 + 1

)
-dimensional Lorentz cone in (5.10) by applying the idea

repeatedly, one obtains eventually (N − 1) three-dimensional second-order cone constraints

via (N − 2) new variables ρ(`) :=

[
ρ

(`)
1 , . . . , ρ

(`)
N

2`

]T
, ` = 1, 2, . . . , d− 1.

The remaining task is to approximate L2 using a polynomial number of variables and

constraints. Consider a polyhedral δ-relaxation ΠN
δ of LN with δ > 0 in the sense that

LN ⊂ ΠN
δ ⊂ LNδ :=

{
(y0,y) ∈ R× RN : ||y|| ≤ (1 + δ)y0

}
. (5.11)

Then, for an integer q with

δ =
1

cos
(
π
2q

) − 1 (5.12)

it can be shown that the set of points (y0, y1, y2) = (αq+1, α0, β0) satisfying the following

set of linear constraints is a δ-relaxation of L2 [4], [20]:

αi+1 = αi cos
( π

2i

)
+ βi sin

( π
2i

)
, i = 0, 1, . . . , q (5.13)

βi+1 ≥
∣∣∣βi cos

( π
2i

)
− αi sin

( π
2i

)∣∣∣ , i = 0, . . . , q − 1 (5.14)

where α := [α1, α2, . . . , αq]
T and β := [β1, . . . , βq]

T are extra variables introduced to “lift”

the approximation to a higher-dimensional space. Thus, 2q extra variables have been intro-

duced to form (q + 1) equality constraints and 2q inequality constraints. One can further

reduce the number of variables and constraints by eliminating α and βq using the equali-

ties (5.13). The resulting set of linear constraints contains (q − 1) extra variables and only

2q linear inequality constraints.

Overall, using δ`-relaxations for the cones in the `-th layer, a polyhedral δ-relaxation of

LN can be obtained as

ΠN
δ :=

{
(y0,y) = (ρ

(d)
1 ,ρ(0)) ∈ R× RN : ∃ρ(1), . . . ,ρ(d−1),

(ρ
(`)
i , ρ

(`−1)
2i−1 , ρ

(`−1)
2i ) ∈ Π2

δ`
, i = 1, . . . ,

N

2`
, ` = 1, . . . , d

}
(5.15)

where δ =
∏d
`=1(1 + δ`) − 1 holds. Thus, the overall approximation introduces v(N) :=

(N − 2) +
∑d

`=1(q` − 1)N
2`

extra variables, and c(N) :=
∑d

`=1
N ·q`
2`−1 inequality constraints.

Given the overall accuracy requirement δ, {δ`} were optimized in [20], and can be obtained

by plugging in q = q` = d `+1
2 e − blog4

(
16
9 π
−2 log(1 + δ)

)
c to (5.12).
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5.3 Resource Allocation Algorithms

5.3.1 Algorithm Based On Lagrangian Dual

In order to obtain a feasible solution to the original robust RA problem, the set of linear

constraints approximating (5.4) must be tighter than the original constraint (5.4). Thus,

for a given small positive constant δ, consider a tightened constraint set given by

C′ :=
{

p

∣∣∣∣Imax − ḡTp

(1 + δ)Ω
≥
√

pTCgp

}
. (5.16)

Then, a δ-relaxed lifted polyhedral approximation of the form

C′δ :=

{
p

∣∣∣∣∃q ∈ Rnq ,Ap + Bq � b

}
(5.17)

exists, where A ∈ Rnc×N , B ∈ Rnc×nq , and b ∈ Rnc are obtained from the procedure

outlined in Sec. 5.2, and q ∈ Rnq is the vector of additional variables, with nc = c(N) and

nq = v(N). From (5.11), it can be seen that

C′ ⊂ C′δ ⊂ C (5.18)

holds. Therefore, the following optimization problem is a conservative surrogate for (P1):

(P2) max
p,q,k∈KN

N∑
n=1

wk(n)I
(n)
k(n)(h

(n)
k(n)p

(n)) (5.19)

subject to
N∑
n=1

p(n) ≤ Pmax (5.20)

0 ≤ p(n) ≤ P (n)
max, n = 1, 2, . . . , N (5.21)

Ap + Bq � b. (5.22)

Problem (P2) is again non-convex. However, it can be shown that the duality gap

vanishes asymptotically as N → ∞ [12, 35, 63]. A precise statement and its proof can be

found in the Appendix. Therefore, (P2) can be solved efficiently using the dual method.

Introducing dual variables λ ≥ 0 and µ := [µ1, µ2, . . . , µnc ]
T � 0, the (partial) Lagrangian
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is

L(p,q) =
N∑
n=1

wk(n)I
(n)
k(n)(h

(n)
k(n)p

(n))− λ

(
N∑
n=1

p(n) − Pmax

)

− µT (Ap + Bq− b) (5.23)

=
N∑
n=1

{
wk(n)I

(n)
k(n)(h

(n)
k(n)p

(n))− (λ+ µTA(:, n))p(n)
}

+ λPmax − µTBq + µTb (5.24)

where A(:, n) denotes the n-th column of matrix A. Upon defining

Ln(p(n), k) := wkI
(n)
k (h

(n)
k p(n))− (λ+ µTA(:, n))p(n) (5.25)

the dual function is given by

D(λ,µ) = sup
0�p�Pmax,q,k∈KN

L(p,q) (5.26)

=



sup
0�p�Pmax,k∈KN

N∑
n=1

Ln(p(n), k(n)) + λPmax + µTb,

if BTµ = 0

∞, otherwise

(5.27)

and thus the dual optimization problem boils down to

inf
λ,µ

D(λ,µ) (5.28)

subject to λ ≥ 0, µ � 0, BTµ = 0. (5.29)

It is interesting to note that the auxiliary variables q introduced for the lifted polyhedral

relaxation do not need to be determined in order to obtain the dual function. Moreover,

it is immediate that the optimization in (5.27) can be decomposed into individual tones,

thanks to the transformation of the nonlinear cone constraint into multiple linear ones, so

that the interference contributions due to individual p(n) can be separately assessed.

Specifically, for each subcarrier n ∈ {1, 2, . . . , N}

max
0≤p(n)≤P (n)

max,k(n)∈K
Ln(p(n), k(n)) (5.30)
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needs to be solved. It is revealing to interpret (5.25) from an economic perspective, as

balancing the payoff due to an achievable rate and the cost incurred for causing interference,

where µ contains the prices associated with different facets of the polyhedral model. If

k(n) = k ∈ K, the optimal power loading can be obtained by taking the derivative of

Ln(p(n), k) w.r.t. p(n), and setting it to zero. To this end, one needs the derivative of the

mutual information I(n)
k . Since it is not straightforward to obtain the mutual information

of an arbitrary input distribution in closed form and compute its derivative, a fundamental

relationship between the derivative of mutual information and the nonlinear minimum mean-

square error (MMSE) can be utilized [23].

Specifically, let MMSE
(n)
k (h

(n)
k p(n)) denote the MMSE for estimating x

(n)
k given y

(n)
k based

on model (5.1). Then, it is known that

d

dp(n)
I(n)
k (h

(n)
k p(n)) = h

(n)
k MMSE

(n)
k (h

(n)
k p(n)). (5.31)

Using (5.31), it can be shown that the optimal power loading p∗(n)[k] is given by

p∗(n)[k] =



P
(n)
max, if λ+ µTA(:, n) < 0[

1

h
(n)
k

MMSE
(n)
k

−1
(
λ+µTA(:,n)

wkh
(n)
k

)]P (n)
max

0

,

if 0 ≤ λ+µTA(:,n)

wkh
(n)
k

≤ 1

0, otherwise,

n = 1, 2, . . . , N (5.32)

where MMSE
(n)
k

−1
(·) is the inverse function of MMSE

(n)
k (γ), and [·]ba := min{max{0, a}, b}.

Thus, the optimal user allocation k∗ and power loading p∗ are given, respectively, by

k∗(n) ∈ arg max
k∈K

Ln(p∗(n)[k], k), n = 1, 2, . . . , N (5.33)

p∗(n) = p∗(n)[k∗(n)], n = 1, 2, . . . , N. (5.34)

The optimal solution of (5.28)–(5.29) can be obtained via iterative optimization methods

for non-differentiable objectives, such as the subgradient method or the ellipsoid method.

To ensure BTµ = 0 as required in (5.29), µ is parametrized by θ ∈ Rnθ as µ = Zθ, where
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Table 5.1: Algorithm for solving (P2).

1: Initialize Σ and ν := [λ,θT ]T . Set tolerance τ

2: Repeat

3: If λ < 0, set d = −i1 (first canonical basis)

4: Or, if Z(i, :)θ < 0 for some i ∈ {1, 2, . . . , nc},

set d = [0 − Z(i, :)]T

5: Otherwise:

6: Find k∗ and p∗ from (5.33)–(5.34)

7: Set d equal to (5.35)

8: If
√

dTΣd < τ , stop

9: Perform the ellipsoid update:

10: d← d/
√

dTΣd

11: ν ← ν −Σd/(nθ + 2)

12: Σ← (nθ+1)2

(nθ+1)2−1

(
Σ− 2

nθ+2ΣddTΣ
)

the columns of Z constitute the basis vectors of the null space of BT . It can be shown that

−

 ∑N
n=1 p

∗(n) − Pmax

ZT (Ap∗ − b)

 (5.35)

is a subgradient of D(λ,Zθ) w.r.t. [λ θT ]T . The overall procedure for solving (P2) using

the ellipsoid method is presented in Table 5.1, where Z(i, :) is the i-th row of Z for i =

1, 2, . . . , nc.

It is of interest to examine the complexity of the algorithm in Table 5.1. The overall

complexity can be characterized by multiplying the complexity per iteration by the number

of iterations needed. The number of iterations needed for the ellipsoid method to converge

grows as the square of the number of optimization variables [8]. The number of variables in

the proposed algorithm equals (nθ + 1), where nθ = nc− rank(BT ). Note that rank(BT ) ≤

min(nc, nq) = nq since v(N) < c(N). On the other hand, it can be shown that the values

of nq and nc both grow as O(N log 1
δ ) for δ ≤ 1

2 [20]. Therefore, the value of nθ also grows

at most as O(N log 1
δ ). It can thus be deduced that the required number of iterations for
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our algorithm grows as O(N2(log 1
δ )2).

It turns out that the number of operations per iteration grows as O(N2(log 1
δ )2) as well,

leading to the overall complexity order of O(N4(log 1
δ )4). The per-iteration complexity can

be verified as follows. In line 4 of Table 5.1, O(ncnθ) operations are needed. In line 6,

O(ncN) operations are necessary to compute the powers on all subcarriers using (5.34),

where the dominant component is the calculation of µTA. Once the values of µTA are

stored, Ln(p∗(n)[k], k) must be evaluated KN times to find the maximizing k per (5.33). In

line 7, O(ncN + ncnθ) operations are necessary. In lines 8–12, the dominant calculation is

the computation of Σd, which takes O(n2
θ) operations. Therefore, the overall per-iteration

complexity with large N and small δ grows as O(N2(log 1
δ )2).

5.3.2 Suboptimal Algorithm

To benchmark performance of the proposed near-optimal scheme, a simple suboptimal algo-

rithm based on alternating minimization is also considered. Note that with the subcarrier

allocation k fixed, the optimization problem (P1) with regard to only p is a convex problem.

Also, with p fixed, solving for k is straightforward since the problem naturally decouples

across subcarriers, and boils down to choosing on each subcarrier n the user that yields

the maximum contribution to the objective. Iterating these two steps will monotonically

increase the objective, which can be stopped when no further increase is made. It is noted

that this algorithm can be thought of as an extension of the algorithm in [52] to the OFDMA

case, since the latter can be employed as a subroutine (after appropriate adaptation to cope

with practical constellations). The procedure can be described in pseudocode as follows.

• Step 1: Initialize p, e.g., set p(n) = Pmax/N for n = 1, 2, . . . , N .

• Step 2: Set k(n) = arg maxk wkI
(n)
k (h

(n)
k p(n)) for n = 1, 2, . . . , N .

• Step 3: With k fixed, solve (P1) only over p using convex optimization techniques (or

by using an adapted version of the algorithm in [52].)

• Step 4: If the objective is not increased, stop; otherwise, go to Step 2.
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Figure 5.1: Achievable rates for a single-user case.

5.4 Numerical Tests

The proposed RA algorithm is verified via numerical tests. A Rayleigh-faded, 4-path channel

is simulated. The pathloss exponent is set to α = 2. Assuming Gaussian-distributed g, we

set Ω = Q−1(ε) for small ε > 0. The covariance of the channel estimation error follows the

model in [60]. Unless stated otherwise, the values of Pmax = 102 and Imax = 1 were used

with unit-power channel coefficients and additive noise.

In order to validate the polyhedral approximation of the second-order cone constraint,

the single-user case is first examined. Recall that when K = 1, the original problem (P1) is

convex, which can be easily solved using generic convex optimization software for optimal

power allocation across subcarriers. The solid lines with circle markers in Fig. 5.1 represent

the sum rates in nats obtained by solving (P2) with ε = 0.1 for various values of δ, where

N = 16 subcarriers were used. Recall that when δ is small, the polyhedral approximation

for the interference constraint is tight. Results using three different practical constellations

are shown, namely, QPSK, 4-PAM, and BPSK constellations. Also shown in dashed lines

are the optimal sum rates obtained by solving (P1) directly. It can be seen that the rate
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Figure 5.2: Number of constraints and extra variables.

performances from (P2) are indistinguishable from those of (P1) when δ ≤ 0.1.

As was discussed in Sec. 5.2, decreasing δ incurs increase in the number of optimization

variables and constraints. Fig. 5.2 depicts the number of extra variables introduced for the

polyhedral approximation as well as the number of constraints, as δ is varied. It can be

observed that as δ is decreased by orders of magnitude, the corresponding growth in the

problem complexity is rather mild.

In the multi-user case withK > 1, (P1) becomes hard due to the combinatorial search for

optimal subcarrier assignment. Exhaustive search would require enumerating KN different

assignments, and solving a (convex) power allocation problem per (P1) for each of the

assignments. Fig. 5.3 shows the case of K = 2 users, with user 2 located four times farther

than user 1 from the CR-BS. Equal weights of w1 = w2 = 0.5 were used. User 1 employed

a BPSK constellation and user 2 QPSK, and the number of subcarriers N = 8. Two sets of

curves corresponding to ε = 0.1 and ε = 0.01 are presented in Fig. 5.3 in solid and dashed

lines, respectively. In each set, the line with circle markers represents the weighted sum

rate obtained using the proposed algorithm, and the line without markers corresponds to

the results from exhaustive search. In addition, the results from the suboptimal algorithm
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Figure 5.3: Weighted sum rates when K = 2.

in Sec. 5.3.2 are depicted as the lines with triangle markers, and the rate achievable under

perfect channel state information on the interfering channel with diamond markers. It can

be seen that the proposed algorithm approaches the performance of exhaustive search with

sizeable improvement relative to that of the suboptimal heuristic, although the loss due to

channel uncertainty is evident.

Fig. 5.4 depicts the weighted sum rates for the same set-up as used for Fig. 5.3, but

with user 2 employing QPSK or 4-PAM modulations. The value of δ = 0.1 was used and

the values of ε were varied. The lines with square markers and the ones with circle markers

correspond to the results of exhaustive search and the proposed method, respectively. It can

be verified that the proposed method can achieve near-optimal performance at a moderate

value of δ. Also, as expected, the rate performance improves as ε grows larger, as this

amounts to more lenient interference constraints.

The case with K = 3 CR users were also tested and shown in Fig. 5.5 for ε = 0.1

and ε = 0.01. The distances of users 2 and 3 from the CR-BS were four times that of

user 1, and the input constellations for user 1, 2, and 3 were set to BPSK, 4-PAM, and

QPSK, respectively. Equal weights were used. The value of Imax was set to 10 and N = 8
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Figure 5.4: Weighted sum rates versus ε.
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Figure 5.6: Weighted sum rates when K = 10 and K = 20.

Table 5.2: Run times of RA algorithms in seconds.

δ = 0.01 δ = 0.1 δ = 1

N = 32 proposed 758 473 336

K = 10 suboptimal 180.

N = 8 proposed 18.1 14.2 12.2

K = 3 suboptimal 2.74

subcarriers (or subbands) were employed. The results from the proposed and the suboptimal

algorithms as well as the exhaustive search are presented. The overall trend is quite similar

to the two-user case.

The proposed algorithm was tested for larger values of K. Fig. 5.6 depicts the cases with

K = 10 andK = 20, whereN = 32 and ε = 0.1 were used. Due to prohibitive computational

complexity associated with exhaustive search, only the results from the proposed and the

suboptimal methods are plotted. Again, it can be seen that the achieved weighted sum

rates saturate with δ ≤ 0.1, implying that they have reached the optimal values.

To get a rough idea on the practical implementation complexity of the algorithms,
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Figure 5.7: Weighted sum rates versus Imax.

actual run times of the proposed and the benchmark algorithms are presented in Table 5.2

for the cases with N = 8 and N = 32 using τ = nθ × 10−3. A 2.3 GHz Intel processor

with 6 GB of RAM was used. Since the convex optimization subroutine called by the

suboptimal algorithm was implmented in a native code, while the proposed algorithm was

run in Matlab, which is interpreter-based, the suboptimal algorithm may be at a slight

advantage. Nonetheless, it can be seen that our algorithm is quite competitive.

To assess the sensitivity of the rate performance to the PU interference constraint, the

weighted sum rates are plotted against the value of Imax in Fig. 5.7 for δ = 0.1 with N = 8

and K = 2. As Imax is increased, the CR can allocate more power to serve the CR users,

yielding a higher total rate. Once Imax becomes large enough, the total power constraint

becomes the bottleneck, which explains the leveling of the curves at high Imax in Fig. 5.7.

On the other hand, when Imax is very small, the use of higher order modulation does not

seem to be warranted.

To characterize the performance gain of specifically accounting for practical modulation

constellations, the rates achievable using the power and subcarrier allocation based on

traditional Gaussian coding are compared to the rates from the proposed design. The same
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Figure 5.8: Performance comparison to algorithm with water-filling.

set-up as in Fig. 5.3 is used with K = 2 and ε = 0.01. The solid lines in Fig. 5.8 represent

the case where user 2 uses QPSK modulation, while the dashed lines the case with 4-PAM.

The circle markers signify the proposed method in which the mercury/water-filling is used,

whereas the square markers correspond to the method with the water-filling. It can be seen

that regardless of the constellation, the proposed formulation yields superior performance.

5.5 Summary

A weighted sum rate maximization problem was formulated for a CR system employing

OFDMA. Due to the uncertainty present in the CR-to-PU channel, a robust interference

constraint with an ellipsoidal uncertainty set was imposed to protect the PU system, which

is equivalent to a second-order cone constraint. When only one CR user is served by the BS,

the optimization problem is convex. When multiple users are present, due to the combinato-

rial search for optimal subcarrier assignment, the problem is non-convex and hard to solve.

In fact, since the second-order cone constraint lacks separable structure, the optimization

variables are coupled across all subcarriers. Therefore, a polyhedral approximation was
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introduced to break the coupling. The dual method could then be employed to decompose

the overall problem into per-subcarrier sub-problems, which can be easily solved. Since the

complexity of the polyhedral approximation scales modestly (polynomially) in the number

of subcarriers, the overall algorithm can efficiently find the near-optimal power loading and

subcarrier assignment. Numerical tests verified the efficiency of the novel algorithm.
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5.6 Appendices

Appendix: Duality gap of (P2)

Here, a claim related to the duality gap of (P2) is proved. To this end, we will invoke [6,

Proposition 5.26], which considers problems of the following form:

(P3) min
I∑
i=1

fi(xi) (5.36)

subject to xi ∈ Xi (5.37)

I∑
i=1

hi(xi) ≤ γ (5.38)

where Xi ⊂ Rdi , γ ∈ Rm, fi : Xi → R and hi : Xi → Rm. Then, it was shown in [6] that

under conditions

c1) There exists at least one feasible solution to (P3).

c2) For each i, the set {xi,hi(xi), fi(xi)|xi ∈ Xi} is compact.

c3) For each i, given any x̃i ∈ ∗(Xi), there exists xi ∈ Xi such that hi(xi) ≤ h̃i(x̃i), where

∗(·) denotes the convex hull operator, and

h̃i(x̃) := inf


di+1∑
j=1

πjhi(x
j)

∣∣∣∣∣x̃ =

di+1∑
j=1

πjxj , xj ∈ Xi,
di+1∑
j=1

πj = 1, πj ≥ 0

 (5.39)

the duality gap can be upper-bounded by (m+ 1) maxi∈{1,2,...,I} ρi, where

ρi ≤ sup {fi(xi)|xi ∈ Xi} − inf {fi(xi)|xi ∈ Xi} . (5.40)

Thus, as long as maxi ρi grows sublinearly in i, the duality gap of (P3) normalized by

I vanishes as I → ∞. In other words, provided that the optimal objective of (P3) is

proportional in I, the fraction of the duality gap to the objective goes to zero as I grows.

This result is applicable to (P2). For this, set I = N + 1, and let xn := (k(n), p(n)) for

n = 1, 2, . . . , N , and xN+1 := q. Then, Xn := K × [0, P
(n)
max] for n = 1, . . . , N . Without

loss of generality, q can be confined to a convex and compact set Q, and let XN+1 :=
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Q. Furthermore, let fn(xn) := wk(n)I
(n)
k(n)(h

(n)
k(n)p

(n)) for n = 1, . . . , N , fN+1(xN+1) =

0, hn(xn) := [1,A(:, n)T ]T p(n) for n = 1, . . . , N , hN+1(xN+1) := [0T ,BT ]Tq, and γ =

[Pmax,b
T ]T . Then, conditions c1) and c2) are readily satisfied. It is also trivial to verify

that c3) is met, since hn(xn) for n = 1, . . . , N , is constant with respect to k(n), and also

linear in p(n). Therefore, a duality gap over-estimate of (P2) is given by

(nc + 2) max
n∈{1,2,...,N}

max
k∈K

wkI
(n)
k (h

(n)
k P (n)

max) (5.41)

which is related to the highest-order constellation employed by the OFDMA users, and

is thus finite. Therefore, the ratio of the duality gap of (P2) to the optimal objective

approaches zero as N grows large.



89

Chapter 6

Summary and Future Directions

This thesis presented algorithms for optimal resource management under uncertainty in

smart grid networks and cognitive radio (CR) networks. In addition, online algorithms

were devised to learn the temporal variations and the dynamics of these networks.

6.1 Thesis Summary

While EVs are expected to provide environmental and economical benefit, judicious coordi-

nation of EV charging is necessary to prevent overloading the distribution grid. Leveraging

the smart grid infrastructure, the utility company can adjust the electricity price intelli-

gently for individual customers to elicit desirable load curves. In this context, Chapter 2 of

this thesis addresses the problem of predicting the EV charging behavior of the consumers

at different prices, which is a prerequisite for optimal price adjustment. The dependencies

on price responsiveness among consumers are captured by a conditional random field (CRF)

model. To account for temporal dynamics potentially in a strategic setting, the framework

of online convex optimization (OCO) was adopted to develop an efficient online algorithm

for tracking the CRF parameters. Such information is essential for setting the electricity

prices in real time to coordinate EV charging. The probabilities with which individual

EV consumers charge their vehicles when presented with real-time prices were obtained

based on the CRF model. The CRF model was then applied as an input to a stochastic
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profit maximization problem for real-time price setting. The performance of the proposed

algorithms was corroborated using simulated and semi-real data.

Then, in Chapter 3, the problem of learning the consumers’ charging behavior with

missing data was pursued. A CRF-based model for capturing the probabilities with which

individual EV consumers charge their vehicles was considered. It was assumed that the

collected charging data from individual customers include misses, as it is natural to expect

errors and misses in the charging data collected from the network of consumers. Then,

instead of neglecting the misses or filling them with all possible values as in EM-based

algorithms, an estimate of the misses was obtained. Incorporating the estimates and without

explicit models for temporal dynamics of consumption behavior of consumers, an online

algorithm for learning the consumers dependency network parameters and elasticity was

developed. The performance of the proposed algorithm was verified by numerical tests

using synthetic and semi-real data.

In the context of wireless CR communication networks, resource management was ad-

dressed in Chapters 4 and 5. Since CRs do not receive explicit support from the PUs,

acquiring accurate channel estimates is often challenging. Therefore, one needs to ensure

that the interference constraint is effected robustly against channel uncertainty. In Chap-

ter 4, resource allocation for the uplink of OFDMA-based CR systems was pursued. The

weighted sum-rate was maximized over subcarrier assignment as well as over power loading

per CR user, while protecting primary user (PU) systems. However, due to the lack of

explicit support from PU systems, the channels from CR users to the PU may not be accu-

rately acquired. Motivated by this, the PU interference constraint was posed as a chance

constraint, for which conservative convex approximation based on Bernstein method was

employed for tractability. In particular, to mitigate the combinatorial complexity incurred

for optimal subcarrier assignment, a separable structure was pursued, and the dual decom-

position method was adopted to obtain near-optimal solutions. Numerical tests verify that

the proposed algorithms yield higher weighted sum-rate at lower computational complexity

than a benchmark algorithm.

Chapter 5 addresses a resource allocation problem for a CR base station (BS) commu-
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nicating with multiple CR mobile stations (MSs) in the downlink, which relies on OFDMA.

Practical finite-alphabet constellations were adopted and total weighted achievable rate was

maximized. To protect the incumbent PU system operating over the same frequency band,

the interference inflicted to the PU receiver must be regulated. Since the channel gain

estimates from the CR-BS to the PU receiver are typically uncertain in practice, a robust

interference constraint with an ellipsoidal uncertainty set was imposed to protect the PU

system, which is equivalent to a second-order cone constraint. When only one CR user is

served by the BS, the optimization problem is convex. When multiple users are present, due

to the combinatorial search for optimal subcarrier assignment, the problem is non-convex

and hard to solve. In fact, since the second-order cone constraint lacks separable structure,

the optimization variables are coupled across all subcarriers. To circumvent the resulting

computational hurdle, a tight polyhedral approximation of the second-order cone was intro-

duced to break the coupling. The dual method could then be employed to decompose the

overall problem into per-subcarrier sub-problems, which can be easily solved. As the rate

does not grow without bound even when the transmit-power is increased, a mercury/water-

filling step is used rather than the conventional water-filling step. The dual problem is

solved using the relationship between the minimum mean-square error (MMSE) and the

derivative of mutual information [23]. Since the complexity of the polyhedral approxima-

tion scales modestly (polynomially) in the number of subcarriers, the overall algorithm can

efficiently find the near-optimal power loading and subcarrier assignment. Numerical tests

verified the efficiency of the novel algorithm.

It is worth noting that the proposed approaches in Chapters 4 and 5 have potential to

impact networks beyond the particular ones treated, as they provide means to efficiently

tackle a class of large-scale robust mixed-integer problems involving second-order cone con-

straints.

6.2 Ongoing Research and Future Directions

The work presented in this thesis only addresses certain aspects of learning and resource

management in power and communication networks and opens up interesting directions for
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a number of future research topics. In addition, it is shown that certain algorithms obtained

for EV charging, can be tailored to CR networks. We outline some of the venues that we

are currently pursuing.

6.2.1 OCO for Spectrum Sensing in CR Networks

The idea here is to tailor the online learning algorithms devised in Chapters 2 and 3 for

efficient spectrum sensing in CR networks.

Consider an overlay cognitive scenario with one CR user and one PU coexisting in a

geographical region where the CR user scans N bands for possible transmission opportuni-

ties. In most spectrum sensing techniques, binary hypothesis testing is performed per band

n ∈ N based on the assumption that the spectrum occupancy of the PU is independent

across bands. However, this assumption is not valid in the presence of wideband PU signals,

e.g., when PU is transmitting television signals. The issue is that the CR maps the PU

band as multiple bands for its own transmission which in effect are correlated. The problem

of spectrum sensing in the presence of correlated bands has been considered in [25].

Utilizing the OCO paradigm, we propose to track the probability of detection and false

alarms while learning the occupancy dependencies across bands. Then, a CR learner tracks

the possible correlations among bands and also PU strategies in spectrum occupancy which

can later be used to adjust the sensing threshold, accordingly.

Consider N bands and let st := [st1, ..., s
t
N ] denote the true instantaneous PU activity

over N bands and ŝt := [ŝt1, ..., ŝ
t
N ] the estimated PU activity by the CR receiver. With

S ,{−1, 1}, {stn ∈ S}Nn=1 and {ŝtn ∈ S}Nn=1 indicate the true and estimated availability of

band n at time t, i.e, stn and ŝtn are 1 if the band is available and estimated to be available

for CR activities, respectively, and -1 otherwise. When PU activities over different bands

are correlated and due to the fact that spectrum occupancy changes over time, the PU

activities can be fitted into a probabilistic spatio-temporal model using CRF.

Consider N bands and assume that the bands n and m are connected by an edge if

their occupancy is dependent on each other with weights {θtn,m}n,m∈V , thus forming the

graph G(V,E), where V and E represent the set of vertices and edges, respectively. Here,
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it is assumed that there are no self-loops in the graph, i.e., θtn,m = 0. In addition, {θtn}n∈V

captures the dependency of ŝtn on stn. Letting θt := [θtn, n ∈ V ; θtn,m, n,m ∈ V ], the joint

probability of bands occupancy using CRF model can thus be written as

Pθt (̂s
t|st) =

1

Z(θt, st)
exp{

N∑
n=1

θtns
t
nŝ
t
n +

N∑
n=1

N∑
m=1

θtn,mŝ
t
nŝ
t
m}. (6.1)

The pdf in (6.1) represents the joint detection (or false-alarm) probability. The probability

of false alarms and miss detection for each of the bands can then be obtained by marginal-

izing (6.1). As mentioned in Chapter 2, these marginal probabilities can be efficiently

obtained using the BP algorithm.

The model parameters θt, can then be estimated sequentially by the online algorithm

introduced in Chapter 2. Then, the problem of online parameter estimation amounts to

tracking the probability of false alarms and miss detection, which can be further utilized for

a more accurate occupancy detection and an adaptive threshold setting in energy detection-

based spectrum sensing. On the other hand, the PU may change activities over the bands,

adversarialy. Therefore, it is important for the online algorithm to accommodate the strate-

gic change of band occupancy by the PU system. Clearly, in practice, the PU bands oc-

cupancies are also correlated across time. Advocating the OCO framework with minimal

assumptions on the structure of temporal correlation of data (band’s occupancy), while

allowing for strategic band occupancy changes by the PU, an online algorithm with guar-

anteed performance is obtained. The instantaneous Pθt (̂s
t|st) can be further utilized in

resource allocation in overlay scenario.

Dynamic learning of bands occupancy dependency network

In this theme, we propose an online algorithm based on the OCO framework. The fore-

caster is the CR user and the adversary is the PU. The loss represented by the negative

log-likelihood function `t(θt) := − logPθt (̂s
t|st) is not revealed to the CR user until the CR

predicts θ̂t and announces its estimate of bands occupancy, i.e., ŝt , and the CR system

becomes aware of the true state of the occupancy, i.e., st through a NACK(or ACK). Note

that the chosen loss `t(θt) with Pθt (̂s
t|st) as in (6.1) is convex [40].
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Similar to Chapter 2, θ̂t+1 is obtained using an online gradient descent by

θ̂t+1 = θ̂t − µt∇`t(θ̂t). (6.2)

As described in Chapter 2, the algorithm yields a regret bound that is sublinear in T .

The algorithm would have similar performance as discussed in the simulated test with

synthetic data in Chapter 2. In addition, the algorithm proposed in Chapter 3 can accom-

modate the case with missing data.

The spectrum sensing improvement due to leverging the band correlation model, is

another interesting future research direction.

6.2.2 OCO for Gaussian CRF in Smart Grid

So far charging decisions were modeled with discrete values using CRF. However, when

modeling the aggregate load or the total consumption of consumers due to different types

of load, it may be beneficial to resort to continuous CRFs which allow continuous output

labels. A special case of continuous CRF, is the Gaussian CRF.

Consider the multivariate Gaussian CRF, where p(bt|ρt) is defined as

pθt,Σt(b
t|ρt) =

1

Z(ρt,Σt, θt)
e−

1
2

(bt−µt)(Σt)−1(bt−µt) (6.3)

where Z(ρt,θt,Σt) := (2π)N/2|Σt|
1
2 denotes the partition function. With µ̄t ∈ RN cap-

turing the average typical load of the consumers at time t , let µt := µ̄t − ρt ◦ θt and ◦

represent the element-wise product of two vectors. Alternatively, one can connect (6.3) to

a linear regression model as follows

bt = Xθt + νt (6.4)

where X is a diagonal matrix and using MATLAB notation, it is denoted by X := diag(−ρt)

and νt is jointly Gaussian with mean µ̄t and covariance Σt. Letting the inverse covariance

matrix be defined as Ct := (Σt)−1, then (6.3) can be rewritten as

pθt,Ct(bt|ρt) = (2π)−N/2|Ct|
1
2 e−

1
2

(bt−µt)Ct(bt−µt). (6.5)
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The goal of the utility company is then to predict θt+1 ∈ RN and Ct+1 ∈ RN×N at time t.

The missing edges in the graphical model correspond to zero entires in the inverse covariance

matrix which suggest an `1-norm penalty term in estimating Ct. In addition, it is natural

to assume that only a few consumers may change their price-responsiveness over time, thus

promoting sparsity in θt. Then, the problem can be formulated as

{θ̂t+1, Ĉt+1} = arg min
θ,C�0

`t(θ,C) + λ1‖θ‖1 + λ2‖C‖1,∗ (6.6)

where `t(θ,C) := − log pθ,C(bt|ρt), ‖C‖1,∗ denotes the element wise `1-norm on off-diagonal

elements of C, and C � 0 ensures that C, the inverse covariance matrix, is positive definite.

Dynamic learning the dependency network and load elasticity

It should be noted that regular OMD involves linearization of the objective function. How-

ever, when dealing with composite objective functions, where there are regularizers such as

the `1-norm in the objective function, one should avoid linearizing the penalty terms as the

subgradient of the penalty term may not carry the merit of the regularizer. For instance,

in the proposed problem, the linearized `1-norm may not result in sparse solution of θ and

C in (6.6). The remedy is to use composite objective mirror descent (COMID). Future

research directions include devising efficient algorithms and regret analyses.

6.2.3 Periodicity in Consumption Behavior

It should be noted that there are periodic patterns in the charging behavior of consumers

across different days of the week. Accounting for the periodicity in consumption behavior

and proposing efficient and scalable modeling and algorithms offers an interesting extension

to Chapter 2.

6.2.4 Distributed Online Learning Algorithm

The proposed online learning algorithm for predicting the consumption behavior of con-

sumers, and real-time price setting require centralized computations. However, in general

it may be of interest to introduce distributed online algorithms for price setting schemes

and dependency learning.
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