
Gestural Composition with Arbitrary Musical
Objects and Dynamic Transformation Networks

A Dissertation
Submitted to the Faculty of the Graduate School

of the University of Minnesota
by

Florian Thalmann

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

Advised by Guerino Mazzola
Co-Advised by Michael Cherlin

June 2014

c© Florian Thalmann 2014
All rights reserved

Contents

List of Figures vi

List of Tables xii

I Composition, Theory, and Analysis, and the Dimension

of Embodiment 1

1 Introduction: Musical Distances and Lewin’s Vision 2

2 Musical Ontology and Conceptualization 14

2.1 Mazzola’s Topography of the Ontology of Music 17

2.2 The Dimension of Embodiment . 20

2.3 Communication Between the Levels of Embodiment 26

3 The Paradigm Shift towards Gestures in Music Theory and Analysis 29

3.1 Facts and Set Theory . 30

3.1.1 Generalized Set Theory . 32

3.2 Processes and Transformational Theory 33

3.2.1 Transformation Graphs and Networks 33

3.2.2 Transformations in the Category of Modules 34

i

3.2.3 Denotators and Forms . 36

3.3 Gestures in Music Theory . 42

3.3.1 Gesture Theories . 43

3.3.2 Gesture Theory as an Extension of Transformational Theory . 44

4 Facts, Processes, and Gestures in Composition and Improvisation 49

4.1 Some Thoughts on Composition and Improvisation 49

4.2 Gestures in Improvised Music . 52

4.3 Embodiment and Interactive Composition Systems 54

4.3.1 Thinking and Making Facts or Objects 55

4.3.2 Composition Systems and Processes 60

4.3.3 Gestural Interaction with Composition Systems 62

4.4 Rubato Composer . 74

4.4.1 Brief History . 74

4.4.2 A Platform for Forms and Denotators 78

4.4.3 Rubettes and Networks . 84

4.4.4 Where are the Gestures? . 87

II The BigBang Rubette and the Levels of Embodiment 89

5 Introduction to BigBang 90

6 Facts: BigBangObjects and their Visualization and Sonification 93

6.1 Some Earlier Visualizations of Denotators 94

6.1.1 Göller’s PrimaVista Browser 94

6.1.2 Milmeister’s ScorePlay and Select2D Rubettes 97

6.2 An Early Score-based Version of BigBang 99

ii

6.2.1 The Early BigBang Rubette’s View Configurations 102

6.2.2 Navigating Denotators . 107

6.2.3 Sonifying Score-based Denotators 107

6.3 BigBangObjects and Visualization of Arbitrary Mod@ Denotators . . 109

6.3.1 A Look at Potential Visual Characteristics of Form Types . . 110

6.3.2 From a General View Concept to BigBangObjects 114

6.3.3 New Visual Dimensions . 118

6.4 The Sonification of BigBangObjects 119

6.5 Examples of Forms and the Visualization of their Denotators 122

6.5.1 Some Set-Theoretical Structures 122

6.5.2 Tonal and Transformational Theory 125

6.5.3 Synthesizers and Sound Design 128

7 Processes: BigBang’s Operation Graph 137

7.1 Temporal BigBangObjects, Object Selection, and Layers 140

7.1.1 Selecting None and Lewin’s Transformation Graphs 141

7.1.2 The Temporal Existence of BigBangObjects 142

7.1.3 BigBangLayers . 144

7.2 Operations and Transformations in BigBang 146

7.2.1 Non-Transformational Operations 147

7.2.2 Transformations . 154

7.3 BigBang’s Process View . 159

7.3.1 Visualization of Processes . 159

7.3.2 Selecting States and Modifying Operations 160

7.3.3 Alternative and Parallel Processes 162

7.3.4 Structurally Modifying the Graph 165

iii

7.3.5 Undo/Redo . 166

8 Gestures: Gestural Interaction and Gesturalization 167

8.1 Formalizing: From Gestures to Operations 169

8.1.1 Modes, Gestural Operations, and the Mouse 170

8.1.2 Affine Transformations and Multi-Touch 177

8.1.3 Dynamic Motives, Sound Synthesis, and Leap Motion 180

8.1.4 Recording, Modifying Operations and MIDI Controllers 183

8.2 Gesturalizing and the Real BigBang: Animated Composition History 185

8.2.1 Gesturalizing Transformations 185

8.2.2 Gesturalizing Other Operations 188

8.2.3 Using Gesturalization as a Compositional Tool 189

III Implementation and Examples 191

9 Architecture and Implementation 192

9.1 The Architecture of BigBang . 192

9.2 BigBangModel . 195

9.2.1 BigBangOperationGraph . 198

9.2.2 BigBangDenotatorManager 200

9.2.3 BigBangObjects . 204

9.3 BigBangView . 205

9.3.1 The View’s Model Classes . 206

9.3.2 The (Sub)View Classes and their Controller Classes 208

9.4 Synthesizer and MIDI Classes . 209

9.5 Other Implementation Details . 211

9.5.1 Duplicating . 212

iv

9.5.2 Saving and Loading . 213

9.5.3 Testing BigBang . 215

10 Musical Examples 219

10.1 Some Example Compositions . 219

10.1.1 Transforming an Existing Composition 220

10.1.2 Gesturalizating and Looping with a Simple Graph 222

10.1.3 Drawing UPIC-Like Motives and Transforming 224

10.1.4 Drawing Time-Slices . 227

10.1.5 Converting Forms, Tricks for Gesturalizing 229

10.1.6 Gesturalizing a Spectrum . 232

10.1.7 Using Wallpapers to Create Rhythmical Structures 234

10.2 Improvisation and Performance with BigBang 234

10.2.1 Improvising by Selecting States and Modifying Transformations 236

10.2.2 Playing Sounds with a MIDI Keyboard and Modifying Them . 238

10.2.3 Playing a MIDI Grand Piano with Leap Motion 238

10.2.4 Playing a MIDI Grand Piano with the Ableton Push 239

10.2.5 Improvising with 12-Tone Rows 243

Bibliography 246

v

List of Figures

2.1 Mazzola’s three-dimensional topographic ontology. 19

2.2 Mazzola’s extension of the ontology cube to a hypercube by introducing

the dimension of embodiment. 24

2.3 The three levels of embodiment and the arrows symbolizing communi-

cation between them. 27

3.1 The brief EulerScore defined above, in staff notation. 40

3.2 A sample gesture with skeleton Γ = ({0, 1, 2, 3}, {(0, 0), (0, 1), (1, 2),

(1, 2), (2, 3)}) and space X = R3. 46

4.1 The types of facts in computer-assisted composition and how they are

typically converted into each other. 56

4.2 An example from LilyPond, (a) as code and (b) as staff notation

(source: http://lilypond.org/text-input.html). 57

4.3 Ableton’s sequencer Live with a few audio (sound waves) and MIDI

(piano roll) tracks. 58

4.4 Xenakis’s UPIC system. 59

4.5 A Max/MSP patch I created to test the velocity calibration of a MIDI

grand piano. Each visible object performs an action or transformation

while the musical objects, MIDI notes, travel along the connective lines. 62

vi

4.6 Wessel and Wright’s two-way scheme of gestural interaction between

humans and computers. 65

4.7 A juxtaposition of (a) Max Mathews’s Radio Batons, and (b) Leap

Motion. 73

4.8 Mazzola demonstrating his M(2,Z)\Z2-O-Scope to Herbert von Kara-

jan and an audience at the Salzburger Musikgespräche in 1984. 75

4.9 The Atari ST software Presto. 76

4.10 The OrnaMagic component of Presto. 77

4.11 The Rubato software on NeXTSTEP. 78

4.12 A performance field calculated by Müller’s EspressoRubette. 79

4.13 The architecture of Rubato Composer. 80

4.14 The graphical user interface of Rubato Composer. 81

4.15 Creating the example EulerScore with Rubato Composer ’s Denotator

Builder . 83

5.1 A network including the BigBang rubette and its view next to it. . . 91

6.1 The Di of Göller’s PrimaVista browser. 95

6.2 A denotator visualized in PrimaVista using Pinocchios (satellites) of

varying size and differently positioned extremities (subsatellites). . . . 97

6.3 The Select2D rubette showing a Score denotator on the Onset×Pitch

plane. 99

6.4 The early BigBang rubette showing a Score in piano roll notation. . . 104

6.5 The early BigBang rubette visualizing a Score in a more experimental

way. 105

6.6 The early BigBang rubette showing a MacroScore with two levels of

satellites. 108

vii

6.7 The new BigBang rubette visualizing Pitch denotator in every visual

dimension. 123

6.8 A PitchSet simultaneously visualized using several visual characteristics.124

6.9 A PitchClassScore drawn with ascending and descending lines to show

the cyclicality of the space. 125

6.10 A Progression where pitches adopt the visual characteristics of their

anchor chord. 127

6.11 A GeneralScore with some Notes and Rests shown on the Onset ×

Pitch plane. 128

6.12 A Spectrum shown on Loudness× Pitch. 130

6.13 A constellation of eight HarmonicSpectra with different fundamental

Pitches and Overtones. 131

6.14 An instance of a DetunableSpectrum, where the fundamentals of the

Overtones are slightly detuned. 132

6.15 An FMSet containing five carriers all having the same modulator ar-

rangement, but transposed in Pitch and Loudness. 133

6.16 A composition based on a Limit of a SoundSpectrum (Pitches at

Onset 0) and a Score (Pitches with Onsets). 135

7.1 A factual notion of a composition above, versus a dynamic notion below.139

7.2 A MacroScore with its second level of satellites being selected. Note

that the y-axis is SatelliteLevel to facilitate the selection. The x-

position and colors of the objects hint at their chaotic arrangement on

the Onset× Pitch plane. 141

viii

7.3 A table illustrating how BigBangObjects keep track of their location.

Each column is a state of a simple composition process with an FMSet.

The rows are what each of the objects save: a path for each of the state

the object exists at, pointing to the denotators corresponding to the

objects (FMNodes) are at, at the respective state. Note that all paths

are assigned according to the x-axis here (Loudness in FMSet). . . . 144

7.4 An FMSet distributed on three layers, represented by the rectangluar

areas at the top. Layer 0 is inactive and inaudible (its Partials in the

facts view are greyed out), layer 1 is active and selected (its Partials

are darkened), and layer 2 is active, but not selected (normal bright

color). 146

7.5 A composition drawn in Onset×Pitch with a shaped third dimension

represented by color. 150

7.6 A two-dimensional wallpaper in early BigBang. 152

7.7 A Score alteration in early BigBang. (a) shows the unaltered Score,

whereas in (b) Pitch and Duration are altered with dg1 = 0% and

dg2 = 100%. 155

7.8 A small composition made with copy-and-translate (bottom left), copy-

and-rotate (top left), copy-and-scale (top right), and copy-and-reflect

(bottom right). 156

7.9 A BigBang operation graph showing a linear composition process. . . 161

7.10 An operation graph with two alternative processes. 163

7.11 An operation graph with parallel processes. 164

8.1 The shearing DisplayTool shown while a copy-and-shear is performed. 171

ix

8.2 The three most common two-dimensional multi-touch gestures: (a)

drag, (b) pinch, and (c) twist. 178

8.3 The components resulting from a three-finger gesture. 179

8.4 The two three-finger gestures for (a) shearing and (b) reflection. . . . 180

8.5 An FMSet denotator consisting of a carrier and five modulators de-

fined by the fingertips of the user. 182

8.6 A wallpaper with a motif defined by the fingers of a hand. 183

9.1 The general architecture of BigBang. Solid arrows refer to direct

method calls, while dashed arrows show update procedures. 194

9.2 Some of the most important model classes of BigBang. 196

9.3 A simplified view of the process initiated by calling the translateOb-

jects(...) method for a transposition T7. The corresponding Transla-

tionTransformation, named upAFifth here, is represented at different

stages of its existence. 197

9.4 The class hierarchy of BigBang ’s operations in org.rubato.rubettes

.bigbang.model.operations. 199

9.5 BigBang ’s denotator manager and its helper classes in package

org.rubato.rubettes.bigbang.model.denotators. 204

9.6 Some of the classes in BigBang ’s view system (package org.rubato

.rubettes.bigbang.view). 207

9.7 Some of the classes of BigBang ’s sound and MIDI classes (packages

org.rubato.rubettes.bigbang.view.io and org.rubato.rubettes.bigbang.view

.player). 210

10.1 A transformation of Scarlatti’s Sonata K003 resulting in a pulsating

bass sound. 221

x

10.2 A growing and rotating Scarlatti K002 during gesturalization. 223

10.3 The Onset× Pitch plane of the UPIC -like composition. 225

10.4 The Onset× Pan plane of the UPIC -like composition. 226

10.5 The Pan× Pitch plane on which drawing took place. 228

10.6 The resulting slices seen on the Onset× Pitch plane. 228

10.7 The facts view shows the Texture at state 1, with rate and duration

represented by height and width, respectively. The process view shows

the graph generating the entire composition. 230

10.8 The Spectrum during gesturalization. For a video, see the link above. 233

10.9 The two wallpaper patterns in this example. 235

10.10The Spectrum and process that form the basis of this brief improvisation.237

10.11Two piano hands drawn with Leap Motion on the Pitch × Loudness

plane. 240

10.12The initial motive and the simple sequential graph. 242

10.13The sequential graph with the initial state selected, showing the origi-

nal twelve-tone row. 244

xi

List of Tables

4.1 Some examples of controllers with gestural capabilities. 74

8.1 BigBang ’s operations and their gestural capabilities. 169

xii

Part I

Composition, Theory, and

Analysis, and the Dimension of

Embodiment

1

Chapter 1

Introduction: Musical Distances

and Lewin’s Vision

Even though music and mathematics shared a long past, as two sister arts with the

potential of explaining and illustrating the order of the universe, they had increas-

ingly grown apart since the seventeenth century. A serious interest in seeing the two

domains closely connected has reawakened only in the second half of the twentieth

century. Today, both in music theory and composition, mathematical models and

procedures find an ever widening range of applications. In music theory, certain sub-

domains such as set theory or neo-riemannian theory are now a crucial part of the

university curriculum. In composition, every practitioner is confronted with serial or

probabilistic methods at some point in their education. Nevertheless, many scholars

and musicians stay at a safe distance from mathematics when it comes to more ad-

vanced applications. Satyendra and others suggest that the reason for this may be a

certain language barrier created by the ever more complex formalisms developed by

the few specialists that actively contribute to the field.1 However, it is not only the

1Ramon Satyendra. “An Informal Introduction to Some Formal Concepts from Lewin’s Trans-
formational Theory”. In: Journal of Music Theory 48 (2004), pp. 99–141, p. 99.

2

complexity of mathematics that keep musicians away from the field. In recent years,

a number of scholars have criticized mathematical methods in theory and composi-

tion for their positivistic attitude, their determinism, and for being too distant and

abstracted from music, music-making, and listening.2

There are several reasons for this perceived distance, which can in fact all be ex-

pressed by partial distances that can be perceived between mathematics and both

analysis and composition. First, there is a conceptual distance, which is essentially

what Satyendra claims. With the evolution of modern mathematics, structures and

procedures became increasingly complex and may no longer be immediately gras-

pable and understandable by a wide audience. A composer may need to invest a

considerable amount of time to understand Xenakis’s musical applications of stochas-

tic processes3 or Hook’s uniform triadic transformations.4 Second, there is a temporal

distance, both because of the atemporality of mathematical structures and the time

taken to understand or apply mathematics. When composers decide to create musical

structures using mathematical procedures they typically need months of calculation

and notation time until they are able to hand a score to performers. If they make

a mistake, or the result is not to their liking, they need even more time, to exper-

iment and modify their musical results. The same is true for mathematical music

theory, where, for example, an analyst may ignore expressive features or historical

connections within the music in question while taking time to identify set classes

and calculate relationships between them. Third, there may be a generative distance,

2See for instance Richard Taruskin. “Review of Forte, The Harmonic Structure of the Rite of
Spring”. In: Current Musicology 28 (1979), p. 119; George Perle. “Pitch-class set analysis: An
evaluation”. In: Journal of Musicology (1990), pp. 151–72. For an overview of the debate see
Matthew Brown and Douglas J. Dempster. “The Scientific Image of Music Theory”. In: Journal of
Music Theory 33.1 (1989), pp. 65–106.

3Iannis Xenakis. Musiques Formelles. Paris: Editions Richard-Masse, 1963.
4Julian Hook. “Uniform Triadic Transformations”. In: Journal of Music Theory 46.1/2 (2002),

pp. 57–126.

3

where the process of making in both analysis and composition may not be perceived

as directly related to the final product anymore, and the effect of changing a specific

part of the process is difficult to be anticipated or even perceived in the final product.

Finally, many musicians may experience a sensual distance due to the abstractness

of mathematics. The act of writing formulas is less easily perceived as a physical act

than for instance playing the piano and may thus likely be seen as a purely mental

activity, detached from the physical world.

The goal of this thesis is to bring mathematical music theory, especially the theory

of musical transformations, closer to musicians by diminishing precisely these types

of distances. The final product is a musical software that encourages experimenta-

tion with mathematical objects and transformations and facilitates understanding by

making them available in a more direct and intuitive way to composers, improvis-

ers, and analysts. The software enables its users to observe and interact with their

creative processes in a physical way, removed from the abstraction of mathematical

formulas.

In this context, it is inevitable to be reminded of a debate that has been going

on for almost two decades, based on a few statements by David Lewin that were

meant to intuitively explain his theory of musical transformations. Many scholars

have expanded on these statements and interpreted them in various ways. Even

though the mathematics of transformational theory does not strictly contain what

these scholars envisioned, it bears the potential of not only being imagined, but also

realized in this way, as this thesis shows.

Lewin saw transformational theory as anti-Cartesian, which means that it has the

potential to describe music not from a rational and objective outside perspective,

but from the perspective of a musician thinking within the music. Traditional music

theory, for Lewin, was concerned with thinking in musical intervals, which consists in

4

measuring distances between objects that are located in an external space separated

from the analyst in a Cartesian dualist way. In contrast, thinking in transformations

puts the subject inside the music in a anti-Cartesian fashion, as a sort of idealized

singer or dancer rather than an traditional analyst or listener observing the music

from outside. Lewin illustrated the so-called transformational attitude as follows: “if

I am at s and wish to get to t, what characteristic gesture [...] should I perform in

order to arrive there?”5 and “if I want to change Gestalt 1 into Gestalt 2 (as regards

to content, or location, or anything else), what sorts of admissible transformations in

my space [...] will do the best job?”

Lewin’s formulations in this and related passages are rather vague and have caused

a lot of debate. How and why does the transformational attitude oppose Cartesian-

ism? Why can transformations not be observed from outside just as intervals can?

Why can intervals not be anti-Cartesian if they are conceived as transpositions and

thus specific transformations? What are the gestures that Lewin speaks of and how

are they related to transformations? Who is it that performs these gestures? How do

these gestures relate to the anti-Cartesianism?

Several scholars have attempted to find answers to these questions. The central

difference between Lewin’s Cartesian and anti-Cartesian positions is that in the latter

someone seems to be actively performing actions instead of passively measuring dis-

tances. The subject creates or recreates the music by performing the gestures it takes

to transform specific musical entities to other ones.6 In an earlier article, Lewin said

that transformations are names “for ‘a way of moving’ (from anywhere to somewhere

5David Lewin. Generalized Musical Intervals and Transformations. New York, NY: Oxford
University Press, 1987/2007, p. 159.

6For an in-depth explanation and illustration of this, see Satyendra, “An Informal Introduction to
Some Formal Concepts from Lewin’s Transformational Theory”, ch. I. Rings elegantly characterizes
this difference: “a transformational analyst is interested in the how of a given musical gesture more
than the what of the resulting pitches and intervals.” Steven Rings. “Tonality and Transformation”.
Ph.D. Thesis. Yale University, 2006, p. 50

5

else), rather than a relation between fixed points in musical space; it lables [sic] a res

fabricans rather than a res extensa.”7 The fabricans leads the subject to an entirely

different level of reality that builds the basis of the understanding of how the music

is or can be fabricated rather than merely witnessed.

Lewin never explicitly specifies who the performer of these actions is. Even though

in much of his writing he seems to assume the esthesic position of an analyst or listener

who take an active role,8 he also seems to consider the perspective of a performer,

composer, or even the music itself.9 The movements themselves can then again be

taken literally as physical performer gestures,10 metaphorically as musical gestures

present in the music itself,11 abstract generative gestures performed by a composer,

or imaginative gestures a listener performs on Gestalts in the process of understanding

certain aspects of the music. Ultimately, for Lewin, the “transformational outlook

introduces an attractive kinetic component into theories that suffer from a static

character when “dominant” et al. are conceived merely as labels.”12

7David Lewin. “Forte’s Interval Vector, My Interval Function, and Regener’s Common-Note
Function”. In: Journal of Music Theory 21:2 (1977), pp. 194–237, p. 234.

8Such as in David Lewin. “Music Theory, Phenomenology, and Modes of Perception”. In: Music
Perception 3 (1986), pp. 327–92. As Michael Klein points out, GMIT makes few explicit connections
between a theory of transformations and the act of composing.” Michael Leslie Klein. Intertextuality
in Western art music. Indiana University Press, 2005, p. 23.

9In the introduction to GMIT Lewin mentions a composer, besides a singer and a player. Lewin,
Generalized Musical Intervals and Transformations, p. xxxi.

10Steven Rings labels this the concrete interpretation. Rings, “Tonality and Transformation”, p.
46.

11Such as described by Zuckerkandl, who says that musical contexts are kinetic contexts and that
hearing music is above all hearing motion. Victor Zuckerkandl. Sound and Symbol. Music and the
External World. Ed. by Translated by Willard R. Trask. Routledge, 1956.

12David Lewin. “A Formal Theory of Generalized Tonal Functions”. In: Journal of Music Theory
26:1 (1982), pp. 23–60, p. 329. Some scholars believe that Lewin wanted transformational thinking
to replace intervallic thinking. For instance Henry Klumpenhouwer. “Essay: In Order to Stay
Asleep as Observers: The Nature and Origins of Anti-Cartesianism in Lewin’s Generalized Musical
Intervals and Transformations”. In: Music Theory Spectrum 28:2 (2006), pp. 277–89, p. 277-8, and
most reviewers he cites. However, Lewin himself does not explicitly express a preference for any
of the approaches: “we do not have to choose either interval-language or transposition-language;
the generalizing power of transformational theory enables us to consider them as two aspects of one
phenomenon. Lewin, Generalized Musical Intervals and Transformations, p. 160.

6

What is most anti-Cartesian about this view is that these kinetic actions do not

seem to presuppose a rational perspective, but can be understood in a more intuitive

embodied fashion, even though they might ultimately be described using mathemat-

ical transformations. The subjects seems to do be able to perform gestures without

having to think outside of music and without being troubled by non-musical matters.

The use of the terms gestures and movements make these actions continuous processes

that are comprehensible and observable at every stage through this continuity.

All this seems at first paradoxical in view of the mathematical formalisms that

Lewin introduces. Not only do the formalisms themselves appear utterly rational,

but the transformations do not seem to account for the continuity Lewin perceives.

In other words, the mathematics alone do not justify either Cartesianism or non-

Cartesianism. Lewin admits this himself by noting that intervals and transformations

can be seen as aspects of the same phenomenon.13 Specifically, Lewin defines both,

intervals and transformations, the same way, as mathematical functions, with the sole

difference that transformations do not have to be invertible. Lewin’s metaphors are

thus not strictly tied to the formalisms of intervals and transformations.14 On the one

hand, we may consider intervals as a special case of transformations, namely trans-

positions, and are thus able to choose freely between a Cartesian or non-Cartesian

perspective. On the other hand, it is perfectly conceivable that an analyst may be

observing transformations from an outside perspective, not being actively involved in

them.15

13Lewin, Generalized Musical Intervals and Transformations, p. 159/60.
14Michael Cherlin. “On Adapting Theoretical Models from the Work of David Lewin”. In: Indiana

Theory Review 14 (1993), pp. 19–43, p. 21.
15Julian Hook brings attention to the fact that Descartes considers motion as an object property

and would thus look at transformation in the same way. Julian Hook. “David Lewin and the
Complexity of the Beautiful”. In: Intégral 27 (2007), pp. 55–90, p. 173 n. 15. He also emphasizes
the importance of objectivity in mathematics and considers Lewin’s metaphors unsuitable. ibid., p.
176.

7

Yet, what is usually not discussed is that it is Lewin’s use of graphs and networks

in connection with transformations that create the main perceptive difference. While

with interval systems we seem obliged to perceive all distances simultaneously, with

transformation networks we seem to be able to be more selective and choose to rep-

resent the few transformations that appear relevant to us. We have the power to

recreate a musical work in one of the many ways in which we may subjectively hear

it, or we can bring attention to any of the aspects that seem most relevant to us. Seen

this way, the paths in a transformational network may be seen as phenomenological

rather than atemporal objective descriptions.

A second problem is the discrepancy between Lewin’s strict formalisms and his

vague description of the notion of gesture. Even when speaking metaphorically rather

than literally, Lewin seems to identify gestures with transformations. However, the

mathematical nature of the transformations he uses are in fact plain functions that

map arguments to values but do not exactly specify how the argument reaches the

position of the value. For instance, if we perform F] = I4(B[), how do we imagine

the B[to reach F]? Is what we imagine any different from what happens during

T8(B[)? The functions themselves do not describe any of this. In other words, all

states between the argument and the value are not specified. Thus, if an arrow in a

transformation network stands for a function, its (imaginary) intermediate states are

not specified. The continuous appearance of an arrow seems deceiving in relationship

to what it does.16 Of course, it is acceptable to keep the concept of gesture entirely

in the mind of the analyst or performer, and to abstractly represent the gesture with

a transformation, but this does not seem to be what Lewin envisioned. Further-

16Mazzola discusses this in Guerino Mazzola. La vérité du beau dans la musique. Paris: Dela-
tour/IRCAM, 2007, p. 155-6 and refers to Gilles Châtelet, who brings attention to the illusory
nature of functional arrows. Gilles Châtelet. Figuring space: philosophy, mathematics, and physics.
Kluwer, 2000. See also Hook, “David Lewin and the Complexity of the Beautiful”, p. 175-6.

8

more, many of Lewin’s transformations cannot easily be imagined as gestures. Some

transformations, however, can more easily be imagined gesturally than formalized

mathematically.17

One of the scholars that bring attention to this problem is John Roeder, who

suggests the use of animation in order to visualize the processes represented by a

transformation network. He maps the space of his example networks to spaces such

as a pond or a parquet floor, where lily pads and floor tiles directly correspond

to the nodes of the network. Additionally, in order to represent Lewin’s “insider”,

he first introduces an agent such as a fish or a mouse with which the viewers may

identify in order to gain the inside perspective themselves. After a few experiments,

he concludes that unless “we empathize sufficiently with the agent, we may feel like

uninvolved, passive observers.”18 Roeder finally copes with this problem by providing

an interactive system, Animation 13, by means of which users can freely travel the

edges of a network in first-person perspective and witness the musical outcome, which

Roeder considers “perhaps the closest possible realization of Lewin’s vision of being

“inside” the music”.19

Nevertheless, there are several limitations to Roeder’s approach. Even though

he significantly clarifies what Lewin may have meant for an analyst to be inside the

music, the solution to the question of gestures seems lacking. He does not suffi-

ciently distinguish between the spaces where the musical objects exist and the space

where a transformation network is defined. His animations are mainly concerned with

movements along the graph rather than the movements of the musical objects them-

17The transformation MUCH(s), for instance, which maps a tone row s into the retrograde
inversion the beginning of which overlaps the most possible with the ending of s. Lewin, Generalized
Musical Intervals and Transformations, p. 8.2.5.

18John Roeder. “Constructing Transformational Signification: Gesture and Agency in Bartok’s
Scherzo, Op. 14, No. 2, measures 1-32”. In: Music Theory Online 15:1 (2009), p. 11.1.

19Ibid., p. 11.3.

9

selves. The gestures that the agent performs in this space have no relationship to

the underlying musical gestures, not even in the metaphorical way Roeder suggests.20

Furthermore, even though the animations are visually continuous, only the beginning

and ending nodes have musical significance. All intermediary places on the arrows

have a purely visual existence. In sum, Roeder’s systems are mere superficial visual-

izations of the transformation networks and not of the musical contents described by

the networks and their transformations.

Guerino Mazzola also repeatedly addressed the problem of gestures in Lewin21 and

together with Moreno Andreatta provided an extension of his own transformational

theoretical approach based on category theory and topos theory.22 This extension, so-

called gesture theory, describes continuous rather than discrete movement by taking

the graphs of transformational theory into topological spaces, where the schematic

arrows are replaced by continuous curves. The theory is inspired by Mazzola’s onto-

logical dimension of embodiment that consists of the three levels of facts, processes

and gestures.23 Lewin’s graphs are members of the processual rather than gestural

level, for the reasons of discontinuity discussed above. In comparison with Roeder,

Mazzola considers gestures to literally take place in the mathematical space where

the transformed musical objects are situated.

Despite the problems just described, Lewin’s statements and ideas are relevant

in terms of the thoughts about the distance between music and mathematics formu-

lated in the beginning of this introduction. The question about anti-Cartesianism is

20Roeder thinks that in his example “the performer is not a pianist hitting various keys, but a fish
whose gestures metaphorically represent the structure of the pitch changes.”Roeder, “Constructing
Transformational Signification: Gesture and Agency in Bartok’s Scherzo, Op. 14, No. 2, measures
1-32”, p. 7.7.

21For instance in Guerino Mazzola and Paul Cherlin. Flow, Gesture and Spaces in Free Jazz.
Towards a Theory of Collaboration. Berlin/Heidelberg: Springer, 2009, p. 67-8.

22Guerino Mazzola and Moreno Andreatta. “Formulas, Diagrams, and Gestures in Music”. In:
Journal of Mathematics and Music 1.1 (2007), pp. 21–32.

23Mazzola, La vérité du beau dans la musique, p. 155-6.

10

precisely about distance. We may speak of composers, performers, or analysts expe-

riencing a Cartesian distance to the music when they do not manage to think inside

the music in Lewin’s sense. They experience this distance if their concepts, be they

mathematical or not, have an existence only outside of the music and fail to appro-

priately describe what happens in the music. All of the distances introduced above

may be seen as specifications or partial distance of such a Cartesian distance. The

conceptual distance is minimized when gestures become intuitively understandable in

the way Lewin envisioned it, the generative and temporal distances are abolished by

the phenomenological perspective, and the sensual distance is no longer perceived if

the gestures are seen as embodied, either if they are physical or metaphorical where

the subject assumes existence inside the music. As the debate around Lewin’s ideas

shows, however, it is not mathematics itself that produces these distances, but musical

concepts in general.

These ideas and problems gave the initial spark for the work described in this

thesis. The outcome, the BigBang rubette module for the Rubato Composer software,

is an exploratory implementation of solutions to these problems. The software’s main

focus is to apply the principles of transformational theory to composition rather than

analysis, poiesis rather than esthesis, and to thereby minimize all types of distances

discussed above. It does this by implementing the three levels of Mazzola’s ontological

dimension of embodiment and allowing users to interact with any of the levels of facts,

processes, and gestures. The software also provides functionality that may achieve

some of what Lewin had envisioned and may thus be used as an experimental platform

for music theorists as well. While Roeder’s interactive Animation 13 or the animations

created by other scholars presented material based on pre-fabricated networks, this

system allows musicians to create transformational networks and the corresponding

gestures on the fly, which can be crucial for a deeper understanding of the theory and

11

supports a more active and free involvement with musical material, perhaps coming

as close as possible to Lewinian anti-Cartesianism.

Part I of this thesis introduces the conceptual categories of facts, processes, and

gestures, and reassesses recent achievements in music theory, composition, and mu-

sic informatics in their light. First, any type of transformational theory presupposes

specific types of conceptualized musical objects. In Chapter 2, I discuss the types of

such musical objects there are by introducing Mazzola’s topographic musical ontol-

ogy. Then, I focus on the dimension of embodiment which explains how such objects

may come about or how they may be transformed into each other. Finally, I discuss

how the three levels of embodiment are interconnected and how there can be com-

munication between them. In Chapter 3, I briefly outline how three fields or stages

of mathematical music theory, set theory, transformational theory, and gestural the-

ory, can be seen as analogous to the three levels of embodiment. In this occasion, I

introduce the category-theoretical and gesture-theoretical constructs that this thesis

is built upon. Finally, in Chapter 4, I discuss the notions of the processes of composi-

tion and improvisation that underlie this thesis and investigate recent developments

in computer-assisted music creation, and how they relate to the dimension of em-

bodiment. I will place a special focus on the Rubato Composer software for which

BigBang is designed.

Part II presents the theoretical reasonings behind the software and discusses it

from a conceptual point of view. The part is structured according to the three levels

of embodiment. Chapter 5 gives a brief introduction to the software. In Chapter 6 I

explain the types of facts in terms of musical objects available in BigBang and how

they can be created, visualized, and sonified. I discuss previous achievements in Big-

Bang and comparable predecessors and present many examples of types of musical

objects and how they can be represented in BigBang. In Chapter 7, I describe how

12

processes are implemented and visualized, what types of processes there are, and how

they can be interacted with in BigBang, again with many examples. Chapter 8 intro-

duces the two gestural aspects of BigBang : gestural interaction and gesturalization

of processes. I connect BigBang ’s workings to gesture theory and discuss the current

ways users can interact with the software in gestural ways.

Finally, Part III is concerned with more technical questions underlying the im-

plementation of BigBang, as well as examples of practical uses in composition and

improvisation. Chapter 9 discusses relevant aspects of the implementation and out-

lines the architecture of the software. Even though in the context of this thesis I did

not have the opportunity to create elaborate musical works due to time constraints, in

Chapter 10 I refer to some of the innumerable smaller examples and sketches I created

in order to illustrate some of the various ways of making music with the software.

Each of these examples focuses on different musical objects or techniques available in

BigBang. I briefly explain how they can be created and provide links to SoundCloud

and YouTube, where they can be listened to and watched.

13

Chapter 2

Musical Ontology and

Conceptualization

In any musical activity, be it performance, composition, analysis, or listening, we are

either confronted with or we are generating concepts that describe a great variety of

musical objects. With any form of notation, analytical representation, or composi-

tional constraints, one refers to specific musical entities, often of strikingly distinct

nature. Since in this thesis I will be concerned with modeling such objects math-

ematically and representing them visually and auditorily, as well as with providing

ways of interacting with them, it will be helpful to first consider them in a more

philosophical way. What are musical works and where do they exist? What kinds of

musical objects do musical works really contain and how do these objects get there?

What kinds of objects can we hear and what concepts do we create do describe them?

Even though music theorists deal with such questions on a daily basis, they really

are subject to musical ontology, the philosophy of musical existence, the goal of which

is to identify which musical entities exist, how they can be categorized, and what hi-

erarchies can be established among them. Until recently, musical ontologists have

14

largely been concerned with musical works and their performances rather than the

smaller entities of musical existence that works are made of. Most musical philoso-

phers agree on the fact that musical works are some sort of sound structures, be they

abstract or not, eternal or socio-historical. But they rarely attempt to define what

these sound structures are made of and are rather concerned with questions of au-

thentic performance, differences between musical works depending on styles, or the

Platonist fundamentalist debate, which deals with the question wether or not works

exist and whether they are discovered or created by musicians.1

Nevertheless, in an obvious sense, many works are composed of several parts,

which may in turn be composed of voices, again composed of melodic fragments,

and so on. Entities on any such level can be said to have an individual musical

existence and are thus worthy of being described and categorized in ontological terms.

Even a pitch by itself refers to a greater space of existence that presupposes musical

characteristics. Roger Scruton and Stephen Davies are two of the few philosophers

who recently addressed the question of the nature of the musical elements that make

up musical works.2 In a nutshell, they take sounds as atomic musical objects and

regard them as audible physical objects which only become musical when they relate

to other sounds. Scruton calls these musical objects tones and claims that for them to

exist, it takes relationships such as tonal or rhythmical relationships that are unique

to music. He then suggests that in the process of listening we attach metaphors to

the movement perceived in the tones themselves and their relationships.3 Scruton sees

these movements as happening in an imaginary rather than geometrical space. In fact,

for Scruton, musical objects, their space, and their motion are not even analogous to

1Andrew Kania. “The Philosophy of Music”. In: The Stanford Encyclopedia of Philosophy. Ed.
by Edward N. Zalta. Spring 2014 Edition. 2014.

2Lydia Goehr et al. “Philosophy of music”. In: Grove Music Online. Oxford Music Online.
Oxford University Press, 2014.

3Roger Scruton. The Aesthetics of Music. Oxford: Oxford University Press, 1997, p. 1-96.

15

the physical space we live in.4 Davies, on the other hand, discusses music theoretical

entities such as pitches, rhythm, harmony, meter, melody, or instrumentation, and

discusses the implications these entities have on the identity of the sound structure

of a musical work.5

What is striking is that both Scruton and Davies strictly adhere to elements

of common-practice music theory to describe smaller musical entities, which seems

problematic regarding both music before 1800 and since the twentieth century. Fur-

thermore, their systems lack the description of other ways we may hear or conceive

music, in trained and non-trained ways, for instance, as described by Mark DeBellis.6

Nevertheless, if we think of music theory as an extended field including acoustics and

psychology of perception, its concepts describe a great deal of musical objects on any

hierarchical level. Not all of these objects may be of the same significance to the com-

poser or listener in any moment of conception or perception. Composers typically do

not think of notes as discrete objects but rather as parts of a larger melodic/harmonic

gestalt. In a similar way, listeners generally perceive groups of notes with certain re-

lationships rather than individual frequencies or time points. This intermediary level,

reasonably efficient and informative, is what is usually referred to the level of basic

categories.7

One of the strengths of transformational theory is that it can be applied any type

of musical object, on any hierarchical level. A transformational network may describe

higher formal principles as shown in Lewin’s second book,8 but also on a micro-level,

4Scruton, The Aesthetics of Music, p. 56.
5Stephen Davies. Musical works and performances: A philosophical exploration. Oxford Univer-

sity Press, 2001, p. 45-71.
6Mark DeBellis. Music and Conceptualization. Cambridge University Press, 1995.
7Lawrence M Zbikowski. Conceptualizing music: Cognitive structure, theory, and analysis. Ox-

ford University Press, 2002.
8David Lewin. Musical Form and Transformation: Four Analytic Essays. New Haven: Yale

University Press, 1993.

16

showing relationships between pitches classes, such as in Klumpenhouwer networks.9

The work in this thesis builds on a way of modeling musical objects from ground

up, in a hierarchical way, using mathematical category theory. Nevertheless, it is a

crucial requirement for the software developed in the context of this thesis to offer

musicians the possibility to intuitively define and manipulate objects on the level of

basic perceptual categories, as will be discussed later on.

First, let us turn to a more open yet systematic characterization of the nature

of musical entities, based on both, ontology and semiotics. In discussing it, I will

repeatedly refer to other philosophers’ work.

2.1 Mazzola’s Topography of the Ontology of Mu-

sic

Many of the notions of musical works and thus also smaller musical entities include a

characteristic that we have not yet discussed. David Davies, for instance, sees a work

mainly as an intentional outcome of actions performed by a composer.10 Stephen

Davies sees it as more or less “thick” instructions for a successful performance.11

Others think of a work as the collection of all potential performances. These are

all reasonable notions that prove viable depending on what type of work or what

aspects of a work one is interested in. However, it seems that each of these notions

focus on different perspectives of what might constitute a musical communication

process. Scholars interested in musical meaning have developed a branch of music

theory concerned with semiotics. It may be claimed that the semiotic level is basic to

9David Lewin. “Klumpenhouwer networks and some isographies that involve them”. In: Music
Theory Spectrum 12.1 (1990), pp. 83–120.

10David Davies. Art as Performance. Malden, MA: Blackwell, 2004.
11Davies, Musical works and performances: A philosophical exploration.

17

our understanding of musical ontology. This is what Mazzola does in his ontological

topography, first introduced in Geometrie der Töne.12

Mazzola’s system is an extension of Paul Valéry’s artistic and Jean Molino’s musi-

cal communication scheme,13 adopted by Jean-Jacques Nattiez,14 which includes the

three stages of poiesis, trace (neutral level), and esthesis, which purposefully sepa-

rates the esthesic effect from poietic intention. Poiesis includes the intended objects

of the originators or senders of the musical message, which include for instance com-

posers, performers, or analysts describing their way of hearing a piece. The neutral

level includes the work itself in a form such as a musical score, a recording, or infor-

mal performance instructions. Esthesis is the activity of the receiver, who can be an

audience, a theorist, an analytical computer tool, and so on. Interestingly, the three

notions of musical works discussed in the previous paragraph each correspond with

one of these stages, respectively. The first focuses on the poietic process of the com-

poser, the second on the score as a set of instructions, and the third as all potential

performances, which are again potential poietic achievements, depending on the level

of freedom a score allows for. It becomes clear from this, that a single work can go

through several iterations of this communication process. For instance, composers are

typically already involved in a listening or analytical process when examining their

own work during their poietic process and the poietic process thus again consists of an

encapsulated poiesis/neutral level/esthesis, the neutral level figuring in intermediary

versions or sketches of the composition.

Mazzola extended this scheme by first adding two additional dimensions, each

of them perpendicular to the dimension of communication, as shown in Figure 2.1.

12Guerino Mazzola. Geometrie der Töne: Elemente der Mathematischen Musiktheorie. Basel:
Birkhäuser, 1990, pp. 1-13.

13Jean Molino. “Musical Fact and the Semiology of Music”. In: Music Analysis 9.2 (1990),
pp. 105–56, p.106.

14Jean-Jacques Nattiez. Musicologie générale et sémiologue. Paris: Christian Bourgois, 1987.

18

2.5 The Baboushka Principle 9

Fig. 2.4. The classical three-dimensional cube of musical ontology.

cessual dynamics. Processes are a kind of factory for facts, but not the facts
themselves. The processual level is fundamentally different from its output
products. Processes and facts are instances of different ontologies.

Going still farther in the initiated direction, processes are also an abstrac-
tion from a more basic layer—namely, the gestural layer—where all processes
and their facts are initiated. Processes are disembodied gestures, reduced to
their referential system of transformations.

This means that a new dimension must be added to the cube of musical
ontology. This fourth dimension is called dimension of embodiment. Its three
values are: facts, processes, and gestures. They deal with, respectively, these
activities: “what is the case,” “to refer to,” and “to make.” In this scheme,
the transition from gesture to process is dominated by disembodiment and
schematization, whereas the transition from process to facts is dominated by
evaluation and dissection (from the relating transformations).

Together with the previous three-dimensional cube of ontology, this fourth
dimension creates a four-dimensional cube, which we call the hypercube of
musical oniontology. It takes the form of a three-layered onion of gestural,
processual, and factual levels of ontology, as shown in Figure 2.5.

2.5 The Baboushka Principle

The above dimensions do not mean that musical ontology is indecomposably
inscripted in such coordinates. It mostly happens that the 3 × 3 × 3 × 3 co-
ordinates are themselves encapsulated subsystems of the same nature. This

Figure 2.1: Mazzola’s three-dimensional topographic ontology.

The semiotic dimension includes the three Hjelmslevian stages signifier, signification,

and signified. While Nattiez had uniquely focused on the semiotic aspects of the

neutral level,15 Mazzola’s model extends the discussion to semiotic existence in both

the poietic and esthesic levels. A score or a recorded performance, both elements of

the neutral level, are thus not the only imaginable signifiers. Both the composer and

the listener may create imaginary signifiers that do not figure in the score, attaching

to it their own signified, and may in turn communicate this to another audience.

The dimension of realities adds a distinction between physical, mental, and psy-

chological existence. Whereas it is debatable where musical works themselves exist

and whether they are physical entities or not, their ultimate purpose is always to

decide upon and bring into existence physical musical entities. Mazzola’s physical

reality level hosts any musical instance that is audible, tangible, or visible, such as

15Nattiez, Musicologie générale et sémiologue.

19

scores, instruments, speakers, or performances. The mental reality accounts for mu-

sical concepts such as music theoretical concepts or perceptive concepts, as described

in the last section. Finally, the psychological level contains any concepts relating to

musical expressivity, emotions, and so on.

The iterative recursive nature that I described above for the communicative dimen-

sion applies to every dimension and Mazzola sometimes refers to this as the Babushka

principle. In the semiotic dimension, for instance, we may identify the representation

of even a single musical sound as an iterative semiotic procedure. A tone with a

frequency of about 440 Hz is what we call A3, which can be represented as a note

head with two ledger lines below the treble clef staff, which we can type as {a3} in

the programming language LilyPond, and so on.

In sum, any musical object, on which ever hierarchical level it may be, has an

existence in some, many, or all the nodes of intersection between levels of the three

dimensions. A score, for instance, is primarily an element of the physical, neutral,

and signifier intersection, whereas the tritone as diabolicus in musica primarily exists

on the neutral, signified, and mental or psychological intersection, within a certain

historical context of meaning.

2.2 The Dimension of Embodiment

In the previous sections, I have repeatedly used the word process, conceiving the work

as an evolving entity. Thereby I have faced a major problem with ontology, which

most often attempts to capture rigid entities and freeze them in time. However,

musical works are arguably much more dynamic entities that may evolve in several

stages of reworking, with changing performance practice or with shifting analytical

20

understanding, or they may even be conceived as open works.16 Poiesis itself is a

process that may take many years, and yet the work exists on the neutral level at

every stage along the process and might even be performed.17 The same is true for

esthesis, which in a similar way, cannot be seen as an atomic activity. With each

hearing, the process of listening can be different, the listeners may focus on different

musical entities, may choose a different way of hearing, or may be influenced by what

they heard in earlier hearings or learned by analyzing the score.18 In a similar way,

signification can be seen as a process. Many music theorists argue for a more dynamic

understanding of musical works by seeing musical entities as contextual rather than

Platonically fixed, emerging from a specific socio-historical context, and evolving with

its transfer through history and cultures.19

A second point of concern is that processes do not really describe what they claim

to describe, as they are still abstracted and discrete in nature, just as are the facts.

Musicians often use more continuous terms when they describe actions, as already

discussed above, regardless of whether they are describing physical, mental, or psy-

chological matters. The term gesture appears in all these contexts. Theodor W.

Adorno, for instance, speaks of the score as the “seismographic curves, which the

body has left to the music in its gestural vibrations,”20 in a quite literal sense, envi-

sioning composing as a gestural process, both physically and metaphorically. Score

notation is then, for Adorno, an artificial way of conservation that negates gestures

and kills music.21 Renate Wieland, a student of his, sees gestures as having evolved

16Pierre Boulez. “Sonate, que me veux-tu?” In: Perspectives of New Music (1963), pp. 32–44.
17As seen above, Scruton or David Davies see works of music as intended objects resulting from

a series of human actions. Scruton, The Aesthetics of Music, p. 107. Davies, Art as Performance
18Already Molino speaks of poiesis and esthesis as processes. Molino, “Musical Fact and the

Semiology of Music”, p. 105-6.
19Jerrold Levinson. Music in the Moment. Cornell University Press, 1997.
20Theodor W. Adorno. Zu einer Theorie der musikalischen Reproduktion. Frankfurt am Main:

Suhrkamp, 2001, p. 247.
21Ibid., p. 235/44.

21

from a specific meaningful action context and being abstractions thereof, they still

exist in a gestural coordinate space.22 Robert Hatten, who emphasizes the impor-

tance of developing a formal theory of musical gestures as a branch of music theory,

defines gesture as a “communicative (whether intended or not), expressive, energetic

shaping through time (including characteristic features of musicality such as beat,

rhythm, timing of exchanges, contour, intensity), regardless of medium (channel) or

sensory-motor source (intermodal or cross-modal).”23 These scholars define gestures

independently of a semiotic context and of the process of signification, in contrary to

the popular notion of gestures as a specific carriers of meaning. This does not mean

that they cannot carry meaning but they are often abstracted from it.

In a more general sense, gesture is increasingly regarded as not only supporting

our thinking processes, but literally as a means to learn to think. Susan Goldin-

Meadow, for instance, sees gestures as crucial in a child’s process of learning to think

mathematically: “Advances in mathematical reasoning are very likely to come first in

gesture – and they do. [...] Do new ideas always come first in gesture, regardless of do-

main?”24 Neuroscientists Gentilucci and Corballis suggest that language and gesture

evolved as a joint communication system, which can still be seen in the accompanying

gestures speakers make.25 This coincides with ideas in recent French philosophy such

as Maurice Merleau-Ponty’s, who repeatedly refers to words as gestures.26 Mazzola

finds in this and the writings of Gilles Deleuze and Charles Alunni, among others, the

notion of gestures as presemiotic rather than semiotic entities.27 In sum, as in many

22Cited and explained in Guerino Mazzola. Musical Performance: A Comprehensive Approach:
Theory, Analytical Tools, and Case Studies. Berlin Heidelberg: Springer, 2011, p. 121f.

23Robert Hatten. Interpreting Musical Gestures, Topics, and Tropes. Indiana University Press,
2004.

24Susan Goldin-Meadows. Hearing Gesture: How Our Hands Help Us Think. Harvard University
Press, 2003.

25Maurizio Gentilucci and Michael C Corballis. “From manual gesture to speech: A gradual
transition”. In: Neuroscience & Biobehavioral Reviews 30.7 (2006), pp. 949–60.

26Maurice Merleau-Ponty. Phénoménologie de la perception. Gallimard, 1945, p. 211f.
27Mazzola and Cherlin, Flow, Gesture and Spaces in Free Jazz. Towards a Theory of Collaboration,

22

other fields, in music cognition scholars have increasingly let go of Cartesian dual-

ism and considered musical experience as an embodied process in which the listener

directly engages with the music in a way directly related to physical activity.28

Inspired by the French school, Mazzola extended his three-dimensional ontological

topography by adding a fourth dimension after realizing that his earlier model only

included facts, in other words everything that is the case in a Wittgensteinian sense.29

The process of creating or understanding something or the process of evolution could

not be situated within the previous three-dimensional ontological system, such as

for instance improvised music or gradual understanding in a phenomenological sense.

Mazzola decided to add the so-called dimension of embodiment, which again includes

three levels: facts, processes, and gestures, as shown in Figure 2.2.

The level of facts contains everything that is the result of a process, be it final

or intermediary.30 In composition, for instance, it includes any record of a work or a

performance, either published in the form of a score or a recording or existing as an

intermediary sketch or version. Evidently, not all results of processes or partial pro-

cesses survive in material form, especially if they are intermediary stages of thought

processes. Other examples of facts are any stage of an analytical process of a work

or stages of psychological reaction in the listening process.

On the level of processes we find descriptions of how specific facts are created and

explanations of how we can get from one fact to another. These exist in the form of

operations or actions manipulating musical material, possibly to be broken down to

p. 74.
28See for instance Marc Leman. Embodied Music Cognition and Mediation Technology. Cam-

bridge: MIT Press, 2007, p. 3f.
29Mazzola, La vérité du beau dans la musique, pp. 154-6. Mazzola and Cherlin, Flow, Gesture and

Spaces in Free Jazz. Towards a Theory of Collaboration, p. 32.
30Mazzola usually speaks of facts being the final product of a process. However, with any partial

process being again a process, the outcome of any partial process is again a fact. Thus, at any
intermediary state of a process, we must find a fact.

23

10 Oniontology: Realities, Communication, Semiotics, Embodiment of Music

Fig. 2.5. The hypercube of musical oniontology defined by the fourth dimension
of embodiment. The graphics illustrate facts (the Möbius strip as a configuration
of tonal degrees), processes (a diagram from Lewin’s transformational theory), and
gestures (a model of the pianist’s hand).

reiteration of the hypercube’s structure is called the Baboushka principle. It
does not mean that new dimensions are generated, but that each position in
the hypercube can recursively be the compact representation of still a finer
hypercube of the same type. Let us make this clear on the two examples of
semiotics and communication.

In the semiotic dimension, it is a classical result from Louis Hjelmslev’s
investigations [52] that the expressive surface of a semiotic system may be a
semiotic system in its own. This is the case, for example, in so-called dou-
ble articulation in language. Here, the words—expressions of the language
sign system—are also signs with a graphical expression—the written level of
alphabetization—that signifies its acoustical content. This level or semiotic
ramification within the expressive level of the top system is called connotation.
If, on the other end, the content level is itself a semiotic system, the compris-
ing system is called a metasystem. And if the middle layer of signification is
a semiotic system, the comprising system is called a motivated semiotics. It
can be shown that music is built from a repeated imbrication of connotative
subsystems [76, 77].

Figure 2.2: Mazzola’s extension of the ontology cube to a hypercube by introducing
the dimension of embodiment.

any level of detail, until atomic operations are reached. These actions are typically

called transformations, as it is common in process philosophy.31 Processes also exist

on a more abstract level as diagrams that may be applied to a variety of facts. For

instance, if a musical theory gives us a recipe on how to extract certain analytical

facts from a musical work, it is typically successfully applicable to an entire family of

works in order to be viable. On the other hand, a compositional theory describing a

process may lead to a great variety of pieces when applied to various musical material.

Finally, the level of gestures accounts for what processes fail to describe. Gestures

31Johanna Seibt. “Process Philosophy”. In: The Stanford Encyclopedia of Philosophy. Ed. by
Edward N. Zalta. Fall 2013. 2013.

24

are continuous entities that have a temporal existence. However, they are not bound

to the physical level. Gestures may exist as mental representations, psychological

signifieds, and so on,32 and they are independent from semiotics, as seen above. While

processes are abstract descriptions of an operation or action, both the realization

and the comprehension of a specific process can typically happen in various ways,

depending on the means and capacities of the individual.33 For instance, the result

of an action may simply be a musical transposition, but the ways in which this can

be achieved, vary greatly.

In sum, the dimension of embodiment represents three increasing degrees of em-

bodiment, from facts to gestures. While processes still relate to specific gestures by

being disembodied representations of them, facts are simply the results and we need a

certain amount of analytical capabilities to reconstruct the originating gestures that

made the facts. This relates strongly to the discussion in the introduction of this the-

sis. Both recent philosophy and psychology have come to the conclusion that much

of our understanding of the world comes from an anti-Cartesian understanding of

ourselves as part of the world, rather than beings reasoning about it from outside, or

even ones based on given metaphysical constants. The way we make and understand

music is to a great extent determined by an understanding of temporal activities,

such as the physical gestures of a performer or the mental gestures of a composer,

which we may perceive in any existing form of music. This does of course not mean

that everything in music is gestural. For instance, abrupt changes or ironic juxta-

32Mazzola associates gestures with the activity of making. This of course also includes the com-
prehension and reenactment of how something was made. Similarly, recent neurological research has
show that when someone is observing the activity of someone else, their so-called mirror neurons
act in precisely the same way as the neurons of the person who is performing the activity.

33This compares to what Scruton says about actions and events. The former contains an inten-
tionality, whereas the latter is a means to achieve it. Actions can be performed using different events,
but the same event can also be used to perform different actions. Scruton, The Aesthetics of Music,
p. 107. Gestures, for Scruton and many other musical scholars, are purely metaphorical movement.

25

positions may precisely play with the absence of gesture and continuity. However,

based on recent findings in the psychology of perception,34 we claim that the way

even such juxtapositions are understood, is by establishing a relationship between

the discrete juxtaposed parts, and performing an imaginary comparative gesture in a

mental space.

2.3 Communication Between the Levels of Embod-

iment

In early descriptions of the new ontological dimension, Mazzola characterized the

procedures necessary for the communication or translation between these levels in

the direction of increasing abstraction. In order to become processes, gestures need

to be disembodied and schematized, and in turn, processes are evaluated and facts

dissected from them.35

In later publications inspired by the work for this thesis,36 we described this com-

munication in a more detailed way and introduced the three procedures formalizing,

factualizing, and gesturalizing, which also describe communication in the other direc-

tion, from processes to gestures (see Figure 2.3):

• Formalizing consists in distilling the essence of a gesture and representing it in

an abstract, schematized way. For instance, a series of performer gestures may

34Roger N Shepard and Lynn A Cooper. “Mental Images and Their Transformations”. In: MIT
Press. 1986.

35Mazzola and Cherlin, Flow, Gesture and Spaces in Free Jazz. Towards a Theory of Collabo-
ration, p. 33. These translations already appear in Gilles Châtelet’s writings: “A diagram can
immobilize a gesture, put it to rest long before it hides itself within a sign, and this is why the
contemporary geometers or cosmologists love diagrams and their power of preemptive evocation”.
Châtelet, Figuring space: philosophy, mathematics, and physics, p. 9-10.

36Florian Thalmann and Guerino Mazzola. “Poietical Music Scores: Facts, Processes, and Ges-
tures”. In: Proceedings of the Second International Symposium on Music and Sonic Art. Baden-
Baden: MuSA, 2011.

26

path!

processualize!

Figure 2.3: The three levels of embodiment and the arrows symbolizing communica-
tion between them.

be represented as a diagram of gestures in the manner of a flow chart. Or, we

may attempt to find a mathematical function for a transformation imagined in

a gestural way.

• Factualizing is the procedure of obtaining facts from processes, analogous to

determining the resulting dish from a cooking recipe. This is for instance done

by composers who complete another composer’s work starting from sketches

and processual drawings. On the other hand, the application of a standardized

analytical procedure to a piece also leads to factual results and can thus be seen

as an instance of factualizing.

27

• Gesturalizing recreates gestures from processes by defining and interpolating

subprocesses. Any reenactment or understanding of an abstracted process pre-

supposes this procedure. For example, it is a substantial part of the listening

process. When we listen to a recording we may variously reconstruct performer

gestures, if we are familiar with the instrument, conductor gestures, in case

of larger groups, composer gestures, if we are familiar with the composition

process, or psychological gestures evoked by the ambiance or extra-musical in-

formation we hold about the event.

Missing in this description is a fourth procedure, doubtlessly the most difficult

and ambiguous of all:

• Processualizing consists in deriving processes from facts, which may be done in

innumerable ways and which lies at the center of music analysis. It does not

merely include the reconstruction of the compositional process based on the final

material existence of a work and possible intermediary documents or sketches,

but might for instance equally consist in the construction of a speculative or

personal hearing process, or the derivation of procedurally related analytical

levels.

In this thesis, I propose solutions for the implementation of the first three pro-

cedures which are rarely discussed in computational music theory. Numerous recent

activities have focused on the implementation of analytical software components, in-

cluding ones for Rubato Composer.37

37Ruhan Alpaydin and Guerino Mazzola. “A Harmonic Analysis Network”. In: (forthcoming).

28

Chapter 3

The Paradigm Shift towards

Gestures in Music Theory and

Analysis

Music theory, especially mathematical music theory, provides a great variety of con-

cepts that can be seen as corresponding to the three ontological levels of facts, pro-

cesses, and gestures discussed in the previous chapter. To a certain degree, we can

even identify a gradual transition from the former to the latter, most probably in-

spired by developments in mathematics, philosophy, psychology, computer science,

and other fields. Many fields have seen such a transition that could be characterized

as a paradigm shift, sometimes called the topological turn, even if often the concepts

corresponding to the three levels coexist and are jointly used in theoretical treatises

and analytical research.

The focus in this chapter is to find and describe some of these concepts used

in music theory, including the formalisms underlying the work of this thesis, and

to discuss their relationship to each other and to the levels of facts, processes, and

29

gestures.

3.1 Facts and Set Theory

Mathematical set theory, group theory, and combinatorics were the inspiration for a

theoretical toolbox now accepted as a standard for the analysis of atonal and some-

times tonal music. Musical set theory was initiated by Howard Hanson and Allen

Forte, in reaction to Milton Babbitt’s mathematical twelve-tone theory.1 The appli-

cation of musical set theory consists in identifying sets of musical objects, relating

these sets to each other, and categorizing them into set classes based on intervallic

content. The musical objects set theory deals with can vary greatly, they can be

onsets, durations, beat-classes, timbres,2 but most often they consist in pitches or

pitch-classes. Musical sets are almost always unordered sets written in curly brack-

ets, e.g. {3, 4, 7} for the set including the pitch-classes corresponding to D],E and

G.3 Sometimes, however, when the order in which the elements appear is considered

important, such as in twelve-tone theory, one deals with ordered sets, or sequences,

often written as e.g. 〈3, 4, 7〉.

From an ontological perspective, the elements of sets in musical set theory are

nothing beyond what we considered to be musical facts above, on a very low level of

1Howard Hanson. Harmonic Materials of Modern Music: Resources of the Tempered Scale. New
York: Appleton-Century-Crofts, 1960; Allen Forte. The Structure of Atonal Music. New Haven and
London: Yale University Press, 1973. There were historical precedents such as Wolfgang Graeser,
who described contrapuntal form as “a set of sets of sets of notes.” Wolfgang Graeser. “Bachs
Kunst der Fuge”. In: Bach-Jahrbuch (1924), p1ff. Many others have expanded on set theory, such
as Robert Morris who generalized it and applied it to composition, or Lewin and Mazzola who
both generalized it (see below). Robert D Morris. Composition with pitch-classes: a theory of
compositional design. New Haven: Yale University Press, 1987.

2Gary Wittlich. “Sets and Ordering Procedures in Twentieth-Century Music”. In: Aspects of
Twentieth-Century Music. Ed. by Gary Wittlich. Englewood Cliffs, New Jersey: Prentice-Hall,
1975.

3Pitch-classes are commonly denoted by numbers from 0 to 11, where 0 is often equated with C
or a pitch center.

30

musical hierarchy. They are characteristics of musical objects existing in the same

musical space, most commonly pitch-class space (mathematically Z12) or chromatic

pitch space (mathematically Z), just as the objects they correspond to exist in the

same space, for instance a score.

Set theory also establishes relationships between these ordered sets of objects in

order to determine some of the structural relationships that may have informed the

compositional process, or structural relationships that can be heard. The two most

common relationships established between musical sets, most often constituted of

pitch-classes, are transposition Tn(x) = x+ n, where n refers to the amount of semi-

tones by which T transposes, and inversion In(x) = 2n − x, which inverts around

n. For example, T4({3, 4, 7}) = {7, 8, 11}. All sets related by transposition or in-

version belong to the same set class and share the same intervallic content. Other

relationships often found in set theory include the set-theoretical complement and

the multiplication, where elements of two sets are multiplied pairwise and united.

Another important relation on sets is the Z-relation that relates two sets with the

same interval content but are not members of the same set class. For ordered sets,

various permutations, including retrograde, are often used.

Many of these relationships can be seen as instances of processes between facts of

the same type, especially since they often consist of transformational relationships.

Transposition, inversion, and retrograde, for instance, are defined as functions that

transform one set into another, and multiplication transforms two sets into a third

one. However, not all scholars agree on seeing them as transformations. As we have

seen in the introduction of this thesis, Lewin considers the first part of his book,

which is a generalization of set theory, as mere measuring intervals between musical

entities, rather than transforming them. What may have caused this understanding

is that relations between sets are rarely considered directional. A set is rarely thought

31

of being causally transformed into another one, but rather existing at the same time

as the sets it relates to. From this perspective, what theorists do when they use set

theory is show what relevant relationships can be found between facts.

3.1.1 Generalized Set Theory

Lewin expanded on set theory by introducing generalized interval systems (GIS), a

special case of which are regular set theory statements. A GIS consists of a set4 S of

musical objects, which Lewin calls space, a group5 IV LS of intervals or relationships,

and a function int, which assigns to a pair < s, t >∈ S a member of IV LS, thus

int(s, t) = i with i ∈ IV LS. Traditional set theory is embedded in this construct

if we choose S = {0, 1, . . . , 11}, IV LS = {Tn, In}, which forms a group. The only

formal difference is that technically, the function int is not defined for pairs of subsets

of S, but for pairs of its elements, which is a significant restriction. In the first part

of GMIT, Lewin introduced and illustrated the use of many other types of objects,

many of which had already been used by set theorists before, such as time points,

diatonic pitches, duration-classes, and so on. However, he also frequently combined

them into products, which led to types of musical objects new to mathematical music

theory, such as time spans, Klangs (pitch × quality), which initiated the field of

neo-Riemannian theory, or even Schenker objects (pitch× degree× level).

Along with these definitions, Lewin also introduced generalizations of some other

constructs often used in set theory. For instance, the interval vector, which expresses

4Lewin calls sets families.
5A group is a set G along with a binary composition operation ∗ : G×G→ G where:

• (g ∗ h) ∗ k = g ∗ (h ∗ k) for g, h, k ∈ G (associativity)

• there is an e ∈ G for which e ∗ g = g ∗ e = g for all g ∈ G (neutral element)

• there is an h ∈ G with g ∗ h = e for every g ∈ G (inverse)

A group is abelian, or commutative, if m ∗ n = n ∗m for all m,n ∈ G.

32

a set’s or set class’ interval content, was replaced by the function IFUNC(X, Y)(i),

which determines the occurrences of a certain interval i between two sets (or Lewin’s

spaces) X, Y . For X = Y we obtain the i − th element of an interval vector, for

i = 1, . . . , 6. Another example is the embedding number EMB(X, Y) that counts

the number of occurrences of elements of the set class of X in set Y .6

3.2 Processes and Transformational Theory

As seen in the introduction, the second part of Lewin’s GMIT introduces constructs

of a significantly distinct nature. We will first briefly review them, before describing

the related formalisms that this thesis is concerned with.

3.2.1 Transformation Graphs and Networks

Simply put, a Lewinian transformation network is a GIS enhanced by the visual ele-

ments of a directed graph. It again consists in a set S of musical objects along with

the a set of transformations SGP , this time forming a semigroup,7 which means that

the transformations do not need to have inverses, as opposed to IV LS. The visual el-

ements of the graph are represented by NODE and ARROW , two sets. Finally, there

are two functions CONTENTS and TRANSIT assigning the nodes of the graph to

elements of S and the arrows to elements of SGP , thus CONTENTS(n) = s with

n ∈ NODES, s ∈ S and TRANSIT (a) = t with a ∈ ARROW, t ∈ SGP . Lewin also

defines transformation graphs, which are networks without musical objects or without

any contents in their nodes, i.e. without S and CONTENT . All transformations

in SGP are functions f : S → S that musical objects in S onto other ones. For

6Lewin, Generalized Musical Intervals and Transformations, ch. 5-6.
7A semigroup is similar to a group (see note 5), but it only needs to fulfill associativity and needs

to include neither a neutral element nor inverses. Thus all groups are also semigroups, but not vice
versa.

33

bijective transformations, which means that all objects in S can be reached by the

transformation and none are reached through different elements of S, Lewin uses the

term operation.8

Transformational theory, even if its systems are defined in a way similar to GISes,

has an entirely different goal according to Lewin. The directed graphs that are cen-

tral to the analytical method introduce an unmistakable causality. The facts that

transformations do not have to be bijective, that they may form a semigroup, and

not a simply transitive group as it is the case for GISes, add to this causality or di-

rectionality. Of course, the causal relationships do not necessarily have to be thought

to exist in the music itself. They can stand for a way of hearing the analyzed piece, a

hypothetical description of how it may have been composed, or an analytical process

of the transformational theorists themselves. Nevertheless, with the added causality,

we have now no other choice than speaking of processes, wherever these may take

place. In sum, transformational networks are processes composed of atomic trans-

formations that illustrate how a selection of musical objects can be transformed into

each other. They are highly selective forms of visualization that do not have to show

everything that is happening in the music. Transformational graphs, on the other

hand, are abstracted processes that exist independently of specific objects, but that

can be concretized by inserting a specific object in the source node of the graph.

3.2.2 Transformations in the Category of Modules

A slightly different version of transformational theory was developed by Mazzola con-

temporaneously to Lewin. Instead of using sets, groups, and graphs as such, it is

based on higher level mathematical theories, category theory and topos theory. Cat-

egory theory generalizes the way we handle many different mathematical constructs

8GISes use only operations.

34

by providing a way to abstractly express the concepts used by all of them: objects

and mappings, which are called morphisms.9 Many subfields of mathematics can be

expressed in terms of categories, such as set theory, group theory, graph theory, met-

ric spaces, or formal logic. For instance, in the category of sets the objects are sets

and the morphisms are functions, just as they are used in GISes, and in the category

of groups, the objects are groups and the morphisms are group homomorphisms.

Most of the early uses of Mazzola’s theory are based on the category of modules10

Mod, which are generalizations of vector spaces. Early examples were simply based

on n-dimensional free modules and their direct sums. If a one-dimensional module

over the integers modulo 12 Z12, for instance, is taken to represent pitch-classes, then

different morphisms can be used to create different trajectories in pitch space, such

as the circle of fifths or the chromatic circle.11 In a similar way, Mazzola produces a

classification of all possible chords in Z12 by calculating the isomorphy classes based

on repeated multiplication on a monoid based on a single morphism, e.g. the major

9More precisely, a category C is a collection of so-called morphisms f, g, h, . . . along with a partial
composition ◦, which lets us combine some f, g into a new morphism f ◦g of C. An object, or identity,
in C is a morphism e for which e ◦ f = f and g ◦ e = g. The following has to apply:

• if f ◦ g and g ◦ h are both defined, (f ◦ g) ◦ h is defined.

• if either (f ◦ g) ◦ h or f ◦ (g ◦ h) is defined, both are defined and denoted f ◦ g ◦ h.

• a morphism f has two identities. eL and eR such that eL ◦ f = f and f ◦ eR = f .

10A left R-module is a triple (R,M, · : R ×M → M), where (R,+R, ∗R) is a ring (see below) of
scalars, and (M,+) is an abelian group of vectors. · is called the scalar multiplication. The following
properties apply:

• 1R ·m = m for all m ∈M
• (r +R s) ·m = r ·m+ s ·m,
r · (m+ n) = r ·m+ r · n,
r · (s ·m) = (r ∗R s) ·m, for all r, s ∈ R and m,n ∈M .

A ring is a triple (R,+, ∗) where (R,+) is an abelian group (see note 5) and (R, ∗) is a commutative
monoid, and for all r, s, t ∈ R, x∗ (y+z) = x∗y+x∗z, and (x+y)∗z = x∗z+y ∗z (distributivity).

A monoid is a semigroup with a neutral element, or a group without inverse.
11Guerino Mazzola. Gruppen und Kategorien in der Musik: Entwurf einer mathematischen Musik-

theorie. Berlin: Heldermann Verlag, 1985, p. 6.

35

triad is produced using T 7.3(x), x ∈ Z12, which represents a multiplication by 3

followed by a transposition (addition) by 7. So for x = 0 we get T 7.3(0) = 7 and

T 7.3(7) = 4, then T 7.3(4) = 7, etc.12 In another example, a direct sum module Z3⊕Q

over rational numbers can express a space the vectors of which are notes in Euler pitch

space Z3 and onset space Q.13 Or the vectors of a four-dimensional module over the

real numbers R can represent notes with onset, duration, loudness, and duration. On

this module we can then, for instance, define a set of morphisms that allow us to

perform geometrical transformations.

What distinguishes this theory from Lewin’s is that the musical objects themselves

exist in a space structured independently from the morphisms defined on the space.

The objects can be added to each other to form new objects and they can be scaled

by being multiplied by scalars. Lewin’s objects, in turn, the elements S, have no

relationship to each other except the produced by the semigroup of transformations

SGP . S is thus not really a space as Lewin calls it. Secondly, in the category of

modules Mod we have the possibility to define a great variety of morphisms that

surpass the capabilities of the functions in SGP .14

3.2.3 Denotators and Forms

Starting in 1993, Mazzola extended his theory by introducing a further way of creating

musical objects. With the goal of allowing for data structures common in logic and

12Mazzola, Gruppen und Kategorien in der Musik: Entwurf einer mathematischen Musiktheorie,
p. 30/2.

13Mazzola, Geometrie der Töne: Elemente der Mathematischen Musiktheorie, p. 80.
14More detailed analyses of how Lewin’s constructs differ from category theory can be found in

John Rahn. “Cool tools: Polysemic and non-commutative Nets, subchain decompositions and cross-
projecting pre-orders, object-graphs, chain-hom-sets and chain-label-hom-sets, forgetful functors,
free categories of a Net, and ghosts”. In: Journal of Mathematics and Music 1.1 (2007), pp. 7–22,
p. 12, and Guerino Mazzola and Moreno Andreatta. “From a Categorical Point of View: K-nets as
Limit Denotators”. In: Perspectives of New Music 44.2 (2006).

36

information theory, he introduced the concepts of forms and denotators.15 The former

generalize the spaces available in Mod by allowing logical combinations of various

spaces using standard types corresponding to logical AND, OR, and collections. These

spaces can be built from low-level basic spaces, called Simple forms, which can hold

any space in Mod. For instance, we can define a Simple form EulerPitch and equip

it with the Euler pitch space defined above as follows:16

EulerP itch : .Simple(Z3)

From there, we can combine forms using the two form types Limit and Colimit,

the former of which lets us built product spaces (logical AND) and the latter co-

product spaces (logical OR). For instance, if we wish to build a note that includes an

Euler pitch, we may define:

EulerNote : .Limit(Onset, EulerP itch, Loudness,Duration),

Onset : .Simple(Q),

Loudness : .Simple(CHR),

Duration : .Simple(Q).

We end up with a four-dimensional product space, one of the dimensions of which

is again three-dimensional. This means that every note needs to have an onset, an

Euler pitch, a loudness, and a duration. Onset and duration are defined as rational

15Guerino Mazzola. The Topos of Music. Geometric Logic of Concept, Theory, and Performance.
Basel: Birkhäuser, 2002, p. 47ff.

16The format I use to define forms in this thesis is called Denotex. Any form is defined as

Name : .T ype(Coordinator).

Name can be freely chosen, Type is either Simple, Limit, Colimit, or Power, and the coordinators
are other forms or a module in Mod, depending on Type ibid., p. 1143.

37

numbers, which is beneficial for representing the Western rhythmical notation based

on ratios, and loudness is based on CHR, the module of character strings, with which

we can express values such as f, mp, or ppp. If we wanted to allow rests, too, we could

define

EulerNoteOrRest : .Colimit(EulerNote, Rest),

Rest : .Limit(Onset,Duration),

which gives us a coproduct space of EulerNote and Rest and would let us decide for

each musical object in this space wether it is a note or a rest. Finally, the form type

Power allows us to make sets of objects. If we wish to have several notes and rests,

we need to embed the space in a powerset as follows:

EulerScore : .Power(EulerNoteOrRest)

So far we have seen how to define spaces for musical objects. Now how do we

create the objects themselves? For this, we need to define specific values in each of

the form spaces involved. An object in a form space is called denotator. Each Simple

denotator must specify an element in the module associated with it. For instance, in

order to create a specific onset, according to our definition above, we need to specify

a vector in the module of rational numbers Q. For this, we write:17

onsetAtBeat2 : @Onset(1/4)

17Again, the notation here conforms with Denotex (see note 16). A denotator is defined as

Name : M@Form(Coordinates),

where Name is again an arbitrary name, M is the address (introduced later), Form is a defined
form, and Coordinates are other denotators of the necessary coordinator forms.

38

The denotator we just defined is an onset at a quarter note into the piece. An entire

EulerNote, a Limit denotator, would then have to be defined by specifying all of

its coordinators (Onset, EulerPitch, Loudness, and Duration). For a Colimit we

have to define exactly one of its coordinators, so an EulerNoteOrRest needs either a

EulerNote or a Rest denotator. Finally, a Power denotator can hold an arbitrary

number of its coordinators. In sum, here is how we can define a sample EulerScore:

twoNoteScore : @EulerScore(noteOne, shortRest, noteTwo),

noteOne : @EulerNoteOrRest(note1),

note1 : @EulerNote(onset1, pitch1, loudness1, duration1),

onset1 : @Onset(0),

pitch1 : @EulerP itch(1, 0,−1),

loudness1 : @Loudness(sfz),

duration1 : @Duration(1/4),

shortRest : @EulerNoteOrRest(rest1),

rest1 : @Rest(onsetAtBeat2, duration1),

noteTwo : @EulerNoteOrRest(note2),

note2 : @EulerNote(onset3, pitch1, loudness2, duration1),

onset2 : @Onset(1/2),

loudness2 : @Loudness(ppp),

pitch2 : @EulerP itch(−1, 1, 1),

duration2 : @Duration(3/2)

Figure 3.1 shows a noted version of this example, where we assume an Euler tuning

39

!" #ppp
$%

sfz &'

Music engraving by LilyPond 2.16.2—www.lilypond.org

Figure 3.1: The brief EulerScore defined above, in staff notation.

space with a4 as a reference pitch. (1, 0,−1) ∈ Q3 is therefore f5 and (−1, 1, 1)

g]4. Note that noteOne and shortRest share the same duration. Also, I reused the

denotator named onsetAtBeat2 defined above.

These denotators can then be transformed just as we saw it above for module el-

ements, using morphisms. The formalisms of denotators and forms introduce several

constructs and possibilities that are not available with plain group or module the-

ory. In contrast with Lewin’s transformational theory, forms can describe the logical

constructions of coproducts, using Colimit as seen in the example, that allow for

selection among various options. Furthermore, while above, sets formed the spaces

themselves, as in Lewin’s S or the sets of vectors in Mazzola’s module spaces, Power

brings sets to the level of musical objects, which means that we can really speak of

transforming a set of musical objects as such. In Lewin’s theory, we cannot techni-

cally define transformations between sets of objects that are all in the same space.

Each node of a network can only host a single object in S. The only workaround we

have is to define a product space S × S × . . . S, a limit in category-theoretical terms,

which however only lets us make sets of a certain cardinality.18

The category-theoretical approach also allows us to do much more. Even though

these possibilities will not be fully taken advantage of in this thesis, I will describe

them briefly. For instance, we can define morphisms between different kinds of ob-

18These differences are formally discussed in Mazzola and Andreatta, “From a Categorical Point
of View: K-nets as Limit Denotators”.

40

jects, each a different member of the category Mod. This way, we can relate pitch

constellations to rhythms, rhythm to meter, etc, without having to create high-level

objects that encapsulate all parameters at once. If we decided to create a form that

describes timbre, we could identify relationships between its denotators and denota-

tors of an EulerScore, simply by defining an appropriate morphism. In other words,

the nodes of a transformational network could contain entirely different musical ob-

jects. A step further, we can also introduce functors, which are morphisms between

categories. If we decided to work with other objects than modules, for instance di-

rected graphs, we could transform the objects in the category of digraphs D into

objects in the category of modules Mod, thus transforming graphs into spaces. Even

on a higher level, such functors can be mapped into each other using so-called natural

transformations.

The system of denotators and forms do implement some functorial language, based

on the Yoneda lemma, which replaces objects by arrows, by making them functors.

They do in fact, for now, work with the category Mod@ of contravariant functors

Fu : Modopp → Sets. Each denotator in Mod@ has a so-called address in another

arbitrary module. The coordinate of a Simple denotator d is thus an element of

A@Fun(F), i.e. a diaffine module homomorphism f : A → M , where F is the form

of d and M = Fun(F), a module and the coordinator of F . For instance, we could

have defined our denotator twoNoteScore to carry an address in Z, which would have

enabled us to index its notes and rests and formally create permutations of them.19

This, however, will not be relevant in the context of this thesis, as we work uniquely

with 0-addressed denotators, the address of which is Z0, the 0-dimensional module

19For this, we would have had to write

twoNoteScore : Z@EulerScore(noteOne, shortRest, noteTwo)

etc. See note 17 above. In Denotex, we can drop M for 0-addressed denotators, which is why we
wrote twoNoteScore : @EulerScore(noteOne, shortRest, noteTwo) above.

41

over the real numbers Z, which are analogous to members of Mod. f , in this case,

is thus a constant morphism assuming a specific value f(x) ∈M .20

Furthermore, all of the applications seen so far, are based on the category of

modules Mod or the topos of modules Mod@. Starting in 2002, Mazzola’s theory

started being used to describe other constructs, for instance the ones of musical

performance, using the topoi on the categories of Fields, Graphs, etc.21 The theories

presented in Section 3.3.2 are another extension, using the categories of Topologies

and Graphs.

Again, all the theories described in this section are theories of processes. They

model how the spaces of musical facts can be created, how facts can be defined in

them, and most importantly how transformations can be defined that map facts into

other facts. In the latter theory, we can easily define transformations of transforma-

tions, thus processes of processes, and so on. What these theories do not account for,

as seen above, are the way these transformations are executed. Neither morphisms

nor transformations and operations have a spacial existence comparable to the ob-

jects themselves. They are discrete entities that define a beginning and an end and

nothing more, which is why the term gesture seems inappropriate. The next section

is concerned with theories that deal with this problem.

3.3 Gestures in Music Theory

As seen in Section 2.2, the term gesture is constantly used in the discourse about

music, with respect to physical gestures, but also in a way detached from physicality.

Nevertheless, even when used metaphorically or as a mental construct, gestures always

20For details, see Mazzola, The Topos of Music. Geometric Logic of Concept, Theory, and Per-
formance.

21Ibid., p. 726.

42

keep a link to the human body and are products of embodied experience. In this

section, we briefly survey a few examples of gestural theories in music, with a focus

on Mazzola’s theory of gestures, which was an inspiration for the work of this thesis.

3.3.1 Gesture Theories

Many theorists use the word gesture simply to describe a short and characteristic

musical gestalt such as a melody, a motive, or a brief harmonic motion.22 Some

scholars employ the term slightly more specifically and have attempted to define

musical gestures in a more systematic way.

For instance, Robert Hatten defines a musical gesture broadly as seen in Sec-

tion 2.2, as a “significant energetic shaping through time”.23 He sees them as tempo-

ral gestalts that are affectively loaded and that musicians can learn as sensorimotor

schematas and reapply to other contexts. In this respect, Hatten often considers

gestures as closely related to classical topics and often identifies one with the other.

However, as opposed to topics which can refer to larger cultural context or styles,

such as in hunt, pastorale, or learned style, Hatten’s gestures carry more basic affec-

tive meaning or behavioral schemes. For example, there are rhetorical gestures such

as the cadential 6/4 that marks the break for a cadenza in a concerto, or spontaneous

gestures that avoid musical formulae and express spontaneous movement, or dialogical

gestures that emerge from a musical conversation.24 For Hatten, gestures can become

motivic or thematic when used more consistently.

Manfred Clynes was also among the scholars who criticized the lack of gesturality

in Western musical notation, as did Adorno (see 2.2). Clynes argues for the existence

22Oded Ben-Tal. “Characterising musical gestures”. In: Musicae Scientiae 16.3 (2012), pp. 247–
61.

23Hatten, Interpreting Musical Gestures, Topics, and Tropes, p. 95.
24Robert Hatten. “A theory of musical gestures and its application to Beethoven and Schubert”.

In: Music and Gesture. Ed. by A. Gritten and E. King. Aldershot: Ashgate, 2006, p. 6.

43

of so-called essentic forms, biologically programmed carriers of emotional semantics.

In music, these essentic forms are characterized by agogic and dynamic performance

structures, the most basic of which is the four-beat pattern. Clynes found that the

way this pattern is realized by performers when playing music of different composers

varies greatly and that the music of each composer has a prototypical pulse associated

with it.25 Following this, Clynes found gestural aspects of performance that are passed

on aurally that would be impossible to be captured by Western notation.

Oded Ben-Tal recently distinguished expressive unit gestures from figures and mo-

tives.26 The former happens in the foreground of the music, its salient features are

preserved when repeated, and always needs to be complete. In contrast, figures occur

in the background, are repeated regularly with slight variations, and are typically

incomplete. Finally, motives are a foreground phenomenon, are complete but open to

extension, and are frequently developed. With this distinction, Ben-Tal considered

expressive unit gestures as the auditory analogue of physical gestures. He then sug-

gested the development of a descriptive system based on the Hamburg Sign Language

Notation System, which characterizes musical gestures based on attributes such as

stress patterns, dynamics, acceleration/deceleration, pitch contours, and register.

3.3.2 Gesture Theory as an Extension of Transformational

Theory

In the introduction to this thesis, we discussed Lewin’s notion of gesture, which

strongly differs from the notions of other scholars discussed above. The term gesture

25Later on, Clynes led a study where compositions of four composers were played back in each of
the four composer’s pulses. All groups of subjects significantly preferred the ones in the original pulse
associated with the composer, increasingly with a higher degree of musical training. Manfred Clynes.
“Microstructural Musical Linguistics: composer’s pulses are liked best by the best musicians”. In:
COGNITION, International Journal of Cognitive Science 55 (1995), pp. 269–310.

26Ben-Tal, “Characterising musical gestures”, p. 254.

44

does not characterize the musical gestalt itself, but the the process of one gestalt

becoming another. It does not take a gesture as a fact but focuses on gesture being

motion within the gestalt. For instance, the movement perceived in what traditional

scholars consider a gesture is in fact a movement from note to note, or object to object,

and not just there as a given relationship. Lewin has a more phenomenological way

of looking at this.

We also saw that transformational theory was partly criticized for its incapabil-

ity to formalize the gestures Lewin mentioned in connection with his theory. Sev-

eral scholars have come up with theories that model continuous space and consider

transformations within this space.27 However, the first theory that extends transfor-

mational theory with its graphs and networks and models the gestures themselves

rather than a continuous space is Mazzola’s gesture theory.28 It models gestures and

describes how processes are related to them by using two constructs. The skeleton

is a directed graph Γ, just as Lewin’s, and thus a process. A gesture is a morphism

g : Γ→ −→X , where X is the gesture’s topological space and
−→
X is the set of all continu-

ous curves in X, i.e. all f : I → X with I = [0, 1] ⊂ R, the closed interval 0 ≤ r ≤ 1.

The so-called body of the gesture is its image, i.e. all curves in
−→
X that are reached

by g. Figure 3.2 shows a gesture in X = R3 with its skeleton Γ.

Now what can we do with this construction? It all depends on what space we select

as X. For instance, if we wish to model hand gestures, we might decide to take a four-

dimensional space consisting of three spatial gestures and time. On the other hand,

in order to model musical gestures on a score, we might be content with a simple two-

dimensional space that corresponds to the sheet of paper, one of the dimensions being

27One example is Tymoczko’s geometrical model using orbifolds. Dmitri Tymoczko. A Geometry
of Music. New York: Oxford University Press, 2011.

28First published in Mazzola and Andreatta, “Formulas, Diagrams, and Gestures in Music”. More
broadly described in Mazzola and Cherlin, Flow, Gesture and Spaces in Free Jazz. Towards a Theory
of Collaboration, p. 81.

45

268 24 The Escher Theorem

Fig. 24.1. A gesture, with skeleton and body.

This definition is also intuitive: A gesture is a body of curves in a space,
which are formally combined by the background skeleton.

Let us now focus on the power

Fig. 24.2. A tip gesture, which neglects
the hand’s real shape.

of this simple definition. It is a seem-
ingly poor description of what is go-
ing on in the embodiment of such
a gesture in the concrete physical
shape of hands. That representation
only describes movements of finger-
tips, and not of the entire hand (see
Figure 24.2). But the problem is not
only one of realistic representation
of body movement. The piano ped-
agogue Renate Wieland [120] says:
“The sound contact is the target of
the embracing gesture, the touch is
so to speak the gesture within the
gesture.” She stresses that much
more happens when fingers interact

with piano keys: the tactile action germinates a gesture within a gestures, a
gesture of gestures. We are challenged to incorporate this inner life of gestures
into our geometric setup.

This is achieved by a simple observation: If we consider the set Γ@
−→
X of all

gestures with skeleton Γ and space X, this space is a canonical topology, which

is intuitively understood as follows: A neighborhood of a gesture g : Γ → −→
X

is the set of all gestures k : Γ → −→
X , whose body points are near to those of

g at all parameter values of the occurring curves. This new topological space

Figure 3.2: A sample gesture with skeleton Γ = ({0, 1, 2, 3}, {(0, 0), (0, 1), (1, 2),
(1, 2), (2, 3)}) and space X = R3.

time, the other pitch. However, if we consider musical objects as higher-dimensional,

such as in the example in the previous section. It is important to note that X does

not have to correspond to an object space, but can be independent. For instance,

in our software, everything can be controlled using mouse gestures, which are simply

based on a two-dimensional space (enhanced by a few discrete spaces defined by the

buttons). The object space, however, can be arbitrarily defined by the user.

How do gestures relate to the formalisms presented in the previous section? As

mentioned above, the gesture’s skeleton Γ is a digraph analogous to Lewin’s graphs

and networks and analogous to the diagrams common in category theory. Its spacial

configuration does not show more or less than transformation networks and diagrams

of morphisms. In the above constructions, the space in which the digraphs are imag-

46

ined does not have anything to do with the space where the musical objects are located

and transformed. It is merely a logical space that shows causal relationships. Even

the way in which transformations are attached to the graphs in processual theories

is analogous to the way gestures are attached to the graph in gesture theory. The

difference is that while in processual theories, the transformations occur in a discrete

way, here they are curves in a space. To get from x1 ∈ X to x2 ∈ X, an infinite

amount of paths (curves) can be traveled. In other words, for a certain skeleton Γ

we can find an infinite number of realizations in
−→
X , just as we can find an infinite

number of gestures fulfilling a certain action, as described in Section 2.2. Similarly,

for every gesture, we may find an infinite number of segmentations that lead to new

definitions of processes. For instance, for every arrow a ∈ Γ, we may introduce an

intermediary state by selecting a point x ∈ X with x ∈ g(a) to obtain two arrows

a1, a2 with f(1)(g(a1)) = x and f(0)(g(a2)) = x, which divides a partial gesture in

g into two sub-gestures.29 Ultimately, we can still take the same spaces as above, as

long as the are of topological nature.30

With this definition of gesture we can also find morphisms between gestures. For

g : Γ → −→
X and g : ∆ → −→

Y a morphism between gestures is a pair (u, v) with

u : Γ→ ∆ and v : X → Y such that h◦u = −→v ◦g. This allows us to for instance map

the gestures of a musician onto the gestures we perceive in the resulting music. Or

in a more practical application where we map the parameters of a gestural computer

interface onto musical parameters as it is done for the various interfaces supported

by BigBang, which I will describe later on.

On a higher level, we can also define hierarchically related gestures, i.e. gestures

29This can in fact be done in BigBang, as will be shown in Section 7.3.4.
30It is more likely to find topological analogues to module spaces. However, most spaces in GMIT

can be converted into module spaces and subsequently into topological spaces. This will be discussed
in a forthcoming article.

47

of gestures. We can formalize this by defining a new topological space Γ
−→
@X of

all gestures with the same skeleton Γ and the same space X. If we now define a

morphism h : E → Γ
−→
@X, we obtain a so-called hypergesture with skeleton E, a

gesture of gestures.

In recent years, the importance of gestures and continuous spaces has been in-

creasingly felt, perhaps initiated by Lewin’s visionary ideas, and scholars have sought

to find formal descriptions for them. However, what distinguishes Mazzola’s gesture

theory from other attempts to formalize continuous musical and non-musical move-

ments, is that it integrates both process graphs, and movements in continuous space.

Some other theorists have uniquely dealt with the latter, a formalization of geomet-

rical space, thereby losing what holds transformational theory together, the graphs

with their causal implications.31 Other scholars have attempted to bring movements

into graph or network space, such as Roeder with his animations. Mazzola’s solution

keeps the gestures in the space of the musical objects, but connects them logically

with the graphs needed to theorize about specific instances or subjective perceptions,

just as Lewin envisioned it. The paradigm of gestures is of great significance for many

domains and has been applied practically years before it was formalized by Mazzola.

In the next chapter, we will encounter such applications and sometimes discuss their

connections to gesture theory.

31Such as for instance Tymoczko, A Geometry of Music.

48

Chapter 4

Facts, Processes, and Gestures in

Composition and Improvisation

In this chapter we are concerned with more practical aspects of the dimension of

embodiment. After a brief look at the notion of composition and improvisation un-

derlying this thesis, we examine several examples of how facts, processes, and gestures

are perceived by practical musicians, with a focus on computer-assisted music-making.

The final sections of this chapter serve as an introduction to and critique of Rubato

Composer, the software for which BigBang was created.

4.1 Some Thoughts on Composition and Improvi-

sation

Since one of the main uses of the software developed in the context of this thesis is

active music making in the form of composition and/or improvisation, it is necessary

to consider some of their aspects and their relationship. In Chapter 2, we have already

briefly considered the nature of musical works and how their process of creating can

49

be formalized. However, we have not yet considered the temporal and contextual

aspects of the creative process, which are deemed important by many musicians.

Any act of creating music can be situated somewhere on a line in between the two

extremes of entirely spontaneous free improvisation and strictly preconceived algo-

rithmic composition. The former happens entirely in the moment and ideally involves

no pre-planned structures. The latter, in turn, typically happens in an iterative pro-

cess outside of musical time and the musical result is entirely predictable. However,

these two extremes hardly ever happen in reality. Most improvising musicians con-

stantly and systematically work on their instrumental skills and their repertoire of

musical ideas for decades, and could therefore be seen as composing their improvi-

sations. On the other hand, computer musicians in the process of creating a system

architecture for algorithmic composition almost always rely on spontaneous decisions

and solutions and thus often compose their seemingly rigid systems in an improvised

way. Furthermore, the compositional results of such a system are often selected spon-

taneously based on aesthetic notions or influenced by having access to certain musical

parameters. From this we can infer that all music making procedures contain aspects

of both composition and improvisation, just as every other activity in our lives include

planned and spontaneous factors.

Several scholars have brought to attention that the difference between composition

and improvisation is often overestimated.1 Similarly, we defined any kind of music

1For instance in Philip Alperson. “On musical improvisation”. In: Journal of Aesthetics and Art
Criticism 43.1 (1984), pp. 17–29, p. 17. Some scholars make a similar case for musical performance,
which again requires both “composed” (meticulously practiced) and improvised (spontaneous adap-
tation to instrument, setting, atmosphere, mood, etc.) factors. Carol S Gould and Kenneth Keaton.
“The essential role of improvisation in musical performance”. In: Journal of Aesthetics and Art
Criticism 58.2 (2000), pp. 143–8 However, other scholars see improvisation more rigidly and merely
consider changing structural aspects of the music as improvisation, for instance James O. Young
and Carl Matheson. “The metaphysics of jazz”. In: Journal of Aesthetics and Art Criticism 58.2
(2000), pp. 125–33. However, since we may consider expressive parameters as structural aspects of
a performance, our notion here is that improvisation consist in any spontaneous activity.

50

making as the sum of improvisation and composition.2 This is based on our view

that any spontaneous musical activity can be called improvisation. In this thesis we

follow this notion by claiming that a successful context for music making must both

allow for rigorous planning and leave room for spontaneity. Composition can bring

about results of a refinement that would not be conceivable in improvisation. On the

other hand, the liveliness and ingenuity of improvisation is often irreproducible in a

compositional context.

This is especially significant when using a computer to compose or improvise. The

distances we discussed in the introductory chapter that often occur in connection with

formalisms or technology may hinder composers to be both spontaneous and planned

enough. The software subject to this thesis allows for both, by enabling intuitive

controls of formal matters that encourage spontaneity, and by precisely tracking the

musician’s process and again allowing spontaneous interaction with it. Our software

should allow composers to improvise until they find what they are looking for, and

improvisers to pre-compose certain parts of their improvisation. One way to achieve

this is the incorporation of the three levels of embodiment, described above. Before I

describe how this works, it will be helpful to look at some other software, discuss their

relationship to these three levels, and investigate the relationship between gestures

and of intuitive control. First, I will briefly summarize Mazzola’s ideas about free

jazz, which are a worthy starting point for the following discussions.

2Sounding music = composition + improvisation. Guerino Mazzola, Joomi Park, and Florian
Thalmann. Musical Creativity – Strategies and Tools in Composition and Improvisation. Heidelberg
et al.: Springer Series Computational Music Science, 2011, p. 234f.

51

4.2 Gestures in Improvised Music

In their book on free jazz, Mazzola and Cherlin characterize improvised music by

the art of collaboration, which based on three fundamental concepts: a collaborative

space, gestural creativity and communication, and group flow.3 There are two types

of collaborative spaces : closed and open ones.4 The former is given a priori and can

be seen as a constraint to the performers, such as tonalities, scales, or fixed formal

schemes, and the latter can be shaped, deformed, manipulated, or created by a single

musician or the group. Any of the former may be opened up if it is physically possible

and the group agrees on it. Mazzola especially often refers to the activity of impro-

visation consisting the shaping of time, which then becomes an open space. Earlier

on, the authors draw an analogy with Bill Wulf’s notion of a collaboratory as a cen-

ter without walls, which can be interpreted in any physical, mental, or psychological

way.5

The authors understand gestures as an intuitive way of communication apart from

semiotic implications in the sense of the French school as described in Section 2.2 of

this thesis.6 Just as scholars from different fields or speakers of different languages

increase their use of gestures when communicating with each other, musicians collabo-

rating in free improvisation, who often have an entirely different musical background,

understand each other on a more intuitive level and use musical gestures apart from

theoretical constructs and avoiding any extramusical implications. Later on, the au-

thors use the mathematical constructs defined in Section 3.3.2 of this thesis to describe

3Mazzola and Cherlin, Flow, Gesture and Spaces in Free Jazz. Towards a Theory of Collaboration,
p. 34.

4Ibid., p. 42.
5ibid., p. 34. Mazzola’s concept of musical creativity is closely related to this notion: identifying

the walls of a concept, opening them, and evaluating the newly created space. Mazzola, Park, and
Thalmann, Musical Creativity – Strategies and Tools in Composition and Improvisation, p. 17.

6Mazzola and Cherlin, Flow, Gesture and Spaces in Free Jazz. Towards a Theory of Collaboration,
p. 65.

52

gestural interaction between different musicians.7 Assumed that each musician plays a

different instrument and has a different musical background (their topological space),

the adaptation and deformation of one musician’s (hyper-)gesture to another’s context

may be described as a morphism between gestures of different topological morphisms,

so-called “throw morphisms”, followed by a deformation morphism within the new

topological space.

Finally, flow is a concept defined by Mihály Cśıkszentmihályi and described as

a state of “being completely involved in an activity for its own sake. The ego falls

away. Time flies. Every action, movement, and thought follows inevitably from the

previous one, like playing jazz. Your whole being is involved, and you’re using your

skills to the utmost.”8 More formally, Cśıkszentmihályi defines flow as a state where

a subject is challenged exactly to a degree appropriate to their skill level, and neither

over- nor under-challenged. In order to enter the state of flow, one must have a

clear goal, there must be immediate feedback during the process on how well one

is doing, and one must have confidence in oneself at any stage of the process.9 In

the state of flow, one in concentrated and motivated to such a degree that one loses

one’s sense of self and forgets everything happening outside the task. Keith Sawyer

expanded on this concept by defining group flow, where based on similar conditions

as in Cśıkszentmihályi, a collaborative group can develop a distributed identity where

their egos blend, when all members listen and participate appropriately.10

It is important to note that the first two concepts, space and gesture, and the

7Mazzola and Cherlin, Flow, Gesture and Spaces in Free Jazz. Towards a Theory of Collaboration,
p. 92.

8Interview with Cśıkszentmihályi in John Geirland. “Go With The Flow”. In: Wired magazine
4.09 (Sept. 1996).

9Mihály Cśıkszentmihályi. Flow: The Psychology of Optimal Experience. New York: Harper and
Row, 1990.

10R. Keith Sawyer. Group Creativity: Music, Theater, Collaboration. Mahwah, NJ: Lawrence
Erlbaum Associates, Publishers, 2003.

53

implied openness and intuitiveness, encourage the occurrence of flow. Similarly, our

concept of musical creativity depends on opening up a limited conceptual space,

which is especially facilitated by a gestural way of thinking.11 Creativity and flow are

directly related, the former consisting of a temporary ease and constant capability

of finding of creative solutions to emergent problems. These are also the findings of

computer musicians, the writings of whom are the topic of the next section.

4.3 Embodiment and Interactive Composition Sys-

tems

Both the previous chapter and the previous section gave examples of how gestures and

processes can be found or incorporated in music, be it composed or improvised. Since

the focus of this thesis is how the levels of embodiment can be applied to computer-

assisted composition and improvisation, in this section we will take a closer look the

writings of computer musicians and some example systems that use processual and

gestural paradigms. I will move from facts to gestures and discuss recent theoretical

and practical achievements.

From their early days, computers were used to create music in ways that had

been inconceivable before. While initially each musical work was typically composed

using a setup specific to the piece, the 1970s saw an advent of interactive composition

systems that were designed for a variety of composers to create multiple works, such

as Chadabe’s Play system12 or Iannis Xenakis’s UPIC.13 Such systems are typically

11Mazzola, Park, and Thalmann, Musical Creativity – Strategies and Tools in Composition and
Improvisation.

12Joel Chadabe. “Interactive Composing: An Overview”. In: Computer Music Journal 8.1 (1984),
pp. 22–7, p. 22.

13G. Marino, M.-H. Serra, and J.-M. Raczinski. “The UPIC System: Origins and Innovations”.
In: Perspectives of New Music 31.1 (1993), pp. 258–69.

54

referred to as computer-assisted composition systems and are distinguished from al-

gorithmic composition systems. The former are designed to be more interactive than

the latter and even though they may use complex algorithms to create musical results,

users do usually not have to be computer experts or know how to program, while they

can still have a great deal of control over the system.

4.3.1 Thinking and Making Facts or Objects

When composers or improvisers use computer systems, compared to using traditional

instruments and staff notation, they often learn to rethink what musical structures

and objects are. Computers and programming languages set almost no limits as to

what the constructs are that we can make music with. Even though there are many

software products that allow composers to write in staff notation or simulate the

sound of orchestral instruments, there is an immense variety of differing approaches

each of which has its advantages and disadvantages. What are the facts or objects

that users of such systems can work with, how are they visualized, and how can they

be created?

The objects that interactive composition systems allow their users to create and

manipulate can best be classified in respect to the ontological topography discussed

in Chapter 2. Analogous to the three levels of reality, we find mainly physical and

symbolic objects, and arguably sometimes also psychological ones. Among physi-

cal objects we find digital representations of real-world physical structures such as

sampled sound waves, physical models of instruments and their extensions, synthetic

sound structures created with additive synthesis or frequency modulations, or pro-

cessing objects such as filters, delays, reverb, etc. Often, these objects can be built

up in a modular way from even more basic objects, similar to the way that real-world

synthesizers can be programmed. Symbolic objects do not directly represent sounds

55

Figure 4.1: The types of facts in computer-assisted composition and how they are
typically converted into each other.

and typically have to be converted into physical objects in order to become audible.

They include score notation symbols, mathematical structures, MIDI objects, etc.

Finally, there are some rare examples of psychological objects such as emotive states

that again need to be converted into symbolic or physical objects in order to become

audible.14 Figure 4.1 depicts the overall conversion scheme.

The ways such objects are defined and manipulated vary greatly from system to

system. Code-based systems use notations based on programming languages. In Lily-

Pond,15 for instance, which is used to notate the score examples in this thesis as well

14Examples are Dan Wu et al. “Music composition from the brain signal: representing the mental
state by music”. In: Computational intelligence and neuroscience (2010) or uses of Manfred Clyne’s
sentograph, as described in Alf Gabrielsson and Erik Lindström. “Emotional expression in syn-
thesizer and sentograph performance”. In: Psychomusicology: Music, Mind & Brain 14.1 (1995),
pp. 94–116.

15Han-Wen Nienhuys and Jan Nieuwenhuizen. “LilyPond, a system for automated music engrav-
ing”. In: Proceedings of the XIV Colloquium on Musical Informatics. Firenze: CIM, 2003.

56

(a)

(b)

Figure 4.2: An example from LilyPond, (a) as code and (b) as staff notation (source:
http://lilypond.org/text-input.html).

as in a module for Rubato Composer developed while writing this thesis (LilyPondOut

rubette), symbolic objects are notated as groups of letters and numbers standing for

pitch and register, and grouped into chords, phrases, and so on, using brackets and

parentheses (see Figure 4.2).16 Other code-based systems specialize on physical ob-

jects, such as SuperCollider or CSound, and because of the efficiency and versatility

of programming code, users can create highly complex musical constructions with

just a few lines of code.

Visual systems with a graphical user interface usually find a wider base of users for

they are often accessible in a more intuitive way than code-based systems, but they

often have limitations because of their visuality leads to specific musical constraints.

For symbolic objects, the most widely used systems are staff notation programs such

as Sibelius or Finale, which allow a great variety of musical objects to be drawn

16For an in-depth comparison of symbolic code-based systems, see Eleanor Selfridge-Field. Beyond
MIDI: the handbook of musical codes. Cambridge, MA: MIT Press, 1997.

57

Figure 4.3: Ableton’s sequencer Live with a few audio (sound waves) and MIDI (piano
roll) tracks.

on staves. Even more commonly used than notation systems are sequencer softwares,

which combine symbolic and physical objects and are mainly used for music recording

and production. They typically present musical content as a number of tracks laid

out as horizontal rows, the horizontal dimension representing time. There are usually

two types of tracks, holding either symbolic MIDI or physical audio data. As an

alternative to staff notation, MIDI data is often displayed in so-called piano roll

notation, where notes are represented as rectangles of different dimensions on a two-

dimensional plane, inspired by the perforated paper rolls of nineteenth-century player

pianos (see Figure 4.3).

A more simplified and unified way of visualizing musical objects was implemented

in Iannis Xenakis’s UPIC system (depicted in Figure 4.4. It was based on earlier

visual composition systems such as Max Mathew’s Graphic 1. The goal of UPIC was

58

Figure 4.4: Xenakis’s UPIC system.

to abolish the hierarchy between sound design and musical architecture, and to allow

composers to “work in a systematic way on various levels at the same time.”17 Xenakis

thought that the musical effects he wanted to compose with were too complex to be

specified with traditional staff notation. UPIC enabled users to draw sound waves and

organize them into a musical structure, all by interaction through a graphical tablet.

It allowed composers to think on a more abstract level, away from formulas or program

code, and provided intuitive and immediate exchange between thought and ear.18

Frequency, amplitude, timbre, and time could all be controlled by the same objects,

drawn curves, and positioned in a timeline to create a musical form. Several later

systems were strongly influenced by UPIC and adopted both its graphical interface

and the abolition of object hierarchies, for instance Hyperscore, HighC, IanniX, Sonos,

or MetaSynth.

17H. Lohner and I. Xenakis. “Interview with Iannis Xenakis”. In: Computer Music Journal 10.4
(1986), pp. 50–5, p. 50.

18Marino, Serra, and Raczinski, “The UPIC System: Origins and Innovations”.

59

These examples show that composition or improvisation systems are usually fo-

cused on a specific group of musical objects, letting users access them through a

specific interface. Some systems allow the users to redefine the objects themselves.

This is naturally the case with code-based systems that are often extended by their

users who can design larger objects from smaller ones and even introduce new ones.

However, in visual systems this is usually not the case. Even UPIC, despite its

anti-hierarchical concept, limits its user to varying only the predefined musical pa-

rameters. Similarly, the ways in which objects can be manipulated are usually given

by the system and not extensible.

In contrast, the software we work with in this thesis, Rubato Composer, builds

on a more general definition of object types and lets users create their own arbitrary

objects at runtime. Almost all the functionality applies to any object type. We will

see this in the last section of this chapter.

4.3.2 Composition Systems and Processes

Several scholars have focused on modeling the creative process of composers with

computers and created systems that automatically compose music in certain styles,

while others have created systems that track composer’s processes.19 Few, however,

have developed software products that track the composer’s process and let them

interact with it in a more dynamic way. Most software products use a plain undo/redo

functionality, which is a simple instance of processes. The users have the opportunity

to undo the last sequence of operations performed and redo them if they decide to.

This corresponds to a one-dimensional sequential process graph, even if it is not

visualized this way. Each node of the graph represents a specific state of the musical

19Examples are David Cope. Computer Models of Musical Creativity. Cambridge, MA: MIT Press,
2005, or David Collins. “A synthesis process model of creative thinking in music composition”. In:
Psychology of Music 33.2 (2005), pp. 193–216.

60

work containing the musical objects present at that time.

However, several composition and improvisation systems use processes in a differ-

ent way. One possibility is that the operations available to the user become objects

themselves and can be connected using connective lines reminiscent of electric cables,

and often inspired by analog synthesizer interfaces. Max/MSP and Pure Data (Pd),

the prominent signal processing software systems, for instance, provides an immense

variety of objects that perform certain actions such as generate an oscillator signal,

add or multiply signals, take a MIDI input, provide visual controls, etc. The users can

develop networks of such objects, combine them into higher level macro objects, and

manipulate them using the various control mechanisms.20 When using these products,

users do in fact create process diagrams similar to graphs in transformational theory,

however, with the major difference that they are the dual graphs to transformational

networks. In other words, the nodes correspond to actions or transformations whereas

the connecting lines, just as unidirectional as digraph arrows, correspond to the ob-

jects themselves (see Figure 4.5). Rubato Composer, introduced below, is based on

precisely the same principle, as are for instance Open Music, or Reactable.

Some of these network-oriented systems, including Pd or Max/MSP, allow for

streams of objects instead of single objects to be sent along the connective lines. This

is crucial for real-time signal processing, since its objects are of continuous nature,

and it is a necessary condition for gestural control, which will be discussed in the next

section.

20Miller Puckette and David Zicarelli. “MAX - An interactive graphic programming environment”.
In: Opcode Systems, Menlo Park, CA (1990); Miller Puckette. “Pure Data: another integrated
computer music environment”. In: Proceedings of the International Computer Music Conference.
1996, pp. 37–41.

61

Figure 4.5: A Max/MSP patch I created to test the velocity calibration of a MIDI
grand piano. Each visible object performs an action or transformation while the
musical objects, MIDI notes, travel along the connective lines.

4.3.3 Gestural Interaction with Composition Systems

Types of Gestural Interaction

Already some of the early composition systems allowed for gestural interaction, which

is often thought to consist in recognition of predefined hand gestures but which may

include any continuous way of interaction, be it with spacial sensors or a regular

computer mouse, or even more generally, any way in which human gestures find their

way into the music. Chadabe, for instance, describes how with his Play system,

a composer could first design an algorithmic composition process and then interact

62

with it gesturally while the music was playing back. Using either proximity sensors or

keyboard controllers the composer could influence certain parameters of the resulting

composition, such as tempo or timbre. Play ’s two-step procedure is somewhat analo-

gous to composing and performing, even if Chadabe considers both as compositional

activities.21 On the other hand, Xenakis’s legendary UPIC system shows a very differ-

ent way of interaction. By drawing shapes on a tablet, the composer could gesturally

define the composition itself rather than its performance, and each performance of a

composed piece would typically be the same. In comparison, the two types of gestural

interaction may be categorized as real-time and non-real-time, based on the time of

interaction being either synchronous or asynchronous with musical playback time. In

the former type, composers virtually interact gesturally with the music itself, whereas

in the latter type they compose their music gesturally and find these qualities again

when they listen to their piece.

Another way in which gestural interactive systems may differ is in whether or not

they are based on a gesture recognition system that identifies a discrete set of gestures,

each of them of continuous nature. Systems using recognition are typically operation-

based, which means that any member of an available set of operations can be triggered

through a detectable gesture. There are examples of systems that allow users to define

their own gestures by training the system, for instance IRCAM’s Gesture Follower.22

This way of interacting with a system has also gained significance in recent years, for

instance with the emergence of multi-touch devices, which usually support a set of

predefined simple gestural actions based on spacial metaphors, such as twist, pinch,

or swipe, to transform objects on the screen or change the view. For a more thorough

discussion of multi-touch gestures, refer to Section 8.1.2.

21Chadabe, “Interactive Composing: An Overview”, p. 23.
22Frédéric Bevilacqua and Remy Muller. “A gesture follower for performing arts”. In: Proceedings

of the International Gesture Workshop. 2005.

63

A majority of the contributions to gestural interaction theories have focused on

real-time non-operation-based systems. Here, however, we consider any interaction

as gestural if the continuity of human gestures finds its way into the music in some

recognizable fashion.

When is Interaction Gestural?

First, what are the optimal conditions of an interactive system in order to be consid-

ered gestural? Hunt and Kirk, and Wessel and Wright gather some of these conditions

for real-time multi-parametric control systems.23 The following list contains the most

important ones in a reordered, regrouped, and expanded way:

• Continuity. Gestures should be executed in a continuous space and their

musical counterparts should be equally continuous and thus equally spacial.

• Immediate feedback. Any gestural movement should lead to an immediately

noticeable change in the music. Latency should be as low as possible.

• Physicality. The device through which the musician communicates should be

operated through physical movements.24

• Intuition. The way of interaction can be learned easily and eventually be

automated via motor-skills. Similar movements produce similar results. All

movements produce understandable and more or less predictable results.

23Andy Hunt and Ross Kirk. “Mapping Strategies for Musical Performance”. In: Trends in
Gestural Control of Music. Ed. by M.M. Wanderley and M. Battier. Paris: Ircam - Centre Pompidou,
2000, p. 232. David Wessel and Matthew Wright. “Problems and Prospects for Intimate Musical
Control of Computers”. In: Computer Music Journal 26.3 (2002), pp. 11–22.

24Some scholars consider the acquisition of gestures through other parameters such as in Wander-
ley’s indirect acquisition, where gestures are for instance acquired through analysis of sound.Marcelo
M Wanderley. “Gestural Control of Music”. In: International Workshop Human Supervision and
Control in Engineering and Music. 2001, pp. 632–644, p.636-7 This, however, can only be considered
as indirect gestural control. In fact, it is an example of analysis and gesturalization as defined in
Section 2.3, where gestures are recreated from factual results. The procedures of formalizing and
factualizing are missing in such a system.

64

Figure 4.6: Wessel and Wright’s two-way scheme of gestural interaction between
humans and computers.

• Virtuosity. Interaction should allow for sufficient intimacy after practice so

that competence and skill can increase unlimitedly over time.

• Bidirectionality. There should be no fixed order in the human-computer

dialogue, but the human should be in control of the situation.

In short, the entire system should be built on a circular two-way interaction scheme

where each action a composer performs leads the computer to generate music based

on algorithms which is then immediately played back and, in turn, lets the composer

react, and so on. Figure 4.6 shows Wessel’s and Wright’s schematization of this inter-

action scheme.25 Wanderley further distinguishes primary and secondary feedback the

former of which includes visual, auditory, and tactile feedback from the interface, and

the latter feedback from the computer system.26 A reversal of the definition might be

more appropriate, since the second is usually what musicians are primarily interested

in.

25Wessel and Wright, “Problems and Prospects for Intimate Musical Control of Computers”, p.
12.

26Wanderley, “Gestural Control of Music”, p. 635.

65

The above conditions assume a single long-term gesture being executed in a per-

formative way, as typical for non-operation-based systems. However, gestural control

may as well consist in many subsequently executed gestures, each of them inter-

preted in different ways and mapped to different operations, even if all communicated

through the same controller. For instance on a multi-touch device, drawing and pinch-

ing gestures typically lead to different results. Are there any additional requirements

for such gestural interfaces? In an earlier paper, we defined our own gestural inter-

action concept.27 In addition to the above conditions, operation-based systems need

to fulfill some needs concerning the operations themselves. The following list is an

extension of our previously published one:

• Atomicity. Each operation should be executed with a minimal amount of

gestures, ideally a single one, in order to be quickly and precisely applied in an

improvisational way.

• Variety. The vocabulary of available gestures needs to contain maximally

distinct gestures so that they can be recognized in an optimal way and so that

the user can distinguish them easily.

• Undoability. If gestures can be applied easily and quickly there may be un-

wanted effects, where operations should be able to be undone and redone as

easily as they were applied.

These additional conditions allow the musician to interact with the system seamlessly

without having to focus too much on the interface itself. Wessel and Wright gathered

several metaphors they used in their interfaces: drag-and-drop, scrubbing, dipping,

27Florian Thalmann and Guerino Mazzola. “The BigBang Rubette: Gestural Music Composition
with Rubato Composer”. In: Proceedings of the International Computer Music Conference. Belfast:
International Computer Music Association, 2008, p. 3.

66

and catch-and-throw.28 All of these are examples of operations that fulfill the above

conditions. However, most of them assume the use of an interface where all gestural

movements are considered independent. Today, with multi-touch interfaces, we are

used to many more such metaphors, many of them based on more complex multi-

finger gestures. There are also real-time operation-based systems such as GIDE 29

that use machine learning systems in order to create a user-defined vocabulary of

gestures in order to trigger specific time-critical events and control the speed of their

execution.

Gestures, Intuition, and Flow

Many scholars agree that gesturality, and all its characteristics compiled above, di-

rectly correlates with intuitiveness. Gesturality is most associated with our hands

which are doubtlessly our most direct and natural way of interacting with the world.

In fact, especially with our hands, we are often able to do things without need-

ing to consciously think about them.30 Simultaneously, gestures are often the most

straightforward way in which we can understand things. And this is how intuition

is usually defined, as the ability to understand something without the need for con-

scious reasoning. Intuitive interfaces are precisely the ones where users can forget

about the fact that they are using an interface and where they can use prior innate,

sensory-motor, cultural, or expert knowledge.31 The better an interface can capture

28Wessel and Wright, “Problems and Prospects for Intimate Musical Control of Computers”, p.
15-6.

29Bruno Zamborlin et al. “Fluid Gesture Interaction Design: Applications of Continuous Recogni-
tion for the Design of Modern Gestural Interfaces”. In: ACM Transactions on Interactive Intelligent
Systems 3.4 (2014).

30Analogous to Heidegger’s example of the world as an extended craft shop, where the craftsman
knows his stuff (Zeug) even if he is not able to explain it. Knowing how is prior to knowing that,
meaning comes before the thing, and there is no distance between the Zeug and us.

31Katie Wilkie, Simon Holland, and Paul Mulholland. “What Can the Language of Musicians
Tell Us about Music Interaction Design?” In: Computer Music Journal 34.4 (2010), pp. 34–49, p.
37, adopted from Hurtienne and Blessing.

67

the infinite variety of gestures we are capable of performing, and the faster and the

better an interface can be learned, the more we can feel connected to it. Yet, how

exactly do interfaces have to be configured so that they feel intuitive to us? Are there

any general conditions in addition to the above ones that an interface should fulfill

in order to become second nature?

One of the most important factors is the manner in which the gestural parameters

are mapped to the musical parameters. Despite the potential possibilities of the

myriads of available interfaces with gestural capabilities, most software products use

them with so-called one-to-one mapping,32 imitating slider or knob motion either

directly or multidimensionally. Many interfaces that humans interact with in everyday

life are highly multi-dimensional and contain complex mapping strategies, one-to-

many, many-to-one, or many-to-many, rather than one-to-one. As Hunt and Kirk

claim, humans even expect to encounter complex mappings33 and they are far more

ready to experiment with an interface if a simple gesture affects several parameters.

Paradoxically, the more complex the mappings, the more simple the interface appears

to be, and vice versa. A trumpet appears as nothing more than a pipe with three

valves and a mouthpiece and there is no single control for any musical parameter.

For instance, variation of pitch on a trumpet is a highly complex procedure that

involves diaphragmatic tension, lip pressure, tongue position, valve position, and so

on, and yet, we may instantly feel connected to it even if takes time to learn to play

it. Then, on the contrary, the interface of an analog synthesizer with its many control

knobs, sliders, switches, and patch cords seems highly complex to us even if each of its

controls is typically mapped one-to-one to a single sonic parameter such as amplitude

or frequency. A synthesizer interface appears daunting at first and a musician may

32Wessel and Wright, “Problems and Prospects for Intimate Musical Control of Computers”, p.
11.

33Hunt and Kirk, “Mapping Strategies for Musical Performance”, p. 234.

68

have to invest many years to intuitively understand the effect that each control has

on the resulting sound.

Complex mappings can be achieved in a variety of ways. For instance, Hunt and

Wanderley cite several examples of mapping gesture to sound using neural networks,

instead of explicitly defining each relationship.34 More explicit ways include interpo-

lation between different sets of parameters, or an imitation of sculpting by means

of gestural definition of geometrical shapes, the features of which are then in turn

transformed into musical parameters, or the consideration of multi-level mapping.35

Most importantly, such mappings can only be intuitive if complying with certain

cultural norms or personal preferences. Wilkie et al, for instance, researched ways in

which simple conceptual models, image schemas such as UP-DOWN, CONTAINER,

or SOURCE-PATH-GOAL, or conceptual metaphors can be used to determine the

ways in which gestures are best mapped to musical parameters.36 However, ultimately,

flexibility in mapping may be most valuable and may add a lot of interest, since it

allows users to experiment and adjust the system to the setting that seems most

intuitive to them and that may lead to different and unique musical results.

Intuitiveness may also be increased when not every parameter of the musical

system is directly accessible through the interface, but only through mappings with

high-level generative parameters.37 These parameters may be coupled together and

even overlap to a certain degree, as in real-world interfaces. Hunt and Kirk suggest

that multi-parametric or conceptual mapping allows the user to “think gesturally,

34Andy Hunt and Marcelo M. Wanderley. “Mapping performer parameters to synthesis engines”.
In: Organised Sound 7.2 (2002), pp. 97–108, p. 99.

35Ibid., p. 99-105.
36Wilkie, Holland, and Mulholland, “What Can the Language of Musicians Tell Us about Music

Interaction Design?”
37Wessel and Wright, “Problems and Prospects for Intimate Musical Control of Computers”, p.

12.

69

or to mentally rehearse sounds as shapes.”38 They define the so-called performance

mode, an embodied type of computer performance, where musicians continuously

control many parameters that are coupled together, with more than one conscious

body parameter such as a limb or finger, and at the expense of physical energy.39

Finally, the more intuitive an interface ends up being, the more likely it is for the

musicians to enter a state of flow,40 as described above, being fully preoccupied with

the momentary situation, just as in Lewin’s being inside the music. Nevertheless,

contrary to many scholars’ characterizations, intuitiveness is not the sole prerequisite

for flow to happen as musicians may easily get bored with an interface even if it is in-

tuitive. As Csikszentmihalyi defined it, flow occurs when a subject is equally familiar

with a situation but challenged just in the right way. So it is equally important for

an interface to be challenging, complex enough to yield new musical situations, and

configurable to a user’s specific and unique ideas and needs.

Gestural User Interfaces and Controllers

Most graphical user interfaces of music software products widely used today are op-

erated via a mouse or a multitouch screen and are based on skeuomorphs or contain

skeuomorphic elements, i.e. imitations of real-world musical interfaces such as piano

keyboards, synthesizer knobs, mixing desk sliders, tape tracks, piano rolls, etc. Even

though many of their components could be described as rudimentarily gestural, for

instance moving a slider with a mouse motion does in fact presuppose a gesture and

immediate feedback is usually available, alternative interfaces may bear more musical

potential. Playing a piano visible on the screen by clicking on its keys using a mouse

38Hunt and Kirk, “Mapping Strategies for Musical Performance”, p. 255.
39Ibid., p. 233.
40Marc Leman. “Music, Gesture, and the Formation of Embodied Meaning”. In: Musical gestures

: sound, movement, and meaning. Ed. by Rolf Inge Godøy and Marc Leman. New York: Routledge,
2010, p. 139.

70

is a rather limited way of interacting with a computer.

This is why control devices, many of them specifically designed for musical pur-

poses, have been around from the early days of computer-assisted composition. How-

ever, analogously to the graphical user interfaces, the most widespread physical in-

terfaces are keyboard controllers and controllers with pads, knobs, and sliders are

still the most widely used interfaces to computer music systems, to a large degree

due to the limitations of the MIDI standard,41 but also due to the universality of the

piano keyboard and synthesizer controls and the needs of more traditional musicians.

Many instrument-like controllers exist, doubtlessly because they rely on the skills

of musicians trained on acoustic instruments. Wanderley divides musical controllers

into three categories: instrument-like and instrument-inspired controllers, augmented

instruments and hybrids with added sensors, and alternate controllers.42 The first

two categories include skeuomorphs and their extensions. Even if often classified this

way, many of them are not fully gestural for they merely capture a discrete secondary

effect of the musician’s gestures rather than the continuous gestures themselves. A

piano controller for instance, does not capture the pianist’s gestures but discrete val-

ues calculated from the pressure exerted on the keys.43 The fact that controllers

are played using gestures does not mean that they are gestural and use continuous

parameters.

In the context of this thesis we are most interested in fully gestural controllers

and thus in Wanderley’s last category, for their members bear the fullest potential of

fulfilling the above conditions of gestural control.44 Mulder distinguishes touch con-

41Wessel and Wright, “Problems and Prospects for Intimate Musical Control of Computers”, p.
12.

42Wanderley, “Gestural Control of Music”, p. 637-8. Eduardo Reck Miranda and Marcelo M
Wanderley. New digital musical instruments: control and interaction beyond the keyboard. Vol. 21.
Computer music and digital audio series. Middleton: A-R Editions, 2006, p. 20.

43Arguably the real instrument’s hammer mechanisms do not do this either, but the pianist has
the chance to interact with parts of the mechanism or the strings themselves.

44Levitin et al, for instance, discuss this potential especially in the light that musical controllers

71

trollers, expanded-range controllers that detect gestures in a limited field, and immer-

sive controllers where any movement the musician makes has musical consequences.45

The first two categories mainly classify two-dimensional and three-dimensional spa-

cial interfaces often equipped with buttons, knobs, and so on, whereas the third one

contains interfaces that are worn, such as gloves and bodysuits.

More important in terms of musical capabilities, however, is not the spacial dimen-

sionality in which a controller detects continuous movement, but the dimensionality,

degree of freedom, and interdependence of the various gestural parameters. For in-

stance, both Max Mathew’s Radio Batons and the Leap Motion device (both shown

in Figure 4.7) are expanded-range controllers based on R3, but when both are played

with two hands the former traces the position of two batons in this space, whereas

the latter traces position and direction of palms and fingers of both hands. This cor-

responds to 2∗2∗3∗6 = 72, as opposed to 2∗3 = 6 continuous parameters.46 On the

other hand, we have to consider the fact that the finger of one hand and its palm only

allow for so much independent motion, compared to two highly independent batons.

I thus suggest to categorize gestural controllers with a triple (d, p, i) based on the

dimensionality d of their topological space, the number of points p detected in this

space when played by one person, and the number of entirely independent parameters

i. Table 4.1 shows a few examples of gestural controllers and their categories.

This table shows the great variety and potential of different gestural controllers.

Even the computer mouse has the potential to control gesturally, if its movements

do not have to include the sound-producing device anymore, as opposed to musical instruments,
and may be designed entirely independently. Daniel J. Levitin, Stephen McAdams, and Robert L.
Adams. “Control parameters for musical instruments: a foundation for new mappings of gesture to
sound”. In: Organised Sound 7.2 (2002), pp. 171–89.

45Axel G. E. Mulder. “Towards a choice of gestural constraints for instrumental performers”. In:
Trends in Gestural Control of Music. Ed. by M. M. Wanderley and M. Battier. Ircam - Centre
Pompidou, 2000, p. 319-27.

462 hands, 2 for positions and vectors, 3 dimensions, 6 for fingers and hand, as opposed to 2 hands,
3 dimensions.

72

(a)

(b)

Figure 4.7: A juxtaposition of (a) Max Mathews’s Radio Batons, and (b) Leap Motion.

73

controller category
Ondes Martenot (1, 1, 1)
Theremin (1, 2, 2)
Computer mouse (2, 1, 1)
Multi-touch surface (2, 10, 2)
Radio Batons (3, 2, 2)
Leap Motion (3, 24, 2)

Table 4.1: Some examples of controllers with gestural capabilities.

are mapped in a continuous way. The ways we control our computers using the

mouse, however, is not gestural per se. The path we travel from one click to the next

most often has no influence on the functionality we trigger by clicking. Ultimately,

gestural control does not solely depend on the controller, but is much rather a way

of interaction with the system, as seen in the previous sections.

4.4 Rubato Composer

Let us now turn to the system that BigBang, the software implemented for this thesis,

is built for: Rubato Composer. First, a brief overview of its precedents will be helpful,

since some of them were an inspiration for BigBang, along with some of the systems

discussed so far. Afterwards, I will describe the two main components of Rubato

Composer, the underlying framework based on mathematical music theory as well as

the graphical user interface.

4.4.1 Brief History

The earliest system in the genealogy of Rubato Composer was the computer with the

memorable name M(2,Z) \Z2-O-Scope developed by Mazzola in the early 1980s and

shown at the Salzburger Musikgespräche in 1984 (Figure 4.8). As its name suggests,

it provided a two-dimensional surface for Onset×Pitch on which users could perform

74

72 7 Historical Overview

Fig. 7.1: Guerino Mazzola demonstrating the M(2,Z)Z2-o-scope system to Her-
bert von Karajan in 1984 (left). The Hardware/Software compound making up this
“Urpresto” system (right).

Fig. 7.2: The presto software running on Atari ST.

a grid. A generalized version of this module has been implemented in RU-
BATO COMPOSER as the Wallpaper rubette, which will be presented in detail
in section 16.2.

Figure 4.8: Mazzola demonstrating his M(2,Z)\Z2-O-Scope to Herbert von Karajan
and an audience at the Salzburger Musikgespräche in 1984.

geometrical transformations of musical objects that could also be higher-dimensional.

The success of the system47 led to the development of the commercial Atari

ST software Presto (Figure 4.9), which appeared in 1989 and featured an elabo-

rate graphical user interface and musical objects in a four-dimensional space Z4
71

(Onset × Pitch × Loudness × Duration). In addition to the geometrical opera-

tions in all four dimensions there were other mathematical operations that could be

performed. Its so-called OrnaMagic module (Figure 4.10) could generate so-called or-

naments, regular grid structures created by translating a motive repeatedly48 as well

47According to Mazzola, Herbert von Karajan wished to be left alone with the M(2,Z)\Z2-O-Scope
for a night.

48Recently, these structures were generalized for any transformations and termed wallpaper and

75

Figure 4.9: The Atari ST software Presto.

as alterations, where the notes of one composition where attracted by the notes of an-

other. Furthermore, users could draw tempo curves and shape a piece’s performance.

The latter is precisely what Mazzola and his collaborators extended in a later soft-

ware, Rubato, for the NeXTSTEP platform (Figure 4.11). Rubato focused on analysis

and performance and featured modular parts, so-called rubettes, for harmonic, met-

rical, and melodic analysis, with the results of which users could calculate weights

for each note of a piece and let the system shape a performance of the piece based

on these weights. Rubato was later adapted to the Mac OS X platform and some

experiments were made to let the software interact with other software such as David

Huron’s Humdrum or IRCAM’s OpenMusic. However, the software’s dependency of

available in Rubato Composer and BigBang. Florian Thalmann. “Musical composition with Grid
Diagrams of Transformations”. Master’s Thesis. University of Bern, 2007; Thalmann and Mazzola,
“The BigBang Rubette: Gestural Music Composition with Rubato Composer”.

76

950 CHAPTER 49. THE PARADIGMATIC DISCOURSE ON PRESTO!

of the well-known variational technique, in particular of the alteration of pitch sets (scales,
chords, motives, etc.).

– Σ –

Figure 49.5: An ornament is defined by a motif, together with a translation grid and a range
in each direction of the defining grid vectors. The grid cell is the parallelogram spanned by the
generating vectors.

The software’s module for ornaments is termed OrnaMagic. The idea is this: The user first
defines a motif M , either a small one on the local score, or an arbitrary large one on the score.
M is just a local composition on the four-dimensional EHLD space of the software. Next, two
(usually linearly independent) translation vectors gh, gv define the grid, i.e., the group 〈egh , egv 〉.
This group operates on the motif M and yields a translated motif Mi,j = ei.gh+j.gv .M for each
integer pair (i, j), see figure 49.5.

The user defines a two-dimensional ornament of a special ornament window, the grid score,
see figure 49.6. This gives us a ‘grid of translations’

⋃
a≤i≤b,c≤j≤d Mi,j . A second method allows

the user to define also larger grid vectors on the score level, but the principle is the same.
In the composition “Synthesis” to be described in the subsequent chapter 50, we recognize

a number of superimposed ornaments of drum sounds; here in the second movement, see figure
49.7. The compositional principles will be described in section 50.3.

Apart from this explicit usage of ornaments, there is a second truly paradigmatic, more
precisely: topological usage by two-dimensional alterations. Here is the general procedure. We

Figure 4.10: The OrnaMagic component of Presto.

Mac OS X and the lack of universal musical language led to the research group’s

decision to begin anew with the platform-independent language Java.

In a few early attempts, Stefan Müller, Stefan Göller, and Gérard Milmeister

began with the implementation of a framework based on the denotator format (see

Section 3.2.3). On top of this framework, Müller’s EspressoRubette calculated per-

formance fields (Figure 4.12) for given performances, in a way the opposite of what

Rubato had done. Göller’s system, the PrimaVista browser, visualized denotators

in various ways in a three-dimensional space and let the user browse the space (see

Section 6.1.1).

After these attempts, Mazzola’s group felt the need for a much more modular

system with small units of minimal functionality. This is how Gérard Milmeister’s

Rubato Composer came about. It was built on top of the partially developed frame-

77

Figure 4.11: The Rubato software on NeXTSTEP.

work for forms and denotators and features a graphical user interface that allows

users to compose, analyze, and perform music by creating networks of rubettes, in the

fashion of Max/MSP or Pd (Section 4.3.2).

4.4.2 A Platform for Forms and Denotators

Figure 4.13 shows the overall architecture of Rubato Composer. The top level consists

in the graphical user interface shown in Figure 4.14, whereas the lowest level shows

the technology the software is based on, Java, along with subparts concerned with

78

10.3 Measuring Performance Fields 85

Fig. 10.4. The Espresso Rubette component of RUBATOr takes a MIDI file of a
composition and the MIDI file of its performance, compares them and generates a
corresponding performance field, which is visualized as a color field by use of the color
circle.

composition and interpolating these vectors to a field that is defined everywhere
on the composition’s frame. The interpolation task is trivial. The vector field
can also be represented as a color field matching the vectors’ directions with
positions on the color circle; the vctors’ lengths determine the color intensity.
Figure 10.4 shows such a visualzation of a part of the Czerny exercise shown
as input to the Espresso Rubette. The black points on the color field to the
right are the performed note events. The construction of the representative
vectors is quite subtle, but it can be done on the basis of standard methods
of linear algebra. The point here is to find good pairs of vectors that describe
the Jacobian matrixes, where “good” means that the selection must cope with
robust positions of the transformations’ base vectors, see [86] for details. It is
evident that such a software is the germ of a revolutionary tool for performance
education because the student can play a piece on a MIDI piano, and—while the
performance is ongoing—the color field on a big screen shows immediately the
performance field as a common reference for the instructor and the student, a
tool which enables a detailed, undelayd, and objective reference for the delicate
pedagogical work of teaching refined performer artistry.

Figure 4.12: A performance field calculated by Müller’s EspressoRubette.

the graphics (Swing), saving (XML), and communication (MIDI). In the meantime,

there are interfaces to many other technologies or languages including CSound, JSyn,

OpenGL, JPEG, LilyPond, or Leap Motion. Some of them will be described in Part II

of this thesis.

The main concern in this section are the two middle levels in Figure 4.13. Rubato

Composer includes a framework that implements the topos-theoretical constructs

discussed in Section 3.2.3 of this thesis. For now, everything is based on the topos

on the category of modules Mod@. Not only programmers but also users of the

graphical interface can create any of the mathematical constructs imaginable in this

topos. They can define modules of any dimension on the number rings Z, Q, R, or

C, the modulo rings Zn, polynomial rings, and even string rings, to create words. In

addition to this, they can define modules over product rings, such as Q3 × Z12 × C,

as well as direct sum modules.49 Then they can define Forms of any of the types

Simple, Limit, Colimit, Power, or List, but Limit and Colimit only with trivial

diagrams.

49Gérard Milmeister. The Rubato Composer Music Software: Component-Based Implementation
of a Functorial Concept Architecture. Berlin/Heidelberg: Springer, 2009, p. 91.

79

82 9 Architecture

Fig. 9.1: The overall architecture of RUBATO COMPOSER.

Power and an additional type List. Forms and, more specifically, deno-
tators support a number of generic operations. These are provided either
as methods or as separate classes. Chapter 11 covers this part in detail.

IV. While the previous layers are mainly intended for programmers familiar
with Java, the top layer is the application layer. It provides the graphical
user interface that allows the manipulation of the objects in the RUBATO

COMPOSER universe without extensive knowledge of programming. Here
the rubettes, components that package functionality from the layers be-
low, are introduced. These components, in their graphical appearance,
are placed into networks and linked together via input and output con-
nectors. Some aspects of the implementation are discussed in chapter 13.
The use of the interface itself is presented in the manual in chapter 20.

Figure 4.13: The architecture of Rubato Composer.

In order to create denotators of any of the forms created, users have to create a

specific module elements for the modules in the Simple forms involved and build up

the structure from there. Finally, these denotators can be mapped by morphisms,

the domain of which are any of the involved modules. There is a great variety of

available morphisms types, including embedding morphisms, reorder morphisms, split

morphisms, and so on, which will not be relevant in the context of this thesis, as we

will uniquely use affine morphisms.50 These morphisms can again be combined into

composed morphisms or product morphisms.

The framework provides helper classes for building forms and denotators. For

forms, we can use the class FormFactory, as well as the appropriate classes for higher-

50For further reference, see Milmeister, The Rubato Composer Music Software: Component-Based
Implementation of a Functorial Concept Architecture, p. 97ff.

80

Figure 4.14: The graphical user interface of Rubato Composer.

dimensional modules. If, for instance, we wanted to build the EulerScore form defined

in the example in Section 3.2.3 above, we could write the following code:

SimpleForm onset = FormFactory.makeQModuleForm("Onset");

Module eulerPitchSpace = QProperFreeModule.make(3);

SimpleForm eulerPitch = FormFactory

.makeModuleForm("EulerPitch", eulerPitchSpace);

Module loudnessSpace = ZStringProperFreeModule.make(1);

SimpleForm loudness = FormFactory.makeModuleForm("Loudness", loudnessSpace);

SimpleForm duration = FormFactory.makeQModuleForm("Onset");

LimitForm eulerNote = FormFactory

.makeLimitForm("EulerNote", onset, eulerPitch, loudness, duration);

LimitForm rest = FormFactory.makeLimitForm("Rest", onset, duration);

ColimitForm eulerNoteOrRest = FormFactory

.makeColimitForm("EulerNoteOrRest", eulerNote, rest);

PowerForm eulerScore = FormFactory

.makePowerForm("EulerScore", eulerNoteOrRest);

The corresponding denotators, also defined above, can then be created as follows.

81

We can use the class DenoFactory along with the appropriate module element classes.

Note that all values are chosen to be exactly the same as in the example above. Also

compare to Figure 3.1.

SimpleDenotator onset1 = DenoFactory.makeDenotator(onset, new Rational(0));

ModuleElement pitch1Element = ZProperFreeElement.make(new int[]{1, 0, -1});

SimpleDenotator pitch1 = DenoFactory

.makeDenotator(eulerPitch, pitch1Element);

SimpleDenotator loudness1 = DenoFactory.makeDenotator(loudness, "sfz");

SimpleDenotator duration1 = DenoFactory

.makeDenotator(duration, new Rational(1, 4));

Denotator note1 = DenoFactory

.makeDenotator(eulerNote, onset1, pitch1, loudness1, duration1);

Denotator noteOne = DenoFactory.makeDenotator(eulerNoteOrRest, 0, note1);

SimpleDenotator onsetAtBeat2 = DenoFactory

.makeDenotator(onset, new Rational(1, 4));

Denotator rest1 = DenoFactory.makeDenotator(rest, onsetAtBeat2, duration1);

Denotator shortRest = DenoFactory.makeDenotator(eulerNoteOrRest, 1, rest1);

SimpleDenotator onset2 = DenoFactory

.makeDenotator(onset, new Rational(1, 2));

ModuleElement pitch2Element = ZProperFreeElement.make(new int[]{-1, 1, 1});

SimpleDenotator pitch2 = DenoFactory

.makeDenotator(eulerPitch, pitch2Element);

SimpleDenotator loudness2 = DenoFactory.makeDenotator(loudness, "ppp");

SimpleDenotator duration2 = DenoFactory

.makeDenotator(duration, new Rational(3, 2));

Denotator note2 = DenoFactory

.makeDenotator(eulerNote, onset2, pitch2, loudness2, duration2);

Denotator noteTwo = DenoFactory.makeDenotator(eulerNoteOrRest, 0, note2);

Denotator twoNoteScore = DenoFactory

.makeDenotator(eulerScore, noteOne, shortRest, noteTwo);

82

Figure 4.15: Creating the example EulerScore with Rubato Composer ’s Denotator
Builder

Forms and denotators can just as well be built when the software is running. For

this, we can use all the dialog boxes offered by Rubato Composer ’s graphical user

interface. Figure 4.15 shows how this would have to be done for the same denotator

as the one just defined in code.

Once they are built, all denotators, forms, and module elements can be ac-

cessed through paths. For instance, if we just had a reference to the above-defined

twoNoteScore, we could obtain the EulerP itch denotator of its second note noteTwo

by writing

83

Denotator pitchOfNoteTwo = twoNoteScore.get(new int[]{1,0,1});

The indices in the integer array argument stand for coordinate 1 of the EulerScore

(noteOne is 0, shortRest is 2),51 coordinate 0 in EulerNoteOrRest (1 would be for

Rests), and coordinate 1 of EulerNote (which is EulerP itch). If we wanted to get

the value of the dimension of thirds in the Euler space of the same note, we could

write

int thirdValue = ((ZElement)pitchOfNoteTwo.getElement(new int[]{2}))

.getValue();

This returns the third dimension of the element (index 2, first dimension or octaves

have index 0, second or fifths have 1). There are similar methods that yield coordi-

nators of forms.

Users can build all other mathematical constructs in Mod@ in similar ways, all at

runtime, which is a significant advantage to other applications. Whenever composers

or improvisers have an idea of a new musical object, they can define it and start

working with it right away. In the next section I will explain what working with

denotators and forms looks like.

4.4.3 Rubettes and Networks

We have already seen how musical structures can be built in Rubato Composer. Now

what can we do with them and how can we hear them? For this, we need to use the

so-called rubettes, already mentioned in Section 4.4.1. In Rubato Composer, rubettes

are small modular components that have a number of input and output connections

through which they can be connected to other rubettes. Denotators travel through

51In a Power of a Colimit, elements are sorted by the colimit coordinate type, i.e. all instances
of the first colimit coordinate, the all instances of the second, and so on.

84

the lines that are used to connect rubettes to each other. Each time the green run

button in the top menu bar is pressed, the network is run in order, starting with

the rubettes that receive no input, all the way to the rubettes that do not deliver an

output. In Milmeister’s opinion, this way, rubette networks visualize the work flow of

the musician.52 However, even though Rubato Composer networks can undoubtedly

be considered processes, they do not follow the poietic process, since the users may

define the bottom rubettes first. Much rather, they represent the processual logic

behind the construction of the musical or analytical structure built.

The long-term goal of Rubato Composer is to provide a platform for analysis,

composition, performance, improvisation, in short, any musical activity, and to do

this with the constructs of mathematical music theory. It comes with a number of

built-in rubettes with a variety of purposes. For instance, there are rubettes that

transform denotators using arbitrary module morphisms (ModuleMap), perform set

theoretical operations (Set), display denotators in text form (Display), transforms

denotators of one form into ones of another (Reform), and so on.

In its early days, Rubato Composer was mainly used for processing denotators of

a specific form, Score, simply a Power of Notes, which are in turn Limit of Onset,

Pitch, Loudness, Duration, and Voice, all Simple of one-dimensional spaces. Sev-

eral rubettes are designed to handle specifically Scores. ScorePlay plays them back,

Melody creates melodies based on given characteristics, Rhythmize assigns generated

rhythms to melodies, Scale generates scales, and ScoreToCSound exports them to

CSound, and MidiFileIn and MidiFileOut load and save MIDI files to and from Score

denotators. In general, however, rubettes should as much as possible be applicable

to any sort of input. Some of the earlier Score-oriented operations available in the

52Milmeister, The Rubato Composer Music Software: Component-Based Implementation of a
Functorial Concept Architecture, p. 76.

85

Presto software were generalized, for instance in form of the Wallpaper and Alteration

rubette, which work for any arbitrary Power denotator.53

Figure 4.14 above contains a small network, where two melodies generated by

Melody rubettes are rhythmized and the voice of one of them mapped via ModuleMap

rubette. Then, they are combined via set union, altered towards an octatonic scale,

quantized, and finally output as a LilyPond score and a MIDI file. The windows on

the right of the network are the views of the Display rubette, showing denotators in

text form, and the ScorePlay rubette, where the contrapuntal example can be played

back so that it can be regenerated until satisfying.

Rubettes have to be implemented in Java and can easily be added as plugins

to Rubato Composer. They can have a properties and a view window, the former

of which can be used to set certain parameters needed to perform an action and the

latter to visualize some desired aspects. A lot of functionality is provided through the

classes AbstractRubette and SimpleAbstractRubette, the latter can be extended

with just a few lines of code and comes with a customizable properties window. The

main functionality of a rubette has to be implemented in its run(RunInfo runInfo)

method, which is called by Rubato Composer ’s main classes whenever a network

is run, and where its properties can be accessed and its input denotators fetched,

processed and assigned to the outputs.

For instance, we could create a rubette that generates the EulerScore defined above

and sends it to all the connected rubettes. We would have to define the following

constructor

public TwoNoteEulerScoreRubette() {

this.setInCount(0);

this.setOutCount(1);

53Thalmann, “Musical composition with Grid Diagrams of Transformations”.

86

}

which means that the rubette only has one output and no input. The run method

would then contain the code shown above followed by a simple line that assigns the

score to the only output with index 0, thus

public void run(RunInfo runInfo) {

SimpleForm onset = FormFactory.makeQModuleForm("Onset");

...

Denotator twoNoteScore = DenoFactory

.makeDenotator(eulerScore, noteOne, shortRest, noteTwo);

this.setOutput(0, twoNoteScore);

}

4.4.4 Where are the Gestures?

Rubato Composer has an immense potential due to the versatility and completeness of

its mathematical language, the infinite recombinations of its rubettes into networks,

and the extensibility of its rubette collection. However, several of the distances dis-

cussed in the beginning of this thesis still apply and may limit its user group. Even

though no programming skills are required for users that do not wish to write their

own rubettes, the mathematical constructs and the ways in which they are created

in Rubato Composer may discourage musicians, in ways similar to the application

of mathematical music theory. The conceptual, generative, and sensual distances

are maintained due to the abstractness of the interface. For instance, users have no

chance to intuitively understand how a certain matrix produces a transformational

result when defining affine morphisms in the ModuleMap rubette. The only distance

Rubato Composer overcomes is the temporal distance. Upon any change of prop-

erties, the entire composition can be immediately recalculated. Even there, Rubato

Composer has its limitations as it may take a long time and may be tedious to define

87

specific musical structures, so that the musicians lose their intuitive connection to the

musical result and may stop being “inside” the music or stop experiencing flow.

Other systems built on the processual paradigm that allow for continuous data

flow between their modular parts, such as Max/MSP or Pd, arguably overcome the

generative distance, since a slight change in one of the parameters may lead to an

immediately audible or visible result. However, for data structures as complex as the

ones of Rubato Composer, there may need to be another solution. The idea behind

this thesis is to provide a module for Rubato Composer that allows users to intuitively

define, manipulate, visualize, and sonify any of the musical objects potentially defin-

able within the mathematical framework. For this, after the above discussions, there

is no better solution than the incorporation of gestures. The outcome is the BigBang

rubette, which will be described in the remaining two parts of this thesis.

88

Part II

The BigBang Rubette and the

Levels of Embodiment

89

Chapter 5

Introduction to BigBang

The BigBang rubette was developed as a solution to the above problems, with the

goal to reduce the distances between the user, the mathematical framework, and

the musical result. It has evolved over years, starting with a research project at

the University of Minnesota in 2007. The early stages were described in several

publications.1 The subject of this thesis is a new, generalized version of BigBang

that mainly evolved between 2012 and 2014 and that implements transformation-

theoretical paradigms based on the ontological dimension of embodiment and the

communication between these levels, as introduced in Part I of this thesis.

BigBang is a regular rubette with a number of view windows by means of which

users can easily create denotators by drawing on the screen, visualize them from

different perspectives, transform them in a gestural way, interact with a visualization

of their compositional or improvisational process, and gesturalize the entire process in

various ways. BigBang has one input and one output and the newest version accepts

almost any type of denotator to be visualized and interacted with. Figure 5.1 shows

1For instance, Thalmann and Mazzola, “The BigBang Rubette: Gestural Music Composition with
Rubato Composer”; Florian Thalmann and Guerino Mazzola. “Gestural Shaping and Transforma-
tion in a Universal Space of Structure and Sound”. In: Proceedings of the International Computer
Music Conference. New York City: International Computer Music Association, 2010.

90

Figure 5.1: A network including the BigBang rubette and its view next to it.

the rubette, incorporated in a Rubato Composer network, and its view window.

All this is possible due to an implementation of the three levels of embodiment.

The facts view, the large area on the right, visualizes the musical objects or facts,

denotators in their coordinate space, and allows for different views of these objects,

selectable using the grid of checkboxes on the right. The smaller area on the left,

the process view, visualizes the process graph of the created music in the fashion of

the graphs of transformational theory (Section 3.2). Each arrow corresponds to an

operation or transformation, while each node corresponds to a state of the composi-

tion. Finally, the interaction with the objects visualized in the facts view is where

the gestures happen. Any operation or transformation with BigBang is immediately

and continuously sonified and visualized in a gestural way, according to the principles

discussed in Section 4.3.3.

Otherwise, the rubette behaves as any other rubette: whenever the user presses

on Rubato Composer ’s run button, BigBang accepts a denotator, either adding it to

91

the one already present or replacing it, and sends its previous denotator to the next

rubettes in the network. The rubette can be duplicated, which copies the graph in

the process view along with any denotators created as part of the process. This way,

users can include a BigBang with a defined process in other parts of the network, or

other networks, and feed them with different inputs, while the process remains the

same. Finally, as any rubette, BigBang can be saved along with the network, which

again saves processes and corresponding facts.

The chapters in this part are structured according to the three levels of embodi-

ment. In the first one, Chapter 6, I will deal with the facts view, explain how arbitrary

musical objects are visualized, how they are sonified, and how they are represented

within BigBang. Chapter 7 will be devoted to processes and explain what operations

and transformations are available, how they can be applied, and how they are repre-

sented in BigBang ’s process view. Finally, in Chapter 8, I will explain how the user’s

gestures are formalized, i.e. mapped onto transformations and operations, and how

the resulting processes can be gesturalized again, so that users can see and hear their

composition’s evolution in a continuously animated way.

This part deals mainly with conceptual matters. A more detailed description of

the architecture and implementation is given in Chapter 9 in Part III.

92

Chapter 6

Facts: BigBangObjects and their

Visualization and Sonification

The facts, or objects, the BigBang rubette deals with, are denotators and the spaces in

which these objects reside are forms, as discussed in the first part of this thesis. So far,

we have only seen a small portion of the variety of forms that can be defined in Rubato

Composer. However, any conceivable musical or non-musical object can potentially

be expressed with forms and denotators, many of them in the category Mod@. One

of the basic ideas of the advanced BigBang rubette described in this thesis was to

generalize an earlier version that only worked with score-based denotators, similar to

rubettes such as ScorePlay or Melody. The new BigBang was made compatible with

as many forms as possible, even ones that the users may spontaneously decide to

define at runtime. For this, not only BigBang ’s facts view had to be generalized, but

also the way denotators are represented internally, as of so-called BigBangObjects.1

In this chapter, I describe how this was done.

1From now on, every object that literally exists as a Java object in BigBang ’s code, will be
written in verbatim font. However, they will mostly be described in a conceptual way. For more
technical descriptions of the implementation, refer to Chapter 9.

93

6.1 Some Earlier Visualizations of Denotators

How can we define a visualization system that works for denotators of as many dif-

ferent forms as possible? First, it will be helpful to look at some earlier attempts

at visualizing denotators. Several previous dissertations were based on an imple-

mentation of denotators and forms, as seen in Section 4.4.1. Stefan Göller’s had

visualization as its main focus and Gérard Milmeister’s included a number of smaller

visualization tools.

6.1.1 Göller’s PrimaVista Browser

The goal of Göller’s dissertation was to visualize denotators “in an active manner:

visualization as navigation”.2 The result was the sophisticated PrimaVista Browser,

implemented in Java3D, that featured a three-dimensional visualization in which users

could browse denotators in first-person perspective. PrimaVista could be customized

in many ways using a virtual device, the Di, shown in Figure 6.1.3

PrimaVista was capable of representing any type of zero-addressed Mod@ deno-

tator as a point or a set of points in R3 while preserving both order and distance of

the original data structure as well as possible. Limit and Colimit denotators of any

dimensionality and their nested subdenotators were folded in a two-step process, first

into Rn then into R3. Thereby, for any denotator d the mapping Fold : F (d) → R3

had to be injective. The first step of this process mapped the values of the Simple

denotators found in the given denotator hierarchy, regardless of their domain, into

Rn by injecting or projecting each of the individual values into R. A matrix defined

which denotator dimensions were mapped into which of the n dimensions of the real

2Stefan Goeller. “Object Oriented Rendering of Complex Abstract Data”. Ph.D. Thesis. Uni-
versität Zürich, 2004, p. 55.

3Ibid., p. 107.

94

Figure 6.1: The Di of Göller’s PrimaVista browser.

codomain space, allowing for both multiple mappings and merging mappings. A so-

called greeking procedure made sure that only denotator values up to a certain level

of hierarchical depth were taken into account, which enabled dealing with circular

structures. The second step of the process consisted in folding the obtained Rn vec-

tors into R3 by privileging specified dimensions and folding the remaining ones to the

mantissa, the decimal digits after the comma.

Göller discussed adventurous ways of visualization replacing the points in R3 with

complex three-dimensional objects the parts of which he called satellites, not to be

confused with satellites as they are defined in this thesis,4 each of them representing

4See Sections 6.2 and 9.2.3, where satellites are defined as elements of sub-powersets of a deno-
tator. Also, in Göller’s work, there are only two levels: the main satellite and its subsatellites.

95

additional characteristics of the represented denotators. Each of Göller’s satellites

is characterized by the following variable visual parameters: position (x, y, z), rota-

tion vector (rx, ry, rz, α), scale (sx, sy, sz), color (red, green, blue), texture, sound

(pitch, loudness, instrument, sysex).5 The most complex object finally implemented

is the Pinocchio satellite shown in Figure 6.2. Göller even suggests some satellites to

be moving in time to represent parameters such as frequency. This feature was, how-

ever, finally not implemented. Another feature not implemented was a generalization

of the musical score, where each satellite is associated with sounds that would be

played when intersected with a plane, or more generally an algebraic variety, moving

in time.6 Finally, Göller discusses the concept of so-called cockpits, where an object’s

subsatellites become actuators in the form of levers, buttons, or knobs, through which

users can change the underlying denotator.7 Again, this was not implemented within

the scope of his thesis. In addition to this, Göller envisioned ways of transforming

and manipulating objects that are similar to the ones of the BigBang rubette.8

There are several issues with Göller’s approach, some of which explain the diffi-

culties that arose when trying to implement the ideas. First, the folded spaces pose

problems of ambiguity in visualization and especially transformation. If one dimen-

sion of R3 represents several denotator dimensions at the same time and the user starts

transforming the denotator, it is not intuitively deducible from the visible movement

how the denotator values are affected. Representation is often ambiguous, where dif-

ferences in dimensions folded to the mantissa become only subtly visible and often

visually indistinguishable from a simple projection. Second, several simplifications of

the denotator concept were made to enable representation within this model. Göller

5Goeller, “Object Oriented Rendering of Complex Abstract Data”, p. 77.
6Ibid., p. 84-5.
7Ibid., p. 95.
8Ibid., p. 123f.

96

Figure 6.2: A denotator visualized in PrimaVista using Pinocchios (satellites) of
varying size and differently positioned extremities (subsatellites).

does, for instance, not consider higher-dimensional Simple forms, such as ones using

modules based on R2 or C. Third, he mainly visualizes denotators on the topmost

level, thereby assuming that it consists of a Power.9 The BigBang rubette offers

solutions to several of these problems, as discussed later.

6.1.2 Milmeister’s ScorePlay and Select2D Rubettes

Even though the focus of Milmeister’s work lay in building the basic mathematical

framework as well as the interface of Rubato Composer, some of his rubettes offer vi-

sualizations of denotators of both general and specific nature. The ScorePlay rubette

9Goeller, “Object Oriented Rendering of Complex Abstract Data”, p. 63.

97

limits itself to Score denotators, as mentioned above, and represents them in piano

roll notation, as can be seen above, in Figure 4.14. It simply visualizes a Score and

enables users to play it back at a variable tempo and using different built-in MIDI

instruments. It does not allow for any interaction with the represented notes.

The Select2D rubette represents any incoming Power or List denotator as points

projected to a customizable two-dimensional coordinate system, the axes of which

can be freely associated with any Simple denotator somewhere in the denotator

hierarchy. Users can then select any number of these points by defining polygons

around them (Figure 6.3). The rubette then outputs the subdenotators associated

with these points as one runs the network.

Milmeister’s rubettes provide several improvements over Göller’s software while

being more limited in other ways. ScorePlay only accepts denotators of one form

and visualizes them rigidly. However, its visualization is minimal and based on a

standard immediately understandable by the user, which Göller’s might not always

be. Select2D, in addition to Power denotators, also accepts List denotators, which

were only introduced in Milmeister’s work.10 Furthermore, it is able to represent more

types of Simple denotators than Göller’s, more precisely ones containing free mod-

ules over any number ring except for C. Nevertheless, higher-dimensional Simple

coordinates and product rings can again not be represented. Furthermore, the ru-

bette’s visualization capabilities do not exceed the representation of points projected

to a two-dimensional coordinate system.

10Milmeister, The Rubato Composer Music Software: Component-Based Implementation of a
Functorial Concept Architecture, p. 105.

98

266 20 User’s Manual

Fig. 20.25: The properties of the Select2D rubette. Here the
first of two selection tabs is visible. The coordinate form is
Note, the projection on the x-axis is the R ring of its Onset
coordinate, the projection on the y-axis is the Q ring of
its Pitch coordinate. A single polygonal selection has been
drawn. Also visible are the current position of the pointer
and the extents of the window.

(Big Union (Intersection)) #1: A set or list of denotators of
type Power.

Outputs: #1: The result of the set operation. The result form (of type
Power) is taken from input denotator #1, or in the case of Big
Union (Intersection), the coordinate form of the form input
denotator #1.

Description: The input denotators are the arguments to a set operation:

Union, Intersection, Difference, Symmetric Difference: The
specified operation is performed on the input denotators.

Add Element: Input denotators #2–#n are added to the ele-
ments of input denotator #1.

Figure 6.3: The Select2D rubette showing a Score denotator on the Onset × Pitch
plane.

6.2 An Early Score-based Version of BigBang

Initially, the BigBang rubette was designed for a small set of score-related denotators.

The first version allowed users to handle Scores and MacroScores and was developed

before in the context of an independent research project at the University of Min-

nesota.11 MacroScore is a conceptual extension of the form Score which I casually

defined in Section 4.4.3. It brings hierarchical relationships to Notes by imitating the

11Thalmann and Mazzola, “The BigBang Rubette: Gestural Music Composition with Rubato
Composer”.

99

set-theoretical concept of subsets.12 The form is defined in a circular way, as follows:

MacroScore : .Power(Node),

Node : .Limit(Note,MacroScore),

Note : .Limit(Onset, P itch, Loudness,Duration, V oice)

Each Node associates thus a Note with a set of again Nodes, each of which again

contain a Note and a set, and so on. In short, with this construction, each Note

of a MacroScore has a set of so-called satellites on a lower hierarchical level. We

could go on infinitely, but in order to stop at some point, we give some of the Nodes

empty sets, thus no satellites. The idea behind this form is that in music, we not only

often group objects together and wish to treat them as a unity, but also establish

hierarchies between them. A trill, for instance, consists of a main note, enhanced by

12This complies Graeser’s notion of counterpoint as “a set of sets of sets of notes”, cited in Note 1
in Section 3.1.

100

some ornamental subnotes.13 A simplified trill denotator could be defined as follows:

shakeWithTurn : @MacroScore(mainNode),

mainNode : @Node(mainNote, ornamentalNotes),

mainNote : @Note(. . .),

ornamentalNotes : @MacroScore(

upNode,midNode, upNode,midNode, lowNode,midNode),

upNode : @Node(upNote, emptySet),

upNote : @Note(. . .),

emptySet : @MacroScore(),

. . .

What is crucial to the notion of satellites, is that their values are defined relatively to

the ones of their anchor. So if for instance the mainNote defined above has Pitch 60

and its satellite upNote P itch 61, the latter in fact obtains a Pitch of 1. If another

had Pitch 58 it would be defined as −2. This way, if we transform the anchor, all its

satellites keep their relative positions to it.

Later on, another form was added to BigBang ’s vocabulary, SoundScore, which

combines frequency modulation synthesis with the MacroScore concept. Each note,

in addition to having satellites, can have modulators which modulate its frequency

and change its timbre.14 Again, modulators have a relative position to their carrier

13In a similar way, Schenkerian analysis describes background harmonic progressions enhanced
by ornamental foreground progressions, which could be represented with MacroScores as well.
However, we may find forms that are better suited, as will be discussed below.

14Thalmann and Mazzola, “Gestural Shaping and Transformation in a Universal Space of Struc-
ture and Sound”.

101

and would be transformed with it. The form is defined as follows:

SoundScore : .Power(SoundNode),

SoundNode : .Limit(SoundNote, SoundScore),

SoundNote : .Limit(Onset, P itch, Loudness,Duration, V oice,Modulators),

Modulators : .Power(SoundNote)

Denotators of these forms are all based on the same five-dimensional space spanned

by the Simple forms Onset, Pitch, Loudness, Duration, and Voice and can thus be

visualized the same way. The early BigBang rubette did this using a generalized

piano roll representation, as I will explain later on.15 In sum, all of the objects the

early BigBang rubette dealt with were essentially notes.

6.2.1 The Early BigBang Rubette’s View Configurations

The visualization principle of the BigBang rubette16 combines elements of both Göller’s

and Milmeister’s models, but focuses on a minimalist appearance aiming towards sim-

plicity and clarity. It generalizes the piano roll notation also used in the ScorePlay

rubette (see Section 6.1.2). Notes are represented by rectangles on a two-dimensional

plane, just as in a piano roll. However, already in early versions of BigBang, the

visual elements of the piano roll were separated from their original function so that

they could be arbitrarily assigned to the symbolic dimensions of the represented score

denotator. This is reminiscent of the ways Göller’s subsatellites could be assigned to

any folded denotator dimensions (Section 6.1.1) or of the spacial representation of

Milmeister’s Select2D rubette (Section 6.1.2). A similar method of visualizing was

15Piano roll is a standard in music software, as mentioned in Section 4.3.1.
16Thalmann and Mazzola, “The BigBang Rubette: Gestural Music Composition with Rubato

Composer”, p. 4-5.

102

also available in Presto’s local views (Section 4.4.1).

In order to do this I defined a set of six visual parameters

N = {X-Position, Y -Position,Width,Height, Opacity, Color}

corresponding to the visual properties of piano roll rectangles along with a set of six

note parameters

M ′ = {Onset, P itch, Loudness,Duration, V oice, SatelliteLevel},

which corresponds to the Simple denotator in Scores with the exception of

SatelliteLevel, which was used to capture the hierarchical level of satellite notes in

MacroScores and SoundScores. I then defined a view configuration to be a functional

graph V ⊂ N ×M ′. This ensures that each screen parameter n ∈ N is associated

with at most one musical parameter V (n) that defines its value, as well as that V

does not need to include all n ∈ N . View parameters not covered by V obtain a

default value that can be defined by the user. The traditional piano roll notation

could be produced by selecting the following pairing (shown in Figure 6.4):

V1 = {(X-Position,Onset), (Y -Position, P itch), (Width,Duration)}

An enhanced version of the piano roll that often appears in software products also

uses opacity and color:

V2 = {(X-Position,Onset), (Y -Position, P itch), (Opacity, Loudness),

(Width,Duration), (Color, V oice)}

103

Figure 6.4: The early BigBang rubette showing a Score in piano roll notation.

The possibility of arbitrary pairings, however, also enables more adventurous but

possibly also interesting view configurations, such as the following (Figure 6.5):

V3 = {(X-Position,Onset), (Y -Position, Loudness), (Width, P itch),

(Color,Onset), (Height, Loudness)}

Experimenting with such view configurations may be especially valuable for analysis

and may lead to a different understanding of given musical data sets.

Every view parameter can be customized at runtime. Depending on the repre-

sented note parameter, it can be useful to ensure that a screen parameter’s value

does not exceed a specific value range. For example it may look more clear when

the rectangle’s heights are limited in a way that their areas do not intersect, just as

104

Figure 6.5: The early BigBang rubette visualizing a Score in a more experimental
way.

with piano roll notation. Thus, for each n ∈ N , we optionally define minn,maxn,

the minimal and maximal screen values. We then have two options to define the way

note parameters are mapped to the screen parameters.

1. If we choose the conversion to be relative, the minimal and maximal values of the

given note parameter minm,maxm,m ∈M ′ are determined for the actual score,

and then mapped proportionally so that the note with minm is represented by

minn and the note with maxm by maxn. For this, we use the formula

vn =
vm −minm

maxm −minm
(maxn −minn) +minn,

where vn is the screen value for the note value vm.

105

2. On the other hand, absolute mapping means that every value with vm < minn

or vm > maxn is mapped to a new value, while all other values stay the same, i.e.

vn = vm. For absolute mapping, we have two choices. In limited mapping, the

values that surpass the limits are given the minn and maxn values, respectively.

The following formula is used:

vn =


minn, if vm < minn

maxn, if vm > maxn

vm otherwise.

For cyclical mapping, we use the formula

vn =


(vm mod (maxn −minn)) +minn,

if vm < minn or vm > maxn

vm otherwise.

This mapping type can be useful for the color screen parameter for example,

where it is reasonable to cycle through the color circle repeatedly to visualize a

specific note parameter interval, such as an octave in pitch, or a temporal unit,

as shown in Figure 6.5, where color visualizes a time interval of length 24, i.e.

six 4/4 bars.

With absolute mapping it is possible to leave either or both of the Limits as

undefined. Accordingly, we assume minn = −∞ or maxn = ∞. Of course, if

none of the limits are defined, the visible screen parameters correspond exactly

with the original note parameters.

At runtime, the view window’s current pairings could be selected using a matrix

106

of checkboxes with a column for each screen parameter and a row for each note

parameter, see Figure 6.5.

Satellite relations can be displayed in two ways. First, the note parameter

SatelliteLevel, mentioned above, can be assigned to any arbitrary visual parame-

ter. This way, anchor notes are associated with integer value 0, first-level satellites

with 1, and so on. On the other hand, satellite relations may also be displayed as

lines between the centers of two note objects so that every note has lines leading to

each of its direct satellites, as shown in Figure 6.6.17 As mentioned above, since all

anchors and satellites in MacroScore and SoundScore denotators are notes, they can

be represented in the same space.

6.2.2 Navigating Denotators

Users can navigate this two-dimensional space not only by changing their view of the

space by choosing different note parameters for the x and y view parameters, but

also by changing their view point by scrolling the surface and zooming in and out

without limitations. This is similar to Göller’s PrimaVista, but using two instead of

three dimensions. However, users can also open several of these views simultaneously

and choose different perspectives on the composition. This is especially valuable

when performing transformations in one view while observing how the composition

is affected from the other perspective.

6.2.3 Sonifying Score-based Denotators

In early BigBang, denotators could not only be visualized but also sonified. Even

though this may be done using another, specialized rubette such as ScorePlay, we

17This is a notion of satellites significantly different from Göller’s (Section 6.1.1). While Goeller
uses the term to denote movable parts of objects and represents them as denotators, but here we
use it to speak of circular denotator structures (also see Note 4).

107

Figure 6.6: The early BigBang rubette showing a MacroScore with two levels of
satellites.

decided to include this functionality within BigBang. The main reason for this was the

gestural interaction concept, where especially immediate auditive feedback is key, as

we saw in Section 4.3.3. Users have to be able to judge musical structures by ear while

they are creating them, and the use of an external rubette would have slowed down

the process. A second reason was that many of the possible musical structures in early

BigBang were micro-tonal for which MIDI feedback, as implemented in ScorePlay, is

unsuited since it is strictly chromatic.18 The extension of BigBang for SoundScores

was another reason, for now timbre was part of the musical objects and had to be

judged while it was defined.

Since all the structures dealt with in early BigBang were Score-based denotators,

18The use of pitch bend is an option for monophonic material, but limited as soon as several notes
have to be bent in different ways.

108

sonification was rather straightforward. All the objects that had to be played were

Notes that existed in the same space. They were simply played back in time, giving

the user control over tempo. The microtonal and frequency modulation structures

of SoundScores made it necessary for a synthesizer to be used. For each note, a

synthesizer object, a so-called JSynNote19 was created by converting symbolic time,

pitch, and loudness into the physical parameters time, frequency, and amplitude.

Outside BigBang, MacroScores usually have to be converted into Scores in or-

der to be played back, a process called flatten (see next chapter). In early BigBang,

this happened in the background, since it would have significantly slowed down the

composition process. Satellites were simply converted into additional JSynNotes ac-

cordingly. Modulators in SoundScores, however, became modulators of JSynNotes.

There were two options of how to play back modulators: either their temporal pa-

rameters were ignored and they simply played whenever their carrier was playing,

or they only modulated their carrier according to their own onset and duration. In

the latter case, users had to make sure the anchor notes were playing at the same

time as their modulators, but they also had the chance to create temporally varying

configurations of modulators for a single note.

6.3 BigBangObjects and Visualization of Arbitrary

Mod@ Denotators

Despite its customizability, the view concept of the early BigBang rubette was first

designed to represent Score, MacroScore, and SoundScore denotators, which are

all based on the same musical space: (Power of...) Power of Limit. There, the

view concept has proven its viability, compared to other concepts such as the ones

19JSyn is the name of the synthesizer framework we decided to use, as will be explained later on.

109

discussed above. Now how can this concept be generalized so that BigBang can accept

any denotators?

In this section we describe how we can do this for a major part of the spaces

available in Milmeister’s version of Rubato Composer, which are all based on elements

of the topos Mod@ over the category of modules, as described in Section 4.4.2.20 The

number of denotator types capable of being represented by the new BigBang rubette

is significantly higher than the two comparable modules PrimaVista and Select2D.

Nevertheless, for the time being we restrict ourselves to 0-addressed denotators (see

Section 3.2.3) and focus on number-based modules. We exclude both modules based

on polynomial rings and ones based on string rings, since their visualization may

differ markedly and will be left to future projects.

6.3.1 A Look at Potential Visual Characteristics of Form

Types

As a starting point we need to reflect on the role of the five form types Simple, Limit,

Colimit, Power, and List and the way they can best be visualized. Each of these

types implies another visual quality that may be combined with the others. How were

these qualities in early BigBang? Scores were shown as clusters of rectangles (Power)

within a coordinate system (Limit) of five axes (Simple), which could in turn be

variably shown as any of six visual dimensions (x-position, y-position, width, height,

color, opacity). Three of the five form types are involved here. The Simples in a

Note are based on free modules on a number ring and can thus easily be represented

by one number axis or one of the other visual properties. However, Rubato Composer

20This procedure is also described in Florian Thalmann and Guerino Mazzola. “Visualization and
Transformation in a General Musical and Music-Theoretical Spaces”. In: Proceedings of the Music
Encoding Conference 2013. Mainz: MEI, 2013, p. 3, as well as briefly in Florian Thalmann and
Guerino Mazzola. “Using the Creative Process for Sound Design based on Generic Sound Forms”.
In: MUME 2013 proceedings. Boston: AAAI Press, 2013.

110

allows for many more types of Simples, each of which must be consider here:

Simple Denotators

Simple denotators are crucial to a system of visualization, since they are the only

denotators that stand for a specific numerical value in a space. Basically, every form

that will be used in a practical way should to contain Simples. This despite the

fact that it is possible to conceive more pathological forms, such as for instance the

circular form that describes sets as sets of sets:

Set : .Power(Set).

Such forms will be of little use in our context, since anything to be represented and

especially transformed needs to contain specific numerical values. We can thus declare

a first rule here:

Rule 1 In our system denotators will only be represented if they contain at least one

Simple denotator somewhere in their structure.

With the system, Simple denotators over the following modules can be represented:

Free Modules over Number Rings The most straightforward type of modules

are the free modules based on number rings such as Z,Q,R, or C. Elements of the

former three are typically represented along an axis, whereas ones of the latter on a

two-dimensional Cartesian system. For modules Zn,Qn,Rn, and Cn an n-dimensional

or 2 ∗ n-dimensional system of real axes will be appropriate.

Furthermore, as shown in Section 6.2.1, as long as all values of a specific denotator

are known and finite, dimensions of free modules over number rings can equally be

represented by other visual parameters, such as an objects width, height, color, etc.

111

Elements of the free module over C, for instance, could convincingly be represented

as width and height of objects.

Quotient Modules For free modules over quotient modules such as Zm = Z/mZ,

Qm = Q/mZ, Rm = R/mZ, and Cm = C/mZ we choose a manner of representation

that corresponds to the one introduced in the previous section, where values are

simply projected on a one- or two-dimensional coordinate system. However, instead

of being potentially infinite, the axes maximally show the numbers of the interval

[0,m[, which makes zooming out beyond this point impossible. This works in an

analogous way for other view parameters that do not allow cyclical representation,

such as width, height, and opacity. Of the defined visual parameters, only color allows

for cyclical representation, in analogy to the color circle. Again, for Znm,Qn
m,Rn

m, and

Cn
m, the system can be extended to be n-dimensional or 2 ∗ n-dimensional.

Modules over Product Rings and Direct Sums of Modules over Quotient

Modules Representation is straightforward for direct sums of any of the quotient

modules discussed so far. Each of the factors is independently associated with one of

the view parameters. For example, for Z × R7 we might choose to represent the Z

part with the x-axis and the R7 part with color.

Remark: More general modules which are not derived from direct sums of such

quotient modules are not yet dealt with.

Limit Denotators

The fact that Limits are products or conjunctions makes them always representable

in the conjoined space, i.e. the cartesian product of the spaces of their factors. The

most simple case is a Limit of Simple denotators, just as with our common Score

denotators. Notes can be represented in Onset × Pitch × Loudness × Duration ×

112

V oice. This is even possible if the same subspaces appear in several times. For

instance, if we define a form

Dyad : .Limit(Pitch, P itch),

its denotators are representable in the space Pitch× Pitch. This also works in cases

where the factors of a Limit are not directly Simple.

Colimit Denotators

Colimits, disjunctions or coproducts, are again representable in the product space

of their cofactors, even if they then typically do not have defined values in all of

the product’s dimensions. For “missing” dimensions, we set standard values, so that

the denotators are represented on a hyperplane in the entire product space. The

case where cofactors share common subspaces is especially interesting, since these

subspaces will always be populated.

An example will clarify this: the EulerScore form defined in Part I consists of

EulerNotes and Rests, which share the Simple forms Onset and Duration. The

product space of all cofactor spaces is Onset×EulerP itch×Loudness×Duration.

While EulerNotes fill the entire space, Rests are simply represented on the Onset×

Duration plane. Thus, even though EulerNotes and Rests are actually separated

by a coproduct, both can be shown in the same space.

Power and List Denotators

Power and List forms define sets and ordered sets of distinct objects on any hier-

archical level. In practice we typically encounter them on the topmost level as for

instance with all the forms supported by early BigBang, Score, MacroScore, and

113

SoundScore. However, it is also conceivable that they occur only in lower levels,

such as in Mariana Montiel’s more detailed score form, which is defined as21

Score′ : .Limit(BibInfo, Signatures, Tempi, Lines,GeneralNotes,

GroupArticulations,Dynamics).

There, Powers appear in almost all the coordinator forms, but not on the top level.

In this case we can for instance see all BarLine, or Slur denotators that appear on

lower levels as indirect satellites of our main Score′.

Power denotators can always be represented as a set of points in the space of

their coordinate. An EulerScore, for instance, can be shown as a cloud of objects in

the EulerNoteOrRest space described in above. List denotators can be shown the

same way, however, at the expense of the order of their elements, for it may contradict

the spacial organization. In any case, Power and List forms are in fact the main

constructs that define the discrimination of distinct visual objects. Wherever they

occur, we have the opportunity to define as many elements as we would like.

6.3.2 From a General View Concept to BigBangObjects

From these characteristics we can imply that all we need to have for a representation

of any denotators is a conjunction of the Simple spaces and a visualization of clouds

of objects within them. These objects can be represented in just the same way as the

ones in the generalized piano roll described above, as multidimensional rectangles.

Whenever a denotator enters BigBang, the visualization space is reset based on its

form, and users have the possibility to select any form space and start drawing objects,

21Mariana Montiel Hernandez. “El Denotador: Su Estructura, construcción y Papel en la Teoŕıa
Matemática de la Musica”. MA thesis. Mexico City: UNAM, 1999.

114

as will be described below.

We arrive at the core part of our generalization. In short, the representation

of any arbitrary denotator relies on the fundamental difference between the various

types of compound forms, Limit, Colimit, and Power. We propose a novel system

of classification that generalizes the previous notion of anchors and satellites, based

on occurrences of Power denotators. For this, we maintain the following rules:

Rule 2 The general visualization space consists of the cartesian product of all Simple

forms spaces appearing anywhere in the anatomy of the given form. For in-

stance, if we obtain a MacroScore denotator of any hierarchical depth, this is

Onset× Pitch× Loudness×Duration× V oice.

Rule 3 Any Simple form X the module of which has dimension n > 1 is broken up

into its one-dimensional factors X1, . . . , Xn. The visual axes are named after

the dimension they represent, i.e. Xn, or X if n = 1.

Rule 4 If the same Simple form occurs several times in a Limit, it is taken to occur

several times in the product as well. For instance, the product space of Dyad is

Pitch×Pitch. However, if the same Simple form occurs at different positions

in a Colimit, this is not the case. For instance, Colimit of Pitch and Pitch

results in the space Pitch. This renders the space more simple, but we also lose

some information. This loss can be regained thanks to an additional spacial

dimension, cofactor index, as described under Rule 7.

Rule 5 Power or List denotators anywhere in the anatomy define an instantiation

of distinct visual objects represented in the conjoined space. Objects at a deeper

level, i.e. contained in a subordinate Power or List, are considered satellites

of the higher-level object and their relationship is visually represented by a con-

115

necting line. For example, SoundScore objects formerly considered modulators

are now visually no different from regular satellites.

Rule 6 Given a view configuration, the only displayed objects are denotators that

contain at least one Simple form currently associated with one of the visual

axes. However, if an object is a satellite and one of the Simple forms associated

with the axes occurs anywhere in its parental hierarchy, it is represented at

exactly that value.

Rule 7 If there is an occurrence of either Colimits or satellites, additional dimen-

sions are added to the ones defined in Rules 1-3. For Colimit we add cofactor

index, and for satellites sibling index and satellite level.22 These dimensions

are calculated for each object and can be visualized in the same manner as the

other ones. For instance, associating satellite level with y-position facilitates

the selection of all denotators on distinct positions of the satellite hierarchy.

We call the objects defined by these rules BigBangObjects. They are not only

visual entities, but they are the entities that the BigBang rubette deals with in every

respect. All operations and transformations available in BigBang are applied to sets

of BigBangObjects, as we will see in the next chapter. The consequence is that we

simplify the structure of forms and denotators significantly, so that if we, for instance,

are handling denotators of a form defined as Limit of Limit of Limit and so on, we

can treat it as a single object. New objects are broken up only if there are Powers

or Lists in the hierarchy. We can thus for instance claim that in BigBang, we assume

that

Limit(A,Limit(B,Limit(C,D))) = Limit(A,B,C,D).

22Already present in the early BigBang, as seen in Section 6.2.1.

116

Implications for Satellites

One of the main innovations of these definitions is a new notion of the concept of satel-

lites. Previously, the term was uniquely used to describe Notes in a MacroScore that

are hierarchically dependent on other Notes. For instance, the analogous construc-

tion of Modulators in SoundScores was not referred to in this way, neither was the

relationship represented the same way as satellites are.23 Following Rule 5 above,

Modulators are now equally considered satellites and represented in precisely the

same way. Another new aspect of this is that now satellites do technically not have

to have a shared space with their anchor. An instance, if we define

HarmonicSpectrum : .Limit(Pitch,Overtones),

Overtones : .Power(Overtone),

Overtone : .Limit(OvertoneIndex, Loudness),

OvertoneIndex : .Simple(Z),

Overtones do not have a Pitch themselves, but merely a Loudness. Because of Rule

6, however, if we choose to see Loudness×Pitch as the axes of a view configuration,

the Overtones are represented above their anchor. An example visualization of this

form will be shown below.

Above, we discussed how satellites and modulators were defined relatively to their

anchors (Section 6.2). This can also be generalized for the new notion of satellites.

We add another rule:

Rule 8 Given a Simple form F , every denotator di : @F in a satellite BigBangObject,

i being its index in case the satellite contains several denotators of form F , is

23Thalmann and Mazzola, “Gestural Shaping and Transformation in a Universal Space of Struc-
ture and Sound”.

117

defined in a relative way to di@F in its anchor, if there is such a denotator.

For instance, if we define

MacroDyad : .Power(DyadNode),

DyadNode : .Limit(Dyad,MacroDyad),

the first Pitch in each satellite Dyad is defined relatively to the first Pitch in its

anchor, and the second Pitch in each satellite relatively to the second Pitch in the

anchor. On the other hand, in a HarmonicSpectrum none of the satellites share

Simple denotators with their anchor and are thus defined absolutely.

6.3.3 New Visual Dimensions

The facts view of the new BigBang maintains all the features of the early BigBang and

can still be navigated the same way as described in Section 6.2.2. However, the newest

version allows independent zooming in and out horizontally and vertically, when the

shift or alt keys are pressed. It also features some additional view parameters. There

is now an option to, instead of hue (Color) values, use RGB values for color, in a

similar way as in PrimaVista. This adds more visual variety at the expense of the

cyclical nature of hue, and is especially beneficial when working with data types other

than musical ones, such as images. The new view parameters vector thus looks as

follows:

N ′ = {X-Position, Y -Position,Width,Height, Alpha,Red,Green,Blue}

In the future, more visual characteristics can easily be added, such as varying shapes,

texture, or a third dimension.

118

The former note parameters, in turn, now called denotator parameters, include

SiblingNumber and ColimitIndex where appropriate and vary according to the input

or chosen form. The former identifies the index of a denotator in its Power or List,

whereas the latter refers to an index based on all possible combinations of Colimit

coordinates. For instance, for an object form

Colimit(Colimit(X0, X1),Colimit(X2, X3, X4), X5),

where X0, ..., X5 are any other forms not containing Colimits, we get six possible

configurations: an object containing X0 gets index 0, one containing X1 gets 1, and

so on.

For EulerScore denotators, for instance, the entire denotator parameters look as

follows:

MEulerScore = {Onset, EulerP itch1, EulerP itch2, EulerP itch3,

Loudness,Duration, ColimitIndex}.

The three-dimensional space of EulerP itch is broken up into its three constituate di-

mensions, and ColimitIndex is added, with two potential values: 0 for

EulerNoteOrRests containing an EulerNote, 1 for EulerNoteOrRests with a Rest.

6.4 The Sonification of BigBangObjects

As seen above in Section 6.2.3, in the early BigBang rubette, sonification was rela-

tively straightforward, since all objects that had to be dealt with existed in the same

five-dimensional space. For the new BigBang, this concept had to be generalized as

well. For users to be able to sonify a multitude of denotators, even ones they define

119

themselves, the sonification system had to become more modular.

Our solution generalizes the JSynNotes described above into JSynObjects, which

can contain any number of a set of standard musical parameters. Each BigBangObject

is converted into a JSynObject, by searching for occurrences of these musical parame-

ters anywhere in their anatomy. Any parameters necessary for a sounding result sub-

sequently obtain a standard value. For instance, if we play back a Simple denotator

Pitch, a JSynObject is created with a standard Loudness, Onset, and Duration,

so that it is audible. Especially Onset and Duration are relevant in this case. The

standard values assigned for temporal parameters are chosen such that the object

plays continuously for as long as the denotator is being played. This is particularly

interesting when the denotator is transformed, which results in continuously sounding

microtonal sweeping.

JSynObjects can also have multiple pitches, in order to work with denotators such

as Dyad, as defined in Section 6.3.1, or other user-defined types that might describe

chords, and so on. Some of the recognized simple forms so far are all note parameters

(Onset, Pitch, Loudness, Duration, V oice), as well as BeatClass, ChromaticP itch,

PitchClass, TriadQuality, OvertoneIndex, Rate, Pan, and OperationName. Rate

replaces Onset by defining the rate at which a JSynObject is repeatedly played,

OperationName distinguishes between frequency modulation, ring modulation, and

additive synthesis, and TriadQuality adds an appropriate triad above each Pitch in

the object, assuming that they are root notes. Some of the other forms are discussed

below, along with examples of the visualization of their denotators.

Another recent addition is the option of having everything played back through

MIDI, either with Java’s internal MIDI player, or by sending live MIDI data to any

other application or device, via IAC bus or MIDI interface. MIDI is event-based and

thus problematic for playing continuous objects without temporal parameters. There

120

are two solutions to this problem implemented so far. Either, objects are repeated

continuously at a specified rate, or a note off event is only sent when an object is

replaced by another. In the latter case, note ons are only sent again once a denotator

is transformed.

In order to play back the composition in BigBang, users can press the play button

in the lower toolbar. If the denotator has a temporal existence, i.e. it contains

Onsets, it can be looped, where the player automatically determines the loop size

to be the entire composition. In addition to this, any musical denotator in BigBang

can be played back by using external MIDI controller such as a keyboard controller.

Each MIDI key of such a controller triggers one performance of the denotator, i.e.

a one-shot temporal playback, a loop, or a continuous playback, depending on the

denotator. Middle C (60) corresponds to the visible denotator, while all other keys

trigger transposed versions, e.g. a half step up for 61, etc. This is especially practical

when designing sounds, i.e. denotators without Onset or Duration, such as the

HarmonicSpectrum form defined above. This way, users can design sounds and

immediately play the keyboard with them, just as with a regular synthesizer.

For the future, this system of sonification could be extended in order to work

in a similar way to view configurations. For now, whenever a new Simple form is

introduced that should be sonified in a novel way, the system has to be adjusted

accordingly. With a free association of any Simple form with a sonic parameter,

just as it is done for the visual system, users can experiment with spontaneously

performing parameter exchanges, or with sonifying non-musical forms.

121

6.5 Examples of Forms and the Visualization of

their Denotators

In this chapter, we have discussed what the objects on BigBang ’s factual level are and

how they are visualized and sonified. It is now time to give some specific examples of

forms that can potentially be defined and show how their denotators are visualized.

Sonification will have to be left to the readers to try themselves. Anything we feed

the new BigBang rubette will be analyzed and visualized as described above. Users

may also select a form within BigBang upon which the facts view is cleared and they

may simply start drawing denotators, as will be described in the next chapter.

I will start with some simple constructs from set theory, move to tonal constructs,

and finally give some examples from computer music and sound design.

6.5.1 Some Set-Theoretical Structures

The most basic construct to be represented is necessarily a single Simple denotator.

For instance, if we input a Pitch, the space is merely one-dimensional, but it can

be represented in various visual dimensions simultaneously. Figure 6.7 shows the

pitch middleC : @Pitch(60) – C4 is MIDI pitch 60 – being represented in every

possible visual dimension in RBG mode,24 however reasonable this may be. X, y,

width, height, alpha, red, green, and blue, all represent the value 60, depending on

the minm,maxm defined (see Section 6.2.1).

For a Power of a Simple, we already get a cloud of values. Figure 6.8 shows an

24Explained in Section 6.3.3)

122

Figure 6.7: The new BigBang rubette visualizing Pitch denotator in every visual
dimension.

example of a

PitchSet : .Power(ChromaticP itch),

ChromaticP itch : .Simple(Z).

Note that ChromaticP itch differs from Pitch in that it only allows for integer

values, which models the Western equal-tempered chromatic pitch space. In the

figure, ChromaticP itch is shown on both axes, color, width and height. This way, we

can define all sorts of datatypes commonly used in music theory or sound synthesis

and visualize and sonify them. If we wanted, for instance, to compose with pitch

123

Figure 6.8: A PitchSet simultaneously visualized using several visual characteristics.

classes instead of pitches, we could define

PitchClassSet : .Power(PitchClass),

P itchClass : .Simple(Z12)

If we wish to work with pitch-class trichords, a common construct in set theory,

we can define

Trichords : .Power(Trichord),

T richord : .Limit(PitchClass, P itchClass, P itchClass).

P itchSets and PitchClassSets can also be realized as ordered sets. We simply

124

Figure 6.9: A PitchClassScore drawn with ascending and descending lines to show
the cyclicality of the space.

need to replace Power with List, e.g.

OrderedP itchSet : .List(Pitch).

In order to compose with PitchClasses the same way we can compose with Scores,

i.e. create temporal structures, we can define

PitchClassScore : .Power(PitchClassNote),

P itchClassNote : .Limit(Onset, P itchClass, Loudness,Duration, V oice)

which is then visualized as shown in Figure 6.9.

6.5.2 Tonal and Transformational Theory

The next few examples imitate spaces and constructs from transformational theory

and traditional music theory.25 For a model of triads, as they are often used in

25Some of them were described in Thalmann and Mazzola, “Visualization and Transformation in
a General Musical and Music-Theoretical Spaces”.

125

transformational theory, we define

Triad : .Power(Pitch, TriadQuality),

T riadQuality : .Simple(Z4),

where Quality stands for one of the four standard qualities in tonal music: diminished,

minor, major, and augmented.

More generally, a simplified notion of chord progressions can be implemented as

follows

Progression : .List(Chord),

Chord : .Limit(Onset, P itchSet, Loudness,Duration),

assuming that all members of a chord have the same temporal and dynamic qualities.

In so doing, the pitches of a chord are actually satellites and thus also visualized this

way, as can be seen in Figure 6.10. From there, we can also define hierarchical chord

progressions the same way as we did this above for Score or Dyad. For instance, we

can define

MacroProgression : .List(ChordNode),

ChordNode : .Limit(Chord,MacroProgression),

This way, each chord can have ornamental progressions, just as we know it from

Schenkerian theory. If a main progression is transposed, its ornamental progressions,

defined in a relative way to them, are transposed with it. The next chapter will clarify

what this means.

Figure 6.11 shows an example of the depiction of Colimits. It shows a denotator

126

Figure 6.10: A Progression where pitches adopt the visual characteristics of their
anchor chord.

of a form similar to EulerScore, but with regular Pitch and an additional V oice

parameter, thus simply using regular Notes and Rests. In the image we see that all

the rests are depicted at Pitch 0, since they do not contain a Pitch. If we chose to

depict the denotator on the Onset×Duration plane, the rests would also be shown

in two dimensions.

A final example illustrates a way we can introduce rhythmical relationships other

than using Onset. If we write

Texture : .Power(RepeatedNote),

RepeatedNote : .Limit(Pitch, Loudness,Rate,Duration),

Rate : .Simple(R)

we obtain a set of notes that are repeated at a certain rate, altogether forming a

characteristic Texture.

127

Figure 6.11: A GeneralScore with some Notes and Rests shown on the Onset×Pitch
plane.

6.5.3 Synthesizers and Sound Design

Finally, here are some examples of forms that allow for more sound- and timbre-

oriented structures. Some of the forms shown in Section 6.5.1 could already be con-

sidered to be sound-based forms as they may be seen as somewhat related to additive

synthesis, but we can go much farther than that.26

26Some of these constructions were described in Thalmann and Mazzola, “Using the Creative
Process for Sound Design based on Generic Sound Forms”.

128

For instance, we can define

Spectrum : .Power(Partial),

Partial : .Limit(Loudness, P itch).

This models a constantly sounding cluster based on only two dimensions. Since

it is not using ChromaticP itch but Pitch, the cluster can include any microtonal

pitches. Figure 6.12 shows an example of a Spectrum. If we, however, wanted to

define a spectrum that only allows for harmonic overtones, this form would not be

well-suited, as we would have to meticulously arrange each individual pitch so that

it sits at a multiple of a base frequency. Instead, we could simply use the form

already introduced above, HarmonicSpectrum (Section 6.3.2). Figure 6.13 shows

an example denotator of a set of harmonic spectra, defined as HarmonicSpectra :

.Power(HarmonicSpectrum). Since satellites (Overtones) and anchors

(HarmonicSpectrum) do not share Simple dimensions, they can only be visualized

if one Simple of each is selected as an axis parameter, here Pitch×OvertoneIndex.

However, as we will see in the next chapter, they can both be transformed in arbi-

trary ways on such a plane. These are examples of the simplest way of working with

additive synthesis in BigBang. All oscillators are expected to be based on the same

wave form and a phase parameter is left out for simplicity. This is also the case for

the following examples.

Even though the previous form leads to more structured and visually appealing

results, we limited ourselves to purely harmonic sounds, since all Overtones are as-

sumed to be based on the same base frequency Pitch. To make it more interesting,

we can decide to unite the sound possibilities of SoundSpectrum with the visual and

structural advantages of HarmonicSpectrum by giving each Overtone its own Pitch.

129

Figure 6.12: A Spectrum shown on Loudness× Pitch.

The following definition does the trick:

DetunableSpectrum : .Limit(Pitch,Overtones),

Overtones : .Power(Overtone),

Overtone : .Limit(Pitch,OvertoneIndex, Loudness).

Since values reoccurring in satellites are defined in a relative way to the corresponding

ones of their anchor, we get the opportunity to define deviations in frequency from

the harmonic overtone, rather than the frequencies themselves. A displacement of

130

Figure 6.13: A constellation of eight HarmonicSpectra with different fundamental
Pitches and Overtones.

a satellite on the Pitch axis with respect to its anchor enables us to detune them.

Figure 6.14 shows an instance of such a DetunableSpectrum.

The three forms above are just a few examples of an infinite number of possible

forms. Already slight variants of the above forms can lead to significant differences in

the way sounds can be designed. For instance, generating complex sounds with the

above forms can be tedious as there are many possibilities to control the individual

structural parts. A well-known method to achieve more complex sounds with much

fewer elements (oscillators) is frequency modulation, which can be defined as follows

131

Figure 6.14: An instance of a DetunableSpectrum, where the fundamentals of the
Overtones are slightly detuned.

in a recursive way:

FMSet : .Power(FMNode),

FMNode : .Limit(Partial, FMSet),

with Partial as defined above. Examples as complex as the one shown in Figure 6.15

can be created this way. Frequency modulation, typically considered highly unintu-

itive in terms of the relationship of structure and sound,27 can be better understood

27John Chowning. “The Synthesis of Complex Audio Spectra by Means of Frequency Modulation”.

132

Figure 6.15: An FMSet containing five carriers all having the same modulator ar-
rangement, but transposed in Pitch and Loudness.

with a visual representation such as this one. All carriers and modulators are shown

respective to their frequency and amplitude and can be transformed simultaneously

and parallelly, which has great advantages for sound design compared to old-fashioned

skeuomorphic synthesizers and applications (See Section 4.3.3).

In: Journal of the Audio Engineering Society 21 (1973).

133

In order to include other synthesis models, we can define

GenericSound : .Limit(Oscillator, Satellites, Operation),

Oscillator : .Limit(Loudness, P itch,Waveform),

Satellites : .List(GenericSound),

Operation : .Simple(Z3),

Waveform : .Simple(Z4),

where Operation represents the three synthesis operations for additive synthesis, ring

modulation, and frequency modulation. For each anchor/satellite relationship, we can

choose a different operation. Each Oscillator also has its own Waveform, here a

selection of four varying ones, for instance sine, triangle, square, sawtooth.28 Sounds

designed this way can immediately be played with by using a keyboard controller, as

seen in Section 6.4.

Finally, we can also combine multiple forms into higher-level forms that contain

several objects. For instance, a Limit of SoundSpectrum and Score allows us to cre-

ate compositions containing both constantly sounding pitches and notes with Onsets

and Durations. We simply need to define

SpectrumAndScore : .Limit(Spectrum, Score)

Figure 6.16 shows an example of such a composition. This way, any number of

synthesis methods and musical formats can be combined to higher-level forms and

can be used simultaneously in BigBang.

These examples show how much structural variety we can create by just using a

28A slightly different GenericSound form is described in Thalmann and Mazzola, “Visualization
and Transformation in a General Musical and Music-Theoretical Spaces”.

134

Figure 6.16: A composition based on a Limit of a SoundSpectrum (Pitches at Onset
0) and a Score (Pitches with Onsets).

small given set of Simple forms, and how their visualization can help us understand

the structures. All of them can directly be sonified, even while we are building

the denotators. Most importantly, such forms can be defined at runtime in Rubato

Composer and they can immediately be used in BigBang. In addition to musical data

types, such as the examples here, one can define forms describing any kind of fact. For

example, during the work on this thesis I programmed rubettes that read image files

(ImageFileIn), translate them into forms, and make them available to transformation

in BigBang, before being, exported again or converted into musical objects by other

135

rubettes.

In the next chapter I will discuss how such objects, once their form is defined, can

be created, manipulated, and transformed in BigBang. For this, we need to examine

how the BigBang rubette implements the level of processes.

136

Chapter 7

Processes: BigBang’s Operation

Graph

The main intention behind the BigBang rubette is to give composers and improvisers

a way to use Rubato Composer that is more intuitively understandable, more sponta-

neous, and more focused on audible results than on the mathematical underpinnings.

After discussing the type of facts available in BigBang we need to examine how we

can make them and what we can do with them. From the first part of this thesis we

now know that both of these activities, making and manipulating, are instances of

processes. BigBang keeps track of these processes in a more sophisticated way than

other musical software, especially ones dedicated to symbolic structures.

Rubato Composer itself already allows users to create processes by building net-

works of rubettes. Why does BigBang need its own processes? There are several

significant differences between the processes of Rubato Composer and other systems

such as Max/MSP, and the ones of BigBang.

1. BigBang ’s visualization of processes is the dual graph of the rubette networks

in Rubato Composer. Its focus on transformations as arrows is closer to the

137

way we imagine processes, as seen in the first part of this thesis. Rubato Com-

poser ’s representation of denotators traveling through connecting lines imitates

the physical reality of electric signals traveling through cables and has hardly

anything to do with our imagination and representation of the mathematical

constructs, e.g. diagrams of morphisms in category theory, or transformational

graph.

2. BigBang emphasizes spontaneity and a quick work process. Rather than rep-

resenting a definite composition process, its processes represent experimental

stages, are easily mutable, and allow for the creation of alternatives.

3. Its processes focus on a simple vocabulary of operations and transformations

that can be combined to create larger structures in a transparent way.

4. The processes in BigBang are always directly connected to facts, and the user

has the chance to observe and interact with both, facts and processes, simul-

taneously while composing or improvising. In Rubato Composer, facts remain

hidden for large parts of the process.

5. BigBang focuses on processes that can be directly connected to gestures. For

many of Rubato Composer ’s features this would be difficult to do.

6. Most importantly, its processes represent the workings of the rubette itself.

Users can use it just the way they use Macro Rubettes,1 which encapsulate

entire Rubato Composer networks within them. For instance, they can define a

compositional process in BigBang, duplicate the rubette, and use it in multiple

contexts by adjusting the process as needed. Thereby they can even decide to

send denotators of any other forms and see what the rubette yields.

1See Milmeister, The Rubato Composer Music Software: Component-Based Implementation of a
Functorial Concept Architecture, p. 237.

138

p q

o

o

p q

Figure 7.1: A factual notion of a composition above, versus a dynamic notion below.

Despite these differences, there is a chance that someday Rubato Composer may be

extended to adopt some of BigBang ’s principles, so that they can be used on a higher

level and in a greater variety of ways.

Underlying the representation of processes in BigBang is a notion of a composition

or improvisation as a dynamic rather than static entity. Rather than seeing the

composition as a definite fact, we see it as a conjunction of a set of musical input

objects along with a processual graph into which these objects are fed, similar in

this respect to transformational theory. Figure 7.1 shows a diagram of this scheme.2

This way, the only existing facts are the initial facts, such as input denotators, and

everything else can be produced by the transformations in the graph. Any stage

of the composition process, i.e. any node of the process graph, can be dynamically

generated using the factualizing procedure first introduced in Section 2.3. Internally,

denotators are never saved at every step of the composition, but always generated

dynamically.

2These concepts were first discussed in Thalmann and Mazzola, “Poietical Music Scores: Facts,
Processes, and Gestures”; Guerino Mazzola and Florian Thalmann. “Musical Composition and
Gestural Diagrams”. In: Proceedings of the Third International Conference on Mathematics and
Computation in Music (MCM). ed. by C. Agon et al. Heidelberg: Springer, 2011.

139

In this chapter, I will first introduce the available operations and transformations

and describe what they do. Then I will describe how factualizing works in BigBang.

Finally, I will discuss the way processes are visualized and how users can interact

with the visualizations.

7.1 Temporal BigBangObjects, Object Selection,

and Layers

Before performing an action, we need to be able to decide which objects are going to

be affected by the action we wish to perform. In BigBang, users can make selections

in the facts view by drawing rectangles around objects. During this process, they

can arbitrarily change their perspective. For instance, it may be tedious to select

all visible second-level satellites in a complex MacroScore composition. By selecting

SatelliteLevel as one of the visible axes, the composition will be shown as a number

of levels (Figure 7.2). The user can then simply draw a rectangle around the objects

shown on level two to select all satellites there.

Whenever the user performs an operation, it will be applied to all selected objects.

When selecting all objects, the operation or transformation will be applied to as

many objects as were selected, even if the input of the rubette changes. For instance,

suppose we input a piece with twelve notes into BigBang, select all of them, and then

transform them. If we then input another composition with many more notes, the

transformation will be applied only to the twelve first notes of the new composition.

140

Figure 7.2: A MacroScore with its second level of satellites being selected. Note that
the y-axis is SatelliteLevel to facilitate the selection. The x-position and colors of
the objects hint at their chaotic arrangement on the Onset× Pitch plane.

7.1.1 Selecting None and Lewin’s Transformation Graphs

If none of the objects are selected, an operation or transformation will always be

applied to all objects present at the respective state, however many there may be.

This has a major advantage, besides speeding up the compositional process of users

that like to work with the full set of musical objects. Users may often be in the

situation where they know the actions they would like to perform without being sure

what the objects are that they will be working with, especially if they plan on using

BigBang as a rubette in different contexts, as described under Point 6 above. In

this case, they may decide to not select any objects, which means that the whatever

they send the BigBang rubette, however many notes or sounds, the operations they

defined will be applied to them. This way, they can experiment by applying the same

141

process to as many different inputs as they like.

This establishes an interesting connection to Lewin’s theories. In his distinction

between networks and graphs, the nodes of the former are associated with specific

objects, while the nodes of the latter are not. BigBang precisely models the latter.

We can design transformation graphs without having a specific application in mind,

and then subsequently make them into networks when we send BigBang specific

denotators.

7.1.2 The Temporal Existence of BigBangObjects

.

One of the major problems faced when implementing BigBang emerged from the

problem of object selection. The idea of selecting something with a specific identity,

and possibly even assigning it some characteristics such as visibility or audibility as

described below, and moreover to expect that it remains selected even when trans-

formed is hardly compatible with mathematical language. We have already discussed

some aspects of this problem in the beginning of this thesis with respect to functions

and the anti-Cartesian notion of transformation. What we saw there is that a func-

tion, mathematically speaking, does not really “move” its argument into the value,

but rather associates a value, a new, different object, to the argument.

When dealing with computer software such as the BigBang rubette, we expect

an entirely different behavior. When we select something, transform it, and contin-

uously observe it during the transformation, we assume it to still be selected at any

stage of the transformation, and thus the selected objects to maintain the same iden-

tity. However, since denotators are mathematical objects, this is not evident. Rubato

Composer ’s mathematical framework is implemented such that the transformed ob-

jects have a different identity from the original ones, which complies with the so-called

142

functional programming paradigm. In other words, denotators changed by morphisms

or other operations such as insertion of factors, changing of values, and so on, usually

yield new denotators rather than a modified original object, as would be expected

in object-oriented programming. This is indeed justifiable in view of the workings of

Rubato Composer and in view of denotators as mathematical structures. For instance,

suppose a denotator was sent through several rubettes sequentially and the same de-

notator traveled through the whole system and was altered by each rubette. If the

network was executed repeatedly, the denotator would be changed repeatedly, which

does not comply with Rubato Composer ’s principles. The functional paradigm is,

not surprisingly, entirely incompatible with our notion transformations and gestures

described in the first part of this thesis. In BigBang, transformed or manipulated

objects should not yield new object identities, but change the ones we chose to trans-

form. In other words, the value of an operation or transformation should be identified

with its argument.

In order to get this functionality within BigBang, we need a representation of

objects that observes what is going on mathematically and also keeps track of which

object became which. This is another task that BigBangObjects can take care of. In

the previous chapter we introduced BigBangObjects as simplifications of denotators

that enable us to represent them visually. In addition to this, during the entire com-

position process, BigBangObjects keep track of where their corresponding denotators

are. However, denotators are never saved within BigBang, but dynamically generated

based on the input denotators and the operation graph as seen in the introduction

to this chapter, and they frequently change. Thus, instead of remembering specific

denotators or values, BigBangObjects remember a sequence of paths as their history

– in the Rubato Composer framework, both forms and denotators are referred to by

paths, as seen in Section 4.4.2 – for the topmost denotator identifying the object,

143

int[]{0}

int[]{0,1,0}

int[]{1}

int[]{1}

int[]{1,1,0}

int[]{0}

int[]{1}

int[]{0,1,0}

int[]{0}

int[]{1}

int[]{0,1,1}

int[]{0}

int[]{0,1,0}

int[]{1}

int[]{0,1,0,1,0}

int[]{0}

int[]{0,1,0}

...

...

... ...

...

...

...

......

Figure 7.3: A table illustrating how BigBangObjects keep track of their location.
Each column is a state of a simple composition process with an FMSet. The rows
are what each of the objects save: a path for each of the state the object exists
at, pointing to the denotators corresponding to the objects (FMNodes) are at, at
the respective state. Note that all paths are assigned according to the x-axis here
(Loudness in FMSet).

at any state of the composition. Since every BigBangObject is either the top-level

object or an element of a Power or List, this path usually ends with an index in a

Power or List.3 Figure 7.3 shows how this works.

7.1.3 BigBangLayers

But BigBangObjects can do more. As seen with the architecture of sequencers or

notation programs (Section 4.3.1), composers often think in tracks of musical objects,

representing different voices or logical parts. One of the characteristics of BigBang ’s

facts view is that it does not distinguish such tracks in a spacial way. This leads

to a significant gain in space. However, because of this, working in different parts

can become tedious. However, with just the facts view, if users wanted to process

several parts individually, they would have to repeatedly select each individual group

3In Rubato Composer, Power are sorted automatically and every of their elements can thus be
referred to by a definite index.

144

of objects. In order to simplify this, we introduced so-called layers, which corresponds

to tracks in sequencers, except for that they are not strictly tied to specific voices or

instruments.

In early BigBang, layers were realized on the level of forms. All SoundNotes

had an additional Simple denotator Layer, which represented the index of the layer

on which the note was present. SoundNotes could be moved from layer to layer

either by being transformed or with a specific menu function, and layers could be

made invisible, and inactive, which rendered the notes unselectable.4 This way of

implementation had two disadvantages. First, the layers would only work for forms

that contained the Layer Simple form. MacroScores and Scores could thus not

be represented on layers. Second, the Layer form was of no use outside of BigBang,

which hardly justified it to appear on the level of forms.

For the new generalized BigBang we had to find another solution. Layers were one

of the main reasons for the introduction of BigBangObjects as temporal structures

that were described in the previous section. We decided that each BigBangObject

can be part of as many so-called BigBangLayers as needed. Users can add new layers,

move objects to specific layers, or add them to additional ones. Each BigBangLayer

can be made inactive (unselectable), invisible, and/or inaudible, which affects all of

its objects. If an object is audible on at least one layer, it is audible. The same is

true for visibility, and activeness. Figure 7.4 shows an example of an FMSet with

active, inactive, inaudible, and selected layers.

4Thalmann and Mazzola, “Gestural Shaping and Transformation in a Universal Space of Struc-
ture and Sound”.

145

Figure 7.4: An FMSet distributed on three layers, represented by the rectangluar
areas at the top. Layer 0 is inactive and inaudible (its Partials in the facts view are
greyed out), layer 1 is active and selected (its Partials are darkened), and layer 2 is
active, but not selected (normal bright color).

7.2 Operations and Transformations in BigBang

This section introduces all activities that are part of the graph represented in Big-

Bang ’s process view. In BigBang, we distinguish two types of processes, operations

and transformations.5 Operations are all activities that affect BigBang ’s denotators,

such as creating denotators, adding satellites, deleting denotators, etc. Transfor-

5Even though Lewin made the same distinction, our notion of operations greatly differs from what
Lewin defined them to be. Rather than being more specific – bijective transformations – they are
more general and denote the entire set of activities available in BigBang that change the contained
denotators.

146

mations are special operations that include all activities that can be formulated as

morphisms in the category of modules Mod@. Almost all operations and transforma-

tions are defined relatively to the x/y coordinates currently selected. This way, every

dimension of the visible denotators can be manipulated. Since the way of interaction

with BigBang is gestural for most of the operations, the next chapter, which deals

with gestures, will explain how this works.

Almost all operations, except for the ones that add objects to the composition, are

applied to a selection of BigBangObjects and keep references to these objects, rather

than denotator paths, as they did in earlier BigBang. This has major advantages in

case operations are modified, removed, or inserted, as will be discussed in Section 7.3.

7.2.1 Non-Transformational Operations

We do not consider all activities available in BigBang as part of the compositional

or improvisation process. Only activities that change the denotator and the musical

structure represented by the rubette are included in BigBang ’s operation graph. For

example, when the musician decides to select notes, move them from layer to layer,

or pushes the play button, denotators are left unchanged. This section considers all

operations that are not transformations.

AddObjects and DeleteObjects

The most basic operation is AddObjects, which is typically triggered when the user

draws objects onto the screen or defines them using an interface, such as by recording

with a MIDI keyboard or by defining points with the Leap Motion controller (see Sec-

tion 4.3.3). All added objects are BigBangObjects and always comply with the form

selected in BigBang. If the form defines several objects, on different satellite levels,

users can choose which ones they wish to add. In HarmonicSpectra (Section 6.5.3),

147

for instance, they can choose between adding HarmonicSpectrum (elements of the

top Power) or Overtone (elements of Overtones). Note that the latter cannot be

added unless there is at least one HarmonicSpectrum already present.

Furthermore, objects can contain many Colimits, as seen in Section 6.3.3. For

each of those Colimits, users need to choose which Colimit coordinate they would

like to add. For instance in an EulerScore they can choose between adding

EulerNoteOrRests with an EulerNote, or ones with a Rest.

For circular structures, uses can add objects to any satellite level, at most one

level higher than the maximum level present. For instance, in case of a SoundScore

with just one note, they can choose to either create SoundNodes (satellites) on levels

0 or 1, or SoundNotes (modulators) on level 1.

If there is no Power or List in the selected form, only one object can be added.

Whenever users keep performing AddObjects, the former object is replaced. This

happens for instance when the selected form is Pitch or Note.

Adding objects usually happens with respect to the selected x/y parameters. All

denotator parameters not assigned to the x- or y-axes are given standard value, which

can be defined by the user, in the column to the right of the view parameters checkbox

grid. For instance, when drawing Notes on the Onset × Pitch plane, we can first

decide that all V oices are 0, then continue drawing with voice 1, etc.

The DeleteObjects operation simply removes all objects currently selected.

InputComposition

Instead of adding denotators in any of the above ways, users can also input denotators

by means of the rubette’s input, which creates an InputComposition operation. For

this, they need to connect the rubette to another rubette that outputs a denotator,

for instance MidiFileIn, and run the Rubato Composer network. If there is already

148

a denotator in BigBang, the incoming one is of the same form, and the top-level

denotator is a Power or a List, the elements of the incoming denotator are added

to the denotator already present. Otherwise, the entire denotator is replaced. For

instance, users can add as many other Scores to a Score as they wish, which leads to

a large union, exactly the same way as can be done with the Set rubette. If they do

not wish to do that, but replace the Score already present, they have to select and

modify the InputComposition operation, as will be described in Section 7.3.2.

BuildSatellites and Flatten

When users want to build hierarchical structures, they can simply add objects by

drawing on a higher satellite level, as seen above. However, they can also use the

BuildSatellites operation, usually triggered through a pop-up menu, with which

they can add objects that are already present in the composition as satellites to other

objects, if the form contains Powers with the same coordinate form, at several places.

This way, for example, with an FMSet denotator with several top-level Partials users

can add some of these Partials as modulators to another one of the Partials.

The opposite operation is called Flatten.6 It adds all selected satellites to the

Power or List that contain their respective anchors, e.g. it changes first-level FMSet

modulators into simple additive oscillators.

Shaping

Shaping allows users to change the values of the visible objects. It is based on two

given denotator values u, v, for instance Onset, P itch and a number of real number

pairs (u1, v1), . . . , (un, vn) ∈ R2. For each BigBangObject in the composition, if its

u value is close to any un, its v value is assigned vn. In practice, this is used in

6Guerino Mazzola et al. “Functors for Music: The Rubato Composer System”. In: Digital Art
Weeks Proceedings. Zürich: ETH, 2006.

149

Figure 7.5: A composition drawn in Onset × Pitch with a shaped third dimension
represented by color.

BigBang ’s shaping mode, where users can click-and-drag as in drawing mode on the

x/y plane, and every object that is close to the x value is assigned the y value of

the current drawing location.7 This can be helpful especially with mouse drawing,

where users are limited to drawing in two dimensions. After drawing on one plane

(AddObjects), they can switch into shaping mode and define more dimensions the

same way. Figure 7.5 shows a Score composition that was drawn on the Onset×Pitch

plane, before being shaped in the Onset × Loudness plane, where for each Onset,

a new Loudness was assigned. These varying Loudnesses are now represented with

hue color values, red being both the loudest and quietest, green being mp and blue

mf .

7An early version of this mode was introduced in Thalmann and Mazzola, “Gestural Shaping
and Transformation in a Universal Space of Structure and Sound”.

150

Wallpaper Operations

Wallpapers were introduced as generalizations of Presto Ornaments as mentioned in

Section 4.4.1 and shown in Figure 4.10.8 In simplified terms, for a wallpaper we need

a motif m of coordinates of Powers or Lists, a grid of morphisms f1, . . . , fn and

corresponding ranges r1, . . . , rn with rk = (rmink , rmaxk) ∈ Z2 and rmink ≤ rmaxk . The

first wallpaper dimension then results from the repeated application of f1(. . . f1(m))

and creating the union of all copies. 1 + rmax1 − rmin1 determines the amount of copies

of m we get. If rmin1 ≤ 0 ≤ rmax1 , m itself is included. The next dimension, if there

is one, is then produced by f2, r2, applying f2 to all copies of m resulting from the

first dimension. Then f3, r3 to all results of f2, r2 and so on.9 Figure 7.6 shows an

instance of a two-dimensional wallpaper in early BigBang.

In BigBang, the morphisms of a wallpaper are limited to its transformations,

i.e. affine morphisms, to be defined in Section 7.2.2. However, BigBang adds a

functionality that the Wallpaper rubette was not capable of. The motif is no longer

the entire composition, as for the Wallpaper rubette, but the selection the user has

made. This way, elements on any level of the denotator anatomy can simultaneously

participate in a wallpaper. For instance, we can generate a regular structure of

FMSet denotators including both, carriers and modulators. Each mapped modulator

is added to its original carrier.

Also, each dimension of the wallpaper can be composed of several two-dimensional

BigBang transformations, each of them performed on arbitrary x/y planes. This way,

when working with a Score, a single dimension can for instance consist in a translation

on the Onset× Pitch plane, followed by a shearing on the Onset× Loudness plane,

which results in each copy of the motif being transposed in pitch, time, and loudness.

8Thalmann, “Musical composition with Grid Diagrams of Transformations”.
9For more details, see ibid., p. 33f.

151

Figure 7.6: A two-dimensional wallpaper in early BigBang.

Two operations regulate the creation of wallpapers in the new BigBang,

AddWallpaperDimension and EndWallpaper. Whenever AddWallpaperDimension

is performed for the first time, all objects that are selected at the time are taken

to be the motif, and all following transformations constitute the first dimension of

a wallpaper. Each additional performance of AddWallpaperDimension adds another

dimension, again constituted by all following transformations, while being based on

the same motif. Finally, EndWallpaper ends the wallpaper and goes back to normal

transformation mode.

152

Alteration

The last operation available in the current version of BigBang is Alteration and

corresponds to the functionality of the Alteration rubette, a generalization of part of

Presto OrnaMagic.10 In BigBang, alteration consists in deforming a set of objects O1

gradually towards another set of objects O2. In BigBang, as with wallpaper motifs,

both of these compositions can be selected using the selection tool and do not have

to include the entire denotator. Again, compared to the Alteration rubette, where

both inputs have to be Power denotators the direct elements of which are altered,

in BigBang the sets of objects can include objects on different anatomical levels of

the composition. For every object in oi ∈ O1, alteration finds the nearest object in

oj ∈ O2, based on spacial distance, and moves the values of oi towards the ones of oj

by a given degree. These degrees work as follows: for a degree of 0% the object oi

stays unchanged whereas for 100%, oi becomes oj.

Alteration can be performed simultaneously for as many of the denotator param-

eters as the user would like. For instance, if we merely alter Pitch in a Score, we

get the tonal alteration familiar from music theory. If we alter just Onset, we get

a generalized version of quantizing, familiar from sequencer systems. However, if we

alter every Simple denotator in Score, we get intermediary compositions between

O1 and O2. In the new BigBang, users can define two alteration degrees dg1, dg2 that

act according to the denotator parameter currently associated with the x-axis. For

instance, if we alter a Score while looking at the Onset×Pitch plane, dg1 defines the

degree by which the object with the earliest Onset is altered, while dg2 designates

the degree for the object with the latest Onset. If we switch to Pitch × Onset, dg1
concerns the object with the lowest Pitch and dg2 the one with the highest. All

degrees for the intermediary objects are interpolated linearly. Figure 7.7 shows an

10Thalmann, “Musical composition with Grid Diagrams of Transformations”, p. 36f.

153

example from early BigBang where a Score is altered with dg1 = 0%, dg2 = 100%.

7.2.2 Transformations

In this thesis, transformations are directly based on morphisms between denotators,

as we defined them above in Sections 3.2.2 and 3.2.3. BigBang allows for five different

kinds of geometric transformations on the visible x/y plane: Translation, Rotation,

Scaling (= dilation), Shearing, and Reflection, which takes advantage of a lemma

that says that any multi-dimensional affine transformation can be described as a

concatenation of such two-dimensional geometrical transformations. These transfor-

mations are typically applied with a gestural interface, as will be described in detail

in the next chapter. For example, when using a multi-touch interface, users can di-

rectly define an AffineTransformation based on combined dilation, rotation, and

translation with two fingers, or all five transformations with three fingers.11

Regularly, transformations replace the selected objects with transformed versions.

However, users also have a choice to perform so-called copy-and-transform, a gen-

eralized version of copy-and-paste, which adds the transformed objects to the given

Power denotator, while keeping the originals. Translation with copy-and-transform

yields classical copy-and-paste. Figure 7.8 shows a composition made with several

copy-and-transforms.

In contrast to earlier versions, in the new BigBang rubette all transformations

can be applied to any selection of BigBangObjects, on whichever anatomical level of

the denotator they are, as seen above with wallpapers and alterations. This makes it

possible for anchors and satellites to be transformed simultaneously, which leads to

interesting results. Since satellites are designed to keep their relative position to their

11Florian Thalmann and Guerino Mazzola. “Affine Musical Transformations Using Multi-touch
Gestures”. In: Ninad 24 (2010), pp. 58–69.

154

(a)

(b)

Figure 7.7: A Score alteration in early BigBang. (a) shows the unaltered Score,
whereas in (b) Pitch and Duration are altered with dg1 = 0% and dg2 = 100%.

155

Figure 7.8: A small composition made with copy-and-translate (bottom left), copy-
and-rotate (top left), copy-and-scale (top right), and copy-and-reflect (bottom right).

anchor when the anchor is transformed, a simultaneous transformation of anchors

and satellites leads to satellites transforming doubly, once along with their anchor

and once themselves.

Futhermore, even different objects in a Colimit can be transformed together in

shared dimensions. For instance, in an EulerScore composition, we can transform

Notes and Rests simultaneously if either Onset or Duration or both are associated

with the x- and y-axes.

Since the view parameters can be freely assigned in BigBang, objects also need

to be able to be transformed when only one of their parameters is associated with

one of the visual axes. If this is the case, objects are represented on the respective

axis and the transformation, defined in two dimensions, acts on the objects as though

they were located in two-dimensional space. However, the results remain projections

on the axis at any time.

156

Transformation in Arbitrary Spaces

Even though what the new BigBang rubette does in terms of operations and trans-

formations may appear straightforward, from a theoretical point of view it is trickier

than expected. In this section, I will briefly illuminate one of the solutions we found

in order to deal with the potentially infinite number of object types that BigBang

can handle.

Most importantly, the transformative system needed to be adjusted in order to

transform more general types of Simple denotators, and not just Note parameters.

For this, we could build on a procedure that allows for mapping denotators by ar-

bitrary morphisms that I defined in my master’s thesis and used in the context of

the Wallpaper, Alteration, and Morphing rubettes.12 Here I describe the necessary

extensions and generalizations.

In the original procedure, the goal was to map a Power denotator d by a morphism

f , even if the modules of its Simple denotators do not match the domain of f . This

was done by inserting auxiliary injection, projection, and casting morphisms on both

sides of f in order to adapt it to the chosen Simple morphisms.

We assume f : V → W to be any kind of affine or non-affine morphism where V

and W are products of arbitrary modules V = V1 × . . . Vs and W = W1 × . . .Wt. In

the original procedure we tacitly assumed these modules to be one-dimensional free

modules over the number rings Z,Q,R or C. With the new extended repertoire of

denotators, including Limit, Colimit, Power denotators based on Simple denota-

tors on more-dimensional free modules as well as modules based on product rings, we

needed to make some adjustments.

Assuming that we would like to map values of a given denotator d : A@F , where F

is any form containing Simple forms, we again define two sequences G. = (G1, . . . Gs)

12Thalmann, “Musical composition with Grid Diagrams of Transformations”, p. 32f.

157

and H. = (H1, . . . Ht), their cardinality corresponding to domain dimension s and

codomain dimension t of f . However, as opposed to the earlier procedure, their

elements Gj and Hk are not Simple forms but either component modules of one- or

more-dimensional free modules over a certain ring, or factors of direct sum modules or

modules over a product ring. More formally, Gj, Hk ∈ RF , where RF is the set of all

module components or factors throughout the denotator tree. There are significant

differences between the set SF introduced earlier,13 and RF . Not only does RF contain

modules and not simple forms, but it may contain several instances of the same type

of component module or factor module, unless it is contained at the same position in

a different instance of the same Simple form. There is thus no function analogue to

SA(S, d) involved.

Due to the fact that we now allow more-dimensional Simple denotators, we also

need more auxiliary morphisms. In addition to ij, pk, gj and hk in the earlier proce-

dure,14 we define two additional sequences of projection and injection morphisms pm

and in, which leaves us with the following collection of morphisms:

• the initial projection morphisms p1, . . . ps with pj : MGj
→ Gj,

• the initial casting morphisms g1, . . . gs with gj : Gj → Vj,

• the initial injection morphisms i1, . . . is with ij : Vj → V with ij(v) = v′ =

(0, . . . v, . . . 0), where v is at the j-th position of v′,

• the final projection morphisms p1, . . . pt with pk : W → Wk with pk(w) = wk for

w = (w1, . . . wt),

• the final casting morphisms h1, . . . ht with hk : Wk → Hk, and

13Thalmann, “Musical composition with Grid Diagrams of Transformations”, p. 31.
14Ibid., p. 33.

158

• the final injection morphisms i1, . . . it with pk : Hk →MHk
,

In these definitions, MGj
,MHk

stand for the modules of which the Gj and Hk are

components or factors. They do of course not have to be pairwise different, since

several of the elements of G.,H. might be different components or factors of the same

modules.

We then define a φ′f analogous to φf :
15

φ′f (d, (Gj)) = f(i1 ◦ g1 ◦ p1 ◦ A@MGj
(d) + . . . is ◦ gs ◦ ps ◦ A@MGj

(d)).

Finally, we define

mapf (d) as a copy of d,

where every module MHk
is replaced by the sum of ik ◦ hk ◦ pk ◦ φ′f (d, (Gj)),

and the injected projection of every component or factor Mi of MHk

with Mi 6= Hk.

7.3 BigBang’s Process View

When they are performed, all of the operations and transformations described above

are added to BigBang ’s process view. In this section, we discuss how processes are

visualized and how users can interact with them.

7.3.1 Visualization of Processes

As seen above, the process view shows a directed graph, which we call this graph oper-

ation graph, since it contains all operations performed, including transformations, and

15Thalmann, “Musical composition with Grid Diagrams of Transformations”, p. 33.

159

since its node values are not defined in an absolute way and thus resemble Lewinian

transformation graphs rather than networks (see Sections 3.2.1 and 7.1.1).

Whenever a new BigBang rubette is created or the user decides to start over

by selecting a new form to work with, the operation graph is reset, which means

that it merely consists of one node, labelled 0. For every operation performed, the

graph obtains a new arrow, labelled with the operation, and a new node, representing

the so-called CompositionState after the execution of the operation. Composition

states are identified with unique increasing numbers, the highest of them representing

the state last added. As long as the user merely interacts with the facts view, the

graph grows as a linear sequence of arrows and nodes. Figure 7.9 shows such a

simple linear graph including an AddObjects operation followed by all five geometric

transformations.

7.3.2 Selecting States and Modifying Operations

Users can interact with the graph by selecting its nodes, which immediately updates

BigBang’s composition to the one at the corresponding state, both in the facts view,

and the sonification. This way, the users can compare and contrast different states

of their composition process, and evaluate them. Every time a state is selected, the

shortest path between state 0 and the selected state is calculated and the correspond-

ing facts are dynamically generated, which corresponds to the factualizing procedure

described in Section 2.3.

When an operation is selected, the corresponding screen tool – a schematic rep-

resentation of the operation as described in the next chapter – is shown, and users

have the opportunity to modify the operation. Any state can be selected during this

procedure and the consequences of the modification are shown for that state. This en-

ables composers to change past decisions in their composition process, while observing

160

Figure 7.9: A BigBang operation graph showing a linear composition process.

their present composition, much in the fashion of Boulezian analyse créatrice, where

composers use an analytical process to find other compositions in the neighborhood

of theirs.16

Transformations are modified by dynamically changing the transformational pa-

rameters, e.g. the rotation angle or center for a Rotation, or the scale factors of a

Scaling, which will be described in Section 8.1.4. Operations can have more distinct

consequences. For instance, with modifying AddObjects, users can entirely replace

the objects they were working with. The same composition process following the

16The notion of neighborhoods was introduced in Mazzola, La vérité du beau dans la musique,
based on analyse créatrice in Pierre Boulez. Jalons. Paris: Bourgeois, 1989.

161

selected operation will then be applied to the new objects. The same applies to

InputComposition. If the user selects such an operation before running the Rubato

Composer network, the operation’s composition is replaced. If no such operation is

selected, a new InputComposition operation is created at the end of the graph or

the selected composition state.

This is where the definition of operations with none of the objects selected becomes

interesting, as described in Section 7.1.1. If a user replaces the entire input of BigBang,

the entire composition process will be applied to all objects, no matter how many of

them there are.

Now what happens when operations are modified that later operations depend

on? If for instance, we modify a Rotation by a 180 degrees, all concerned objects’

denotator paths may change, since they are based on lexicographical sorting, espe-

cially in Power. In early BigBang, this would have led to major problems, since all

operations were directly based on denotator path references. In the current version,

as mentioned in Section 7.2, operations keep references to BigBangObjects instead,

which dramatically simplifies the case. In the case of the modified rotation, all paths

the BigBangObjects refer to are changed. All operations following the rotation can

then dynamically obtain the actual paths from the objects, when updating the deno-

tator, i.e. during factualization.

7.3.3 Alternative and Parallel Processes

In addition to the linear processes described in Section 7.3.1, there are currently two

more process types, alternative, and parallel processes.

If users select a state other than the latest composition state and perform an

operation, the operation is added to the graph by building a fork at the selected

state, building an alternative process. This way, users can experiment by building

162

Figure 7.10: An operation graph with two alternative processes.

processes that share an initial part, but then continue individually. Such alternative

composition states can again be selected and are immediately visualized and sonified

accordingly. Figure 7.10 shows such a graph generating two alternative wallpapers

starting from the same input material.

Parallel processes are created when an operation is selected in the graph. Then,

any new operation performed is added as a parallel arrow to the selected operation,

starting and ending at the same states. This is the only way operations are added to

the graph without adding a new composition state. Logically, parallel operations are

163

Figure 7.11: An operation graph with parallel processes.

no different from sequential operations at the current time. They are executed in their

order of addition, since conflicting situations might arise with a parallel execution,

especially with non-commutative transformations. However, as we will see in the

next chapter, they differ from sequential operations in the way they are gesturalized

(Section 8.2). Furthermore, they can be a good choice for composer to group their

operations in order to get less composition states, if they are composing on a meta-

level (see Section 10.2). Figure 7.11 shows a graph including three parallel geometric

transformations, followed by a parallel reflection and alteration.

Currently, parallel operations can only be added as directly parallel to one op-

eration. In the future, however, there will be the possibility to create higher-level

164

operations that are executed simultaneously to several lower-level operations. This is

especially attractive for gesturalization, where higher-level operations would be ani-

mated much slower than lower-level operations. Internally, BigBang already supports

the definition of such processes.

7.3.4 Structurally Modifying the Graph

So far I described ways in which operations can be added to the graph simply by per-

forming them. There are additional ways in which users can interact with BigBang’s

operation graph.

Removing Operations

At any stage of the composition process, users can decide to remove an operation in

the graph using a popup menu. When an operation is removed, all other operations

are still executed and applied to the same selection of BigBangObjects. However,

there is a chance that the concerned BigBangObjects are not there anymore, if the

removed operation is for instance an AddObjects operation. This is why all operations

are always applied to whichever of their objects are there, where all others are ignored.

Removing operations is an especially attractive solution to a problem that early

BigBang had with its undo/redo system. Since its architecture was facts-based, as

shown in the top half of Figure 7.1, non-invertible transformations such as projections

were impossible to be undone. With the new, process-based BigBang, any type of

operation can be undone without problems.

Inserting Operations

Users can also insert an operation at any state, by simply deciding where to insert and

by selecting objects and executing an operation as usual. This replaces the selected

165

state node by two nodes, and connects them with an arrow representing the new

operation.

Splitting Operations

Any operation can be split into two operations by indicating a ratio between 0 and 1

at which the operation should be split. They can do this using a slider, as described

in the next chapter. Thereby, the operation arrow is replaced by two arrows and an

intermediary node. For instance, if they split a Rotation with angle α at ratio 0.4,

this results in two subsequent Rotations with the same center, the first with 0.4α

and the second with 0.6α.

7.3.5 Undo/Redo

BigBang ’s operation graph already represents the composition or improvisation pro-

cess. The possibility of interacting with it in the above ways may be seen as a re-

placement of traditional undo/redo functionality in software. However, on top of this,

BigBang has a regular undo/redo system that works on the level of graph interaction.

It allows users to undo and redo any activity of adding operations to and removing

them from the graph. This is important for an even faster and more flexible way of

interaction. For instance, if users decide to remove an operation early in the process

and dislike the effect, they can bring it back using a standard key combination.

166

Chapter 8

Gestures: Gestural Interaction and

Gesturalization

We have so far seen that the BigBang rubette allows users to visualize and sonify

facts, and create and manipulate them using processes. In the last chapter, I also

discussed that the only structures that BigBang represents internally are processes,

only one of which refers to facts in the form of denotators (InputComposition). All

other facts are generated dynamically, whenever an operation is added or modified.

In order to offer an intuitive way of interacting with the software, we need yet another

level: gestures.

BigBang builds on the gestural principles described in Section 4.3.3. There are

two ways in which gestures come into play with BigBang, the ones that are per-

formed by the user when applying operations, and the ones that are recreated from

processes. With the former, anything composers and improvisers do within BigBang

is immediately audible and most operations can be performed in continuous ways,

using continuous physical controllers such as a mouse, a multi-touch surface, or a

Leap Motion controller. All operations are accessible through a minimal amount of

167

actions or gestures, designed to be understandable to any user, even ones without a

mathematical background.

Nevertheless, what BigBang saves are not the gestures as such, but their processual

abstractions. From the point of view of computer science, this is an infinitely more

economical solution than saving every temporal state of a gesture. The latter would

be possible to be implemented with current computers, but it is not yet conceivable

in terms of denotators and will thus be left to further projects.1 Thus, the second way

gestures are available in BigBang is by turning processes back into gestures, in the

form of an animated composition history that can again be used for compositional

purposes.

All this corresponds to the communication scheme between the levels of embodi-

ment introduced in Section 2.3. The two types of gestures correspond to the inputs

of the formalizing procedure and the outputs of the gesturalizing procedure. In this

chapter, I explain how both formalizing and gesturalizing is implemented in BigBang.

First, an overview of gestural possibilities will be helpful. Table 8.1 lists all opera-

tions currently available in BigBang and shows whether or not their definition occurs

in a gestural way (first type of gesture) and whether or not they are gesturalizable

(second type of gesture). While several of the operations are not defined in a gestural

way, most of them are gesturalizable. All transformations are both defined gesturally

and gesturalizable. The two last columns will be discussed in Section 8.1.4.

1In order to do this properly within Rubato Composer, we have to extend its vocabulary to
include constructs in the category of topological spaces, as used in the definition of gestures (see
Section 3.3.2).

168

operation defined gesturally gesturalizable modifiable range (in R)
AddObjects yes yes yes [0,1]
DeleteObjects no yes yes [0,1]
InputComposition no yes yes [0,1]
BuildSatellites no yes yes [0,1]
Flatten no yes yes [0,1]
Shaping yes yes yes [0,1]
AddWallpaperDimension no no yes [0,2]
EndWallpaper no no no no
Alteration yes yes yes [0,1]
Translation yes yes yes [0,2]
Rotation yes yes yes [0,2]
Scaling yes yes yes [0,2]
Shearing yes yes yes [0,2]
Reflection yes yes yes [0,2]
AffineTransformation yes yes yes [0,2]

Table 8.1: BigBang ’s operations and their gestural capabilities.

8.1 Formalizing: From Gestures to Operations

In this section, I discuss the ways gestures are used to define operations, more precisely

how controller gestures are mapped into appropriate operations and transformations.

I thereby move from the most simple supported gestural interface to more complex

ones. The standard gestural controller is the computer mouse. It was a design

principle that almost everything in BigBang can be done in a satisfying way using a

mouse. Other currently supported interfaces include multi-touch surfaces, the Leap

Motion controller, and various MIDI controllers. As seen in Section 4.3.3, gestural

devices vary significantly in the dimensionality of their topological space, the number

of recognized parameters in this space, as well as the potential interdependency of

the parameters based on physical limitations.

In our case, the mouse recognizes one point in R2, multi-touch a number of points

in R2 (maximally 10 per user), and the Leap Motion twelve points and twelve vectors

in R3. How do gestures look like in these spaces? For the mouse, for instance, we

169

can define a simple click-and-drag gesture g :↑; f where ↑ is the arrow digraph with

↑= • → • and f : I → R2. Since we will always deal with single click-and-drag

gestures below, we will simply identify the gestures by defining f .

8.1.1 Modes, Gestural Operations, and the Mouse

Complying with our principles for operation-based gestural systems, we decided the

mouse operations in BigBang to be atomic gestures with as few clicks and movements

as possible, so that they can be quickly applied, in an improvisational and potentially

virtuosic way.2 Most gestural operations can be defined with a click-and-drag gesture.

In order to distinguish the different operations from each other we did not implement

a recognition system, but defined a number of Modes in which the program can be, one

for all gestural operations (see Table 8.1), plus one each for AddWallpaperDimension

and EndWallpaper.3 These modes are accessible through buttons in the top toolbar,

but will soon be made accessible through keyboard shortcuts when using a mouse, or

even a MIDI foot controller when working with two-handed gestural interfaces,4 in

order to keep the hands focused on gestures. Most modes for gestural operations have

a corresponding DisplayTool, which represents the ongoing operation in a schematic

way as a reference for the user. Figure 8.1 shows the tool displayed in Shearing

mode, which consists of a grey square representing the original state and a clear

parallelogram representing the sheared version of the square.

2Thalmann and Mazzola, “The BigBang Rubette: Gestural Music Composition with Rubato
Composer”, p. 3.

3There are also modes for non-operational activity, e.g. Navigation mode and Selection mode.
4As suggested in Daniel Tormoen, Florian Thalmann, and Guerino Mazzola. “The Composing

Hand: Musical Creation with Leap Motion and the BigBang Rubette”. In: Proceedings of 14th
International Conference on New Interfaces for Musical Expression (NIME). London, 2014.

170

Figure 8.1: The shearing DisplayTool shown while a copy-and-shear is performed.

Gestural Transformations

The most interesting case of gestural control are transformations. In this section, I

describe in a mathematical way how the user gestures are transformed into gestures on

the canonical topological space of affine morphisms Aff2(R), and finally how we obtain

the transformation morphism m that will be applied to the denotators represented

by the selected objects.

All transformations in BigBang are currently two-dimensional affine transforma-

tions, which can be expressed as

y = Ax+ b, with A =

a11 a12

a21 a22

 and b =

b1
b2

 .

For every mouse gesture, we find a gesture in Aff2(R) by a gesture morphism

or throw morphism, which we defined earlier as a pair (u, v) with u : Γ → ∆ and

171

v : X → Y such that h ◦ u = −→v ◦ g (Sections 3.3.2 and 10.2). Since on both sides we

deal with the graph with two edges and an arrow – this is what a simple click-and-

drag gesture corresponds to – and thus Γ = ∆, we can assume that u(γ) = γ is the

identity morphism on digraphs. All we thus need to do is define a v : R2 → Aff2(R)

for each transformation type.

In BigBang, each point of a click-and-drag mouse gesture is simply describable by

two coefficients λx, λy, which represent motion along the x- and y-axes of the currently

selected view configuration (see Section 6.2.1). Thus, λx, λy can stand for any of the

denotator parameters. For simplicity, we assume here that the scale of the two axes

directly correspond to the scale of the denotator parameters. In practice, however,

depending on the currently selected zoom level, we need an additional conversion

algorithm.

All transformations also depend on location, except for translation in our case. For

this, users define an additional center point c = (cx, cy). Unless indicated otherwise,

the center is automatically defined by the initial click of the click-and-drag gesture.

In order to execute an affine transformation relative to a center, we first need to

translate by −c, then apply Ax + b and finally translate back by c. This can be

packed into a simple constant. If we assume y = Ax+ b, then

yc = y + (1− A)c.

In the following discussion, we will omit this from the formulas for simplicity and

only define Ax+ b, even though c is always considered in BigBang. 5

5For instance, for a scaling by λx, λy around c, see below, with

A =

(
λx 0
0 λy

)
and b = 0

172

Translation The most simple case is translation, where we can simply map the

mouse space to the linear coefficient b. For this we define

vT (λx, λy) =

1 0

0 1

x+

λx
λy

 .

Rotation Rotation is the only transformation that needs more than a click-and-

drag gesture. First, users need to select a center around which to rotate, by simply

clicking anywhere on the facts view. The center affects the rotation as seen above.

Then a click-and-drag gesture decides over the rotation angle. Here, we need more

than λx, λy. Two points (x1, x2) and (y1, y2) are the starting and current dragging or

ending points of the click-and-drag gesture. We map as follows:

vRo(x1, x2, y1, y2) =

cosφ − sinφ

sinφ cosφ

x,

where φ is the angle around the center c determined by the angle between the straight

from c to (x1, x2) and the one from c to (y1, y2).

Scaling For scaling, the initial click of the click-and-drag motion defines the center.

λx, λy, defined by the dragging distance, determine the so-called scale factors :

vSc(λx, λy) =

λx 0

0 λy

x.

we obtain

(1−A)c =

(
1− λx 0

0 1− λy

)
c =

(
(1− λx)cx
(1− λy)cy

)
and thus

vSc =

(
λx 0
0 λy

)
+

(
(1− λx)cx
(1− λy)cy

)
.

173

If the shift key is pressed, we set λy = λx to allow for equal scaling in both dimensions.

Shearing Shearing works as the scaling does, where λx, λy define the shearing fac-

tors, where λx shears horizontally and λy vertically. We get the following formula

vSh(λx, λy) =

 1 λx

λy 1

x.

Purely horizontal or vertical shearing can be performed by pressing the shift key

during the click-and-drag gesture. If λx ≥ λy, we set λy = 0, else λx = 0.

Reflection Reflection is slightly more complex. The click-and-drag gesture deter-

mines the reflection axis rather than the positions of objects and reflected image,

which could be done as well. We thus obtain

vRe(λx, λy) =

λ2x−λ2y
λ2x+λ

2
y

2λxλy
λ2x+λ

2
y

2λxλy
λ2x+λ

2
y

λ2y−λ2x
λ2x+λ

2
y

x.

Reflection is the only transformation that cannot be performed in a purely gestural

way. We will see below that it can be easily gesturalized by interpolating through a

projection on the axis. Here, however, we had to find a different solution. As soon as

the initial click and a slight dragging motion is performed, the objects are abruptly

reflected. However, as the user continues dragging, the axis is adjusted in a gestural

way until a satisfying result is found.

Transformations in Wallpapers The initial and final operations that frame the

execution of a wallpaper are not gestural. AddWallpaperDimension simply decides

that all following transformations, until EndWallpaper occurs, will be part of the

174

wallpaper, and the two operations are executed by a simple click on the corresponding

mode buttons. However, the way a wallpaper grows is always gestural, since the user

applies regular transformations, executed as just described. For instance, if after

an AddWallpaperDimension operation we start translating, we gesturally perform

as many subsequent translations as the determined by the range of the wallpaper

dimension. Every transformation we perform afterwards has a similarly gestural

effect.

Other Gestural Operations

In addition to the transformations just described, there are also other operations that

can be considered gestural.

Drawing For drawing with the mouse, which happens with the same click-and-

drag gesture as above and triggers AddObjects, we can define a gesture morphism

that, instead of going into the topology of affine transformations, directly reaches a

topological space defined by the two denotator parameters associated with the x/y

view parameters. For instance, if we draw EulerNotes on the Onset×EulerP itch1

plane (see Section 6.3.3), we can create a gesture morphism with u as above and

v : R2 → Q× Z, if Onset is defined over Q and EulerP itch over Z.

For each λx, λy, if we assume again a correspondence of view and denotator pa-

rameters as in Section 8.1.1 drawing defines an object with x/y parameters λx, λy. In

reality, even though such a gesture morphism defines an infinite amount of objects,

only a finite number are created due the discrete nature of mouse movements (pixel

by pixel) in combination with a purposeful time constraint that limits the amount of

objects drawn each second. However, by zooming in the facts view, objects can be

created as closely together as necessary.

175

In sum, drawing could be considered the most gestural of all operations, since, for

objects in Powers or Lists, BigBang does not only remember the last state, as it is

true for transformations, but create and remember all objects in order reached along

the path. We will see later on that this has implications for gesturalizing, since we

do not have to reconstruct a gesture but can in fact use this trace for gesturalizing.

Shaping Shaping works in a similar way to drawing, in terms of how it can be

defined gesturally. The image space of the topological part v of the gesture morphism

is also two-dimensional. However, while the second dimension is also the denotator

space associated with the y-axis parameter, the first dimension is a discrete space

defined by the set of all present values of the denotator parameter associated with

the x-axis space.

Nevertheless, shaping remembers all shaping locations as elements of R2, which

makes one shaping gesture applicable to any denotator, if for instance the input

composition changes, or more objects are inserted at an earlier stage of the process.

Alteration When performing an alteration, users have gestural control over the

alteration degrees dg1, dg2 (see Section 7.2.1) over two sliders in the top toolbar,

which can be considered one-dimensional gestural controllers. Initially, both degrees

are 0, which means that we see and hear the unchanged composition. Then, as soon

as the sliders are moved, the composition O1 moves continuously towards O2.

The configuration with two sliders make it impossible with the mouse to control

both degrees at the same time. However, this could be solved in the future using

other controllers or a two-dimensional “slide field” instead of sliders, as it is used in

many sequencing softwares.

176

Non-Gestural Operations

Several operations are not defined in a gestural way. Deleting, building satellites, and

flattening, are all based on a selection of objects and happen at once, as described

earlier on, upon a menu or keyboard command. For all of these, gestural versions

are conceivable, but only partially implemented. For instance, deleting is possible

in a gestural way when selecting an AddObjects operation and holding the shift key

while clicking-and-dragging. This way, users can undraw notes previously drawn.

In a similar way, instead of adding satellites, users can draw satellites simply by

entering drawing mode and selecting the satellite level on which they would like to

draw (described in Section 7.2.1. Despite their limited gesturality, these operations

are all gesturalizable, as I will explain below.

The two framing wallpaper operations, as seen above, are the only operations

that are neither gestural nor gesturalizable. They are simply discrete events with

structural consequences for denotators and thus also need to be part of the process

graph.

8.1.2 Affine Transformations and Multi-Touch

When using controllers other than the mouse, users also have the chance to directly

define more general affine transformations. Such transformations combine all geomet-

rical ones defined above. Before discussing how this works, I will briefly summarize

how commonly used transformational multi-touch gestures work.

Multi-touch devices typically support the three gestural types drag, pinch, and

twist, shown in Figure 8.2, which are all executed using two fingers and which cor-

respond to the geometrical transformations translation, scaling, and rotation. Drag

works the same way as the mouse gesture defined above, with the difference that

177

f 1

(a)

f 1
f 2

(b)

f 2

f 1

(c)

Figure 8.2: The three most common two-dimensional multi-touch gestures: (a) drag,
(b) pinch, and (c) twist.

λx, λy are determined by the average position of the two fingers. In contrast, the

gestural space of the other two gestures is not directly determined by finger position,

but by a certain relationship between the two fingers used. For pinch, the distance

between the two fingers determines a gesture on a one-dimensional topological space,

and for twist it is the angle at which the fingers are placed that defines the topological

space. Both gesture could thus be independently expressed as g : I → R.

Since these three parameters are all defined independently they can be used simul-

taneously. We can thus define a four-dimensional gesture g′ : I → R4 the components

of which are λx, λy, λp, λt for x-, y-position, pinch, and twist, with which we can

simultaneously translate, scale, and rotate.

In an earlier paper, we generalized these gestures for two-dimensional affine trans-

formations by adding a third finger.6 We defined three fingers fi = (psi , p
e
i) with finger

indices i = 1, 2, 3 with starting point psi and intermediary or ending point pei , along

with four vectors vj = pj2 − pj1, w
j = pj3 − pj1 with j = s, e. Figure 8.3 visualizes

these components. We also define the di = pei − psi and v̂j =
vj
|vj | . We then obtain the

following gestural transformation parameters:

6Thalmann and Mazzola, “Affine Musical Transformations Using Multi-touch Gestures”.

178

f 2

f 1

f 3v
sv

e

w
e

w
s

Figure 8.3: The components resulting from a three-finger gesture.

• As for two fingers, the translation component is defined by d1+d2
2

,

• the scaling component is ve

vs
, and

• the rotation component is arccos (ve

|ve| · v
s

|vs|).

• In addition to the above parameters, we obtain the shearing parameter, which

is the projection length |(d3 · v̂e)v̂e|, and

• the reflection component defined by the projection length of |(d3 · ûe)ûe|, where

ûe is a vector perpendicular to ve.

With this, all geometrical transformations available in BigBang can be performed

simultaneously. However, if we just wish to perform a reflection, we can hold fingers

f1 and f2 steady at a distance, which can be seen as the reflection axis, and then

move the third finger in a motion perpendicular to this axis (Figure 8.4 (a)). For a

shearing, f3 should move in parallel to the f1-f2-axis (Figure 8.4 (b)).

If we forget about the components just defined, we can move the three fingers

around freely and perform any conceivable two-dimensional affine transformation, of

course limited by physical constraints.

179

f 3

f 1 f 2

(a)

f 1 f 2

f 3

(b)

Figure 8.4: The two three-finger gestures for (a) shearing and (b) reflection.

8.1.3 Dynamic Motives, Sound Synthesis, and Leap Motion

The most complex controller currently supported by BigBang is the Leap Motion con-

troller (Figure 4.7 (b)). It can be used for precisely the same things that multi-touch

can be used, including two-dimensional affine transformations.7 BigBang thereby rec-

ognizes up to three fingers, projects them onto the plane perpendicular to the user’s

viewing direction (perpendicular to the z-axis at z = 0), and uses a procedure sim-

ilar to the ones described in the previous section to perform two-dimensional affine

transformations.

However, here we will be concerned with another functionality, in order to show

the gestural possibilities of BigBang. Leap Motion can also be used to draw objects.

In contrast to the procedure described above, where each gestural position generates

an object, there is also the possibility to create and replace objects. When using the

Leap Motion we treat each finger tip as a denotator and map the (x,y,z) location

of each finger using a linear scaling into the coordinate system represented currently

displayed by the BigBang rubette. Whenever the fingers move around the corre-

7Tormoen, Thalmann, and Mazzola, “The Composing Hand: Musical Creation with Leap Motion
and the BigBang Rubette”, p. 4.

180

sponding denotators are adjusted, which provides an immediate visual and auditive

feedback. From there, we have the option to capture the currently defined denotators

and keep adding new ones using the same method. If we use all three dimensions of

the Leap Motion space, capturing is only possible with an external trigger (such as a

MIDI trigger). To avoid the use of an external trigger the user can decide to use only

two dimensions for drawing (preferably x× y) and the third dimension for capturing,

whenever a certain threshold, e.g. the plane perpendicular to the z-axis at z = 0, is

crossed.

Figure 8.5 shows a situation where the modulators of a carrier in an FMSet are

defined using Leap Motion. Their arrangement directly corresponds to the fingertips

in space, as can be verified visually. Compared to drawing with a mouse or another

device, this method has significant advantages. The user can quickly compose complex

musical structures while being able to smoothly preview each step until satisfied.

Furthermore, the user can also easily edit musical objects added earlier in the process

in the same continuous way which has many musical applications. The high precision

of the Leap Motion makes this method just as accurate as using a mouse or trackpad.

One of the most useful musical applications of this way of generating objects, is to

go back to editing the AddObjects operation, in the manner described in Section 7.3.2,

after several transformations were performed. This way, users can gesturally redefine

the motif that was transformed, and the entire following composition process is im-

mediately applied to every gesturally changed state of the motif. This is especially

interesting when the transformations consist in copying-and-transforming, which can

yield an entire composition created from the same motif. Even more powerful is the

use of the wallpapers to transform a motif, where the motif can virtually be grabbed

by the user and moved around upon which the entire wallpaper moves accordingly.

181

Figure 8.5: An FMSet denotator consisting of a carrier and five modulators defined
by the fingertips of the user.

Figure 8.6 shows an example of such a wallpaper, where the motif has a recognizable

hand shape defined by the user.

Instead of defining motifs in a composition or improvisation, users can also design

sounds when choosing appropriate forms. For instance, while playing the keyboard,

the positions of the fingers over the Leap Motion controller can be directly mapped

to carrier oscillators or frequency modulators, as shown in Figure 8.5, and each hand

movement changes their parameters. Furthermore, in a similar way, the user can

create sounds and transform them gesturally in any of the geometrical transformation

modes. This way, instead of changing simple parameters in a linear way as with

commonly available synthesizer interfaces, multiple parameters can be changed in a

complex way, such as for instance manipulating both frequency and amplitude of

182

Figure 8.6: A wallpaper with a motif defined by the fingers of a hand.

hundreds of oscillators around a defined sound center.

This directly corresponds to the complex mapping strategies discussed in Sec-

tion 4.3.3. Depending on form and transformation choice, users have almost infinite

possibilities of dynamically mapping their gestural parameters to musical parameters.

While translations map one-to-one, the other transformations have the potential to

map a simple gesture to several parameters.

8.1.4 Recording, Modifying Operations and MIDI Controllers

Finally, here is a fourth way of controlling BigBang in a gestural way. Several types

of MIDI controllers were made available, including keyboard controllers, mixing con-

trollers, and combined ones. While keyboard controllers can be used to record MIDI

notes into BigBang, not only by converting them into Score denotators but into any

183

denotators containing Loudness (from velocity), Pitch, or temporal Simple forms,

in a similarly versatile way to the playback function discussed in Section 6.5.3. For

instance, when working with a Spectrum, the temporal parameters of the MIDI input

are ignored, while Onset/Pitch objects are added in a similar way to drawing mode.

While the above does not conform with the conditions for gestural control defined

in Section 4.3.3 (note on/off events cannot be considered continuous), there are other

uses of MIDI that are more gestural. The knobs and sliders on many devices send

control changes that are gestural, even if in a discrete space (g : I → Z). Currently,

such control changes are mapped to the modification of operations and transforma-

tions. All knobs and sliders are assigned to the operations in the order they were

added to the graph. For instance, the 16 knobs of the E-MU Xboard are assigned to

the 16 first operations, regardless of their occurrence in linear, alternative, or parallel

processes. Since for each controller the control change assignments may vary, they all

have to be configured individually.

For each control change, the sent values, integers within [0, 127], are mapped real

numbers within [0, 2], where 0 corresponds to the identity, 1 to the original operation,

and 2 to double the operation. The latter value is then used to replace the operation’s

values or morphism by a new one found at the corresponding point on the gesture.

How this is done will be discussed in detail in the next section. For now, an example

will suffice: if the modified operation is a rotation by 45◦, MIDI value 31 will be

mapped to 0.5, and will thus modify the angle to 22.5◦, whereas 127→ 2 will lead to

90◦. Almost all operations can be modified this way. However, only some, including

all transformations, can be extended to double their amount. Table 8.1 shows which

operations can be modified and lists all the ranges.

184

8.2 Gesturalizing and the Real BigBang: Animated

Composition History

When we started designing the BigBang rubette, we chose BigBang as the working

name for the prototype, because of the innumerable possibilities it brings to Rubato

Composer. Meanwhile, this name has gained an initially unexpected and highly ap-

propriate new meaning. The operation graph recounts the evolution of a sounding

universe, which shows many parallels to the evolution of our physical universe. An

initial group of musical objects expands and multiplies by being copied and trans-

formed into a highly complex musical structure based on rules of symmetries. The

ultimate functionality in BigBang is a gestural animation of this evolution, from the

initial compositional actions to the actual state. In this section, I describe how this

second type of gesture can be created.

As seen above, BigBang saves processes rather than gestures. From these pro-

cesses, we can not only generate facts, but turn the processes back into gestures. The

construct of a gesture ensures continuous and unidirectional motion in its topological

space, by anchoring it in the interval I, as described in Section 3.3.2. Animating a

gesture is thus straightforward: we just need to gradually interpolate on I, which

gives us a sequence of points in the topological space, be it affine transformations

(Aff2(R)) or any other structure. However, how do we get gestures from processes,

which consist in merely a point in the corresponding topological space? I will start

by answering this for transformations, and then move on to operations.

8.2.1 Gesturalizing Transformations

We saw that what BigBang keeps from the gestures performed by the user when trans-

forming, are merely the ending points in the topological space, the final morphisms.

185

However, it also remembers which type of transformation the user was executing,

which is helpful for reconstructing a standard gesture. As above, in the following

definitions we ignore center c. In reality, we keep c constant during the entire gesture.

Translation

In Section 8.1.1, we saw that translations merely consist in the b-part of Ax+b. Thus,

for a given translation

x+

b1
b2

 ,

all we need to do to create a gesture is define g : I → Aff2(R) as follows:

g(i) = x+

ib1
ib2

 ,

for i ∈ I.

Rotation

For rotations, we interpolate on the angle φ and calculate the appropriate element of

Aff2(R) as above. We thus define

g(i) =

cos iφ − sin iφ

sin iφ cos iφ

x.

Scaling

For a scaling a11 0

0 a22

x

186

we define

g(i) =

1 + i(a11 − 1) 0

0 1 + i(a22 − 1)

x.

Shearing

For a shearing  1 a12

a21 1

x

accordingly

g(i) =

 1 ia12

ia21 1

x.

Reflection

Finally, we interpolate a reflection

a11 a12

a21 a22

x

by traveling through a projection on the reflection axis by doing the following:

g(i) =

ia11 + (1− i) ia12

ia21 ia22 + (1− i)

x.

Affine Transformations

The procedure for reflections also works for any affine transformation, since we inter-

polate between the identity matrix and any arbitrary matrix. What is missing in this

formula is the b part, which we can deal with as discussed in the translation section.

187

Thus:

g(i) =

ia11 + (1− i) ia12

ia21 ia22 + (1− i)

x+

ib1
ib2

 .

However, the problem with this is that somewhere on the way, we might encounter

singular projections that may not be musically optimal. In a former paper, we sug-

gested the use of Bruhat standardized transformations in order to decompose affine

transformations into their geometrical parts, and finally gesturalize on these obtained

parts, which leads to more satisfying musical results.8

Gesturalizing Beyond the Transformation

As mentioned in Section 8.1.4, transformations cannot only be gesturalized in the

interval [0, 1] but even beyond it. The i ∈ I in the formulas in this section can simply

be replaced by an r ∈ R, for which we get an extended gesture of infinite length. If

we keep r ∈ [0, 2], we get what we described above, and we can obtain exaggerated

versions of the transformations, of up to double the amount.

8.2.2 Gesturalizing Other Operations

Almost all other operations can be gesturalized as well (see Table 8.1). We thereby

distinguish so-called ObjectBasedOperations that operate on a single set of objects.

They include AddObjects, DeleteObjects, InputComposition, BuildSatellites,

Flatten, and Shaping. For these operations, we interpolate on the number of objects

the operation manipulates. We define a function o : I → [0, n], n being the amount

of objects, and o(i) = in. For instance, if an BuildSatellites operation adds 30

objects as satellites of any anchors, for i = 0.2 it only adds the first 6 objects. For

operations that remember the order of their objects, such as AddObjects, the objects

8Mazzola and Thalmann, “Musical Composition and Gestural Diagrams”.

188

are manipulated in order. This leads to an accurate reconstruction of a drawing

gesture, as described above.

Two other operations can be gesturalized in a different way. Even though during

gesturalization AddWallpaperDimension is ignored, since a wallpaper only evolves

through its transformations. However, AddWallpaperDimension can be modified in

the way described in Section 8.1.4. Then, [0, 2] is simply used to adjust the upper

range rmax of the wallpaper dimension, i.e. o′(i) = i∗rmax becomes the modified upper

range. Finally, for Alteration, gesturalization affects the two alteration degrees dg1

and dg2. Thereby, o′′(i) = (idg1, idg2) is the modified pair of alteration degrees.

8.2.3 Using Gesturalization as a Compositional Tool

In BigBang, pressing on the Gesturalize button in the upper part of the process view,

initiates a gesturalization of the shortest path that connects composition state 0 and

the currently selected state in the operation graph, or the last added state, if no

state is selected. Each gesturalizable operation along the way is gesturalized until the

current state is reached. Users can specify an arbitrary duration for each operation.

At each point in time, the current state is visualized and sonified as described above.

Parallel operations are gesturalized simultaneously, despite their logical succession.

Even though gesturalizing can be used to reconstruct the composition process,

it can become part of the composition itself. For instance, composers can design

continuously evolving textures, by defining continuously sounding objects such as

FMSets, transforming them in various ways, and finally creating a temporal structure

by selecting various durations for the transformations. This way, the gesturalized

structure becomes the actual composition.

This can also be done in a more improvisational way, by using a slider at the top

of the process view. The space of the slider represents the entire gesturalization and

189

by moving the slider back and forth, users can continuously travel back and forth in

the compositional evolution, while hearing the respective temporal states.

190

Part III

Implementation and Examples

191

Chapter 9

Architecture and Implementation

While in Parts I and II, I have discussed all conceptual matters and some decisions

taken during the implementation of the BigBang rubette, I have done this from a more

theoretical perspective, while discussing and showing examples from the rubette’s

graphical user interface. In this chapter, I will plunge deeper and describe BigBang ’s

architecture as well as some relevant implementation details. However, I will limit the

discussion to the most significant aspects, since the code currently consists of more

than 200 classes, more than 20000 lines of code, or almost 500 pages of font size 12,

alone in BigBang ’s package, along with many new and changed classes in other parts

of Rubato Composer.

9.1 The Architecture of BigBang

As seen in Section 4.4, Rubato Composer offers both an extensive mathematical frame-

work and an environment for quickly and simply creating additional rubettes. Since

BigBang is more complex than any rubette implemented so far, it consists of an

extension of the AbstractRubette class named BigBangRubette, which prescribes

192

less functionality than SimpleAbstractRubette, as discussed in Section 4.4.3. With

AbstractRubette, the programmer has to entirely define the rubette’s properties and

view windows. Even though BigBang could be said to have more properties than any

other rubette, its main purpose is to provide an interactive view of denotators, and

the view is thus its central part. In order to simplify and unify the interface, we

decided not to separate view and properties and provide access to all of the rubette’s

functionality uniquely through the view window. As described above, BigBang ’s

view is not limited to one view window. Once the main window is open, users may

open several additional ones, each of them showing an different perspective on the

composition.

These view windows determine the internal structure of BigBang. Due to the

possibility of having multiple independent view windows, we decided to adopt a re-

cursive or hierarchical Model-View-Controller (MVC) structure,1 where the view is

again structured as an MVC. This has the advantage that all views share the same

main model, which contains everything that concerns the composition in BigBang :

the denotators, BigBangObjects, operation graph, and so on. Each view then has

the opportunity to have several components that access its own settings, such as

ViewParameters, DisplayModes, synthesizer classes, and so on, through its con-

troller. Figure 9.1 shows a simplified diagram of BigBang ’s double MVC, where

1MVC is a popular combination of object-oriented design patterns, appropriate for programs
with a graphical user interface. It neatly separates the main logic and data of a program, the
model, from its potentially various graphical representations, the views. The latter communicate
with the model through the controller, which offers access to a set of functions. In turn, whenever
something in the model changes, it updates all its views to represent the current state. MVC was
first published in Glenn E. Krasner and Stephen T. Pope. “A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80”. In: Journal of Object-Oriented Programming
1.3 (1988), pp. 26–49. Hierarchical MVC (HMVC) or Presentation-Abstraction-Control (PAC) has
been suggested by several scholars, first by Joëlle Coutaz. “PAC, an implementation model for dialog
design”. In: Proceedings of INTERACT. 1987, pp. 431–6. However, it differs from the solution in
this thesis by making all components uniquely communicate through their controllers. Here, the
low-level view and the high-level model are identified.

193

BigBangController

BigBangModel

BigBangView

ViewController

JBigBangDisplay
JGraphPanel

Figure 9.1: The general architecture of BigBang. Solid arrows refer to direct method
calls, while dashed arrows show update procedures.

BigBangView is the main view, which in turn has two views, JBigBangDisplay and

JGraphPanel. In reality, there are many more classes involved and in the following

sections I will discuss the most important ones of them. I will start with the main

model classes, followed by the view system, the main class of which is BigBangView.

After that, I will discuss BigBang ’s synthesizer and MIDI classes in a separate sec-

tion, even though they are currently part of the view. Finally, I will discuss how

we implemented some rubette-specific functionality, such as duplicating and saving,

in BigBang. In our implementation, the controllers are kept as simply as possible –

methods directly triggered by appropriate Actions and ActionListeners – and will

thus not be discussed here.

BigBang ’s classes are organized into Java packages according to the MVC struc-

ture. The main package org.rubato.rubettes.bigbang contains subpackages model,

194

view, and controller, where view again contains model, subview, and controller.

There are many more subpackages that will not be discussed here, such as

org.rubato.rubettes.bigbang.test, which contains all classes with JUnit tests

for most BigBang features.

9.2 BigBangModel

The BigBang ’s model package contains the main logic of BigBang and manages the

composition and all its structural forms of representation discussed in Part II. Since

each BigBang holds exactly one composition – notabene in potentially many different

states – there is only one instance of the model classes per instance of BigBang.

BigBangModel, the main model class, uses and contains many other classes, the most

important of which are shown in Figure 9.2. The responsibilities of BigBangModel can

be divided into three main activities: creating operations and managing the operation

graph (classes on the left in Figure 9.2), creating BigBangObjects and sending them

to the views (classes in the middle), and updating and mapping the denotators as

well as extracting their values (classes on the right).

From outside (through the BigBangController), the views have almost only ac-

cess to methods that create and modify the graph, which is the main method of com-

posing with BigBang. For instance, they can add a rotation of a certain number of se-

lected objects to the end of the graph, or insert a satellite-building operation, or undo

the deleting of an operation. Figure 9.3 visualizes in a simplified way what such an ac-

tivity triggers. It depicts what happens when a translation is executed, which is initi-

ated when the BigBangController calls the translateObjects(...) method of the

BigBangModel. First, the model creates a new TranslationTransformation (step

1), which is a subclass of AbstractOperation, and adds it to a new

195

BigBang
DenotatorManager

BigBangModel

BigBangObjects

BigBangLayers

BigBang
OperationGraph

AbstractOperation

BigBangLayer

CompositionState
BigBangMapper

ObjectGenerator

Figure 9.2: Some of the most important model classes of BigBang.

AddOrInsertOperationEdit, an UndoableEdit (step 2). The edit is then posted

to BigBang ’s undo-redo-mechanism (simplified here as UndoSupport, step 3), which

allows any adding or removing of operations to be undone, and subsequently redone.

When posted, the edit is automatically executed (step 4), which adds or inserts the

translation to the BigBangOperationGraph (step 5), depending on which composi-

tion state is currently selected and depending on whether inserting mode is currently

active (see Section 7.3.4). This adds a new edge to the graph and likely a new vertex,

if the new edge is not a parallel edge.

Whenever a change is made to the graph or one of its operation, or when a differ-

ent composition state is selected, BigBang ’s composition is recreated accordingly, as

discussed in the beginning of Chapter 7. Specifically, this is the task of the model’s

updateComposition()method, which first calculates the currently appropriate path

in the graph, which contains the operations to be executed. For instance, if an in-

termediary composition state is selected, or one in an alternative part of the graph

(see Section 7.3.3), the path is defined to be the shortest path ending at that state.

Then, BigBangModel executes every operation of the given path in order (step 6 in

196

t7Edit:AddOrInsertOperationEdit

BigBang
DenotatorManager

BigBangModel

upAFifth:Translation
Transformation

BigBangMapper

BigBangController

0: translateObjects(...) 2: new(upAFifth)

UndoSupport

4: execute()

BigBangOperationGraph

upAFifth:Translation
Transformation

upAFifth:Translation
Transformation

6: execute()

5: addOperation(upAFifth)

1: new(...)

7: addTransformation(...)

8: mapObjects(...)

bbos:BigBang
Objects

9: updatePaths(...)
DenotatorValue

Extractor

10: extractValues(bbos)

11: fireComposition
Change(bbos)

3: postEdit(t7Edit)

Figure 9.3: A simplified view of the process initiated by calling the translateOb-
jects(...) method for a transposition T7. The corresponding TranslationTransforma-
tion, named upAFifth here, is represented at different stages of its existence.

Figure 9.3). In our case, the TranslationTransformation is finally executed, which

adds a transformation to the BigBangDenotatorManager (step 7). With each execu-

tion of an operation graph, the denotator manager resets its denotators (which com-

prise the actual composition), and then builds them up from scratch, according to the

operations in the currently selected path. Simply put, the addTransformation(...)

method asks the so-called BigBangMapper, the component that facilitates the map-

ping of arbitrary denotators in multiple dimensions (as described in Section 7.2.2),

to map the denotators (step 8). After every execution of an operation, the denotator

paths of the BigBangObjects are updated, depending of the changes made by the

operation (step 9). For instance, a rotation of all objects by 180 degrees, reverses the

order of all denotator paths.

When all operations of the current path are executed, the BigBangModel extracts

197

the values from the current denotators in BigBangDenotatorManager and updates

them within its BigBangObjects (step 10). Finally, the model updates all views by

sending them the current BigBangObjects (step 11), which they in turn visualize

and sonify accordingly.

9.2.1 BigBangOperationGraph

BigBang ’s internal representation of the operation graph (BigBangOperationGraph)

is implemented using the Java Universal Network/Graph Framework (JUNG).2 The

framework provides functionality for modeling, analysis, and visualization of data in

the form of graphs and networks. Most of what we described in Chapter 7 can easily be

realized with JUNG. The framework does not only allow for interactive visualization

with layout algorithms, navigation via zooming and panning, and graph editing, as

used in BigBang ’s process view (e.g. see Figures 7.9-7.11), but for instance also

provides simple ways to obtain shortest paths between vertices, perform statistical

analyses, or randomly generate or optimize graphs.

BigBangOperationGraph is realized as a DirectedSparseMultigraph, which

means that it allows for parallel edges, as described in Section 7.3.3. JUNG ’s graphs

typically have typed vertices and edges, in our case CompositionStates and

AbstractOperations, respectively. CompositionStates are currently kept maxi-

mally simple and merely keep track of their unique index number.

AbstractOperation, on the other hand, is a superclass that represents any op-

eration available in BigBang, as discussed in Section 7.2. Figure 9.4 shows the

current class hierarchy. All AbstractOperations have attributes that determine

whether they are gesturalizable or modifiable (Table 8.1), splittable (Section 7.3.4),

2Joshua O’Madadhain et al. The JUNG (Java Universal Network/Graph) Framework. url:
http://jung.sourceforge.net/index.html.

198

AbstractOperation

Abstract
Transformation

Translation
Transformation

Rotation
Transformation

AbstractLocal
Transformation

Scaling
Transformation

Shearing
Transformation

Rotation
Transformation

Shaping
OperationInputComposition

Operation
AbstractObject
BasedOperation

Flatten
Operation

DeleteObjects
Operation

EndWallpaper
OperationAddWallpaper

DimensionOperation

BuildSatellites
Operation

Alteration
Operation

Affine
Transformation

AddObjects
Operation

Figure 9.4: The class hierarchy of BigBang ’s operations in org.rubato.rubettes
.bigbang.model.operations.

and what their range of modification ratios, or their duration is during gesturaliza-

tion. AbstractTransformations are all based on a number of BigBangObjects and a

two-dimensional ModuleMorphism, while AbstractLocalTransformations adds the

logic necessary for a shift to (0, 0) and back that is necessary for most geometric and

affine transformations, when performed relatively to a location different from (0, 0), as

discussed in Section 8.1.1. AbstractObjectBasedOperations include all operations

that are based on a selected set of BigBangObjects and gesturalized by subsequently

adding more and more objects to the set until it reaches its full size, as described in

Section 8.2.2.

In addition to functionality provided by JUNG, the BigBangOperationGraph pro-

vides methods that allow for addition, insertion, and removal of AbstractOperations,

while maintaining the necessary integrity. For instance, CompositionStates are al-

199

ways automatically inserted at the right position and they are always numbered in

ascending order. If an operation is inserted at a position before the last composition

state, it obtains an appropriate index, and the indices of all subsequent states are

automatically increased. Also, BigBangOperationGraph keeps track of the order in

which operations were added, or which operation or composition state is currently

selected, which has implications on how what state of the composition is shown and

where operations are inserted (Section 7.3.2).

As illustrated above, operations are added to and removed from the graph via cor-

responding undoable edits, AddOrInsertOperationEdit and RemoveOperationEdit.

This system adds another level of compositional logic above the operation graph. It

keeps track of all subsequently performed edits and allows users to navigate this

history back and forth (Section 7.3.5).

The class responsible for the gesturalization of the graph is BigBangGraphAnimator.

This class gets all operations on the shortest path to the currently shown composition

state and gesturalizes each gesturalizable operation by modifying it with modifica-

tion ratio 0 to 1 during the timespan given by the respective operation’s duration,

as described in Section 8.2. It also provides a method to jump to any position in

the current gesturalization, which is for instance used by the gesturalization slider in

BigBang ’s process view.

9.2.2 BigBangDenotatorManager

In Chapter 7, we have seen that BigBang dynamically generates its composition as

denotators, based on the information in the operation graph. Creating and managing

these denotators is the task of the BigBangDenotatorManager and its helper classes

in the package org.rubato.rubettes.bigbang.model.denotators. The denotator

manager provides methods that correspond to all available ways of manipulating

200

denotators in BigBang. These methods are typically called by AbstractOperations,

when executed by the BigBangModel (see Section 9.2). The following lists summarize

the BigBangDenotatorManager’s most important public method declarations:

public OperationPathResults setOrAddComposition(Denotator composition);

public OperationPathResults addObjects(DenotatorPath powersetPath,

List<Map<DenotatorPath,Double>> pathsWithValues);

public OperationPathResults removeObjects(

List<DenotatorPath> removedObjectsPaths);

public OperationPathResults buildSatelliteObjects(

Set<DenotatorPath> objectPaths,

DenotatorPath parentPath, int powersetIndex);

public OperationPathResults flattenObjects(Set<DenotatorPath> objectPaths);

public OperationPathResults addTransformation(

Set<DenotatorPath> objectPaths, DenotatorPath anchorPath,

BigBangTransformation transformation);

public void addWallpaperDimension(Set<DenotatorPath> objectPaths,

int rangeFrom, int rangeTo);

public void endWallpaper();

public OperationPathResults addAlteration(

Set<DenotatorPath> foregroundComposition,

Set<DenotatorPath> backgroundComposition,

List<DenotatorPath> alterationCoordinates,

double startDegree, double endDegree,

DenotatorPath degreesDimensionPath);

public OperationPathResults shapeObjects(Set<DenotatorPath> objectPaths,

TreeMap<Double,Double> shapingLocations,

List<TransformationPaths> shapingPaths,

boolean copyAndShape);

Most of these methods take DenotatorPaths as arguments, which are sophisti-

cated representations of the int[] paths discussed in Section 7.1.2, and which cor-

respond to the main paths of the BigBangObjects to be manipulated. As discussed

above, the path at which each BigBangObject can be found varies from composi-

201

tion state to composition state and it is one of the tasks of the BigBangObjects

to keep track of these paths. Whenever an AbstractOperation is executed, all

BigBangObjects in question are asked for their current path and these paths are for-

warded to the BigBangDenotatorManager. Almost every of the denotator manager’s

methods return an OperationPathResults object, which contains all paths added,

changed, and removed by the operation. This, in turn, is then used to update the

BigBangObjects’ path tracking system, as will be discussed later on. The denotator

manager contains additional public methods, some of which are:

public void setForm(Form baseForm);

public Form getForm();

public boolean isFormCompatibleWithCurrentForm(Form form);

public void reset();

public OperationPathResults getPathResults();

public BigBangDenotatorManager clone();

public Denotator getComposition();

The first three are concerned with the current form of BigBang. The form can be

replaced, which leads to a reset of the denotators as well as the operation graph. The

reset() method is also called before every execution of the graph and thus whenever

an operation is added to the graph or modified (see Section 9.2). getPathResults()

can be called to obtain temporary OperationPathResults after partial executions

of operations. The last two methods are used by the model when the rubette is

duplicated (see Section 9.5) or when the current composition is sent on to another

rubette via BigBang ’s output.

Other methods of the denotator manager are merely visible within its pack-

age org.rubato.rubettes.bigbang.model.denotators and are used by the helper

classes. They allow for consistent adding or removing objects, moving them to satel-

202

lite sets, and so on. Most importantly, the BigBangDenotatorManager always ensures

that objects are automatically made relative when they become satellites, and abso-

lute when they become top-level objects, a functionality otherwise only provided by

specific rubettes. Some of the methods available within the package are:

List<Denotator> addObjects(List<Denotator> objects,

List<DenotatorPath> parentPaths, int[] powersetIndices);

List<Denotator> addObjectsToParent(List<Denotator> newObjects,

DenotatorPath powersetPath);

void replaceObjects(List<Denotator> newObjects,

List<DenotatorPath> replacedObjectsPaths);

void replaceSiblingObjects(List<Denotator> newObjects,

List<DenotatorPath> replacedObjectsPaths);

List<Denotator> getAbsoluteObjects(List<DenotatorPath> objectPaths);

Denotator getAbsoluteObject(DenotatorPath objectPath);

The helper classes used by BigBangDenotatorManager are shown in Figure 9.5.

The most important one is the ObjectGenerator, which offers simple ways of creating

denotators, for instance using the methods:

public List<Denotator> createObjects(Form objectForm,

List<Map<DenotatorPath,Double>> pathsWithValues);

public Denotator createStandardDenotator(Form form, double... values);

All other helper classes execute the mathematical operations and generate the struc-

tures in similarly simple and consistent ways, all offering methods that allow pro-

grammers to think on the level of objects such as in BigBangObjects, rather than

denotators. For instance, BigBangMapper enables direct and simultaneous transfor-

mations of anchors and satellites, even though the latter are defined relatively to an

anchor, whereas the former are absolute.

203

BigBang
DenotatorManager

BigBangManipulator
ObjectGenerator

BigBangMapper BigBangShaper

BigBangAlteration

BigBangWallpaper

BigBangWallpaper
Dimension

Figure 9.5: BigBang ’s denotator manager and its helper classes in package
org.rubato.rubettes.bigbang.model.denotators.

9.2.3 BigBangObjects

Finally, the third group of model classes deal with BigBangObjects, the simplified

and historical representation of denotators discussed in Section 7.1.2. Its main class is

called BigBangObjects, which contains maps that keep track of which BigBangObject

instances are present before which AbstractOperations, as well as the

DenotatorPath they are temporarily associated with, in order to allow for more

optimized queries rather than with asking the respective BigBangObject instances.

The class BigBangObjects also offers methods that return analytical data, used for

instance for visualization, such as denotator value names, minimum and maximum

values for each denotator value, maximum satellite level, and so on. The most im-

portant method is

updatePaths(AbstractOperation previousOperation,

AbstractOperation operation, OperationPathResults pathResults),

204

which is called after every time an operation is executed and OperationPathResults

are returned by its execute() method. It adjusts all paths of added, changed, and

removed BigBangObject instances.

The BigBangObject class, in turn, keeps track of a specific object’s

DenotatorPath, parent, and children, at every AbstractOperation it occurs. Also, it

holds the denotator values of the currently shown state (found by the

DenotatorValueExtractor, see below), as well as the set of BigBangLayers the

object appears on. Besides methods managing this data, BigBangObject also offers

methods to query its activeness, audibility, and visibility (see Section 7.1.3), compar-

ison methods, and methods for finding specific denotator values.

A crucial class for the BigBangObject is the DenotatorValueExtractor. After

all operations in the currently active path of the graph are executed, the extractor is

asked to gather all denotator values from the currently represented composition, which

is obtained through the getComposition() method of the denotator manager. The

extractor then updates the denotator values in each of corresponding BigBangObject

instances. It contains no public methods and simply does its task upon construction

using the main constructor:

DenotatorValueExtractor(BigBangObjects objects, Denotator composition);

9.3 BigBangView

The view classes of BigBang currently only contain one type of main view,

BigBangView. It comes in two versions, one for the standard mouse-operated ver-

sion, using Java Swing for visualization, and one for multi-touch interfaces, using

205

OpenGL through the MT4j framework.3 The latter’s main class is an extension of

the regular BigBangView: MTBigBangView. As seen above, both of these versions also

allow for additional interfaces, such as the Leap Motion, or MIDI controllers. Here,

we focus on the mouse-operated version.4

We have already seen that BigBangView is in fact again a model, associated with

several (sub)views. Figure 9.6 compiles the most important classes involved in this

system. All classes represented in the upper half of the figure communicate any

user activity through actions and adapters to the ViewController, which updates

the model classes represented in the lower half of the figure. Whenever a model

class is changed, it updates all its observers, again through ViewController. For

instance, JBigBangDisplay visualizes DisplayObjects and gets updates whenever

these change. DisplayObjects, in turn, are visual analogues of BigBangObjects (see

below) and are updated through BigBangController whenever BigBang ’s composi-

tion changes (see Section 9.2). Other views might also take information from the

DisplayObjects and observe them in a similar fashion.

9.3.1 The View’s Model Classes

Figure 9.6 shows several of BigBang ’s view model classes located in the Java pack-

age org.rubato.rubettes.bigbang.view.model. The most important ones are the

DisplayObjects and DisplayObject, which are visual representations of

BigBangObjects and BigBangObject and directly refer to those, especially their

current denotator values gathered by the DenotatorValueExtractor, as shown in

Section 9.2.3. We first saw in Section 6.2.1 that these denotator values are visu-

3Uwe Laufs, Christopher Ruff, and Anette Weisbecker. “Mt4j: an open source platform for
multi-touch software development”. In: VIMation Journal (2010).

4For more information on the multi-touch version, see Thalmann and Mazzola, “Affine Musical
Transformations Using Multi-touch Gestures”, as well as forthcoming papers.

206

BigBangView

ViewController

JBigBangDisplay JGraphPanel

DisplayTool

SelectionTool

RotationTool

DisplayObjects

DisplayObject

ViewParameters

ViewParameter
DisplayModeAdapter ...

JBigBang
PopupMenu

JMainOptions
Panel

JWindow
PreferencesDialog

JViewParameters
Panel

JMainToolBar...

SelectionModeAdapter RotationModeAdapter ...

Figure 9.6: Some of the classes in BigBang ’s view system (package org.rubato
.rubettes.bigbang.view).

alized by being associated with a set of given visual parameters. In practice, this

association happens in the ViewParametersclass, where all possible denotator pa-

rameters values found in BigBangObjects are paired with the currently selected set

of view parameters, currently including a choice of either hue-based or RGB-based

colors (Section 6.3.3). BigBangView currently also manages its current user mode,

which is represented by the subclasses of DisplayModeAdapter – which is technically

a controller class, but is in this case also used to determine the mode in the view

model – and the ones of DisplayTool. With these, each view has a current mode

which determines how the user’s gestures affect the composition. For instance, in ro-

tation mode, in the mouse version of BigBang, a click defines the center of a rotation,

whereas a click-and-drag determines its angle. While the user is performing gestures,

the RotationTool is displayed as a referential representation of the current rotation.

207

9.3.2 The (Sub)View Classes and their Controller Classes

Many classes are views of BigBang ’s view model, some of which are shown in Fig-

ure 9.6. The most important ones correspond to BigBang ’s facts and process views

(Chapter 5), JBigBangDisplay and JGraphPanel, respectively. Both of these views,

as most other views in BigBang are contained in the class JBigBangPanel, ommited

from Figure 9.6. The former visualizes the DisplayObjects using Java Swing graph-

ics, whereas the latter provides an interactive visualization of the

BigBangOperationGraph, making use of the JUNG framework’s visualization ca-

pabilities (Section 9.2.1), which also based on Swing.

There are many other classes that correspond to various parts of the visual in-

terface and offer ways of controlling BigBang through buttons, boxes, and menus.

JMainOptionsPanel combines view parameters settings (the checkbox grid mentioned

in Section 6.2.1), with settings that control on which level and which objects the user

wants to draw, and other general settings such as a checkbox for whether BigBang ’s

input is active and receives denotators or not. Two toolbars, JMainToolBar and

JLayersToolBar allow users to change BigBang ’s mode, play back the composition,

specify wallpaper and alteration settings, and navigate the layers, if any are defined.

A popup menu, JBigBangPopupMenu, brought up by a right click on the facts view,

allows an alternate access to certain functionality, such as building satellites, deleting

objects, etc. Finally, the BigBangView’s more detailed settings menu is situated in

JWindowPreferencesDialog, which can be brought up through the popup menu or

a key command (ctrl-P or command-P) and for instance contains view parameter or

synthesizer configuration settings.

All these views share a large number of actions and adapters, all located in the

package org.rubato.rubettes.bigbang.view.controller, through which they can

perform the activities available in BigBang. These actions and adapters simply call

208

methods of the ViewController, which in turn forwards the calls to the model classes.

For instance, the PlayButtonAction calls ViewController.togglePlayMode(),

which calls the same method in BigBangView, which in turn forwards the request

to the BigBangPlayer.

9.4 Synthesizer and MIDI Classes

The last group of classes that we will examine a little closer here are the ones re-

sponsible for receiving MIDI input and playing back BigBang ’s composition via Java

synthesizer, Java MIDI, as well as MIDI. These classes are currently tied to the

BigBangView, but due to their recent evolution, they will soon be relocated to a sep-

arate package. Even though the views show different perspectives, BigBang currently

only contains one composition at a time, and thus only needs one set of sound and

MIDI input and output classes. In fact, the audible playback can be considered a

view in itself, that does however not need to be separated from the model through

BigBangController. Figure 9.7 shows the current structure of BigBang ’s sound and

MIDI setup.

In the upper left of the figure, we find MIDI input and output classes, located in the

package org.rubato.rubettes.bigbang.view.io, which make use of the standard

javax.sound.midi package in order to obtain access to any MidiDevice currently

connected to the system. BigBangMidiReceiver filters any MIDI message useful to

BigBang and forwards it to the responsible instance. For example, all note on and

note off messages trigger pressMidiKey(...) and releaseMidiKey(...) method

calls in ViewController. Control change messages, in turn, are directly forwarded

to BigBangController.modifyOperation(...), as discussed in Section 8.1.4. The

BigBangMidiTransmitter is used to play back MIDI and send MIDI messages to any

209

ViewController
BigBangPlayer

BigBangMidiReceiver

JSynScore

JSynPerformance

JSynThread

JSynModule

SmoothOscillator

JSynObject

BigBangRecorder

BigBangMidiTransmitter

BigBangMidiNoteRepeater

MidiTimerTask

BigBangController

PlayButtonAction

Figure 9.7: Some of the classes of BigBang ’s sound and MIDI classes (packages
org.rubato.rubettes.bigbang.view.io and org.rubato.rubettes.bigbang.view .player).

MidiDevice, currently only through BigBangPlayer’s playback mechanism.

BigBangPlayer is used to play back BigBang ’s composition both by a microtonal

synthesizer built with JSyn,5 a versatile Java API that allows for a great variety

of computer music applications and synthesizer programming, and via MIDI, using

javax.sound.midi. BigBangPlayer is currently triggered through ViewController

and BigBangView, for instance via a PlayButtonAction, as suggested in Figure 9.7,

which toggles playback on or off. Also, whenever a change is made to BigBang ’s

composition, the BigBangPlayer is updated with the newest BigBangObjects, just

as BigBangView. These objects are then converted into a playable sound object,

5Phil Burk. “JSyn – A Real-time Synthesis API for Java”. In: Proceedings of the International
Computer Music Conference. San Francisco: International Computer Music Association, 1998.

210

currently called JSynScore, a set of sounding JSynObjects. As described in Sec-

tion 6.4, any audible dimension not present in the object is automatically completed,

so that almost any denotator can be sonified. The JSynScore is then performed by

JSynPerformances, of which several can happen simultaneously, for instance when

the user is triggering playbacks using a MIDI controller (as described in Section 6.4).

A JSynPerformance, in turn, consists of several JSynThreads, depending on the

number of simultaneous voices, which are all associated with one JSynModule con-

taining a number of SmoothOscillators, an oscillator specifically made for BigBang,

which automatically sweeps both amplitude and frequency, in order to avoid artifact

clicks. SmoothOscillators can also be combined into greater structures, using the

modular SmoothOscillatorModules, with which one can easily build components for

frequency modulation, ring modulation, and additive synthesis.

Instead of playing back JSynScores as synthesizer objects, JSynPerformances

can also send corresponding messages to the BigBangMidiTransmitter, which then

converts them to appropriate MIDI messages and sends them to MIDI devices, in-

cluding the MIDI module of the Java Sound Synthesizer. Both ways of playing back

can also happen at the same time.

9.5 Other Implementation Details

A few more aspects of the implementation are relevant in the context of this thesis

and will thus briefly be summarized. First, according to the design principles under-

lying Rubato Composer, every rubette needs to be able to be duplicated as well as

saved along with the network it appears in. Programmers have a choice of what char-

acteristics of the original rubette reappear in the duplicated or loaded versions. This

does currently not work for all desirable parameters, but it will be adjusted in further

211

developments in the near future. The main workings, however, will be explained in

this section. Furthermore, I will address a central part of the development process of

BigBang : the classes responsible for automated testing.

9.5.1 Duplicating

Every rubette has to implement the duplicate() method, except for when it is based

on SimpleAbstractRubette, where all properties are managed automatically. The

method returns a new rubette that preferably maintains the same properties and

other settings as the original. It is used, for instance, when users copy and paste a

rubette in the Rubato Composer network environment.

With BigBang, we expect a lot to be copied along, foremost its composition pro-

cess, but possibly also some of its view settings, etc. For now, the duplicate()

method simply looks as follows:

public Rubette duplicate() {

return new BigBangRubette(this.model.clone());

}

It uses BigBang ’s private constructor that accepts an already existing BigBangModel

as an argument. As can be seen in the code, BigBangModel offers a clone() method,

which creates a deep copy of the model including all of its components: the operation

graph, the denotators, and the BigBangObjects. In fact, the only thing that needs to

be copied is the form as well as the operation graph and all of its operations, while the

denotators and the BigBangObjects can be dynamically generated from the graph,

with a call of the updateComposition() method, as described in Section 9.2. The

model’s clone() method is thus:

212

public BigBangModel clone() {

BigBangModel clonedModel = new BigBangModel();

clonedModel.setForm(this.denotators.getForm());

clonedModel.operationGraph = this.operationGraph.clone(clonedModel);

clonedModel.updateComposition();

return clonedModel;

}

The limitations of this method of duplicating is that the BigBangObjects are not

properly duplicated, which makes it impossible to duplicate operations that use spe-

cific selections of objects. Instead, at the current stage of implementation, all oper-

ations are duplicated without their references to objects. This has the consequence

that all operations of the duplicated rubette are always applied to all objects existing

at their composition state, just as described in Section 7.1.1. However, the method

thus works well for abstract operation graphs, designed independently of any com-

positional objects, as well as graphs where operations always concern all objects. A

consequential limitation of this method is also that duplicating does currently not

work for all operations. Alterations, for example, do not make sense if their two

compositions are identical and both are the entire composition. These limitations

will be dealt with in the near future, with the addition of the ability to duplicate

BigBangObjects and their references in operations.

9.5.2 Saving and Loading

In addition to duplicating, rubettes also need to be able to be saved and loaded

along with their networks. Rubato Composer saves any of the data created by the

user at runtime, including modules, forms, denotators, rubettes, and networks, into

XML files. Each rubette must implement a toXML(...) method for saving and a

fromXML(...) for loading. A few classes that are part of Rubato Composer ’s frame-

work simplify this process, such as for instance XMLWriter and XMLReader, which

213

automatically create and parse XML tags.

We expect BigBang to be able to be saved and loaded in exactly the same way as

it can be duplicated, and we thus encounter similar problems. In the current version,

only the operation graph and thus only operations that are not based on selections

of BigBangObjects can be saved. BigBang ’s methods look as follows:

public void toXML(XMLWriter writer) {

this.model.toXML(writer);

}

public Rubette fromXML(XMLReader reader, Element element) {

BigBangModel loadedModel = BigBangModel.fromXML(reader, element);

return new BigBangRubette(loadedModel);

}

Again, the only saved instance is BigBang ’s model, which offers corresponding XML

methods. The model’s toXML(...) methods is simply

public void toXML(XMLWriter writer) {

writer.writeFormRef(this.denotators.getForm());

this.operationGraph.toXML(writer);

}

analogous to the duplicate() method, saving only the form and the operation graph.

Along with using the standard Rubato Composer XML tags, such as for instance for

the form, many new XML tags had to be defined in order to save all of the operation

graph’s aspects. For example, the main graph tag OperationGraph has one integer

attribute numberOfStates, and contains a number of Operation tags, each of them

referring to an operationName and a head and tail state, among other things.

The model’s fromXML(...) method works accordingly:

214

public static BigBangModel fromXML(XMLReader reader, Element element) {

BigBangModel loadedModel = new BigBangModel();

try {

Form form = reader.parseAndResolveForm(XMLReader

.getChild(element, FORM));

loadedModel.setForm(form);

loadedModel.setGraph(BigBangOperationGraph

.fromXML(loadedModel, reader, element));

loadedModel.updateComposition();

} catch (Exception e) {

e.printStackTrace();

}

return loadedModel;

}

Again, the updateComposition() method is called after the form and the graph are

loaded, in order to create denotators and BigBangObjects.

9.5.3 Testing BigBang

When developing a software component as complex as the BigBang rubette, it is cru-

cial to constantly test as many as possible of the ways it can be used in. Even

though the ultimate use of the BigBang rubette is gestural interaction through

its visual interface, which is difficult to be tested non-manually, much of its ba-

sic functionality could be verified systematically without Rubato Composer having

to be started, and without tedious and repetitive user interaction. For this, the

code contains JUnit test classes with extensive TestCases, situated in the package

org.rubato.rubettes.bigbang.test. Especially the generality of Rubato Composer

and BigBang, with the possibility to create an infinite number of mathematical struc-

tural types, is challenging in the context of testing. Thus, most of the test classes

work with a number of exemplary forms, each of them with different characteristics.

The following list compiles all current test classes:

215

BigBangOperationGraphTest.java

UndoRedoTest.java

ArbitraryDenotatorMapperTest.java

BigBangDenotatorManagerTest.java

DenotatorPathTest.java

ObjectGeneratorTest.java

PowerDenotatorTest.java

BigBangObjectsTest.java

DenotatorValueExtractorTest.java

FormValueFinderTest.java

DisplayObjectsTest.java

JSynPlayerTest.java

ViewParameterTest.java

TestObjects.java

The above tests are divided in a few groups for clarity. The first group tests the op-

eration graph and the undo/redo part of the model, the second group the classes that

deal with denotators, and the third the model classes related to the BigBangObjects.

The fourth group deals with what is testable in the view and player classes. Finally,

the last class, TestObjects.java, contains many standard denotators and procedures

available to all test classes. The next code excerpt shows a sample test taken from

UndoRedoTest.java:

public void testUndoRedoParallelTransformation() {

//add score

this.model.setOrAddComposition(this.objects.flatSoundScore);

this.checkGraphAndResult(2, 1, new double[][]{

{0,60,120,1,0},{1,63,116,1,0},{2,60,121,1,1}});

//translate

this.addOnsetPitchTranslation(-1, 2);

this.checkGraphAndResult(3, 2, new double[][]{

{-1,62,120,1,0},{0,65,116,1,0},{2,60,121,1,1}});

//parallel translate

216

this.model.selectOperation(this.model.getTransformationGraph()

.getLastAddedOperation());

this.addOnsetPitchTranslation(-1, 2);

this.checkGraphAndResult(3, 3, new double[][]{

{-2,64,120,1,0},{-1,67,116,1,0},{2,60,121,1,1}});

//add sequential translate

this.model.selectOperation(null);

this.addOnsetPitchTranslation(2, -1);

this.checkGraphAndResult(4, 4, new double[][]{

{0,63,120,1,0},{1,66,116,1,0},{2,60,121,1,1}});

//undo sequential translate

this.model.undo();

this.checkGraphAndResult(3, 3, new double[][]{

{-2,64,120,1,0},{-1,67,116,1,0},{2,60,121,1,1}});

//undo parallel translate

this.model.undo();

this.checkGraphAndResult(3, 2, new double[][]{

{-1,62,120,1,0},{0,65,116,1,0},{2,60,121,1,1}});

//undo parallel translate

this.model.redo();

this.checkGraphAndResult(3, 3, new double[][]{

{-2,64,120,1,0},{-1,67,116,1,0},{2,60,121,1,1}});

//redo sequential translate

this.model.redo();

this.checkGraphAndResult(4, 4, new double[][]{

{0,63,120,1,0},{1,66,116,1,0},{2,60,121,1,1}});

}

This test verifies the undo/redo model’s behavior upon the special case of paral-

lel and sequential transformations. It makes use of the TestObjects’ predefined

flatSoundScore (containing no satellites) and step by step adds operations and

transformations, then undoes, and finally redoes them. At each step of the procedure,

the code verifies the result using a simple private method:

private void checkGraphAndResult(int expectedStates,

217

int expectedOperations, double[][] expectedValues) {

TestCase.assertEquals(expectedStates,

this.model.getTransformationGraph().getVertexCount());

TestCase.assertEquals(expectedOperations,

this.model.getTransformationGraph().getEdgeCount());

Denotator expectedResult = this.objects.generator

.createFlatSoundScore(expectedValues);

TestCase.assertEquals(expectedResult, this.model.getComposition());

}

In a similar way, many exemplary situations and special cases among BigBang ’s

possibilies are tested, and at each step of the implementation they can be run, in

order to help the developer make sure that all of the previously implemented features

are still functional.

218

Chapter 10

Musical Examples

The new BigBang rubette offers many possibilities of creating music, due to the great

variety of forms that can be defined. I already presented some simple ideas of forms

in Section 6.5. In this section, I introduce some of innumerable slightly larger musical

examples created in the course of writing the code of BigBang and this thesis. These

examples illustrate a variety of composition techniques and types of musical results

possible with BigBang. All examples are available for listening on SoundCloud, and

some of the more performative ones can be found on YouTube, under the addresses

indicated below.

10.1 Some Example Compositions

This section explores some of the compositional possibilities of BigBang, i.e. preparing

music outside of musical time that can later be played back, recorded, or performed,

as discussed in Section 4.1. More spontaneous and real-time ways of creating music

with BigBang will be discussed in the next section.

219

10.1.1 Transforming an Existing Composition

Form Score

Graph 4 states, 3 sequential operations

Techniques inputing a composition, transforming, modifying

Output BigBang synth with sine wave oscillators, slightly post-processed

Link http://www.soundcloud.com/bigbangrubette/k003

Instead of creating denotators from scratch, there are many ways in which existing

composition can be used to create strikingly different musical results. This example

is part of a series of variations based on Sonatas by Domenico Scarlatti, all of them

using composition procedures that are as simple as possible. Here, I input Scarlatti’s

K003 into BigBang via a MidiFileIn rubette, thus in Score form, then I stretched and

compressed it in time and pitch, respectively (ScalingTransformation), and finally

transposed it down several octaves (TranslationTransformation). The resulting

graph therefore consists of three sequential operations (see Figure 10.1). Using the

option of modifying transformations, I found the range I envisioned, resulting in a

pulsating bass sound emerging from the beating based on the close frequencies after

the pitch compression. The clicking noise, resulting from a chosen short attack time

of the BigBang synthesizer, preserves the rhythmical qualities of the Scarlatti. The

visualization of the final result (Figure 10.1) was partially created due to aesthetic

decisions. However, it shows the composition on the Onset×Pitch plane, where the

close Pitch range is visible (the vertical middle of the blocks), around MIDI pitch 24,

which corresponds to C1 or approximately 32 Hz.

220

Figure 10.1: A transformation of Scarlatti’s Sonata K003 resulting in a pulsating
bass sound.

221

10.1.2 Gesturalizating and Looping with a Simple Graph

Form Score

Graph 2 states, 2 parallel operations

Techniques looping, gesturalizing

Output MIDI to Ableton Live, Guitar-Jazz preset

Link http://www.soundcloud.com/bigbangrubette/k002

Another piece part of the Scarlatti series, this example uses BigBang ’s gesturaliz-

ing function. Its graph consists of merely two states, between which we find two

parallel operations. Again, the original (K002) enters through a MidiFileIn ru-

bette, resulting in a InputCompositionOperation. Then, by selecting the opera-

tion and performing a counterclockwise rotation by 180 degrees, I added a parallel

RotationTransformation, which results in a minimal graph with two states and two

operations (Figure 10.2). When gesturalized, these two operations occur simultane-

ously (see Section 7.3.3), so that the composition simultaneously grows note by note,

and gradually rotates. During gesturalization, the composition is played back in loop

mode, where in this case, the loop grows longer and longer, and output through MIDI

directly to Ableton Live, where it is played back by a guitar sound. In order to find

a musical result, I experimented with operation durations and tempo, settling on a

gesturalization time of 200 seconds at a pace around two to three times as fast as the

tempo the sonata is often played at. The resulting piece has a strong improvisational

and gestural quality, where the motivic content is gradually developed and grows

larger and larger. A contrapuntal effect reminiscent of group improvisation emerges

due to the variety of pitch ranges produced by the counterclockwise rotation, which

are well captured by lower end of the guitar sound. In the end, the musical material

222

Figure 10.2: A growing and rotating Scarlatti K002 during gesturalization.

223

converges towards the retrograde inversion of the Scarlatti, modulating increasingly

slowly, and culminating in a congenial closure. Figure 10.2 shows the piece shortly

after midway through the gesturalization.

10.1.3 Drawing UPIC-Like Motives and Transforming

Form PanScore

Graph long sequential graph

Techniques drawing, shaping, copy-and-transforming

Output BigBang synth with sine wave oscillators, post-processed

Link http://www.soundcloud.com/bigbangrubette/upic

In comparison with Xenakis’s UPIC system, discussed in Section 4.3.1, BigBang

has several advantages, the two most important of which are that composers can

work with arbitrary musical object types, and that they can transform these objects.

This example makes use of the latter, while keeping a similar data type as was used

with Xenakis’s system, Score, however, an enhanced version that allows for stereo

panning, which I called PanScore. The example is based on a drawn structure

with ramifications similar to, for instance, parts of Xenakis’s Mycenae Alpha. Since

drawing can only occur in two dimensions at a time, I used shearing transformations

as well as the shaping operation to process the drawn structure in dimensions other

than Onset and Pitch, here mainly Pan. Then, I multiplied the initial motive and

partial motives by using various copy-and-transform operations (Section 7.2.2), a

simple and intuitive way of ensuring motivic unity in a piece. Figure 10.3 shows the

score on the UPIC-typical Onset× Pitch plane. Figure 10.4 shows the results of the

shaping and shearing on the Onset× Pan plane, with the same color distribution as

224

Figure 10.3: The Onset× Pitch plane of the UPIC -like composition.

225

Figure 10.4: The Onset× Pan plane of the UPIC -like composition.

226

in the Figure 10.3. Note that the images do not contain the original graph, which

was of linear nature and almost confusingly long, for the first result was saved (using

the Register and Source rubettes) and worked on in several sessions. However, the

original graph was of a linear nature. The result is a microtonal spectral composition

that reiterates initial motive in increasingly contracted and cut out versions, evolving

from a single voice to about 45. The result was post-processed in Ableton Live, with

some reverb, equalizing, and compression.

10.1.4 Drawing Time-Slices

Form PanScore

Graph just a drawing operation

Technique drawing, changing preset values

Output BigBang synthesizer with triangle waves, post-processed

Link http://www.soundcloud.com/bigbangrubette/slices

This example illustrates another technique of drawing in several dimensions. Instead

of switching to other planes and shaping and transforming drawn motives, as de-

scribed in the previous example, it is also possible to determine the values in the

dimensions absent from the x/y plane by entering standard values into the boxes to

the right of each denotator value row in the view parameters table (right hand side of

BigBang interface). In this case, I drew a PanScore on the Pan×Pitch plane, while

manually entering Onsets and Durations. This way, starting with Onset = 0 and

Duration = 2, I was able to draw overlapping slices of the same duration, by increas-

ing Onset step by step, and by drawing increasingly many PanNotes in approximate

concentric circles. For the second part of the piece, I drew single longer pitches, all of

227

Figure 10.5: The Pan× Pitch plane on which drawing took place.

Figure 10.6: The resulting slices seen on the Onset× Pitch plane.

228

them at Onset = 12, first with Duration = 12, then decreasing the duration step by

step, which resulted in a gradual disappearing of the pitches of the final chord. The

piece is played back using triangle wave oscillators and mastered in Live. Figure 10.5

shows the drawing plane, whereas Figure 10.6 shows the resulting slices in a temporal

representation, the colors being kept the same for both representations, in order to

show the respective missing spacial dimension.

10.1.5 Converting Forms, Tricks for Gesturalizing

Form Texture

Graph several sequential and parallel operations

Technique reforming, identities, immediate operations, gesturalizing, selecting states

Output MIDI to Ableton Live, string ensemble

Link http://www.soundcloud.com/bigbangrubette/textures

This example is slightly more complex. It uses a network with three rubettes, one

of them specifically created during the work on this thesis. The Texturalize rubette

converts a Score into a Texture (introduced in Section 6.5.2) based on analytical

values. It gathers all pitches present in the Score and for each Pitch p, remembers

the number of occurrences op, the average duration dp, as well as the average loudness

lp. The output of the Texturalize rubette is then a Texture with a RepeatedNote for

each p, with a Rate based on op, a Duration based on dp. and a Loudness based on

lp. The Texture can thus be seen as a scrambled but regularized version of the input

piece, with the same average tone material, resembling the textures of the American

Minimalists.

229

Figure 10.7: The facts view shows the Texture at state 1, with rate and duration
represented by height and width, respectively. The process view shows the graph
generating the entire composition.

230

The current example makes use of a Texture based on a part of a live performance

of Chopin’s Ballade Op. 23 in g minor, at the indication agitato and then sempre più

mosso. The fact that it is a live performance leads to a great variety of durations and

dynamic values, as opposed to the notated score, which is particularly interesting

when converted into a Texture. Figure 10.7 shows the facts at the initial stage

(composition state 1).

The first part of the example, played by a string ensemble, is based on a gestu-

ralization of various transformations of the original texture, which results in slowly

changing rates, durations, loudnesses, and pitches of the texture’s notes. In addition

to the evolving parts, I also wanted to include parts where the current texture is

resting. Currently, the trick to do this is to insert an identity transformation, for

instance, a translation by 0, as in the example, and assign the transformation a ges-

turalization duration. Another trick is used in the beginning of the piece, where I did

not want the texture to gradually build up when gesturalized. For this, I assigned

the InputCompositionOperation a duration of 0.

The entire trajectory of the first part reaches three stable states, one at the original

texture, one at a lower, quieter, and more legato retrograde inversion of the original,

and one at a variation that is louder, faster, staccato, and that consists of an extended

pitch space. These variations of the original texture come about using parallel trans-

formations, which are equally gesturalized, with the effect of two gradual textural

changes between the three static parts. The first transition consists of a translation

down in loudness, a rotation by 180 degrees on the loudness/pitch plane, and a scal-

ing in duration in order to make the notes longer. The second transition consists of

a translation up in loudness, a scaling and a translation on the rate/duration plane,

and a scaling on the loudness/pitch plane in order to expand both dynamic range

and pitch range. At the end of the first part, the piece jumps back to the original

231

texture, which was done manually by selecting composition state 1.

The second part of the piece, realized by pizzicato strings, makes use of a technique

that rather fits into the part on improvisation and performance with BigBang. Using

the same graph, I recorded the strings playing while I jumped from composition state

to composition state, using the number keys of the computer keyboards. This way,

the strings freely jump back and forth between the three textural states and remain

static for various amounts of time.

10.1.6 Gesturalizing a Spectrum

Form Spectrum

Graph many sequential and parallel transformations

Technique drawing, selecting and transforming groups of objects

Output BigBang synthesizer with sine waves, post-processed with ring modulation

Links http://www.soundcloud.com/bigbangrubette/spectrum4

http://youtu.be/JlIpjOlKYUc

Gesturalization was already illustrated in the examples in both Sections 10.1.2 and

10.1.5. However, the two forms used there, Score and Texture, define denotators with

a distinct temporal existence, through the Simple forms Onset, Duration, and Rate.

As described in Section 6.4, if none of these forms are present, the musical objects

sound constantly when played back. This is especially interesting when they are ges-

turalized, which results in microtonal glissandi. In this example, I used the Spectrum

form to create a slowly evolving spectral texture. The gestural result starts out by

gradually adding Partials, in the order I defined them. After that, the Partials are

transformed either sequentially or in parallel, in pairs or as a whole, resulting from

232

Figure 10.8: The Spectrum during gesturalization. For a video, see the link above.

233

differently timed transformations based on various selections of Partials. Figure 10.8

shows a moment during one of the sequential scalings of a pair.

10.1.7 Using Wallpapers to Create Rhythmical Structures

Form Score

Graph a wallpaper with a few sequential transformations

Technique creating regular structures using wallpapers

Output MIDI to GarageBand

Links http://www.soundcloud.com/bigbangrubette/wallpapers

One of the main uses of ornamental structures made with the OrnaMagic module in

the Presto software, following Mazzola, was the creation of regular drum patterns.

Mazzola’s Synthesis composition1 makes wide uses of transformationally reiterating

drum patterns created this way. With BigBang, such structures can be created in a

much less tedious way, as this small example shows. Two short random drum motives

are created using the Melody rubette, input into BigBang, and iteratively transformed

with two different wallpapers, as shown in Figure 10.9. This way, we obtain slowly

altering drum patterns, the first one translated, sheared, and scaled, and the second

one translated and scaled.

10.2 Improvisation and Performance with BigBang

Even though many of the aspects of the compositional examples seen so far were

created in spontaneous ways, we now turn to a discussion of more momentary ways of

1Guerino Mazzola. Synthesis. Zürich: SToA music CD ST-71.1001, 1990.

234

(a)

(b)

Figure 10.9: The two wallpaper patterns in this example.

235

creating music with BigBang. Several aspects of the requirements for gestural control,

discussed in Section 4.3.3 are ideal for more performative and improvisatory ways of

making music. For instance, the fact that at all times, when working with BigBang,

there is immediate auditory and visual feedback inspires musicians to experiment

and spontaneously react to the outcome of their actions. Also, the support of various

physical interfaces enable users to handle BigBang like an instrument.

10.2.1 Improvising by Selecting States and Modifying Trans-

formations

Form Spectrum

Graph sequential and alternative transformations

Technique selecting states with number keys, modifying transformations with MIDI

controller knobs

Output BigBang synth with sine waves, postprocessed

Link http://www.soundcloud.com/bigbangrubette/selections

The first example simply consists in a drawn widely panned Spectrum with a prede-

fined transformation graph, containing alternative paths. As seen at the end of the

previous section, the number keys on the computer keyboard can be used to directly

select states in rapid succession. In this example I did this to add a rhythmic quality,

and I also used the knobs on a MIDI keyboard to spontaneously modify the transfor-

mations. The result is a changing spectral texture, each moment of which is based

on a similar sound structure. Figure 10.10 shows state 5 of the process, from where

the two alternative transformation fork off.

236

Figure 10.10: The Spectrum and process that form the basis of this brief improvisa-
tion.

237

10.2.2 Playing Sounds with a MIDI Keyboard and Modify-

ing Them

Form FMSet

Graph a simple succession of transformations

Technique MIDI keyboard triggering and modifying

Output BigBang synth with different wave forms into Ableton Live

Link http://www.soundcloud.com/bigbangrubette/designs

The harmonic material in the previous example is inherent in the constellation of

the Spectrum and its transformations. However, with BigBang it is also possible

to regard its current contents as sonic material with which harmonic structures can

be built by interaction with a MIDI keyboard, as described in Section 8.1.3. This

example illustrates how BigBang can be used for sound design, by defining a few

FMSet structures and modifying them. All sounds except the drum sounds were

created in BigBang and played back using a MIDI keyboard, where each key plays a

chromatic transposition of the current sound. Using the control change knobs of the

keyboard, I modified the sounds while playing, which resulted in the various sweeping

sounds in this example. An example of such an FM sound structure was shown in

Figure 6.15.

10.2.3 Playing a MIDI Grand Piano with Leap Motion

Form Spectrum

Graph just an AddObjectsOperation

238

Technique drawing with Leap Motion

Output MIDI to a Steinway Grand Piano with the PianoDisc system

Link http://youtu.be/ytGcKfhzF2Q

In this example I used the Leap Motion controller newly made available to Big-

Bang.2 Specifically, I use the capability to add objects using Leap Motion in drawing

mode, which quickly and dynamically adds and replaces the objects when the fingers

move, described in detail in Section 8.1.3. I decided to use a Spectrum form played

back with MIDI as quickly repeated notes instead of keeping keys pressed, which

allows for fast rhythms and quick dynamic changes. In order to simulate the space

of the piano keys – higher pitches to the right – and to have precise control over

dynamics, I simply assigned Pitch to the x-axis view parameter, and Loudness to

the y-axis, as shown in Figure 10.11. This results in a theremin-like dynamic setting,

where the greater the distance of the hands from the Leap Motion controller, the

louder the Partials of the Spectrum. The piece is fully improvised and starts out

with monophonic melodic gestures played with one finger of the right hand, moving to

a contrapuntal part with one finger of each hand. Later, I add more and more fingers

to each hand, sometimes playing in parallel, sometimes independently, culminating

in a part with increasingly energetic and fast gestures, at an increasing distance from

the Leap Motion, culminating in a loud and choppy part of thrown gestures.

10.2.4 Playing a MIDI Grand Piano with the Ableton Push

Form Spectrum

Graph four sequential transformations

2Tormoen, Thalmann, and Mazzola, “The Composing Hand: Musical Creation with Leap Motion
and the BigBang Rubette”.

239

Figure 10.11: Two piano hands drawn with Leap Motion on the Pitch × Loudness
plane.

240

Technique aftertouch dynamics, manual gesturalizing using the Ableton Push

Output MIDI to a Steinway Grand Piano with the PianoDisc system

Link http://youtu.be/n2Pi281XZP4

As opposed to the previous example, the simple setup of which enabled maximal

freedom of determining the structure of the piece and its tonal material spontaneously,

this example shows how it is also possible to improvise with some deliberately pre-

pared material. The piece uses the same form, Spectrum, with the same rate of

MIDI note repetition, but it also includes a simple graph that predefines intervallic

and transformative gestural material. The transformed entity is a four-note motive

of purely harmonic nature, due to the Spectrum’s atemporal quality. Figure 10.12

shows the initial motive and the graph. First, the motive is rotated by about 180

degrees, then scaled, mainly in pitch (about 4.5 times larger), then rotated coun-

terclockwise by slightly less than 90 degrees, and finally scaled to an intervallic and

dynamic unison.

After defining the simple graph, I decided to perform the piece using the dy-

namic capabilities of the Ableton Push controller. The Push offers pads sending note

on/off messages, which I mapped to played back versions of the four-note motive,

in a similar way the sounds were triggered by the MIDI keyboard in the example

in Section 10.2.2. More importantly, the Push’s pads send out highly precise mono-

phonic aftertouch control changes, which I used to control the dynamics of the played

back motives. Furthermore, I mapped the Push’s large touch strip to the BigBang ’s

manual gesturalizing slider, which allowed me to freely move back and forth through

the various transformed versions of the motive, both continuously by sliding, and

discretely by tapping the strip, which jumps to the corresponding position of the ges-

turalization (this way users can not only select the composition states represented by

241

Figure 10.12: The initial motive and the simple sequential graph.

242

the nodes of the graph, but any other intermediary state!). In the beginning of the im-

provisation, I gradually add more pitches by gesturalizing the AddObjectsOperation,

then I spontaneously move through different states of the motive’s transformational

path, reacting to the temporary constellations by playing them in different ways on

the pads. In the end, the motive disappears in a unison produced by the ultimate

scaling.

10.2.5 Improvising with 12-Tone Rows

Form Score

Graph a sequential transformation graph with a few identities

Technique gesturalizing and looping, aftertouch dynamics with the Ableton Push

Output MIDI to a Steinway with PianoDisc

Link http://youtu.be/n1RQimytD2A

This last example uses a similar setup as the previous one, playing the MIDI Grand

with the Push. However, it is even more deliberately prepared, using automatic ges-

turalization, and links to the second musical example presented here (Section 10.1.2),

in its use of the Score form in combination with looping while the graph is being ges-

turalized. Here, the base material is a simple twelve-tone row, generated by another

rubette I recently created, the NTone rubette, which generates rows of N equidistant

tones, microtonal if necessary, within a specific interval of I semitones (here, N = 12

and I = 12). The twelve-tone row is then transformed in simple ways (Figure 10.13

shows the original row and the graph). It is first compressed (scaled) in Onset, which

results in a faster version, then expanded in Onset, leading to a staccato version.

At this point, I inserted an identity scaling in order to achieve a static moment in

243

Figure 10.13: The sequential graph with the initial state selected, showing the original
twelve-tone row.

244

gesturalization, as suggested in Section 10.1.6. After that, the row gradually assumes

its retrograde inversion form by being rotated by 180 degrees, again stays static, is

inverted by a reflection, again stays static, and finally disappears in a single pitch

(scaling to 0 in both onset and pitch). In the performed version, again each pad

of the Push triggers a transposed version of the twelve-tone row, again dynamically

modulated by aftertouch. In this case, I could fully focus on playing the Push, since

gesturalization was predetermined and happened automatically.

245

246

Bibliography

Adorno, Theodor W. Zu einer Theorie der musikalischen Reproduktion. Frankfurt

am Main: Suhrkamp, 2001.

Alpaydin, Ruhan and Guerino Mazzola. “A Harmonic Analysis Network”. In:

(forthcoming).

Alperson, Philip. “On musical improvisation”. In: Journal of Aesthetics and Art

Criticism 43.1 (1984), pp. 17–29.

Ben-Tal, Oded. “Characterising musical gestures”. In: Musicae Scientiae 16.3

(2012), pp. 247–61.

Bevilacqua, Frédéric and Remy Muller. “A gesture follower for performing arts”. In:

Proceedings of the International Gesture Workshop. 2005.

Boulez, Pierre. Jalons. Paris: Bourgeois, 1989.

— “Sonate, que me veux-tu?” In: Perspectives of New Music (1963), pp. 32–44.

Brown, Matthew and Douglas J. Dempster. “The Scientific Image of Music

Theory”. In: Journal of Music Theory 33.1 (1989), pp. 65–106.

Burk, Phil. “JSyn – A Real-time Synthesis API for Java”. In: Proceedings of the

International Computer Music Conference. San Francisco: International

Computer Music Association, 1998.

Chadabe, Joel. “Interactive Composing: An Overview”. In: Computer Music

Journal 8.1 (1984), pp. 22–7.

247

Châtelet, Gilles. Figuring space: philosophy, mathematics, and physics. Kluwer,

2000.

Cherlin, Michael. “On Adapting Theoretical Models from the Work of David

Lewin”. In: Indiana Theory Review 14 (1993), pp. 19–43.

Chowning, John. “The Synthesis of Complex Audio Spectra by Means of Frequency

Modulation”. In: Journal of the Audio Engineering Society 21 (1973).

Clynes, Manfred. “Microstructural Musical Linguistics: composer’s pulses are liked

best by the best musicians”. In: COGNITION, International Journal of

Cognitive Science 55 (1995), pp. 269–310.

Collins, David. “A synthesis process model of creative thinking in music

composition”. In: Psychology of Music 33.2 (2005), pp. 193–216.

Cope, David. Computer Models of Musical Creativity. Cambridge, MA: MIT Press,

2005.

Coutaz, Joëlle. “PAC, an implementation model for dialog design”. In: Proceedings

of INTERACT. 1987, pp. 431–6.

Cśıkszentmihályi, Mihály. Flow: The Psychology of Optimal Experience. New York:

Harper and Row, 1990.

Davies, David. Art as Performance. Malden, MA: Blackwell, 2004.

Davies, Stephen. Musical works and performances: A philosophical exploration.

Oxford University Press, 2001.

DeBellis, Mark. Music and Conceptualization. Cambridge University Press, 1995.

Forte, Allen. The Structure of Atonal Music. New Haven and London: Yale

University Press, 1973.

Gabrielsson, Alf and Erik Lindström. “Emotional expression in synthesizer and

sentograph performance”. In: Psychomusicology: Music, Mind & Brain 14.1

(1995), pp. 94–116.

248

Geirland, John. “Go With The Flow”. In: Wired magazine 4.09 (Sept. 1996).

Gentilucci, Maurizio and Michael C Corballis. “From manual gesture to speech: A

gradual transition”. In: Neuroscience & Biobehavioral Reviews 30.7 (2006),

pp. 949–60.

Goehr, Lydia et al. “Philosophy of music”. In: Grove Music Online. Oxford Music

Online. Oxford University Press, 2014.

Goeller, Stefan. “Object Oriented Rendering of Complex Abstract Data”. Ph.D.

Thesis. Universität Zürich, 2004.

Goldin-Meadows, Susan. Hearing Gesture: How Our Hands Help Us Think. Harvard

University Press, 2003.

Gould, Carol S and Kenneth Keaton. “The essential role of improvisation in musical

performance”. In: Journal of Aesthetics and Art Criticism 58.2 (2000),

pp. 143–8.

Graeser, Wolfgang. “Bachs Kunst der Fuge”. In: Bach-Jahrbuch (1924), p1ff.

Hanson, Howard. Harmonic Materials of Modern Music: Resources of the Tempered

Scale. New York: Appleton-Century-Crofts, 1960.

Hatten, Robert. “A theory of musical gestures and its application to Beethoven and

Schubert”. In: Music and Gesture. Ed. by A. Gritten and E. King. Aldershot:

Ashgate, 2006.

— Interpreting Musical Gestures, Topics, and Tropes. Indiana University Press,

2004.

Hook, Julian. “David Lewin and the Complexity of the Beautiful”. In: Intégral 27

(2007), pp. 55–90.

— “Uniform Triadic Transformations”. In: Journal of Music Theory 46.1/2 (2002),

pp. 57–126.

249

Hunt, Andy and Ross Kirk. “Mapping Strategies for Musical Performance”. In:

Trends in Gestural Control of Music. Ed. by M.M. Wanderley and M. Battier.

Paris: Ircam - Centre Pompidou, 2000.

Hunt, Andy and Marcelo M. Wanderley. “Mapping performer parameters to

synthesis engines”. In: Organised Sound 7.2 (2002), pp. 97–108.

Kania, Andrew. “The Philosophy of Music”. In: The Stanford Encyclopedia of

Philosophy. Ed. by Edward N. Zalta. Spring 2014 Edition. 2014.

Klein, Michael Leslie. Intertextuality in Western art music. Indiana University

Press, 2005.

Klumpenhouwer, Henry. “Essay: In Order to Stay Asleep as Observers: The Nature

and Origins of Anti-Cartesianism in Lewin’s Generalized Musical Intervals and

Transformations”. In: Music Theory Spectrum 28:2 (2006), pp. 277–89.

Krasner, Glenn E. and Stephen T. Pope. “A Cookbook for Using the

Model-View-Controller User Interface Paradigm in Smalltalk-80”. In: Journal of

Object-Oriented Programming 1.3 (1988), pp. 26–49.

Laufs, Uwe, Christopher Ruff, and Anette Weisbecker. “Mt4j: an open source

platform for multi-touch software development”. In: VIMation Journal (2010).

Leman, Marc. Embodied Music Cognition and Mediation Technology. Cambridge:

MIT Press, 2007.

— “Music, Gesture, and the Formation of Embodied Meaning”. In: Musical

gestures : sound, movement, and meaning. Ed. by Rolf Inge Godøy and

Marc Leman. New York: Routledge, 2010.

Levinson, Jerrold. Music in the Moment. Cornell University Press, 1997.

Levitin, Daniel J., Stephen McAdams, and Robert L. Adams. “Control parameters

for musical instruments: a foundation for new mappings of gesture to sound”. In:

Organised Sound 7.2 (2002), pp. 171–89.

250

Lewin, David. “A Formal Theory of Generalized Tonal Functions”. In: Journal of

Music Theory 26:1 (1982), pp. 23–60.

— “Forte’s Interval Vector, My Interval Function, and Regener’s Common-Note

Function”. In: Journal of Music Theory 21:2 (1977), pp. 194–237.

— Generalized Musical Intervals and Transformations. New York, NY: Oxford

University Press, 1987/2007.

— “Klumpenhouwer networks and some isographies that involve them”. In: Music

Theory Spectrum 12.1 (1990), pp. 83–120.

— “Music Theory, Phenomenology, and Modes of Perception”. In: Music

Perception 3 (1986), pp. 327–92.

— Musical Form and Transformation: Four Analytic Essays. New Haven: Yale

University Press, 1993.

Lohner, H. and I. Xenakis. “Interview with Iannis Xenakis”. In: Computer Music

Journal 10.4 (1986), pp. 50–5.

Marino, G., M.-H. Serra, and J.-M. Raczinski. “The UPIC System: Origins and

Innovations”. In: Perspectives of New Music 31.1 (1993), pp. 258–69.

Mazzola, Guerino. Geometrie der Töne: Elemente der Mathematischen

Musiktheorie. Basel: Birkhäuser, 1990.

— Gruppen und Kategorien in der Musik: Entwurf einer mathematischen

Musiktheorie. Berlin: Heldermann Verlag, 1985.

— La vérité du beau dans la musique. Paris: Delatour/IRCAM, 2007.

— Musical Performance: A Comprehensive Approach: Theory, Analytical Tools,

and Case Studies. Berlin Heidelberg: Springer, 2011.

— Synthesis. Zürich: SToA music CD ST-71.1001, 1990.

— The Topos of Music. Geometric Logic of Concept, Theory, and Performance.

Basel: Birkhäuser, 2002.

251

Mazzola, Guerino and Moreno Andreatta. “Formulas, Diagrams, and Gestures in

Music”. In: Journal of Mathematics and Music 1.1 (2007), pp. 21–32.

— “From a Categorical Point of View: K-nets as Limit Denotators”. In:

Perspectives of New Music 44.2 (2006).

Mazzola, Guerino and Paul Cherlin. Flow, Gesture and Spaces in Free Jazz.

Towards a Theory of Collaboration. Berlin/Heidelberg: Springer, 2009.

Mazzola, Guerino, Joomi Park, and Florian Thalmann. Musical Creativity –

Strategies and Tools in Composition and Improvisation. Heidelberg et al.:

Springer Series Computational Music Science, 2011.

Mazzola, Guerino and Florian Thalmann. “Musical Composition and Gestural

Diagrams”. In: Proceedings of the Third International Conference on

Mathematics and Computation in Music (MCM). Ed. by C. Agon et al.

Heidelberg: Springer, 2011.

Mazzola, Guerino et al. “Functors for Music: The Rubato Composer System”. In:

Digital Art Weeks Proceedings. Zürich: ETH, 2006.

Merleau-Ponty, Maurice. Phénoménologie de la perception. Gallimard, 1945.

Milmeister, Gérard. The Rubato Composer Music Software: Component-Based

Implementation of a Functorial Concept Architecture. Berlin/Heidelberg:

Springer, 2009.

Miranda, Eduardo Reck and Marcelo M Wanderley. New digital musical

instruments: control and interaction beyond the keyboard. Vol. 21. Computer

music and digital audio series. Middleton: A-R Editions, 2006.

Molino, Jean. “Musical Fact and the Semiology of Music”. In: Music Analysis 9.2

(1990), pp. 105–56.

Montiel Hernandez, Mariana. “El Denotador: Su Estructura, construcción y Papel

en la Teoŕıa Matemática de la Musica”. MA thesis. Mexico City: UNAM, 1999.

252

Morris, Robert D. Composition with pitch-classes: a theory of compositional design.

New Haven: Yale University Press, 1987.

Mulder, Axel G. E. “Towards a choice of gestural constraints for instrumental

performers”. In: Trends in Gestural Control of Music. Ed. by M. M. Wanderley

and M. Battier. Ircam - Centre Pompidou, 2000.

Nattiez, Jean-Jacques. Musicologie générale et sémiologue. Paris: Christian

Bourgois, 1987.

Nienhuys, Han-Wen and Jan Nieuwenhuizen. “LilyPond, a system for automated

music engraving”. In: Proceedings of the XIV Colloquium on Musical

Informatics. Firenze: CIM, 2003.

O’Madadhain, Joshua et al. The JUNG (Java Universal Network/Graph)

Framework. url: http://jung.sourceforge.net/index.html.

Perle, George. “Pitch-class set analysis: An evaluation”. In: Journal of Musicology

(1990), pp. 151–72.

Puckette, Miller. “Pure Data: another integrated computer music environment”. In:

Proceedings of the International Computer Music Conference. 1996, pp. 37–41.

Puckette, Miller and David Zicarelli. “MAX - An interactive graphic programming

environment”. In: Opcode Systems, Menlo Park, CA (1990).

Rahn, John. “Cool tools: Polysemic and non-commutative Nets, subchain

decompositions and cross-projecting pre-orders, object-graphs, chain-hom-sets

and chain-label-hom-sets, forgetful functors, free categories of a Net, and

ghosts”. In: Journal of Mathematics and Music 1.1 (2007), pp. 7–22.

Rings, Steven. “Tonality and Transformation”. Ph.D. Thesis. Yale University, 2006.

Roeder, John. “Constructing Transformational Signification: Gesture and Agency in

Bartok’s Scherzo, Op. 14, No. 2, measures 1-32”. In: Music Theory Online 15:1

(2009).

253

Satyendra, Ramon. “An Informal Introduction to Some Formal Concepts from

Lewin’s Transformational Theory”. In: Journal of Music Theory 48 (2004),

pp. 99–141.

Sawyer, R. Keith. Group Creativity: Music, Theater, Collaboration. Mahwah, NJ:

Lawrence Erlbaum Associates, Publishers, 2003.

Scruton, Roger. The Aesthetics of Music. Oxford: Oxford University Press, 1997.

Seibt, Johanna. “Process Philosophy”. In: The Stanford Encyclopedia of Philosophy.

Ed. by Edward N. Zalta. Fall 2013. 2013.

Selfridge-Field, Eleanor. Beyond MIDI: the handbook of musical codes. Cambridge,

MA: MIT Press, 1997.

Shepard, Roger N and Lynn A Cooper. “Mental Images and Their

Transformations”. In: MIT Press. 1986.

Taruskin, Richard. “Review of Forte, The Harmonic Structure of the Rite of

Spring”. In: Current Musicology 28 (1979), p. 119.

Thalmann, Florian. “Musical composition with Grid Diagrams of Transformations”.

Master’s Thesis. University of Bern, 2007.

Thalmann, Florian and Guerino Mazzola. “Affine Musical Transformations Using

Multi-touch Gestures”. In: Ninad 24 (2010), pp. 58–69.

— “Gestural Shaping and Transformation in a Universal Space of Structure and

Sound”. In: Proceedings of the International Computer Music Conference. New

York City: International Computer Music Association, 2010.

— “Poietical Music Scores: Facts, Processes, and Gestures”. In: Proceedings of the

Second International Symposium on Music and Sonic Art. Baden-Baden: MuSA,

2011.

254

— “The BigBang Rubette: Gestural Music Composition with Rubato Composer”.

In: Proceedings of the International Computer Music Conference. Belfast:

International Computer Music Association, 2008.

Thalmann, Florian and Guerino Mazzola. “Using the Creative Process for Sound

Design based on Generic Sound Forms”. In: MUME 2013 proceedings. Boston:

AAAI Press, 2013.

— “Visualization and Transformation in a General Musical and Music-Theoretical

Spaces”. In: Proceedings of the Music Encoding Conference 2013. Mainz: MEI,

2013.

Tormoen, Daniel, Florian Thalmann, and Guerino Mazzola. “The Composing Hand:

Musical Creation with Leap Motion and the BigBang Rubette”. In: Proceedings

of 14th International Conference on New Interfaces for Musical Expression

(NIME). London, 2014.

Tymoczko, Dmitri. A Geometry of Music. New York: Oxford University Press, 2011.

Wanderley, Marcelo M. “Gestural Control of Music”. In: International Workshop

Human Supervision and Control in Engineering and Music. 2001, pp. 632–644.

Wessel, David and Matthew Wright. “Problems and Prospects for Intimate Musical

Control of Computers”. In: Computer Music Journal 26.3 (2002), pp. 11–22.

Wilkie, Katie, Simon Holland, and Paul Mulholland. “What Can the Language of

Musicians Tell Us about Music Interaction Design?” In: Computer Music

Journal 34.4 (2010), pp. 34–49.

Wittlich, Gary. “Sets and Ordering Procedures in Twentieth-Century Music”. In:

Aspects of Twentieth-Century Music. Ed. by Gary Wittlich. Englewood Cliffs,

New Jersey: Prentice-Hall, 1975.

Wu, Dan et al. “Music composition from the brain signal: representing the mental

state by music”. In: Computational intelligence and neuroscience (2010).

255

Xenakis, Iannis. Musiques Formelles. Paris: Editions Richard-Masse, 1963.

Young, James O. and Carl Matheson. “The metaphysics of jazz”. In: Journal of

Aesthetics and Art Criticism 58.2 (2000), pp. 125–33.

Zamborlin, Bruno et al. “Fluid Gesture Interaction Design: Applications of

Continuous Recognition for the Design of Modern Gestural Interfaces”. In: ACM

Transactions on Interactive Intelligent Systems 3.4 (2014).

Zbikowski, Lawrence M. Conceptualizing music: Cognitive structure, theory, and

analysis. Oxford University Press, 2002.

Zuckerkandl, Victor. Sound and Symbol. Music and the External World. Ed. by

Translated by Willard R. Trask. Routledge, 1956.

256

