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Abstract 

We evaluated the viability of canine adipose derived stromal cells (ASC) in the presence 

of osteoarthritic joint fluid, determining that exposure to osteoarthritic joint fluid is more 

cytotoxic than exposure to normal synovial fluid.  We demonstrated that diluting the joint 

fluid diminishes the severity of this effect.  We have demonstrated that a stromal vascular 

fraction (SVF) preparation of ASCs is phenotypically different from cultured ASCs, 

having a greater expression of proinflammatory mediator (IL-1β (interleukin-1 beta), 

COX-2 (cyclooxygenase-2)) and anti-inflammatory mediators (IL-1ra (interleukin-1 

receptor antagonist), TIMP-2 (tissue inhibitor metalloproteinase-2) mRNA levels than 

cultured cells, and greater variability in expression of cell surface markers (MHCI, 

MHCII, CD90, CD34, CD44 and CD45).  We evaluated multiple types of culture media, 

and found that there is some variation in the previous mentioned markers and mediators, 

but not a significant difference.  Consistent tri-lineage differentiation of ASCs appeared 

to differ amongst different media types.  We concluded that media should be selected 

according to a phenotypic profile that would be beneficial for the disease the ASC 

therapy is targeting.  We assessed in vivo safety and efficacy of canine autologous SVF 

and allogeneic ASC therapy in dogs diagnosed with osteoarthritis secondary to a medial 

coronoid process in the elbow, utilizing objective outcome measures, including ground 

reaction forces (GRF) and delayed gadolinium enhanced magnetic resonance imaging of 

cartilage (dGEMRIC).  We found no significant deleterious side effects with either 

therapy, and have produced support for the use of allogeneic ASC therapy. 
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Chapter 1 

Introduction 

Use of Stem Cell Therapy in Canine Veterinary Medicine 

Stem cell therapy has become a focus of great interest across all species for multiple 

therapies.  The use of stem cell therapy in dogs has the potential to aid veterinary 

medicine for improved patient health, quality of life, and longevity of life.  It also 

provides preliminary data for humans in many disease processes as a large animal model.  

There are many naturally occurring disease processes in the dog that reflect good disease 

models for evaluating the safety and efficacy of novel therapeutics.  Thus, investigation 

of stem cell therapy in canine naturally occurring and induced disease processes has 

become extremely prevalent in the last decade.  Regulations that exist in human medicine 

are not always applicable in veterinary medicine, often allowing the administration of 

therapeutics that are not properly investigated, stringently regulated, or efficacious.  

There has been financial incentive within the veterinary industry, often driven by owners 

themselves, to utilize stem cell therapy.  Unfortunately, it may be that this financial 

investment is unwarranted.  Stem cell therapy requires much more investigation to 

determine source characteristics, ideal administration, and cell behavior in normal and 

diseased biologic environments.  A Pubmed search at the time of this thesis writing 

produces 1578 articles under the search criteria “canine stem cells”, and yet most of these 

publications raise more questions than answers.   This thesis will be focusing on stem cell 

therapy and biology as it applies to clinically relevant problems.  

In general veterinary practice, stem cells are currently limited to one of two mesenchymal 
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stem cell sources.  Clinically available stem cells are derived from bone marrow 

aspiration or adipose tissue harvest. 1-8  Most preparations in use include a minimally 

processed product that is generated from the bone marrow or adipose stroma.  2,9,10  Bone 

marrow derived mesenchymal stem cells (BMSC) have been under investigation longer 

and have gained a strong presence in equine clinical veterinary medicine, while being 

minimally utilized in canine clinical practice. 11-14  Either source in dogs generally 

requires general anesthesia, whereas BMSCs can be obtained from a standing, sedated 

horse.  ASCs may be more difficult for the equine veterinarian to obtain under the same 

plane of sedation, and would be more likely to leave a visible scar, which may be less 

desirable and acceptable in the equestrian world.  Aside from convenience, behavior and 

disease process should be a consideration, but does not always receive the attention it 

should.  The effects, phenotype, differentiation capacity, and behavior of mesenchymal 

stem cells are not equivalent between sources.  2,3,6-8,11,15-17  Equine veterinarians are 

faced with a greater number of ligamentous and tendinous injuries than the small animal 

veterinarian, likely due to the activity and expectations of horses.  BMSCs have been 

investigated much more thoroughly in equine medicine, and appear to be efficacious in 

these injuries. 12-14  ASCs are generally accepted to have a greater anti-inflammatory 

capacity than BMSCs, and thus have a high clinical application in canine medicine. 16-18  

The primary clinical focus in canine veterinary medicine has been osteoarthritis, although 

practitioners certainly do not limit their imaginations or practices to this disease, in spite 

of a distinct lack of published data to support such practice. 9,10,19,20  The pathology of 

arthritis involves an ongoing inflammatory process, hence the appeal for an “anti-
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inflammatory” capable product. 21,22  Research investigations have investigated many 

other sources of stem cells, including induced pluripotent stem cells (iPS), umbilical cord 

derived stem cells, embryonic stem cells, as well as almost any other adult tissue.  23-30  

While these provide excellent means to investigate multiple disease processes, these cells 

are not readily available to the general practitioner.   

There are multiple publications in canine veterinary medicine assessing a variety of 

disease processes and their response to stem cells.  Much of what has been investigated 

either has a more academic application, or may be self-limiting because they include 

implants, devices or equipment not accessible to the practitioner.  For example, 

intervertebral disc disease shows great potential to benefit from stem cell therapy, either 

by targeting the spinal cord or the disc itself, but is not a disease conducive for direct 

administration of cells in general practice.  31-33  Many of these diseases prompt study and 

investment because of their application to human medicine, so are not necessarily 

designed to translate into the veterinary general practice.  In the next several years we 

will likely see a vast expansion of clinical therapy for a much greater variety of disease 

processes, but currently, osteoarthritis has some limited literature support, and remains an 

accessible therapeutic option for practitioners and owners alike.  9,10,19,20 

 

Review of Canine Osteoarthritis 

An estimated 1 in 5 dogs in the United States suffer from osteoarthritis affecting elbows, 

knees and hips. Osteoarthritis is classified as a non-inflammatory arthritis, due to the 

relatively low number of involved inflammatory cells compared to those arthritides 



 

 4 

classified as inflammatory.  While this provides some clarification between highly 

inflammatory, typically more severe arthritic conditions, and the more insidious 

osteoarthritic condition, it may falsely be presumed that inflammation is not an active 

component of osteoarthritis.  This is inaccurate, as there are many commonalities in the 

mediators of both classified arthritides  with many of the same cytokines, prostaglandins, 

leukotrienes, destructive enzymes and inflammatory cells.  21,22,34,35,35-37    

There is a much greater component of biomechanical instability within osteoarthritis than 

rheumatoid arthritis.  It is a complex interaction between biomechanically destructive 

forces, cartilage damage, and secondary inflammatory mediators that causes cartilage 

destruction and joint inflammation. The inciting agent for this disease process is typically 

traumatic, either abnormal forces on a normal joint, or normal forces on an abnormal 

joint, resulting in a much slower progression than inflammatory arthritides.  This elicits a 

cascade of events that leads to disruption of articular cartilage, the underlying 

subchondral bone and normal synovium physiology.  The precise mechanism by which 

this occurs is still not clearly defined.  22 

Once cartilage is destroyed or damaged, the disease is non-reversible.  Through the 

complex pathway that is triggered, the disease tends to progress over the life of the 

animal, resulting in clinical symptoms over many years that limit patient function and 

quality of life.  22   

Because we have yet to achieve cure of this disease process, there are many therapeutic 

options available, all of which have limitations and variable efficacy.  In some occasions, 

an underlying orthopedic disease process may be surgically corrected or addressed in an 
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effort to minimize osteoarthritis progression.  38-44  As the arthritis already present is non-

reversible, this still often results in patients needing additional intervention as their life 

progresses.   

A major focus of pharmaceutical management of osteoarthritis in dogs are non-steroidal 

anti-inflammatory drugs (NSAIDS).  There are multiple products on the market, available 

for prescription that have demonstrated efficacy in clinical outcome.  45-58  While highly 

efficacious, and typically very safe, these patients often require life-long therapy or may 

have concurrent disease processes, which may lead to deleterious side effects. 45-

47,50,54,56,59-62  There is much focus on the use of cyclooxygenase-2 (COX-2) selective 

NSAIDS, which target a major inflammatory cytokine in the disease process, while 

sparing other multi-functional cytokines that play roles in homeostasis, and contribute to 

deleterious side effects noted with NSAID use. 59,60,63  NSAIDS may not be a feasible 

option for all patients.   

Weight loss has been demonstrated to be an efficacious means of reducing clinical 

symptoms of osteoarthritis, and often is combined with physical therapy to maximize 

efficacy of medical management.  64-66  While proven efficacious, this can be challenging 

to owners, financially, emotionally and in regards to time commitment.  There is often a 

struggle with compliance utilizing this modality.   

Nutraceuticals have gained a lot of attention and are widely used as therapies for 

osteoarthritis.  The data to support them is variable, often involving poorly designed 

studies, or producing conflicting results.  The two nutraceuticals that have gained the 

most attention and have the widest use include glucosamine chondroitin and omega-3 
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fatty acids.  Glucosamine and chondroitin are both constituents of cartilage, and 

administration of supplementations are thought to potentially replace these factors that 

are lost during osteoarthritis degradation.  Results of clinical trials assessing them have 

been very conflicted in outcome.  67,68  It appears to have very minimal deleterious side 

effects, but can generate an added financial burden that may not provide benefit for the 

pet.  There is better evidence to support the use of omega-3 fatty acids, for the anti-

inflammatory effects against osteoarthritis, and minimal deleterious side effects are 

noted. There is also potential to reduce the need for NSAID therapy when supplemented 

with omega-3 fatty acid supplementation. 69-74 

As molecular technology and genetic therapies have advanced, there has been increasing 

interest in modalities targeting specific mediators associated with minimizing clinical 

symptoms of osteoarthritis.  Tissue inhibitor metalloproteinase 2 (TIMP-2) has been 

demonstrated in multiple studies to be an important factor for maintaining a healthy joint 

environment, and is often decreased in osteoarthritic joints.  Multiple metalloproteinases 

have been identified and correlated to destruction of the joint environment and are 

targeted by TIMP-2. 21,36,75-80  Interleukin 1 beta (IL-1β) has been identified as a potent 

proinflammatory mediator in osteoarthritis, and it’s antagonist, interleukin 1 receptor 

antagonist (IL-1ra) has shown great promise in alleviating much of the deleterious effects 

of IL-1β.  21,76,81-83  While these therapies show promise, they are not readily available for 

the practitioner, and remain possible future therapeutics.   

Due to the limited options and progressive nature of the disease process, owners, 

veterinarians and investigators remain keen to identify alternative methods of therapy, 
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which has likely led to the massive adoption of stem cell therapy for osteoarthritis.  

 

Use of Stem Cells in Osteoarthritis in Medicine 

Stem cells as a therapy for osteoarthritis have two theorized potential mechanisms of 

action.  Initial interest was in the differentiation capacity of stem cells, in hopes that the 

damaged cartilage could be replaced with new, healthy chondrocytes.  This is a logical 

pursuit, as mesenchymal cells are vital for healthy tissue homeostasis and cell 

replacement in the adult. 84  Mesenchymal stem cells have shown the capacity to engraft 

and differentiate within host tissue in multiple species and locations, but to date have 

poor demonstration of engraftment within joint cartilage without aid of an implant. 85-92 

There are a few reasons why direct implantation without structural support may not allow 

or support cartilage regeneration.  The osteoarthritic joint is an inflamed structure, with 

local cell and stromal destruction.  22  This may endanger cell viability and prevent 

engraftment.  The cartilage stroma has a relatively low vascular content, and thus cells 

may not have the physiologic or metabolic support to engraft and survive.  93,94  Finally, 

the joint is a mobile and a fluidic environment, which allows consistent motion across 

damaged surfaces and disruption of cells transplanted.  While cartilage resurfacing is a 

valuable and excellent pursuit, it appears to require bioengineering capabilities, and is 

problematic when large defects are present.  There is still much to be learned and studied 

in this application of stem cell therapy.   

The current modalities of therapy utilized in practice are taking advantage of the 

immunomodulatory capacity and trophic effects that mesenchymal stromal cells (MSC) 
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provide.  A portion of these MSC preparations contain a small stem cell population. 16-

18,95,96 ASCs in particular have a remarkable capacity to immunomodulate their 

environment, making them very attractive as a therapy for active inflammatory 

conditions.  9-11,16-20,95,97-99 MSCs have been investigated for therapy of common arthrides 

in many other species, and osteoarthritis has received particular attention in canines and 

equines. 9,10,19,20,100-10511,106  In addition to reducing inflammation and inflammatory 

responses, MSCs have the capacity to recruit local host cells inducing a response that 

may not otherwise be present. 95,97,101,104,107  While these mechanisms of action are not 

specifically targeting cartilage regeneration, reduction of the inflammatory response is 

likely to be chondroprotective against these progressive disease processes.  

The capacity of MSCs to be immunomodulatory is significant enough that allogeneic 

MSCs are better tolerated than other grafts, being accepted and incorporated into the local 

environment.  Allogeneic MSCs have been widely investigated for other disease 

processes, but neglected in osteoarthritis in canine medicine. 32,108,109 

The option for osteoarthritis therapy has become widely available to the general 

practitioner, and owner motivation has driven wide use in the clinic with a poor 

understanding of the best means of therapy.  Most practitioners administer the cells intra-

articularly, at an arbitrary dose, timing and frequency. 9,10,19,20  Comparison of dosage 

schemes, site of administration, and effect of redosage has been ignored in investigative 

trials.  Regulation and characterization of product is very poor in veterinary medicine, 

with widely variable products available on the market, making direct extrapolation from 

literature inappropriate if protocol is not similar.  Until preparation of this manuscript, 
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objective data validating their use has been lacking to the best of the author’s knowledge. 

9,10,19 A very recent publication provides the first look at force platform gait analysis in 

dogs treated for osteoarthritis with ASCs, and shows further support for their efficacy. 20  

These data should be interpreted cautiously, however, as there was a small number of 

dogs enrolled, and the therapeutic agent was significantly different than what has been 

reported previously, adding platelet rich plasma to the therapy.  9,10,19,20 

A better understanding of what product is in use, the ideal application for that product, 

and investigation into appropriate administration should be pursued before uncontrolled 

use and poor understanding damages availability and reputation of this therapeutic 

modality.   

The purpose of this work is to investigate a defined canine ASC product, and assess the 

best clinical application of that product.  An in vitro assay evaluating the effect that 

osteoarthritic synovial fluid has on the viability of canine ASCs questions the current, 

most common protocol of direct intra-articular injection into the joint, and indicates 

trophic effects of ASCs may be more prominent than previously thought.  Evaluation of 

ASCs as a SVF product (as is currently used in practice) compared to ASCs that have 

undergone culture expansion as expected with allogeneic ASC therapy was undertaken.  

We specifically evaluated markers and mediators suspected to play a role in ASC 

mechanisms of action or in the therapy of OA.  We also evaluated multiple culture 

conditions to assess the variability of phenotype of cells under differing conditions.  

Using this information, a culture condition was selected to produce an allogeneic ASC 

preparation selecting for minimal proinflammatory mediator expression, and autologous 
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ASCs and allogeneic ASCs were compared in a clinical trial for treatment of a defined 

OA condition using objective outcome measures.   
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Chapter 2 

Canine adipose derived stem cell viability following exposure to synovial fluid from 

osteoarthritic joints. 

 

Introduction 

The treatment of canine osteoarthritis (OA) with adipose derived stromal cells (ASC) has 

become quite prevalent in general practice following publication of evidence of improved 

clinical symptoms following treatment. 9,10,19  This treatment consists of a fat sample that 

is processed to allow release and collection of all nucleated cells from the stroma, and is 

referred to as a stromal vascular fraction (SVF). The typical means of administration is an 

intra-articular injection of the SVF. This allows direct application to the area of disease. 

An alternative means of administration would be intravenous injection, however this 

method is less used, as studies have demonstrated that the majority of intravenously 

administered stem cells are filtered out by the lungs, liver and other peripheral organs. 110-

112   The safety and efficacy of each means of administration has not been compared in 

dogs. 

The osteoarthritic joint is an unfavorable environment for local cellular health and 

viability.  There are many mediators that promote inflammation, destroy cartilage, or 

induce apoptosis.  113-117  The effect of this environment on local cells has been 

investigated via in vivo and in vitro experiments, and found to be detrimental to the 

health and viability of synoviocytes and chondrocytes. 113,117-120  This raises questions 

regarding the viability of transplanted cells into such an environment.   



 

 12 

The objective of this study was to investigate the viability of canine ASCs when exposed 

to osteoarthritic synovial fluid, and determine if dilution of osteoarthritic synovial fluid 

altered cell viability.  We adopted a null hypothesis that exposure to synovial fluid from 

an osteoarthritic joint would not reduce canine ASC viability. 

 

Materials and Methods 

Owner consent was obtained and all procedures were performed in accordance with the 

University of Minnesota Institutional Care and Use Committee, protocol number 

1006A83372. 

 

Isolation of Adipose Derived Stromal Cells 

Falciform adipose tissue was harvested at the time of surgery from five healthy dogs 

admitted to the University of Minnesota College of Veterinary Medicine for abdominal 

surgery unrelated to the study. Dogs with neoplasia or septic medical conditions were 

excluded. Adipose tissue was processed according to previously reported protocols for 

isolation of the stromal vascular fraction. {Black,L.L. 2007; Black,L.L. 2008} The 

nucleated cell fraction was than placed into Keratinocyte N-acetylcysteine (KNAC) cell 

medium for ASC expansion consisting of modified MCDB153 medium (Keratinocyte-

SFM) (Gibco, Life Technologies, Grand Island, New York), supplemented with: 2mM N-

acetyl-L-cysteine (Sigma-Aldrich, St. Louis, MO), 0.2mM L-ascorbic acid 2-phophate 

(Sigma-Aldrich, St. Louis, MO), 0.09mM calcium and human recombinant epidermal 

growth factor (5ng/mL) (Gibco, Life Technologies, Grand Island, New York), bovine 
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pituitary extract (50ug/mL) (Gibco, Life Technologies, Grand Island, New York), insulin 

(5ug/mL) (Sigma-Aldrich, St. Louis, MO), hydrocortisone (74ng/mL) (Sigma-Aldrich, 

St. Louis, MO), 5% FBS (Hyclone, Thermo Fischer Scientific, Minneapolis, MN), and 

1% antibiotic (Mediatech Inc, Corning, NY) at 37C in a humidified 5% CO2 atmosphere. 

{Kang,J.W. 2008}  

 

Synovial Fluid Samples 

Synovial fluid samples were collected from dogs with pain and lameness secondary to 

OA and from normal dogs with no joint disease. The presence of OA was confirmed by 

owner history, orthopedic exam, radiographic exam, and when surgical intervention was 

indicated, visual identification of OA at the time of surgery. Normal synovial fluid was 

harvested from dogs that were euthanized for an unrelated research study.  These dogs 

had no history of lameness, a normal orthopedic exam, and a visually normal joint 

assessed following synovial fluid collection.  All synovial fluid samples were centrifuged 

at 400g at 4C for 6 minutes. The supernatant was aspirated from the pellet to eliminate 

any cellular contamination of the joint fluid and stored in a -80C freezer.  Volumes 

ranged from 0.25 ml to 0.5 ml from normal joints, and 1 ml to 3 ml from OA joints.  All 

samples underwent three freeze-thaw cycles to further eliminate intact cellular 

contaminates.  Synovial samples were pooled according to treatment group prior to 

dilution, to eliminate variability across the assay and provide enough fluid to test all cell 

lines in duplicate with each treatment. Due to the small sample sizes, molecular 

characterization was not feasible.  
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Cytotoxicity Assay 

The ASCs from passages 2-4 of each of the five donors were plated at 10,000 cells/well 

in a 96 well plate in duplicate for each condition.  

Once the cells were confluent (typically within 24-48 hours), each cell line was treated 

with each condition in duplicate: 100 uL of normal synovial fluid, 100 uL of a specified 

dilution of synovial fluid from OA joints, or 100 uL of medium containing no synovial 

fluid. Synovial fluid derived from OA joints were used as a no dilution treatment, and the 

following serial dilutions: 1:1 (1 part medium, 1 part synovial fluid), 1:2, 1:3, 1:4, 1:5, 

1:6, 1:7, 1:8, 1:9 or 1:10 dilution, utilizing KNAC growth medium as the diluent. Cells 

were placed in these conditions for 12 hours. The contents of each well was then 

aspirated and placed in a sterile centrifuge tube. The well was rinsed with phosphate 

buffered solution two times, and each rinse added to the aspirated well contents. Cells 

were then detached using Tryple-E (Invitrogen, Life Technologies, Grand Island, New 

York), which was inactivated by the addition of KNAC growth medium after 10-15 

minutes.  The contents of the well were aspirated and added to the previous well contents. 

The well was rinsed two more times with phosphate buffered saline, and each rinse added 

to previous well contents.  The accumulated well contents were centrifuged at 400g at 4C 

for 6 minutes. The supernatant was aspirated and cells were resuspended in 500uL of 

KNAC growth medium. 

Viability of cells were counted using the trypan blue (Invitrogen, Life Technologies, 

Grand Island, New York) exclusion method, with cells exposed to dye at a 1:1 dilution 
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for five minutes before counting. 121,122 A hemocytometer was used to count cells.  The 

individual counting each treatment was not aware of group assignment until after 

counting.  A percent viability is reported, and was calculated by dividing the number of 

viable cells (non-stained cells) by the total number of cells (stained and non-stained).  

 

Statistical Analysis 

Statistics were analyzed with the aid of StatPlus 2009 software.  Viability of treatment 

conditions were analyzed using Wilcoxin signed-rank test, with a p<0.05 considered 

statistically significant. Data was further analyzed using a linear regression analysis.  

 

Results 

Within two hours of exposure to treatment conditions, cells were noted to lose adherence 

to plastic when treated with osteoarthritic synovial fluid, while control wells maintained 

adherence.  (Figure 2.1)  Cells exposed to medium or normal synovial fluid had no 

significant difference in viability. Cells treated with any condition of osteoarthritic 

synovial fluid had significantly different viability than medium or normal synovial fluid. 

A significant difference was found amongst many of the dilutions of osteoarthritic 

synovial fluid after a 2-3-fold dilution. (Figure 2.2)  Linear regression analysis indicated 

that at a sixteen-fold dilution the viability of cells would be equivalent to the control 

population (r2=0.81607, y=0.0465x + 0.1767).  

 

Discussion 
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Our null hypothesis was that exposure to synovial fluid from an osteoarthritic joint would 

not reduce canine ASC viability. Our results indicate that this is a plausible theory. The 

cytotoxic contents of OA synovial fluid and their destructive effects on the joint 

environment make the findings of this paper intuitive.  Placing cells into this toxic 

environment seems counterproductive to our goals in therapy, thus diminishing this 

cytotoxic environment prior to administering cells may be preferable. 

While loss of adherence to the cell culture dish is not an objective measure of cell 

viability, it does reflect disruption in culture homeostasis.  This change was noted within 

a few hours after exposure to synovial fluid, which may be an indication that response to 

exposure to synovial fluid is rapid.  It would be of interest in a future study to assess the 

longevity of cell viability following exposure to synovial fluid, by evaluating viability at 

staggered time points. Limited synovial fluid sample availability prevented this 

assessment in this study.  

After twelve hours of exposure to normal synovial fluid, there was no significant 

difference in cell viability compared to cells that remained within culture medium.  This 

assessment occurred at a single time point after exposure, which does not give us the 

ability to predict the longevity of cells within normal synovial fluid.  Longer exposure 

may result in lower viability, particularly in an in vitro environment, where synoviocytes 

or local stroma is not present to provide nutrients and metabolites necessary for normal 

cell physiology.  Within the study time frame, a significant difference was noted between 

any sample treated with osteoarthritic synovial fluid and normal synovial fluid or medium 
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treated cells.  This suggests the contents of osteoarthritic synovial fluid contain 

components that contribute to cytotoxicity.  

One possible explanation for reduced cell viability in osteoarthritic synovial fluid would 

be cell-to-cell interactions between ASCs and cells contained within the osteoarthritic 

synovial fluid.  While this could occur with an intra-articular administration of an ASC 

treatment, the authors were interested in the cytotoxic effects of synovial fluid without 

cell-to-cell interactions.  In order to eliminate this possible scenario, all synovial fluid 

samples were centrifuged with supernatant removed from any pellet produced. To further 

ensure no viable cells could mount a cytotoxic effect on ASCs through a direct cell-to-

cell interaction, all synovial fluid samples went through multiple freeze thaw cycles. 123  

The presence of cells would be expected within a normal osteoarthritic joint environment, 

but their interaction with ASCs has not been characterized well in vitro. There is much 

evidence that ASCs have the capacity to immunomodulate their environment, so these 

cells may not create much of a threat to the ASC viability. 16-18,96,124  We predicted the 

cytokines and protein contents present in osteoarthritic synovial fluid would be cytotoxic 

to the ASCs and wanted to eliminate the possibility of host cells confounding results. 

There are multiple possible factors that may contribute to cytotoxicity of the ASCs. 

113,115,116,125-127 Determining which factors, or combination of factors was beyond the 

scope of this study.    

The length of time ASCs need to be present and viable at the site of injury has not been 

established, and is likely highly variable dependent on disease and therapeutic effect.  

Given the capacity for stem cells to provide trophic effects on their environment and local 
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cells, it is plausible that it is not necessary for them to survive more than a few hours to 

have a positive therapeutic effect. 97,128   

A statistically significant difference between the 1:10 dilution and the undiluted sample, 

as well as both controls were found.  (Figure 2.2)  This indicates that while dilution does 

improve viability, it would take more than a ten-fold dilution to return to an equivalent 

viability as a healthy joint environment.  The authors were curious at what dilutional 

factor this would be equivalent, to determine if it was practical for possible alteration of 

administration techniques.  Using linear regression analysis, it appears we can predict 

with confidence that a sixteen-fold dilution would be required.  To accomplish this in an 

in vivo environment, a reasonable approach would be to flush the affected joint with 

saline prior to administering the ASC treatment intra-articularly.  A study comparing 

osteoarthritic joints that receive ASCs with flushing prior to administration and without 

flushing would be prudent to determine the necessity and influence on outcome.   

This study is an in vitro study, which limits our ability to translate findings to an in vivo 

environment. While we have established that osteoarthritic synovial fluid is cytotoxic, we 

cannot recreate the stromal environment of a joint, which could play a role in providing 

cytoprotective support to transplanted cells.  The best method of evaluating the effect this 

could have on cells would be to do an in vivo cell tracking study that allows assessment 

of cell viability.  This remains extremely challenging at this stage, subject to many 

pitfalls.  An indirect method of assessing this effect could be to evaluate patient response 

to ASC administration intra-articularly versus intravenously versus peri-articularly.  This 
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may also address the question of whether it is of clinical significance that viability is 

reduced and short-lived.  

The results of this study indicate that osteoarthritic joint fluid has a cytotoxic effect on 

ASCs.  This suggests we should re-evaluate if the current method of administration is 

appropriate and if revision of current protocols could improve current therapeutic 

response.  Further investigations in vivo assessing the response to joint fluid dilution or 

intravenous administration should be undertaken. 
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Figure 2.1: Images of cell culture wells two hours after exposure to control (medium or 

normal synovial fluid) or osteoarthritic (OA) synovial fluid. Note the rounded up 

detached appearance of cells in the OA treated group, as apposed to the spindle shaped 

appearance of cells of medium or normal synovial fluid treated wells. Microscopic 

magnification of 10x.  
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Figure 2.2: Viability of cells after exposure to osteoarthritic synovial fluid as an 

undiluted sample (OA), or an osteoarthritic synovial fluid sample diluted from 1:1-1:10, 

or normal synovial fluid or medium alone. Values are expressed as the number of viable 

cells divided by the total number of cells in the sample, or percent of viable cells.  

Statistical significance is set as p<0.05. Conditions labeled with the same letter have no 

statistical difference, whereas those with different letters are statistically different.  
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Chapter 3 

The influence of culture medium type on cellular phenotype of canine adipose 

derived stromal cells. 

 

Introduction 

Mesenchymal stem cells have been identified and isolated from multiple adult tissues. 3,15 

They provide an ethically acceptable source of multipotent stem cells. 1,6  They have been 

investigated for the therapy of many disease processes in several species. Canine adipose 

derived stem cells (ASCs) provide a source of mesenchymal stem cells that are 

potentially beneficial for the therapy of osteoarthritis in veterinary medicine and are in 

used in clinical practice. 9,10,19,20 Currently, most veterinary therapy utilizes an 

autologous, stromal vascular fraction (SVF) generated from the patient in need of 

treatment. 9,10,19,20  Using allogeneic stem cells may provide advantages over autologous 

SVF, including more efficient, cost effective treatments without the need for a surgical 

procedure on the patient in need of therapy. Additionally, cultured stem cells can be 

exponentially expanded, verified that they maintain multipotency, and selected for 

desirable qualities prior to use.  Allogeneic stem cells have been successfully and safely 

used to treat other disease processes in dogs.  108,129-131  

The use of allogeneic stem cells as a therapy for osteoarthritis (OA) requires the selection 

of a medium that provides a consistent, desirable cellular phenotype. Supplements to 

culture medium can greatly influence cellular phenotype, and even differentiate stem 

cells towards a specific cell type. This raises questions about the role culture medium 
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may play in altering the behavior of cultured stem cells when compared to SVF cells. 

1,3,6,8,18,132 

In OA, many cytokines play a role in inflammation and pain. Thus, if treating OA with 

ASCs, the cellular phenotype related to expression of these cytokines is intuitively 

relevant. Anti-inflammatory mediators associated with a potential therapeutic effect for 

OA, such as tissue inhibitor of metalloproteinase-2 (TIMP-2) and interleukin 1 receptor 

antagonist (IL-1ra) would theoretically be beneficial, while minimal expression of 

proinflammatory mediators, cyclooxygenase 2 (COX-2) and interleukin 1 beta (IL-1β), 

would be preferred. 21,34,75,82,83,133  

Other phenotypic traits that might be important include a reduced capacity to generate a 

host response by minimal expression of major histocompatibility complex II (MHCII) 

and retention of major histocompatibility complex I (MCHI). 134  Cell surface markers 

identified to be associated with mesenchymal stem cells, such as CD44 and CD90, should 

be present while hematopoietic cell markers, CD34 and CD45, should be absent. 8,18  

Additional stem cell markers demonstrated in other stem cell types and species (CD105, 

CD117, CD133) would be of interest as well. 8,18Finally, a capacity to generate cartilage 

would be desirable for OA therapies. 

The objective of this work was to assess the variability of cellular phenotypes suspected 

to play a role in the therapy of OA after exposure to different culture medium conditions.  

Our null hypothesis was that changes in culture medium conditions would have no 

influence on cellular phenotype.  
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Materials & Methods:  

Isolation of Adipose Derived Stem Cells 

All procedures were performed in accordance with the University of Minnesota 

Institutional Care and Use Committee (IACUC # 1203A11421). Six, healthy, 1-year old 

female intact hound dogs were placed under general anesthesia and, using aseptic 

technique, approximately 50-gms of falciform fat was collected.  SVF was generated 

from each fat sample using 0.075% Collagenase Type I (Gibco, Life Technologies, 

Grand Island, New York) digestion as previously described. 9,10 Nucleated cells were 

counted using a hemocytometer and each sample was aliquoted with standardized 

nucleated cell numbers for phenotypic assessment of SVF and subculture within each cell 

culture medium condition. 

 

 

 

 

Cell Culture 

Five different cell culture medium conditions were used. They were: basic cell growth 

medium (BGM) consisting of low glucose Dulbecco’s Modified Eagle Medium (Gibco, 

Life Technologies, Grand Island, New York), 10% characterized fetal bovine serum 

(FBS) (Hyclone, Thermo Fischer Scientific, Minneapolis, MN), and 1% antibiotics 

(penicillin 10,000 IU/mL, streptomycin 10,000 ug/mL, amphotericin B 25 ug/mL) 

(Mediatech Inc, Corning, NY);  Keratinocyte N acetyl-L-cysteine supplemented (KNAC) 
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medium consisting of modified MCDB153  medium (Keratinocyte-SFM) (Gibco, Life 

Technologies, Grand Island, New York), MCDB153  medium (Keratinocyte-SFM) 

(Gibco, Life Technologies, Grand Island, New York), 2mM N-acetyl-L-cysteine (Sigma-

Aldrich, St. Louis, MO), 0.2mM L-ascorbic acid 2-phophate (Sigma-Aldrich, St. Louis, 

MO), 0.09mM calcium and human recombinant epidermal growth factor (5ng/mL) 

(Gibco, Life Technologies, Grand Island, New York), bovine pituitary extract (50ug/mL) 

(Gibco, Life Technologies, Grand Island, New York), insulin (5ug/mL) (Sigma-Aldrich, 

St. Louis, MO), hydrocortisone (74ng/mL) (Sigma-Aldrich, St. Louis, MO), 5% FBS 

(Hyclone, Thermo Fischer Scientific, Minneapolis, MN), and 1% antibiotic (Mediatech 

Inc, Corning, NY))18; Multipotent Adult Progenitor Cell (MAPC) medium consisting of 

low glucose Dulbecco’s Modified Eagle Medium (Gibco, Life Technologies, Grand 

Island, New York), 40 % MCDB (Sigma-Aldrich, St. Louis, MO), 1% L-Ascorbic Acid 

(Sigma-Aldrich, St. Louis, MO), platelet derived growth factor (10ng/mL) (R&D 

Systems, Minneapolis, MN), epidermal growth factor (10 ng/mL) (Sigma-Aldrich, St. 

Louis, MO), dexamethasone (0.5uM) (Sigma-Aldrich, St. Louis, MO), 1% ITS+ liquid 

media supplement, (Sigma-Aldrich, St. Louis, MO) 10% FBS, and 1% antibiotics 135; 

serum free medium was Stempro MSC SFM Human Mesenchymal Stem Cell Culture 

Medium (Gibco, Life Technologies, Grand Island, New York) supplemented with 1% 

antibiotics and xeno-free medium consisting of StemPro MSC SFM Xeno-free medium 

(Gibco, Life Technologies, Grand Island, New York), supplemented with 1% antibiotics. 

Stromal vascular fractions from each cell line were placed into each condition at a density 

of 8,000 nucleated cells/cm2.  Cultures were placed in incubators maintained at 37°C in a 
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humidified atmosphere with 5% CO2. After twenty-four hours, the non-adherent cells 

were removed by aspirating medium and rinsing the cells with 10mL of phospate 

buffered saline.  Fresh culture medium was placed on adherent cells.  Culture media were 

changed every two days, and when 80-90% confluency was reached the cells were 

detached using Tryple-E (Invitrogen, Life Technologies, Grand Island, New York), rinsed 

with phospate buffered saline, and viable cells counted using the trypan blue exclusion 

method.  Cells were then plated or frozen in liquid nitrogen for future assessment. The 

cell lines were expanded for a minimum of three passages when responsive to media 

conditions. The SVF and each subsequent cell passage in each medium condition were 

evaluated for multiple phenotypic properties.  Population doubling time was calculated at 

each passage using the following formula: PD= tlog2/log (number of viable cells/ number 

of cells plated), where PD is the population doubling, and t is the time in culture. 

 

Gene Expression 

Proinflammatory (COX-2 and IL-1B) and anti-inflammatory (IL-1ra and TIMP-2) 

cytokine messenger RNA levels were measured by quantitative real time polymerase 

chain reaction.  Glyceraldehyde-2-phosphate dehydrogenase (GAPDH) was used as a 

housekeeping gene. The primers used for amplification, with the exception of TIMP-2 18, 

were generated using the Primer 3 v 0.4.0 program and verified for gene specificity using 

a BLAST program (BLAST, National  Center for Biotechnology Information, National 

Institutes of Health, Betheseda, MD. Available at blast.ncbi.nlm.nih.gov/) and by gene 

sequencing the product of the PCR reaction (Biomedical Genomics Center, University of 
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Minnesota Core Factility, Minneapolis, MN).  (Table 3.1) Primers were synthesized by a 

life sciences company (Invitrogen, Life Technologies, Grand Island, New York).  Total 

RNA was extracted using TRIzol Reagent (Invitrogen, Life Technologies, Grand Island, 

New York). Reverse transcription of 2µg of mRNA was performed with 2µg SuperScript 

III Reverse Transcriptase, 1 mM dNTPs, 50ng random hexamers, 20mM RT buffer, 5mM 

MgCl2, 100mM DTT, and 40U of RNaseOUT (Invitrogen, Life Technologies, Grand 

Island, New York)  in a PTC-100 Programmable Thermal Controller (MJ Research, Inc, 

St. Bruno, Canada) at 65°C for 5 min, 4°C for 15 minutes, 25°C for 10 minutes, 50°C for 

50 minutes, and 85°C for 5 minutes.  Quantitative RT-PCR was performed with 6uL 

Syber Green (Invitrogen, Life Technologies, Grand Island, New York), 0.02ug cDNA, 

and 0.25 µM forward and reverse primers for 40 cycles of 95°C for 15s, and 60°C for 60s 

in a Mastercycler (MJ Research, Inc, St. Bruno, Canada). Expression values were 

normalized to the housekeeping gene, GAPDH, and calculated via the 2=ΔCt equation. 136 

Cytokine expression from the SVF was compared to each of the media conditions after 

passage 3. Cytokine expression was normalized to GAPDH, which was within one CT 

cycle, and reported as percentage of GAPDH expression. 

 

Immunophenotype 

Cell surface marker expression evaluating immunostimulatory potential  [MHCI, (H58A) 

(VMRD inc, Pullman, WA), MHCII (555810) (BD Biosciences, San Jose, California)], 

mesenchymal stem cell markers [CD44 (BAG40A) (VMRD inc, Pullman, WA), CD90 

(DH2A) (VMRD inc, Pullman, WA) and CD105 (Southern Biotech, Birmingham, AL) 
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(9811-09)], hematopoietic stem cell markers [CD34 (559369) (BD Biosciences, San Jose, 

California), CD45 (CAD019A) (VMRD inc, Pullman, WA), CD117 (555714) (BD 

Biosciences, San Jose, California) and CD133 (12-1331-80) (eBiosciences, San Diego, 

CA)] were labeled with phycoerythrin flourochrome and evaluated by flow cytometry on 

a BD FACSCalibur instrument (BD Biosciences, San Jose, California) with a 488nm and 

633nm laser. Cells were aliquoted to 1x105 cells per cell surface marker and rinsed with 

FACs buffer (phosphate buffer solution with 2%FBS) than incubated with primary 

antibody (MHCI, MHCII, CD44, CD45, CD90) for 30 minutes followed by secondary 

antibody (PE goat anti-mouse Ig, 550589) (BD Biosciences, San Jose, California) for 30 

minutes, or a conjugated antibody marker (CD34, CD105, CD117, CD133) for 30 

minutes prior to analysis.  

 

Multipotency 

Differentiation was initiated following the third passage in each medium condition. 

Adipogenic differentiation consisted of plating cells at a density of 10,000 cells/cm2 and 

exposure of cells to adipogenic differentiation medium consisting of low glucose DMEM 

(Gibco, Life Technologies, Grand Island, New York) supplemented with 5% FBS, 0.5uM 

dexamethasone (Sigma-Aldrich, St. Louis, MO), 5uM insulin (Sigma-Aldrich, St. Louis, 

MO), 10uM indomethacin (Sigma-Aldrich, St. Louis, MO), and 0.25mM 

isobutylmethylxanthine (Sigma-Aldrich, St. Louis, MO) for three days, then growth 

medium for three days, cycling for 21 days total. 18,132 Osteogenic differentiation 

consisted of plating at a density of 1,000 cells/cm2 and exposure of cells to osteogenic 
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differentiation medium consisting of low glucose DMEM, 5% FBS, 50nM 

dexamethasone, and 5mM beta-glycerophosphate (Sigma-Aldrich, St. Louis, MO) with 

medium changes every three days for 6-8 weeks. 18,132 Chondrogenic differentiation 

consisted of pelleting 100,000 cells in 10uL of growth medium, and exposure of the 

pelleted cells to chondrogenic medium consisting of low glucose DMEM, 10% FBS, 

10ng/mL TGF-β (p Peprotech, Inc, Rocky Hill, NJ), 50uM L-ascorbic acid (d Sigma-

Aldrich, St. Louis, MO), and 6.25ug/mL insulin ( Sigma-Aldrich, St. Louis, MO) with 

medium changes every three days for 14 days. 132 Each condition was evaluated in 

duplicate, and compared to a negative control consisting of cells cultured at the same 

density and conditions with the exception of exposure to growth medium in the stead of 

differentiation medium. 

Evaluation of adipose differentiation was accomplished with oil red O staining (d Sigma-

Aldrich, St. Louis, MO), alizarin red staining (d Sigma-Aldrich, St. Louis, MO) for bone 

differentiation assessment, and Alcian blue staining and histological assessment was used 

for chondrogenic differentiation. Histologic assessment was done by one author (TDO) 

who was blinded to treatment group. Adipose and bone differentiation is reported as a 

positive or negative result.  Cartilage differentiation was scored on histologic assessment 

according to the following scale: 0= none (no evidence of rounded chondrocyte 

morphology or production of Alcian blue staining matrix), 1= poor (<10% rounded cells 

(ie mostly spindle cells) and minimal production of Alcian blue matrix), 2= fair (10-25% 

of cells rounded (ie many spindle cells) and small amounts of Alcian blue matrix), 3= 
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good (25-50% of cells rounded and moderate amounts of Alcian blue matrix), 4= 

excellent (>50% of cells rounded and abundant Alcian blue matrix). 

 

Statistical Analysis 

Population doubling times and quantitative RT-PCR data were analyzed using a 

Wilcoxon signed-rank test, with p<0.05 considered statistically significant. All data are 

expressed as mean ± standard deviation. 

Results: 

Isolation of Adipose Derived Stem Cells 

After harvest and processing, total nucleated cell counts were calculated for each sample. 

The mean ± standard deviation total nucleated cell count was 5.9 x 106 ± 4.65 x 106 cells 

(range: 2.065-13.35 x 106 cells). 

 

Cell Culture 

Growth of ASCs in SFM and xeno free conditions was very poor and 80% confluency of 

cells was not reached in either medium condition. Therefore these conditions did not 

provide sufficient cell numbers for assessment of any criteria.  When comparing 

population doubling times within a passage, BGM created significantly shorter doubling 

times when compared to KNAC (p-value=0.028) and MAPC (p-value=0.028) after 

passage two (mean±standard deviation of population doubling time of all cell lines at 

passage two for each medium condition: BGM 1.439±0.4457, KNAC 3.316±1.040, 

MAPC 3.171±2.306). (Figure 3.1) 
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Gene Expression 

Proinflammatory cytokine gene expression significantly decreased in all of the media 

conditions when compared to the SVF. However, there were no statistical differences in 

proinflammatory marker expression in any of the media conditions. (Figure 3.2) Anti-

inflammatory cytokine expression also significantly decreased in any culture conditions, 

with no significant differences in expression levels among media conditions. (Figure 3.3)  

SVF not only expressed significantly higher levels of all cytokines, but variation about 

the mean was dramatically higher.  

 

Immunophenotype 

MHCI expression was present in all conditions. MHCII was expressed in a small 

population of SVF cells (10.5%) and then significantly decreased once cells were 

cultured. (Figure 3.4) All medium conditions retained cell populations expressing CD44 

and CD90, although BGM conditions retained a larger percentage of CD90-expressing 

cells.  A small percentage of cells (9.5%) expressed CD105 in the SVF, but CD105 

expression was lost after culture in any media condition. Similarly, CD34 (44.7%) and 

CD45 (17.05%) expression was found in the SVF, but not in cell populations after 

culture. CD133 may be expressed in a very small population of cells in SVF, BMG and 

MAPC medium conditions. CD117 was not expressed by any population of cells.  
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Multipotency 

All culture conditions that enabled cell expansion also allowed tissue differentiation, but 

cells in BGM medium did not generate adipocytes or osteocytes. KNAC and MAPC both 

allowed tri-lineage differentiation. (Table 3.2) 

 

Discussion: 

Isolation of canine adipose derived stem cells was successful as previously reported 

8,9,18,19,132, but provided variable yields of nucleated cells, indicating variable products.  

Determining the characteristics to identify individuals that might provide greater yields 

was beyond the scope of this study.  A greater nucleated cell yield does not necessarily 

provide a greater ASC yield, as the method for counting nucleated cells does not 

distinguish cell type.   

SVF gene expression of pro and anti-inflammatory cytokines consistently decreased after 

3 passages in cell culture and achieved similar levels in all culture conditions. This 

suggests that either the majority of the expression of these cytokines is from cells that are 

lost from the SVF in cell culture and are not present in the ASC or that each of the culture 

conditions resulted in similar gene expression in cells comprising the ASC. Isolation of 

the specific cell type(s) from the SVF that result in the preferential expression of either 

pro or anti-inflammatory cytokines would be useful.  

Stromal vascular fractions contain a heterogeneous population of cells, including red 

blood cells, leukocytes, adipocytes, and a small population of ASCs. 137 This may be an 

explanation for the variations in expression of surface markers and cytokine expression in 
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SVF populations. Of these cell populations, only the progenitor cells and stromal cells 

should be capable of self-renewal, eliminating much of the heterogeneity of cell type by 

culturing. This is a possible explanation for the apparent loss of cell populations in the 

FACS data following cell culture, specifically the CD34+, CD44-, CD45+, CD105+, and 

MHCII+ cells that were seen in the SVF. Alternatively, the change in expression may be 

due to a change in phenotype of a persistent population of cells. Similar loss of cytokine 

expression in passaged cells may be explained by the same mechanisms. Culturing the 

SVF appears to generate cells of a more uniform phenotype, regardless of the donor or 

medium type. 

Identifying individual cell populations as ASCs is difficult, as surface markers commonly 

used to identify ASCs are not specific for that population. CD44, CD90 and CD105 are 

considered to be markers of mesenchymal stem/stromal cells but may be found in many 

differentiated mesenchymal cells across many species.  However, CD105 was not 

expressed on canine ASCs in a previous study; a finding that was corroborated in our 

study. 8 It is interesting to note that a small percentage of cells appeared to express this 

marker prior to culture. The presence of some cells expressing hematopoetic cell markers 

(CD45, CD34) is not surprising in the SVF due to the heterogeneous nature of this cell 

population.  

The variable nature of SVF makes the concept of culturing cells to generate a consistent 

phenotype and cell population appealing. The cultured cells could be used either as an 

autologous or allogeneic product. The ability to expand the cells in culture would also 

facilitate the treatment of multiple individuals with a single, characterized product. In our 
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study, SFM and xeno-free medium conditions were unsuccessful for expanding canine 

cell populations, in spite of success in other species. A recent study identified an alternate 

serum free medium supplemented with a serum substitute that was successful in 

providing adequate proliferation in canines. 138 The elimination of fetal bovine serum 

from the culture medium would be ideal, due to the highly variable content of this 

material, and thus the potential for inconsistent phenotypes of cells, and concerns that the 

xenobiotic material that may induce an immune reaction.  Therefore, even though the 

SFM tested in this study was not found suitable for expansion of canine ASCs, the pursuit 

of SFM for this purpose should not be abandoned, and appears possible with the correct 

conditions.  Canine serum could be considered an alternative and evaluated for the 

purposes of growth expansion, but may still be variable in product content. 

The immunogenic potential of allogeneic ASCs in transplants has been raised, but in 

studies thus far, appears to be feasible for clinical use. 18,108,124,139 An immune response 

relies, in part, upon the expression of MHCII on the cell surface, but the absence of 

MHCI on cell surfaces will also elicit an immune response. 134 Our study demonstrated 

that the level of MHCII is diminished following culture in all populations of cells, while 

expression of MHCI in low levels are retained. Thus, culturing may not increase an 

immune response.  

It is interesting to note that cells cultured in BGM had efficient population doublings 

(Figure 3.1) and retained ASC markers CD44 and CD90, but had a poor capacity to 

differentiate (Figure 3.5). In contrast, KNAC and MAPC cultured cells had longer 

doubling times but retained the capacity to differentiate into multiple lineages. 
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Differences in the expansion medium composition may explain these variations by 

promoting alternate phenotypes among the cells or by selecting for cells with differing 

characteristics. Notably, the differences between phenotypes of cells cultured in KNAC 

and MAPC were minimal.  

The low number of cell lines investigated is a limitation of this study. In addition, it is 

important to note that variation in the source and supply of reagents, particularly fetal 

bovine serum, may alter phenotype. The FBS used in this study was from a single lot to 

minimize variability. A further study investigating variability of phenotypes when 

exposed to different lots and sources of FBS would be prudent. Alternatively, a standard 

set of phenotypic characteristics selected as ideal for the therapeutic application could be 

utilized to establish an acceptable phenotype against which all new lots of FBS be 

measured. 

Culture of canine adipose derived stem cells led to a different phenotypic profile than 

SVF.  The type of culture medium had an effect on phenotype, so we reject our null 

hypothesis that change in culture medium conditions would have no influence on cellular 

phenotype. However, with the exception of the capacity for the cells to differentiate, the 

differences were minimal. The selection of culture medium should be made based upon 

the desired therapeutic application and the qualities pertinent for that particular use. 

Allogeneic stem cell therapy appears feasible and warrants in vivo investigation. 
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Table 3.1: Primers sequences used in this study.  
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Figure 3.1: Average population doubling time of all cell lines (n=6) in each culture 

medium condition at each passage (P). Time is expressed as days. Medium conditions 

consisted of basic growth medium (BGM; black), Keratinocyte N-acetylcholine medium 

(KNAC; grey), multipotent adult progenitor cell medium (MAPC; white). Conditions 

with a different letter indicate significant differences in population doubling times within 

a passage; not between passages.  
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Figure 3.2: Gene expression of proinflammatory cytokines, COX-2 and IL-1B, at initial 

harvest (SVF), and at passage 3 following exposure to each culture condition consisting 

of basic growth medium (BGM), keratinocyte N-acetylcholine medium (KNAC), 

multipotent adult progenitor cell medium (MAPC). Cytokine gene expression was 

measured with quantitative RT-PCR, and expression values were normalized to the 

housekeeping gene, GAPDH, and given as a percentage of expression. An asterisk (*)  

indicates a significant difference between SVF and passage 3; there were no differences 

among media conditions. 
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Figure 3.3: Gene expression for anti-inflammatory cytokines, TIMP-2 and IL-1ra, at 

initial harvest (SVF), and at passage 3 following exposure to each culture condition. 

Cytokine gene expression was measured with quantitative RT- PCR and expression 

values were normalized to the housekeeping gene, GAPDH, and reported as a percentage 

of expression. An asterisk (*) indicates a significant difference between SVF and  

passage 3; there were no differences among media  conditions. 
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Figure 3.4: Cell surface markers as analyzed by flow cytometry, depicted as dot plots, 

which each culture condition plotted within each graph.  Each individual graph represents 

the cell surface marker it is labeled with.  Each graph is a representative expression of all 

samples, depicting a single cell line as a stromal vascular fraction (SVF, red), and in each 

CD117 CD133 
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culture medium condition, basic growth medium (BGM, blue), keratinocyte N-

acetylcholine medium (KNAC, orange), and multipotent adult progenitor cell medium 

(MAPC, green).  The graphs depict the level of fluorescence detected by the FL1 detector 

on the x-axis, and the FL2 detector on the y-axis.  All cell surface markers were labeled 

with phycoerythrin (PE), so would be found within the upper left quadrant if present on 

the cells.  Cells found in the lower left quadrant would be considered negative for 

expression.  Numerical values listed within each quadrant is the percent of cells present 

within that quadrant. 
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Table 3.2: Differentiation potential for each cell line in each medium condition 

consisting of basic growth medium (BGM), Keratinocyte N-acetylcholine medium 

(KNAC), multipotent adult progenitor cell medium (MAPC). Cartilage differentiation 

Condition Line Adipo Osteo Chondrocytes 

BGM 1 - - 1 

  2 - - 1 

  3 - - 1 

  4 - - - 

  5 - - - 

  6 - - - 

MAPC 1 + + - 

  2 + + 3 

  3 + contaminated - 

  4 + + - 

  5 + + 3 

  6 + + - 

KNAC 1 + + - 

  2 + + 3 

  3 + contaminated 2 

  4 + + 3 

  5 + + - 

  6 + + - 
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(chondrocytes) is graded as 0=none, 1=poor, 2=fair, 3=good, 4=excellent, and adipocyte 

(adipo) and osteocyte (osteo) conditions are listed as positive or negative differentiation.  

A negative score for cartilage differentiation indicates no generation of cell pellet for 

histologic analysis. 
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Chapter 4 

Autologous and Allogeneic Stromal Cells as Adjuvant Therapy for 

Osteoarthritis Caused by Spontaneous Fragmented Coronoid Process in 

Dogs 

 

Introduction 

Canine osteoarthritis has afflicted many pets and veterinarians who struggle to treat the 

non-reversible, progressive and painful disease.  The disease process can significantly 

impact quality of life, and concurrent disease process may limit the pharmaceutical 

options that can be chosen to manage the disease.  Because of this, alternative therapies 

have generated a lot of interest and widespread use, often without adequate evidence 

based medical information.   

Adipose derived stromal cells (ASC) have garnered a lot of interest for the treatment of 

osteoarthritis, and following a small number of publications, has become a widespread 

therapy offered to owners. 9,10,19  While these studies show improvement compared to 

placebo control groups, they lack objective outcome measures and include small numbers 

of dogs.  To date, lameness has been visually assessed with reported benefits, and 

improved quality of life.  Additionally, therapy has been limited to the use of an 

autologous stromal vascular fraction (SVF).  9,10,19  In contrast, utilizing a donated, 

cultured and characterized allogeneic preparation of ASC  provides a less heterogenous 

product that can be defined and selected for specific purposes. 
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Osteoarthritis is prevalent in almost any joint, and can be secondary to a traumatic event, 

infection, or orthopedic disease.  The behavior and location is highly variable dependent 

upon the etiology; this variability is a bias that should be addressed in clinical trials.  This 

model has the added attraction of having a poor long-term outcome in spite of current 

therapeutics, which may provide a more detectable response to therapeutic interventions.  

38,39,140,141  Many different therapies have been advocated, but none have resolved the 

problem.  Most commonly, arthroscopic examination and fragment removal has been 

performed.  One of the etiopathologies proposed has been elbow incongruency. 140-145 For 

this reason, corrective osteotomies have been proposed, but have limited evidence, or 

investigation. 146 

We used objective assessments of limb function using platform gait analysis to evaluate 

ground reaction forces (GRF).  147-149 In addition we utilized a magnetic resonance 

imaging (MRI) generated image to generate a score reflecting the glycosaminoglycan 

(GAG) content of a joint with delayed gadolinium enhanced magnetic resonance imaging 

of cartilage (dGEMRIC). 150 

The objective of this study was to assess the therapeutic effect of three treatment 

modalities for a fragmented coronoid process in the elbows of dogs.  We assessed dogs 

that had a proximal ulnar osteotomy (PUO), autologous ASC therapy, and allogeneic 

ASC therapy.  Our null hypothesis was that the three treatments would not significantly 

differ from dogs treated with standard of care.  We hypothesized that all treatments 

would be well tolerated with no deleterious side effects.  
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Material and Methods 

 

Case Selection 

Forty client-owned dogs that presented to the University of Minnesota, College of 

Veterinary Medicine or Fitzpatrick Referrals, Eashing, Gadalming, Surrey, UK, for 

evaluation of a forelimb lameness with identified elbow pain secondary to a fragmented 

coronoid process were included in this multi-group, multi-center, controlled, randomized 

study.  Dogs could be of any breed, sexual status or age.  Informed owner consent for 

participation in the study with owner agreement to follow postoperative care guidelines 

and recheck examinations was required for participation in the study.  Dogs that had 

previous elbow surgery, injectable drug therapy for arthritis (e.g. steroids, hyaluronic 

acid, adequan) within 30-days of treatment, other systemic illnesses, were less than 10 

kgs, or had other, concurrent, related (elbow incongruency, OCD) or unrelated orthopedic 

or neurologic disease processes were excluded.  All study procedures were according to a 

protocol approved by the University of Minnesota Institutional Animal Care and Use 

Committee (IACUC # 1203A11421).  

 

Experimental Groups 

The first thirty dogs were randomized into one of three treatment groups: standard of care 

therapy (SOC), SOC with a proximal ulnar osteotomy (PUO), or SOC+PUO and 

autologous stromal vascular fraction cell therapy (SVF).  The final ten dogs enrolled in 

the study were assigned to the final, fourth group: SOC+PUO and allogeneic stem cell 
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therapy (AllSC).  Initially, all dogs were included in the randomization procedure but 

availability to the characterized allogeneic stem cells became delayed so these alternative 

methods were adopted. All dogs that were to receive cell therapies were treated at the 

University site in an effort to standardize cell preparation techniques and limit cell 

viability issues that might be associated with parcel delivery. Standard of care was 

considered to be arthroscopic examination of the affected joint and fragment removal.  

Dogs receiving a proximal ulnar osteotomy had an oblique cut made with an oscillating 

saw in the proximal third of the ulna, angling caudocranial at a forty-five degree angle to 

the caudal aspect of ulna. Complete transection of the ulna was confirmed at the time of 

surgery and with radiographic assessment post-operatively.  Surgeons participating in the 

study standardized surgical technique in an effort that dogs would receive similar care 

regardless of treatment site. Following completion of their elbow surgery, dogs assigned 

to receive autologous SVF therapy group had a ventral mid-line abdominal incision of 4-

8cm in length made between the xiphoid process and the umbilicus.    The falciform 

adipose tissue was identified, exteriorized, and ligated with a circumferential 2-0 PDS 

suture prior to transection.  The falciform tissue, approximately 30-gms, was placed into 

a sterile, covered container and transferred to the laboratory for processing.  

Anesthetic protocols were individually selected and designed by board certified 

anesthesiologists.   Post-operative management included hydromorphone 0.05mg/kg 

intramuscularly every six hours overnight, and beginning the following morning, oral 

tramadol 2-4 mg/kg every eight hours for ten days and a non-steroidal anti-inflammatory 

of the surgeon’s choice administered per manufacturer’s directions for ten days. 
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Dogs assigned to either stem cell treatment group were given 0.05mg/kg hydromorphone 

and either 0.125mg/kg diazepam or 0.002-0.004 mg/kg dexmedetomidine hydrochloride 

intravenously the morning following surgical intervention.  A preparation of either 

5x10^6 allogeneic stem cells or 5x10^6 nucleated autologous cells constituted in 0.5mL 

of sterile saline was injected intra-articularly into the operated elbow.  This protocol was 

repeated once, six weeks post-operatively.  SVF cells were cryopreserved after the first 

treatment, and AllSC were cryopreserved for all injections. All stromal cell preparations 

had been rinsed three times with sterile saline to remove medium or digestive agents from 

the preparation prior to administration.   

 

Isolation of Adipose Derived Stromal Cells 

Autologous 

Falciform adipose tissue was harvested at the time of surgery and was processed 

according to previously reported protocols for isolation of the stromal vascular fraction 

overnight. 9,10  The nucleated fraction was used to determine cell number for dosage, and 

aliquoted into 5x10^6 million cells/ dose.  One dose was administered the day after 

surgery, and all remaining doses were stored in liquid nitrogen until further need.  151,152 

 

 

Allogeneic 

Falciform adipose tissue was harvested at the time of surgery from ten healthy 

dogs admitted to the University of Minnesota College of Veterinary Medicine for 
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abdominal surgery unrelated to the study. Dogs with neoplasia or septic abdomens were 

excluded. Owner consent was obtained and all procedures were performed in accordance 

with the University of Minnesota Institutional Care and Use Committee (IACUC # 

1203A11421). Adipose tissue was processed according to previously reported protocols 

for isolation of the stromal vascular fraction. {Black,L.L. 2007; Black,L.L. 2008} The 

nucleated cell fraction was than placed into Keratinocyte N acetyl-L-cysteine 

supplemented (KNAC) medium consisting of modified MCDB153 medium 

(Keratinocyte-SFM) (Gibco, Life Technologies, Grand Island, New York), MCDB153 

medium (Keratinocyte-SFM) (Gibco, Life Technologies, Grand Island, New York), 2mM 

N-acetyl-L-cysteine (Sigma-Aldrich, St. Louis, MO), 0.2mM L-ascorbic acid 2-phophate 

(Sigma-Aldrich, St. Louis, MO), 0.09mM calcium and human recombinant epidermal 

growth factor (5ng/mL) (Gibco, Life Technologies, Grand Island, New York), bovine 

pituitary extract (50ug/mL) (Gibco, Life Technologies, Grand Island, New York), insulin 

(5ug/mL) (Sigma-Aldrich, St. Louis, MO), hydrocortisone (74ng/mL) (Sigma-Aldrich, 

St. Louis, MO), 5% FBS (Hyclone, Thermo Fischer Scientific, Minneapolis, MN), and 

1% antibiotic (Mediatech Inc, Corning, NY))18;This protocol was chosen from amongst 

the treatments assessed in the previous study, to maximize tri-lineage differentiation, 

particularly chondrogenesis, and retention of CD90, CD44 and MHCI surface markers, as 

well as minimize pro-inflammatory mediators.  Cells were expanded to provide multiple 

doses per cell line, and harvest for therapy at passage three.  They were than aliquoted as 

5 x 10^6 cells per dose and stored in liquid nitrogen until use.  151,152 
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Intra-articular injections 

All stem cell preparations were rinsed three times with sterile saline to remove medium 

or digestive agents from the preparation prior to administration.  A preparation of either 

5x10^6 allogeneic stem cells or 5x10^6 nucleated autologous cells constituted in 0.5mL 

of sterile saline was injected intra-articularly into the operated elbow 48-hours after 

surgery.  This protocol was repeated once, six weeks post-operatively.  

 

Subjective Outcome Measures 

Canine Brief Pain Inventory 

Owners completed a Canine Brief Pain Inventory (CBPI) questionnaire prior to surgical 

intervention, and six months post-operatively.  The CBPI is a validated means of 

assessing owner opinion of outcome regarding pain and activity in dogs with clinical 

symptoms secondary to osteoarthritis.. 153,154 

Radiographs 

Radiographs were taken prior to admission of study to confirm disease diagnosis. Dogs 

that received a PUO had radiographs taken immediately post-operatively, at six weeks 

and at six months post-operatively. Each follow-up radiograph was evaluated for healing 

at the site of PUO. Osteotomy sites were considered healed if the site was bridged with 

osteosynthesis with little to no evidence of osteotomy site, not healed with osteogenic 

activity present, or not healed with no osteogenic activity.   
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Objective Outcome Measures 

Limb Function 

Force platform gait analysis was performed to measure ground reaction forces.  Each dog 

was assessed prior to surgical intervention, and at six months post-operatively.  Data was 

collected by acquiring five valid trials for each forelimb at a walk on a force platform 

(AMTI OR 6-5 force platform, Advanced Mechanical Technology, Watertown, Mass.) 

measuring 0.5m2 in the center of a 10m runway.  Velocity and acceleration were 

measured with the aid of five photoelectric cells coupled with a triggered timing 

mechanism and mounted 1m apart. A velocity range between 1-1.3 m/s, and an 

acceleration range of -0.5 to 0.5 m/s2 was necessary to consider a trial valid.  Data was 

collected at 1000 Hz, and stored on a personal computer with software (Sharon Software 

Inc, Dewitt, Mich.) designed to record values velocity, acceleration, peak vertical force 

(PVF) and peak vertical impulse (VI).  To be considered valid, the entire foot had to 

make contact with the platform, without striking an edge, and the ipsilateral hind limb 

needed to follow with the same criteria.  All dogs were weighed prior to data collection 

and trials were normalized for the patient body weight.  

 

Cartilage Quality 

All dogs received an MRI with dGEMRIC scores as previously described in the morning, 

just prior to surgery immediately following. 150  MRI was repeated six months post-

operatively.  After receiving anesthesia, each patient was administered gadopentate 

dimeglumine (0.1 mmol/kg) intravenously followed by ten minutes of passive range of 
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motion of the affected elbow.  MRI was performed as previously described, with a 3T 

system (GE Sigma EXCITE Milwaukee, WI). 150  The initial images were evaluated, and 

two sagittal slices that included the medial coronoid process were selected for TN-

weighted FSE inversion recovery sequences, to allow further processing with a data 

software program (Matlab, MathWorks, Natick, Mass., USA), to generate a color map for 

each of the two images (dGEMRIC image). 150  Each dGEMRIC image was than 

evaluated and a region of interest (ROI) selected. Each ROI was drawn to include 

articular cartilage of the medial coronoid process, the corresponding articular cartilage of 

the humerus, and the intra-articular space in between. 150 The ROI was selected by the 

same individual for all cases and the individual was blinded to treatment group. Each 

image was evaluated three different times, with a new ROI identified each assessment.  

The image intensity scores generated by the program from the ROI were averaged for the 

three images creating a single, average dGEMRIC score for each assessment period.  

 

 

Statistical Analysis 

Statistical analysis was performed using SOFA Statistics software (SOFA, v1.3.4, Paton-

Simpson & Associates Ltd, Auckland, New Zealand).  CBPI scores are reported as means 

of pain or function scores. GRF are reported as percentage of body weight (100*N/N) 

and values are expressed as means of the five collected trials at each assessment.   

dGEMRIC scores are reported as the mean of the all ROI generated for each outcome 

measure time point.  Summary statistics are all reported as mean +/- standard deviation 
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(SD).  Differences between groups at the initial assessment, and at the 6-month recheck 

were evaluated using a one-way ANOVA test.  Differences between initial exam and 6-

month recheck for each treatment was evaluated using a paired t-test.  Values of p ≤ 0.05 

were considered statistically significant. 

 

Results 

Forty dogs (n=10/group) met the inclusion criteria and completed the study.   Body 

weights ranged from 12.5 kg to 64 kg, (31.82kg+/-9.12), There was no significant 

difference between any group weights, or between initial assessment of weight and at 

recheck.  Patient age ranged from 0.66 to 10 years (2.47years+/-2.43).  The AllSC treated 

group was significantly older (4.43years +/-3.187, p=0.03) than any of the other 

treatment groups, while no significant difference in age was found in the other three 

treatment groups.   

Some dogs that received an autologous or allogeneic ASC injection had two to three days 

of lameness after injection for one to three days that resolved without further 

intervention.  No local swelling or erythematous reactions were noted or reported by 

owners.  No other deleterious effects were noted from ASC administration. 

No significant difference was found between group pain and function scores on the CPBI 

scores at the initial assessment.  At the six month recheck, the AllSC treated group had a 

statistically significantly higher pain score (5.875+/-4.23, p=0.048,0.028) than the 

standard of care and SVF group, but not the PUO group.  There was not a significant 

difference amongst the other group pain scores, or any of the function scores.  (Figures 
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4.1 and 4.2) There was a significant decrease between initial pain score and 6 month 

recheck pain score, and initial and 6 month function scores in all groups. (p<0.001).   

All dogs with a PUO had some osteosynthesis present at the 6-week recheck.  28/30 dogs 

were considered healed at that assessment.  Of the two remaining dogs, one was 

considered healed at the 6-month recheck, and the final one was considered healed at a 

one-year recheck.  Subjectively, all dogs had some shifting of the proximal ulna relative 

to the distal ulna on recheck radiographs, as compared to the post-operative radiographs. 

There no significant differences in the GRF between any of the groups at the initial 

assessment (PVF p>0.065, VI p>0.093 for all groups) and at the 6-month assessment 

(PVF p>0.26, VI p>0.376). (Figures 4.3 and 4.4)  All groups had an improvement in limb 

function and GRF between initial and 6-month recheck.  There was not statistical 

significance in VI in any of the groups (p>0.068), but a statistically significant 

improvement was found in PVF of the control group and the SVF group (p=0.006 and 

p=0.002, respectively). 

There was no significant difference in dGEMRIC scores amongst groups at initial 

assessment (control 354.65+/-45.52, PUO 306.93+/-62.141, SVF 337.43+/-39.19, AllSC 

358.7+/-27.56), or at the 6-month assessment (381.6+/-65.49, 359.15+/-53.88, 329.37+/-

50.49, 365.5+/-60.83, respectively).   A significant difference was identified between the 

initial score and the 6-month score in the control group and the PUO group, with the 

average 6-month score being higher.  (Figure 4.5) 
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Discussion 

To date, there are no published studies evaluating the use of AllSC to treat osteoarthritis 

in dogs, in spite of the many advantages they provide over SVF.  We undertook this study 

to evaluate safety and efficacy utilizing objective outcome measures.  To provide 

consistency in our assessments (and since the number of dogs/group were small), we 

elected to investigate a single disease process, fragmented coronoid process (FCP), which 

inevitably results in osteoarthritis of the canine elbow.  140   

The mean age of the dogs enrolled in the study is anticipated, given the disease process. 

140,142,155  The allogeneic group overall had dogs with an older age, but in particular 

included the two oldest dogs enrolled, at 8 and 10 years at time of enrollment. These two 

cases likely skewed the mean age of this group relative the other three groups.  This may 

have skewed the outcome of this group, as the longevity of the disease process may 

increase the severity of osteoarthritis and thus limit the ability to improve,, 140,142,155  

although identifying an age correlation to severity of osteoarthritis was not within the 

scope of this study to assess.  Severity of osteoarthritis may be a factor in response to 

therapy. A future study assessing response across age groups, or response according to 

cartilage quality would be a good follow-up to assess this problem.   

A minor complication associated with ASC delivery was noted in some dogs, and was 

self-resolving and self-limiting.  Owners reported after the second treatment that dogs 

became more lame than prior to injection, but that it resolved within two to three days.  It 

is difficult to determine within this study if this is secondary to the ASCs, or secondary to 

an intra-articular injection.  A study comparing ASC injection to saline injection would 
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be necessary to answer this question.  There was no reaction to injections that would 

correlate with a severe immune response, which suggests that ASC therapy, as an 

autologous or allogeneic preparation, is likely safe to use intra-articularly.  It is possible 

that a systemically administered preparation (intravenous) could result in a different 

outcome.   

All dogs had improved CBPI scores from initial assessment to six-month rechecks, which 

could be explained by true improvement, or perceived improvement.  This outcome 

measure was the most subjective of our assessments. Unfortunately, owners were not 

blinded to the group they were assigned to, as it was apparent which groups had an 

abdominal incision.  We did not feel it was ethically appropriate to perform surgical 

incisions in all dogs only in order to blind the owners.  Likewise, dogs receiving a stem 

cell injection were sedated at the second injection, whereas the other groups were not, 

making it apparent to owners which group they had been assigned to.  Control group dogs 

did not require radiographs, and this was apparent on the itemized bill that owners would 

have received a copy of, thus making it possible for the astute owner to deduce if they 

had been assigned to the PUO group.  This is important to note, as the care-giver placebo 

effect can be quite potent.  156  The AllSC group had improvement of function based on 

scores, but pain scores at the 6-month recheck were higher compared to the control group 

and SVF group.  It should be noted that two owners within this group neglected to turn in 

the 6 month CBPI questionnaire, and would not respond to requests for completion.  A 

third owner in this group scored the function portion of the questionnaire at the initial 

assessment, but chose to write comments in place of scoring the pain portion, and was not 
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available for follow-up clarification.  This could have skewed the data significantly, as 

the numbers were much lower than the other groups, which had 100% compliance.  It 

should be noted that they were still significantly lower than at initial assessment. 

Radiographs were assessed in each group receiving a PUO six weeks after surgery to 

ensure healing and shifting.  The only noted problems with the PUO were delayed 

healing in the two older dogs.  Radiographic union did not appear to correlate with 

function, as both of the older dogs were within the allogeneic group, which did not have 

significantly different GRFs from the other groups. 

Ground reaction forces improved after intervention regardless of group, but were only 

statistically significantly different in the control and SVF groups.  The ground reaction 

forces of  these groups were lower at initial assessment, which may have allowed for a 

greater degree of improvement, and thus statistical significance.  It cannot be ruled out 

that initial GRFs are predictive of outcome regardless of therapy. 

Cartilage quality is a difficult thing to assess objectively and non-invasively, and 

dGEMRIC holds a lot of promise for resolving this problem.  One would anticipate that a 

positive response to therapy would equivolate to a static dGEMRIC score, rather than a 

decreased score, which would be a reflection of continued cartilage degeneration.  One 

would expect with the known pathology of FCPs that the dGEMRIC score would 

decrease over time, as the disease is progressive.  None of our treated groups had a 

decrease in score, however the control group and PUO group had an increase in score.  

Since OA progresses radiographically after arthroscopic debridement of a FCP we would 

not predict this.  Explanations for this finding include that the follow-up time (6-months) 
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was too short and arthritis would have progressed if follow-up time were longer, or that 

proteoglycan content in the medial compartment in fact does not decrease following 

surgery yet osteophytosis as seen with radiographs does. The dGEMRIC procedure had 

good inter- and intra-observational consistency when evaluated in normal dog elbows. 150  

While it has not been applied to abnormal dog elbows, in a clinical situation, prior to this 

study it has been used in to follow the progression of OA in people. 157,158 In addition, 

dogs with dysplastic elbows often have very distorted anatomy, either from blunted 

coronoid processes, osteophyte accumulation, or fragmented and possibly even displaced 

coronoids.  Following coronoidectomy, the landmarks are even more distorted, making it 

possible that slice selection poses a much greater challenge in post-operative patients.  If 

slice selection is inconsistent from pre-operative to post-operative assessment, one could 

get a significantly different cartilage score from one time to another.  Likewise, even if 

slice selection is consistent, coronoidectomy changes the anatomy that is evaluated and, 

in some cases, may change the proteoglycan content in the ROI. For example, in dogs 

with a FCP, the fragment has the greatest amount of diseased cartilage and in some cases 

the region of the ulna with the fragment may have no cartilage at all. After this diseased 

region is removed the remaining components of the medial compartment would have a 

higher average proteoglycan content. If this is true one could argue that dGEMRIC 

shortly after surgery should have been compared to the 6-month follow-up; that 

comparison would likely provide for a more accurate assessment of the response of the 

cartilage to the intervention over time.  
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Standard of care therapy (arthroscopy and fragment removal), has recently been 

questioned as an effective means of therapy, as conflicting reports have been published. 

38,39,142,144  We may have found a greater improvement with groups if compared to a 

group that received no surgical intervention.  Unfortunately, we were limited by case 

availability, so had to limit the number of groups we could assess.  This particular disease 

process is complicated, and not fully understood, which may have biased our groups, 

making detection of improvements difficult.  140,142,143,145Those that are admitted to the 

study with higher levels of performance and lower levels of pain may do better long-term 

regardless of therapy.  Also, patients that are admitted with severe lameness and pain 

have greater room for improvement. We did not detect a significant difference between 

PUO and the control group, as has been previously reported.  146,159  We did not select 

cases for the PUO based on degree of incongruency, nor did we select for younger dogs, 

as these dogs were randomized into their group.  It may be that a PUO would be effective 

and beneficial under specific criteria that we did not select for.  146,159Future studies 

should consider stratifying groups according to initial outcome measures to alleviate 

some of the bias that appeared within our groups.   

We achieved long-term outcome measures, with assessments and follow-up through 6 

months following intervention, but it may be argued that the therapeutic benefit of ASCs 

could be much farther reaching than six months, and the greatest difference may be noted 

if we had the capacity to follow cases out several years.   

We identified no contra-indications to utilizing autologous or allogeneic ASC therapy, 

and have provided some evidence that there may be some benefit.  Allogeneic had similar 
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functional scores to other treatments, but will require further investigation to determine if 

this is secondary to bias or an accurate reflection of therapeutic effectiveness.  We can 

also conclude that dGEMRIC has promise for future applications as an objective 

assessment of cartilage quality, but will require more stringent guidelines and attention to 

slice selection and ROI.   

One major limitation of this study is the small numbers of dogs in each group.  A greater 

number may provide more clarification in differences amongst groups, and possibly 

eliminate some of the bias in initial group function.  Given the multiple groups, we could 

not expand the number of dogs per group within this study.  

We cannot reject our null hypothesis for PUO or autologous ASC therapy, when 

compared to the control group.  We could reject our null hypothesis for allogeneic ASC 

therapy based upon GRF significance, but suggest further assessment based on biases.  

We accept our hypothesis that all therapies are safe and well tolerated.  

This study provides preliminary data for the safety of autologous and allogeneic ASC 

therapy, and should lead to further studies with greater numbers of dogs, with 

stratification of participants based on initial function and dGEMRIC scores.   
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Figure 4.1: Average score of canine brief pain inventory questionnaire for each treatment 

group at initial assessment (black), and at 6-month follow-up assessment (grey).  The x-

axis is each treatment group, and the y-axis is the averaged score of owner assessment of 

patient pain calculated by answering four questions. (0= no pain, 10= extreme pain)  The 

highest (worst pain) possible score would be forty.   
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Figure 4.2: Average score of canine brief pain inventory questionnaire for each treatment 

group at initial assessment (black), and at 6-month follow-up assessment (grey).  The x-

axis is each treatment group, and the y-axis is the averaged score of owner assessment of 

patient function calculated by answering six questions. (0= no interference, 10= 

completely interferes)  The highest (worst) possible score would be sixty.  
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Figure 4.3: Average peak vertical force, corrected for body weight, depicted on the y-

axis, with each treatment group depicted on the x-axis.  Initial assessment (black) and 6-

month assessment (grey) are depicted side by side for each treatment group.  Columns 

labeled with the same letter indicate statistical significance between time points.  
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Figure 4.4: Average peak vertical impulse, corrected for body weight, depicted on the y-

axis, with each treatment group depicted on the x-axis.  Initial assessment (black) and 6-

month assessment (grey) are depicted side by side for each treatment group.   
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Figure 4.5: Averaged delayed gadolinium enhanced magnetic resonance imaging of 

cartilage (dGEMRIC) score for each group depicted on the y-axis.  Each treatment group 

is depicted on the x-axis at initial assessment (black) and 6 month recheck (grey) side by 

side.  
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Chapter 5 

Conclusions 

Current practice of canine ASC of osteoarthritis should be questioned by owners and 

practitioners.  The current intra-articular administration of ASCs could result in 

inconsistent and negative responses in our patients.  We suggest flushing a joint with 

sterile saline prior to administration to provide a less toxic environment for cells, 

however brief that may be.  In vivo response to therapy should be compared between 

dogs that have had intra-articular administration of cells versus those that have had joints 

flushed prior to administration.  Cell dose should also be assessed in clinical trials.  It 

may be that we are under-dosing our patients, and thus not seeing the anti-inflammatory 

effect we would expect.  If a similar effect and response to therapy is seen across groups, 

one would expect that there is a significant trophic effect elicited by ASCs prior to cell 

death.   

While we do not understand the pathology of osteoarthritis in enough detail to understand 

the precise phenotypes that would be most beneficial to provide relief of the disease 

process, there are factors that are recognized as providing benefit that could be targeted 

and selected for with culture, expansion and characterization of ASCs prior to 

administration.  This selection of disease specific criterion could greatly enhance 

response to therapy.  There is still much work to be done to investigate if this variability 

in cell phenotype is most attributable to donor, age, cell source type, or the manipulations 

we apply after harvest.  Availability of easily accessible product should not support 

neglect of understanding mechanisms of action and enhancing our therapeutic potential.  
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Allogeneic stem cell therapy should continue to be closely investigated and developed, as 

this has great potential benefit to understanding the basic scientific questions we should 

be asking, as well as minimizing variability in product, and thus allowing better 

assessment of response to therapy.  Culture conditions of allogeneic stem cells will need 

to be critically evaluated and selected according to their specific application.  We have 

demonstrated that cultured cells are phenotypically different than SVF products.   

We have demonstrated that allogeneic stem cells can be safely used to treat osteoarthritis, 

and they may provide improved therapeutic outcome.  ASC therapy deserves more 

thorough, thoughtful and critical assessments in canine veterinary medicine.  We are 

currently blazing the path for this therapy to be used in a likewise manner for humans, 

and we should take a serious and responsible approach to utilizing it to the best of it’s 

capacity in an appropriate manner.  We recommend additional, controlled clinical trials 

evaluating ASC in an objective manner.   

The field of veterinary medicine has a very unique opportunity to lead by example in the 

regenerative medicine field, benefiting our patients, and hopefully in the future, our 

friends and family members afflicted with similar diseases. Education of the public and 

the rest of the veterinary field to proceed cautiously and thoughtfully is critical to 

maintain this privilege.   
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