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Abstract 

Introduction: This dissertation is focused on the metabolomic and transcriptomic 

changes that occur as a result of carbohydrate prefeeding during hemorrhagic shock and 

trauma within the liver of a porcine model.  The risk of trauma and hemorrhagic shock 

continues to be an important issue in both military and civilian sectors.  As such, we 

explored the impact of a prior fed state upon the overall response to hemorrhagic shock 

and resuscitation.  The primary hypotheses were that changes in metabolism at the 

metabolomic and transcriptomic levels would be dependent upon the fed state.  In 

addition, this thesis explores a more comprehensive analysis of metabolomics datasets to 

standardize analysis and improve overall consistency. 

Materials and Methods: Algorithm comparison was accomplished using six commonly 

applied methods to three synthetic datasets, of different sample sizes, and three openly 

accessible published datasets.  This comparison also incorporated metrics to measure 

consistency of identified features (i.e. stability) to provide further confidence in results.  

Metabolomics analysis was accomplished with nuclear magnetic resonance spectroscopy 

(NMR) and Chenomx software to profile and quantify metabolites in liver extracts.  The 

metabolome was subsequently analyzed with partial least squares discriminant analysis 

(PLS-DA).  Transcriptomics analysis was conducted using next-generation sequencing 

(NGS) technology to employ RNA-sequencing (RNA-seq) on mRNA extracts from liver 

biopsies.  The RNA-seq data was analyzed using typical processing techniques to 

generate a count matrix and subsequently analyzed with the Bioconductor package 

EdgeR. 
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Results: The comparison of algorithms showed that the best algorithm is associated with 

differently structured datasets (e.g. number of features, number of groups, sample size, 

etc.).  Analysis of the liver metabolome revealed changes in carbon energy sources, 

amino acid metabolism, oxidative stress, and membrane maintenance.  Transcriptomic 

analysis revealed changes in carbohydrate metabolism, cytokine inflammation, 

cholesterol synthesis and apoptosis.  In addition, there is evidence of increased 

cytoskeleton reorganization which may correspond to a shrunken, catabolic state which 

provides and anti-inflammatory condition to mitigate cellular damage. 

Conclusion: The response to hemorrhagic shock and resuscitation is altered with respect 

to a fasted or carbohydrate prefed state.  Metabolomics and transcriptomic analyses 

suggest altered metabolic pathways as a result of fed state.  Altered carbohydrate 

metabolism was readily identified thereby confirming both methods were successful.  

Additionally, indications of membrane maintenance that follow cytoskeletal remodeling 

and cellular shrinkage are potentially reflected by 3-Hydroxyisovalerate and sn-Glycero-

3-phosphocholine.  These results provide further evidence for pre-conditioning (e.g. 

altered diet) and hypertonic resuscitation methods to possibly improve patient outcome.  

Further research is required in alternative prefeeding substrates (e.g. protein, lipid, etc.) 

as well as improving the integration of different systems level datasets to understand 

more thoroughly the systemic effects of hemorrhagic shock and resuscitation. 
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I. INTRODUCTION 

 

Hemorrhagic shock and traumatic injury information 

Worldwide, trauma is a leading cause of death for those between 5 and 45 years 

irrespective of demographics
1,2

.  Of these deaths, up to 50% are due to hemorrhagic 

shock.  Patients injured during active military duty are also commonly admitted with 

hemorrhagic injuries
3
.  Furthermore, survival of the initial insult can lead to further 

complications including multiple organ dysfunction syndrome (MODS), which remains a 

predominant cause of late deaths
4
.  Although treatments have improved and trauma care 

has continued to keep pace with an aging population, the overall survival of trauma 

patients remains constant
5
.   

Briefly, hemorrhagic shock is a life-threatening condition resulting from 

inadequate tissue perfusion, followed by activation of the inflammatory cascade and 

changes in metabolic processes.  The reduced blood flow to peripheral tissues results in 

hypoxia and subsequent reperfusion injury
6
.  This decreased volume and available 

oxygen leads to an extensive metabolic cascade.  In brief, the lack of oxygen slows/stops 

oxidative phosphorylation via the electron transport chain and shifts the cells a glycolytic 

state
7
.  Without oxygen as the final electron acceptor, the mitochondria balance 

membrane potential via reversal of ATP synthase thereby using ATP to translocate 

protons across the inner membrane
8
.  This decrease in ATP leads to conversion of 

adenine nucleotides to hypoxanthine and xanthine, substrates for xanthine oxidase which 

serves as another ROS generator
9,10

.  Inflammatory pathways are also activated which are 

promoted by inducible nitric oxide synthase (iNOS).  Furthermore, the large amounts of 
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oxygen returned upon resuscitation result in further ROS via enzymes such as NADPH 

oxidase
11

 and tissue reperfusion damage. 

Metabolic component of hemorrhagic shock 

There are many systemic changes in response to hemorrhagic shock; however, 

this dissertation focuses on the metabolic response of the liver.  The inadequate tissue 

perfusion following hemorrhagic shock leads to decreased oxygen availability to the 

mitochondria resulting in a switch towards anaerobic metabolism.  The liver serves an 

important function as a regulator of metabolism during stressed states.  Initially, the shift 

towards anaerobic metabolism stimulates the liver to increase glycogenolysis and process 

elevated lactate produced in the peripheral tissues.  The liver also provides a major site of 

detoxification and production of alternate metabolic fuel sources including amino acids 

and lipids.   

Of particular interest, the impact of fed state on the hepatic response to 

hemorrhagic shock is evaluated.  Previously, the effect of different fed states on liver 

metabolic processes following injury and hemorrhagic shock were not well known.  To 

elucidate these processes a systems level analysis via metabolomics and transcriptomics 

provide a broad exploration of potential responses. 

Metabolomics  

Metabolomics, briefly defined, is a study of all the low molecular weight 

metabolites that collectively make up the metabolome.  This technique allows a 

comprehensive analysis of the changes within the metabolome and their respective 

correlations with a physiologic response
12

.  One commonly used technique is via nuclear 
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magnetic resonance spectroscopy (NMR) and has been successfully applied towards 

studies of a diverse set of medical studies including pancreatitis, cancer, and diabetes
13,14

.   

Transcriptomics 

Transcriptomics is the study of all the RNA that collectively makes up the 

transcriptome.  The transcriptome provides a global analysis of the biochemical state of 

the organism.  In contrast to metabolomics which provides a picture of the metabolic end 

products, transcriptomics presents what the metabolic response is able to do.  The 

expressed RNA corresponds to proteins that may be actively translated to express a 

particular phenotype of biochemical pathway.  In this manner, one can evaluate the 

‘state’ of the organism at a given time or condition. 

The application of metabolomics and transcriptomics to the study of hemorrhagic 

shock may provide novel insights into the complex metabolic responses that can direct 

future efforts to improve quality of care and reduced mortality. 

Purpose of the dissertation 

 This dissertation focuses on the systems level analysis of the hepatic response to 

hemorrhagic shock and trauma.  It is composed of four chapters of background material 

and three chapters of experimental results.  The second chapter provides information 

regarding known physiologic and metabolic responses of hemorrhagic shock.  As the 

primary focus of this dissertation is on the liver it is addressed in Chapter 3.  Chapters 4 

and 5 provide concise overviews of metabolomics and transcriptomics including common 

methods and analyses.  Given the lack of an objective means to determine the most 

appropriate method to analyze metabolomics data, the first study presented in Chapter 6 

consists of the development of a program to apply systematically multiple accepted 
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methods for the analysis of metabolomics data sets and evaluate performance and 

stability of algorithm performance.  Chapter 7 presents the analysis of the liver 

metabolome in response to hemorrhagic shock and trauma.  Although any ‘omics’ level 

analysis is powerful, each is inherently limited to its position in the biological cascade 

from genes to metabolites.  To acquire a more holistic perspective a transcriptomic 

analysis is subsequently provided in Chapter 8.  In conclusion, Chapter 9 provides an 

initial integration of these two levels of biological expression followed by suggested 

future directions.  
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CHAPTER 2 

 

Hemorrhagic Shock 
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Introduction 

 Hemorrhagic shock often follows traumatic injury characterized by inadequate 

perfusion leading to hypovolemic and hypoxic conditions.  This results in several 

complex metabolic and physiologic processes that take place systemically to help the 

body recover.  This chapter will consist of a brief overview of these metabolic and 

physiologic changes. 

In response to acute hypovolemia, multiple endocrine compounds are released 

including glucagon, cortisol and adrenocorticotropic hormone (ACTH).  In order to 

maintain normal blood pressure angiotensin II and vasopressin are also released to elicit 

vasoconstriction and decrease fluid excretion.  As a consequence of reduced blood flow 

and vasoconstriction, tissues begin to experience hypoxia and must convert to anaerobic 

energy states.  Glucagon helps to provide the increased glucose demand of anaerobic 

glycolysis by inducing hyperglycemia via hepatic glycogenolysis.  However, if the 

duration of shock is extended the glycogen stores become depleted resulting in a 

subsequent hypoglycemic state leading to mitochondrial dysfunction and overall 

decompensation. 

In an effort to restore circulation, reperfusion methods are employed using 

crystalloids (often first choice), colloids, hypertonic saline, and blood transfusions.  

However, this effort to reestablish blood flow and oxygen supply enhances injury and 

aggravates damage at cellular level commonly referred to as ischemia-reperfusion injury.  

Injured cells remain in the hypoxic state and may be unable to restore fully functional 

mitochondria.  This hypoxic condition stimulates the transcription factor nuclear factor 

kappa beta (NF-κB).  Once released from the inhibitory protein IκB, NF-κB translocates 
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to the nucleus where it stimulates production of pro-inflammatory cytokines (e.g. TNF-α, 

IL-1β, and IL-6), chemokines and adhesion molecules
15

.  Evidence suggests that the pro-

inflammatory cytokines, reactive oxygen species, and deranged Ca
2+

 homeostasis elicits 

cell death.  The mechanism of cell death however is also up for debate as indication of 

necrosis and apoptosis are present. In response, a combination theory was developed 

called “necrapoptosis” whereby there are common mechanisms that lead to both forms of 

cell death
16

. 

Ischemia-reperfusion has been extensively studied over the years with many 

improvements in treatment that are applicable to hemorrhagic shock.  One particular 

discovery that has not yet found application is pre-conditioning.  Pre-conditioning is the 

process whereby an organ is exposed to short periods of ischemia.  The applications are 

more easily seen in liver surgery and transplants but not directly applicable for trauma 

induced hemorrhagic shock.  However, this suggests that organs may be stimulated into a 

state that is more prepared to survive a hypoxic episode.  One way this pre-conditioning 

may be administered is a different fed state as characterized by previous studies that 

suggest increased carbohydrates improves survival in rats
17

.  However, recent evidence 

has shown that mouse models poorly mimic human trauma, burns and endotoxemia
18

.  As 

such, the following investigations focus on a porcine model of trauma and hemorrhagic 

shock to reflect more accurately the human response.  

Animal Preparation  

All of our experiments have the same preparation and administration of the shock 

protocol (Appendix A). The experimental protocol was approved by the University of 

Minnesota Animal Use Committee and was conducted in accordance with established 
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guidelines for the treatment of laboratory animals. Male Yorkshire-crossbreed pigs 

(Manthei Hog Farm, LLC, Elk River, MN) weighing 15-20 kg were fasted overnight 

prior to surgery but are allowed water ad libitum.  Two experimental groups were 

utilized: Carbohydrate Prefed (CPF, n = 32) and Fasted (FS, n = 32).  CPF animals were 

given 7cc/kg bolus of Karo Syrup
®
 (mixture of sugars including ~ 15% glucose, maltose, 

fructose and sucrose) diluted with water 1 hour prior to induction of anesthesia.   

The animals were then anesthetized with an intramuscular dose of telazol (Wyeth 

Animal Health, Madison, NJ).  Anesthesia was maintained by an i.v. infusion of propofol 

(2-9 mg/kg, AstraZeneca Pharmaceuticals, Wilmington, England ) and 60% inhaled 

nitrous oxide throughout the experiment. Upon sedation, the pigs were orally intubated 

and ventilated (Servo 900, Siemens-Alema AB, Sweden) to maintain a PO2 of 70-120 

torr and a PCO2 of 35-45 torr (SERVO Ventilator 900C, Siemens, Malvern, PA). 

Peripheral intravenous lines were placed in the surgically exposed right femoral artery 

and right jugular vein. A catheter was placed in the right femoral artery for continuous 

measurement of blood pressure and blood sampling. An introducer (7 French Avanti, 

Cordis Corporation, Miami Lakes, FL) was placed into the right jugular vein and a Swan-

Ganz catheter (5 French, Edwards Lifesciences, Irvine, CA) was placed for 

measurements. To evaluate the status of the animal, we monitored pulmonary artery 

pressure, pulmonary wedge pressure, cardiac output, and mixed arterial blood sampling. 

The measurements are useful in gauging the extent of and severity of the hemorrhage. 

Animals underwent a midline laparotomy, splenectomy, and a Foley catheter was placed 

in the urinary bladder via stab cystostomy.  Under stressful conditions, the spleen is 

capable of contracting, releasing stored blood, and changing the intravascular volume. 
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Because the spleen can sequester 22% of the circulating red cell volume and a similar 

amount of plasma
19

, a splenectomy is imperative to minimize the effect that the spleen 

has on hemostasis. The inferior vena cava (IVC) was cannulated for the controlled 

hemorrhage. After surgical preparation the animals entered a stabilization period until 

plasma lactate levels reach a value of 2.0 mmol/L or less (Instrumentation Laboratory 

Co., Lexington, ME).  

Polytrauma  

As most cases of hemorrhagic shock are caused by trauma we chose to utilize a 

model of polytrauma.  Upon stabilization from surgical preparation, the animals undergo 

a simulated pulmonary contusion from a captive bolt device to create a blunt percussive 

injury.  Hemorrhagic shock was induced by removal of blood via IVC catheter into acid-

citrate-dextrose (ACD) blood bags to obtain a systolic blood pressure (SBP) of 45 to 

55mm Hg (typically ~40% of total blood volume). A liver crush injury was induced using 

a modified Holcomb clamp technique
20

 in the liver parenchyma.  

Resuscitation:  

 Fluid therapy is ideally administered as soon as possible to compensate for 

hypovolemia.  However, certain situations do not facilitate immediate full resuscitation 

such as injuries suffered by soldiers.  A limited resuscitation can be administered during 

transportation to additional medical assistance.  To simulate such a situation, after 45 

minutes of shock animals received lactated Ringer’s fluid given as 20 cc/kg intravenous 

(IV) boluses to maintain a systolic blood pressure greater than 80 mmHg for one hour of 

limited resuscitation.  Afterwards the animals underwent a full resuscitation protocol for 

the following 24 hours. This resuscitation included fluid, shed blood, and ventilator 
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support in a protocolized fashion.  Animals were resuscitated to standard clinical 

endpoints of systolic blood pressure (90 mmHg), urine output (1 cm3/kg/h), and 

hemoglobin (≥6 g/dL) for 20 h.  Throughout the shock and resuscitation periods, animals 

are maintained on the ventilator and received an adjusted-dose of propofol and nitrous 

oxide to maintain an appropriate level of sedation and comfort as evaluated by clinical 

examination and a bispectral index (BIS) monitor.  After the resuscitation period, 

surviving animals were extubated and sent to recovery and subsequently euthanized. 

Sample Collection 

At several time points throughout the experiment, liver biopsies were taken from 

the periphery of the liver ranging in weight from 0.2 to 0.6 grams.  Biopsies were flash 

frozen in liquid nitrogen and stored at -80°C until preparation for further analysis.  

Biopsies were taken at the following timepoints: baseline after the animal stabilized from 

instrumentation (B), 45 minutes after hemorrhage (S45), 2, 8, and 20 hours after full 

resuscitation (FR2, FR8, FR20).  This full protocol is presented diagrammatically in 

Appendix A.  In this manner, an overall response including prior to and throughout the 

insult would be measured. 
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CHAPTER 3 

 

The Liver 
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Introduction 

 In Chapter 2, the physiologic and metabolic responses to hemorrhagic shock were 

discussed in a systemic context.  The majority of this dissertation focuses on metabolites 

and genes expressed in the liver.  As such, this chapter will provide a general overview of 

the response of liver to hemorrhagic shock and trauma.  The liver is a complex organ 

with a wide range of functions that are critical for survival.  To date the numerous and 

intricate functions of the liver cannot be replicated for any definite length of time in the 

event of liver failure.  To my knowledge, there are no major differences between human 

and porcine liver beyond the number of lobes (humans = 4, pigs = 5).  As such, this 

chapter and subsequent discussions assume the porcine liver displays the same functions 

and metabolic pathways as humans. 

 Both lipid synthesis and degradation processes take place in the liver.  This 

includes cholesterol synthesis, lipogenesis and lipoprotein production.  Bile salts are also 

produced via CYPs-mediated oxidation of cholesterol.  These bile salts are an important 

component of bile to help emulsify lipids and fat-soluble vitamins (e.g. Vitamin K) for 

digestion.  Most of the synthesized bile is stored in the gall bladder for later use.  

Among the most well studied and important functions of the liver is glucose 

regulation.  When glucose levels are high and the body does not require further energy 

production, glucose is typically converting into glycogen.  The liver serves as the primary 

glucose reservoir for most peripheral tissues and likewise a primary location for 

glycogenolysis and gluconeogenesis during periods of starvation or physiologic stress.  

The regulation of these processes consists of multiple different stimuli.  Glycogenic 

stimuli include insulin, glucocorticoids, parasympathetic impulses and gluconeogenic 

precursors (e.g. fructose, amino acids).  Glycogenolysis is primarily regulated by 
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glucagon, noroadrenaline and ATP but also stimulated by adenosine, nucleotides and 

nitric oxide 
21

. 

Detoxification of both endogenous molecules (e.g. ammonia, steroid hormones) 

and exogenous compounds (i.e. antibiotics) is perhaps one of the most important 

functions of the liver.  The process of detoxification is typically described in two phases 

known as “Transformation/Modification” and “Conjugation”
22

; however a third phase is 

added known as “Transport”.  In essence, the enzymes of phase I, mostly of the 

cytochrome P450 (CYPs) family, begin detoxification of lipid soluble compounds by 

converting them into water soluble forms for phase II detoxification. These CYPs require 

oxygen in order to function resulting in ROS byproducts.  These free radicals are 

mediated by antioxidants such as glutathione and vitamin C; however, excessive 

production can damage liver cells.  This response may also be dependent upon diet as 

alternate diets in mice have shown an altered antioxidant response in the liver
23

.  Phase II 

enzymes further increase solubility and decrease toxicity by conjugating a secondary 

molecule.  Unlike phase I, phase II enzymes consist of several families including UDP-

glucouronlytransferases (UGTs), Glutathione S-transferases (GSTs), Sulfotransferases 

(SULTs) and amino acid conjugating enzymes
24

.  Phase III enzymes consist of 

transporters belonging to the ABC transporter family.  Once the toxin conjugates have 

been formed these transporters move them into the bile for excretion
25

. 

Response to Hemorrhagic Shock and Resuscitation 

 Hemorrhagic shock induces the release of glucagon, catecholamines and 

glucocorticoids which rapidly increase liver glycogenolysis and gluconeogenesis causing 

hyperglycemia.  This is typical of many other forms of trauma including sepsis and burns 
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where energy expenditure is increased resulting in a hypermetabolic state.  The 

hyperglycemic state is followed by a rapid increase in insulin to absorb the available 

glucose in peripheral tissues as well as suppress hepatic gluconeogenesis and 

glycogenolysis.  However, both peripheral tissues and the liver develop insulin resistance 

which contributes to extended hyperglycemia.  Although the mechanisms for insulin 

resistance are not fully understood, evidence suggests altered insulin regulating pathways 

such as the PI3-kinase-Akt pathway
26

.  This hyperglycemic state does abate during late 

stages of shock when hepatic glycogen is exhausted leading to a subsequent 

hypoglycemic state
27

. 

 In addition to altered glucose regulation, evidence suggests a relationship between 

mitochondrial dysfunction is common following trauma and hemorrhagic shock
28

 and 

correlated with irreversible pathologic damage
29–31

.  Decreased hepatic mitochondrial 

function results in decreased ATP and subsequently increased degradation products. 

These degradation products require removal and may overwhelm the capacity of the 

hypoxic liver resulting in liver failure and toxin buildup.  Treatments such as the addition 

of pyruvate and antioxidants have been suggested as methods to improve outcome
32–34

.  

In addition, previous studies have suggested the use of insulin and glucose may improve 

outcome in rats
35

 however there are no studies that apply this induced carbohydrate state 

in larger mammals.  This is explored in Chapters 7 and 8. 

Several pathways exist to generate ROS which under normal conditions are 

mediated by endogenous mechanisms.  However, ischemia-reperfusion injuries can result 

in ROS levels that exceeds the liver capacity by stimulation of Kupffer cells, the primary 

source of vascular reactive oxygen species during the reperfusion period
36

.  Furthermore, 
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macrophages, which facilitate removal of apoptotic bodies, and pro-inflammatory 

cytokines (e.g. TNF-α, IL-1, interferon-γ) also generate and induce more ROS 

respectively
37,38

.  As a result, antioxidant strategies have been pursued to address the 

oxygen stress of hepatocytes.  These studies have included stimulation of increased 

glutathione, superoxide dismutase and heat shock proteins in ischemia-reperfusion 

models
39

.  Strategies to remove the inflammatory oxidant stress via depletion of Kupffer 

cells has also been shown to effective
40

. 

 Despite the advancements in understanding the molecular mechanisms of the liver 

following ischemia and reperfusion much is left to be discovered.  Furthermore, most of 

the previous research has been applied to small animal models which may not accurately 

reflect human physiology.  Of interest herein, there have been few investigations on the 

impact of diet on the response of the liver to hemorrhagic shock and trauma.  To explore 

this question, two systems level approaches, metabolomics (Chapter 4) and 

transcriptomics (Chapter 5), will be employed to acquire a more holistic picture of 

potentially altered metabolic pathways. 
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CHAPTER 4 

 

The Metabolomics Process 



17 
 

Introduction 

 The complex metabolic changes and the physiology of the liver were discussed in 

the previous chapter.  In this chapter, it will be presented that metabolomics provides an 

ideal tool towards investigating the hepatic response to hemorrhagic shock and the impact 

of a carbohydrate fed state.  This chapter will provide a concise overview of the field of 

metabolomics and how one can identify and quantify metabolites from collected tissues.  

This method will be applied to the porcine hemorrhagic shock and traumatic injury in 

Chapter 7. 

In essence, the objective of any ‘omic’ science is the global, non-targeted 

quantification of the biomolecules comprising a particular level of organization from cell 

and tissue, to an entire organism. This effort initially began with identifying the genetic 

structure of organisms (genomics) and subsequently identifying the corresponding gene 

transcripts (transcriptomics – Chapter 5). The study of the translated protein products has 

also continued to be developed with potential for post-translational modifications.  In the 

end, the molecular cascade leads to the regulation of small molecule metabolites. The 

high-throughput profiling of all of these metabolites within a single sample constitutes 

the study of metabolomics
12

. The quantitative analysis of a large array of metabolic 

constituents (metabolome) provides a holistic, or ‘systems level’, view of the biochemical 

state of an organism. This potentially allows for the exploration of altered metabolic 

pathways within a given physiologic state.  This makes metabolomics an ideal method for 

exploring the complex changes elicited by hemorrhagic shock and trauma.   

Metabolomic experiments utilize various analytical methods such as gas or liquid 

chromatography, mass spectrometry (MS), or nuclear magnetic resonance spectroscopy 
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(NMR). Each of these methods separately or in combination is capable of quantifying 

metabolites in biological samples. While each method possesses advantages and 

disadvantages, the ultimate product is an extremely large and complex dataset wherein 

the number of features (e.g. metabolites) often far outnumbers the samples.  These types 

of datasets are commonly referred to as ‘high-dimensional’.  These datasets require the 

use of multivariate analysis techniques such as partial least squares discriminant analysis 

(PLSDA) and random forest (RF).  Despite the availability of such methods, there is 

currently no recommendation on when to use which method.  This problem will be 

addressed in Chapter 6. 

Our metabolomics experiment utilizes 1H-NMR and was designed to evaluate if a 

carbohydrate fed state alters the hepatic response to hemorrhagic shock and trauma.  This 

subsequently allows an insight into metabolic processes, as a consequence of a fed state, 

that are associated with hemorrhagic shock and its complications. This chapter discusses 

the overall metabolomic process including NMR, metabolite quantification, and 

statistical analysis.  

NMR Metabolomics 

Proton NMR spectroscopy is particularly well suited for untargeted metabolomic 

analysis as the large number of small molecules (100’s to 1000’s) within a biological 

sample can be quantified simultaneously
12

. NMR spectroscopy has be used successfully 

to analyze the metabolome of multiple biofluids and tissues including urine
13,41,42

, 

serum
43,44

, and tissue extracts
45,46

.  Additionally, with advances in solid state NMR 

analysis, metabolomics is now being applied on intact tissues to study various medical 

problems including breast cancer
47

, skeletal muscle disease
48,49

 and pancreatic cancer
50,51

. 
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While mass spectrometry (MS) is known to be more sensitive than NMR 

spectroscopy
52,53

, NMR is an accepted metabolomics platform with some distinct 

advantages over MS.  NMR can be more cost-effective and easier to automate than MS, 

making it preferable for high-throughput studies
53

. The required sample preparation for 

MS analysis can cause metabolite loss, while NMR can measure intact biological samples 

in both liquid and solid states with minimal sample preparation. Finally, NMR is non-

selective and capable of simultaneously detecting a wide range of small molecules, 

whereas MS may require more than one sample preparation or platform to cover the 

range of small molecules in a biological sample
52,54,55

.  

Sample collection and preparation 

The first step to quality NMR acquisition is proper sample collection. In our 

experiments, liver is the tissue of choice and the remainder of the chapter will be focused 

tissue metabolite extraction. Immediately after collection, the degradation process has 

begun.  It is imperative to slow the tissue degradation process as much as possible to get 

an accurate picture of the metabolic state.  Tissue biopsies are typically flash frozen in 

liquid nitrogen and stored at -80°C until future metabolite extraction. 

There are also multiple metabolite extraction techniques each with advantages and 

disadvantages as well as target metabolite group
45

.  The specific method chosen is 

dependent upon the goals of the experiment (e.g. profile as many metabolites as possible, 

extract only hydrophobic metabolites, etc.).  Once a method has been decided, the precise 

and consistent handling of the tissue is important to yield the most consistent and clear 

spectra. Multiple factors may affect the quality of the NMR spectra including the pH, 

salinity, temperature, and concentration of metal ions in the sample.  These changes 
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affect the sensitivity of NMR, reduce the quality of data, and increase the time required to 

identify and quantify the chemical signatures in the spectra.   

NMR spectroscopy theory 

 NMR is based upon exploiting the inherent magnetic properties of nuclear 

particles.  By placing the nuclei in a strong magnetic field the orientation is fixed along 

the same axis as the applied field.  These nuclei are then pulsed with a radio frequency of 

the same frequency as the specific nuclei precession (i.e. rotation rate about the axis).  

This causes the magnetization vector of the nuclei to turn orthogonal to the primary axis.  

Because of the constant magnetic field the nuclei begin to transition back towards 

primary axis while continuing to precess.  This results in the magnetic vector spiraling 

around the primary axis thereby inducing an electrical signal that is received by the radio 

frequency coils to be subsequently interpreted by a computer resulting in the observed 

spectra (Figure 1). 

 

Figure 1 – Representative 
1
H-NMR spectra 
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 Each of the elemental nuclei possesses its own resonant frequency determined by 

the applied magnetic field of the NMR.  This resonant frequency may be further modified 

by other surrounding nuclei which alter the magnetic field applied (i.e. shielding).  This is 

what allows different compounds to possess different resonant frequencies.  To interpret 

these frequencies, the chemical shift of a compound is calculated as a reference to a 

known internal standard.  The chemical shift, in parts per million (ppm), is set at 0 for the 

internal standard.  The observed chemical shift varies between compounds facilitating 

identification (i.e. compound fingerprinting).  In this manner, many different molecules 

can be identified simultaneously without bias, provided the compounds all contain the 

specific nuclei being analyzed (e.g.
`1

H, 
13

C, etc.).  This provides an advantage of mass 

spectrometry whereby different ionization properties of compounds can affect detection 

and quantification. 

Quantification 

Several techniques are utilized to preprocess the data in preparation for large 

statistical analysis. With raw NMR spectra it is necessary to align, phase and correct the 

baseline in order to optimize the spectra for accurate quantification of the NMR chemical 

signals.  An internal standard of known concentration must also have been added to the 

sample prior to NMR acquisition.  The resulting preprocessed spectra are then imported 

in Chenomx NMR Suite 7.5 (Alberta, Canada). Once imported, Chenomx can conduct 

multiple types of analysis including binning and targeted profiling on the imported 

spectra
56

. We elected to utilize targeted profiling which quantifies individual metabolites 

relative to the internal standard (Figure 2). Compound identifications are based on the 
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human metabolome database (HMDB), spiking experiments, published literature, and 

Chenomx NMR suite version 7.5 chemical signatures.  

 

Figure 2 – Example of quantitative profiling a peak with Chemomx. 

Statistical Analysis 

Data Pre-treatment  

Biochemical processes have a large amount of variation.  Some changes may need 

to be very large to elicit a response whereas small changes may also result in physiologic 

changes.  To account for these variations, data pre-treatment can be used to adjust the 

data to emphasize the important biological implications. One common pre-treatment 

method to accomplish this is scaling the data.  In our experiments we utilize the 

Autoscaling method (i.e. unit variance scaling) which gives equal importance to all 

metabolites despite several orders of magnitude difference in their concentrations. There 

are other scaling methods such as Pareto and Vast but the Autoscaling method has been 

shown to perform better for explorative analyses
57

. 
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Data Analysis  

There are many ways to analyze metabolomics datasets including univariate and 

multivariate statistical techniques. Univariate analyses may be conducted with t-tests, 

analysis of variance (ANOVA), and/or regression.  However, repeatedly applying a 

univariate test rapidly increases the Type I error rate leading to potential false positives.  

Corrections such as Bonferroni and Benjamini-Hochberg False Discovery Rate decrease 

Type I error but also increase Type II errors increasing the risk of overlooking 

information.  Multivariate statistics, on the other hand, were developed to analyze 

multiple variables simultaneously thereby omitting the need for subsequent corrections.  

Multivariate methods are diverse and the field continues to develop alongside the 

expansion of ‘omics’ investigations.  As a consequence, there are several methods that 

are utilized by different labs.  Among the most commonly used methods are partial least 

squares discriminant analysis (PLSDA), random forest (RF), gradient boosting machines 

(GBM), support vector machines (SVM), regularized generalized linear models 

(GLMNET), and predication analysis of microarrays (PAM).  Collectively, these are 

‘supervised’ methods, wherein the classification information (e.g. treatment, control, etc.) 

is incorporated into the development of the classification model.  Although each method 

is an effective classification algorithm previous comparisons of algorithms in gene 

expression experiments report that different algorithms provide improved accuracy
58

.  

However, an extrapolation of these prior conclusions to metabolomics data would be 

premature as there is no single method that is established to evaluate algorithms applied 

to metabolomics data. This problem is addressed in Chapter 6 with the development of a 

novel, open-source program for the systematic comparison of algorithm performance. 
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CHAPTER 5 

 

The Transcriptomics Process 
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Introduction 

The complex metabolic changes and the physiology of the liver and the potential 

application of metabolomics have been discussed in the prior chapter.  In this chapter, it 

will be presented that transcriptomics provides another excellent tool towards 

investigating the impact of a carbohydrate fed state on the hepatic response to 

hemorrhagic shock.  This chapter will discuss the field of transcriptomics, experimental 

design and bioinformatics analysis.  This method will be applied to the porcine 

hemorrhagic shock and traumatic injury model in Chapter 8. 

 Transcriptomics experiments utilize either microarrays or next generation 

sequencers. Each of these methods is capable of quantifying RNA transcripts in 

biological samples; however, microarrays are beginning to be replaced by RNA-

sequencing (RNA-seq) for multiple reasons.  Microarrays require a genomic sequence of 

the organisms and the transcripts to be physically plated.  Although high-throughput, this 

has several limitations including a need for higher amounts of purified RNA, limited 

ability to distinguish between isoforms, and high background noise.  Furthermore, the 

expression level determined by RNA-seq of each RNA unit is measured by the number of 

sequenced fragments that map to the transcript, which is expected to correlate directly 

with its abundance level.  As a consequence, the expression signal of a transcript 

measured by RNA-seq is limited by the sequencing depth and is dependent on the 

expression levels of other transcripts in contrast to microarrays probe intensities which 

are independent of each other
59

.  This, as well as other technical differences, has 

motivated a growing number of statistical algorithms that implement a variety of 

approaches for normalization and differential expression (DE) detection
60

. 
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Next generation sequencing (NGS) technology improvements and reduced costs 

has facilitated the analysis of gene expression levels and is currently being applied to 

complex medical investigations such as Alzheimer’s Diesease
61

.  RNA-seq is a powerful 

method whereby the identification of gene isoforms, translocation events, nucleotide 

variations and post transcriptional base modifications become possible in a high-

throughput manner
59

.  This potentially allows for the exploration of altered physiologic 

pathways within a given pathologic state.  This makes transcriptomics a powerful 

technique for exploring the complex changes elicited by hemorrhagic shock and trauma.   

These ‘high-dimensional’ datasets require further processing in order to use the 

RNA sequence reads.  If the model organism has a sequenced genome the reads may be 

aligned and mapped to a reference genome otherwise the reads must be assembled de 

novo.  Once the reads have been identified subsequent multivariate analysis can be 

applied for DE.  There are multiple different tools to analyze these datasets including 

commercial and open-source that are continually being improved and compared
60,62,63

.  

Among the most commonly used is the open-source edgeR bioconductor package
64

.  This 

package uses empirical Bayes estimation and exact tests based on the negative binomial 

distribution, which has been shown to best approximate RNA-seq distributions.  It also 

has the capacity to create design matrices to incorporate multiple factors including time 

into the model. 

Transcriptomics via RNA-sequencing 

RNA Sequencing Platforms 

 At the start of an RNA-seq experiment a sequencing platform must be selected.  

There are several next generation sequences (NGS) available
65

.  Most platforms now use 
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sequencing-by-synthesis technology but differ in the use of a polymerase or ligase.  

Platforms also differ by either sequencing single molecules or multiple identical copies of 

a molecule (i.e. ensemble).  Single molecule sequencing (SMS) platforms avoid the 

amplification via PCR thereby providing a direct reflection of RNA expression but 

possess an inherently high error rate.  The non-SMS platforms, such as Illumina and 

SOLiD, have a very low sequencing error rate but have higher numbers of mismatches.  

Additionally, non-SMS platforms offer increased ‘sequencing depth’ thereby facilitating 

detection of low expressed transcripts
66

.   

These different platforms provide data that varies and changes how it can be 

interpreted.  Reads generated must be assembled in order to identify transcripts.  Longer 

reads facilitate accurate assembly.  Roche 454 and PacBio provide long reads (>500 nt), 

however, the paired end sequencing provided by Illumina allows increased nucleotide 

length as well (few hundred nt)
66

.  For our experiments, we have selected the Illumina 

platform utilizing the paired end sequencing.  This provided a trade-off wherein a very 

low error rate could be maintained while having medium length reads relative to long 

reads of Roche 454 and PacBio.  This facilitates the exploratory nature of our experiment 

to investigate possible perturbations to hemorrhagic shock as a result of fed state.  The 

remainder of this section will focus on preparation for the Illumina platform.   

Sample Preparation 

The first step to quality RNA-sequencing is proper sample collection. In our 

experiments, liver is the tissue of choice and the remainder of the chapter will be focused 

tissue metabolite extraction. Immediately after collection, the degradation process has 

begun.  It is imperative to slow the tissue degradation process as much as possible to get 
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an accurate picture of the metabolic state.  Tissue biopsies are typically flash frozen in 

liquid nitrogen and stored at -80°C until future metabolite extraction.  

There are a few different extraction methods for RNA purification each with 

advantages and disadvantages.  The two most common methods are the acid guanidinium 

thiocyanate-phenol-chloroform (AGPC) and the silica column based method.  Although 

each method is acceptable for several experiments, the specific experimental 

requirements may suggest a specific method.  If speed and ease of use is desired, the 

silica column method is often employed whereas if higher purity is required the AGPC 

method is used.  For our experiment, the rapid silica based column, provided by Qiagen 

(Qiagen, Chatsworth, CA), provided satisfactory RNA quality and facilitated rapid 

analysis of our samples. 

Library Preparation 

 In order to sequence the extracted RNA it must be converted into molecules that 

can be sequenced by the specific sequencer.  For most technologies, including Illumina, a 

complementary DNA (cDNA) library is generated.  This method facilitates the adaptation 

of previously developed genomic tools to sequence DNA molecules and has been widely 

successful in transcriptomic studies
67

.  First mRNA is further purified by exploiting the 

poly-A tails using oligo-dT beads.  The Illumina platform requires shorter reads, so the 

purified mRNA is fragmented to suitable lengths.  These fragments are subsequently 

converted into cDNA by a reverse transcriptase.  In this manner, cDNA contains all 

expressed genes but omits non-coding DNA (ncDNA) sequences such as introns, 

enhancers, or other regulatory elements.  Adapters are subsequently bound and ligated to 

cDNA to allow sequencing. 
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Sequencing by Synthesis (SBS) 

 Sequencing by synthesis is the most common method for RNA-seq and is 

employed by Illumina.  In brief, the fragmented DNA is bound by oligonucleotide 

ligation adaptors.  These oligos facilitate hybridization to the surface of the ‘flow cell’, 

which is lined with the complementary oligos for the adapters.  The DNA molecules are 

amplified by bridge amplification.  A sequencing primer is subsequently bound to the 

opposite end of the molecules.  Sequencing proceeds with nucleotides that were 

developed to emit a specific color when excited by a laser which can be subsequently 

recorded to identify the bases.  This proceeds for a user-defined number of cycles 

resulting in large volumes of data which must be assembled and quantified. 

Data Analysis 

Mapping/Alignment 

 As previously mentioned, if the model organism has a previously sequenced 

genome the transcriptome can be mapped upon it.  This ‘reference-based’ (i.e. ab initio) 

mapping requires an alignment program to map cDNA reads to a genome.  There are 

several programs, commercial and open source, that are available to accomplish this 

analysis including BLAT
68

, TopHat
69

, SpliceMap
70

, MapSplice
71

, GSNAP
72

, and 

QPALMA
73

.  We selected TopHat for read mapping as it is a very fast mapper and one of 

the most commonly used open-source alignment programs
66

. 

Assembly 

 Once the reads have been mapped it becomes necessary to assemble them into 

transcription units.  This process is known as transcriptome assembly or reconstruction 

and is a difficult computational task.  Difficulties include the wide range of gene 
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expression levels (several orders of magnitude), genes originating from mature mRNA 

and incompletely spliced RNA complicate transcript identification, and short reads make 

it challenging to determine the correct isoform of a given read
74

.  When a reference 

genome is available, genome-guided methods are often used; however, de novo methods 

such as Velvet
75

 and ABySS
76

 are also available for non-model organisms.  Of the 

genome-guided methods we selected Cufflinks
77

, an assembly program developed by the 

same group which developed TopHat.  Cufflinks does not require extensive amounts of 

RAM and has improved detection of lower expressed transcripts than similar programs 

like Scripture
78

.  

Estimating Expression Levels 

 Quantifying expressing of transcripts is often the goal of transcriptomics 

experiments.  There are multiple levels of variation that impact the expression of reads 

including fragmentation (resulting in longer transcripts generating more reads) and 

fluctuations across samples.  As such, RNA-seq data requires normalization of read 

counts in order to interpret the data appropriately.  One common metric is the reads per 

kilobase of transcript per million mapped reads (RPKM) which normalizes a transcript’s 

count by the length and number of mapped reads in the samples
79

.  With respect to pair-

end sequencing, the similar fragments per kilobase of transcript per million mapped reads 

(FPKM) accounts for dependency between paired-end reads and is often the metric of 

choice
77

.  However, when comparing the same genes between samples the effect of gene 

length cancel out as the same gene will be affected the same way.  Furthermore, this 

standard scaling approach can bias estimates of differential expression in comparison to 

more general normalization procedures
80

 to account for different library sizes.  Raw 
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counts can be estimated with the HTSeq python script 

(http://www.huber.embl.de/users/anders/HTSeq/) and subsequently normalized.   

Differential Expression 

 Once reads have been quantified it is important to determine what is different 

between conditions.  The count-based data of RNA-seq can be modeled according to the 

Poisson distribution
81

.  However, biological variability is always a concern in high-

dimensional studies and this is not readily accounted for using the Poisson distribution.  

As a result, further methods have been developed that facilitate analysis of 

transcriptomics data sets with a small number of replicates.  These include Cuffdiff
77

 as 

well as R/Bioconductor packages DESeq
82

 and EdgeR
64

.  We have selected edgeR for 

differential expression because of the design matrix capability to incorporate repeated 

samples in addition to group comparisons (see Chapter 8). 

Bioinformatics Analysis 

 Once a list of interesting genes has been determined the goal shifts towards 

biological interpretation.  This is still a difficult and continuously developing area of 

bioinformatics.  Approaches can be divided into two general categories, functional and/or 

pathway analysis.  Functional analysis can be broadly defined as the study of overall 

functions.  This can include such broad categories as cellular processes to specific 

functions such as actin-myosin contraction.  Pathway analysis is sometimes used loosely 

when analyzing datasets; however, in keeping with the original idea pathway analysis is 

the study of up or down-regulated biological pathways such as glycolysis. 

In essence, most enrichment analysis methods utilize cumulated biological 

knowledge in a public database such as Gene Ontology
83

 or the Kyoto Encyclopedia of 
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Genes and Genomes (KEGG)
84

.  Dozens of methods, commercial and open-source, have 

been developed for both functional and pathway analysis including, but not limited to 

DAVID
85

, GSEA
86

, Ingenuity Pathway Analysis (Ingenuity Systems), and Onto-

Express
87

.  The details of each method exceed the scope of this thesis and the interested 

reading is referred to these comprehensive reviews
88,89

.    We have selected DAVID 

(Database for Annotation, Visualization and Integrated Discovery) because the analysis 

provides both functional annotations of each gene (Functional Annotation Table) and of 

each list of genes (Functional Annotation Clustering) to provide functional information.  

Additionally, the Functional Annotation Clustering tool consolidates redundancies in 

gene ontology categories.  In this way, DAVID provides a comprehensive exploratory 

analysis of our data (see Chapter 8).  
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CHAPTER 6 

 

Optimal Algorithm for Metabolomics Feature Selection and Classification varies by 

Dataset   
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ABSTRACT 

Metabolomics, the unbiased and systematic identification and quantification of all 

metabolites in a biological system, is increasingly applied towards identification of 

biomarkers for disease diagnosis, prognosis and risk prediction.  Applications of 

metabolomics extend across the health spectrum including Alzheimer’s, multiple forms 

of cancer, diabetes, and trauma.  Despite the continued interest in metabolomics there are 

numerous techniques for analyzing metabolomics datasets with the intent to classify 

group membership (i.e. Control or Treated).  These include Partial Least Squares 

Discriminant Analysis, Support Vector Machines, Random Forest, Regularized 

Generalized Linear Models, and Prediction Analysis for Microarrays.  Each classification 

algorithm is dependent upon different assumptions and can potentially lead to alternate 

conclusions.  This project seeks to conduct an in depth comparison of algorithm 

performance on both simulated and real datasets to determine which algorithms perform 

best with supporting theoretical justification.  Three simulated datasets were generated to 

validate algorithm performance and mimic ‘real’ metabolomics data: (1) independent null 

dataset (no correlation, no discriminatory variables), (2) correlated null (no 

discriminating variables), (3) correlated discriminatory.  This comparison is also applied 

to 3 open-access datasets including two NMR and one MS dataset.  Performance will be 

evaluated based on the Robustness-Performance-Trade-off (RPT) incorporating a balance 

between model accuracy and feature selection stability.  We also provide a free, open-

source R Bioconductor package (OmicsMarkeR) that conducts the analyses herein.  The 

proposed work provides an important advancement in metabolomics analysis and helps 
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alleviate the confusion of potentially paradoxical analyses thereby leading to improved 

exploration of disease states and identification of clinically important biomarkers.  
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INTRODUCTION 

Metabolomics, similar to the other two common ‘omics’ approaches (i.e. 

transcriptomics and proteomics), is defined as the unbiased and systematic identification 

and quantification of all metabolites in a biological system.  Such data is most commonly 

acquired via Nuclear Magnetic Resonance spectroscopy (NMR) or Mass Spectrometry 

(MS).  The growing field of metabolomics has been increasingly applied towards 

identification of biomarkers for disease diagnosis, prognosis and risk prediction.  

Applications of metabolomics extend across the health spectrum including Alzheimer’s
90

, 

multiple forms of cancer
91–93

, diabetes
94

, and trauma
95

.   

Following the initial pre-processing (e.g. peak picking, deconvolution, integration, 

etc.), the dataset must ultimately be analyzed to typically classify two or more 

classes/conditions in addition to identifying the most important metabolites for the 

discrimination (e.g. biomarker studies).  The availability and use of multivariate 

approaches is rapidly becoming critical with decreased cost and increased access to high-

throughput metabolomics platforms including NMR and MS resulting in “large p, small 

n” problems (i.e. many more variables than samples).  The common univariate tests 

become grossly underpowered to assess every feature and require a secondary model if 

classification is desired.  The restrictive assumptions of univariate tests (e.g. normality) 

are typically avoided with more sophisticated multivariate and machine learning 

algorithms.   

But despite the continued interest in metabolomics there is no standard statistical 

approach resulting in the use of numerous techniques that vary between experiments 

often with little or no justification.  Common methods include Partial Least Squares 
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Discriminant Analysis (PLSDA), Lasso and Elastic-Net Regularized Generalized Linear 

Models (GLMNET), Support Vector Machines (SVM), Random Forests (RF), Gradient 

Boosting Machines (GBM), and Prediction Analysis for Microarrays (PAM).  Although 

each method is an effective classification algorithm, previous comparisons of algorithms 

in gene expression experiments report that different algorithms provide improved 

accuracy
58

.  

 Limited algorithm comparisons in metabolomics studies (i.e. comparing two or three 

methods) often measure performance solely on accuracy and neglect feature selection 

stability.  Even though an analysis reports high accuracy, repeating the biomarker 

discovery procedures can result in different feature subsets even within the same 

datasets
96–98

.  Therefore, to determine which algorithms perform optimally must be 

evaluated with regards to both feature selection stability and overall classification 

accuracy.   

 In this work, we evaluate the 6 aforementioned classification algorithms 

performance and stability on both in silico and experimentally acquired datasets.  

Metabolomics datasets are inherently multivariate with both independent and 

multicollinear variables in addition to possessing a mix of Gaussian and non-Gaussian 

distributions.  To evaluate algorithm performance on such datasets it is necessary to 

generate standardized datasets that mimic true metabolomics data and possess known 

results as a benchmark.  Furthermore, an application to previously acquired datasets from 

multiple platforms with previous results is desired. 

METHODS 

Datasets 
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Although metabolomics has been more commonly used there is no standard 

dataset with known results for use in evaluating current or developing algorithms.  This 

necessitates the production of a simulated datasets that accurately mimic typical 

metabolomics datasets from both NMR and MS.  This requires the perturbation of 

normality in multiple variables and inclusion of multicollinearity as is typical of 

metabolite distributions and relationships.  It is also necessary to determine the 

performance of algorithms when examining the null condition wherein there is no 

difference between conditions.  Therefore, we propose to generate three simulated 

datasets (null independent, null correlated, and correlated discriminatory) to analyze 

algorithm performance that may also be used by others for further performance 

evaluations.  This will be repeated twice for matrices of both NMR and MS scale as the 

number of resolvable features between the two techniques can be an order of magnitude 

as NMR typically can resolve 50-75 metabolites whereas MS can resolve 100’s to 1000’s 

of metabolites
99

.  Although exceedingly large datasets are possible with in silico data we 

chose to select sample sizes that may more accurately reflect empirical datasets given the 

limits from costs and/or sample availability. Low and high sample sizes were set at 25 

and 50 samples per group respectively.  Although these are still high for many 

applications, this allows the use of leave k-fold out cross-validation.  For very small 

datasets one may use leave-one-out cross-validation or the option to forgo validation, if 

appropriate parameters are known, is available (optimize = FALSE). 

Simulated Datasets 

1. Null:  Simulated data will be generated with the create.random.matrix function as 

described in Wongravee et. al
100

 with the following noted modifications.  The initial 
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dataset will be generated with random numbers from a normal distribution, each 

consisting of N samples (nsamp, 25/50 per group) and Y variables (nvar, NMR = 50, 

MS = 1000).  The normal distribution will be perturbed and samples assigned to 

groups of equal numbers.  We chose to use an alternate numbers of samples and 

variables to represent more accurately numbers more commonly seen in the literature. 

2. Null Correlated:  To mimic ‘real’ metabolomics datasets, correlations will be induced 

for the second dataset with the create.corr.matrix function.  Blocks of variables of 

size b will be randomly assigned and have values replaced with correlated values 

derived from the first column.  We elected to incorporate blocks of size 1 as the 

smaller metabolomics datasets in NMR possess independent variables.  This induced 

correlation will be perturbed to more accurately represent real data.  Derived 

correlation coefficients will be compared to real metabolomics datasets to validate the 

method. 

3. Discriminatory:  To facilitate discriminatory analysis, D variables (NMR = 10, MS = 

20) will be randomly induced to be discriminatory with the create.discr.matrix 

function.  A discriminatory index (l) will be selected and for each variable D a 

random number between –l and l will be added to one group and subtracted from the 

other. 

Real Datasets 

NMR datasets include a binary (i.e. 2 groups) urine dataset analyzing cachexia
101

 

and multi-class (i.e. 4 groups) rumen fluid dataset investigating the impact of altered diets 

of cows
102

.  The MS explores potential biomarkers of Hepatocellular Carcinoma in serum 
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samples
103

 and was accessed from the open source metabolomics data repository 

Metabolights
104

 accession number MTBLS19. 

Classifier and Feature Selection Algorithms 

1. Partial Least Squares Discriminant Analysis (PLSDA) 

Partial Least Squares Discriminant Analysis is a dimension reduction technique 

analogous to principal component analysis.  The algorithm focuses on maximizing the 

variance of the dependent variables explained by the independent variables
105

.  It is 

robust to multicollinearity, missing data, and skewed distributions
106

.  Feature selection is 

accomplished by weighting the sum of squares of the variable weights known as variable 

importance of projection (VIP).  Feature selection is accomplished when features are 

ranked with respect to VIP scores to denote important variables.  Model derived features 

will be selected as those with a VIP score >= 1.0.  PLSDA is commonly used in 

metabolomics investigations including multiple forms of cancer, cardiac ischemia, 

parkinson’s disease and asthma
43,93,107–111

.  This technique has also been previously 

implemented in our lab investigating hemorrhagic shock
112

.  It is readily available in the 

R package DiscriMiner
113

. 

2. Regularized General Linear Model (GLMNET) 

Generalized linear models are a more flexible form of linear regression that allows 

the response variables to have non-parametric distributions.  To avoid the risk of 

overfitting data in multiple linear regression a regularization method can be applied.  We 

have selected to use the elastic-net penalty, which is a compromise between the LASSO 

and Ridge shrinkage methods and has been shown to outperform LASSO
114

.  In brief, 

elastic net is a weighted average of the lasso and ridge solutions determined the weighted 



42 
 

parameter lamda (λ).  This facilitates analysis of data with collinearity and facilitates 

internal feature selection.  Important features are identified as those with non-zero 

coefficients.  These coefficients will also be ranked for subset feature selection.  

Although it is less common than other techniques it has been used in recent metabolomics 

studies
115,116

.  GLMNET is readily available in the R package glmnet
117

. 

3. Random Forest (RF) 

Random forest is a machine learning algorithm that uses a combination of tree 

predictors such that each tree depends on the values of a random vector samples 

independently and the distributions are the same for all the trees in the forest.  Each tree 

constructed provides a ‘vote’ for the best class.  This is constructed on a training subset 

of the data and tested against the remaining test data known as the ‘out-of-bag’ (OOB) 

data.  The scaled sum of the votes derived from the trained trees determines the final 

“score”
118

.  The feature selection is determined by permuting variables in the OOB and 

observing increases in error.  These scores will be ranked for subset feature selection and 

those exceeding a score of 1.0 for model derived results.  A variable score indicates 

greater importance to the model.  It is robust to noise and outliers and computationally 

faster than bagging or boosting.  Prior studies have reported error rates comparable if not 

better than other predictors such as logistic regression, linear discriminant analysis, 

quadratic discriminant analysis (QDA), K-nearest neighbors (KNN), Support Vector 

Machines (SVM), classification and regression trees (CART) and Naïve Bayes
118–120

.  

However, consistency of selected feature rankings has been shown to be problematic
121

.  

It has been used in several metabolomics studies
122–125

 and is readily available in the R 

package randomForest
126

. 
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4. Gradient Boosting Machine (GBM) 

Gradient boosting is another machine learning technique applied most commonly to 

decision trees that produces robust and interpretable procedures for both regression and 

classification
127

.  Unlike the bagging approach (e.g. random forest) earlier trees are 

considered to compensate for prior weaknesses in subsequent trees.  As with random 

forest, feature selection is determined by permuting variables in the OOB and observing 

increases in error resulting in a subsequent variable score.  Feature selection will be 

accomplished via ranking scores and those exceeding 1.0 for model derived results.  

Boosting has become known as one of the most powerful learning ideas in the last twenty 

years
128

 but curiously has never been applied to metabolomics settings.  To our 

knowledge, this will be the first application of boosting to analyze metabolomics data.  

Freidman’s gradient boosting machine algorithm is available in the R package gbm
129

. 

5. Support Vector Machines (SVM) 

Support vector machine is based on the structural risk minimization principle from 

statistical learning theory
130

.  It can be applied to classification problems with the idea of 

structural risk minimization to find a hypothesis for which has the lowest probability of 

error.  It has been shown to be robust to both noisy data and outliers.  Prior comparisons 

with PLSDA report improved overall accuracy with less features
131

 but feature selection 

consistency is unknown.  This classification algorithm is readily available within the R 

e1071 package
132

.  Feature selection will be accomplished via recursive feature 

elimination (RFE) as detailed by Guyon
133

. 

6. Prediction Analysis for Microarrays (PAM) 
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Prediction Analysis for Microarrays is a modified nearest centroid classification 

method to include centroid shrinkage and contains an embedded feature selection step
134

.  

In brief, the average value for each variable is divided by the within-class standard 

deviation to provide class centroids.  These class centroids are then shrunk towards zero 

by a defined threshold to reduce noise and facilitate variable selection.  Then a new 

sample profile is compared to each of the class centroids.  The class whose centroid is 

closest is the predicted class.  The internal feature selection is accomplished by 

identifying features with non-zero coefficients and are subsequently ranked for subset 

selection.  This technique has not been used widely in metabolomics investigations; 

however, as the name implies it has been successfully been used for classification in gene 

expression experiments
135,136

.  This algorithm is readily available in the R package pamr. 

Evaluate Stability of Feature Selection Techniques 

The high-dimensional datasets of metabolomics often necessitate feature selection 

techniques to reduce dimensionality to the most important features to facilitate 

subsequent analysis.  Although many approaches rely exclusively on classification 

accuracy of feature subsets to facilitate biomarker selection this is problematic where 

several different feature subsets may yield equally optimal results
137

.  It is therefore 

necessary to evaluate the robustness of feature selection techniques applied to 

metabolomics data to facilitate improved reproducibility and confidence in identified 

biomarkers.  In brief, algorithm robustness will be evaluated via instance (bootstrapped 

data subsets) and function (alternate algorithms) perturbation and evaluated by the simple 

and commonly used Jaccard’s Index
138

.  Other options include the Dice-Sorensen’s 

Index
139,140

, Ochiai’s Index
141

, Percent of Overlapping Features
142

, Kuncheva’s Index
143

, 
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Spearman Rank Correlation, and Canberra Distance
144

.  A comparison of these metrics is 

beyond the scope of this article. 

Two common approaches are applied within instance perturbation to evaluate the 

robustness of feature selection techqniues: perturbation at the instance level (i.e. 

removing or adding samples) or at the feature level (i.e. adding noise).  We have selected 

to evaluate robustness of feature selection algorithms by estimating stability following 

perturbation at the instance level as the number of samples are the most likely problem 

facing metabolomics investigations.   

Single Feature Selection Stability and Classification Performance 

For each feature selection algorithm we estimated stability via instance 

perturbation with the fs.stability function.  Instance perturbation parameters will bootstrap 

90% (p = 0.9) of the data 10 times (k = 10) thereby creating a training and testing dataset 

for each iteration.  For each training dataset all 6 feature selection algorithms were run 

simultaneously to provide a list of selected feature rankings.  Each iteration tunes the full 

model (optimize = TRUE) with a tuning grid of a specified resolution determining how 

fine the tuning parameters are optimized (resolution = 5). To avoid overfitting, 10-fold 

cross-validation is utilized (k.fold = 10) wherein 1/10
th

 of the data is randomly removed 

and the model evaluated on this test fold.  Results were averaged over all 10 folds to 

provide the confusion matrix for subsequent performance metrics.  The optimized models 

are then used to extract feature subsets of a user specified length (f, NMR = 10, MS = 20) 

or optionally by the model defined cutoff (model.features = FALSE).  These feature 

subsets are compared via the Jaccard index.  The overall stability is defined as the 

average over all pairwise similarity comparisons between each of the feature selection 
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runs.  The final model is refit using the extracted feature subset and re-optimized using 

the initial tuning grid generated.  Lastly, this trimmed model is used to predict the initial 

testing dataset generated at the start of the iteration.  The metrics include Accuracy and 

Area Under the Receiver Operator Curve (AUC-ROC).  These values were all extracted 

with the performance.metrics function to compare each algorithms performance.  This is 

repeated for the additional 9 times utilizing the previously optimized parameters for the 

full model generation (optimize.resample = FALSE). 

Balance Stability and Classification Performance 

In every scientific investigation in which sample size is a limitation (i.e. most 

studies), researchers must balance power and sensitivity.  The same principle is applied to 

balancing feature selection robustness and classifier performance as both are integral to 

confident biomarker identification.  We will utilize the robustness-performance trade-off 

(RPT) to balance robustness and classification performance
145

.  In brief, the user can 

specify the parameter β to control the relative importance of robustness versus 

classification.  The default value of β = 1 which represents equal importance between 

robustness and classification. 

Ensemble Feature Selection Stability and Classification Performance 

Ensemble feature selection has been shown to improve stability in gene 

expression studies
146,147

.  Therefore it is important to incorporate such analysis into 

metabolomics analysis for each algorithm.  In essence, ensemble approaches use different 

data subsets and aggregating the results following feature selection.  As described in the 

‘Single Feature Selection Stability and Classification Performance’ section, stability will 

be evaluated via instance perturbation with the fs.ensembl.stability function.  For each 
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subsample a second level of instance perturbation will generate 40 (bags = 40) further 

datasets via bootstrap aggregation (aka. Bagging)
148

.  For each bag a separate feature 

ranking will be performed.  The resulting list of selected feature rankings from each bag 

will be combined via linear aggregation (aggregation.metrics = “CLA”).  The Jaccard 

Index will be used to measure similarity and averaged over all pairwise comparisons for 

an overall measure of stability.  Function perturbation, the use of multiple feature 

selection algorithms, is also conducted by the list of methods chosen within fs.stability 

and fs.ensembl.stability.  Lastly, in contrast to non-ensemble approaches, there are no 

model derived runs because all features must be ranked for aggregation methods. 

RESULTS 

Simulated Data 

Binary Classification - Low Samples 

Non-ensemble analysis of random and correlated dataset analyses provided generally 

expected results.  Accuracy exceeded 0.700 for SVM, RF, GLMNET and PAM but 

stability remained low (>=0.47).  While RF achieved the highest accuracy (often in 

excess of 0.900), it had the lowest stability warranting caution in interpreting results.  

Notably, accuracy was generally higher with the MS-scale dataset where accuracy 

exceeded 0.900 for the same four algorithms.  However the stability of the feature subsets 

was also lower (Supplementary File – S1). 

Analysis of the NMR-scale discriminatory dataset determined PAM as the optimal 

model with the highest RPT and TP% of identified features (Table 1).  GLMNET 

performed similarly with better accuracy but lower stability and TP%.  The model 

derived analysis also provided PAM with the highest RPT, however, the low sample size 
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resulted in a conservative trimming of features resulting in many remaining in the model 

and decreasing the TP%.  The highest TP% was reported by SVM which also had the 

very high accuracy and AUC-ROC; however it is also noted that there is no internal 

trimming metric for SVM and only the top 10% of features are returned making this a 

more restricted subset model.  This suggests that experiments with lower sample sizes 

may need to restrict to only a few of the most discriminate features.  The MS-scale 

datasets determined also reported PAM with the highest RPT and stability but the highest 

TP% was reported by PLSDA.  Such a situation supports the value of using multiple 

algorithms to determine consistent results. 

Ensemble analysis of NMR-scale and MS-scale random and correlated datasets again 

reflected previous analysis with high accuracy levels for SVM, RF, GLMNET and PAM 

but low stability (Appendix B – Tables 2 & 6).  Analysis of NMR-scale discriminatory 

dataset reported SVM with the highest RPT with PLSDA, GLMNET and PAM 

performing similarly.  The MS-scale analysis was less conclusive with mixed 

performance among SVM, GLMNET and PAM (Appendix B – Table 10). 

Binary Classification – High Samples 

Increased sample size had little effect on accuracy and stability of NMR-scale random 

and correlated datasets but worsened models of MS-scale data (Appendix B – Table 5).  

Overall performance greatly improved in the NMR-scale discriminatory dataset with 

accuracy exceeding 0.9 for three algorithms, stability exceeding 0.8, and TP% to 80% 

(Table 1).  Performance in the MS-scale dataset also improved with stability and TP% 

increasing most notably for GBM and RF respectively (Appendix B – Table 9).  Both 
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datasets provide a circumstance whereby no algorithm performs best and multiple 

methods are beneficial. 

As expected, there was little effect of high samples on the ensemble analysis of the 

both random and correlated datasets of MS-scale and NMR-scale sizes.  The results of 

the ensemble NMR-scale discriminatory dataset improved RF and SVM but worsened 

GLMNET and PAM (Table 1).   Likewise, the ensemble MS-scale discriminatory dataset 

also improved performance (Appendix B – Tables 9).  However, the best performing 

algorithms were PLSDA, PAM and GLMNET.  These results suggest that ensemble 

aggregation may improve, worsen, or have no effect on model performance. 

Multiclass Classification - Low-Samples 

NMR-scale random and correlated datasets generally had low accuracy and stability 

whereas MS-scale had four algorithms consistently had accuracy >= 0.700 but stability 

still remained low (Appendix B – Table 8).  Analysis of the NMR-scale discriminatory 

dataset determined SVM as the best performing algorithm with the highest RPT whereas 

PAM and RF had the highest stability and accuracy respectively.  The model derived 

results report GLMNET and PAM among the best; however, as with the binary 

classification problems the low sample size resulted in untrimmed features wherein 

nearly all were retained resulting in a decreased TP%.  Curiously, SVM reported the 

highest TP% (64%) again suggesting that the lower sample size may restrict to only a few 

of the most discriminating features (Table 2).  The MS-scale dataset had high predictive 

accuracy with SVM, GLMNET and PAM but very low with PLSDA and GBM.  

Curiously, PLSDA had the highest TP% but in addition to a fair AUC-ROC (0.721) and 
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stability (0.53) suggesting a potential use in comparison to better classifying algorithms 

for feature selection (Appendix B – Table 12). 

Ensemble analysis of random and correlated datasets had little effect on performance 

of both NMR-scale and MS-scale (Appendix B – Table 8).  Analysis of the NMR-scale 

discriminatory dataset reported GLMNET with the highest RPT but PLSDA with the 

highest TP% (Table 2).  This reflects the single run analysis whereby the improved 

stability of ensemble methods provided improved classification and stability of 

GLMNET.  The MS-scale analysis reported SVM as the optimum algorithm with the 

highest RPT and accuracy but PAM reported the highest TP% (Appendix B – Table 12). 

Multiclass Classification - High Samples 

NMR-scale random and correlated datasets continued to provide expected results, 

whereby most models had poor classification.  In contrast, MS-scale data provided high 

accuracy but continued to provide very poor stability (Appendix B – Table 7).  Analysis 

of the NMR-scale discriminatory dataset determined GLMNET as the best performing 

algorithm despite lower accuracy (Table 2).  Model derived results determined GLMNET 

and PAM as the best models however they did not successfully extract any discriminating 

features resulting in a depleted TP% whereas SVM reported the highest TP% at 60%. 

Ensemble analysis of random and correlated datasets again reflected previous analysis 

with low accuracy and stability for both NMR-scale and MS-scale data.  Analysis of the 

discriminatory dataset did not significantly improve performance for the NMR-scale 

dataset.  This is also reflected in the MS-scale data where only RF and PLSDA stability 

improved slightly (Appendix B – Table 11). 
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  Method RPT Accuracy AUC-ROC Stability # Features TP % 

Binary 

High 

Sample 

Subset 

PLSDA 0.923 0.982 0.551 0.87 10 80.0% 

GBM 0.748 0.710 0.730 0.79 10 76.0% 

SVM 0.742 1.000 1.000 0.59 10 61.0% 

RF 0.529 1.000 1.000 0.36 10 59.0% 

GLMNET 0.942 1.000 1.000 0.89 10 80.0% 

PAM 0.936 1.000 1.000 0.88 10 80.0% 

Model 

Derived 

PLSDA 0.931 0.965 0.698 0.90 10 80.0% 

GBM 0.552 0.480 0.705 0.65 14 55.0% 

SVM 0.770 0.990 1.000 0.63 5* 68.0% 

RF 0.549 0.990 1.000 0.38 17 38.8% 

GLMNET 0.927 0.980 0.984 0.88 8 92.5% 

PAM 0.860 0.990 0.985 0.76 44 22.5% 

Ensemble 

PLSDA 0.928 0.982 0.551 0.88 10 80.0% 

GBM 0.562 0.430 0.773 0.81 10 80.0% 

SVM 0.773 1.000 1.000 0.63 10 76.0% 

RF 0.765 1.000 1.000 0.62 10 76.0% 

GLMNET 0.817 1.000 1.000 0.69 10 66.0% 

PAM 0.930 1.000 1.000 0.87 10 80.0% 

Low 

Sample 

Subset 

PLSDA 0.690 0.875 0.705 0.57 10 61.0% 

GBM 0.395 0.300 0.669 0.58 10 56.0% 

SVM 0.667 1.000 1.000 0.50 10 48.0% 

RF 0.359 0.975 1.000 0.22 10 48.0% 

GLMNET 0.801 0.975 1.000 0.68 10 68.0% 

PAM 0.806 0.900 0.831 0.73 10 78.0% 

Model 

Derived 

PLSDA 0.792 0.895 0.597 0.71 14 50.0% 

GBM 0.585 0.525 0.744 0.66 20 36.5% 

SVM 0.802 1.000 1.000 0.67 5* 68.0% 

RF 0.406 0.925 1.000 0.26 17 25.9% 

GLMNET 0.830 1.000 1.000 0.71 32 28.4% 

PAM 0.925 1.000 1.000 0.86 48 20.8% 

Ensemble 

PLSDA 0.694 0.863 0.856 0.58 10 66.0% 

GBM 0.455 0.350 0.750 0.65 10 62.0% 

SVM 0.788 1.000 1.000 0.65 10 70.0% 

RF 0.606 0.975 1.000 0.44 10 56.0% 

GLMNET 0.765 0.975 1.000 0.63 10 57.0% 

PAM 0.748 0.900 0.831 0.64 10 72.0% 

Table 1 – Results from NMR-scale Binary Classification Simulations.  RPT – Robustness-Performance 

Trade-off, AUC-ROC – Area under the Receiver Operator Curve, TP % - Percent true positive 

identifications. *SVM doesn’t have internal cutoff so defaults to top 10% 
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Method RPT Accuracy AUC-ROC Stability # Features TP % 

Multi-

class 

High 

Sample 

Subset 

PLSDA 0.432 0.380 0.622 0.50 10 49.0% 

GBM 0.398 0.340 0.691 0.48 10 46.0% 

SVM 0.531 0.565 0.846 0.50 10 42.0% 

RF 0.257 0.900 0.966 0.15 10 30.0% 

GLMNET 0.615 0.575 0.837 0.66 10 52.0% 

PAM 0.586 0.520 0.670 0.67 10 53.0% 

Model 

Derived 

PLSDA 0.441 0.373 0.678 0.54 12 44.2% 

GBM 0.926 0.895 0.823 0.96 50 19.6% 

SVM 0.559 0.485 0.803 0.66 5 60.0% 

RF 0.326 0.875 0.940 0.20 19 16.3% 

GLMNET 0.786 0.675 0.986 0.94 50 20.0% 

PAM 0.780 0.640 0.730 1.00 50 20.0% 

Ensemble 

PLSDA 0.456 0.380 0.623 0.57 10 54.0% 

GBM 0.344 0.265 0.757 0.49 10 44.0% 

SVM 0.467 0.510 0.820 0.43 10 39.0% 

RF 0.299 0.890 0.950 0.18 10 35.0% 

GLMNET 0.538 0.495 0.806 0.59 10 34.0% 

PAM 0.557 0.520 0.670 0.60 10 52.0% 

Low 

Sample 

Subset 

PLSDA 0.485 0.394 0.815 0.63 10 58.0% 

GBM 0.397 0.325 0.666 0.51 10 38.0% 

SVM 0.723 0.888 0.904 0.61 10 52.0% 

RF 0.356 0.938 0.967 0.22 10 39.0% 

GLMNET 0.673 0.688 0.875 0.66 10 52.0% 

PAM 0.715 0.675 0.761 0.76 10 53.0% 

Model 

Derived 

PLSDA 0.501 0.425 0.661 0.61 13 40.8% 

GBM 0.517 0.375 0.739 0.83 47 20.4% 

SVM 0.752 0.800 0.888 0.71 5 64.0% 

RF 0.365 0.888 0.954 0.23 17 21.2% 

GLMNET 0.871 0.863 0.938 0.88 49 19.4% 

PAM 0.900 0.825 0.838 0.99 50 20.0% 

Ensemble 

PLSDA 0.485 0.394 0.815 0.63 10 62.0% 

GBM 0.388 0.300 0.665 0.55 10 38.0% 

SVM 0.654 0.788 0.917 0.56 10 53.0% 

RF 0.389 0.875 0.996 0.25 10 39.0% 

GLMNET 0.751 0.763 0.913 0.74 10 47.0% 

PAM 0.746 0.775 0.802 0.72 10 53.0% 

Table 2 – Results from NMR-scale Multi-class Classification Simulations.  RPT – Robustness-Performance 

Trade-off, AUC-ROC – Area under the Receiver Operator Curve, TP % - Percent true positive 

identifications.  *SVM doesn’t have internal cutoff so defaults to top 10% 
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REAL DATASETS 

Eisner – Urine analysis of Cachexia via NMR  

Non-ensemble analysis determined PAM and GLMNET as the best overall 

models according the RPT (0.711, 0.705).  Important features were extracted with the 

feature.table function.  Adipate, Glucose, 3-Hydroxyisovalerate were identified in all 

subsamples by both models.  PAM also identified creatine and succinate consistently 

(Table 3).  GLMNET identified leucine, quinolinate, and valine as important features 

(Table 4).  Seven of these metabolites were within the top 10 metabolites identified by 

Eisner et. al.
101

 with creatine being the 11
th

.  Furthermore, the other 3 metabolites in the 

top 10 (myo-inositol, betaine, and N,N-dimethylglycine) were also identified in the top 10 

by GLMNET and PAM.  Random forest provided the best classification accuracy at the 

expense of stability.  SVM performed similarly well with respect to classification 

accuracy (Appendix B – Table 13), however, stability was also quite low (0.31). 

Ensemble methods improved stability of GBM, SVM, and RF; however, it 

noticeably decreased GLMNET stability from 0.64 to 0.49 (Appendix B – Table 16).  

Performance decreased slightly for PLSDA but improved for PAM; both proved the best 

overall models.  Overall 8 of the 9 identified metabolites (frequency >= 0.9) by PLSDA 

and PAM were in the top 10 identified by Eisner et.al. (Appendix B – Tables 17 & 18).  

For this particular dataset the ensemble approach does not appear necessary as neither 

model performance nor feature stability was significantly improved.  Irrespective, the 

applied methods provide further validation and support for the classification and 

metabolites selected. 
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PAM Feature Table 

features consistency frequency 

Adipate 10 1 

Creatine 10 1 

Glucose 10 1 

Succinate 10 1 

X3.Hydroxyisovalerate 10 1 

myo.Inositol 9 0.9 

Betaine 7 0.7 

Glutamine 7 0.7 

Quinolinate 6 0.6 

cis.Aconitate 6 0.6 

Acetate 5 0.5 

N.N.Dimethylglycine 5 0.5 

Lysine 3 0.3 

Leucine 2 0.2 

Table 3 – Feature table of PAM analysis consisting of consistency (i.e. number of times the 

feature identified as important) and frequency (i.e. percentage of iterations feature identified). 

 

GLMNET Feature Table 

features consistency frequency 

Adipate 10 1 

Glucose 10 1 

Leucine 10 1 

Quinolinate 10 1 

Valine 10 1 

X3.Hydroxyisovalerate 10 1 

myo.Inositol 9 0.9 

Succinate 6 0.6 

Betaine 4 0.4 

Glutamine 4 0.4 

Lysine 4 0.4 

Creatine 3 0.3 

N.N.Dimethylglycine 3 0.3 

Acetate 3 0.3 

Alanine 2 0.2 

Formate 1 0.1 

Xylose 1 0.1 

Table 4 – Feature table of GLMNET analysis consisting of consistency (i.e. number of times the 

feature identified as important) and frequency (i.e. percentage of iterations feature identified). 
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Ametaj – Analysis of Rumen Metabolism via NMR 

The PAM and GLMNET models performed very well with the Ametaj dataset 

with RPT values of 0.850 and 0.806 respectively.  Although PLSDA did not have a high 

RPT (0.497), the stability was very high (0.77) and was therefore evaluated for 

consistency with PAM and GLMNET.  Glucose, endotoxin, and methylamine were 

consistently identified by PAM, GLMNET and PLSDA (Appendix B – Tables 20-22).  

Glucose and endotoxin were expected and methylamine was the first statistically 

significant metabolite discussed by Ametaj et.al.
102

.  In addition, uracil, acetate, fumarate, 

and lactate were also consistently identified by at least two models.  All of these 

metabolites are identified by Ametaj et.al. except for lactate which is reported as non-

significant but was approaching significance (0.149).  This suggests a potential power 

issue although the authors’ comment on the conversion of lactate to proprionate in 

ruminates is well supported. 

Ensemble methods improved stability of PLSDA, GBM, SVM, and RF; however, 

it slightly decreased GLMNET and PAM stability by 0.02 and 0.07 respectively 

(Appendix B – Table 23).  This general improvement is expected with smaller sample 

sizes as variability often greater.  The stability of all models was very high with all ≥ 0.67 

except for RF.  Stability of PLSDA was highest; however, classification accuracy was 

poor (0.438).  Accuracy increased slightly with PAM and GLMNET but decreased in 

SVM to match GLMNET.  These three proved to be the best overall models.  Although 

the stability was high, identified features did vary between models creating what we refer 

to as a ‘hierarchy of confidence’ whereby the greatest confidence would be placed in the 

most consistently identified features within and across algorithms.  Endotoxin, glucose, 
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and methylamine were once more identified by four models (PAM, SVM, PLSDA and 

GBM).  Alanine was also identified by 3 models (PAM, GLMNET, PLSDA).  In 

addition, acetate, 3-PP, and uracil were also identified by at least two models 

consistently.  All of these metabolites were identified as important by Ametaj et.al.  

Lastly, although most results were consistent, ferulate was also identified by PAM and 

SVM which was not discussed previously.  It is also apparent that given the small sample 

size and greater variability within the data, this analysis benefits from ensemble methods.   

Xiao – Serum Analysis of Hepatocellular Carcinoma via MS   

Within the negative mode comparisons PAM mostly performed better than all 

other algorithms applied with respect to RPT (Appendix B – Tables 28-35).  There was 

only one exception where PAM and GLMNET had almost identical RPT values (0.679, 

0.680).  However, PAM stability was consistently the highest suggesting it to be the ideal 

method to explore this particular dataset.  Additionally, it should be noted that PAM did 

not have very high accuracy compared to other methods such as GLMNET and SVM.  

Random Forest also had very high accuracy but exceptionally low stability making it a 

good tool for analyses that require high classification accuracy but do not require further 

feature identification.  The higher accuracy makes GLMNET a close second to the PAM 

approach.  An ensemble analysis was performed, however only RF improved stability 

significantly rendering the ensemble analysis of little help.  Identified features were 

largely consistent with previous analyses (Supplementary File 7), however, each 

comparison identified at least an additional 15 metabolites not mentioned in the published 

manuscript. 
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Within the positive mode comparisons GLMNET performed slightly better than 

PAM in all except the 1 comparison; however, PAM consistently maintained the highest 

stability demonstrating that even with very high-dimensional datasets no single algorithm 

dominates.  As with the negative mode, an ensemble analysis was performed but only RF 

improved stability significantly making ensemble aggregation unnecessary.  As with the 

NMR studies the two models provided further support to mutually identified features 

(Supplementary File  8).  These features included GDCA, Oleoylcarnitine, GCDCA, L-

N2-(2-Carboxyethyl) arginine, Tetracosahexaenoic acid, Palmitoyl carnintine and 

Linoelaidyl carnitine which support the author’s interpretations of bile and fatty acid 

metabolism.  In addition, 48 metabolites were consistently identified by PAM but were 

not mentioned in the paper however it is possible they were identified as the authors do 

not present all identified metabolites. 

DISCUSSION 

The results presented focus on determining if a single classification algorithm 

performs better than other commonly used algorithms in the field of metabolomics.  

Although there is strong support for several algorithms, there are additional papers stating 

one algorithm outperforms another.  This is expected according to the concept of No Free 

Lunch Theorem
149

 which in essence states that there is no single model that is appropriate 

for all problems.  Our analyses support this theory and suggest a comparative approach to 

evaluate algorithm performance as well as to provide additional support via multiple 

algorithms for future conclusions.  As such, the Bioconductor package OmicsMarkeR 

was created to facilitate the rapid comparison of algorithm performances on individual 

datasets. 



59 
 

The binary and multivariate simulation results demonstrate the variation in 

optimal models.  Depending on the users approach to a dataset (i.e. feature subset or 

model derived), number of samples relative to features, the number of groups, or 

application of ensemble methods a different algorithm may be more appropriate.  Within 

the simulation analyses PLSDA, SVM, PAM, RF, and GLMNET all proved to be optimal 

algorithms for different situations.  Curiously, the reduction in features generally 

decreased GBM performance but feature selection was relatively consistent with other 

methods.  Random Forest, in most cases, did not prove to be the optimal algorithm but 

consistently had among the highest accuracy but very low stability; which could be 

partially mitigated by an ensemble approach.  This low stability is expected given the 

algorithms search encompasses interactions between variables resulting in a larger search 

space.  If a user wished to weigh accuracy more than stability, the RPT value can be 

easily recalculated with the RPT function by increasing the beta parameter (e.g. beta = 

1.5 increases the weight of accuracy by 50%). 

The Eisner cachexia NMR dataset provided an example of the value behind using 

multiple algorithms.  In the event that algorithms have similar overall performance, 

analysis of features selected by both may provide further support for identified features.  

Additionally, this dataset demonstrated the circumstance whereby ensemble approaches 

are superfluous.  Consistent with published results, the Eisner dataset did reflect the high 

accuracy of SVM but stability was low.  The GLMNET and PAM analyses provided 

respectable accuracy and high stability.  The ability to assess stability of identified 

features for classification models is valuable if rapid and clinically applicable tests are to 

be developed. 
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The Ametaj cow diet NMR dataset also benefited from multiple algorithms 

adding further support to identified features.  Furthermore, the multi-class experimental 

design and low number of samples likely resulted in higher variability.  As such the 

ensemble approach was beneficial by improving most algorithm performances. 

The Xiao Hepatocellular Carcinoma MS dataset was analyzed in four separate 

comparisons within each mode (i.e. positive or negative) following the manuscripts 

analysis.  The negative mode results suggest that PAM is generally the optimum 

algorithm with respect to RPT values.  The positive mode results suggest that GLMNET 

is the optimum algorithm.  However, the goal behind the study was the identification of 

biomarkers.  As such, the consistently higher stability of PAM is noteworthy.  A potential 

extension would be to use the features identified by PAM and build the GLMENT model 

(or other method) for class prediction to improve accuracy and/or AUC-ROC. 

As an example, we provide a very concise sample summary of the final positive 

comparison which could be used as a general guideline for reporting results: Six 

commonly applied metabolomics algorithms were tuned and cross-validated with the 

OmicsMarkeR bioconductor package via 10-fold cross-validation (k.fold = 10).  Feature 

selection was accomplished with default model parameters.  After comparison of overall 

performance Prediction Analysis of Microarrays (PAM) provided the highest 

Robustness-Performance-Trade-off (RPT) balancing both classification accuracy (73%) 

and stability of identified metabolites (Jaccard = 0.74) reflecting good prediction and 

reproducible metabolite identification.  Metabolites identified in all data perturbation 

runs (k = 10) include GDCA, Oleoylcarnitine, GCDCA, L-N2-(2-Carboxyethyl) arginine, 

Tetracosahexaenoic acid, Palmitoyl carnintine and Linoelaidyl carnitine.  Forty-eight 
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(48) additional metabolites were consistently identified that may be pursued via tandom 

mass spectrometry (MS/MS). 
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Figure 1.  General guideline for which algorithms to apply to a given dataset.  The reader is still 

encouraged to compare multiple algorithms and employ ensemble analysis given the variability in 

biological datasets. 

 

CONCLUSION 

Within this paper, we used simulated datasets to demonstrate that algorithm 

performance varies depending on the investigator’s approach to a dataset (i.e. defined 

number or unknown), number of samples relative to features, the number of groups, 

and/or if ensemble methods are applied.  We also applied this comparative approach to 

three published, typically designed and freely accessible datasets including two NMR and 

one MS datasets.  Following tuning and cross-validation, the optimal algorithms were 

used to compare selected features to the respective studies.  Results proved very 

consistent identifying the most discriminating features; however, additional features were 
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also identified that demonstrate the variation in applied methods and complexity of these 

large datasets.  

 This comparative analysis provides a means to objectively choose a particular 

algorithm in addition to stability metrics to provide the highest confidence in potentially 

identified biomarkers and direct more focused independent validation.  From these results 

the choice of the ‘best’ algorithm appears dependent upon the goals of the experiment in 

addition to the structure of the dataset. If classification is the primary goal, Random 

Forest is an excellent option.  If feature selection is also important there a few options the 

must be considered such as the number of expected discriminatory features and the 

datasets scale (i.e. MS or NMR).  The diagram in Figure 1 is meant to be a general guide; 

however, the results herein strongly suggest using multiple algorithms and comparing 

performance on each unique dataset as well as ensemble methods which have been made 

far more accessible with the OmicsMarkeR package. 

 In addition, the package contains two permutation functions (perm.class and 

perm.features) for assessing model performance and identified features for further 

evaluation.  Current areas of improvement include the addition of further algorithms, 

improving memory efficiency and easy to access graphics (e.g. scores plots, variable 

importance plots, etc.).  The R package OmicsMarkeR for this analysis is publically 

accessible from the bioconductor platform (www.bioconductor.org).  
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CHAPTER 7 

 

Fed State Alters the Metabolomic Response to Hemorrhagic Shock and Resuscitation  

in Porcine Liver   
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ABSTRACT 

Hemorrhagic shock with injury results in alterations of the metabolic state of an 

organism, which contribute to organ dysfunction and death.  Previous investigations have 

explored the effects of carbohydrate prefeed in murine models but few in clinically 

relevant large animal models.  We performed carbohydrate prefeed in pigs undergoing 

simulated polytrauma and hemorrhagic shock with resuscitation to determine if 

carbohydrate prefeeding if the metabolic response to shock is dependent on fed state.  

Sixty four (64) Yorkshire pigs were divided into two experimental groups: fasted (32) 

and pre-fed (32).  Experimental animals were subjected to a standardized hemorrhagic 

shock protocol, including pulmonary contusion and liver crush injury. To determine 

molecular alterations in response to trauma as a result of pre-feeding, liver biopsies were 

obtained at set timepoints throughout the procedure.  Fifty-one (51) metabolites were 

profiled for each sample via proton nuclear magnetic resonance spectroscopy (
1
H-NMR).  

Partial-Least Squared Discriminant Analysis (PLS-DA) was used to examine clustering 

of the data with respect to fed state.  Cross-validated models separated the fed from fasted 

animals.  Metabolites contributing to the separation have known relationships to alternate 

carbon energy sources, amino acid metabolism, oxidative stress response, and membrane 

maintenance.  In conclusion, we validated an alternate response to shock and 

resuscitation, dependent upon fed state, through the use of metabolomics.  
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INTRODUCTION 

Hemorrhagic shock is a leading cause of trauma-related mortality in both civilian 

and military settings.  Efforts over the years have significantly improved survival in the 

military sector
150

;  however, hemorrhagic shock remains the most common cause of 

preventable injury in both the civilian and military sectors
151–154

.  Hemorrhagic shock 

from traumatic injury results in multiple alterations in the metabolic state of an organism 

many of which are not fully elucidated.   

Hemorrhagic shock results in inadequate tissue perfusion leading to decreased 

oxygen availability to mitochondria resulting in a switch towards anaerobic.  The liver 

serves an important function as a regulator of metabolism during stressed states.  Initially, 

the shift towards anaerobic metabolism stimulates the liver to increase glycogenolysis 

and process elevated lactate produced in the peripheral tissues.  The liver also provides a 

major site of detoxification and production of alternate metabolic fuel sources including 

amino acids and lipids.  Effects of different fed states on liver metabolic processes 

following injury and hemorrhagic shock are not well known.   

Metabolomics, a high-throughput profiling of all the metabolites within a 

sample
12

, has the ability to identify multiple metabolites simultaneously.  This ability 

potentially permits the elucidation of altered cellular and metabolic pathways in addition 

to potentially furthering our understanding of the metabolic response to hemorrhagic 

shock with respect to metabolic state.  Practical applications of metabolomics include 

classification and diagnosis of several forms of cancer and neurodegenerative disorders
14

.  

In addition, our laboratory has successfully applied metabolomics tools to a clinically 
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relevant porcine model of hemorrhagic shock in order to identify biomedical pathways 

and to associate metabolic changes with phase of care
42,46,112

. 

Of interest herein is the impact of fed state upon the response and recovery from 

hemorrhagic shock and injury.  Prior work from our group reported a significant increase 

in lung injury in animals receiving a carbohydrate prefeeding immediately prior to injury 

compared to fasted animals (44% vs. 15%, p = 0.03)
155

.  This difference in outcome 

between fed and fasted animals led us to ask the question regarding possible drivers of 

difference in response.  One of the potential mechanisms possible is a difference in 

metabolism driven by carbohydrate prefeeding.  The objective of this study was to 

determine if the liver responds differently in our clinically relevant model of polytrauma 

and hemorrhagic shock with respect to fed state with the hypothesis that there would be 

quantifiable differences in liver metabolites reflecting an altered metabolic response to 

shock and resuscitation depending upon fed state.  The liver is an important regulator 

during stress and serves as a primary site of gluconeogenesis to meet peripheral glucose 

requirements thereby making it an ideal location to evaluate alterations in metabolic 

response.  To test this hypothesis, we used our well-established model of hemorrhagic 

shock and polytrauma comparing the effect of providing a carbohydrate prefeed (CPF) 

versus a fasted (FS) diet prior to insult.  Proton (
1
H) NMR spectroscopy was used to 

determine concentrations of metabolites in liver biopsies taken at defined timepoints 

throughout shock and resuscitation with the goal to identify altered metabolic responses 

in prefed versus fasted animals so that we may understand potential contributing factors 

of metabolic state to outcome. 

METHODS 
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Animals 

Male Yorkshire-Landrace pigs (15-20 kg) were purchased from Manthei Hog Farm, LLC 

(Elk River, MN) and housed in Research Animal Resources (RAR) at the University of 

Minnesota.  All studies were approved by the Institutional Animal Care and Use 

Committee.  Pigs were fasted overnight prior to surgery, but were allowed water ad 

libitum. 

Animal Preparation and Hemorrhagic Shock Protocol 

Sixty four (64) juvenile, male Yorkshire pigs were used in this study.  Results from this 

group of animals have been previously published
42,46,155

.  All animals were fasted 

overnight.  Two experimental groups were utilized: Carbohydrate Prefed (CPF, n = 32) 

and Fasted (FS, n = 32).  CPF animals were given 7cc/kg bolus of Karo Syrup
®
 (mixture 

of sugars including ~ 15% glucose, maltose, fructose and sucrose) diluted with water 1 

hour prior to induction of anesthesia.  The full experimental polytrauma and shock 

protocols have been described in detail previously
46,112

 and in Chapter 2.  Briefly, animals 

were instrumented and splenectomized.  Polytrauma was induced by a captive bolt device 

to create a blunt percussive injury to the chest and a liver crush injury using a Holcomb 

clamp technique
20

.  Hemorrhagic shock was then induced by withdrawal of blood from 

the inferior vena cava until a systolic pressure of 45 to 55mmHg was reached for 45 

minutes (S45) to simulate delay prior to medical attention.  Typically, this resulted in 

withdrawal of approximately 40% of the pig’s blood volume.  Blood was placed in an 

acid-citrate-dextrose bag for later use.  Following the shock period, animals received 

lactated Ringer’s fluid given as 20 cc/kg intravenous (IV) boluses to maintain a systolic 

blood pressure greater than 80 mmHg for one hour of limited resuscitation to simulate 
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transportation to a medical center; then underwent full resuscitation protocol for the 

following 24 hours (Appendix A).  This resuscitation included fluid, shed blood, and 

ventilator support in a protocolled fashion.  After the resuscitation period, animals were 

extubated and sent to recovery and subsequently euthanized. 

 At several time points throughout the experiment, liver biopsies were taken from 

the periphery of the liver ranging in weight from 0.2 to 0.6 grams.  Biopsies were flash 

frozen in liquid nitrogen and stored at -80°C until preparation for NMR analysis.  

Biopsies were taken at the following timepoints: baseline after the animal stabilized from 

instrumentation (B), 45 minutes after hemorrhage (S45), 2, 8, and 20 hours after full 

resuscitation (FR2, FR8, FR20).  Changes induced by hemorrhagic shock polytrauma and 

‘early’ resuscitation were denoted as the difference between S45 and B (S45-B) and 

between FR2 and S45 (FR2-S45) respectively.  

Liver Metabolite Extraction 

 Stored liver samples were prepared for NMR analysis using a variation of the 

perchloric acid (PCA) extraction technique
156

.  Frozen liver samples were weighed and 

pulverized into a fine powder using a mortar and pestle in liquid nitrogen, weighed, and 

kept on ice in eppendorf tubes.  Perchloric acid (6%) was added at 5mL/g of tissue and 

vortexed for 30 seconds.  Samples were incubated for 10 minutes and subsequently 

centrifuged at 12,000g for 10 min at 4°C.  The supernatant was collected, pH neutralized 

with 2M K2CO3 to 7.4, incubated on ice for 30 min and centrifuged once more at 12,000g 

for 10 min at 4°C.  The supernatant was collected, frozen and lyophilized in a 

LABCONCO Freezone 6 Plus freeze-drier (Kansas City, MO). 

NMR Spectroscopy 
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 Lyophilized samples were rehydrated with 500µl D2O and 50µl of internal 

standard 3mM DSS (Dimethyl-Silapentane-Sulfonate, Sigma-Aldrich, St. Louis, MO).  

Solution pH was adjusted with DCl and NaOD to 7.4.  The final volume was brought to 

600µl using D2O and the sample was transferred into a 5mm tube (Wilmad, Vineland, 

NJ) 

 
1
H NMR spectra were obtained using a Varian 600 MHz spectrometer with a 

5mm HCN triple resonance probe.  Spectra were generated from 128 scans with a basic 

1
H acquisition protocol consisting of a 45° tip angle, a relaxation delay of 1 sec and an 

acquisition time of 1.9 sec.  All NMR spectra were phase and baseline-corrected and 

chemical shifts were referenced to the DSS internal standard. 

 Chenomx software
56

 was used to identify and quantify metabolites present in each 

liver sample.  Fine manual phasing and baseline corrections were applied to each 

spectrum before targeted profiling was performed.  Fifty-one (51) metabolites were fit in 

each liver sample in this study, resulting in a profile containing the concentration of each 

identified metabolite in millimoles per liter (mM), as determined by comparison to the 

internal standard.   

Statistical Analysis 

 A multivariate approach was used to analyze each of the timepoints.  To 

determine the response to shock and resuscitation, changes in concentration between 

baseline and subsequent timepoints were analyzed.  All statistical analysis was conducted 

using the open source R statistical program
157

.  For each timepoint/difference the fifty-

one profiled metabolites were auto-scaled and mean-centered prior to initial Principal 

Component Analysis (PCA).  Samples that fell outside a 95% Hotelling’s ellipse were 



71 
 

considered outliers and removed from further analysis.  Datasets, with outliers removed, 

were subsequently analyzed by Partial Least Squares Discriminant Analysis (PLS-DA), a 

common discrimination technique utilized in metabolomics
158–160

 that has been 

successfully employed in our previous studies
42,112

.  The R packages DiscriMiner
113

 and 

Permute
161

 were used collectively to conduct the PLS-DA model, cross-validation, and 

permutation tests.  PLS-DA models were optimized based on the number of 

misclassifications (NMC) which has been show to be more powerful than other 

indicators, such as Q
2
, at detecting differences between groups

162
.  Cross-validation was 

conducted via cross-model validation, i.e. nested-CV, 2CV,
163

 wherein the dataset is 

randomly split into training and testing datasets (75%, 25%).  PLS-DA models were then 

generated from the training dataset and a leave-10-out internal cross-validation. 

Optimized models were used to predict the testing set (outer cross-validation).  Prediction 

accuracy is calculated from the resulting confusion matrix.  accuracy ≥ 85% and R
2
 

≥0.500 were considered potential models.  Model quality assessment was assessed by 

random permutation of group class with 1000 iterations where a low permutation p-value 

(>0.05) indicated a strong model.  Metabolites were subsequently ranked according to 

their respective variable importance of projection (VIP) score.  The highest VIP scores 

correspond to which metabolites contribute most to discrimination between groups.  The 

top 10 metabolites represent the primary drivers of the calculated discrimination. 

RESULTS 

Partial Least Squares Discriminant Analysis (PLS-DA) 

PLS-DA allowed discrimination between prefed and fasted state in this 

hemorrhagic shock model with changes most notable between the fed and fasted state in 
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the period of time between end of shock (S45) and 2 hours after full resuscitation (FR2).  

The final model statistics are reported in Table 1.  The majority of models reported 

accuracy ≥ 90% and R
2
 ≥ 0.500 (except FR8-FR2); however, not all models passed the 

permutation tests (Table 1).  The model comparing metabolite changes between baseline 

(B) and S45 was nearly significant (p=0.06) suggesting an alternate response to shock 

dependent upon fed state.  The model evaluating baseline metabolites provided high 

accuracy (90%) and R
2
 (0.586) but demonstrated a non-significant permutation (p = 

0.37).  The scoreplots generated from the S45-B and FR2-S45 PLSDA models provide 

clear separation between the groups (Figure 1). 

Important Metabolites 

The metabolites identified, by VIP scores, during the response to shock (S45-B) 

primarily reflected differing energy sources such as glycolysis in CPF animals 

(carbohydrate sugars, lactate) and amino acid metabolism in FS animals (aspartate, 

asparagine, 3-Hydroxyisovalerate).  In addition, some unexpected differences in elevated 

asparagine and adenosine were observed in CPF animals (Table 2).  VIP metabolites 

identified during the response to resuscitation (FR2-S45) continued to be associated with 

energy source differences (e.g. branch chain amino acid metabolism).  Indications of 

membrane repair (sn-Glycero-3-phosphocholine) and free radical scavenging (Benzoate) 

are also reported (Table 3).  Lineplots of the highest scoring metabolites are also 

provided in Figure 2. 

Given the high accuracy of each remaining model, selection of important 

variables was also performed via ranking metabolites by the VIP statistic (Appendix C - 
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Tables 1-2); however, strong conclusions could not be drawn from models not passing 

the permutation test. 

DISCUSSION 

In this article, we identify multiple differences in metabolism during shock and 

resuscitation associated with pre-injury fed state.  This discrimination was most notable 

during the initial response to shock and resuscitation with subsequent loss of 

discrimination over time suggesting the larger metabolic effect of shock and injury 

overcome the smaller metabolic effect of fed state. 

Response to Shock (S45-B) 

As expected, with a carbohydrate diet, immediately preceeding injury, liver tissue 

demonstrated a predominant glycolytic metabolism during the response to shock (S45-B) 

with active glucose, maltose and sucrose utilization followed by a dramatic increase in 

lactate levels.  Elevated lactate levels have been previously shown to be associated with 

poor outcome
164

.  The changes we observed in glucose metabolism compare to recently 

described measures of intracellular flux analysis of livers under fed and fasted states 

which reflect depleted glycogen stores in fasted livers
165,166

.  These reports suggest that 

maintaining glucose stores would be beneficial; however, these experiments consisted of 

animals undergoing burn injury and provided no survival measures.  Our data suggests 

that depleted glucose stores as a result of fasting may me protective following polytrauma 

and hemorrhagic shock.   

Aspartate also increases more rapidly in livers of CPF animals suggesting 

potentially impaired transport of the Malate-Aspartate shuttle leading to elevated 

aspartate levels and subsequent breakdown in the Urea cycle.  The Malate-Aspartate 
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shuttle is required for oxidative phosphorylation and therefore impairment may indicate a 

more severely stressed oxidative state.  The urea cycle enzymes may not be functioning 

as rapidly as in FS animals and this may be a consequence of the carbohydrate metabolic 

state, leading to a slower conversion to arginine leading to lower arginine and an 

accumulation of aspartate in CPF animals.  Aspartate can also be converted to asparagine, 

which also increased in CPF, and either recycled back to aspartate or excreted.  

VIP metabolites adenosine and arginine have been reported as protective prior to 

ischemia-reperfusion associated with Nitric Oxide (NO) metabolism
167,168

.  Adenosine is 

a potent vasodilator released as a response to ischemia-reperfusion
169

.  In addition, 

adenosine is the product of AMP degradation and is characteristic of an imbalance in the 

tissue oxygen supply/demand ratio.  Elevated levels of adenosine in CPF suggest a 

greater imbalance of oxygen.  Despite having elevated adenosine levels mean arterial 

pressure (MAP) is higher in CPF animals.  This may be explained as baseline levels of 

adenosine are essentially identical between FS and CPF animals whereas levels of 

arginine, another important vasodilator, are much higher in FS at S45 (CPF = 1.23mM, 

FS = 0.82mM, p-value = 9.6x10
-3

).  Prior literature reports that arginine is produced 

within the urea cycle, which is potentially upregulated by glucagon to handle increased 

proteolysis
170

. Our observations of elevated baseline BCAAs and continued decrease of 

leucine intermediate 3-Hydroxyisovalerate in FS animals during the response to shock 

adds support to this interpretation.   

Xanthine and glutathione were also identified as important metabolites.  Xanthine 

is the product of xanthine oxidoreductase and generates Reactive Oxygen Species (ROS).  

Initially xanthine levels were higher in FS animals, suggesting increased oxidative stress, 
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but decreased to levels similar to those in CPF animals during the response to shock.  The 

increasing xanthine levels in CPF animals is consistent with previous in vitro evidence 

idnetifying increased xanthine oxidase activity following prefeeding and ischemia but not 

following fasting
171

.  More recently, however, it has been suggested that ROS production 

by xanthine oxidase has limited importance in practice as the conversion of xanthine 

dehydrogenase to xanthine oxidase requires long ischemic periods that are rare in the 

clinical setting
172

.  This suggests that initial conditions (e.g. fed state) potentially 

precondition the xanthine oxidase activity prior ischemia.  Glutathione, an important 

antioxidant, also increases within CPF animals to modulate ROS.  Measurements of ROS 

species between fed states are needed to determine possible differences in oxidative 

stress. 

Response to Resuscitation (FR2-S45) 

During the response to resuscitation (FR2-S45) we found that fumarate declines 

sharply in the CPF animals.  This reduction is potentially a result of succinate 

dehydrogenase (i.e. Complex II) of the electron transport chain reducing fumarate to 

succinate during a period of reduced PaO2
173

.  This mechanism is supported by our data 

as succinate levels also increase (+0.05 ± 0.02mM) during the response to resuscitation.  

Curiously, lysine levels also increase in CPF but decrease in FS animals.  One possible 

explanation is the conversion of lysine to glutamine; an alternative substrate for the Krebs 

Cycle.  Our data reports elevated glutamine levels in CPF animals at FR2 (CPF = 

1.44mM, FS = 1.27mM, p-value = 0.09) which inhibit the conversion of glutamine 

synthase, the final step between lysine and glutamine, resulting in elevated lysine 

levels
174

. 
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Metabolism in FS animals continues to reflect BCAA degradation, in which 

valine, leucine, and isoleucine levels are all decreasing but remain higher indicating 

continued protein breakdown.  However, increasing levels of 3-Hydroxyisovalerate (i.e. 

β-Hydroxy-β-methylbutryate, HMB) in FS animals suggests impaired complete leucine 

degradation.  Prior research on muscle has reported 3-Hydroxyisovalerate as a substrate 

for HMG-CoA reductase, an important enzyme for cholesterol synthesis to stabilize 

membrane integrity
175

.  To our knowledge there is no literature exploring 3-

Hydroxyisovalerate and HMG-CoA in the liver.   It is also noted that sn-Glycero-3-

phosphocholine (i.e. Glycerophosphocholine, GPC) levels decreased more rapidly in FS 

relative to CPF animals.   GPC is indicative of membrane maintenance and repair
46

.  This 

is supported by a slight increase in Choline levels, potentially being quickly incorporated 

into membranes.   

The hypoxic state following hemorrhagic shock and the subsequent reperfusion 

results in the production of reactive oxygen species (ROS).  Interestingly, our data reports 

higher benzoate concentration, an oxygen radical scavenger
176,177

, in FS animals (Table 

3).  One potential mechanism is that CPF animals experience greater oxidative stress 

following anaerobic glycolysis, as noted by prior xanthine levels, where increased 

antioxidants would prove beneficial; however assays of ROS need to be pursued 

comparing fed states for definitive conclusions.  To our knowledge, no previous research 

has reported benzoate as a radical scavenger following reperfusion.  It is possible that the 

conversion of benzoate to hippurate for excretion is inhibited resulting in the observed 

increase, however, further research is needed to determine if this is an alternate 

antioxidant following reperfusion.  
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Although this study measured a large number of metabolites, this study is limited 

by the both the extraction method and tissue utilized.  The PCA method only extracts 

water soluble metabolites and there may be other compounds that could reflect other 

altered metabolic processes.  An investigation using alternate extraction techniques 

would prove valuable.  The liver is only one component of the systemic response to 

hemorrhagic shock and resuscitation and analysis of other compartments such as serum, 

urine and muscle would be beneficial.   

CONCLUSIONS 

The liver metabolic response to shock is initially significantly different depending 

upon fed state.  This difference dissipates over time as the effects of injury overwhelm 

the effects of prefeeding.  Our identification of VIP metabolites validated previously 

expected changes in metabolism between carbohydrate prefed and fasted animals such as 

alternate carbon energy sources.  In addition, metabolites associated with NO production, 

branched chain amino acid metabolism, oxidative stress, and membrane maintenance 

were significantly different between carbohydrate prefed and fasted animals during the 

response to shock and response to resuscitation.   This analysis reveals that fed state has 

defined implications on the response to hemorrhagic shock and injury and thereby 

provides some clues about how future therapeutics should be modified.  Exploring other 

pre-feeding methods, such as protein or lipid, would provide further useful information 

concerning the response to shock. 
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MODEL R2 NMC ± SD ACCURACY (% 

correct classified 

PERMUTATION 

(p-value) 

B .586 2.8 ± 1.5 95 .37 

S45-B .614 2.8 ± 1.3 95 .06 

FR2-S45 .727 2.0 ± 1.1 95 .04 

FR8-FR2 .495 4.1 ± 1.2 90 .64 

FR20-FR8 .540 4.0 ± 1.3 90 .60 

Table 1: Results of PLS-DA model generation for each timepoint/difference.  

Abbreviations: NMC (Number of Misclassified), SD (Standard Deviation)  
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Metabolite 
VIP 

Score Group 
S45 

Mean±SE 

Difference 

Mean±SE 

Mann-

Whitney 

U 

Glucose 3.301 CPF 25.69±2.68 191.18±27.83 
p=5.9x10

-9 

FS 5.62±0.99 -2.27±6.85 

Lactate 2.237 CPF 5.58±0.45 39.81±4.65 
p=8.1x10

-4 

FS 3.42±0.28 18.14±3.44 

Aspartate 2.042 CPF 1.09±0.07 3.02±0.79 
p=4.3x10

-3 

FS 0.82±0.05 -0.21±0.56 

Maltose 1.993 CPF 1.30±0.28 -12.31±3.05 
p=2.1x10

-5 

FS 0.25±0.04 -2.08±0.80 

Sucrose 1.967 CPF 0.76±0.16 -7.96±1.86 
p=2.8x10

-3 

FS 0.14±0.02 -1.72±0.61 

Glutathione 1.412 CPF 1.74±0.17 3.47±1.71 
p=0.168 

FS 1.38±0.12 -1.68±1.61 

Xanthine 1.391 CPF 0.05±0.01 0.08±0.06 
p=0.109 

FS 0.06±4x10
-3 

-0.12±0.07 

Asparagine 1.375 CPF 0.35±0.06 1.01±0.47 
p=0.131 

FS 0.27±0.03 -0.34±0.43 

Adenosine 1.296 CPF 0.28±0.04 1.11±0.31 
p=0.032 

FS 0.21±0.02 0.34±0.23 

3-Hydroxyisovalerate 1.117 CPF 0.07±0.01 0.08±0.04 
p=0.124 

FS 0.07±0.01 -0.08±0.07 

 

Table 2: Mann-Whitney U results of the top 10 VIP (Variable Importance of Projection) 

metabolites to discriminate Fasted and Carbohydrate Prefed (CPF) samples during the 

response to shock (S45-B) via PLS-DA.  Mean concentrations reported as µM ± SE 

(standard error). 
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Metabolite 
VIP 

Score 
Group 

FR2 

Mean±SE Mean±SE 

Mann-

Whitney 

U 

Glucose 3.311 CPF 7.40±0.66 -

148.38±24.59 p=9.5x10
-6 

FS 5.38±0.31 -4.83±11.85 

3-Hydroxyisovalerate 2.083 CPF 0.07±0.01 -0.02±0.03 
p=2.7x10

-3 

FS 0.08±0.01 0.13±0.04 

Valine 1.659 CPF 0.23±0.02 -1.15±0.31 
p=0.057 

FS 0.30±0.02 -2.40±0.43 

Fumarate 1.658 CPF 0.05±0.01 -0.26±0.04 

p=0.011 FS 0.05±3x10
-

3 

-0.08±0.08 

Benzoate 1.639 CPF 0.15±0.03 -0.03±0.24 
p=8.3x10

-3 

FS 0.22±0.03 0.81±0.30 

Leucine 1.590 CPF 0.25±0.03 -1.43±0.32 
p=0.094 

FS 0.28±0.02 -2.50±0.36 

Choline 1.367 CPF 0.63±0.16 0.66±1.19 
p=0.068 

FS 0.47±0.06 -1.94±0.87 

Isoleucine 1.364 CPF 0.14±0.02 -0.63±0.22 
p=0.146 

FS 0.18±0.01 -1.19±0.21 

Lysine 1.356 CPF 1.08±0.12 1.12±1.05 
p=0.099 

FS 1.03±0.12 -1.60±1.07 

Sn-Glycero-3-

phosphocholine 

1.390 CPF 5.20±0.48 -26.06±4.84 
p=0.080 

FS 3.46±0.42 -39.36±5.37 

 

Table 3: Mann-Whitney U results of the top 10 VIP (Variable Importance of Projection) 

metabolites to discriminate Fasted and Carbohydrate Prefed (CPF) samples during the 

response to resuscitation (FR2-S45) via PLS-DA.  Mean concentrations reported as µM ± 

SE (standard error). 
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Figure 1 – 2D score plots of response to shock (S45-B) and resuscitation (FR2-S45) PLS-

DA models visually representing the discrimination between groups. Green represents 

Fasted animals and Blue represents Carbohydrate Prefed animals. 
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Figure 2 – Lineplots of Glucose, Lactate, 3-Hydroxyisovalerate and Aspartate 
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CHAPTER 8 

 

Fed State Prior to Hemorrhagic Shock and Polytrauma in a Porcine Model Results in 

Altered Liver Transcriptomics Response 
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ABSTRACT 

 Hemorrhagic shock is a leading cause of trauma-related mortality in both civilian 

and military settings.  Resuscitation often results in reperfusion injury and survivors are 

susceptible to developing multiple organ failure (MOF).  The impact of fed state on the 

overall response to shock and resuscitation (HS/R) has been explored in some murine 

models but few clinically relevant large animal models.  We have previously used 

metabolomics to establish that the fed state results in a different metabolic response in the 

porcine liver following HS/R.  In this study, we used our clinically relevant model of 

hemorrhagic shock and polytrauma and the Illumina HiSeq platform to determine if the 

liver transcriptomic response is also altered with respect to fed state.  Functional analysis 

of the response to shock and resuscitation confirmed several typical responses including 

carbohydrate metabolism, cytokine inflammation, decreased cholesterol synthesis, and 

apoptosis.  Our findings also suggest that the fasting state, relative to a carbohydrate 

prefed state, displays decreased carbohydrate metabolism, increased cytoskeleton 

reorganization and decreased inflammation in response to hemorrhagic shock and 

reperfusion.  Evidence suggests that this is a consequence of a shrunken, catabolic state 

of the liver cells which provides an anti-inflammatory condition that partially mitigates 

hepatocellar damage.   
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INTRODUCTION 

Hemorrhagic shock is a leading cause of trauma-related mortality in both civilian 

and military settings.  Efforts over the years have significantly improved survival in the 

military sector
150

;  however, hemorrhagic shock from traumatic injury results in multiple 

alterations in the metabolic state of an organism many of which are not fully elucidated.  

Civilian data estimates between 1400 and 14,000 preventable hemorrhagic trauma deaths 

occur per year in the United States
151

.  Military data has consistently reported 

hemorrhagic shock as the leading cause of preventable deaths
152–154

. 

Hemorrhagic shock results in inadequate tissue perfusion leading to decreased 

oxygen availability to mitochondria.  This condition causes a switch towards anaerobic 

metabolism in addition to a complex inflammatory response.  The liver serves an 

important function as a regulator of metabolism during stressed states.  Initially, the shift 

towards anaerobic metabolism stimulates the liver to increase glycogenolysis and process 

elevated lactate produced in the peripheral tissues.  The liver also provides a major site of 

detoxification and production of alternate metabolic fuel sources including amino acids 

and lipids.   

Previous research in our laboratory revealed increased acute lung injury and 

multiple organ failure with a trend toward increased mortality in pigs receiving a 

carbohydrate prefeed prior to hemorrhagic shock relative to fasted pigs
155

.  Our previous 

metabolomics research has reported an altered response to fed state in the liver and urine 

as well as phase of care in serum following hemorrhagic shock and resuscitation
42,95,112

.  

The objective of this study was to determine if this differential response is related to 

varied genetic expression in the liver with the hypothesis that there would be quantifiable 



86 
 

differences in liver mRNA expression reflecting an altered response to shock and 

resuscitation with respect to fed state.  To test this hypothesis, we used our well-

established model of hemorrhagic shock and polytrauma comparing the effect of 

providing a carbohydrate prefeed (CPF) versus a fasted (FS) diet prior to insult.  

Extraction of mRNA from liver biopsies and subsequent RNA-Sequencing was used to 

compare between CPF and FS animals at four timepoints: Baseline (B), and 2, 8 and 20 

hours after resuscitation (FR2, FR8, and FR20).  Secondly, livers samples were examined 

over the course of polytrauma, hemorrhagic shock and resuscitation within each group to 

determine how mRNA expression changed within each group.   

MATERIALS AND METHODS 

Animal Preparation and Hemorrhagic Shock Protocol 

Sixty four (64) juvenile, male Yorkshire pigs were used in this study.  All animals were 

fasted overnight.  Two experimental groups were utilized: Carbohydrate Prefed (CPF, n = 

32) and Fasted (FS, n = 32).  CPF animals were given 7cc/kg bolus of Karo Syrup
®
 

(mixture of sugars including ~ 15% glucose, maltose, fructose and sucrose) diluted with 

water 1 hour prior to induction.  The full experimental polytrauma and shock protocols 

have been described in detail previously
46,112

.  Briefly, animals were instrumented and 

splenectomized.  Polytrauma was induced by a captive bolt device to create a blunt 

percussive injury to the chest and a liver crush injury using a Holcomb clamp 

technique
20

.  Hemorrhagic shock was then induced by withdrawal of blood from the 

inferior vena cava until a systolic pressure of 45 to 55mmHg was reached for 45 minutes 

(S45) to simulate time prior to medical help.  Typically, this resulted in withdrawal of 

approximately 40% of the pig’s blood volume.  Blood was placed in an acid-citrate-



87 
 

dextrose bag for later use.  Following the shock period, animals received lactated 

Ringer’s fluid given as 20 cc/kg intravenous (IV) boluses to maintain a systolic blood 

pressure greater than 80 mmHg for one hour of limited resuscitation to simulate 

transportation to a medical center; then underwent full resuscitation protocol for the 

following 24 hours (Appendix A).  This resuscitation included fluid, shed blood, and 

ventilator support in a protocolled fashion.  After the resuscitation period, animals were 

extubated and sent to recovery and subsequently euthanized. 

 At several time points throughout the experiment, liver biopsies were taken from 

the periphery of the liver ranging in weight from 0.2 to 0.6 grams.  Biopsies were flash 

frozen in liquid nitrogen and stored at -80°C until preparation for RNA extraction.  

Biopsies were taken at the following timepoints: baseline after the animal stabilized from 

instrumentation (B), 45 minutes after hemorrhage (S45), 2, 8, and 20 hours after full 

resuscitation (FR2, FR8, FR20).  RNA extractions and sequencing were conducted on B, 

FR2, FR8, and FR20.  Analysis was not conducted on the S45 timepoint because of the 

short time period from baseline to allow RNA changes to take place. 

RNA Preparation and Sequencing 

RNA Extraction and Quality Assessment.  In a previous study, some of the samples from 

the original 64 animals had been utilized.  As such, only those that had all consecutive 

timepoints were included.  Ultimately, only 18 Fasted animals and 5 Prefed animals were 

analyzed at each timepoint (total n = 92).  RNA was purified from liver samples using 

QIAshredder and Qiagen RNeasy Mini Kits (Qiagen, Chatsworth, CA).  Total RNA 

isolates were quantified using a fluorimetric RiboGreen assay.  Total RNA integrity was 

assessed using capillary electrophoresis, generating an RNA Integrity Number (RIN).  
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All of the samples were verified as high quality (>1 microgram, RIN = 8+) and thus were 

converted to Illumina sequencing libraries. 

Library Creation.  RNA samples were converted to sequencing libraries using Illumina’s 

Truseq RNA Sample Preparation Kit (RS-122-2001).  In brief, 1 microgram of total RNA 

was enriched for mRNA using oligo-dT coated magnetic beads, fragmented, and reverse 

transcribed in cDNA.  The cDNA was fragmented into smaller pieces blunt-ended, and 

ligated to indexed adaptors and amplified using 15 cycles of PCR.  Final library size 

distribution was validated using capillary electrophoresis and quantified using PicoGreen 

fluorimetry and qPCR.  Libraries were successfully sequenced for all samples. 

Cluster generation and sequencing.  Truseq libraries were hybridized to a paired-end 

flow cell and individual fragments were clonally amplified by bridge amplification on the 

Illumina cBot.  Libraries were clustered at a concentration of 12 pM.  The flow cell was 

then loaded on the HiSeq 2000 and sequenced using Illumina’s Sequencing by Synthesis 

(SBS) chemistry.  Upon completion of a read, a 7 base pair index was performed for 

sample identification.  Samples were run for 100 cycles with 10 million single reads per 

sample. 

Primary analysis and de-multiplexing.  Base call (.bcl) files for each cycle of sequencing 

were generated by Illumina Real Time Analysis software.  The base call files and run 

folders were then exported to servers maintained at the Minnesota Supercomputing 

Institute (Minneapolis, MN).  Primary analysis and de-muliplexing were performed using 

Illumina’s CASAVA software 1.8.2, resulting in de-multiplexed FASTQ files. 

Bioinformatics and Data Analysis 
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RNA-Seq read sequences produced by the Illumina HiSeq 2000 were aligned with the 

TopHat software
69

 to the NCBI Sscrofa 10.2 reference genome.  The BAM files from the 

TopHat mapping were sorted using SAMtools
178

 and raw counts estimated by the Python 

script HTSeq count (http://www.-huber.embl.de/users/anders/HTSeq/)using the NCBI 

Sscrofa 10.2 reference genome.  Identified contigs were converted to human orthologs 

with the BiomaRt Bioconductor package
179

 which facilitates access to BioMart 

annotation resources
180

.  Gene names used for identification are the official Human 

Genome Organization (HUGO) Gene Nomenclature Committee (HGNC) designations. 

The resulting raw counts per gene were used by EdgeR
64

 to estimate differential 

expression (DE).  EdgeR (Bioconductor release 3.2.4) uses a pair-wise design to measure 

differential expression. The analysis is based on a negative binomial model that uses 

over-dispersion estimates to account for biological variability (i.e., sample to sample 

differences); this is an alternative to the Poisson estimates of biological variability that 

are often inappropriate
181

. Genes with less than 10 reads were excluded from the analysis 

and TMM normalization of the sequenced libraries was performed to remove effects due 

to differences in library size
182

.  The most stringent dispersion method (tag-wise) was 

used to ensure that differential expression was not due to individual differences.  EdgeR 

generates a log2 fold change for each gene, p values and the Benjamini-Hochberg false 

discovery rate (FDR) are calculated to statistically test the measured DE. Lastly, genes 

were filtered to those reporting log2 fold changes ≥ 1 or ≤ -1 (i.e. 2 fold change).  

Gene Ontology Analysis 

The differentially expressed transcripts calculated between fed states at each time point 

(e.g. FSvCPF, FR2) and between timepoints within each group (e.g. FR8vB, FS) were 



90 
 

analyzed using the functional annotation tools of DAVID
85,88

 and additional literature 

searches.  Lists of DEGs from each comparison were entered into DAVID in addition to 

the complete list of sequenced genes to serve as background for analysis.  DAVID 

analysis provides both functional annotations of each gene (Functional Annotation Table) 

and of each list of genes (Functional Annotation Clustering) to provide functional 

information using gene ontology
83

.  The Functional Annotation Clustering tool provides 

an overall picture of the overrepresented and enriched functions by consolidating 

redundancies in gene ontology categories.  Information on specific genes was obtained 

using the Functional Annotation Table tool and the scientific literature.  

RESULTS 

RNA-Sequencing Quality 

The RNA-sequencing (RNA-seq) results from the Illumina HiSeq 2000 were 

output as FASTQ format and mapped to the NCBI Sscrofa 10.2 release of the pig genome 

(ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Sus_scrofa/Ss

crofa10.2/) using TopHat
69

.  One FR8 sample failed to sequence successfully and was 

omitted from further analysis.  For each sample, approximately 11.8 million reads were 

generated (range, 6.9 to 20.6 million reads).  On average 88.8% of the reads generated 

were mapped uniquely (range, 85.7 – 98.3 percent mapped).  Following conversion to 

human orthologs and Human Gene Nomenclature Committee (HGNC) notation, to 

facilitate functional analysis, we identified 16,498 genes. The raw data has been made 

available through the Gene Expression Omnibus database accession number GSE55674. 

Differentially Expression 

ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Sus_scrofa/Sscrofa10.2/
ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Sus_scrofa/Sscrofa10.2/
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 We initially compared gene expression differences between CPF and FS animals 

at Baseline.  Of the 16,498 genes, 68 were identified as differentially expressed genes 

(DEGs) with 14 upregulated and 54 downregulated in CPF relative to FS.  In addition, 

subsequent analysis comparing each timepoint relative to baseline between CPF and FS 

identified 13, 29, and 30 DEGs at FR2, FR8 and FR20 versus baseline respectively.  At 

each time point following resuscitation, all DEGs were higher in CPF compared to FS 

except 2 genes at FR20 versus baseline (CHKA and GCK) (Supplementary File 1). 

 We then compared gene expression differences between each time point and 

baseline within each fed state.  Within carbohydrate prefed animals 116, 478, and 0 

DEGs were identified at FR2, FR8, and FR20 timepoints versus baseline respectively 

(Supplementary File 2).  Observed gene expression changes in fasted animals was far 

more extensive as 1442, 1460, and 1215 DEGs were identified at FR2, FR8 and FR20 

timepoints versus baseline respectively (Supplementary File 3).  Table 1 summarizes the 

DEGs for all comparisons (FDR<0.05).   

Functional Analysis – Fed State Expression 

Analysis of the differentially expressed transcripts using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID)
85

 and accompanying 

literature searches provided an overall picture of the overrepresented functions between 

the two fed states at various time points (Supplementary File 4).  As expected, 

comparisons at baseline provide evidence of upregulation of transcripts important for 

carbohydrate metabolism in CPF animals.  Curiously, the majority of the differences 

were related to contractile proteins associated with the cytoskeleton.  Prior literature 

supports this observation in that cytoskeletal proteins, such as actin, are elevated in 
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response to glucagon and cellular shrinkage
183–185

.  However, these previous studies 

report even greater actin mRNA expression in response to insulin, which stimulates 

cellular swelling, suggesting that elevated carbohydrates more strongly induce 

cytoskeleton remodeling.  In contrast to these studies, which were cell based, our in vivo 

investigation reports higher actin mRNA in fasted animals at baseline.  This trend 

reverses during FR2, FR8 and FR20 where cytoskeletal proteins in CPF exceed FS 

animals (Figure 1). 

Functional Analysis – Responses to Shock and Resuscitation within each Fed State 

Carbohydrate Prefed - FR2 v. Baseline 

Analysis of each timepoint relative to baseline within CPF animals revealed 

several responses that are characteristic of hemorrhagic shock and resuscitation.  Analysis 

of FR2vB identified functional responses including increases in processes associated with 

cell adhesions, hormone responses and cell membrane processes (Supplementary File 5).  

Exploration of the genes within these categories revealed activation of gene expression 

related to evidence of wound healing, and apoptosis. 

Carbohydrate Prefed - FR8 v. Baseline 

 Continued resuscitation in CPF animals continued to identify gene expression 

characteristic of the response to hemorrhagic shock and resuscitation.  Functional clusters 

identified included altered cytokine production (Figure 3), lipid metabolism (Figure 4), 

oxidation-reduction processes, hormone responses, and peptidase activity (Figure 5) 

(Supplementary File 5).  Genes associated with cytokine production included heat shock 

60kDa protein 1 (HSPD1) and myeloid differentiation primary response 88 (MyD88) 

which both induce pro-inflammatory cytokines
186–188

.  Analysis of specific genes within 



93 
 

categories suggested decreased cholesterol synthesis, decreased fatty acid beta-oxidation 

and apoptosis.  All processes are typical following ischemia-reperfusion
189,190

.  No genes 

were found to be significant when comparing FR20 to baseline, possibly a consequence 

of the small sample size in the CPF group. 

Fasted – FR2 v. Baseline 

 Functional analysis of resuscitation in FS animals returned 37 clusters of similar 

processes to CPF animals including cell adhesions, wound healing, cytokine 

inflammation and apoptosis (Supplementary File 6).  In contrast to CPF animals, 

cytoskeleton reorganization appears to be taking place wherein cytoskeletal genes are 

decreasing (Figure 1).  This finding is concordant with previous reports of cytoskeleton 

destabilization following reperfusion
191

. 

Fasted – FR8 v. Baseline 

 Following 8 hours of resuscitation FS, functional analysis identified 45 clusters 

that were very similar to CPF animals.  The processes include cytokine inflammation, 

decreased cholesterol synthesis, and apoptosis (Supplementary File 6).  In addition, 

cytoskeleton reorganization continues to take place as noted by decreasing cytoskeletal 

gene expression including actin and multiple elevated myosin heavy and light chains 

(MYH1, MYH2, MY3, MY6, MY7, MY13, MYL1, MYL2, MYL3) (Figure 6).  In 

addition, glycolysis appears to be downregulated as several glycolytic genes decreased 

(HK2, PGAM2, ENO3, GPD2, PDK2, PFKM, and PKLR) (Figure 7). 

Fasted – FR20 v. Baseline 

 Lastly, of the 41 clusters identified by functional analysis following 20 hours of 

resuscitation primary processes continued to include cytoskeleton reorganization in 
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addition to ion transport and glucose metabolism processes (Supplementary File 6).  

Genes associated with glycolytic and ion transport processes continue to both be 

decreased relative to baseline (Figures 7 & 8).  Cholesterol and lipid oxidation are also 

decreased in overall expression (Figure 9). 

DISCUSSION 

We report that the primary differences between the liver transcriptomic response 

to hemorrhagic shock between fasted and carbohydrate prefed pigs during the first 24 

hours in a polytrauma model of hemorrhagic shock and resuscitation consist of glucose 

metabolism and cytoskeletal remodeling.  Consistent with known changes associated 

with ischemia and reperfusion, we also found evidence of cytokine activation, apoptosis, 

and lipid metabolism ontological categories.  Additionally, genes associated with 

increased pro-inflammatory cytokines were elevated in CPF animals relative to FS 

animals.  Our results suggest the anti-inflammatory state of the FS animals may be a 

result of the fasting metabolic state. 

Gene Ontology Profiles 

 We present the first, to our knowledge, comprehensive exploration of the pig liver 

transcriptome following a polytrauma model of hemorrhagic shock and resuscitation via 

RNA-seq.  As expected following a carbohydrate prefeed genes associated with 

carbohydrate metabolism were upregulated as indicated by elevated Glucokinase (GCK) 

and glycogen phosphorylase (PYGM) in CPF and FS animals respectively reflecting the 

alternate metabolic state wherein fasted animals are releasing glucose and CPF animals 

are breaking down available glucose. 
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 The difference in cytoskeleton related genes in FS animals compared to CPF and 

over time suggests a link between fed state and metabolic response to hemorrhagic shock 

and resuscitation.  Prior in vitro investigations have reported that glucagon, which is 

elevated during fasting periods, causes cellular shrinkage as a result of altered ion 

fluxes
192,193

.  Conversely, elevated insulin results in cellular swelling.  Typically, upon 

swelling, a cell will trigger volume regulatory K
+
 efflux.  In contrast, following cellular 

shrinkage, it becomes important for the cell to retain ions.  Decreased ion transport is 

seen in our fasted animals, including several KCN family members (Figure 8), whereby 

the cells have previously shrunk in response to fasting and possibly don’t require 

additional ion transporters.   Additionally, glucagon stimulates the transcription of actin 

followed by assembly of actin filaments
183–185

.  Contrary to these in vitro studies, 

however, our in vivo investigation reports increased actin transcription in fasted animals 

compared to CPF animals.  This cellular shrinkage has been previously described as 

triggering the ‘catabolic state’ of a cell resulting in a multitude of altered processes
194

.  

The presence of this cytoskeleton remodeling is further supported in our study by 

upregulation of contractile proteins including multiple myosins for intracellular transport.  

In addition, cellular swelling stabilizes actin filaments
195

 which helps explain why 

cytoskeleton mRNA expression is higher in CPF than FS during resuscitation which 

usually results in actin depolymerization
196

. 

 Previous studies elucidating the impact of cell swelling during ischemia and 

reperfusion report that cells naturally become hyperosmotic during ischemia and 

consequently take up additional fluid
197,198

.  This increased swelling and resultant cellular 

edema may compress capillaries thereby reducing or preventing reperfusion of capillary 
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beds
199–201

.  This process results in zones that prevent reperfusion resulting in the ‘no-

reflow’ phenomenon
202

.  It is possible that the fasting state displays a shrunken catabolic 

state that may provide an initial condition to partially mitigate the subsequent swelling 

that is an unavoidable consequence of ischemia and reperfusion.  The benefit of induced 

cellular shrinkage on hepatocellular injury has been shown previously whereby 

hypertonic preconditioning (i.e. induced cellular shrinkage) reduces hepatocellular 

damage following ischemia reperfusion
203

.  Furthermore, the use of hypertonic saline for 

reperfusion has been shown to decrease susceptibility to sepsis, mitigate inflammation, 

and reduce apoptosis after hemorrhagic shock
204–206

 in addition to being attractive for 

small-volume resuscitation development
153

. 

 The full molecular mechanisms behind the proposed state are not fully elucidated 

however several components are understood.  One direct result of cellular shrinkage is 

vasodilation potentially mediating the no-reflow condition.  Furthermore, cellular 

shrinkage is a consequence of hypertonic treatments which have been shown mitigate 

inflammation following shock
207,208

.  The hyperosmotic environment causes cellular 

shrinkage which activates the tyrosine phosphorylation of Janus kinases. These kinases 

activate the transcription factor STAT3
209

 which ultimately stimulates Interleukin 10 (IL-

10) production while simultaneously inhibiting pro-inflammatory cytokines (e.g. IL-1β, 

TNF-α, and intercellular adhesion molecules) by inhibiting the transcription factor NF-

κB
210,211

 (Figure 10).  Although IL-10 was not individually identified, the anti-

inflammatory state of the FS is supported as several pro-inflammatory genes are elevated 

in CPF animals (Figure 8).  Further research on the anti-inflammatory properties of 

cellular shrinkage is required. 
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Although this study utilized a larger sample size, our groups were unbalanced (18 

versus 5).  This difference in group size may have partially biased estimates.  However, 

given the quality of the RNA-seq, consistency across timepoints, and agreement with 

supporting literature supports our results.  Lastly, it is important to recall that the liver is 

only one component of the overall systemic response to hemorrhagic shock and 

resuscitation.  Analysis of other organs and tissues would be should be pursued.   

CONCLUSION 

 Analysis of the liver transcriptome between carbohydrate prefed and fasted pigs 

following hemorrhagic shock and resuscitation reveals that the first 24 hours results in 

different changes to the cytoskeleton structure.  Our results suggest this both a metabolic 

response to decreased carbohydrate substrates and structural modifications in response to 

cellular shrinkage.  Further evidence suggests that this shrunken state provides an anti-

inflammatory condition that may decrease hepatocellar damage.  More work is required 

to investigate the potential benefits of alternative diets such as the anti-inflammatory 

effects of increased intake of omega-3 fatty acids. 
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Comparison Differentially Expressed Genes 

CPFvFS, B 68 

CPFvFS, FR2vB 13 

CPFvFS, FR8vB 29 

CPFvFS, FR20vB 30 

FR2vB, CPF 116 

FR8vB, CPF 478 

FR20vB, CPF 0 

FR2vB, FS 1442 

FR8vB, FS 1460 

FR20vB 1215 

 

Table 1 – Number of differentially expressed genes between CPF and FS animals and between 

timepoints within groups.  Abbreviations: CPF (Carbohydrate Prefed), FS (Fasted), B (Baseline), 

FR2, FR8 and FR20 (2, 8 and 20 hours after full resuscitation). 
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Figure 1 – Heatmap of log2 fold changes of genes associated with cytoskeleton processes 

between carbohydrate prefed (CPF) and fasted (FS) animals.  Rows are differentially expressed 

genes (DEGs) following RNA sequencing.  Columns are denote the respective timepoints 

Baseline (B), 2 hours full resuscitation change from Baseline (FR2vB), 8 hours full resuscitation 

change from Baseline (FR8vB), and 20 hours full resuscitation change from Baseline (FR20vB).  

Green denotes higher concentration or larger changes in mRNA concentration in CPF whereas 

red denotes the opposite. 
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Figure 2 – Heatmap of log2 fold changes of genes associated with carbohydrate metabolism 

between carbohydrate prefed (CPF) and fasted (FS) animals.  Rows are differentially expressed 

genes (DEGs) following RNA sequencing.  Columns are denote the respective timepoints 

Baseline (B), 2 hours full resuscitation change from Baseline (FR2vB), 8 hours full resuscitation 

change from Baseline (FR8vB), and 20 hours full resuscitation change from Baseline (FR20vB).  

Green denotes higher concentration or larger changes in mRNA concentration in CPF whereas 

red denotes the opposite. 
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Figure 3 – Heatmap of log2 fold changes of genes associated with cytokine related genes in 

carbohydrate prefed (CPF) animals at each resuscitation timepoint (2, 8, and 20 hours) relative to 

Baseline (B).  Rows are differentially expressed genes (DEGs) following RNA sequencing.  

Columns are denote the respective timepoints Baseline (B), 2 hours full resuscitation change from 

Baseline (FR2vB), 8 hours full resuscitation change from Baseline (FR8vB), and 20 hours full 

resuscitation change from Baseline (FR20vB).  Green denotes increased mRNA expression 

whereas red denotes the opposite. 

  



103 
 

 Figure 4 – Heatmap of log2 fold changes of genes associated with lipid metabolism in 

carbohydrate prefed (CPF) animals at each resuscitation timepoint (2, 8, and 20 hours) relative to 

Baseline (B).  Rows are differentially expressed genes (DEGs) following RNA sequencing.  

Columns are denote the respective timepoints Baseline (B), 2 hours full resuscitation change from 

Baseline (FR2vB), 8 hours full resuscitation change from Baseline (FR8vB), and 20 hours full 

resuscitation change from Baseline (FR20vB).  Green denotes increased mRNA expression 

whereas red denotes the opposite. 
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Figure 5 – Heatmap of log2 fold changes of genes associated with peptidase activity in 

carbohydrate prefed (CPF) animals at each resuscitation timepoint (2, 8, and 20 hours) relative to 

Baseline (B).  Rows are differentially expressed genes (DEGs) following RNA sequencing.  

Columns are denote the respective timepoints Baseline (B), 2 hours full resuscitation change from 

Baseline (FR2vB), 8 hours full resuscitation change from Baseline (FR8vB), and 20 hours full 

resuscitation change from Baseline (FR20vB).  Green denotes increased mRNA expression 

whereas red denotes the opposite. 
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Figure 6 – Heatmap of log2 fold changes of genes associated with cytoskeleton processes in 

fasted (FS) animals at each resuscitation timepoint (2, 8, and 20 hours) relative to Baseline (B).  

Rows are differentially expressed genes (DEGs) following RNA sequencing.  Columns are 

denote the respective timepoints Baseline (B), 2 hours full resuscitation change from Baseline 

(FR2vB), 8 hours full resuscitation change from Baseline (FR8vB), and 20 hours full 

resuscitation change from Baseline (FR20vB).  Green denotes increased mRNA expression 

whereas red denotes the opposite. 
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Figure 7 – Heatmap of log2 fold changes of genes associated with carbohydrate metabolism in 

fasted (FS) animals at each resuscitation timepoint (2, 8, and 20 hours) relative to Baseline (B).  

Rows are differentially expressed genes (DEGs) following RNA sequencing.  Columns are 

denote the respective timepoints Baseline (B), 2 hours full resuscitation change from Baseline 

(FR2vB), 8 hours full resuscitation change from Baseline (FR8vB), and 20 hours full 

resuscitation change from Baseline (FR20vB).  Green denotes increased mRNA expression 

whereas red denotes the opposite. 
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Figure 8 – Heatmap of log2 fold changes of genes associated with ion transport in fasted (FS) 

animals at each resuscitation timepoint (2, 8, and 20 hours) relative to Baseline (B).  Rows are 

differentially expressed genes (DEGs) following RNA sequencing.  Columns are denote the 

respective timepoints Baseline (B), 2 hours full resuscitation change from Baseline (FR2vB), 8 

hours full resuscitation change from Baseline (FR8vB), and 20 hours full resuscitation change 

from Baseline (FR20vB).  Green denotes increased mRNA expression whereas red denotes the 

opposite. 
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Figure 9 – Heatmap of log2 fold changes of genes associated with carbohydrate metabolism in 

fasted (FS) animals at each resuscitation timepoint (2, 8, and 20 hours) relative to Baseline (B).  

Rows are differentially expressed genes (DEGs) following RNA sequencing.  Columns are 

denote the respective timepoints Baseline (B), 2 hours full resuscitation change from Baseline 

(FR2vB), 8 hours full resuscitation change from Baseline (FR8vB), and 20 hours full 

resuscitation change from Baseline (FR20vB).  Green denotes increased mRNA expression 

whereas red denotes the opposite. 
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Figure 10 – Diagram of simplified Interleukin-10 (IL-10) pathway.  A hyperosmotic condition 

induces cellular shrinkage and activates tyrosine phosphorylation of Janus kinases (JAK) to 

subsequently phosphorylate STAT3 and IL-10 production. 
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CHAPTER 9 

 

Conclusions 
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Concluding Remarks 

Hemorrhagic shock, following trauma, has continued to be a leading cause of 

death in both military and civilian settings. This public health interest has spurred 

research over decades leading to improvements in treatment.  However, the metabolic 

mechanisms altered in response to shock and subsequent resuscitation require further 

understanding to not only treat patients post-injury but potentially also advance pre-

conditioning strategies to mitigate potential injury in the military sector. Transcriptomics 

is an established sub-discipline of systems biology that can profile altered genome level 

processes and provide insight into overall physiologic responses.  Metabolomics is an 

additional and rapidly growing sub-discipline of systems biology that facilitates the 

identification of altered pathways and biomarker identification.  Together, these two 

systems biology approaches applied towards hemorrhagic shock facilitate advancements 

in the understanding of the numerous complex responses to injury.  The focus of this 

dissertation has been to evaluate current approaches towards analyzing metabolomics 

data (Chapter 6) and analyze the impact of fed state on both the metabolomic (Chapter 7) 

and transcriptomic (Chapter 8) response to hemorrhagic shock and resuscitation.  

Herein, established NMR and RNA-sequencing techniques were applied explore 

the metabolomic and transcriptomic responses, respectively, within our clinically 

relevant, porcine model of hemorrhagic shock and resuscitation. The response to 

hemorrhagic shock and resuscitation is a complex process consisting of multiple systemic 

changes.  Metabolomic and transcriptomic techniques facilitate the analysis of these 

systemic changes at the small molecule and RNA transcript level.  

The first study discussed was designed to evaluate commonly used multivariate 

analysis techniques applied to metabolomics datasets (Chapter 6).  Metabolomics is a 
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rapidly growing field as the cost decreases and popularity increases.  Previous methods 

have been developed for transcriptomic and proteomic techniques in addition to other 

multivariate methods that have been applied towards metabolomics.  The diversity of 

methods, in addition to potentially conflicting results of alternate methods, necessitated 

an analysis that would facilitate the rapid comparison of multiple algorithms.  This would 

provide not only an objective means to identify the optimal algorithm but also facilitate 

more robust analyses by providing comprehensive results of multiple accepted methods.  

We therefore developed a new tool to rapidly assess algorithms for the analysis of 

metabolomics data.  The OmicsMarkeR program is an open-source package written for 

the extensive R Statistical Program
157

 and is made available through Bioconductor.  The 

results demonstrate how no algorithm is optimal for all problems as overall performance 

varies between datasets.  It is therefore important to compare and utilize multiple 

methods when exploring high-dimensional datasets such as metabolomics. 

The following study explored the impact of fed state upon the liver metabolic 

response to hemorrhagic shock and resuscitation (Chapter 7).  The objective was to 

determine if a carbohydrate prefeed would alter the liver metabolic processes following 

shock and if so, what processes were altered.  The results reported a clear distinction 

between fed and fasted animals via PLS-DA analysis.  The metabolites that contributed 

most towards the discrimination were associated with alternate carbon energy sources, 

amino acid metabolism, oxidative stress, and membrane maintenance.  This analysis 

revealed that carbohydrate prefeeding alters metabolic pathways during the response to 

shock and resuscitation. 
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Lastly, we conducted a transcriptomics analysis to evaluate the impact of fed state on 

gene expression following hemorrhagic shock and resuscitation (Chapter 8).  The 

objective was to determine if upstream metabolic pathways were altered at the gene 

expression level in response to a carbohydrate fed state.  Our findings reported changes in 

carbohydrate metabolism as expected but also changes in cytoskeleton reorganization and 

inflammation.  Our results and previous evidence in hypertonic resuscitation techniques 

suggest that the fasted state facilitates a shrunken, catabolic state of the liver cells 

providing an anti-inflammatory state that partially mitigates hepatocellular damage. 

This collective work demonstrates the application of high-throughput, systems level 

analysis to advance our understanding of the complex responses elicited by hemorrhagic 

shock and resuscitation.  We have successfully determined that fed state is an important 

consideration in hemorrhagic shock experiments thereby advancing upon a previous 

study that reported increased lung injury and a trend towards increased mortality in 

prefed pigs following hemorrhagic shock and resuscitation
155

.  These results provide a 

firm foundation from which future experiments in trauma should be expanded upon to 

include the fed state of the model organism.    Furthermore, the fed state could be readily 

determined through the early stages of shock via metabolomics and transcriptomics.  

However, this difference appears to dissipate in later stages likely a consequence of the 

metabolic effect of shock and injury overwhelming the metabolic effect of fed state.  This 

provides a potential opportunity to specifically treat patients in the early stages of shock 

that have eaten or not.  Transcriptomics results also provide further support for 

hypertonic resuscitation techniques.  These results suggest that by stimulating alternate 

conditions, it is theoretically possible to convert cells into a catabolic and anti-
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inflammatory state similar to ischemia precondition models.  Further research is needed 

to explore and advance fluid resuscitation techniques which should be guided by the 

inherent cellular processes. 

The integration of multiple levels of systems biology continues to be a difficult task.  

To our knowledge, there is no standard or recommended means to integrate these levels 

beyond correlations, mapping to pathways, and literature based knowledge of the 

biological processes.  Within our experiments, the limited number of metabolites 

resolved by NMR analysis renders any pathway analysis software unusable and therefore 

interpretations must be made with caution.  However, there were some consistencies 

between these two studies.  Altered carbohydrate metabolism was readily identified 

thereby confirming both methods were successful.  Additionally, indications of 

membrane maintenance that follow cytoskeletal remodeling and cellular shrinkage are 

potentially reflected by 3-Hydroxyisovalerate and sn-Glycero-3-phosphocholine (Chapter 

7).  The higher resolution of mass spectrometry analysis may provide further insights into 

the metabolome. 

This work has provided insight into the metabolomic and transcriptomic responses to 

hemorrhagic shock and resuscitation in addition to improving analytical methods.  

However, each of these components demonstrates the need for further research both 

within each specialty as well as integration methods.  Although we provide metabolomic 

and transcriptomic data, proteomics also provides invaluable information on the 

compounds conducting the processes involved.  Future work should also continue to 

develop improved algorithms with standardized means of evaluation.  An exploration of 

the impact of alternate diets is strongly encouraged following the clear discrimination 
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between carbohydrate prefed and fasted pigs at both the metabolomic and transcriptomic 

levels.  Furthermore, this work suggests a renewed interest in the ‘metabolic state’ of 

cells whereby different conditions poise a cell to respond to a stimulus in a different and 

potentially beneficial manner.  Finally, methodology in systems biology integration needs 

to be more readily accessible.  This is rapidly becoming possible as costs continue to drop 

through advancements in next-generation and high-throughput technologies.  The 

movement beyond the classical biological dogma, wherein each component is considered 

separately, towards an integrative and holistic perspective will advance our understanding 

of not only the complex processes following hemorrhagic shock and resuscitation but 

other systemic pathologies as well. 
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Figure 1:  Graphical representation of the experimental timeline described in Methods. 
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NMR – BINARY - HIGH SAMPLE 

Non-Ensemble 

 Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.466 0.497 0.423 0.196 0.597 0.621 0.460 0.366 0.422 0.213 0.552 0.528 

Accuracy 0.436 0.590 0.780 0.880 0.740 0.750 0.460 0.530 0.660 0.940 0.670 0.660 

AUC-

ROC 

0.597 0.781 0.892 0.956 0.876 0.806 0.779 0.787 0.824 0.984 0.856 0.751 

Stability 0.50 0.43 0.29 0.11 0.50 0.53 0.46 0.28 0.31 0.12 0.47 0.44 

 

Ensemble 

 Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.462 0.493 0.424 0.405 0.478 0.617 0.441 0.374 0.477 0.315 0.557 0.510 

Accuracy 0.445 0.530 0.720 0.920 0.710 0.780 0.432 0.470 0.670 0.920 0.520 0.650 

AUC-

ROC 

0.648 0.765 0.884 0.960 0.884 0.783 0.593 0.870 0.816 0.980 0.708 0.769 

Stability 0.48 0.46 0.30 0.26 0.36 0.51 0.45 0.31 0.37 0.19 0.60 0.42 

 
Table 1 – Results from High Sample (50/group) NMR-scale Binary Null Classification Simulations.  RPT – Robustness-Performance Trade-off, AUC-

ROC – Area under the Receiver Operator Curve 
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NMR – BINARY - LOW SAMPLE 

Non-Ensemble 

  Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.411 0.432 0.395 0.212 0.569 0.562 0.455 0.422 0.525 0.227 0.596 0.578 

Accuracy 0.365 0.425 0.825 0.900 0.775 0.700 0.410 0.425 0.850 0.900 0.650 0.750 

AUC-

ROC 

0.565 0.663 0.925 0.975 0.900 0.806 0.603 0.706 0.900 0.975 0.900 0.831 

Stability 0.47 0.44 0.26 0.12 0.45 0.47 0.51 0.42 0.38 0.13 0.55 0.47 

  

Ensemble 

  Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.386 0.457 0.558 0.357 0.530 0.525 0.442 0.502 0.525 0.355 0.570 0.434 

Accuracy 0.365 0.475 0.875 0.950 0.875 0.700 0.410 0.675 0.675 0.925 0.750 0.600 

AUC-

ROC 

0.565 0.713 0.950 1.000 0.950 0.894 0.603 0.681 0.900 1.000 0.925 0.744 

Stability 0.41 0.44 0.41 0.22 0.38 0.42 0.48 0.40 0.43 0.22 0.46 0.34 

 
Table 2 – Results from Low Sample (25/group) NMR-scale Binary Null Classification Simulations.  RPT – Robustness-Performance Trade-off, AUC-

ROC – Area under the Receiver Operator Curve 

  



132 
 

NMR – MULTI-CLASS - HIGH SAMPLE 

Non-Ensemble 

 Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.357 0.340 0.418 0.211 0.462 0.462 0.299 0.342 0.460 0.211 0.432 0.466 

Accuracy 0.262 0.315 0.390 0.875 0.410 0.430 0.238 0.280 0.470 0.870 0.415 0.445 

AUC-

ROC 0.657 0.683 0.763 0.964 0.757 0.736 0.645 0.714 0.751 0.967 0.713 0.688 

Stability 0.56 0.37 0.45 0.12 0.53 0.50 0.40 0.44 0.45 0.12 0.45 0.49 

 

Ensemble 

 Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.347 0.392 0.418 0.269 0.397 0.443 0.317 0.280 0.428 0.256 0.444 0.436 

Accuracy 0.258 0.360 0.390 0.850 0.385 0.405 0.241 0.205 0.460 0.880 0.335 0.400 

AUC-

ROC 0.589 0.672 0.764 0.921 0.735 0.696 0.653 0.665 0.740 0.937 0.741 0.714 

Stability 0.53 0.43 0.45 0.16 0.41 0.49 0.46 0.44 0.40 0.15 0.66 0.48 

 
Table 3 – Results from High Sample (50/group) NMR-scale Multi-Class Null Classification Simulations.  RPT – Robustness-Performance Trade-off, 

AUC-ROC – Area under the Receiver Operator Curve 
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NMR – MULTI-CLASS - LOW SAMPLE 

Non-Ensemble 

  Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.336 0.350 0.399 0.212 0.518 0.524 0.351 0.280 0.439 0.228 0.472 0.571 

Accuracy 0.250 0.300 0.638 0.925 0.550 0.563 0.306 0.225 0.563 0.913 0.538 0.538 

AUC-

ROC 0.647 0.723 0.913 0.963 0.871 0.817 0.598 0.722 0.838 0.992 0.796 0.772 

Stability 0.51 0.42 0.29 0.12 0.49 0.49 0.41 0.37 0.36 0.13 0.42 0.61 

  

Ensemble 

  Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.271 0.329 0.480 0.227 0.403 0.460 0.347 0.359 0.548 0.227 0.551 0.585 

Accuracy 0.263 0.275 0.600 0.900 0.475 0.450 0.306 0.325 0.700 0.888 0.525 0.600 

AUC-

ROC 0.733 0.782 0.858 0.954 0.804 0.741 0.598 0.749 0.850 0.967 0.800 0.794 

Stability 0.28 0.41 0.40 0.13 0.35 0.47 0.40 0.40 0.45 0.13 0.58 0.57 

 
Table 4 – Results from Low Sample (25/group) NMR-scale Multi-Class Null Classification Simulations.  RPT – Robustness-Performance Trade-off, 

AUC-ROC – Area under the Receiver Operator Curve 
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MS – BINARY - HIGH SAMPLE 

Non-Ensemble 

 Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.367 0.370 0.181 0.077 0.428 0.448 0.372 0.297 0.241 0.058 0.450 0.462 

Accuracy 0.500 0.590 0.940 0.940 0.820 0.810 0.520 0.420 0.860 0.880 0.820 0.770 

AUC-

ROC 0.580 0.805 0.964 0.952 0.892 0.891 0.580 0.809 0.952 0.924 0.984 0.808 

Stability 0.29 0.27 0.10 0.04 0.29 0.31 0.29 0.23 0.14 0.03 0.31 0.33 

 

Ensemble 

 Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.324 0.391 0.400 0.257 0.413 0.355 0.338 0.326 0.487 0.297 0.385 0.406 

Accuracy 0.500 0.560 0.870 0.900 0.880 0.78 0.52 0.39 0.86 0.85 0.84 0.74 

AUC-

ROC 0.580 0.755 0.980 0.968 0.968 0.872 0.580 0.793 0.984 0.956 0.924 0.865 

Stability 0.24 0.30 0.26 0.15 0.27 0.23 0.25 0.28 0.34 0.18 0.25 0.28 

 
Table 5 – Results from High Sample (50/group) MS-scale Binary Null Classification Simulations.  RPT – Robustness-Performance Trade-off, AUC-

ROC – Area under the Receiver Operator Curve 
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MS – BINARY - LOW SAMPLE 

Non-Ensemble 

  Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.339 0.308 0.368 0.058 0.568 0.554 0.393 0.286 0.357 0.077 0.543 0.514 

Accuracy 0.295 0.400 0.925 0.850 0.925 0.900 0.465 0.450 0.950 0.875 0.950 0.900 

AUC-

ROC 0.549 0.731 1.000 0.975 1.000 0.831 0.566 0.731 1.000 0.975 1.000 0.925 

Stability 0.40 0.25 0.23 0.03 0.41 0.40 0.34 0.21 0.22 0.04 0.38 0.36 

  

Ensemble 

  Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.312 0.460 0.563 0.366 0.553 0.494 0.386 0.352 0.479 0.318 0.453 0.450 

Accuracy 0.295 0.525 0.900 0.900 0.950 0.900 0.465 0.475 0.875 0.975 0.925 0.900 

AUC-

ROC 0.549 0.825 0.950 1.000 1.000 0.919 0.566 0.719 0.975 1.000 1.000 0.900 

Stability 0.33 0.41 0.41 0.23 0.39 0.34 0.33 0.28 0.33 0.19 0.30 0.30 

 
Table 6 – Results from Low Sample (25/group) MS-scale Binary Null Classification Simulations.  RPT – Robustness-Performance Trade-off, AUC-

ROC – Area under the Receiver Operator Curve 
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MS – MULTI-CLASS - HIGH SAMPLE 

Non-Ensemble 

 Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.249 0.238 0.206 0.039 0.421 0.415 0.313 0.240 0.191 0.020 0.368 0.421 

Accuracy 0.193 0.260 0.730 0.910 0.580 0.590 0.328 0.300 0.720 0.860 0.580 0.580 

AUC-

ROC 0.669 0.686 0.885 0.983 0.804 0.711 0.777 0.695 0.877 0.945 0.830 0.736 

Stability 0.35 0.22 0.12 0.02 0.33 0.32 0.30 0.20 0.11 0.01 0.27 0.33 

 

Ensemble 

 Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.191 0.282 0.371 0.225 0.376 0.324 0.338 0.326 0.487 0.297 0.385 0.406 

Accuracy 0.238 0.285 0.645 0.840 0.535 0.500 0.520 0.390 0.860 0.850 0.840 0.740 

AUC-

ROC 0.659 0.683 0.834 0.899 0.775 0.715 0.580 0.793 0.984 0.956 0.924 0.865 

Stability 0.16 0.28 0.26 0.13 0.29 0.24 0.25 0.28 0.34 0.18 0.25 0.28 

 
Table 7 – Results from High Sample (50/group) MS-scale Multi-Class Null Classification Simulations.  RPT – Robustness-Performance Trade-off, 

AUC-ROC – Area under the Receiver Operator Curve 
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MS – MULTI-CLASS - LOW SAMPLE 

Non-Ensemble 

  Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.270 0.234 0.299 0.039 0.545 0.513 0.285 0.245 0.286 0.039 0.494 0.540 

Accuracy 0.213 0.288 0.875 0.888 0.812 0.750 0.231 0.263 0.900 0.938 0.788 0.700 

AUC-

ROC 0.726 0.804 0.954 0.967 0.913 0.827 0.630 0.689 0.958 0.996 0.913 0.769 

Stability 0.37 0.28 0.18 0.02 0.41 0.39 0.37 0.23 0.17 0.02 0.36 0.44 

  

Ensemble 

  Random Correlated 

Method PLSDA GBM SVM RF GLMNET PAM PLSDA GBM SVM RF GLMNET PAM 

RPT 0.160 0.308 0.465 0.302 0.501 0.434 0.174 0.290 0.588 0.259 0.463 0.435 

Accuracy 0.188 0.275 0.850 0.938 0.775 0.725 0.206 0.300 0.888 0.950 0.725 0.575 

AUC-

ROC 0.737 0.774 0.963 0.996 0.913 0.709 0.770 0.715 0.988 0.967 0.846 0.790 

Stability 0.14 0.35 0.32 0.18 0.37 0.31 0.15 0.28 0.44 0.15 0.34 0.35 

 
Table 8 – Results from Low Sample (25/group) MS-scale Multi-Class Null Classification Simulations.  RPT – Robustness-Performance Trade-off, 

AUC-ROC – Area under the Receiver Operator Curve 
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MS - BINARY – DISCRIMINATORY - HIGH SAMPLE 

Subset 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.681 0.484 0.630 0.302 0.718 0.746 

Accuracy 0.770 0.570 1.000 0.940 1.000 0.960 

AUC-ROC 0.602 0.784 1.000 0.880 1.000 0.939 

Stability 0.61 0.42 0.46 0.18 0.56 0.61 

Max # Features 20 20 20 20 20 20 

TP % 65.0% 54.0% 52.0% 38.5% 64.5% 62.0% 

    

Model Derived 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.655 0.514 0.598 0.182 0.649 0.857 

Accuracy 0.810 0.600 0.980 0.990 1.000 1.000 

AUC-ROC 0.849 0.770 1.000 1.000 1.000 1.000 

Stability 0.55 0.45 0.43 0.10 0.48 0.75 

Max # Features 285 23 100 126 83 800 

TP % 6.7% 47.4% 15.7% 9.0% 19.6% 2.5% 

    

Ensemble 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.681 0.525 0.630 0.305 0.718 0.746 

Accuracy 0.770 0.650 1.000 1.000 1.000 0.960 

AUC-ROC 0.602 0.846 1.000 1.000 1.000 0.939 

Stability 0.61 0.44 0.46 0.18 0.56 0.61 

Max # Features 20 20 20 20 20 20 

TP % 66.5% 54.5% 52.0% 41.5% 64.5% 62.0% 

 
Table 9 – Results from High Sample (50/group) MS-scale Binary Classification Simulations.  RPT – 

Robustness-Performance Trade-off, AUC-ROC – Area under the Receiver Operator Curve 
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MS - BINARY – DISCRIMINATORY - LOW SAMPLE 

Subset 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.429 0.336 0.435 0.113 0.573 0.655 

Accuracy 0.410 0.475 0.975 0.975 0.950 0.950 

AUC-ROC 0.552 0.794 1.000 1.000 0.950 0.925 

Stability 0.45 0.26 0.28 0.06 0.41 0.50 

Max # Features 20 20 20 20 20 20 

TP % 33.0% 22.0% 20.0% 10.5% 32.5% 25.5% 

    

Model Derived 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.492 0.292 0.614 0.112 0.670 0.874 

Accuracy 0.413 0.400 0.925 0.825 0.975 0.950 

AUC-ROC 0.700 0.713 0.975 0.950 1.000 0.925 

Stability 0.61 0.23 0.46 0.06 0.51 0.81 

Max # Features 325 85 100 68 67 881 

TP % 4.1% 8.9% 9.6% 4.9% 13.6% 2.1% 

    

Ensemble 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.394 0.480 0.601 0.433 0.563 0.582 

Accuracy 0.410 0.625 1.000 0.950 0.950 0.950 

AUC-ROC 0.552 0.663 1.000 1.000 0.975 0.925 

Stability 0.38 0.39 0.43 0.28 0.40 0.42 

Max # Features 20 20 20 20 20 20 

TP % 31.0% 28.0% 25.0% 23.5% 33.0% 28.0% 

 
Table 10 – Results from Low Sample (25/group) MS-scale Binary Classification Simulations.  RPT – 

Robustness-Performance Trade-off, AUC-ROC – Area under the Receiver Operator Curve 
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MS - MULTI-CLASS - DISCRIMINATORY - HIGH SAMPLE 

Subset 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.462 0.246 0.495 0.147 0.666 0.581 

Accuracy 0.380 0.180 0.845 0.930 0.800 0.735 

AUC-ROC 0.723 0.698 0.957 0.985 0.938 0.753 

Stability 0.59 0.39 0.35 0.08 0.57 0.48 

Max # Features 20 20 20 20 20 20 

TP % 57.0% 42.5% 47.5% 24.0% 53.0% 53.0% 

    

Model Derived 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.475 0.208 0.547 0.244 0.655 0.931 

Accuracy 0.402 0.165 0.915 0.950 0.950 0.895 

AUC-ROC 0.698 0.651 0.959 0.991 0.994 0.770 

Stability 0.58 0.28 0.39 0.14 0.50 0.97 

Max # Features 357 207 100 252 226 991 

TP % 4.7% 6.7% 14.7% 3.7% 6.4% 2.0% 

    

Ensemble 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.393 0.351 0.626 0.587 0.636 0.603 

Accuracy 0.370 0.280 0.865 0.925 0.795 0.760 

AUC-ROC 0.618 0.639 0.979 0.977 0.920 0.768 

Stability 0.42 0.47 0.49 0.43 0.53 0.50 

Max # Features 20 20 20 20 20 20 

TP % 55.5% 47.5% 55.5% 53.5% 55.5% 53.5% 

 
Table 11 – Results from High Sample (50/group) MS-scale Multi-Class Classification Simulations.  RPT – 

Robustness-Performance Trade-off, AUC-ROC – Area under the Receiver Operator Curve 
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MS - MULTI-CLASS - DISCRIMINATORY - LOW SAMPLE 

Subset 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.378 0.131 0.352 0.113 0.568 0.618 

Accuracy 0.294 0.088 0.875 0.900 0.800 0.763 

AUC-ROC 0.721 0.728 0.975 0.979 0.963 0.704 

Stability 0.53 0.26 0.22 0.06 0.44 0.52 

Max # Features 20 20 20 20 20 20 

TP % 45.5% 18.0% 27.0% 14.0% 34.0% 38.5% 

    

Model Derived 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.424 0.253 0.631 0.164 0.661 0.918 

Accuracy 0.317 0.238 0.888 0.913 0.938 0.863 

AUC-ROC 0.701 0.767 0.954 0.975 1.000 0.844 

Stability 0.64 0.27 0.49 0.09 0.51 0.98 

Max # Features 382 191 100 159 108 989 

TP % 3.4% 4.6% 10.1% 4.1% 7.9% 2.0% 

    

Ensemble 

Method PLSDA GBM SVM RF GLMNET PAM 

RPT 0.306 0.222 0.629 0.414 0.600 0.585 

Accuracy 0.313 0.163 0.913 0.888 0.800 0.725 

AUC-ROC 0.668 0.756 0.992 1.000 0.971 0.736 

Stability 0.30 0.35 0.48 0.27 0.48 0.49 

Max # Features 20 20 20 20 20 20 

TP % 34.0% 27.5% 33.0% 30.5% 29.5% 38.0% 

 
Table 12 – Results from Low Sample (25/group) MS-scale Multi-Class Classification Simulations.  RPT – 

Robustness-Performance Trade-off, AUC-ROC – Area under the Receiver Operator Curve 
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Eisner Results 

Non-ensemble Results 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .657 .430 .457 .331 .705 .711 

Accuracy  .757 .557 .871 .957 .786 .771 

AUC-ROC .685 .773 .933 .975 .958 .744 

Stability  .58 .35 .31 .20 .64 .66 

Table 13 - Non-ensemble model diagnostics of Eisner dataset 

 

 

Output from feature.table 

 

PAM Feature Table 

features consistency frequency 

Adipate 10 1 

Creatine 10 1 

Glucose 10 1 

Succinate 10 1 

X3.Hydroxyisovalerate 10 1 

myo.Inositol 9 0.9 

Betaine 7 0.7 

Glutamine 7 0.7 

Quinolinate 6 0.6 

cis.Aconitate 6 0.6 

Acetate 5 0.5 

N.N.Dimethylglycine 5 0.5 

Lysine 3 0.3 

Leucine 2 0.2 

Table 14 – Eisner PAM feature table 

 

 

 

 

 

GLMNET Feature Table 

features consistency frequency 

Adipate 10 1 

Glucose 10 1 

Leucine 10 1 

Quinolinate 10 1 

Valine 10 1 

X3.Hydroxyisovalerate 10 1 

myo.Inositol 9 0.9 

Succinate 6 0.6 

Betaine 4 0.4 

Glutamine 4 0.4 

Lysine 4 0.4 

Creatine 3 0.3 

N.N.Dimethylglycine 3 0.3 

Acetate 3 0.3 

Alanine 2 0.2 

Formate 1 0.1 

Xylose 1 0.1 

Table 15 – Eisner GLMNET feature table 
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Ensemble Results 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .696 .486 .612 .433 .572 .721 

Accuracy  .736 .529 .743 .957 .686 .743 

AUC-ROC .802 .717 .892 1.0 .967 .790 

Stability  .66 .45 .52 .28 .49 .70 

Table 16 - Ensemble model diagnostics of Eisner dataset 

Output from feature.table 

PAM Feature Table 

features consistency frequency 

Adipate 10 1 

Creatine 10 1 

Glucose 10 1 

Succinate 10 1 

X3.Hydroxyisovalerate 10 1 

myo.Inositol 9 0.9 

N.N.Dimethylglycine 9 0.9 

Quinolinate 9 0.9 

Acetate 7 0.7 

Glutamine 5 0.5 

Betaine 3 0.3 

Leucine 2 0.2 

Sucrose 2 0.2 

cis.Aconitate 2 0.2 

X3.Hydroxybutyrate 1 0.1 

Alanine 1 0.1 

Table 17 – Eisner PAM ensemble feature 

table 

 

 

 

 

 

 

 

 

 

PLSDA Feature Table 

features consistency frequency 

Glucose 10 1 

Leucine 10 1 

Quinolinate 10 1 

Valine 10 1 

X3.Hydroxyisovalerate 10 1 

Adipate 9 0.9 

Succinate 9 0.9 

myo.Inositol 7 0.7 

N.N.Dimethylglycine 7 0.7 

Creatine 5 0.5 

Glutamine 4 0.4 

X3.Hydroxybutyrate 2 0.2 

Betaine 2 0.2 

Methylamine 1 0.1 

Alanine 1 0.1 

Pyroglutamate 1 0.1 

Acetate 1 0.1 

Formate 1 0.1 

Table 18 – Eisner GLMNET ensemble 

feature table 
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Ametaj Results 
Non-ensemble Results 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .597 .327 .711 .383 .806 .850 

Accuracy  .488 .300 .975 .950 .900 .850 

AUC-ROC .775 .796 1.0 1.0 1.0 .875 

Stability  .77 .39 .56 .24 .73 .85 

Table 19 - Non-ensemble model diagnostics of Ametaj dataset 

Output from feature.table() 

PAM Feature Table 

features consistency frequency 

Alanine 10 1 

Dimethylamine 10 1 

Endotoxin 10 1 

Ferulate 10 1 

Fumarate 10 1 

Glucose 10 1 

Methylamine 10 1 

Uracil 10 1 

Xanthine 8 0.8 

Lactate 7 0.7 

Lysine 3 0.3 

Propionate 1 0.1 

Valerate 1 0.1 

Table 20 – Ametaj PAM Feature Table 

GLMNET Feature Table 

features consistency frequency 

Acetate 10 1 

Endotoxin 10 1 

Glucose 10 1 

Lactate 10 1 

Methylamine 10 1 

Propionate 10 1 

Uracil 10 1 

Lysine 7 0.7 

Phenylacetate 7 0.7 

Butyrate 5 0.5 

Dimethylamine 4 0.4 

Alanine 3 0.3 

Xanthine 2 0.2 

Isoleucine 1 0.1 

X3.PP 1 0.1 

Table 21 – Ametaj GLMNET Table 

 

PLSDA Feature Table 

features consistency frequency 

Acetate 10 1 

Glucose 10 1 

Isoleucine 10 1 

Lactate 10 1 

Methylamine 10 1 

Benzoate 9 0.9 

Endotoxin 9 0.9 

Fumarate 9 0.9 

Aspartate 8 0.8 

Ferulate 7 0.7 

Alanine 3 0.3 

Dimethylamine 2 0.2 

X3.PP 1 0.1 

Butyrate 1 0.1 

Propionate 1 0.1 

Table 22 – Ametaj PLSDA Feature Table 
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Ensemble Results 
 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .575 .364 .813 .638 .813 .825 

Accuracy  .438 .250 .950 .950 .950 .875 

AUC-ROC .779 .750 1.0 1.0 1.0 .892 

Stability  .84 .67 .71 .48 .71 .78 

Table 23 - Ensemble model diagnostics of Ametaj dataset 

Output from feature.table 

PAM Feature Table 

features consistency frequency 

Alanine 10 1 

Dimethylamine 10 1 

Endotoxin 10 1 

Ferulate 10 1 

Fumarate 10 1 

Glucose 10 1 

Methylamine 10 1 

Uracil 10 1 

NDMA 6 0.6 

Lactate 5 0.5 

Propionate 3 0.3 

Hypoxanthine 3 0.3 

Xanthine 2 0.2 

Glycerol 1 0.1 

Table 24 – Ametaj PAM Ensemble Table 

SVM Feature Table 

features consistency frequency 

Endotoxin 10 1 

Formate 10 1 

Glucose 10 1 

Methylamine 10 1 

Uracil 10 1 

Ferulate 9 0.9 

Fumarate 8 0.8 

Histidine 8 0.8 

X3.HP 7 0.7 

Isovalerate 6 0.6 

Maltose 6 0.6 

X1.3.D 3 0.3 

Dimethylamine 2 0.2 

X3.PP 1 0.1 

Table 25 – Ametaj SVM Ensemble Table 

 

 

 

PLSDA Feature Table 

features consistency frequency 

Alanine 10 1 

Dimethylamine 10 1 

Endotoxin 10 1 

Glucose 10 1 

Methylamine 10 1 

Uracil 10 1 

Valine 10 1 

Leucine 9 0.9 

NDMA 9 0.9 

Glycerol 7 0.7 

Propionate 2 0.2 

Cadaverine 2 0.2 

Xanthine 1 0.1 

Table 26 – Ametaj PLSDA Ensemble Table 

GLMNET Feature Table 

features consistency frequency 

Acetate 10 1 

Alanine 10 1 

Butyrate 10 1 

Isovalerate 10 1 

X3.HP 10 1 

X3.PP 10 1 

Propionate 9 0.9 

Benzoate 7 0.7 

Phenylacetate 7 0.7 

Lysine 7 0.7 

Isoleucine 3 0.3 

X3.HB 2 0.2 

Glucose 1 0.1 

X1.3.D 1 0.1 

Endotoxin 1 0.1 

Isobutyrate 1 0.1 

Lactate 1 0.1 

Table 27 – Ametaj GLMNET Ensemble Table
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Xiao Results 

Negative Mode 

1fv2f 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .579 .298 .481 .163 .606 .679 

Accuracy  .589 .511 .889 .889 .822 .678 

AUC-ROC .597 .608 .855 .865 .835 .610 

Stability  .57 .21 .33 .09 .48 .68 

Table 28 – Xiao Negative 1fv2f Model Diagnostics 

 

1fv2r 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .536 .224 .390 .180 .626 .662 

Accuracy  .607 .444 .889 .900 .867 .644 

AUC-ROC .578 .645 .805 .870 .885 .603 

Stability  .48 .15 .25 .10 .49 .68 

Table 29 – Xiao Negative 1fv2r Model Diagnostics 

 

1rv2f 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .635 .258 .514 .197 .680 .679 

Accuracy  .663 .456 .967 .933 .867 .678 

AUC-ROC .622 .659 .950 .925 .865 .724 

Stability  .61 .18 .35 .11 .56 .68 

Table 30 – Xiao Negative 1rv2f Model Diagnostics 

 

1rv2r 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .665 .294 .455 .229 .665 .746 

Accuracy  .650 .444 .944 .956 .867 .733 

AUC-ROC .590 .625 .920 .915 .855 .681 

Stability  .68 .22 .30 .13 .54 .76 

Table 31 – Xiao Negative 1rv2r Model Diagnostics 
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Positive Mode 

 

1fv2f 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .453 .267 .574 .147 .646 .643 

Accuracy  .522 .300 .956 .900 .911 .667 

AUC-ROC .625 .651 .895 .855 .865 .605 

Stability  .40 .24 .41 .08 .50 .62 

Table 32 – Xiao Positive 1fv2f Model Diagnostics 

 

1fv2r 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .495 .266 .548 .164 .612 .610 

Accuracy  .583 .444 .922 .922 .844 .656 

AUC-ROC .659 .645 .805 .845 .830 .660 

Stability  .43 .19 .39 .09 .48 .57 

Table 33 – Xiao Positive 1fv2r Model Diagnostics 

 

1rv2f 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .546 .298 .600 .164 .686 .658 

Accuracy  .633 .511 .944 .922 .911 .656 

AUC-ROC .660 .600 .925 .910 .930 .6625 

Stability  .48 .21 .44 .09 .55 .66 

Table 34 – Xiao Positive 1rv2f Model Diagnostics 

 

1rv2r 

 PLSDA  GBM  SVM  RF  GLMNET  PAM  

RPT  .573 .403 .560 .181 .694 .737 

Accuracy  .637 .544 .933 .933 .911 .733 

AUC-ROC .562 .614 .930 .905 .905 .688 

Stability  .52 .32 .40 .10 .56 .74 

Table 35 – Xiao Positive 1rv2r Model Diagnostics 
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Number Features Identified 

PAM 

Mode Comparison # Ions Selected 

Positive 1F v. 2F 157 

Positive 1F v. 2R 154 

Positive 1R v. 2F 154 

Positive 1R v. 2R 136 

Negative 1F v. 2F 100 

Negative 1F v. 2R 104 

Negative 1R v. 2F 86 

Negative 1R v. 2R 74 

Table 36 – Xiao PAM Number of Features Identified by Comparison 

 

GLMNET 

Mode Comparison # Ions Selected 

Positive 1F v. 2F 191 

Positive 1F v. 2R 177 

Positive 1R v. 2F 189 

Positive 1R v. 2R 185 

Negative 1F v. 2F 153 

Negative 1F v. 2R 136 

Negative 1R v. 2F 113 

Negative 1R v. 2R 114 

Table 37 – Xiao GLMNET Number of Features Identified by Comparison 
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Response to Shock (S45-B) VIP Scores 

Metabolite VIP Score Metabolite VIP Score 

Glucose 3.301 Hypoxanthine 0.338 

Lactate 2.237 Nacinamide 0.334 

Aspartate 2.042 Betaine 0.332 

Maltose 1.993 Pyruvate 0.319 

Sucrose 1.967 Histidine 0.317 

Glutathione 1.4122 Glycine 0.290 

Xanthine 1.391 Lysine 0.264 

Asparagine 1.375 Leucine 0.214 

Adenosine 1.296 NADP 0.196 

3-Hydroxyisovalerate 1.257 3-Aminoisobutyrate 0.161 

O-Phosphocholine 1.173 Tyrosine 0.091 

Sn-Glycero-3-phosphocholine 1.162 Glutamine 0.078 

Fumarate 1.087 Choline 0.076 

Succinate 1.052 Creatine 0.072 

Valine 0.997 ATP 0.063 

Dimethylamine 0.927 Isovalerate 0.047 

AMP 0.876 Acetate 0.027 

Isoleucine 0.811 Proline 0.026 

Glutamate 0.785 UDP-Glucose 0.012 

3-Hydroxybutyrate 0.764   

Serine 0.702   

Citrate 0.631   

Phenylalanine 0.626   

Alanine 0.621   

Arginine 0.5852   

Taurine 0.555   

Methionine 0.5476   

ADP 0.537   

Formate 0.4947   

Creatinine 0.489   

Benzoate 0.414   

NAD 0.352   

Table 1 - Complete Metabolite VIP Scores during the response to shock (S45-B) comparing 

Fasted and Carbohydrate Prefed pigs. 
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Response to Resuscitation (FR2-S45) VIP Scores 

Metabolite VIP Score Metabolite VIP Score 

Glucose 3.311 Hypoxanthine 0.388 

3-Hydroxyisovalerate 2.083 3-Aminoisobutyrate 0.325 

Valine 1.659 Xanthine 0.318 

Fumarate 1.658 Tyrosine 0.294 

Benzoate 1.639 Sucrose 0.270 

Leucine 1.590 Glycine 0.268 

Choline 1.367 Succinate 0.258 

Isoleucine 1.364 Taurine 0.2534 

Lysine 1.356 Maltose 0.242 

Sn-Glycero-3-Phosphocholine 1.355 ATP 0.238 

Arginine 1.309 Asparagine 0.207 

Niacinamide 1.306 Histidine 0.190 

Adenosine 1.242 3-Hydroxybutyrate 0.168 

Aspartate 1.111 Glutamate 0.157 

Formate 1.0754 Betaine 0.152 

Alanine 0.998 Phenylalanine 0.150 

Proline 0.938 Dimethylamine 0.121 

Serine 0.896 Isovalerate 0.036 

Creatine 0.835 AMP 0.020 

O-Phosphocholine 0.808   

Glutathione 0.802   

Glutamine 0.779   

NADP 0.763   

NAD 0.722   

Creatinine 0.688   

Citrate 0.687   

Lactate 0.637   

Acetate 0.606   

UDP-Glucose 0.600   

ADP 0.5906   

Pyruvate 0.467   

Methionine 0.418   

Table 2 - Complete Metabolite VIP Scores during the response to resuscitation (FR2-S45) 

comparing Fasted and Carbohydrate Prefed pig 

 

 


