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Abstract

The block coordinate descent (BCD) method is widely used for minimizing a continuous

function f of several block variables. At each iteration of this method, a single block

of variables is optimized, while the remaining variables are held fixed. To ensure the

convergence of the BCD method, the subproblem of each block variable needs to be

solved to its unique global optimal. Unfortunately, this requirement is often too re-

strictive for many practical scenarios. In this dissertation, we first study an alternative

inexact BCD approach which updates the variable blocks by successively minimizing

a sequence of approximations of f which are either locally tight upper bounds of f

or strictly convex local approximations of f . Different block selection rules are con-

sidered such as cyclic (Gauss-Seidel), greedy (Gauss-Southwell), randomized, or even

multiple (Parallel) simultaneous blocks. We characterize the convergence conditions and

iteration complexity bounds for a fairly wide class of such methods, especially for the

cases where the objective functions are either non-differentiable or non-convex. Also the

case of existence of a linear constraint is studied briefly using the alternating direction

method of multipliers (ADMM) idea. In addition to the deterministic case, the problem

of minimizing the expected value of a cost function parameterized by a random variable

is also investigated. An inexact sample average approximation (SAA) method, which is

developed based on the successive convex approximation idea, is proposed and its con-

vergence is studied. Our analysis unifies and extends the existing convergence results for

many classical algorithms such as the BCD method, the difference of convex functions

(DC) method, the expectation maximization (EM) algorithm, as well as the classical

stochastic (sub-)gradient (SG) method for the nonsmooth nonconvex optimization, all

of which are popular for large scale optimization problems involving big data.

In the second part of this dissertation, we apply our proposed framework to two prac-

tical problems: interference management in wireless networks and the dictionary learn-

ing problem for sparse representation. First, the computational complexity of these

problems are studied. Then using the successive convex approximation framework, we

propose novel algorithms for these practical problems. The proposed algorithms are

evaluated through extensive numerical experiments on real data.
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Chapter 1

Introduction

Consider the following optimization problem

min f(x1, . . . , xn)

s.t. xi ∈ Xi, i = 1, 2, . . . , n,

where Xi ⊆ Rmi is a closed convex set, and f :
∏n

i=1Xi → R is a continuous function.

A popular approach for solving the above optimization problem is the block coordinate

descent (BCD) method. At each iteration of this method, the function is minimized

with respect to a single block of variables while the rest of the blocks are held fixed.

More specifically, at iteration r of the algorithm, the block variable xi is updated by

solving the following subproblem

xri = arg min
yi∈Xi

f(xr1, . . . , x
r
i−1, yi, x

r−1
i+1 , . . . , x

r−1
n ), i = 1, 2, . . . , n. (1.1)

Let us use {xr} to denote the sequence of iterates generated by this algorithm, where

xr , (xr1, . . . , x
r
n). Due to its particular simple and scalable implementation, the BCD

method has been widely used for solving problems such as power allocation in wireless

communication systems [1], clustering [2], image denoising and image reconstruction [3]

and dynamic programming [4].

The updating order of the blocks in the algorithm will result in different optimization

1
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methods. For example, the block selection choice could be cyclic (Gauss-Seidel), ran-

domized, greedy (Gauss-Southwell); or even multiple parallel blocks could be updated

at each iteration. Analytically, the convergence of the algorithm typically requires solv-

ing the subproblem (2.13) to its unique minimizer, or doing just simple gradient descent

(also known as block coordinate gradient descent method [5]). On one hand, doing the

simple gradient descent step might not be optimal in practical scenarios since it is only

based on the first order information and ignores the higher order information; on the

other hand, solving the per-block optimization problem might not be closed form; see,

e.g., [6].

To overcome such difficulties, one can modify the BCD algorithm by optimizing

a well-chosen approximate version of the objective function at each iteration. It is

very hard to find the root of the classical idea of successively approximating the orig-

inal objective with a sequence of convex approximations (also known as majorization-

minimization [7]). Also the classical gradient descent method, for example, can be

viewed as an implementation of such strategy. To illustrate, recall that the update rule

of the gradient descent method is given by

xr+1 = xr − αr+1∇f(xr).

This update rule is equivalent to solving the following problem

xr+1 = argmin
x

g(x, xr),

where

g(x, xr) , f(xr) +∇f(xr)(x− xr) +
1

2αr+1
∥x− xr∥2,

and yields to the block coordinate gradient descent method; see [5, 8–10]. Clearly,

the function g(x, xr) is an approximation of f(·) around the point xr. In fact, as

we will see later in this dissertation, successively optimizing an approximate version

of the original objective is the key idea of many important algorithms such as the

concave-convex procedure [11], the expectation maximization (EM) algorithm [12], the

proximal minimization algorithm [13], to name a few. Furthermore, this idea can be

used to simplify the computation and to guarantee the convergence of the original BCD
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algorithm with the Gauss-Seidel update rule (e.g. [5], [14], [15]). However, despite its

wide applicability, there appears to be no general unifying convergence analysis for this

class of algorithms. The only general existing result is in [16] which considers only one

block of variable and no rigorous convergence analysis of the algorithm is provided.

Recently and concurrently with this research, some asymptotic convergence analysis of

the algorithm has been done in the context of multi-agent optimizations; see [17–21].

In this dissertation, first we provide a unified convergence analysis for a general class

of inexact BCD methods in which a sequence of approximate versions of the original

problem are solved successively. Two types of approximations are considered: one being

a locally tight upper bound for the original objective function, the other being a convex

local approximation of the objective function. In the general nonconvex nonsmooth

setting, we provide asymptotic convergence analysis for these successive approximation

strategies as well as for various types of updating rules, including cyclic (Gauss-Seidel),

greedy (Gauss-Southwell), randomized, randomized Jacobi (Parallel), or the overlap-

ping essentially cyclic update rule. By allowing inexact solution of subproblems, our

work unifies and extends several existing algorithms and their convergence analysis, in-

cluding the difference of convex functions (DC) method, the expectation maximization

(EM) algorithm, as well as the alternating proximal minimization algorithm. Besides,

our analysis shows that the convergence of these algorithms are guaranteed even when

the variables are updated in a block coordinate manner. Moreover, in the convex sce-

nario, we can handle the existence of linear constraints using the alternating direction

method of multipliers (ADMM) idea and analyze the iteration complexity of the pro-

posed method for different choice of block selections such as cyclic, randomized, or

randomized Jacobi update rules. In addition to the deterministic scenario, we applied

this idea to the stochastic optimization problems and showed that under some mild

assumptions, still the asymptotic convergence of the resulting algorithm is guaranteed.

The application of this idea in the non-cooperative game setting is also studied briefly.

In the third chapter of this dissertation, we apply the introduced optimization frame-

work to different practical problems. In particular, we first consider the interference

management problem in wireless networks. Due to resource sharing nature of multiuser

wireless networks, a central issue in the study of these new networks is how to miti-

gate multiuser interference. In practice, there are several commonly used methods for
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dealing with interference. First, we can treat the interference as noise and just focus

on extracting the desired signals. This approach is widely used in practice because of

its simplicity and ease of implementation, but is known to be non-capacity achieving

in general. An alternative technique is channel orthogonalization whereby transmitted

signals are chosen to be nonoverlapping either in time, frequency or space, leading to

Time Division Multiple Access, Frequency Division Multiple Access, or Space Division

Multiple Access respectively. While channel orthogonalization effectively eliminates

multiuser interference, it can lead to inefficient use of communication resources and is

also generally non-capacity achieving. Another interference management technique is

to decode and remove interference. Specifically, when interference is strong relative to

the desired signals, a user can decode the interference first, then subtract it from the

received signal, and finally decode its own message. Due to the complexity issues and

rate limitations caused by the decodability of interference, this approach is impractical

and non capacity achieving. Unfortunately, none of the aforementioned interference

management techniques can achieve the maximum system throughput in general. In

the optimal strategy the transmission from different nodes of the network should be

optimally coordinated. Such coordination can take the form of joint scheduling, joint

transceiver design or even joint data processing in the base stations. In the third chapter

of this dissertation, we study the application of our optimization framework in the joint

beamforming and scheduling problem in the wireless networks.

As another application of our framework, we consider the dictionary learning prob-

lem for sparse representation. We first show that this problem is NP-hard and then

propose an efficient dictionary learning scheme to solve several practical formulations

of this problem. Our proposed algorithms are based on the successive convex approxi-

mation idea and unlike many existing algorithms in the literature, such as K-SVD [22],

our proposed dictionary learning scheme is theoretically guaranteed to converge to the

set of stationary points under certain mild assumptions. Finally, in the last section of

this dissertation, we numerically evaluate the performance of the proposed algorithms

in both interference management and sparse dictionary learning problem.

In short, the contributions of this dissertation are as follows:

• Proposing an optimization framework by combining the successive convex approx-

imation idea and block coordinate descent method.
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• Analyzing the convergence of the algorithm for various block selection rules such

as cyclic, greedy, randomized, or parallel. The convergence analyses studies the

asymptotic and non-asymptotic behavior of the algorithm in both convex and

non-convex setup

• Extending the proposed idea and its convergence to stochastic optimization, op-

timizations with linear constraints, as well as the non-cooperative games.

• Investigating two practical non-convex problems: interference management in

wireless networks and the dictionary learning problem for sparse representation;

and studying the computational complexity of these methods.

• Proposing a novel approximation function for the sum utility maximization prob-

lem in the wireless heterogenous networks. The suggested approximation function

together with the proposed optimization framework will result in a series of ef-

ficient algorithms for beamforming, power allocation, and user scheduling with

theoretical convergence guarantee.

• Presenting various algorithms, resulted from our optimization framework, for the

(sparse) dictionary learning problem. Unlike the existing methods in the literature,

the convergence of the presented algorithms is guaranteed theoretically with our

general framework.

1.1 Technical Preliminaries and Notations

Throughout the dissertation, we adopt the following notations. We use Rm to denote the

space of m dimensional real valued vectors, which is also represented as the Cartesian

product of n lower dimensional real valued vector spaces, i.e.,

Rm = Rm1 × Rm2 × . . .× Rmn ,

where
∑n

i=1mi = m. We use the notation (0, . . . , dk, . . . , 0) to denote the vector of

all zeros except the k-th block, with dk ∈ Rmk . The following concepts/definitions are

adopted in this dissertation:
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• Distance of a point from a set: Let S ⊆ Rm be a set and x be a point in Rm,

the distance of the point x from the set S is defined as

d(x,S) = inf
s∈S
∥x− s∥,

where ∥ · ∥ denotes the 2-norm in Rm.

• Directional derivative: Let f : D → R be a function where D ⊆ Rm is a convex

set. The directional derivative of f at point x in direction d is defined by

f ′(x; d) , lim inf
λ↓0

f(x+ λd)− f(x)

λ
.

• Stationary points of a function: Let f : D → R be a function where D ⊆ Rm

is a convex set. The point x is a stationary point of f(·) if f ′(x; d) ≥ 0 for all d

such that x+ d ∈ D. In this dissertation we use the notation X ∗ to denote the set

of stationary points of a function.

• Quasi-convex function: The function f is quasi-convex if

f(θx+ (1− θ)y) ≤ max{f(x), f(y)}, ∀ θ ∈ (0, 1), ∀ x, y ∈ dom f

• Coordinatewise minimum of a function: z ∈ dom f ⊆ Rm is coordinatewise

minimum of f with respect to the coordinates in Rm1 ,Rm2 , . . . ,Rmn , m1 + . . . +

mn = m if

f(z + d0k) ≥ f(z), ∀ dk ∈ Rmk with z + d0k ∈ dom f, ∀k = 1, 2, . . . , n,

where dk = (0, . . . , dk, . . . , 0).

• Natural history of a stochastic process: Consider a real valued stochastic

process {Zr}∞r=1. For each r, we define the natural history of the stochastic process

up to time r as

Fr = σ(Z1, . . . , Zr),
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where σ(Z1, . . . , Zr) denotes the σ-algebra generated by the random variables

Z1, . . . , Zr.

• Infinity norm of a function: Let h : D 7→ R be a function, where D ⊆ Rn.

The infinity norm of the function h(·) is defined as

∥h∥∞ , sup
x∈D
|h(x)|.

• Regularity of a function at a point: The function f : Rm → R is regular at

the point z ∈ domf with respect to the coordinates m1,m2, . . . ,mn, m1 +m2 +

. . .+mn = m, if f ′(z; d) ≥ 0 for all d = (d1, d2, . . . , dn) with f ′(z; d0k) ≥ 0, where

d0k , (0, . . . , dk, . . . , 0) and dk ∈ Rmk , ∀ k.

As an example, consider the function f(z) = ∥Az∥1, where A = [3 4; 2 1] ∈ R2×2.

This function is not regular at the point z∗ = (−4, 3) with respect to the two standard

coordinates since f ′(z∗; d) ≥ 0, ∀d ∈ {(d1, d2) ∈ R2|d1d2 = 0}; but f ′(z∗; d∗) < 0 for

d∗ = (4,−3). This fact can be also observed in the contour plot of the function in

Figure 1.1.

x
1

x 2
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Figure 1.1: The contour plot of the function f(z) = ∥Az∥1 with A = [3 4; 2 1].

For detailed discussion on the regularity of a function, the readers are referred to [23,

Lemma 3.1].



Chapter 2

Successive Convex

Approximation

The successive convex approximation (SCA) idea has been widely used in different

contexts before. In this chapter, we give some preliminary results on the convergence

guarantees of different algorithms developed based on this idea.

2.1 Single Block Successive Convex Approximation

2.1.1 Problem Statement and Prior Work

Consider the following optimization problem:

min
x

h0(x) , f0(x) + g0(x)

s.t. hi(x) , fi(x) + gi(x) ≤ 0, ∀i = 1, . . . ,m,
(2.1)

where the function fi(x) is smooth (possibly nonconvex) and gi is convex (possibly

nonsmooth), for all i = 0, . . . ,m. A popular practical approach for solving this prob-

lem is the successive convex approximation (also known as majorization minimization)

approach where at each iteration of the method, a locally tight approximation of the

original optimization problem is solved subject to a tight convex restriction of the con-

straint sets. More precisely, we consider the successive convex approximation method

in Algorithm 1.

8
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Algorithm 1 Successive Convex Approximation Method for Solving (2.1)

Find a feasible point x0 in (2.1), choose a stepsize γ ∈ (0, 1], and set r = 0

repeat

Set r ← r + 1

Set x̂r to be a solution of the following optimization problem

min
x

h̃0(x, x
r)

s.t. h̃i(x) ≤ 0, ∀i = 1, . . . ,m.

Set xr+1 ← γx̂r + (1− γ)xr

until some convergence criterion is met

The approximation functions in the algorithm need to satisfy the following assump-

tions:

Assumption 1 Assume the approximation functions h̃i(•, •), ∀i = 0, . . . ,m, satisfy

the following assumptions:

• h̃i(x, y) is continuous in (x, y)

• h̃i(x, y) is convex in x

• h̃i(x, y) = f̃i(x, y) + gi(x), ∀x, y

• Function value consistency: f̃i(x, x) = fi(x), ∀x

• Gradient consistency: ∇f̃i(•, x)(x) = ∇fi(x), ∀x

• Upper-bound: f̃i(x, y) ≥ fi(x), ∀x, y

In other words, we assume that at each iteration, we approximate the original functions

with some upper-bounds of them which have the same first order behavior.

To the best of our knowledge, the previous analysis of the SCA method is very lim-

ited. In fact, the classical paper [16] suggests the inner approximation algorithm (IAA)

which is in many ways similar to our suggested framework. The only difference is that
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the IAA algorithm is only applicable for problems with smooth objectives, while our

framework algorithm is able to handle nonsmooth objectives/constraints as well. It is

worth mentioning that the existing convergence result for the IAA algorithm is quite

weak. In particular, [16, Theorem 1] states that if the whole sequence converges, then

the algorithm should converge to a stationary point. A stronger convergence result was

stated in [24, Property 3] where only smooth case is treated. In what follows, we give a

simple convergence analysis of this framework which is more general than the existing

ones.

2.1.2 Convergence Analysis

To state our result, we need to define the following condition:

Slater condition for SCA: Given the constraint approximation functions {h̃(·, ·)}mi=1,

we say that the Slater condition is satisfied at a given point x̄ if there exists a point x

in the interior of the restricted constraint sets at the point x̄, i.e.,

h̃i(x, x̄) < 0, ∀i = 1, . . . ,m,

for some x. Notice that if the approximate constraints are the same as the original

constraints, then this condition will be the same as the well-known Slater condition for

strong duality.

Theorem 1 Let x̄ be a limit point of the iterates generated by Algorithm 1. Assume

Assumption 1 is satisfied and Slater condition holds at the point x̄. Then x̄ is a KKT

point of (2.1).

Proof See the appendix chapter for the proof.

It is worth noting that in the presence of linear constraints, the Slater condition should

be considered for the relative interior of the constraint set instead of the interior. Fur-

thermore, the Slater condition (or some other constraint qualification condition) seems

to be necessary for the convergence of this simple approach. For example, when the
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convex approximation at the first step is so that the restricted constraint set become a

singleton, then the algorithm will stuck in a non-interesting point of the problem. In

order to relax the constraint qualification condition and achieve stronger convergence

results, we consider no approximation of the constraint set in the rest of this chapter.

2.2 Multi-block Successive Convex Approximation

2.2.1 Prior Work

In many practical applications, the optimization variables can be decomposed into in-

dependent blocks. Such block structure, when judiciously exploited, can lead to low-

complexity algorithms that are distributedly implementable.

The asymptotic convergence behavior of the BCD algorithm is studied exhaustively

in the literature; see, e.g., [23] for the general non-convex non-smooth asymptotic anal-

ysis. In general the non-asymptotic convergence analysis of the algorithm is not trivial

even for the convex case (without assuming per-block strong convexity). Especially

for the cyclic update rule, to the date of this dissertation no general result is known.

When the objective function is strongly convex and smooth, the BCD algorithm con-

verges globally linearly [25–27]. In addition, such linear rate is global when the feasible

set is compact. This line of analysis, which is based on the error bound assumption,

has recently been extended to allow certain class of nonsmooth functions in the objec-

tive [9, 28–30]. For the general convex (but not strongly convex) case, various results

suggest the sublinear O(1/r) rate of convergence; see, e.g., [8, 10, 31–34] and the refer-

ences therein. Although these results are very interesting and essential, none of them

covers the block successive upper-bound minimization/successive convex approximation

approach where at each iteration a general first order approximation of the objective

function is minimized. In this section, we study different optimization algorithms using

the SCA idea on multi-block optimization variables.

2.2.2 Block Successive Upper-bound Minimization Algorithm

Let us assume that the feasible set X is the cartesian product of n closed convex sets:

X = X1 × . . . × Xn, with Xi ⊆ Rmi and
∑

imi = m. Accordingly, the optimization
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variable x ∈ Rm can be decomposed as: x = (x1, x2, . . . , xn), with xi ∈ Xi, i = 1, · · · , n.
We are interested in solving the problem

min f(x)

s.t. x ∈ X .
(2.2)

Different from the SUM algorithm, the Block Successive Upper-bound Minimization

(BSUM) algorithm only updates a single block of variables in each iteration. More

precisely, at iteration r, the selected block (say block i) is computed by solving the

following subproblem

min
xi

ui(xi, x
r−1)

s.t. xi ∈ Xi,
(2.3)

where ui(·, xr−1) is again an approximation (in fact, a global upper-bound) of the orig-

inal objective f(·) at the point xr−1. Algorithm 2 summarizes the main steps of the

BSUM algorithm. Note that although the blocks are updated following a simple cyclic

rule, the algorithm and its convergence results can be easily extended to the (more

general) essentially cyclic update rule as well. This point will be further elaborated in

Section 2.2.5.

Algorithm 2 Pseudo code of the BSUM algorithm

Find a feasible point x0 ∈ X and set r = 0

repeat

Set r ← r + 1, choose a block i ∈ {1, . . . , n}
Let X r = argminxi∈Xi ui(xi, x

r−1)

Set xri to be an arbitrary element in X r

Set xrk = xr−1
k , ∀ k ̸= i

until some convergence criterion is met

Now we are ready to study the convergence behavior of the BSUM algorithm. To

this end, the following regularity conditions on the function ui(·, ·) are needed.
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Assumption 2

ui(yi, y) = f(y), ∀ y ∈ X , ∀ i (2.4)

ui(xi, y) ≥ f(y1, . . . , yi−1, xi, yi+1, . . . , yn), ∀ xi ∈ Xi,∀ y ∈ X , ∀ i (2.5)

u′i(xi, y; di)

∣∣∣∣
xi=yi

= f ′(y; d), ∀ d = (0, . . . , di, . . . , 0) s.t. yi + di ∈ Xi, ∀ i (2.6)

ui(xi, y) is continuous in (xi, y), ∀ i (2.7)

The following proposition identifies a sufficient condition to ensure (2.6).

Proposition 1 Assume f(x) = f0(x)+f1(x), where f0(·) is differentiable and the direc-

tional derivative of f1(·) exists at every point x ∈ X . Consider ui(xi, y) = u0,i(xi, y) +

f1(x) with u0,i(xi, y) satisfying

u0,i(xi, x) = f0(x), ∀ x ∈ Y, ∀ i

u0,i(xi, y) ≥ f0(y1, . . . , yi−1, xi, yi+1, . . . , yn), ∀ x, y ∈ Y ∀ i,

where Y is an open set containing X . Then, (2.4), (2.5), and (2.6) hold.

Proof The proof is elementary and can be found in [35].

To have a complete algorithm, we need to identify the choice of the block selection

rule in the algorithm. In this section, we consider two different types of block selection

in the BSUM algorithm:

Cyclic: In the cyclic block selection rule, the blocks are chosen at each iteration

according to the following rule:

i = (r mod n) + 1.

Randomized: In the randomized selection rule, at each iteration r, only one

block is selected (independent of the previous iterations) so that

Pr(block i being selected) = pri ≥ pmin > 0.
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We first analyze the convergence of the BSUM algorithm with cyclic selection rule of the

blocks. Our convergence results regarding to the cyclic BSUM algorithm consist of two

parts. In the first part, a quasi-convexity of the objective function is assumed, which

guarantees the existence of the limit points. This is in the same spirit of the classical

proof of convergence for the BCD method in [13]. However, if we know that the iterates

lie in a compact set, then a stronger result can be proved. Indeed, in the second part

of the theorem, the convergence is obtained by relaxing the quasi-convexity assumption

while imposing the compactness assumption of level sets.

Theorem 2

(a) Consider cyclic variable selection rule in the BSUM algorithm. Suppose that the

function ui(xi, y) is quasi-convex in xi for i = 1, . . . , n, and Assumption 2 holds.

Furthermore, assume that the subproblem (2.3) has a unique solution for any

point xr−1 ∈ X . Then, every limit point z of the iterates generated by the BSUM

algorithm is a coordinatewise minimum of (2.2). In addition, if f(·) is regular

at z, then z is a stationary point of (2.2).

(b) Consider cyclic variable selection rule in the BSUM algorithm. Suppose the level

set X 0 = {x | f(x) ≤ f(x0)} is compact and Assumption 2 holds. Furthermore,

assume that f(·) is regular at any point in X 0 and the subproblem (2.3) has a

unique solution for any point xr−1 ∈ X for at least n−1 blocks. Then, the iterates

generated by the BSUM algorithm converge to the set of stationary points, i.e.,

lim
r→∞

d(xr,X ∗) = 0.

Proof See the appendix chapter for the proof.

Theorem 2 extends the existing result of block coordinate descent method [13]

and [23] to the BSUM case where only an approximation of the objective function

is minimized at each iteration. As we will see in the next chapter, our result implies

the convergence of several existing algorithms including the EM algorithm or the DC

method when the Gauss-Seidel update rule is used.

A key assumption in Theorem 2 is the uniqueness of the minimizer of (2.3), while
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the classical BCD method requires the uniqueness of the minimizer of (2.2) with re-

spect to each block for convergence. This property is an advantage of BSUM over BCD

since the uniqueness of the minimizer of (2.3) depends on the choice of the upperbound

u(x, y), while the uniqueness of the solution of (2.2) per-block depends only on the

objective function. Another key assumption in Theorem 2 is the regularity of the ob-

jective function. Notice that this assumption is necessary even for the classical BCD

method. To see the necessity of this assumption consider the function f(z) = ∥Az∥,
with A = [3 4; 2 1] ∈ R2×2, defined in the introduction section. Clearly, the point

z∗ = (−4, 3) is a fixed point of the BCD method, while it is not a stationary point of

f(·). Next we will show that For the randomized selection rule the uniqueness of the

minimizer assumption is not necessary.

Theorem 3 Consider randomized variable selection rule in the BSUM algorithm and

assume that Assumption 2 holds. Furthermore, assume that f(·) is regular and f(·) is

bounded from below. Then, every limit point of the iterates generated by the randomized

BSUM algorithm is a stationary point with probability one.

Proof See the appendix section.

Iteration Complexity Analysis of BSUM for Convex Case

In this subsection, the analysis of the BSUM method for the convex case is considered.

In our iteration complexity analysis, we consider the following optimization problem:

min
x

f(x1, . . . , xn) +

n∑
i=1

gi(xi)

s.t. xi ∈ Xi,

where the function f(x) is convex and smooth; and the possible nonsmooth functions

{gi(xi)} are separable convex. We use the BSUM algorithm for solving the above

problem by assuming the following assumptions.

Assumption 3
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• ui(xi, y) = f̃i(xi, y) + gi(xi)

• Function value consistency: f̃i(xi, x) = f(x), ∀x

• Gradient consistency: ∇f̃i(•, x)(xi) = ∇xif(x), ∀x

• Upper-bound: f̃i(xi, y) ≥ f(x), ∀x, y

• f̃i(xi, y) is continuous in (xi, y) and strongly convex in xi, i.e.,

f̃i(xi, y) ≥ f̃i(x
′
i, y) + ⟨xi − x′i,∇xi f̃i(x

′
i, y)⟩+

τ

2
∥x′i − xi∥2

• For any given y, f̃i(·, y) has a uniform Lipschitz continuous gradient, i.e.,

∥∇xi f̃(xi, y)−∇xi f̃(x
′
i, y)∥ ≤ Li∥xi − x′i∥, ∀y ∈ X , ∀xi, x′i ∈ Xi

• The function f(x) has a Lipschitz continuous gradient, i.e.,

∥∇f(x)−∇f(x′)∥ ≤ Lf∥x− x′∥, ∀x, x′ ∈ X

The following theorem states the iteration complexity analysis of the BSUM method.

Theorem 4 [36, Theorem 3.1] Assume Assumption 3 is satisfied and f∗ is the

optimal objective value. Furthermore, let us assume that the level set {x | f(x) ≤
f(x0)} is compact.

(a) Consider cyclic variable selection rule in the BSUM algorithm. Then f(xr)−f∗ =

O
(
1
r

)
.

(b) Consider randomized variable selection rule in the BSUM algorithm and assume

that the nonsmooth function gi(·) is Lipschitz continuous for all blocks, i.e., |gi(xi)−
gi(x

′
i)| ≤ Lg∥xi − x′i∥, ∀xi, x′i ∈ Xi, ∀i. Then E [f(xr)− f∗] = O

(
1
r

)
.

It is worth noting that in the iteration complexity analysis of the randomized BSUM

method, we assume that the nonsmooth part is Lipschitz continuous. This assumption

is satisfied for many popular nonsmooth optimization problems such as Lasso or group
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Lasso.

In many applications, the optimization problem is of particular form which may

satisfy further assumptions. Next make more assumptions on the optimization problem

to claim linear rate of convergence.

Assumption 4

• The global minimum of the original optimization problem is attained and so is

its dual optimal value. The intersection of the feasible set and the interior of the

domain of the objective function is non-empty.

• The function f(x) can be decomposed as f(x) = ℓ(Ex) + ⟨b, x⟩, where ℓ(·) is a

strictly convex and continuously differentiable function on int, and E is some

given matrix (not necessarily full column rank).

• Each nonsmooth function gi(·) if present, has the following form

gi(xi) = ηi∥xi∥1 +
∑
k

ωi,k∥xi,k∥2,

where (xi,k)k is a partition of xi and ηi, ωi,k ≥ 0, ∀k, i.

• The feasible sets Xi are polyhedral sets given by Xi , {xi | Cixi ≤ ci}.

Now we are ready to state the result:

Theorem 5 [37, Theorem 3.1] Assume Assumption 4 and Assumption 4 are

satisfied. Furthermore, let us assume that the level set {x | f(x) ≤ f(x0)} is

compact. Let f∗ be optimum objective value.

(a) Consider cyclic variable selection rule in the BSUM algorithm. Then f(xr) con-

verges Q-linearly to f∗.

(b) Consider randomized variable selection rule in the BSUM algorithm and assume

that ωi,k = 0, ∀i, k, and Ci has full row rank. Then E [f(xr)] converges Q-linearly

to f∗.
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2.2.3 Maximum Improvement Successive Upper-bound Minimization

A key assumption for the BSUM algorithm is the uniqueness of the minimizer of the

subproblem. This assumption is necessary even for the simple BCD method [13]. In

general, by removing such assumption, the convergence is not guaranteed (see [38] for

examples) unless we assume pseudo convexity in pairs of the variables [39], [23]. In this

section, we explore the possibility of removing such uniqueness assumption.

Recently, Chen et al. [40] have proposed a related Maximum Block Improvement

(MBI) algorithm, which differs from the conventional BCD algorithm only by its update

schedule. More specifically, only the block that provides the maximum improvement is

updated at each step. Remarkably, by utilizing such modified updating rule (which is

similar to the well known Gauss-Southwell update rule), the per-block subproblems are

allowed to have multiple solutions. Inspired by this recent development, we propose

to modify the BSUM algorithm similarly by simply updating the block that gives the

maximum improvement. We name the resulting algorithm the Maximum Improvement

Successive Upper-bound Minimization (MISUM) algorithm, and list its main steps in

Algorithm 3.

Algorithm 3 Pseudo code of the MISUM algorithm

Find a feasible point x0 ∈ X and set r = 0

repeat

Set r ← r + 1

Let k = argminiminxi ui(xi, x
r−1)

Let X r = argminxk∈Xk
uk(xk, x

r−1)

Set xrk to be an arbitrary element in X r

Set xri = xr−1
i , ∀ i ̸= k

until some convergence criterion is met

Clearly the MISUM algorithm is more general than the MBI method proposed in

[40], since only an approximate version of the subproblem is solved at each iteration.

Theorem 6 states the convergence result for the proposed MISUM algorithm.

Theorem 6 Suppose that Assumption 2 is satisfied. Then, every limit point z of the

iterates generated by the MISUM algorithm is a coordinatewise minimum of (2.2). In
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addition, if f(·) is regular at z, then z is a stationary point of (2.2).

Proof See the appendix chapter for the proof.

The main advantage of the MISUM algorithm over the BSUM algorithm is that

its convergence does not rely on the uniqueness of the minimizer for the subproblems.

On the other hand, each iteration of MISUM algorithm is more expensive than the

BSUM since the minimization needs to be performed for all the blocks. Nevertheless,

the MISUM algorithm is more suitable when parallel processing units are available,

since the minimizations with respect to all the blocks can be carried out simultaneously.

2.2.4 Successive Convex Approximation of a Smooth Function

In the previous subsections, we have demonstrated that the stationary solutions of the

studied optimization problems can be obtained by successively minimizing a sequence of

upper-bounds of f(·). However, in practice, unless the objective f(·) possesses certain

convexity/concavity structure, those upper-bounds may not be easily identifiable. In

this section, we extend the BSUM algorithm by further relaxing the requirement that

the approximation functions {ui(xi, y)} must be the global upper-bounds of the original

objective f .

Throughout this section, we use hi(., .) to denote the convex approximation function

for the ith block. Suppose that hi(xi, x) is no longer a global upper-bound of f(x), but

only a first order approximation of f(x) at each point, i.e.,

h′i(yi, x; di)

∣∣∣∣
yi=xi

= f ′(x; d), ∀ d = (0, . . . , di, . . . , 0) with xi + di ∈ Xi. (2.8)

In this case, simply optimizing the approximate functions in each step may not even

decrease the objective function. Nevertheless, the minimizer obtained in each step can

still be used to construct a good search direction, which, when combined with a proper

step size selection rule, can yield a sufficient decrease of the objective value.

Suppose that at iteration r, the i-th block needs to be updated. Let yri ∈ minyi∈Xi hi(yi, x
r−1)

denote the optimal solution for optimizing the i-th approximation function at the point

xr−1. We propose to use yri − xr−1
i as the search direction, and adopt the Armijo rule

to guide the step size selection process. We name the resulting algorithm the Block
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Successive Convex Approximation (BSCA) algorithm. Its main steps are given in Al-

gorithm 4.

Algorithm 4 Pseudo code of the BSCA algorithm

Find a feasible point x0 ∈ X and set r = 0

repeat

Set r ← r + 1, i = (r mod n) + 1

Let X r = argminxi∈Xi hi(xi, x
r−1)

Set yri to be an arbitrary element in X r and set yrk = xr−1
k , ∀ k ̸= i

Set dr = yr − xr−1 and choose σ ∈ (0, 1)

Armijo step-size rule: Choose αinit > 0 and σ, β ∈ (0, 1). Let αr be the largest

element in {αinitβj}j=0,1,... satisfying:

f(xr−1)− f(xr−1 + αrdr) ≥ −σαrf ′(xr−1; dr)

Set xr = xr−1 + αr(yr − xr−1)

until some convergence criterion is met

Note that for dr = (0, . . . , dri , . . . , 0) with dri = yri − xr−1
i , we have

f ′(xr−1; dr) = h′i(xi, x
r−1; dri )

∣∣∣∣
xi=xr

i

= lim
λ↓0

hi(x
r−1
i + λdri , x

r−1)− hi(x
r−1
i , xr−1)

λ
≤ 0,

(2.9)

where the inequality is due to the fact that hi(·) is convex and yri = xr−1
i + dri is the

minimizer at iteration r. Moreover, there holds

f(xr−1)− f(xr−1 + αdr) = −αf ′(xr−1; dr) + o(α), ∀ α > 0.

Hence the Armijo step size selection rule in Algorithm 4 is well defined when f ′(xr−1; dr) ̸=
0, and there exists j ∈ {0, 1, . . .} such that for αr = αinitβj ,

f(xr)− f(xr + αr+1dr+1) ≥ −σαr+1f ′(xr; dr+1). (2.10)

The following theorem states the convergence result of the proposed algorithm.

Theorem 7 Suppose that f(·) is continuously differentiable and that Assumption (2.8)

holds. Furthermore, assume that h(x, y) is strictly convex in x and continuous in (x, y).
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Then every limit point of the iterates generated by the BSCA algorithm is a stationary

point of (2.2).

Proof See the appendix chapter.

We remark that the proposed BSCA method is related to the coordinate gradi-

ent descent method [5], in which a strictly convex second order approximation of the

objective function is minimized at each iteration. It is important to note that the con-

vergence results of these two algorithms do not imply each other. The BSCA algorithm,

although more general in the sense that the approximation function can take the form

of any strictly convex function satisfying (2.8), only covers the case when the objective

function is smooth. Nevertheless, the freedom provided by the BSCA to choose a more

general approximation function allows one to better approximate the original function

at each iteration. It is also worth noting that the idea of coordinate line search method

has also appeared in [41] where the unconstrained smooth optimization problem is con-

sidered. An efficient line search algorithm is proposed so that the subproblems related

to certain blocks are solved approximately. Another interesting related work is [42]

where the direction d is obtained by projected gradient direction with respect to only

one of the coordinates.

2.2.5 Overlapping Essentially Cyclic Rule

In both the BSUM and the BSCA algorithms considered in the previous sections, vari-

able blocks are updated in a simple cyclic manner. In this section, we consider a very

general block scheduling rule named the overlapping essentially cyclic rule and show

they still ensure the convergence of the BSUM and the BSCA algorithms.

In the so called overlapping essentially cyclic rule, at each iteration r, a group ϑr of

the variables is chosen to be updated where

ϑr ⊆ {1, 2, . . . , n} and ϑr ̸= ∅.

Furthermore, we assume that the update rule is essentially cyclic with period T , i.e.,

T∪
i=1

ϑr+i = {1, 2, . . . , n}, ∀ r.



22

Notice that in the classical essentially cyclic rule [23], in addition to the above condition,

the cardinality of each set ϑ must be one for all r; while in the overlapping essentially

cyclic method, the blocks are allowed to have overlaps. Using the overlapping essentially

cyclic update rule, almost all the convergence results presented so far still hold. For

example, the following corollary extends the convergence of BSUM to the overlapping

essentially cyclic case.

Corollary 1

(a) Assume that the function ui(xi, y) is quasi-convex in xi and Assumption 2 is

satisfied. Furthermore, assume that the overlapping essentially cyclic update rule

with period T is used and the subproblem (2.3) has a unique solution for every block

ϑr. Then, every limit point z of the iterates generated by the BSUM algorithm is a

coordinatewise minimum of (2.2). In addition, if f(·) is regular at z with respect

to the updated blocks, then z is a stationary point of (2.2).

(b) Assume the level set X 0 = {x | f(x) ≤ f(x0)} is compact and Assumption 2 is

satisfied. Furthermore, assume that the overlapping essentially cyclic update rule

is used and the subproblem (2.3) has a unique solution for every block ϑr. If f(·)
is regular (with respect to the updated blocks), then the iterates generated by the

BSUM algorithm converges to the set of stationary points, i.e.,

lim
r→∞

d(xr,X ∗) = 0.

Proof The proof of both cases are similar to the proof of the BSUM algorithm with

the simple cyclic update rule. Here we only present the proof for case (a). The proof of

part (b) is similar.

Let {xrj} be a convergent subsequence whose limit is denoted by z. Consider every T

updating cycle along the subsequence {xrj}, namely, {(xrj , xrj+1, . . . , xrj+T−1)}. Since
the number of different subblocks ϑr is finite, there must exist a (fixed) T tuple of

variable blocks, say (ϑ0, ϑ1, . . . , ϑT−1), that has been updated in infinitely many T

updating cycles. By restricting to the corresponding subsequence of {xrj}, we have

x
rj+i+1
ϑi

= argmin
xϑi

uϑi
(xϑi

, xrj+i), ∀ i = 0, 1, 2, . . . , T − 1.
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The rest of the proof is the same as the proof of part (a) in Theorem 2. The only differ-

ence is that the steps of the proof need to be repeated for the blocks (ϑ0, ϑ1, . . . , ϑT−1)

instead of (1, . . . , n).

In the proof of Corollary 1, we first restrict ourselves to a fixed set of T variable

blocks that have been updated in infinitely many consecutive T update cycles. Then,

we use the same approach as in the proof of the convergence of cyclic update rule.

Using the same technique, we can extend the results in Theorem 7 to the overlapping

essentially cyclic update rule. More specifically, we have the following corollary.

Corollary 2 Assume f(·) is smooth and the condition (2.8) is satisfied. Furthermore,

assume that h(x, y) is strictly convex in x and the overlapping essentially cyclic update

rule is used in the BSCA algorithm. Then every limit point of the iterates generated by

the BSCA algorithm is a stationary point of (2.2).

Notice that the overlapping essentially cyclic rule is not applicable to the MISUM

algorithm in which the update order of the variables is given by the amount of improve-

ment. However, one can simply check that the proof of Theorem 6 still applies to the

case when the blocks are allowed to have overlaps.

2.2.6 BSUM with Linear Coupling Constraints

In the previous subsections, we assume that there is no coupling constraint among the

variables. A simple coupling constraint, which appears in many practical scenarios, is

the linear constraint. In this subsection, we will see that the BSUM idea can be naturally

combined with the Alternating Direction Method of Multipliers (ADMM) idea [43–46]

to deal with the linear coupling constraints. The ADMM which combines the dual

ascent method with the BCD approach is very popular in practical problems due to its

distributed implementation and fast convergence; see [47–49].Consider the optimization
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problem

min
x

f(x1, . . . , xn) +
n∑

i=1

gi(xi)

s.t. A1x1 +A2x2 + . . .+Anxn = b

xi ∈ Xi, ∀i, (2.11)

where f(·) is convex smooth and gi(·) is convex and possibly nonsmooth. Here b ∈ Rm,

Ai ∈ Rm×ni , and xi ∈ Rni with
∑n

i=1 ni = n. Problems of this form appear in many

practical problems such as basis pursuit problem [50], demand-response control power

in smart grids [51,52], and dynamic spectrum management [53].

The linear coupling constraint prevents us from obtaining per-block update of the

variables in the algorithm directly. A popular approach to deal with the linear coupling

constraint is the Alternating Direction Method of Multipliers (ADMM) where the linear

constraint is added to the objective using the augmented Lagrangian regularizer and

the dual variables are updated using a gradient ascent step in the dual problem. Let us

define the augmented Lagrangian function:

L(x1, . . . , xn, λ) = f(x1, . . . , xn) +

n∑
i=1

gi(xi) + ⟨λ,
n∑

i=1

Aixi − b⟩+ ρ

2
∥

n∑
i=1

Aixi − b∥2.

Then, the ADMM approach is summarized in Algorithm 5.

Algorithm 5 Alternating Direction Method of Multipliers

Find a feasible point x0 ∈ X , X1× . . .×Xn; choose ρ > 0; set r = 0; and λ0 = λinit

repeat

for i = 1, 2, . . . , n do

xr+1
i ← argminxi L(xr+1

1 , . . . , xr+1
i−1 , xi, x

r
i+1, . . . , x

r
n, λ

r)

end for

Set λr+1 ← λr + αr(
∑n

i=1Aix
r+1
i − b)

Set r ← r + 1

until some convergence criterion is met
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One drawback of the ADMM algorithm is that the primal variables’ update rule

could be costly in general. When the primal update rule is not closed form, a natural

modification is to replace the original objective function with an approximation of it.

Utilizing the BSUM idea, we can modify the ADMM algorithm to obtain the BSUM-M

method described in Algorithm 6.

Algorithm 6 Block Successive Upper-bound Minimization Method of Multipliers
(BSUM-M)

Find a feasible point x0 ∈ X ; set r = 0; and λ0 = λinit

repeat

for i = 1, 2, . . . , n do

xr+1
i ← argminxi L̃i(xi, xr+1

1 , . . . , xr+1
i−1 , x

r
i , . . . , x

r
n, λ

r)

end for

Set λr+1 ← λr + αr(
∑n

i=1Aix
r+1
i − b)

Set r ← r + 1

until some convergence criterion is met

The difference between the BSUM-M algorithm and the ADMM algorithm is that in

the BSUM-M method, the approximation of the augmented Lagrangian is used instead

of the original Lagrangian. More precisely, we define

L̃i(xi, y, λ) , f̃i(xi, y1, . . . , yn) + gi(xi) + ⟨λ,Aixi⟩+
ρ

2
∥
∑
j ̸=i

Ajyj +Aixi − b∥2.

In other words, instead of applying one round of block coordinate update on all the

primal variables, we apply one BSUM round for updating the primal variables. Similar

to the randomized BSUM idea, we can introduce the randomized BSUM-M described

in Algorithm 7.
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Algorithm 7 Randomized Block Successive Upper-bound Minimization Method of
Multipliers (RBSUM-M)

Find a feasible point x0 ∈ X ; set r = 0; and λ0 = λinit

Pick a probability vector {pi}ni=0 with
∑n

i=0 pi = 1

repeat

Draw a random index i ∈ {0, . . . , n} with probability pi

If i = 0

λr+1 ← λr + αr(
∑n

i=1Aix
r
i − b)

xr+1 ← xr

If i ̸= 0

xr+1
i ← argminxi L̃i(xi, xr+1

1 , . . . , xr+1
i−1 , x

r
i , . . . , x

r
n, λ

r)

xr+1
j ← xrj , ∀j ̸= i

Set r ← r + 1

until some convergence criterion is met

Now we are ready to state the convergence result of the BSUM-M method.

Theorem 8 [37, Theorem 2.1] Suppose that Assumption 4 and Assumption 4

are satisfied. Furthermore, let us assume that the feasible set Xi is compact for

all i. Let us further assume that one of the following step-size selection rules are

adopted: 1) for all r, αr = α is sufficiently small, or 2) the step-size αr satisfies:∑∞
r=1 α

r =∞, limr→∞ αr = 0. Then

(a) For the BSUM-M algorithm, ∥
∑n

i=1Aixi−b∥ → 0 and every limit point of (xr, λr)

is primal dual optimal solution.

(b) For the RBSUM-M algorithm, ∥
∑n

i=1Aixi − b∥ → 0 and every limit point of

(xr, λr) is primal dual optimal solution, with probability one.
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2.3 Random Parallel Successive Convex Approximation

2.3.1 Prior Work

Consider the following optimization problem

min
x

h(x) , f(x1, . . . , xn) +

n∑
i=1

gi(xi)

s.t. xi ∈ Xi, i = 1, 2, . . . , n,

(2.12)

where Xi ⊆ Rmi is a closed convex set; the function f :
∏n

i=1Xi → R is a smooth

function (possibly nonconvex); and g(x) =
∑n

i=1 gi(xi) is a separable convex function

(possibly nonsmooth). The above optimization problem appears in various fields such as

machine learning, signal processing, wireless communication, image processing, social

networks, and bioinformatics, to name just a few. These optimization problems are

typically of huge size and should be solved instantaneously.

A popular approach for solving the above multi-block optimization problem is the

block coordinate descent (BCD) approach, where at each iteration of BCD only one of

the blocks is updated while the remaining blocks are held fixed. Since only one block

is updated at each iteration, the algorithm required memory and the computational

complexity per-iteration is low, which is desirable in big data problems. Furthermore,

as observed in [32,54], these methods particulary perform well in numerical experiments.

With the recent progress and increasing availability of the high performance multi-

core machines, it is desirable to use these technological hardware advances by designing

parallel optimization schemes. One classical class of methods that could be easily par-

allelized is the class of (proximal) gradient methods. These methods are parallelizable

in nature [5, 55–58]; however, they are typically equivalent to optimizing a quadratic

approximation of the smooth part of the objective function which may not be a tight

approximation; and hence suffer from low practical convergence speed [20].

In order to take the advantages of the block coordinate descent method and the

parallel machines hardware simultaneously, different algorithms have been proposed

in recent years for solving the multi-block optimization problems. In particular, the

references [59–61] propose parallel coordinate descent minimization methods for ℓ1-

regularized convex optimization problems. Using the greedy (Gauss-Southwell) type
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of update rule, the recent works [20, 62] propose parallel BCD type methods for gen-

eral nonsmooth optimization problems. In contrast, references [29, 63] suggest the use

of randomized block selection rule, which is more amenable to big data optimization

problems, in order to parallelize the BCD method.

Motivated by [20, 35], and [32], we propose a random parallel block coordinate de-

scent method where at each iteration of the algorithm, a random subset of the blocks is

updated by minimizing locally tight approximations of the original objective function.

We provide the asymptotic and non-asymptotic convergence analysis of the algorithm

for both convex and nonconvex scenarios. It is also worth noting that, although parallel,

our algorithm is synchronized, unlike the existing lock-free methods in [64,65].

The contributions of this section are as follows.

• A randomized parallel block coordinate descent type method is proposed for non-

convex nonsmooth methods. To the best of our knowledge, reference [20] is the

only existing algorithm in the literature for nonconvex nonsmooth methods. This

reference utilizes greedy block selection rule which requires searching among all

blocks and communication among processing nodes in order to find the best blocks

to update. This requirement might be demanding in practical scenarios where the

communication among nodes are limited or when the number of blocks are huge.

• Unlike many existing algorithms in the literature, e.g. [29, 62, 63], our algorithm

utilizes the general approximation of the original function which includes the lin-

ear/proximal approximation of the objective as a special case.

• We provide iteration complexity analysis of the algorithm for both convex and

nonconvex scenarios. Unlike the existing parallel methods in the literature such

as [20] which only guarantees the asymptotic behavior of the algorithm, we provide

non-asymptotic guarantees on the algorithm as well.

• The proposed method not only works with the constant step-size selection rule, but

also with the diminishing step-size which is desirable when the Lipschitz constant

of the objective function is not known.
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2.3.2 Algorithm Description

As stated in the introduction section, a popular approach for solving (2.12) is the BCD

method where at each iteration of this method, the function is minimized with respect to

a single block of variables while the rest of the blocks are held fixed. More specifically, at

iteration r+1 of the algorithm, the block variable xi is updated by solving the following

subproblem

xr+1
i = arg min

xi∈Xi

h(xr1, . . . , x
r
i−1, xi, x

r
i+1, . . . , x

r
n). (2.13)

In many practical situations, the function h(·) might not be convex and hence the update

rule (2.13) is not easy to perform. One popular approach is to replace the function h(·)
with its convex approximation hi(xi, x

r) in (2.13). In other words, at iteration r + 1 of

the algorithm, the block variable xi is updated by

xr+1
i = arg min

xi∈Xi

h̃i(xi, x
r), , (2.14)

where h̃i(xi, x
r) is a convex (possibly upper-bound) approximation of the function h(·)

with respect to the i-th block around the current iteration xr. This approach, also

known as successive convex approximation or successive upper-bound minimization [35],

has been widely used in different applications; see [35] for more details.

In this part of the dissertation, we assume that the approximation function h̃i(·) is
of the following form:

h̃i(xi, y) = f̃i(xi, y) + gi(xi). (2.15)

Here f̃i(·, y) is an approximation of the function f(·) around the point y with respect

to the i-th block. We further assume that f̃i(xi, y) : Xi ×X → R satisfies the following

assumptions:

• f̃i(·, y) is continuously differentiable and strongly convex with parameter τi for all

y ∈ X , i.e.,

f̃i(xi, y) ≥ f̃i(x
′
i, y) + ⟨∇xi f̃i(x

′
i, y), xi − x′i⟩+

τi
2
∥xi − x′i∥2, ∀xi, x′i ∈ Xi, ∀y ∈ X
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• Gradient consistency assumption:

∇xi f̃i(xi, x) = ∇xif(x), ∀x ∈ X (2.16)

• ∇xi f̃i(xi, ·) is Lipschitz continuous on X for all xi ∈ Xi with constant L̃, i.e.,

∥∇xi f̃i(xi, y)−∇xi f̃i(xi, z)∥ ≤ L̃∥y − z∥, ∀y, z ∈ X , ∀xi ∈ Xi, ∀i.

With the recent advances in the development of parallel processing machines, it is

desirable to take the advantage of parallel processing by updating multiple blocks at

the same time in (2.37). Unfortunately, naively updating multiple blocks using the

approach (2.37) will not result in a convergent algorithm. Hence, we suggest to modify

the update rule using a well chosen step size. More precisely we suggest Algorithm 8

for solving the optimization problem (2.12).

Algorithm 8 Randomized Parallel Successive Convex Approximation (RPSCA) Algo-
rithm

find a feasible point x0 ∈ X and set r = 0

repeat

choose a subset Sr ⊆ {1, . . . , n}
calculate x̂ri = argminxi∈Xi h̃i(xi, x

r), ∀i ∈ Sr

set xr+1
i = xri + γr(x̂ri − xri ), ∀i ∈ Sr

set xr+1
i = xri , ∀ i /∈ Sr

set r = r + 1

until some convergence criterion is met

First of all, notice that when the approximation function is the standard proxi-

mal approximation, the proposed update rule is different than adaptively changing the

quadratic penalization constant, which has been considered before in the literature. Sec-

ondly, in Algorithm 8, the selection of the subset Sr could be done based on different

rules. A recent work [20] suggests to use a Gauss-Southwell variable selection rule where

at each iteration the blocks are chosen in a greedy manner. In other words, at each iter-

ation of the algorithm in [20], the best response of all the variables are calculated and at
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the end, only the block variables with the largest amount of improvement are updated.

A drawback of this approach is in the calculation of all the best responses especially

when the size of the problem is huge. Unlike the work [20], we suggest a randomized

variable selection rule. More precisely, at each iteration r, the set Sr is chosen randomly

and independently from the previous iterations such that

Pr(j ∈ Sr | xr) = prj ≥ pmin > 0, ∀j = 1, 2, . . . , n, ∀r

2.3.3 Convergence Analysis: Asymptotic Behavior

To study the asymptotic convergence behavior of the above algorithm for the general

non-convex scenario, we need to assume that∇f(·) is Lipschitz continuous with constant

L∇f , i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∇f∥x− y∥.

Let us also define x̄ to be a stationary point of (2.12) if ∃ d ∈ ∂g(x̄) such that ⟨∇f(x̄)+
d, x− x̄⟩ ≥ 0, ∀x ∈ X , i.e., the first order optimality condition is satisfied at the point

x̄. The following lemma will help us to study the convergence of the RPSCA algorithm.

Lemma 1 [20, Lemma 2] Define the mapping x̂(·) : X 7→ X as x̂(y) = (x̂i(y))
n
i=1 with

x̂i(y) = argmin
xi

h̃i(xi, y).

Then the mapping x̂(·) is continuous Lipschitz with the constant L̂ =
√
nL̃

τmin
, i.e.,

∥x̂(y)− x̂(z)∥ ≤ L̂∥y − z∥, ∀y, z ∈ X

Proof Compared to the result of [20, Lemma 2], our result does not use the proximal

regularizer. However, the proof in [20, Lemma 2] can be easily modified to handle our

case when there is no proximal regularizer as well. �

Having the above result in our hands, we are now ready to state our first result

which studies the limiting behavior of the RPSCA algorithm. This result is based on

the sufficient decrease of the objective function which has been also utilized in [20] for

non-random choice of the variables.
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Theorem 9 Assume γr ∈ (0, 1],
∑∞

r=1 γ
r = +∞, and that lim supr→∞ γr < γ̄ ,

min{ τmin
L∇f

, τmin

τmin+L̃
√
n
}. Then every limit point of the iterates is a stationary point of

(2.12) with probability one.

Proof See the appendix chapter.

2.3.4 Convergence Analysis: Iteration Complexity

In this section, we do iteration complexity analysis of the algorithm. The iteration

complexity analysis is done for both convex and nonconvex case.

Convex Case

When the function f(·) is convex, the overall objective function will become convex;

and as a result of Theorem 9, the proposed algorithm converges to the set of global

optimal points. Let us make the following assumptions in this subsection:

• The step-size is constant with γr = γ < τmin
L∇f

, ∀r.

• The level set {x | h(x) ≤ h(x0)} is compact and the next two assumptions hold in

this set.

• The nonsmooth function g(·) is Lipschitz continuous, i.e., |g(x)−g(y)| ≤ Lg∥x−y∥.
This assumption is satisfied in many practical problems such as Lasso or group

Lasso.

• The gradient of the approximation function f̃i(·, y) is uniformly Lipschitz with

constant Li:

∥∇xi f̃i(xi, y)−∇x′
i
f̃i(x

′
i, y)∥ ≤ Li∥xi − x′i∥.

Lemma 2 (Sufficient Descent) There exists β̂ > 0, such that for all r ≥ 1, we have

E[h(xr+1) | xr] ≤ h(xr)− β̂∥x̂r − xr∥2.

Proof The above result is an immediate consequence of (A.35) for the constant choice

of step-size with β̂ , βγpmin.
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Due to the bounded level set assumption, there must exists constants Q,R > 0 such

that

∥∇f(xr)∥ ≤ Q, (2.17)

∥xr − x∗∥ ≤ R, (2.18)

for all xr. Next we use the constants Q and R to bound the cost-to-go in the algorithm.

Lemma 3 (Cost-to-go Estimate) For all r ≥ 1, we have

(
E[h(xr+1) | xr]− h(x∗)

)2 ≤ 2
(
(Q+ Lg)

2 + nL2R2
)
∥x̂r − xr∥2,

for any optimal point x∗, where L , maxi{Li}.

Proof The proof steps are very similar to the proof of [36][Lemma 3.2]. Let us first

bound the conditional expected cost-to-go by

E
[
h(xr+1)− h(x∗) | xr

] (i)

≤ h(xr)− h(x∗)

= f(xr)− f(x∗) + g(xr)− g(x∗)

(ii)

≤ ⟨∇f(xr), xr − x̂r⟩+ ⟨∇f(xr), x̂r − x∗⟩+ Lg∥xr − x̂r∥+ g(x̂r)− g(x∗)

(iii)

≤ (Lg +Q)∥x̂r − xr∥+
n∑

i=1

⟨∇xif(x
r)−∇xi f̃i(x̂i, x

r), x̂ri − x∗i ⟩

+
n∑

i=1

⟨∇xi f̃i(x̂
r
i , x

r), x̂ri − x∗i ⟩+ g(x̂r)− g(x∗)

≤ (Lg +Q)∥x̂r − xr∥+
n∑

i=1

⟨∇xif(x
r)−∇xi f̃i(x̂i, x

r), x̂ri − x∗i ⟩

(2.19)

where (i) is due to the sufficient decrease bound in Lemma 2; the inequality (ii) is due to

the convexity of f(·) and Lipschitz continuity of g(·); the third inequality is due to the

definition of the Q. Furthermore, the last inequality is obtained by using the first order

optimality condition of the point x̂ri , i.e., ⟨∇xi f̃i(x̂
r
i , x

r), x̂ri − x∗i ⟩+ gi(x̂
r
i )− gi(x

∗
i ) ≤ 0.
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On the other hand, one can write(
n∑

i=1

⟨∇xif(x
r)−∇xi f̃i(x̂

r
i , x

r), x̂ri − x∗i ⟩

)2

=

(
n∑

i=1

⟨∇xi f̃i(x
r
i , x

r)−∇xi f̃i(x̂
r
i , x

r), x̂ri − x∗i ⟩

)2

≤ n
n∑

i=1

L2
i ∥xri − x̂ri ∥2 · ∥x̂ri − x∗i ∥2

≤ nL2R2∥xr − x̂r∥2. (2.20)

Combining (2.19) and (2.20) will conclude the proof.

Lemma 2 and Lemma 3 will yield to the iteration complexity bound in the following

theorem. The proof steps of this result is the same as the ones in [36] and therefore it

is omitted here.

Theorem 10 Define σ , β̂
2((Q+Lg)2+nL2R2)

. Then

E [h(xr)]− h(x∗) ≤ max{4σ − 2, h(x0)− h(x∗), 2}
σ

1

r
.

Nonconvex Case

In this subsection we study the iteration complexity of the proposed randomized algo-

rithm for the general nonconvex function f(·). Since in the nonconvex scenario, the

iterates may not converge to the global optimum point, the closeness to the optimal

solution cannot be considered for the iteration complexity analysis. Instead, inspired

by [66] where the size of the gradient of the objective function is used as a measure of

optimality, we consider the proximal gradient of the objective as a measure of optimality.

More precisely, we define

∇̃h(x) = x− argmin
y∈X
⟨∇f(x), y − x⟩+ g(y) +

1

2
∥y − x∥2.

Clearly, ∇̃h(x) = 0 when x is a stationary point. Moreover, this measure coincides with

the gradient of the objective if g ≡ 0 and X = Rn. The following theorem, which studies
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the decrease rate of this measure, could be viewed as an iteration complexity analysis

of the proposed algorithm.

Theorem 11 Define Tϵ to be the first time that E[∥∇̃h(xr)∥2] ≤ ϵ. Then Tϵ ≤ κ
ϵ where

κ , 2(L2+2L+2)(h(x0)−h∗)

β̂
and h∗ = minx∈X h(x).

Proof See the appendix chapter.

Remark 1 If we define T ′
ϵ to be the first time that E

[
∥∇̃h(xr)∥

]
≤ ϵ, then Theorem 11

combined with Jensen’s inequality implies that T ′
ϵ = O

(
1
ϵ2

)
2.4 Stochastic Successive Upper-bound Minimization

2.4.1 Algorithm Description and Prior Work

Consider the problem of minimizing the expected value of a cost function parameterized

by a random variable. The classical sample average approximation (SAA) method for

solving this problem requires minimization of an ensemble average of the objective

at each step, which can be expensive. In this dissertation, we propose a stochastic

successive upper-bound minimization method (SSUM) which minimizes an approximate

ensemble average at each iteration. To be more precise, let us consider the optimization

problem

min
{
f(x) , Eξ [g1(x, ξ) + g2(x, ξ)]

}
(2.21)

s.t. x ∈ X ,

where X is a bounded closed convex set and ξ is a random vector drawn from a set

Ξ ∈ Rm. We assume that the function g1 : X × Ξ 7→ R is a continuously differentiable

(and possibly non-convex) function in x, while g2 : X × Ξ 7→ R is a convex continuous

(and possibly non-smooth) function in x. A classical approach for solving the above

optimization problem is the sample average approximation (SAA) method. At each

iteration of the SAA method, a new realization of the random vector ξ is obtained and
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the optimization variable x is updated by solving

xr ∈ argmin
1

r

r∑
i=1

g1(x, ξ
i) + g2(x, ξ

i)

s.t. x ∈ X .

(2.22)

Here ξ1, ξ2, . . . are some independent, identically distributed realizations of the random

vector ξ. We refer the readers to [67–71] for the roots of the SAA method and [72–74]

for several surveys on SAA.

A main drawback of the SAA method is the complexity of each step. In general, due

to the non-convexity and non-smoothness of the objective function, it may be difficult

to solve the subproblems (2.22) in the SAA method. This motivates us to consider

an inexact SAA method by using an approximation of the function g(·, ξ) in the SAA

method (2.22) as follows:

xr ← argmin
x

1

r

r∑
i=1

(
ĝ1(x, x

i−1, ξi) + g2(x, ξ
i)
)

(2.23)

s.t. x ∈ X ,

where ĝ1(x, x
i−1, ξi) is an approximation of the function g1(x, ξ

i) around the point xi−1.

Table 9 summarizes the SSUM algorithm.

Algorithm 9 Stochastic Successive Convex Approximation (SSUM) Algorithm

Find a feasible point x0 ∈ X and set r = 0

repeat

xr ← argmin
x∈X

1

r

r∑
i=1

(
ĝ1(x, x

i−1, ξi) + g2(x, ξ
i)
)

until some convergence criterion is met

2.4.2 Asymptotic Convergence Analysis

Clearly, the function ĝ1(x, y, ξ) should be related to the original function g1(x, ξ). Fol-

lowing the successive convex approximation idea from the previous sections, we assume

that the approximation function ĝ1(x, y, ξ) satisfies the following conditions.
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Assumption A:

Let X ′ be an open set containing the set X . Suppose the approximation function

ĝ(x, y, ξ) satisfies the following

A1- ĝ1(y, y, ξ) = g1(y, ξ), ∀ y ∈ X , ∀ ξ ∈ Ξ

A2- ĝ1(x, y, ξ) ≥ g1(x, ξ), ∀ x ∈ X ′, ∀ y ∈ X , ∀ ξ ∈ Ξ

A3- ĝ(x, y, ξ) , ĝ1(x, y, ξ) + g2(x, ξ) is uniformly strongly convex in x, i.e., for all

(x, y, ξ) ∈ X × X × Ξ,

ĝ(x+ d, y, ξ)− ĝ(x, y, ξ) ≥ ĝ′(x, y, ξ; d) +
γ

2
∥d∥2, ∀ d ∈ Rn,

where γ > 0 is a constant.

The assumptions A1-A2 imply that the approximation function ĝ1(·, y, ξ) should be

a locally tight approximation of the original function g1(·, ξ). We point out that the

above assumptions can be satisfied in many cases by the right choice of the approxima-

tion function and hence are not restrictive. For example, the approximation function

ĝ1(·, y, ξ) can be made strongly convex easily to satisfy Assumption A3 even though the

function g1(·, y) itself is not even convex; see Section 3 and Section 4 for some examples.

To ensure the convergence of the SSUM algorithm, we further make the following

assumptions.

Assumption B:

B1- The functions g1(x, ξ) and ĝ1(x, y, ξ) are continuous in x for every fixed y ∈ X
and ξ ∈ Ξ

B2- The feasible set X is bounded

B3- The functions g1(·, ξ) and ĝ1(·, y, ξ), their derivatives, and their second order

derivatives are uniformly bounded. In other words, there exists a constant K > 0
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such that for all (x, y, ξ) ∈ X × X × Ξ we have

|g1(x, ξ)| ≤ K, ∥∇xg1(x, ξ)∥ ≤ K, ∥∇2
xg1(x, ξ)∥ ≤ K,

|ĝ1(x, y, ξ)| ≤ K, ∥∇xĝ1(x, y, ξ)∥ ≤ K, ∥∇2
xĝ1(x, y, ξ)∥ ≤ K,

B4- The function g2(x, ξ) is convex in x for every fixed ξ ∈ Ξ

B5- The function g2(x, ξ) and its directional derivative are uniformly bounded. In other

words, there exists K ′ > 0 such that for all (x, ξ) ∈ X ×Ξ, we have |g2(x, ξ)| ≤ K ′

and

|g′2(x, ξ; d)| ≤ K ′∥d∥, ∀ d ∈ Rn with x+ d ∈ X .

B6- Let ĝ(x, y, ξ) = ĝ1(x, y, ξ) + g2(x, y, ξ). There exists ḡ ∈ R such that

|ĝ(x, y, ξ)| ≤ ḡ, ∀ (x, y, ξ) ∈ X × X × Ξ.

Notice that in the assumptions B3 and B5, the derivatives are taken with respect

to the x variable only. Furthermore, one can easily check that the assumption B3 is

automatically satisfied if the functions g1(x, ξ) and ĝ1(x, y, ξ) are continuously second

order differentiable with respect to (x, y, ξ) and the set Ξ is bounded; or when g1(x, ξ)

and ĝ1(x, y, ξ) are continuous and second order differentiable in (x, y) and Ξ is finite. As

will be seen later, this assumption can be easily satisfied in various practical problems.

It is also worth mentioning that since the function g2(x, ξ) is assumed to be convex in

x in B4, its directional derivative with respect to x in B5 can be written as

g′2(x, ξ; d) = lim inf
t↓0

g2(x+ td, ξ)− g2(x, ξ)

t

= inf
t>0

g2(x+ td, ξ)− g2(x, ξ)

t

= lim
t↓0

g2(x+ td, ξ)− g2(x, ξ)

t
. (2.24)

The following theorem establishes the convergence of the SSUM algorithm.

Theorem 12 Suppose that Assumptions A and B are satisfied. Then the iterates gen-

erated by the SSUM algorithm converge to the set of stationary points of (2.12) almost
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surely, i.e.,

lim
r→∞

d(xr,X ∗) = 0,

where X ∗ is the set of stationary points of (2.12).

To facilitate the presentation of the proof, let us define the random functions

f r
1 (x) ,

1

r

r∑
i=1

g1(x, ξ
i),

f r
2 (x) ,

1

r

r∑
i=1

g2(x, ξ
i),

f̂ r
1 (x) ,

1

r

r∑
i=1

ĝ1(x, x
i−1, ξi),

f r(x) , f r
1 (x) + f r

2 (x),

f̂ r(x) , f̂ r
1 (x) + f r

2 (x),

for r = 1, 2, . . .. Clearly, the above random functions depend on the realization ξ1, ξ2, . . .

and the choice of the initial point x0. Now we are ready to prove Theorem 12.

Proof First of all, since the iterates {xr} lie in a compact set, it suffices to show that

every limit point of the iterates is a stationary point. To show this, let us consider a

subsequence {xrj}∞j=1 converging to a limit point x̄. Note that since X is closed, x̄ ∈ X
and therefore x̄ is a feasible point. Moreover, since |g1(x, ξ)| < K, |g2(x, ξ)| < K ′ for

all ξ ∈ Ξ (due to B3 and B5), using the strong law of large numbers [75], one can write

lim
r→∞

f r
1 (x) = E [g1(x, ξ)] , f1(x), ∀ x ∈ X , (2.25)

lim
r→∞

f r
2 (x) = E [g2(x, ξ)] , f2(x), ∀ x ∈ X . (2.26)

Furthermore, due to the assumptions B3, B5, and (2.24), the family of functions
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{f rj
1 (·)}∞j=1 and {f rj

2 (·)}∞j=1 are equicontinuous and therefore by restricting to a sub-

sequence, we have

lim
j→∞

f
rj
1 (xrj ) = Eξ [g1(x̄, ξ)] , (2.27)

lim
j→∞

f
rj
2 (xrj ) = Eξ [g2(x̄, ξ)] . (2.28)

On the other hand, ∥∇xĝ(x, y, ξ)∥ < K, ∀ x, y, ξ due to the assumption B3 and therefore

the family of functions {f̂ r
1 (·)} is equicontinuous. Moreover, they are bounded and

defined over a compact set; see B2 and B4. Hence the Arzelà–Ascoli theorem [76] implies

that, by restricting to a subsequence, there exists a uniformly continuous function f̂1(x)

such that

lim
j→∞

f̂
rj
1 (x) = f̂1(x), ∀ x ∈ X , (2.29)

and

lim
j→∞

f̂
rj
1 (xrj ) = f̂1(x̄), ∀ x ∈ X . (2.30)

Furthermore, it follows from assumption A2 that

f̂
rj
1 (x) ≥ f

rj
1 (x), ∀ x ∈ X ′.

Letting j →∞ and using (2.25) and (2.29), we obtain

f̂1(x) ≥ f1(x), ∀ x ∈ X ′. (2.31)

On the other hand, using the update rule of the SSUM algorithm, one can show the

following lemma.

Lemma 4 limr→∞ f̂ r
1 (x

r)− f r
1 (x

r) = 0, almost surely.

The proof of Lemma 4 is relegated to the appendix chapter.
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Combining Lemma 4 with (2.27) and (2.30) yields

f̂1(x̄) = f1(x̄). (2.32)

It follows from (2.31) and (2.32) that the function f̂1(x)−f1(x) takes its minimum value

at the point x̄ over the open set X ′. Therefore, the first order optimality condition

implies that

∇f̂1(x̄)−∇f1(x̄) = 0,

or equivalently

∇f̂1(x̄) = ∇f1(x̄). (2.33)

On the other hand, using the update rule of the SSUM algorithm, we have

f̂
rj
1 (xrj ) + f

rj
2 (xrj ) ≤ f̂

rj
1 (x) + f

rj
2 (x), ∀ x ∈ X .

Letting j →∞ and using (2.28) and (2.30) yield

f̂1(x̄) + f2(x̄) ≤ f̂1(x) + f2(x), ∀ x ∈ X . (2.34)

Moreover, the directional derivative of f2(·) exists due to the bounded convergence

theorem [75]. Therefore, (2.34) implies that

⟨∇f̂1(x̄), d⟩+ f ′
2(x̄; d) ≥ 0, ∀ d.

Combining this with (2.33), we get

⟨∇f1(x̄), d⟩+ f ′
2(x̄; d) ≥ 0, ∀ d,

or equivalently

f ′(x̄; d) ≥ 0, ∀ d,

which means that x̄ is a stationary point of f(·).

Remark 2 In Theorem 12, we assume that the set X is bounded. It is not hard to see
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that the result of the theorem still holds even if X is unbounded, so long as the iterates

lie in a bounded set.

To see further non-asymptotic results on the convergence of SSUM method, the

readers are referred to the concurrent works [77–79].

2.5 Successive Convex Approximation in Games

2.5.1 Prior Work

The non-cooperative games are essential in modeling the systems where selfish play-

ers are maximizing their own objectives. These systems are in nature different from

optimization problems in general since the objective of different players might be con-

tradictory to each other. A well-studied concept in these games is the Nash Equilibrium

(NE) concept [80], where at the NE point, each player will not be better off by devi-

ating from his/her equilibrium strategy while the other players keep executing their

equilibrium strategies. The non-cooperative game modeling has recently become popu-

lar in different engineering contexts such as beamforming/power allocation for wireless

networks and electricity market pricing. In particular, in the dynamic spectrum man-

agement problem, this modeling is popular due to the distributed nature of the system,

specially in the cognitive radio scenarios; See two recent surveys [81, 82] and the refer-

ences therein for more details.

Although the existence of the NE is typically easy to show, finding a convergent

algorithm for finding such a NE point is not easy. In particular, the intuitive best

response algorithms, which iteratively updates players’ variables by the best response

strategy, requires conditions on the objectives of the players to converge. Motivated by

the classical paper [7], which deals with solving nonlinear equation, many researchers

tried to extend it to different scenarios. For example, the references [83–85] consider

iterative methods for linear complementary problems [86]. As mentioned in [86, Chap-

ter 5], there are three typical ways of showing the convergence of such iterative methods

in games: showing contraction of the iterates, proving the monotonicity of a potential,

or establishing the monotonicity of the iterates. The last approach is not applicable to a
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wide class of games and hence we do not consider it here. For the contraction analysis,

there are recent works relating the contraction of the iterates to the spectral radius of

a particular matrix depending on the utilities of the players; see [87–91]. Also when a

potential function exists in the game, the convergence of different algorithms could be

shown; see, e.g., [92].

When the players objectives are non-convex, the existence of the NE is not guaran-

teed in general. For such non-convex games, the first order NE (also known as quasi-

NE [93]) can be shown to exist easily when the players’ objectives are smooth and the

constraint sets are compact. In this chapter, we utilize the successive convex approx-

imation idea to find the quasi-NE of the game. The analysis of the algorithm is done

based on the contraction of the iterates as well as the existence of a potential in the

game.

2.5.2 Problem Statement and Algorithm Description

Consider an n-player game where each player i, i = 1, 2, . . . , n, is interested in solving

the following optimization problem:

min
xi

θi(xi, x−i)

s.t. xi ∈ Xi.
(2.35)

Here Xi ⊆ Rmi is a closed convex set and θi(·) is a continuous (possibly nonsmooth

and nonconvex) function. A simple intuitive approach for solving the above game in a

distributed manner is as follows. At each iteration, a (subset) of player try to optimize

their own objective assuming the other users’ strategy is fixed. More specifically, at

iteration r of the algorithm, the players {i : i ∈ Sr} optimize their own strategy by

solving the following subproblem

xr+1
i = arg min

xi∈Xi

θi(xi, x
r
−i). (2.36)

In many practical situations, the function θi(·, xr−i) might not be convex and hence

the update rule (2.36) is not easy to compute. One simple approach is to replace the
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function θi(·, xr−i) with its convex approximation θ̂i(xi, x
r) in (2.36). In other words, at

iteration r of the algorithm, the users in set Sr updates their variable by

xr+1
i = arg min

xi∈Xi

θ̂i(xi, x
r), ∀i ∈ Sr (2.37)

where θ̂i(·, xr) is an approximation of the function θi(·, xr−i) at the current point xri . To

have a concrete algorithm, we need to decide about the choice of the function θ̂(·) and
the choice of the set Sr. Two classical ways of selecting the set Sr is the Gauss-Seidel

and the Jacobi. In the rest of this section, we study these two choices separately.

2.5.3 Gauss-Seidel Update Rule

In the Gauss-Seidel choice of the players in the algorithm, at each iteration only one

block i is selected to be updated. More precisely, the Gauss-Seidel approach will lead

to Algorithm 10 for solving (2.35).

Algorithm 10 Gauss-Seidel Successive Upper-bound Minimization (GS-SUM) Algo-
rithm

find a feasible point x0 ∈ X , X1 × . . .×Xn and set r = 0

repeat

choose an index i

set xr+1
i ∈ argminxi∈Xi θ̂i(xi, x

r)

set xr+1
j = xrj , ∀ j ̸= i

set r = r + 1

until some convergence criterion is met

Notice that this algorithm is can be viewed as a generalization of the method in [92]

where the special case of θ̂i(xi, y) = θi(xi, y−i) +
1
2∥xi − yi∥2 is considered.

To study the convergence of the GS-SUM algorithm, we need to have some initial

definitions:

• Generalized potential game: The introduced n-player game in (2.35) is said to

be a generalized potential game if there exists a continuous function P (·) : Rm 7→ R,
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m = m1 + . . .+mn, such that for all i, all x−i, and all yi, zi ∈ Xi,

θi(yi, x−i) > θi(zi, x−i)

implies

P (yi, x−i)− P (zi, x−i) ≥ σ(θi(yi, x−i)− θi(zi, x−i)),

where σ : R+ 7→ R+ is a forcing function, i.e., lim
r→∞

σ(tr) = 0⇒ lim
r→∞

tr = 0.

• Quasi-Nash equilibrium point: The point x∗ = (x∗i )
n
i=1 is a quasi-Nash equi-

librium of the game (2.35) if

θ′i(x
∗; d) ≥ 0, ∀ d = (0, . . . , 0, di, 0, . . . , 0) with x∗i + di ∈ Xi, ∀i

Let us further make the following assumptions on the approximation function θ̂i(·, ·):

Assumption 5 We assume the approximation function satisfies the following assump-

tions:

• θ̂i(xi, y) is continuous in (xi, y), ∀i

• θ̂i(xi, x) = θ(x), ∀xi ∈ Xi, ∀i

• θ̂i(xi, y) ≥ θ(y1, . . . , yi−1, xi, yi+1, . . . , yn), ∀y ∈ X , ∀xi ∈ Xi, ∀i

• θ̂′i(xi, y; di)

∣∣∣∣
xi=yi

= θ′i(y; d), ∀d = (0, . . . , 0, di, 0, . . . , 0) with yi + di ∈ Xi, ∀i

where in the last inequality, θ̂′i(xi, y; di) is the directional derivative of the function

θ̂i(·, y) in the direction di.

Clearly, the choice of the player i in the algorithm could not be arbitrary. For

example, if only the first player is updated at all iterations, then there is no chance for

the other players to update their variables. Define ir to be the block/player chosen in

the r-th iteration. In this work, we assume the following choices of variables:
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• Essentially cyclic: We say the choice of the updates in the algorithm is essen-

tially cyclic if there exists T ≥ 1 such that

{ir + 1, ir + 2, . . . , ir + T} = {1, 2, . . . , n}, ∀r

• Randomized: The choice of the updates in the algorithm is randomized if the

players are chosen randomly at different iterations so that

Pr(ir = j) = pj > 0, ∀j = 1, 2, . . . , n, ∀r = 1, 2, . . .

with
∑n

j=1 pj = 1.

Having the above assumptions/definitions in our hand, we are now ready to state

Theorem 13 which studies the limit points of the GS-SUM algorithm for the essentially

cyclic choice of the variables.

Theorem 13 Assume the game (2.35) is generalized potential game and Assumption 5

holds. Let us further assume that the approximation function θ̂i(·; y) is strictly convex

for all fixed y ∈ X , ∀i; and the choice of the variables is essentially cyclic. Then

every limit point of the iterates generated by the GS-SUM algorithm is a quasi-Nash

equilibrium of the game (2.35).

Proof See the appendix chapter.

Now we will analyze the randomized choice selection in the algorithm. To proceed,

we need to define a merit function which is a generalization of the Nikaido-Isoda function

[94]. Let θ̂i(·, ·) be an approximation of the player i’s utility which satisfies Assumption 5.

Define the QNE measure of point y by κ(y) =
∑n

i=1 κi(y) where

κi(y) = θ̂i(yi, y)− min
xi∈Xi

θ̂i(xi, yi).

Clearly, κ(y) ≥ 0, ∀y ∈ X . Moreover, in the special case of θ̂i(xi, y) = θi(xi, y−i),

the above measure will exactly coincide with the Nikaido-Isoda function [94], or the

Ky-Fan-function [95]. The following lemma, which can be viewed as a generalization
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of [94, Lemma 3.1], sheds light on the applicability of the function κ(·) as a measure of

being QNE.

Lemma 5 Assume −∞ < M ≤ θ̂i(xi, y) for some M and for all xi ∈ Xi, y ∈ X , ∀i.
Then κ(y) is a positive continuous function and κ(y) = 0 if and only if y is a QNE of

the game (2.35).

Proof The continuity of the function κ follows immediately from the continuity of the

function θ̂i(·, ·). Now consider a point y with κ(y) = 0. Since κi(·) is a nonnegative

function for all i, we must have κi(y) = 0, ∀i. Equivalently, yi ∈ argminxi∈Xi θ̂(xi, y).

Combining the first order optimality condition and the derivative consistency assump-

tion in Assumption5 implies

θ′i(y; d) ≥ 0, ∀ d = (0, . . . , 0, di, 0, . . . , 0) with yi + di ∈ Xi, ∀i,

which implies that y is a QNE of the game. To prove the converse, we only need to take

the above steps in the reverse direction.

Now we are ready to state our simple convergence analysis of the randomized algo-

rithm.

Theorem 14 Assume the game (2.35) is generalized potential game and Assumption 5

holds. Let us further assume that the choice of the variables is randomized at each

iteration. Then limr→∞ κ(xr) = 0, almost surely.

Proof Check the appendix chapter.

The following corollary is an immediate consequence of Lemma 5 and Theorem 14.

Corollary 3 Under the same set of assumptions as in Theorem 14, every limit points

of the iterates generated by randomized GS-SUM method is a QNE of the game (2.35).

Notice that in Theorem 14 there is no requirement on the approximation function to

be strictly convex or having a unique minimizer at each step. However, this requirement

appears in Theorem 13 and it is in fact necessary according to the counterexample by

Powell in [38]. To the best of our knowledge, this result is new, even in the optimization

context.
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2.5.4 Jacobi Update Rule:

In the Jacobi selection of the players, all players update their variables in parallel at

each iteration; in other words, Sr = {1, . . . , n}, ∀r. More precisely, the algorithm in

Algorithm 11 Jacobi Successive Upper-bound Minimization (J-SUM) Algorithm

find a feasible point x0 ∈ X , X1 × . . .×Xn and set r = 0

repeat

for i = 1, . . . , n do

set xr+1
i ∈ argminxi∈Xi θ̂i(xi, x

r)

set r = r + 1

until some convergence criterion is met

In this section we assume that the cost function θi(·) has the following form

θi(x) = fi(x) + gi(xi), (2.38)

where the function fi(x) is smooth (possibly nonconvex) and the function gi(xi) is a

convex nonsmooth function. To study the convergence of the algorithm, we further need

to make the following assumption.

Assumption 6 Assume the approximation function satisfies the followings:

• θ̂i(xi, y) = f̂i(xi, y) + gi(xi)

• f̂i(xi, y) is twice continuously differentiable function in (xi, y), ∀i

• f̂i(xi, x) = fi(x), ∀xi ∈ Xi, ∀i

• ∇xi f̂i(xi, y)

∣∣∣∣
xi=yi

= ∇xifi(xi, y−i)

∣∣∣∣
xi=yi

, ∀y ∈ X , ∀i

• f̂i(xi, y) is uniformly strongly convex in xi for all i. In other words, for any i,

there exists τi > 0 such that for any wi, xi ∈ Xi and y ∈ X , we have

f̂i(wi, y) ≥ f̂i(xi, y) + ⟨wi − xi,∇xi f̂i(xi, y)⟩+
τi
2
∥xi − wi∥2.
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Similar to the classical convergence analysis of the Jacobi method based on the

contraction argument [85, Chapter 3], we can obtain the following theorem:

Theorem 15 Define

Γ ,


γ11
τ1

γ12
τ1

. . . γ1n
τ1

γ21
τ2

γ22
τ2

. . . γ2n
τ2

...
...

. . .
...

γn1

τn
γn2

τn
. . . γnn

τn

 ,

where γij , supxi,y ∥
(
∇yj∇xi f̂(xi, y)

)
∥2. If ∥Γ∥2 < 1, then the J-SUM method in

Algorithm 11 converges linearly to the unique QNE of the game (2.35).

Proof See the appendix chapter.

It is worth noticing that the sufficient condition in Theorem 15 is more general

than the one in [96, Chapter 12]. In fact, choosing the special approximation function

f̂(xi, y) = f(xi, y−i) +
1
2∥xi − yi∥2 will yield to the bound in [96].

Randomized Jacobi Update:

In many practical scenarios, the number of available processor is less than the number

of blocks. This motivates the use of Jacobi update rule over a subset of blocks at each

iteration. In this subsection, we consider a randomized Jacobi update rule where at each

iteration a random subset of players update their variables using the approximation

function. Algorithm 12 describes the algorithm in details.
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Algorithm 12 Randomized Jacobi Successive Upper-bound Minimization (RJ-SUM)
Algorithm

find a feasible point x0 ∈ X , X1 × . . .×Xn and set r = 0

repeat

choose a random subset Sr of players, i.e., Sr ⊆ {1, 2, . . . , n}
for i = 1, . . . , n do

if i ∈ Sr, set xr+1
i ∈ argminxi∈Xi θ̂i(xi, x

r)

else set xr+1
i = xri

set r = r + 1

until some convergence criterion is met

Let us define Rr
i to be a Bernoulli random variable demonstrating the selection of the

i-th block at iteration r, i.e., Rr
i = 1 iff i ∈ Sr. Let us further assume that E(Rr

i ) = pi.

Similar to Theorem 15, we can have the following convergence result.

Theorem 16 Define Φ , diag(p1, . . . , pn) and Υ , I− Φ + ΦΓ. If ∥Υ∥2 < 1, then xr

converges to a QNE almost surely. Moreover, E[∥xr − x∗∥] converges linearly to zero,

where x∗ is the unique QNE of the problem.

Proof Using the inequality (A.95), one can write

E
[
∥xr+1

i − x∗i ∥ | xr
]
= pi∥x̂i(xr)− x∗i ∥+ (1− pi)∥xri − x∗i ∥

≤ pi
τi

n∑
j=1

γij∥xrj − x∗j∥+ (1− pi)∥xi − x∗i ∥.

Taking the expectation with respect to the whole sample space and using the definition

of Υ, we obtain

E
[
∥xr+1

i − x∗i ∥
]
≤
∑
j

ΥijE [∥xri − x∗i ∥] ,
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which by writing in the matrix form implies


E
[
∥xr+1

1 − x∗1∥
]

E
[
∥xr+1

2 − x∗2∥
]

...

E
[
∥xr+1

n − x∗n∥
]

 ≤


Υ11 Υ12 . . . Υ1n

Υ21 Υ22 . . . Υ2n

...
...

. . .
...

Υn1 Υn2 . . . Υnn




E [∥xr1 − x∗1∥]
E [∥xr2 − x∗2∥]

...

E [∥xrn − x∗n∥]

 . (2.39)

Hence, for any i,

E [∥xri − x∗i ∥] ≤
√∑

j

(
E[∥xrj − x∗j∥]

)2
≤ (∥Υ∥2)r

√∑
j

∥x0j − x∗j∥2.

If ∥Υ∥2 < 1, then we have a linear convergence of the sequence E [∥xri − x∗i ∥] to zero.

Moreover, the simple use of Markov’s inequality implies

Prob (∥xri − x∗i ∥ > ϵ) ≤
∥Υ∥r2

√∑
j ∥x0j − x∗j∥2

ϵ
,

for any ϵ > 0 and hence, the simple application of Borel-Cantelli lemma [97,98] implies

the almost sure convergence of xr to x∗.



Chapter 3

Applications

In this chapter we will see different applications of the successive convex approximation

idea on various practical problems.

3.1 Interference Management in Wireless Heterogenous

Networks

The design of future wireless cellular networks is on the verge of a major paradigm

change. With the proliferation of multimedia rich services as well as smart mobile de-

vices, the demand for wireless data has been increased explosively in recent years. In

order to accommodate the explosive demand for wireless data, the cell size of cellular

networks is shrinking by deploying more transmitters such as macro/micro/pico/femto

base stations and relays. These nodes utilize the same frequency bands, and are densely

deployed to provide coverage extension for cell edge and indoor users (see Figure 3.1).

Deploying more transmitters brings the transmitters and receivers closer to each other,

thus we are able to provide high link quality with low transmission power [99,100].

Unfortunately, close proximity of many transmitters and receivers introduces sub-

stantial intracell and intercell interference, which, if not properly managed, can signif-

icantly affect the system performance. In the context of multiuser cellular networks,

the intracell (resp. intercell) interference refers to the interference generated from the

same access point/transmitter (resp. different access points/transmitters). This huge

52
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Figure 3.1: The dense structure of the new cellular networks.

amount of interference caused by resource sharing among the nodes cannot be handled

by traditional ways of interference management methods such as time division multiple

access, frequency division multiple access, or space division multiple access. In fact,

interference is the major performance limiting factor for the modern dense cellular net-

works. The key challenge for interference management in the new wireless networks is to

develop low-complexity schemes that mitigates the multiuser interference in the system,

optimally balance the overall spectrum efficiency and user fairness. This chapter deals

with various theoretical and practical aspects of interference management for multiuser

cellular networks. In particular, we study the interference management in the physical

and MAC layer using optimized beamforming and scheduling techniques. We utilize the

successive convex approximation idea to develop algorithms for this purpose. A spe-

cial consideration is given to practical issues such as parallel implementation, overhead

reduction, channel estimation error, and channel aging.

3.1.1 Prior Work

Consider a MIMO interfering Broadcast Channel (IBC) in which a number of transmit-

ters, each equipped with multiple antennas, wish to simultaneously send independent

data streams to their intended receivers. As a generic model for multi-user downlink

communication, MIMO-IBC can be used in the study of many practical systems such
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as Digital Subscriber Lines (DSL), Cognitive Radio systems, ad-hoc wireless networks,

wireless cellular communication, to name just a few. Unfortunately, despite the impor-

tance and years of intensive research, the search for optimal transmit/receive strategies

that can maximize the weighted sum-rate of all users in a MIMO-IBC remains rather

elusive. In fact, even for the simpler case of MIMO interference channel, the optimal

strategy is still unknown. This lack of understanding of the capacity region has moti-

vated a pragmatic approach whereby we simply treat interference as noise and maximize

the weighted sum-rate by searching within the class of linear transmit/receive strategies.

Transceiver design of Interference Channel (IFC), which is a special case of IBC, has

been a topic of intensive research in recent years. From the optimization’s perspective,

this problem is nonconvex and NP-hard even in the single antenna case [101]. Thus, most

current research efforts have been focused on finding a high quality sub-optimal solution

efficiently. For example, the works [102] and [103] proposed iterative algorithms for solv-

ing a general smooth utility maximization and the min-SINR maximization problems,

respectively. The interference-pricing game method is another sum-utility maximization

method which strives to reach a stationary point of the weighted sum-rate maximiza-

tion problem. In contrast, the other game theoretic methods (e.g., [87, 104, 105]) can

only find a Nash equilibrium solution, typically yielding a suboptimal sum-rate. For the

SISO-IFC, an interference pricing game is proposed in [106] along with an asynchronous

distributed algorithm to solve it. It is shown in [106] that the algorithm converges for

a set of utility functions, which unfortunately does not include the basic Shannon rate

function log(1 + SINR). In [107], Shi et al. have modified the method in [106] and

proposed a new algorithm for the SISO and MISO interference channel that can mono-

tonically converge to a stationary point of the weighted sum-rate maximization problem.

A similar algorithm for the MIMO-IFC is considered in [108] for the single data stream

case. However, these algorithms only allow one user to update its power or beamformer

at each time, which entails a large communication overhead needed to exchange price

information. A general distributed pricing algorithm that allows simultaneous user up-

date is proposed in [109] for the MIMO-IFC in the single stream case. Regarding the

convergence of such methods, reference [106] has established the convergence of the in-

terference pricing algorithm to a stationary point for a set of utility functions, which

unfortunately does not include the standard Shannon rate function. Several extensions
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and variations of the interference pricing algorithm have been proposed [107] for the

SISO and MISO IFC that can monotonically converge to a stationary point of the

weighted sum-rate maximization problem. A similar algorithm for the MIMO inter-

ference channel was proposed in [108] without considering multiplexing (i.e., one data

stream per user). All of these algorithms allow only one user to update its beamformer

at a time, which may lead to excessive communication overhead for price exchanges.

A general distributed interference pricing algorithm that allows multiple users to up-

date simultaneously was proposed in [109] for the MIMO interference channel with no

multiplexing, although no convergence analysis is provided for the algorithm.

By fixing the receiver structure to any of the standard linear receivers (e.g., the

MMSE or Zero-Forcing receivers), we can reduce the linear transceiver design to a

transmit covariance matrix design problem. Reference [110] proposed an iterative al-

gorithm based on the gradient projection method for the transmit covariance matrix

design problem. The algorithm allows each user to update its own covariance matrix

locally, provided that the channel state information and the covariance matrices of other

users can be gathered. Based on a local linear approximation, reference [111] proposed a

distributed algorithm which lets each user update its own covariance matrix by solving

a convex optimization problem. This algorithm can be viewed as the MIMO extension

version of the sequential distributed pricing algorithm in [107]. We henceforth unify the

name of these algorithms as the iterative linear approximation (ILA) algorithm. More-

over, since these algorithms use a local tight concave lower bound approximation of the

weighted sum-rate objective function, they ensure that the rates increase monotonically

and that the transmit covariance matrices converge to a stationary point of the original

objective function (i.e., the weighted sum-rate) [107,112].

A different sum-rate maximization approach was proposed in [113] for the MIMO

broadcast downlink channel, where the weighted sum-rate maximization problem is

transformed to an equivalent weighted sum MSE minimization (WMMSE) problem

with some specially chosen weight matrices that depend on the optimal beamforming

matrices. Since the weight matrices are generally unknown, the authors of [113] proposed

an iterative algorithm that adaptively chooses the weight matrices and updates the

linear transmit/receive beamformers at each iteration. A nonconvex cost function was

constructed [113] and shown to monotonically decrease as the algorithm progresses. But
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the convergence of the iterates to a stationary point (or the global minimum) of the cost

function has not been studied. A similar algorithm has been proposed in [114] for the

interference channel where each user only transmits one data stream. Interestingly, the

approach in [113] is a special for of the BSUM algorithm (introduced in the first chapter

of this dissertation), and its convergence is guaranteed by BSUM framework.

Inspired by the work of [113,114] and utilizing the BSUM framework, we first propose

a simple distributed linear transceiver design method, named the WMMSE algorithm,

for general utility maximization in an interfering broadcast channel. This algorithm

extends the existing algorithms of [113] and [114] in several directions. In particular,

it can handle fairly general utility functions (which includes weighted sum-rate utility

function as a special case), and works for general MIMO interfering broadcast channel

(which includes MIMO broadcast channel [113] and MISO interference channel [114] as

special cases). Theoretically, we show that the sequence of iterates generated by the

WMMSE algorithm converges to at least a local optima of the utility maximization

problem, and does so with low communication and computational complexity.

In the second subsection, we consider a joint user grouping and beamformer design

problem. Throughout, the term “grouping” (or “scheduling”) refers to the process of

assigning users to a fixed number of time/frequency slots. In this terminology, the users

that are served in the same time/frequency slot are considered as one group. In our

formulation, each user is optimally scheduled to a subset of time/frequency slots (not

necessarily just one slot), while its linear transceiver is simultaneously optimized across

the slots. Our formulation captures all the important performance factors into a single

comprehensive formulation, without any ad-hoc combination of multi-stage formula-

tions. Using the developed WMMSE algorithm [1, 113–116], we propose an algorithm

to solve this joint user grouping and beamformer design problem. This is a special

case of BSUM framework and is guaranteed to converge to at least a stationary point

of the original joint user grouping and transceiver design problem. Moreover, we can

extend our algorithm and its convergence to further optimize the amount of time al-

located across different groups. The proposed algorithm exhibits fast convergence and

is amenable to distributed implementation. The simulation results in the next chap-

ter show that the proposed formulation/algorithm can offer significantly higher system

throughput than the standard multi-user MIMO techniques, while still respecting user
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fairness.

In subsection 3.1.4, instead of sum utility maximization, we consider the max-min

utility function, i.e., the maximization of the worst user rate. Providing max-min fair-

ness has long been considered as an important design criterion for wireless networks.

Hence various algorithms that optimize the min-rate utility in different network settings

have been proposed in the literature. References [117,118] are early works that studied

the max-min signal to interference plus noise ratio (SINR) power control problem and

a related SINR feasibility problem in a scalar interference channel (IC). It was shown

in [117, 118] that for randomly generated scalar ICs, with probability one there exists

a unique optimal solution to the max-min problem. The proposed algorithm with an

additional binary search can be used to solve the max-min fairness problem efficiently.

Recently reference [119] derived a set of algorithms based on nonlinear Perron-Frobenius

theory for the same network setting. Differently from [117,118], the proposed algorithms

can also deal with individual users’ power constraints.

Apart from the scalar IC case, there have been many published results [102,120–125]

on the min rate maximization problem in a multiple input single output (MISO) net-

work, in which the BSs are equipped with multiple antennas and the users are only

equipped with a single antenna. Reference [120] utilized the nonnegative matrix theory

to study the related power control problem when the beamformers are known and fixed.

When optimizing the transmit power and the beamformers jointly, the corresponding

min-rate utility maximization problem is non-convex. Despite the lack of convexity, the

authors of [121] showed that a semidefinite relaxation is tight for this problem, and the

optimal solution can be constructed from the solution to a reformulated semidefinite

program. Furthermore, the authors of [122] showed that this max-min problem can be

solved by a sequence of second order cone programs (SOCP). Reference [125] identi-

fied an interesting uplink downlink duality property, in which the downlink min-rate

maximization problem can be solved by alternating between a downlink power update

and a uplink receiver update. In a related work [123], the authors made an interesting

observation that in a single cell MISO network, the global optimum of this problem

can be obtained by solving a (simpler) weighted sum inverse SINR problem with a set

of appropriately chosen weights. However, this observation is only true when the re-

ceiver noise is negligible. The authors of [124] extended their early results [119] to the
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MISO setting with a single BS and multiple users. A fixed-point algorithm that alter-

nates between power update and beamformer updates was proposed, and the nonlinear

Perron-Frobenius theory was applied to prove the convergence of the algorithm.

Unlike the MISO case, the existing work on the max-min problem for MIMO net-

works is rather limited; see [124] and [103]. Both of these studies consider a MIMO

network in which a single stream is transmitted for each user. In particular, the author

of [103] showed that finding the global optimal solution for this problem is intractable

(NP-hard) when the number of antennas at each transmitter/receiver is at least three.

They then proposed an efficient algorithm that alternates between updating the trans-

mit and the receive beamformers to find a local optimal solution. The key observation is

that when the users’ receive beamformers are fixed, finding the set of optimal transmit

beamformers can be again reduced to a sequence of SOCP and solved efficiently. In [124],

an algorithm that updates the transmit beamformers and the receive beamformers in

an alternating fashion is proposed. The global convergence of the proposed method is

shown for the special cases of rank one channels and low SNR region. For more discus-

sion of the max-min and its related resource allocation problems in interfering wireless

networks, we refer the readers to a recent survey [126].

Here we consider optimization of the minimum rate user and first we show that in the

considered general setting, when there are at least two antennas at each transmitters and

the receivers, the min-rate maximization problem is NP-hard in the number of users.

This result is a generalization of that presented in [103], in which the NP-hardness

results require more than three antennas at the users and BSs. We further provide a

reformulation of the original max-min problem by generalizing the WMMSE/BSUM

framework, and design an algorithm that computes an approximate solution to the

max-min problem. The proposed algorithm has the following desirable features: i) itis

computationally efficient, as in each step a convex optimization problem whose solution

can be obtained easily in a closed form is solved; ii) it is guaranteed to converge to a

stationary solution of the original problem by the discussed convergence analysis of the

successive convex approximation method.

Despite the intensive aforementioned research on the weighted sum rate maximiza-

tion problem, most of the proposed methods require the perfect and complete channel

state information (CSI) of all links–an assumption which is impractical due to channel
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aging and channel estimation errors. More importantly, obtaining the complete CSI

for all links usually requires a large amount of system overhead which is prohibitive for

practical implementation. Using robust optimization techniques, different algorithms

have been proposed to address this issue [127–131]. The robust optimization methods

are in general designed for the worst case scenarios and therefore, due to their nature,

are suboptimal when the worst cases happen with small probability. An alternative

approach is to design the transceivers by optimizing the average performance using a

stochastic optimization framework. Unfortunately, few algorithms [132, 133] have been

devised using this approach, partly due to various technical challenges related to the

computation of the objective function and its derivatives.

In subsection 3.1.5, we propose a simple stochastic iterative optimization algorithm

for solving the ergodic sum rate maximization problem. Our approach is based on the

SSUM framework and unlike the previous approach of [132] which maximizes a lower

bound of the expected weighted sum rate problem, our work directly maximizes the

ergodic sum rate, and is guaranteed to converge to the set of stationary points of the

ergodic sum rate maximization problem. For each link of the IC, our proposed algo-

rithm requires either the channel statistics, or the actual CSI. Moreover, our approach

can adapt easily to situations when the channel statistics change over time. Although

presented for sum rate maximization in an inference channel, our algorithm and its

convergence can be easily extended to other system utilities and more general channel

models such as interfering broadcast (IBC) networks.

3.1.2 Beamformer Design in Multi-user Wireless Networks

Consider aK cell interfering broadcast channel where the base station k, k = 1, 2, . . . ,K,

is equipped with Mk transmit antennas and serves Ik users in cell k. Let us define ik to

be the i-th user in cell k and Nik be the number of receive antennas at receiver ik. Let

us also define I to be the set of all receivers, i.e.,

I = {ik | k ∈ {1, 2, . . . ,K}, i ∈ {1, 2, . . . , Ik}} .
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Let Vik ∈ CMk×dik denote the beamformer that base station k uses to transmit the

signal sik ∈ Cdik×1 to receiver ik, i = 1, 2, . . . , Ik, i.e.,

xk =

Ik∑
i=1

Viksik ,

where we assume E
[
siks

H
ik

]
= I. Assuming a linear channel model, the received signal

yik ∈ CNik
×1 at receiver ik can be written as

yik = HikkViksik︸ ︷︷ ︸
desired signal

+

Ik∑
m=1,m̸=i

HikkVmk
smk︸ ︷︷ ︸

intracell interference

+
K∑

j ̸=k,j=1

Ij∑
ℓ=1

HikjVℓjsℓj + nik︸ ︷︷ ︸
intercell interference plus noise

, ∀ ik ∈ I

where matrix Hikj ∈ CNik
×Mj represents the channel from the transmitter j to re-

ceiver ik, while nik ∈ CNk×1 denotes the additive white Gaussian noise with distribution

CN (0, σ2
ik
I). We assume that the signals for different users are independent from each

other and from receiver noises. In this part, we treat interference as noise and consider

linear receive beamforming strategy so that the estimated signal is given by

ŝik = UH
ik
yik , ∀ ik ∈ I.

Then, the problem of interest is to find the transmit and receive beamformers1 {V,U}
such that a certain utility of the system is maximized, while the power budget of each

transmitter is respected:
Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk,

where Pk denotes the power budget of transmitter k.

In what follows, we consider the popular sum-rate utility function and apply the

block successive upper-bound framework to the optimization problem.

1 The notation V is short for {Vik}ik∈I , which denotes all variables Vik with ik ∈ I.
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Weighted Sum-Rate Maximization and a Matrix-Weighted Sum-MSE Min-

imization

A popular utility maximization problem is the weighted sum-rate maximization which

can be written as

max
{Vik

}

K∑
k=1

Ik∑
i=1

αikRik

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, ∀ k = 1, 2, . . . ,K,

(3.1)

where Rik is the rate of user ik which can be written as

Rik , log det

I+HikkVikV
H
ik
HH

ikk

 ∑
(ℓ,j)̸=(i,k)

HikjVℓjV
H
ℓj
HH

ikj
+σ2

ik
I

−1 . (3.2)

The weight αik is used to represent the priority of user ik in the system.

Another popular utility maximization problem for MIMO-IBC is sum-MSE mini-

mization. Under the independence assumption of sik ’s and nik ’s, the MSE matrix Eik

can be written as,

Eik , Es,n

[
(ŝik − sik)(ŝik − sik)

H
]

= (I−UH
ik
HikkVik)(I−UH

ik
HikkVik)

H +
∑

(ℓ,j)̸=(i,k)

UH
ik
HikjVℓjV

H
ℓj
HH

ikj
Uik + σ2

ik
UH

ik
Uik ,

(3.3)

and the sum-MSE minimization problem for the MIMO-IBC can be written as

min
{Uik

,Vik
}

K∑
k=1

Ik∑
i=1

Tr(Eik)

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, k = 1, 2, . . . ,K.

(3.4)

Fixing all the transmit beamformers {Vik} and minimizing (weighted) sum-MSE lead
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to the well known MMSE receiver:

Ummse
ik

= J−1
ik

HikkVik , (3.5)

where Jik ,
∑K

j=1

∑Ij
ℓ=1HikjVℓjV

H
ℓj
HH

ikj
+ σ2

ik
I is the covariance matrix of the total

received signal at receiver ik. Using this MMSE receiver, the corresponding MSE matrix

is given by

Emmse
ik

= I−VH
ik
HH

ikk
J−1
ik

HikkVik . (3.6)

The following result establishes the equivalence between the weighted sum-rate max-

imization problem and a matrix-weighted sum-MSE minimization problem.

Theorem 17 The rate of user ik in (3.2) can also be represented as

Rik = max
Uik

,Wik

log det (Wik)− Tr (WikEik) + dik , (3.7)

where Eik is the MSE value of user ik given by (3.3) and Wik ∈ Cdik×dik is an auxiliary

optimization variable.

Proof First, by checking the first order optimality condition of (3.7) with respect

to Uik , we get

WH
ik

(
JikU

∗
ik
−HikkVik

)
= 0,

which yields to the optimum MMSE receiver U∗
ik

= Ummse
ik

= J−1
ik

HikkVik where Jik =

σ2
ik
I+
∑

ℓj∈I HikjVℓjV
H
ℓj
HH

ikj
. By plugging in the optimal value U∗

ik
in (3.3), we obtain

Emmse
ik

= I−VH
ik
HH

ikk
J−1
ik

HikkVik . Hence plugging Emmse
ik

in (3.7) yields

max
Uik

,Wik

log det (Wik)− Tr (WikEik) + dik

= max
Wik

log det (Wik)− Tr
(
WikE

mmse
ik

)
+ dik . (3.8)

The first order optimality condition of (3.8) with respect to Wik implies W∗
ik

=(
Emmse

ik

)−1
.
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By plugging in the optimal W∗
ik

in (3.8), we can write

max
Uik

,Wik

log det (Wik)− Tr (WikEik) + dik

= − log det(Emmse
ik

)

= − log det
(
I−HikkVikV

H
ik
HH

ikk
J−1
ik

)
= log det

(
Jik

(
Jik −HikkVikV

H
ik
HH

ikk

)−1
)
,

which is the rate of user ik in (3.2).

Combining Theorem 17 and the Danskin’s theorem [13] implies that the function

dik−Tr(WikEik)+log det(Wik) can be viewed as a local lower-bound of Rik after fixing

the the value of W and V to the current optimum values. By Theorem 17, we only need

to solve the approximation function instead of the original function at each iteration.

Interestingly, at each iteration, the update of transmit beamformers {Vik} for all ik can

be decoupled across transmitters, resulting in the following optimization problem:

min
{Vik

}Iki=1

Ik∑
i=1

Tr(αikWik(I−UH
ik
HikkVik)(I−UH

ik
HikkVik)

H)

+

Ik∑
i=1

∑
(ℓ,j)̸=(i,k)

Tr(αℓjWℓjU
H
ℓj
HℓjkVikV

H
ik
HH

ℓjk
UH

ℓj
)

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk.

(3.9)

This is a convex quadratic optimization problem which can be solved by using standard

convex optimization algorithms. In fact, this problem also has a closed form solution

using the Lagrange multipliers method. Specifically, attaching a Lagrange multiplier µk

to the power budget constraint of transmitter k, we get the following Lagrange function:

L({Vik}
Ik
i=1, µk) ,

Ik∑
i=1

Tr
(
αikWik(I−UH

ik
HikkVik)(I−UH

ik
HikkVik)

H
)

+

Ik∑
i=1

∑
(ℓ,j)̸=(i,k)

Tr
(
αℓjWℓjU

H
ℓj
HℓjkVikV

H
ik
HH

ℓjk
UH

ℓj

)
+ µk(

Ik∑
i=1

Tr(VikV
H
ik
)− Pk).
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The first order optimality condition of L({Vik}
Ik
i=1, µk) with respect to each Vik yields

Vopt
ik

=

 K∑
j=1

Ij∑
ℓ=1

αℓjH
H
ℓjk

UℓjWℓjU
H
ℓj
Hℓjk + µkI

−1

αikH
H
ikk

UikWik , i = 1, . . . , Ik,

(3.10)

where µk ≥ 0 should be chosen such that the complementarity slackness condition of the

power budget constraint is satisfied. Let Vik(µk) denote the right-hand side of (3.10).

When the matrix∑K
j=1

∑Ij
ℓ=1 αℓjH

H
ℓjk

UℓjWℓjU
H
ℓj
Hℓjk is invertible and

∑Ik
i=1Tr(Vik(0)Vik(0)

H) ≤ Pk,

then Vopt
ik

= Vik(0), otherwise we must have

Ik∑
i=1

Tr
(
Vik(µk)Vik(µk)

H
)
= Pk (3.11)

which is equivalent to

Tr
(
(Λ+ µkI)

−2Φ
)
= Pk (3.12)

where DΛDH is the eigen-decomposition of
∑K

j=1

∑Ij
ℓ=1H

H
ℓjk

UℓjW̄ℓjU
H
ℓj
Hℓjk and

Φ = DH
(∑Ik

i=1H
H
ikk

UikW̄
2
ik
UH

ik
Hikk

)
D. Let [X]mm denote the m-th diagonal element

of X, then (3.12) can be simplified as

Mk∑
m=1

[Φ]mm

([Λ]mm + µk)2
= Pk. (3.13)

Note that the optimum µk (denoted by µ∗
k) must be positive in this case and the left

hand side of (3.13) is a decreasing function in µk for µk > 0. Hence, (3.13) can be

easily solved using one dimensional search techniques (e.g., bisection method). Finally,

by plugging µ∗
k in (3.10), we get the solution for Vik(µ

∗
k), for all i = 1, . . . , Ik.

Therefore, applying the BSUM framework to the sum rate maximization problem

will result in the WMMSE algorithm, whic is summarized in Algorithm 13.
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Algorithm 13 WMMSE algorithm (µ∗
k is determined by a bisection method)

Initialize Vik ’s such that Tr
(
VikV

H
ik

)
= pk

Ik

repeat

W′
ik
←Wik , ∀ ik ∈ I

Uik ←
(∑

(j,ℓ)HikjVℓjV
H
ℓj
HH

ikj
+ σ2

ik
I
)−1

HikkVk, ∀ ik ∈ I

Wik ←
(
I−UH

ik
HikkVik

)−1
, ∀ ik ∈ I

xr+1 ← xr

Vik ← αik

∑
(j,ℓ)

αℓjH
H
ℓjk

UℓjWℓjU
H
ℓj
Hℓjk + µ∗

kI

−1

HH
ikk

UikWik , ∀ ik

until
∣∣∣∑(j,ℓ) log det

(
Wℓj

)
−
∑

(j,ℓ) log det
(
W′

ℓj

)∣∣∣ ≤ ϵ

Note that the convergence of the WMMSE algorithm (to the set of stationary points)

is guaranteed using the BSUM convergence result (Theorem 2). It is also worth noting

that the BSUM framework has been extensively used for resource allocation in wireless

networks, for example [107, 134–137], and [108]. However, the convergence of most of

the algorithms was not rigorously established.

Distributed Implementation and Complexity Analysis

For the purpose of distributed implementation, we make two reasonable assumptions

(similar to [138]). First, we assume that local channel state information is available

for each user, namely, each transmitter k knows the local channel matrices Hℓjk to all

receivers ℓj . The second assumption is that each receiver has an additional channel

to feedback information (e.g., the updated beamformers or equivalent information) to

the transmitters. Under these two assumptions, the WMMSE algorithm can be imple-

mented in a distributed fashion. More specifically, each receiver ik locally estimates the

received signal covariance matrix Jik and updates the matrices Uik and Wik . Then, it

feeds back the updated Wik and Uik to the transmitters. Note that, to reduce com-

munication overhead, user ik only needs to feedback either the upper triangular part of

the matrix αikUikWikU
H
ik

or the decomposition Ûik where ÛikÛ
H
ik

= αikUikWikU
H
ik

(depending on the relative size of Nik and dik). It should be pointed out that the ter-

mination criterion in Algorithm 13 may not be suitable for distributed implementation.
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In practice, we suggest setting a maximum number of iterations for the algorithm or

simply just do one step of the algorithm within each packet.

Note that the ILA algorithm [107, 111] allows only one user to update its transmit

covariance matrix at each iteration. When one user updates its variables, each user must

compute (K − 1) prices [107] or gradient matrices [111] for other users and then broad-

cast them within the network. In contrast, the WMMSE algorithm allows simultaneous

update among all users since the updating steps are decoupled across users when any of

the two variables in ({Wik}, {Uik}, {Vik}) are fixed. Therefore, the WMMSE algorithm

requires less CSI exchange within the network. For simplicity of complexity analysis,

let κ , |I| be the total number of users in the system and T, R denote the number of

antennas at each transmitter and receiver respectively. Also, since both the WMMSE

algorithm and the ILA algorithm include a bisection step which generally takes few itera-

tions, we ignore this bisection step in the complexity analysis. Under these assumptions,

each iteration of the ILA algorithm involves only the computation of the price matrices

in [111] (i.e., Ai’s in equation (10) of [111]). To determine the price matrices in the

ILA algorithm, we need to first calculate the covariance matrix of interference at all

users and then compute their sum, yielding a complexity of O(κ2) per user. As a result,

the per-iteration complexity of the ILA algorithm is O(κ3T 2R+ κ3R2T + κ2R3). By a

similar analysis, the per-iteration complexity of the WMMSE algorithm can be shown

to be O(κ2TR2 + κ2RT 2 + κ2T 3 + κR3). Here an iteration of the WMMSE or the ILA

algorithm means one round of updating all users’ beamformers or covariance matrices.

3.1.3 Joint Beamforming and Scheduling in Multi-user Networks

Consider the wireless system described in subsection 3.1.2. Assume that we group the

users into G groups, with different groups served in an orthogonal manner. In this way,

when a base station serves users in one group, it causes no interference to the users in

other groups. For example, these G groups may represent different time slots so that

the users in group g (g ∈ G , {1, 2, . . . , G}) are served in the time slot g. Furthermore,

we assume that the channel matrices remain constant while different groups are served.

In addition, to keep the decoding and encoding process simple, we assume no correlated

signaling across different groups. Under these assumptions and considering linear chan-

nel model between the transceivers, the received signal of user ik in group/time slot g
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can be written as

yg
ik

= Hikkx
g
ik︸ ︷︷ ︸

desired signal

+

Ik∑
ℓ ̸=i,ℓ=1

Hikkx
g
ℓk︸ ︷︷ ︸

intracell interference

+
K∑

j ̸=k,j=1

Ij∑
ℓ=1

Hikjx
g
ℓj
+ ng

ik︸ ︷︷ ︸
intercell interference plus noise

, ∀ik ∈ I,

where xg
ik
∈ RMk×1 and yg

ik
∈ RNik

×1 are respectively the transmitted and received

signal of user ik while it is served in group g. The matrix Hikj ∈ RNik
×Mj represents

the channel response from the transmitter j to receiver ik, while ng
ik
∈ RNik

×1 de-

notes the additive white Gaussian noise with distribution N (0, σ2
ik,g

I). We assume that

the signals of different users are independent of each other and the noise. Moreover, we

restrict ourselves to linear beamforming strategies where base station k deploys a beam-

former Vg
ik
∈ RMk×dik to modulate dik number of data stream for user ik in group g,

while user ik estimates the transmitted signal in group g using a linear beamforming

matrix Ug
ik
∈ RNik

×dik . That is, we have

xg
ik

= Vg
ik
sgik , ŝgik = Ug

ik

T
yg
ik
,

where sik ∈ Rdik×1 is the data vector of user ik with a normalized power E[siksTik ] = I.

Note that dik is the number of data streams of user ik and should be no more than the

number of antennas at the transmitter and receiver side.

Let us define the group association variables {αg
ik
} where αg

ik
∈ {0, 1} is a binary

variable with αg
ik

= 1 signifying the user ik is served in group g. Since the receiver of

user ik only receives the signal in the associated time slot/group, the rate of user ik

when it is served in group g is given by

Rg
ik

= αg
ik
log det

(
I+HikkV

g
ik
(Vg

ik
)THT

ikk

(
σ2
ik
I

+
∑

(j,ℓ)̸=(k,i)

HikjV
g
ℓj
(Vg

ℓj
)THT

ikj

)−1)
. (3.14)
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Let βg denote the fraction of the resources allocated to the users in group g. For

example, if we serve different users in different time slots (TDMA), then βg denotes

the fraction of time that is allocated to the users in group g. With an appropriate

normalization, we can assume that
∑G

g=1 βg = 1. Under these assumptions, the rate

of user ik is the weighted sum of the rates that it can get in each group, i.e., Rik =∑G
g=1 βgR

g
ik
. Employing a system utility function U(·), we are led to the following joint

user grouping and transceiver design problem:

max
α,β,V

U ({Rik}ik∈I)

s.t.

Ik∑
i=1

Tr
(
Vg

ik
Vg

ik

T
)
≤ Pk, ∀ k ∈ K, ∀ g ∈ G

G∑
g=1

βg = 1, βg ≥ 0, ∀ g ∈ G

αg
ik
∈ {0, 1}, ∀ik ∈ I, ∀ g ∈ G,

(3.15)

where Rg
ik

is defined by (3.14).

In many cases, the utility function U(·) can be decomposed as the sum of utilities

of individual users. If so, the optimization problem (3.15) can be rewritten as

max
α,V,β

K∑
k=1

Ik∑
i=1

uik

 G∑
g=1

βgRg
ik


s.t.

Ik∑
i=1

Tr
(
Vg

ik
Vg

ik

T
)
≤ Pk, ∀ k ∈ K, ∀ g ∈ G

G∑
g=1

βg = 1, βg ≥ 0, ∀ g ∈ G

αg
ik
∈ {0, 1}, ∀ ik ∈ I, ∀ g ∈ G.

(3.16)

One of the major difficulties in handling the above problem is the presence of discrete

variables {αg
ik
}. We can overcome this difficulty by the following observation: if the

utility function uik(·) is non-decreasing for all ik ∈ I, then there exists an optimal

solution of (3.16) for which αg
ik

= 1, ∀ ik ∈ I, ∀ g ∈ G. The reason is because by
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increasing the value of αik from zero to one, the objective value will not decrease in

(3.16). Using this simple observation, we can set αg
ik

= 1 for all ik and g and solve the

following equivalent optimization problem:

max
V,β

K∑
k=1

Ik∑
i=1

uik

 G∑
g=1

βgR
g
ik


s.t.

Ik∑
i=1

Tr
(
Vg

ik
Vg

ik

T
)
≤ Pk, ∀ k ∈ K, ∀ g ∈ G

G∑
g=1

βg = 1, βg ≥ 0, ∀ g ∈ G,

(3.17)

where Rik =
∑G

g=1R
g
ik

with

Rg
ik

= log det

(
I+HikkV

g
ik
(Vg

ik
)THT

ikk

(
σ2
ik
I

+
∑

(j,ℓ) ̸=(k,i)

HikjV
g
ℓj
(Vg

ℓj
)THT

ikj

)−1)
.

After solving (3.17) and obtaining the optimal solution, we can group/schedule the users

by simply checking the optimal value {Vg∗
ik
}. In particular, the following simple rule

can be used:

αg
ik

=

{
1 if ∥Vg∗

ik
∥ > 0,

0 if ∥Vg∗
ik
∥ = 0.

In practice, due to rounding errors and in order to reduce the transmission complexity,

one may use a relaxed rule to group users:

αg
ik

=

{
1 if ∥Vg∗

ik
∥ > ϵ,

0 if ∥Vg∗
ik
∥ ≤ ϵ,

(3.18)

where ϵ is a suitable small number. After adjusting the variables {αg
ik
}, one can reduce

the transmission process complexity by the update rule Vg
ik

= αg
ik
Vg

ik
. Notice that by

doing so, we reduce the transmission complexity by not transmitting in the groups with

very small gains.
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It is important to note that in our formulation (3.17) each user can be served in more

than one group. This is in contrast to the traditional orthogonal partitioning based

user scheduling/grouping whereby each user is to be served in only one time slot. We

provide below two simple examples to illustrate the benefits of our new user grouping

formulation. In both of these two examples, the harmonic mean maximization problem

is considered: max U({Rik}) , |I|∑
ik∈I R−1

ik

. Notice that although this utility function

is not decomposable across the users, the equivalent formulation max −
∑

ik∈I R
−1
ik

is

decomposable across the different users.

Example 1 (Grouping vs. no grouping) Consider a SISO system with one base

station serving two users. The channels to the users are given by

H111 = H211 = 1.

Assume the noise power σ2 = 1 and the power budget P1 = 1. Consider the harmonic

mean objective function:

U(R1,R2) =
2

R−1
1 +R−1

2

.

If no grouping is allowed, i.e., G = 1, the maximum system utility is

U(R1,R2) =
2

R−1
1 +R−1

2

=
2

2(log 4
3)

−1
= log

4

3
.

which is achieved at V1 = V2 =
√
0.5. On the other hand, if grouping is allowed, by

putting each user in one group, the classical TDMA approach results in the harmonic

mean of

U(R1,R2) =
2

R−1
1 +R−1

2

=
2

2(12 log 2)
−1

=
1

2
> log

4

3
≈ 0.415.

Therefore, our user grouping strategy can improve the overall system performance. This

example shows that we can broaden our design space by introducing the grouping vari-

ables; and therefore one can achieve performance gain by grouping the users. As we

will see in the simulation section, this gain is substantial for practical systems.

Example 2 (Multiple groups per user vs. single group per user) Consider a
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system with two cells. The first cell is similar to the one in Example 1, i.e., base station

1 serves two users with channels given in Example 1. The second base station serves

one user with channel H122 = 1. We also assume no inter-cell interference, i.e.,

Hikj = 0, ∀ j ̸= k, ∀ i ∈ Ik.

Assume the harmonic mean utility function U(R1,R2,R3) =
3

R−1
1 +R−1

2 +R−1
3

is used. In

this example, user 12 can be served in all time slots/groups without causing interference

to the other two users in cell 1. This example sheds light on why our nonorthogonal

user grouping method can yield a higher system utility than the partitioning based or-

thogonal user grouping.

Our goal in the rest of this subsection is to design an efficient algorithm to solve

(3.17). To facilitate the presentation of ideas, we first consider in Section 3.1.3 a fixed

value of β and present the ideas for this case. Then, in Section 3.1.3, we consider the

grouping and time allocation problem by treating β as an optimization variable.

Joint User Grouping and Beamformer Design

In this section, we use the ideas behind the WMMSE algorithm to develop a joint user

grouping and beamformer design algorithm for the case when the fraction of resources

time allocated to each group is fixed, i.e., βg = 1/G, ∀ g ∈ G. The goal is to maximize

the system throughput while considering fairness in the system. More specifically, we

are interested in solving (3.17) for a fixed value of βg = 1
G , i.e.,

max
V

K∑
k=1

Ik∑
i=1

uik

 G∑
g=1

1

G
Rg

ik


s.t.

Ik∑
i=1

Tr
(
Vg

ik
Vg

ik

T
)
≤ Pk, ∀ k ∈ K, ∀ g ∈ G.

(3.19)

It is worth noting the differences between the single group formulation in subsection 3.1.2

and the multi-group formulation (3.19). In particular, in the multi-group formulation

different rates of the same user are summed in the utility function and hence the utility
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function is not decomposable across different groups. This difference makes the algo-

rithm design and the ensuing analysis significantly more challenging than those in the

single group case. Let us define Eg
ik

to be the MMSE value of user ik when it is served

in group g, i.e.,

Eg
ik

, Es,n

[
(ŝgik − sgik)(ŝ

g
ik
− sgik)

T
]

= (I− (Ug
ik
)THikkV

g
ik
)(I− (Ug

ik
)THikkV

g
ik
)T

+
∑

(ℓ,j)̸=(i,k)

(Ug
ik
)THikjV

g
ℓj
(Vg

ℓj
)THT

ikj
Ug

ik
+ σ2

ik
(Ug

ik
)TUg

ik
.

Using the relation between the rate and the MSE value, the rate of user ik can be

written as

Rik =

G∑
g=1

1

G
Rg

ik
= max

U
−

G∑
g=1

1

G
log det

(
Eg

ik

)
.

Assuming uik(·) is an increasing function of Rik , one can rewrite the optimization prob-

lem (3.19) as

max
U,V

K∑
k=1

Ik∑
i=1

uik

− G∑
g=1

1

G
log detEg

ik


s.t.

Ik∑
i=1

Tr
(
Vg

ik
Vg

ik

T
)
≤ Pk, ∀ k ∈ K, ∀ g ∈ G.

(3.20)

The following lemma, whose proof is relegated to the appendix, is the key step in

reformulating (3.20) as an equivalent higher dimensional optimization problem which is

amenable to block coordinate minimization.

Lemma 6 Let fi : Rmi 7→ R, i = 1, 2, . . . , n, be strictly concave and twice contin-

uously differentiable functions. Furthermore, assume the mappings hi : Rp 7→ Rmi,

i = 1, 2, . . . , n, are continuously differentiable. Then, the mapping ∇fi(·) is invertible
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for all i, and the optimization problem

min
x

n∑
i=1

fi(hi(x))

s.t. x ∈ X,

(3.21)

is equivalent to

min
x,y

n∑
i=1

(
yT
i hi(x) + fi (ϕi(yi))− yT

i ϕi(yi)
)

s.t. x ∈ X,

(3.22)

where ϕi(·) : Rmi 7→ Rmi is the inverse map of the gradient map ∇fi(·). Moreover,

the objective function of (3.22) is convex with respect to each yi. If in addition, we

assume that the set X is convex, then there is an one-to-one correspondence between the

set of stationary points of (3.21) and (3.22). In other words, x∗ is a stationary point

of (3.21) if and only if (x∗,y∗) is a stationary point of (3.22) where y∗
i = ∇f(h∗

i ) with

h∗
i = hi(x

∗).

Let us assume that cik = −uik
(
−
∑G

g=1
1
G log det(Eg

ik
)
)
is strictly concave in Eik ,

(E1
ik
,E2

ik
, . . . ,EG

ik
). According to Lemma 6, one can rewrite (3.20) as

min
U,V,W

K∑
k=1

Ik∑
i=1

[Tr (WikEik) + cik (γik(Wik))− Tr (Wikγik(Wik))]

s.t.

Ik∑
i=1

Tr
(
Vg

ik
Vg

ik

T
)
≤ Pk, ∀ k ∈ K, ∀ g ∈ G,

(3.23)

where γik(·) is the inverse map of the gradient map ∇Eik
cik(·).

Now we use the block coordinate descent approach (see [13]) to solve (3.23). If

we fix the value of {Uik ,Vik}, the optimal Wik is given by ∇cik(·) (see the proof of

Lemma 6). Furthermore, one can easily see that by fixing {Wik ,Vik}, the optimum

receiver is given by

Ug∗
ik

= (Jg
ik
)−1HikkV

g
ik
, ∀ik ∈ I,
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where Jg
ik

,
∑

(j,ℓ)HikjV
g
ℓj
(Vg

ℓj
)THT

ikj
+σ2

ik
I is the received signal covariance matrix at

receiver ik. Finally, if we fix {Uik ,Wik}, we need to solve the following weighted sum

MSE minimization problem

min
V

K∑
k=1

Ik∑
i=1

G∑
g=1

Tr(Wg
ik
Eg

ik
)

s.t.

Ik∑
i=1

Tr
(
Vg

ik
Vg

ik

T
)
≤ Pk, ∀ k ∈ K, ∀ g ∈ G,

(3.24)

where Wg
ik
∈ Rdik×dik is the part of Wik which corresponds to Eg

ik
. Notice that prob-

lem (3.24) is decomposable across the base stations and groups. Using the Lagrange

multipliers, we can develop closed form updates for V by solving (3.24). The resulting

block coordinate descent algorithm is summarized in Algorithm 14. Since in the block

coordinate descent method every limit point of the iterates is a stationary point [13,23],

it is not hard to see that in the proposed method in algorithm 14, every limit point of

the iterates is a stationary point of (3.23). Moreover, due to Lemma 6, if (U∗,V∗,W∗)

is a stationary point of (3.23), then (U∗,V∗) is a stationary point of (3.20). Therefore,

the proposed method in Algorithm 14 generates a sequence converging to a stationary

point of (3.20).

Algorithm 14 The proposed algorithm with no time allocation

initialize Vg
ik
’s randomly such that Tr

(
Vg

ik
(Vg

ik
)T
)
= pk

Ik
repeat

Ug
ik
←
(∑

(j,ℓ)HikjV
g
ℓj
VgT

ℓj
HT

ikj
+ σ2

ik
I
)−1

HikkV
g
ik
, ∀ ik ∈ I, ∀ g ∈ G

Wg
ik
← ∇Eg

ik
cik(·), ∀ ik ∈ I, ∀ g ∈ G

Vg
ik
←
(∑

(j,ℓ)H
T
ℓjk

Ug
ℓj
Wg

ℓj
UgT

ℓj
Hℓjk + µ∗

kI
)−1

HT
ikk

Ug
ik
Wg

ik
, ∀ ik ∈ I, ∀ g ∈ G

until

Three remarks about the proposed algorithm are in order.

1. The same WMMSE algorithm can be used in the multi-cell uplink scenario, where

the base stations update the auxiliary variables W and their receive beamformers

using the MMSE receiver. Users update their transmit beamformers according to

the weighted MSE minimization rule similar to the downlink case.
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2. The per iteration complexity of our proposed algorithm becomes O(Gκ2MN2 +

Gκ2NM2 + Gκ2M3 + GκN3), which remains quadratic in terms of the number

of users (same as the no grouping case in subsection 3.1.2). Note that here one

iteration means one complete round of updating the variables for all users.

3. The distributed implementation of the proposed method is similar to the imple-

mentation of the WMMSE algorithm in subsection 3.1.2.

User Grouping and Time Allocation

Another degree of freedom in the design of optimal transmit strategy is the fraction

of time allocated to each group of users. In other words, we can consider the pa-

rameter {βg}Gg=1 as additional optimization variables. In this case, the corresponding

joint user grouping and transceiver design problem becomes the following optimization

problem:

max
V,β

K∑
k=1

Ik∑
i=1

uik

 G∑
g=1

βgR
g
ik


s.t.

Ik∑
i=1

Tr
(
Vg

ik
Vg

ik

T
)
≤ Pk, ∀ k ∈ K, ∀ g ∈ G

G∑
g=1

βg = 1, βg ≥ 0, ∀ g ∈ G.

(3.25)

Let us again assume that uik(·) is a strictly increasing function of Rik . Defining

cik (β,Eik) , −uik

− G∑
g=1

βg log det(E
g
ik
)

 ,
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one can rewrite (3.25) as the following equivalent optimization problem

min
U,V,β

K∑
k=1

Ik∑
i=1

cik (β,Eik)

s.t.

Ik∑
i=1

Tr
(
Vg

ik
Vg

ik

T
)
≤ Pk, ∀ k ∈ K, ∀ g ∈ G

G∑
g=1

βg = 1, βg ≥ 0, ∀ g ∈ G.

(3.26)

For a fixed value of β, the problem is similar to the one in the previous section. Hence

the update rules ofU,V,W, derived in the previous section, can be used in this problem

as well. To update the variable β, we can fix all other variables and solve

min
β

K∑
k=1

Ik∑
i=1

cik (β,Eik)

s.t.
G∑

g=1

βg = 1, βg ≥ 0, ∀ g ∈ G.

(3.27)

Note that when uik(·) is concave for all ik ∈ I, e.g., uik = log(Rik) (which rep-

resents the proportional fairness utility function), the objective function cik (β,Eik) =

−uik
(
−
∑G

g=1 βg log det(E
g
ik
)
)
is convex in β and the above problem can be solved ef-

ficiently. Moreover, problem (3.27) does not need the knowledge of channel coefficients

and therefore can be solved in a centralized manner in the MAC layer. The overall

proposed algorithm is summarized in Algorithm 15.

We emphasize that Algorithm 15 is not the standard block coordinate descent (BCD)

method. The reason is that for updating the variables (U,V,W), we consider the

objective function in (3.23), while for updating the variable β, the objective function in

(3.27) is considered. This type of update rule prevents us from applying the classical

convergence result of the BCD method. In fact, we need to use another interpretation

of the algorithm for studying its convergence. Our next result shows that the proposed

method in Algorithm 15 converges to a stationary point of (3.26) if cik(β,Eik) is a

strictly concave function of Eik for all ik ∈ I.
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Algorithm 15 The proposed algorithm when β is a design variable

initialize Vg
ik
’s randomly such that Tr

(
Vg

ik
(Vg

ik
)T
)
= pk

Ik

initialize β with βg = 1
G , ∀g

repeat
Wg

ik
← ∇Eg

ik
cik(·), ∀ ik ∈ I, ∀ g ∈ G

Ug
ik
←
(∑

(j,ℓ)HikjV
g
ℓj
VgT

ℓj
HT

ikj
+ σ2

ik
I
)−1

HikkV
g
ik
, ∀ ik ∈ I, ∀ g ∈ G

Vg
ik
←
(∑

(j,ℓ)H
T
ℓjk

Ug
ℓj
Wg

ℓj
UgT

ℓj
Hℓjk + µ∗

kI
)−1

HT
ikk

Ug
ik
Wg

ik
, ∀ ik ∈ I, ∀ g ∈ G

update {βg}Gg=1 by solving (3.27)
until convergence

Theorem 18 Assume the optimal value of β in (3.27) is unique and positive. More-

over, suppose that cik(β,Eik) is strict concave as a function of Eik for any fixed positive

value of β. Then every limit point of the proposed algorithm in Algorithm 15 is a

stationary point of (3.26).

Proof To prove this theorem, we use the convergence result of Block Successive Upper-

bound Minimization (BSUM) method; see Theorem 2. Hence, we only need to show

that at each step of updating the variables β,U, and V, we minimize a convex upper

bound of the objective function which is tight at the current step.

Fix β. Since cik(β,Eik) is a strictly concave function of Eik , the first order Taylor

expansion of cik(β, ·) around any point E0
ik

is an upper bound of the function cik(β, ·),
i.e.,

cik(β,Eik) ≤ cik(β,E
0
ik
) + Tr

(
∇Eik

cik(β,E
0
ik
)
(
Eik −E0

ik

))
, ∀ Eik . (3.28)

Clearly, the MSE value Eik is a function of all receive beamformers {Ujℓ}jℓ∈I as

well as all transmit beamformers {Vjℓ}jℓ∈I . Therefore, one can consider the right hand

side of (3.28) as a function of (U,V). By summing up (3.28) across all the users, we

can define the function

g(U,V;E0,β) ,
K∑
k=1

Ik∑
i=1

(
cik(β,E

0
ik
) + Tr

(
∇Eik

cik(β,E
0
ik
)
(
Eik(U,V)−E0

ik

)))
,

for any fixed value of E0 and β. Notice that the function g(U,V;E0,β) is convex
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individually in the variables U and V. Moreover, it is an upper bound of the objective

function in (3.26), i.e.,

K∑
k=1

Ik∑
i=1

cik(β,Eik) ≤ g(U,V;E0,β),

where this upper bound is tight at the point (U0,V0) at which E(U0,V0) = E0. Now,

we claim that the steps of updating the beamformersU,V in the proposed algorithm are

equivalent to minimizing the convex upper bound g(·). To see the this, let us consider

the update rule of the receive beamformer U. First of all, this update rule is derived

by solving the following optimization problem

min
U

K∑
k=1

Ik∑
i=1

Tr (WikEik) , (3.29)

where Wik = ∇Eik
cik(β,E

0
ik
) and E0

ik
is the MSE value at the previous iteration.

Clearly, (3.29) is equivalent to

min
U

g(U,V;E0,β).

Thus, for updating the receive beamformer U in the proposed algorithm in Algo-

rithm 15, we minimize a locally tight strictly convex upper bound of the objective

function of (3.26). Similarly, we can argue that the step of updating the transmit

beamformer V corresponds to minimizing a locally tight strictly convex upper bound

of the objective function.

It follows that at steps of updating U, V, and β in the proposed algorithm, we

update the variables by minimizing upper bounds of the objective function of (3.26).

Moreover, these upper bounds are convex, tight at the current iteration, and have

unique minimizers for U,β. Therefore, the BSUM convergence result (Theorem 2)

implies that every limit point of the iterates generated by the algorithm is a stationary

point of (3.26).
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3.1.4 Beamforming for Max-Min Fairness

Consider the system model of subsection 3.1.2. Here our focus is on the max-min utility

function, i.e., we are interested in solving the following problem

max
{Vik

}ik∈I
min
ik∈I

Rik(V)

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, ∀ k ∈ K.

(P)

Similar to [122], one can solve (P) by solving a series of problems of the following type

for different values of γ:

min
{Vik

}ik∈I

K∑
k=1

Ik∑
i=1

Tr(VikV
H
ik
)

s.t. Rik(V) ≥ γ, ∀ ik ∈ I
Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, ∀ k ∈ K.

(3.30)

The above problem is to minimize the total power consumption in the network subject to

quality of service (QoS) constraints. In what follows, we first study the complexity status

of problem (P) and (3.30). Then, we propose an efficient algorithm for designing the

beamformers based on the maximization of the worst user performance in the system.

NP-Hardness of Optimal Beamformer Design

Here we analyze the complexity status of problem (P) and (3.30). In the single input

single output (SISO) case where Mk = Nik = 1, ∀ k ∈ K, ∀ ik ∈ I, it has been shown

that problem (P) and problem (3.30) can be solved in polynomial time, see [101] and

the references therein. Furthermore, it is shown that in the multiple input single output

(MISO) case where Mk > Nik = 1, ∀ k ∈ K, ∀ ik ∈ I, both problems are still polynomial

time solvable [139,140]. In this section, we consider the MIMO case where Mk ≥ 2, and

Nik ≥ 2. We show that unlike the above mentioned special cases, both problems (P)

and (3.30) are NP-hard.

In fact, it is sufficient to show that for a simplerMIMO IC network withK transceiver

pairs and with each node equipped with at least two antennas, solving the max-min
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problem (P) and the min-power problem (3.30) are both NP-hard. For convenience,

we rewrite the max-min beamformer design problem in this K user MIMO IC as an

equivalent2 covariance maximization form

max
(λ,Q)

λ

s.t. λ ≤ Rk(Q), Tr(Qk) ≤ Pk,Qk ≽ 0, ∀ k = 1, · · · ,K.

(3.31)

where Rk(Q) = log det
(
I+HkkQkH

H
kk(σ

2
kI+

∑
j ̸=k HkjQjH

H
kj)

−1
)
. Note that λ is the

slack variable that is introduced to represent the objective value of the problem. The

first step towards proving the desired complexity result is to recognize certain special

structures in the optimal solutions of the problem (3.31). More specifically, since most

of the well-known NP-hard problems are discrete, in order to relate (3.31) to the well-

known NP-hard problems, we need to find problem instances for which the solution set

of (3.31) has some discrete structure. To find such problem instances, let us consider a

3-user MIMO IC with two antennas at each node. Suppose σ2
k = Pk = 1 for all k and

the channels are given as

Hii =

[
1 0

0 1

]
, ∀ i = 1, 2, 3 and Him =

[
0 2

2 0

]
, ∀ i ̸= m, i,m = 1, 2, 3. (3.32)

Our first result characterizes the global optimal solutions for problem (3.31) in this

special network.

Lemma 7 Suppose K = 3 and the channels are given as (3.32). Let S = {(λ∗,Q∗
1,Q

∗
2,Q

∗
3)}

denote the set of optimal solutions of the problem (3.31). Then S can be expressed as

S = {(1,Q∗
a,Q

∗
a,Q

∗
a), (1,Q

∗
b ,Q

∗
b ,Q

∗
b), (1,Q

∗
c ,Q

∗
c ,Q

∗
c), (1,Q

∗
d,Q

∗
d,Q

∗
d)} , (3.33)

where Q∗
a =

[
1 0

0 0

]
, Q∗

b =

[
0 0

0 1

]
, Q∗

c =

[
0.5 0.5j

−0.5j 0.5

]
, and Q∗

d =

[
0.5 −0.5j
0.5j 0.5

]
.

The proof of this lemma can be found in the Appendix. Next we proceed to consider

a 5-user interference channel with two antennas at each node. Again suppose σ2
k = 1, ∀k

2 The equivalence is in the sense that for every optimal solution {V∗} of (P) with Mk = dk, there
exists λ∗ ≥ 0 so that by defining Q∗

k = V∗
kV

∗H
k , ∀ k, the point {λ∗,Q∗} is an optimal solution of (3.31).

Conversely, if {λ∗,Q∗} is an optimal solution of (3.31) and Q∗
k = V∗

kV
∗H
k , ∀ k, then V∗ is an optimal

solution of (P).
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and the channels are given as

Hii =

[
1 0

0 1

]
, ∀ i = 1, 2, 3 and Him =

[
0 2

2 0

]
, ∀ i ̸= m, i,m = 1, 2, 3; (3.34)

Hii =

[
2 0

0 0

]
,∀ i = 4, 5, H4m =

[
1 j

0 0

]
, ∀ m = 1, 2, 3, H5m =

[
j 1

0 0

]
, ∀ m = 1, 2, 3;

(3.35)

Him = 0, ∀ i = 1, 2, 3, ∀ m = 4, 5; Him = 0, ∀ i ̸= m, i,m = 4, 5. (3.36)

Our next result characterizes the global optimal solutions for the problem (3.31) for

this special case.

Lemma 8 Suppose K = 5 and the channels are given as (3.34)–(3.36). Let Q∗
a, Q∗

b be

defined in Lemma 7. Denote the set of optimal solutions of the problem (3.31) as T .
Then T can be expressed as

T = {(1,Q∗
a,Q

∗
a,Q

∗
a,Q

∗
a,Q

∗
a), (1,Q

∗
b ,Q

∗
b ,Q

∗
b ,Q

∗
a,Q

∗
a)} . (3.37)

Proof First of all, it is not hard to see that by selecting each of the values in the optimal

set T , we get the objective value of λ∗ = 1. Therefore, it suffices to show that for any

other feasible point, we get lower objective value. To show this, we first notice that the

first three users form an interference channel which is exactly the same as the one in

Lemma 7. Therefore, in order to get the minimum rate of one, we need to use one of the

optimal solutions in S in Lemma 7 for (Q1,Q2,Q3). Furthermore, it is not hard to see

that using either (Q1,Q2,Q3) = (Q∗
c ,Q

∗
c ,Q

∗
c) or (Q1,Q2,Q3) = (Q∗

d,Q
∗
d,Q

∗
d) would

cause high interference to either user 4 or user 5 and prevent them from achieving the

communication rate of one. Therefore, the only optimal solutions are the ones in the

set T .

Using Lemma 8, we can discretize the variables in the max-min problem and use it

to prove the NP-hardness of the problem. In fact, for any 5 users similar to the ones in

Lemma 8, there are only two possible strategies that can maximize the minimum rate

of communication: either we should transmit on the first antenna or transmit on the
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second antenna. This observation will be crucial in establishing our NP-hardness result.

Theorem 19 For a K-cell MIMO interference channel where each transmit/receive

node is equipped with at least two antennas, the problem of designing covariance matrices

to achieve max-min fairness is NP-hard in K. More specifically, solving the following

problem is NP-hard

max
{Qi}K

i=1

min
k

log det

(
I+HkkQkH

H
kk

(
σ2
kI+

∑
j ̸=k

HkjQjH
H
kj

)−1
)

s.t. Tr(Qk) ≤ Pk,Qk ≽ 0, k = 1, · · · ,K.

(3.38)

This theorem is proved based on a polynomial time reduction from the 3-satisfiability (3-

SAT) problem which is known to be NP-complete [141]. The 3-SAT problem is described

as follows. Consider M disjunctive clauses c1, . . . , cM defined on N Boolean variables

x1, . . . , xN and their negations x̄1, . . . , x̄N . More specifically, let cm = ym1 ∨ ym2 ∨ ym3

where ∨ denotes the Boolean OR operation and ymi ∈ {x1, . . . , xN , x̄1, . . . , x̄N}. The

3-SAT problem is to check whether there exists a truth assignment for the Boolean

variables such that all the clauses are satisfied simultaneously. The details of the proof

of the theorem can be found in Appendix.

Corollary 4 Under the same set up as in Theorem 19, problem (3.30) is NP-hard.

To see why the above corollary holds, we assume the contrary. Then a binary

search procedure for λ would imply a polynomial time algorithm for (P), which would

contradict the NP-hardness result of Theorem 19.

The Proposed Algorithm

The complexity results established in the previous section suggest that it is generally

not possible to solve the max-min problem (P) to its global optimality in a time that

grows polynomially in K. Guided by this insight, we reset our goal to that of designing

computationally efficient algorithms that can compute a high quality solution for (P).

To this end, we first provide an equivalent reformulation of problem (P), which will be

used later for our algorithm design.
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Introducing a slack variable λ, the problem (P) can be equivalently written as

max
{Vik

}ik∈I ,λ
λ (P1)

s.t. Rik(V) ≥ λ,∀ ik ∈ I∑
i∈Ik

Tr[VikV
H
ik
] ≤ Pk, ∀ k ∈ K.

Using the observation in Theorem 17, we can apply Algorithm 1 by successively

approximating the constraints in (P1). Then at each iteration of the algorithm, solving

the subproblem is equivalent to solving a problem of the following form

max
V,λ

λ (Q1)

s.t. Tr[WikEik ]− log det(Wik)− dik ≤ −λ, ∀ ik ∈ I∑
ik∈Ik

Tr[VikV
H
ik
] ≤ Pk, ∀ k ∈ K.

The overall algorithm is summarized in Algorithm 16; see [142] for details. No-

tice that the convergence of the algorithm to the set of KKT points is guaranteed by

Theorem 1.

Algorithm 16 The Proposed Max-Min Fairness Algorithm

Initialize Vik ’s such that Tr
(
VikV

H
ik

)
= pk

Ik

repeat

W′
ik
←Wik , ∀ ik ∈ I

Uik ←
(∑

(j,ℓ)HikjVℓjV
H
ℓj
HH

ikj
+ σ2

ik
I
)−1

HikkVk, ∀ ik ∈ I

Wik ←
(
I−UH

ik
HikkVik

)−1
, ∀ ik ∈ I

xr+1 ← xr

Update {Vik} by solving (Q1)

until
∣∣∣∑(j,ℓ) log det

(
Wℓj

)
−
∑

(j,ℓ) log det
(
W′

ℓj

)∣∣∣ ≤ ϵ
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3.1.5 Expected Sum-Rate Maximization for Wireless Networks

The ergodic/stochastic transceiver design problem is a long standing problem in the

signal processing and communication area, and yet no efficient algorithm has been

developed to date which can deliver good practical performance. In contrast, substantial

progress has been made in recent years for the deterministic counterpart of this problem;

see [1, 17, 105, 108, 111, 112, 126, 139, 143, 144]. That said, it is important to point out

that most of the proposed methods require the perfect and full channel state information

(CSI) of all links – an assumption that is clearly impractical due to channel aging and

channel estimation errors. More importantly, obtaining the full CSI for all links would

inevitably require a prohibitively large amount of training overhead and is therefore

practically infeasible.

One approach to deal with the channel aging and the full CSI problem is to use

the robust optimization methodology. To date, various robust optimization algorithms

have been proposed to address this issue [127–131, 145]. However, these methods are

typically rather complex compared to their non-robust counterparts. Moreover, they

are mostly designed for the worst case scenarios and therefore, due to their nature,

are suboptimal when the worst cases happen with small probability. An alternative

approach is to design the transceivers by optimizing the average performance using a

stochastic optimization framework which requires only the statistical channel knowledge

rather than the full instantaneous CSI. In what follows, we propose a simple itera-

tive algorithm for ergodic/stochastic sum rate maximization problem using the SSUM

framework. Unlike the previous approach of [132] which maximizes a lower bound of the

expected weighted sum rate problem, our approach directly maximizes the ergodic sum

rate and is guaranteed to converge to the set of stationary points of the ergodic sum

rate maximization problem. Furthermore, the proposed algorithm is computationally

simple, fully distributed, and has a per-iteration complexity comparable to that of the

deterministic counterpart [1].
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Consider the expected sum rate maximization problem:

max
V

EH

{
K∑
k=1

Ik∑
i=1

max
Uik

{Rik(Uik ,V,H)}

}
(3.39)

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, ∀ k = 1, · · · ,K.

To be consistent with the SSUM section, let us rewrite (3.39) as a minimization

problem:

min
V

EH{g1(V,H)} (3.40)

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, ∀ k = 1, · · · ,K,

where

g1(V,H) =

K∑
k=1

Ik∑
i=1

min
Uik

{−Rik(Uik ,V,H)} . (3.41)

It can be checked that g1 is smooth but non-convex in V [1]. In practice, due to

other design requirements, one might be interested in adding some convex non-smooth

regularizer to the above objective function. For example, the authors of [146] added a

convex group sparsity promoting regularizer term to the objective for the purpose of

joint base station assignment and beamforming optimization. In such a case, since the

non-smooth part is convex, the SSUM algorithm is still applicable. For simplicity, we

consider only the simple case of g2 ≡ 0 in this section.

In order to utilize the SSUM algorithm, we need to find a convex tight upper-bound

approximation of g1(V,H). To do so, let us introduce a set of variables P , (W,U,Z),

where Wik ∈ Cdik×dik (with Wik ≽ 0) and Zik ∈ CMk×dik for any i = 1, · · · , Ik and for

all k = 1, · · · ,K. Furthermore, define

R̂ik(Wik ,Zik ,Uik ,V,H) , − log det(Wik) + Tr(WikEik(Uik ,V)) +
ρ

2
∥Vik − Zik∥

2 − dik , (3.42)
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for some fixed ρ > 0 and

G1(V,P,H) ,
K∑
k=1

Ik∑
i=1

R̂ik(Wik ,Zik ,Uik ,V,H). (3.43)

Using the first order optimality condition, we can check that

g1(V,H) = min
P
G1(V,P,H).

Now, let us define

ĝ1(V, V̄,H) = G1(V,P(V̄,H),H),

where

P(V̄,H) = argmin
P
G1(V̄,P,H).

Clearly, we have

g1(V̄,H) = min
P
G1(V̄,P,H) = G1(V̄,P(V̄,H),H) = ĝ1(V̄, V̄,H),

and

g1(V,H) = min
P
G1(V,P,H) ≤ G1(V,P(V̄,H),H) = ĝ1(V, V̄,H).

Furthermore, ĝ1(V, V̄,H) is strongly convex inV with parameter ρ due to the quadratic

term in (3.42). Hence ĝ1(V, V̄,H) satisfies the assumptions A1-A3. In addition, if the

channels lie in a bounded subset with probability one and the noise power σ2
ik

is strictly

positive for all users, then it can be checked that g1(V,H) and ĝ1(V, V̄,H) satisfy the

assumptions B1-B6. Consequently, we can apply the SSUM algorithm to solve (3.40).

Define Hr to be the r-th channel realization. Let us further define

Pr , argmin
P
G1(Vr−1,P,Hr), (3.44)

where Vr−1 denotes the transmit beamformer at iteration r− 1. Notice that Pr is well

defined since the optimizer of (3.44) is unique. With these definitions, the update rule
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of the SSUM algorithm becomes

Vr ← argmin
V

1

r

r∑
i=1

ĝ1(V,Vi−1,Hi)

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, ∀ k

or equivalently

Vr ← argmin
1

r

r∑
i=1

G1(V,Pi,Hi)

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, ∀ k.

(3.45)

In order to make sure that the SSUM algorithm can efficiently solve (3.40), we need

to confirm that the update rules of the variables V and P can be performed in a com-

putationally efficient manner in (3.44) and (3.45). Checking the first order optimality

condition of (3.44), it can be shown that the updates of the variable P = (W,U,Z) can

be done in closed form; see Algorithm 17. Moreover, for updating the variable V, we

need to solve a simple quadratic problem in (3.45). Using the Lagrange multipliers, the

update rule of the variable V can be performed using a one dimensional search method

over the Lagrange multiplier [1]. Algorithm 17 summarizes the SSUM algorithm applied

to the expected sum rate maximization problem; we name this algorithm as stochastic

weighted mean square error minimizations (stochastic WMMSE) algorithm. Notice that

although in the SSUM algorithm the update of the precoder Vik depends on all the past

realizations, Algorithm 17 shows that all the required information (for updating Vik)

can be encoded into two matrices Aik and Bik , which are updated recursively.

Remark 3 Similar to the deterministic WMMSE algorithm [1] which works for the

general α-fairness utility functions, the Stochastic WMMSE algorithm can also be ex-

tended to maximize the expected sum of such utility functions; see [1] for more details

on the derivations of the respective update rules.



88

Algorithm 17 Stochastic WMMSE Algorithm for sum rate maximization

Initialize V randomly such that
∑Ik

i=1Tr
(
VikV

H
ik

)
= Pk, ∀ k and set r = 0

repeat

r ← r + 1

Obtain the new channel estimate/realization Hr

Uik ←
(∑K

j=1

∑Ij
l=1H

r
ikj

VljV
H
lj
(Hr

ikj
)H + σ2

ik
I
)−1

Hr
ikk

Vik , ∀ k, i = 1, · · · , Ik

Wik ←
(
I−UH

ik
Hr

ikk
Vik

)−1
, ∀ k, i = 1, · · · , Ik

Zik ← Vik , ∀ k, i = 1, · · · , Ik
Aik ← Aik + ρI+

∑K
j=1

∑Ij
l=1(H

r
ljk

)HUljWljU
H
lj
Hr

ljk
, ∀ k, i = 1, · · · , Ik

Bik ← Bik + ρZik + (Hr
ikk

)HUikWik , ∀ k, i = 1, · · · , Ik
Vik ← (Aik + µ∗

kI)
−1Bik , ∀ k, i = 1, · · · , Ik, where µ∗

k is the optimal Lagrange

multiplier for the constraint
∑Ik

i=1Tr(VkV
H
k ) ≤ Pk which can be found using bi-

section.

until some convergence criterion is met.

3.2 Dictionary Learning for Sparse Representation

In this section, we consider the dictionary learning problem for sparse representation.

We first state the problem and establish the NP-hardness of this problem. Then we

consider different formulations of the dictionary learning problem and propose several

efficient algorithms to solve this problem. In particular, we consider both the batched

and online dictionary learning algorithm and see how the idea of successive convex ap-

proximation could be helpful for this particular problem. In contrast to the existing

dictionary training algorithms [22,147,148], our methods neither solve Lasso-type sub-

problems nor find the active support of the sparse representation vector at each step;

instead, they require only simple inexact updates in closed form. Furthermore, unlike

most of the existing methods in the literature, e.g., [22, 148], the iterates generated by

the proposed dictionary learning algorithms are theoretically guaranteed to converge to

the set of stationary points under certain mild assumptions.
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3.2.1 Problem Statement

Given a set of training signals Y = {yi ∈ Rn | i = 1, 2, . . . , N}, our task is to find

a dictionary A = {ai ∈ Rn | i = 1, 2, . . . , k}that can sparsely represent the training

signals in the set Y. Let xi ∈ Rk, i = 1, . . . , N , denote the coefficients of sparse

representation of the signal yi, i.e., yi =
∑k

j=1 ajxij , where xij is the j-th component

of signal xi. By concatenating all the training signals, the dictionary elements, and

the coefficients, we can define the matrices Y , [y1, . . . ,yN ], A , [a1, . . . ,ak], and

X = [x1, . . . ,xN ]. Having these definitions in our hands, the dictionary learning problem

for sparse representation can be stated as

min
A,X

d(Y,A,X) s.t. A ∈ A, X ∈ X , (3.46)

where A and X are two constraint sets. The function d(·, ·, ·) measures our model

goodness of fit.

3.2.2 Prior Work

The idea of representing a signal with few samples/observations dates back to the

classical result of Kotelnikon, Nyquist, Shannon, and Whittaker [149–153]. This idea

has evolved over time, and culminated to the compressive sensing concept in recent

years [154, 155]. The compressive sensing or sparse recovery approach relies on the

observation that many practical signals can be sparsely approximated in a suitable

over-complete basis (i.e., a dictionary). In other words, the signal can be approximately

written as a linear combination of only a few components (or atoms) of the dictionary.

This observation is a key to many lossy compression methods such as JPEG and MP3.

Theoretically, the exact sparse recovery is possible with high probability under cer-

tain conditions. More precisely, it is demonstrated that if the linear measurement matrix

satisfies some conditions such as null space property (NSP) or restricted isometry prop-

erty (RIP), then the exact recovery is possible [154,155]. These conditions are satisfied

with high probability for different matrices such as Gaussian random matrices, Bernoulli

random matrices, and partial random Fourier matrices.

In addition to the theoretical advances, compressive sensing has shown great po-

tential in various applications. For example, in the nuclear magnetic resonance (NMR)

imaging application, compressive sensing can help reduce the radiation time [156, 157].
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Moreover, the compressive sensing technique has been successfully applied to many

other practical scenarios including sub-Nyquist sampling [158, 159], compressive imag-

ing [160,161], and compressive sensor networks [162,163], to name just a few.

In some of the aforementioned applications, the sensing matrix and dictionary are

pre-defined using application domain knowledge. However, in most applications, the

dictionary is not known a-priori and must be learned using a set of training signals.

It has been observed that learning a good dictionary can substantially improve the

compressive sensing performance, see [22,148,164–168]. In these applications, dictionary

learning is the most crucial step affecting the performance of the compressive sensing

approach.

To determine a high quality dictionary, various learning algorithms have been pro-

posed; see, e.g., [22, 147, 148, 169]. These algorithms are typically composed of two

major steps: 1) finding an approximate sparse representation of the training signals 2)

updating the dictionary using the sparse representation.

In this subsection, we consider the dictionary learning problem for sparse represen-

tation. We first establish the NP-hardness of this problem. Then we consider different

formulations of the dictionary learning problem and propose several efficient algorithms

to solve this problem based on the successive convex approximation framework. In con-

trast to the existing dictionary training algorithms [22, 147, 148], our methods neither

solve Lasso-type subproblems nor find the active support of the sparse representation

vector at each step; instead, they require only simple inexact updates in closed form.

Furthermore, unlike most of the existing methods in the literature, e.g., [22, 148], the

iterates generated by the proposed dictionary learning algorithms are theoretically guar-

anteed to converge to the set of stationary points under certain mild assumptions.

3.2.3 Complexity Analysis

In this section, we analyze the computational complexity of one of the most popular

forms of problem (3.46). Consider a special case of problem (3.46) by choosing the

distance function to be the Frobenius norm and imposing sparsity by considering the

constraint set X = {X ∈ Rk×N
∣∣ ∥xi∥0 ≤ s}. Then the optimization problem (3.46) can

be re-written as

min
A,X

∥Y −AX∥2F , s.t. ∥xi∥0 ≤ s, ∀ i = 1, . . . , N. (3.47)
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This formulation is very popular and is considered in different studies; see, e.g., [22,170].

The following theorem characterizes the computational complexity of (3.47) by showing

its NP-hardness. In particular, we show that even for the simple case of s = 1 and k = 2,

problem (3.47) is NP-hard. To state our result, let us define the following concept: let

(A∗,X∗) be a solution of (3.47). For ϵ > 0, we say a point (Ã, X̃) is an ϵ-optimal

solution of (3.47) if ∥Y − ÃX̃∥2F ≤ ∥Y −A∗X∗∥2F + ϵ.

Theorem 20 Assume s = 1 and k = 2. Then finding an ϵ-optimal algorithm for solving

(3.47) is NP-hard. More precisely, there is no polynomial time algorithm in N,n, ⌈1ϵ ⌉
that can solve (3.47) to ϵ-optimality, unless P = NP .

Proof See the appendix chapter.

Remark 4 Note that in the above NP-hardness result, the input size of ⌈1ϵ ⌉ is consid-

ered instead of ⌈log(1ϵ )⌉. This in fact implies a stronger result that there is no quasi-

polynomial time algorithm for solving (3.47); unless P=NP.

It is worth noting that the above NP-hardness result is different from (and is not a

consequence of) the compressive sensing NP-hardness result in [171]. In fact, for a

fixed sparsity level s, the compressive sensing problem is no longer NP-hard, while the

dictionary learning problem considered herein remains NP-hard (see Theorem 20).

3.2.4 Batch Dictionary Learning

Optimizing the goodness of fit

In this section, we assume that the function d(·) is composed of a smooth part and a

non-smooth part for promoting sparsity, i.e., d(Y,A,X) = d1(Y,A,X)+d2(X), where

d1 is smooth and d2 is continuous and possibly non-smooth. Let us further assume

that the sets A,X are closed and convex. Our approach to solve (3.46) is to apply the

general block successive upper-bound minimization framework developed in [35]. More

specifically, we propose to alternately update the variables A and X. Let (Ar,Xr) be

the point obtained by the algorithm at iteration r. Then, we select one of the following

methods to update the dictionary variable A at iteration r + 1:

(a) Ar+1 ← arg min
A∈A

d(Y,A,Xr)
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(b) Ar+1 ← arg min
A∈A

⟨∇Ad1(Y,Ar,Xr),A⟩+τ ra
2
∥A−Ar∥2F = PA

(
Ar − 1

τ ra
∇Ad1(Y,Ar,Xr)

)
and we update the variable X by

• Xr+1 ← arg min
X∈X

⟨∇Xd1(Y,Ar+1,Xr),X⟩+ τ rx
2
∥X−Xr∥2F + d2(X).

Here the operator ⟨·, ·⟩ denotes the inner product; the superscript r represents the

iteration number; the notation PA(·) is the projection operator to the convex set A;
and the constants τ ra , τa(Y,Ar,Xr) and τ rx , τx(Y,Ar+1,Xr) are chosen such that

d1(Y,A,Xr) ≤ d1(Y,Ar,Xr) + ⟨∇Ad1(Y,Ar,Xr),A−Ar⟩

+
τ ra
2
∥A−Ar∥2F , ∀ A ∈ A

and

d(Y,Ar+1,X) ≤ d1(Y,Ar+1,Xr) + d2(X) +
τ rx
2
∥X−Xr∥2F

+⟨∇Xd1(Y,Ar+1,Xr),X−Xr⟩, ∀ X ∈ X . (3.48)

It should be noted that each step of the algorithm requires solving an optimization

problem. For the commonly used objective functions and constraint sets, the solution

to these optimization problems is often in closed form. In addition, the update rule (b)

is the classical gradient projection step which can be viewed as an approximate version

of (a). As we will see later, for some special choices of the function d(·) and the set

A, using (b) leads to a closed form update rule, while (a) does not. In the sequel, we

specialize this framework to different popular choices of the objective functions and the

constraint sets.

Case I: Constraining the total dictionary norm

For any β > 0, we consider the following optimization problem

min
A,X

1

2
∥Y −AX∥2F + λ∥X∥1 s.t. ∥A∥2F ≤ β, (3.49)

where λ denotes the regularization parameter. By simple calculations, we can check that

all the steps of the proposed algorithm can be done in closed form. More specifically,

using the dictionary update rule (a) will lead to Algorithm 18. In this algorithm, σmax(·)
denotes the maximum singular value; θ ≥ 0 is the Lagrange multiplier of the constraint

∥A∥2F ≤ β which can be found using one dimensional search algorithms such as bisection
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Algorithm 18 The proposed algorithm for solving (3.49)

initialize A randomly such that ∥A∥2F ≤ β
repeat

τa ← σ2
max(X)

X← X− S λ
τa
(X− 1

τa
AT (AX−Y))

A← YXT (XXT + θI)−1

until some convergence criterion is met

or Newton. The notation S(·) denotes the component-wise soft shrinkage operator, i.e.,

B = Sγ(C) if

Bij =


Cij − γ if Cij > γ

0 if − γ ≤ Cij ≤ γ

Cij + γ if Cij < −γ

where Bij and Cij denote the (i, j)-th component of the matrices B and C, respectively.

Case II: Constraining the norm of each dictionary atom

In many applications, it is of interest to constrain the norm of each dictionary atom,

i.e., the dictionary is learned by solving:

min
A,X

1

2
∥Y −AX∥2F + λ∥X∥1 s.t. ∥ai∥2F ≤ βi, ∀ i (3.50)

In this case, the dictionary update rule (a) cannot be expressed in closed form; as an

alternative, we can use the update rule (b), which is in closed form, in place of (a). This

gives Algorithm 19. In this algorithm, the set A is defined as A , {A
∣∣ ∥ai∥2F ≤ βi, ∀ i}

Algorithm 19 The proposed algorithm for solving (3.50) and (3.51)

For solving (3.50): initialize A randomly s.t. ∥ai∥2F ≤ βi, ∀ i
For solving (3.51): initialize ∥A∥2F ≤ β and A ≥ 0
repeat

τx ← σ2
max(A)

For solving (3.50): X← X− S λ
τx
(X− 1

τx
AT (AX−Y))

For solving (3.51): X← PX

(
X− 1

τx
AT (AX−Y)− λ

)
τa ← σ2

max(X)

A← PA

(
A− 1

τa
(AX−Y)XT

)
until some convergence criterion is met
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Case III: Non-negative dictionary learning with the total norm constraint

Consider the non-negative dictionary learning problem for sparse representation:

min
A,X

1

2
∥Y −AX∥2F + λ∥X∥1 s.t. ∥A∥2F ≤ β, A,X ≥ 0 (3.51)

Utilizing the update rule (b) leads to Algorithm 19. Note that in this case, projections

to the sets X = {X | X ≥ 0} and A = {A | ∥A∥2F ≤ β,A ≥ 0} are simple. In particular,

to project to the set A, we just need to first project to the set of nonnegative matrices

first and then project to the set Ã = {A | ∥A∥2F ≤ β}.
It is worth noting that Algorithm 19 can also be applied to the case where A = {A |

A ≥ 0, ∥ai∥2F ≤ βi, ∀ i}, since the projection to the constraint set still remains simple.

Case IV: Sparse non-negative matrix factorization

In some applications, it is desirable to have a sparse non-negative dictionary; see, e.g.,

[172–174]. In such cases, we can formulate the dictionary learning problem as:

min
A,X

1

2
∥Y −AX∥2F + λ∥X∥1 s.t. ∥ai∥1 ≤ θ, ∀ i, A,X ≥ 0 (3.52)

It can be checked that we can again use the essentially same steps of the algorithm in

case III to solve (3.52). The only required modification is in the projection step since

the projection should be onto the set A = {A | A ≥ 0, ∥ai∥1 ≤ θ, ∀ i}. This step can be

performed in a column-wise manner by updating each column ai to [ai − ρi1]+, where

[·]+ denotes the projection to the set of nonnegative matrices and ρi ∈ R+ is a constant

that can be determined via one dimensional bisection. The resulting algorithm is very

similar (but not identical) to the one in [172]. However, unlike the algorithm in [172],

all of our proposed algorithms are theoretically guaranteed to converge, as shown in

Theorem 21.

Theorem 21 The iterates generated by the algorithms in cases I-IV converge to the set

of stationary points of the corresponding optimization problems.

Proof: Each of the proposed algorithms in cases I-IV is a special case of the block

successive upper-bound minimization (BSUM) approach [35]. Therefore, Theorem 2

guarantees the convergence of the proposed methods.
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Constraining the goodness of fit

In some practical applications, the goodness of fit level may be known a-priori. In these

cases, we may be interested in finding the sparsest representation of the data for a given

goodness of fit level. In particular, for a given α > 0, we consider

min
A,X

∥X∥1 s.t. d(Y,A,X) ≤ α, A ∈ A, X ∈ X . (3.53)

For example, when the noise level is known, the goodness of fit function can be set

as d(Y,A,X) = ∥Y − AX∥2F . We propose an efficient method (Algorithm 20) to

solve (3.53), where the constant τx is chosen according to criterion in (3.48).

The convergence of Algorithm 20 is guaranteed in light of the following theorem.

Algorithm 20 The proposed algorithm for solving (3.53)

initialize A randomly s.t. A ∈ A and find a feasible X
repeat

X̄← X
X ← argminX∈X ∥X∥1 s.t. d1(Y,A, X̄) + ⟨∇Xd1(Y,A, X̄),X − X̄⟩ + τx

2 ∥X − X̄∥2F +
d2(X) ≤ α
A← argminA∈A d(Y,A,X)

until some convergence criterion is met

Theorem 22 Assume that (X̄, Ā) is a limit point of the iterates generated by Algo-

rithm 20. Furthermore, assume that the subproblem for updating X is strictly feasible

at (X̄, Ā), i.e., there exists X̃ ∈ X such that d1(Y, Ā, X̄) + ⟨∇Xd1(Y, Ā, X̄), X̃ − X̄⟩ +
τx
2 ∥X̃− X̄∥2F + d2(X̃) < α. Then (X̄, Ā) is a stationary point of (3.53).

This theorem is the result of Theorem 1.

3.2.5 Online Dictionary Learning

Consider the online/stochastic dictionary learning problem [175]: Given a random signal

y ∈ Rn drawn from a distribution PY (y), we are interested in finding a dictionary

A ∈ Rn×k so that the empirical cost function

f(A) , Ey [g(A,y)]
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is minimized over the feasible setA; see [22,166,175]. The loss function g(A,y) measures

the fitting error of the dictionary A to the signal y. Most of the classical and modern

loss functions can be represented in the form of

g(A,y) , min
x∈X

h(x,A,y), (3.54)

where X ⊆ Rk and h(x,A,y) is a convex function in x and A separately. For example,

by choosing h(x,A,y) = 1
2∥y−Ax∥22+λ∥x∥1, we obtain the sparse dictionary learning

problem; see [175]. Notice that this problem is different than the online sparse recovery

problem where the dictionary atoms are known but the overall problem is stochastic;

see [176–178].

In order to apply the SSUM framework to the online dictionary learning problem,

we need to choose an appropriate approximation function ĝ(·). To this end, let us define

ĝ(A, Ā,y) = h(x̄,A,y) +
γ

2
∥A− Ā∥22,

where

x̄ , argmin
x∈X

h(x,A,y).

Clearly, we have

ĝ(Ā, Ā,y) = h(x̄, Ā,y) = min
x∈X

h(x, Ā,y) = g(Ā,y),

and

ĝ(A, Ā,y) ≥ h(x̄,A,y) ≥ g(A,y).

Furthermore, if we assume that the solution of (3.54) is unique, the function g(·) is

smooth due to Danskin’s Theorem [13]. Moreover, the function ĝ(A, Ā,y) is strongly

convex in A. In addition, if we assume that the feasible set A is bounded and the signal

vector y lies in a bounded set Y, the assumptions of the SSUM algorithm are satisfied as

well. Hence the SSUM algorithm is applicable to the online dictionary learning problem.

Remark 5 Choosing h(x,A,y) = 1
2∥y −Ax∥22 + λ∥x∥1 and γ = 0 leads to the online



97

sparse dictionary learning algorithm in [175]. Notice that the authors of [175] had to

assume the uniform strong convxity of 1
2∥y − Ax∥22 for all x ∈ X since they did not

consider the quadratic proximal term γ∥A− Ā∥2.

3.3 Other Applications

3.3.1 Proximal Minimization Algorithm

The classical proximal minimization algorithm (see, e.g., [85, Section 3.4.3]) obtains a

solution of the problem minx∈X f(x) by solving an equivalent problem

min
x∈X ,y∈X

f(x) +
1

2c
∥x− y∥22, (3.55)

where f(·) is a convex function, X is a closed convex set, and c > 0 is a scalar parameter.

The equivalent problem (3.55) is attractive in that it is strongly convex in both x and

y (but not jointly) so long as f(x) is convex. This problem can be solved by performing

the following two steps in an alternating fashion

xr+1 = argmin
x∈X

{
f(x) +

1

2c
∥x− yr∥22

}
(3.56)

yr+1 = xr+1. (3.57)

Equivalently, let u(x;xr) , f(x) + 1
2c∥x− xr∥22, then the iteration (3.56)–(3.57) can be

written as

xr+1 = argmin
x∈X

u(x,xr). (3.58)

It can be straightforwardly checked that for all x,xr ∈ X , the function u(x,xr) serves as

an upper bound for the function f(x). It is not hard to check that the the convergence

of the proximal minimization procedure can be obtained from Theorem 2.
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The proximal minimization algorithm can be generalized in the following way. Con-

sider the problem

min
x

f(x1, · · · ,xn) (3.59)

s.t. xi ∈ Xi, i = 1, · · · , n,

where {Xi}ni=1 are closed convex sets, f(·) is convex in each of its block components,

but not necessarily strictly convex. A straightforward application of the BCD procedure

may fail to find a stationary solution for this problem, as the per-block subproblems

may contain multiple solutions. Alternatively, we can consider an alternating proximal

minimization algorithm [14,179], in each iteration of which the following subproblem is

solved

min
xi

f(xr
1, . . . ,x

r
i−1,xi,x

r
i+1, . . . ,x

r
n) +

1

2c
∥xi − xr

i ∥22 (3.60)

s.t. xi ∈ Xi.

It is not hard to see that this subproblem always admits a unique solution, as the

objective is a strictly convex function of xi. Let ui(xi,x
r) , f(xr

1, · · · ,xi, · · ·xr
n) +

1
2c∥xi−xr

i ∥22. Again for each xi ∈ Xi and xr ∈
∏

jXj , the function ui(xi,x
r) is an upper

bound of the original objective f(x). Moreover, all the conditions in Assumption 2 are

satisfied. Utilizing Theorem 2, we conclude that the alternating proximal minimization

algorithm must converge to a stationary solution of the problem (3.59). Moreover, our

result extends those in [14] to the case of nonsmooth objective function as well as the

case with iteration-dependent coefficient c. The latter case, which was also studied in

the contemporary work [15], will be demonstrated in an example for tensor decompo-

sition shortly. It is also worth noting that the convergence of the alternating proximal

minimization algorithm is also studied in [180] for Kurdyka-Lojasiewicz functions.
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3.3.2 Proximal Splitting Algorithm

The proximal splitting algorithm (see, e.g., [181]) for nonsmooth optimization is also a

special case of the BSUM algorithm. Consider the following problem

min
x∈X

f1(x) + f2(x) (3.61)

where X is a closed and convex set. Furthermore, f1 is convex and lower semicontinuous;

f2 is convex and has Lipschitz continuous gradient, i.e., ∥∇f2(x)−∇f2(y)∥ ≤ β∥x−y∥,
∀ x,y ∈ X and for some β > 0.

Define the proximity operator proxfi : X → X as

proxfi(x) = argmin
y∈X

fi(y) +
1

2
∥x− y∥2. (3.62)

The following forward-backward splitting iteration can be used to obtain a solution for

problem (3.61) [181,182]:

xr+1 = proxγf1︸ ︷︷ ︸
backward step

(xr − γ∇f2(xr))︸ ︷︷ ︸
forward step

(3.63)

where γ ∈ [ϵ, 2/β − ϵ] with ϵ ∈]0,min{1, 1/β}[. Define

u(x,xr) , f1(x) +
1

2γ
∥x− xr∥2 + ⟨x− xr,∇f2(xr)⟩+ f2(x

r). (3.64)

We first show that the iteration (3.63) is equivalent to the following iteration

xr+1 = argmin
x∈X

u(x,xr). (3.65)

From the definition of the prox operation, we have

proxγf1(x
r − γ∇f2(xr)) = argmin

x∈X
γf1(x) +

1

2
∥x− xr + γ∇f2(xr)∥22

= argmin
x∈X

f1(x) +
1

2γ
∥x− xr∥22 + ⟨x− xr,∇f2(xr)⟩

= argmin
x∈X

u(x,xr).
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We then show that u(x,xr) is an upper bound of the original function f1(x)+f2(x),

for all x,xr ∈ X . Note that from the well known Descent Lemma [13, Proposition A.32],

we have that

f2(x) ≤ f2(x
r) +

β

2
∥x− xr∥2 + ⟨x− xr,∇f2(xr)⟩

≤ f2(x
r) +

1

2γ
∥x− xr∥2 + ⟨x− xr,∇f2(xr)⟩

where the second inequality is from the definition of γ. This result implies that u(x,y) ≥
f1(x) + f2(x), ∀ x,y ∈ X . Moreover, we can again verify that all the other conditions

BSUM are true. Consequently, we conclude that the forward-backward splitting algo-

rithm is a special case of the BSUM algorithm.

Similar to the previous example, we can generalize the forward-backward splitting

algorithm to the problem with multiple block components. Consider the following prob-

lem

min

n∑
i=1

fi(xi) + fn+1(x1, · · · ,xn) (3.66)

s.t. xi ∈ Xi, i = 1, · · · , n

where {Xi}ni=1 are a closed and convex sets. Each function fi(·), i = 1, · · ·n is convex and

lower semicontinuous w.r.t. xi; fn+1(·) is convex and has Lipschitz continuous gradient

w.r.t. each of the component xi, i.e., ∥∇fn+1(x)−∇fn+1(y)∥ ≤ βi∥xi − yi∥, ∀ xi,yi ∈
Xi, i = 1, · · · , n. Then the following block forward-backward splitting algorithm can

be shown as a special case of the BSUM algorithm, and consequently converges to a

stationary solution of the problem (3.66)

xr+1
i = proxγfi(x

r
i − γ∇xifn+1(x

r)), i = 1, 2, ..., n,

where γ ∈ [ϵi, 2/βi − ϵi] with ϵi ∈]0,min{1, 1/βi}[. To the best of our knowledge, the

convergence of the block forward-backward splitting method has not been studied before

for non-smooth non-convex problems.
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3.3.3 CANDECOMP/PARAFAC Decomposition of Tensors

Another application of the proposed method is in CANDECOMP/PARAFAC (CP)

decomposition of tensors, which is useful in various practical problems; see, e.g., [183–

185]. Given a tensor X ∈ Rm1×m2×...×mn of order n, the idea of CP decomposition is to

write the tensor as the sum of rank-one tensors:

X =

R∑
r=1

Xr,

where Xr = a1r ◦ a2r ◦ . . . ◦ anr and air ∈ Rmi . Here the notation “ ◦ ” denotes the

outer product. It is also worth noting that unlike the matrices, the CP decompositions

of tensors are often unique; see [186–191].

In general, finding the CP decomposition of a given tensor is NP-hard [192]. In

practice, one of the most widely accepted algorithms for computing the CP decomposi-

tion of a tensor is the Alternating Least Squares (ALS) algorithm [193–195]. The ALS

algorithm proposed in [196,197] is in essence a BCD method. For ease of presentation,

we will present the ALS algorithm only for tensors of order three.

Let X ∈ RI×J×K be a third order tensor. Let (A;B;C) represent the following

decomposition

(A;B;C) ,
R∑

r=1

ar ◦ br ◦ cr,

where ar (resp. br and cr) is the r-th column of A (resp. B and C). The ALS algorithm

minimizes the difference between the original and the reconstructed tensors

min
A,B,C

∥X− (A;B;C)∥, (3.67)

where A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R, and R is the rank of the tensor.

The ALS approach is a special case of the BCD algorithm in which the three blocks of

variables A,B, and C are cyclically updated. In each step of the computation when two

blocks of variables are held fixed, the subproblem becomes the quadratic least squares
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problem and admits closed form updates (see [193]).

One of the well-known drawbacks of the ALS algorithm is the swamp effect where the

objective value remains almost constant for many iterations before starting to decrease

again. Navasca et al. in [198] observed that adding a proximal term in the algorithm

could help reducing the swamp effect. More specifically, at each iteration r the algorithm

proposed in [198] solves the following problem for updating the variables:

∥X− (A;B;C)∥2 + λ∥A−Ar∥2 + λ∥B −Br∥2 + λ∥C − Cr∥2, (3.68)

where λ ∈ R is a positive constant. As discussed before, this proximal term has been con-

sidered in different optimization contexts and its convergence has been already showed

in [14]. An interesting numerical observation in [198] is that decreasing the value of λ

during the algorithm can noticeably improve the convergence of the algorithm. Such it-

erative decrease of λ can be accomplished in a number of different ways. Our numerical

experiments show that the following simple approach to update λ can significantly im-

prove the convergence of the ALS algorithm and substantially reduce the swamp effect:

λr = λ0 + λ1
∥X− (Ar;Br;Cr)∥

∥X∥
, (3.69)

where λr is the proximal coefficient λ at iteration r. Theorem 2 implies the convergence

is guaranteed even with this update rule of λ, whereas the convergence result of [14] does

not apply in this case since the proximal coefficient is changing during the iterations.

Figure 3.2 shows the performance of different algorithms for the example given

in [198] where the tensor X is obtained from the decomposition

A =

[
1 cos θ 0

0 sin θ 1

]
, B =


3
√
2 cos θ 0

0 sin θ 1

0 sin θ 0

 , C =


1 0 0

0 1 0

0 0 1

 .

To generate the plots, we have used a MATLAB script running on a PC with 4GB RAM

memory and a dual core 2.7 GHz CPU. In Figure 3.2, the vertical axis is the value of the
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objective function where the horizontal axis is the iteration number. In this plot, ALS

is the classical alternating least squares algorithm. The curve for Constant Proximal

shows the performance of the BSUM algorithm when we use the objective function

in (3.68) with λ = 0.1. The curve for Diminishing Proximal shows the performance

of block coordinate descent method on (3.68) where the weight λ decreases iteratively

according to (3.69) with λ0 = 10−7, λ1 = 0.1. The other two curves MBI and MISUM

correspond to the maximum block improvement algorithm and the MISUM algorithm.

In the implementation of the MISUM algorithm, the proximal term is of the form in

(3.68) and the weight λ is updated based on (3.69).
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Figure 3.2: BSUM convergence for tensor decomposition (small scale example)

Table 3.1 represents the average number of iterations required to get an objective

value less than ϵ = 10−5 for different algorithms. The average is taken over 1000 Monte-

Carlo runs over different initializations. The initial points are generated randomly where

the components of the variables A,B, and C are drawn independently from the uniform

distribution over the unit interval [0, 1]. As it can be seen, adding a diminishing proximal

term significantly improves the convergence speed of the ALS algorithm.

Figure 3.3 illustrates the performance of different algorithms for the case of I = J =

K = R = 100 . In this experiment, we set λ0 = 10−1 and λ1 = 1. As it can be seen

from the figure, adding the proximal terms reduces the swamp effect.
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Algorithm Average number of iterations for convergence

ALS 277

Constant Proximal 140

Diminishing Proximal 78

MBI 572

MISUM 175

Table 3.1: Average number of iterations for convergence
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Figure 3.3: Convergence of different algorithms for tensor decomposition

3.3.4 Expectation Maximization Algorithm

The expectation maximization algorithm (EM) in [12] is an iterative procedure for max-

imum likelihood estimation when some of the random variables are unobserved/hidden.

Let w be the observed random vector which is used for estimating the value of θ. The

maximum likelihood estimate of θ can be given as

θ̂ML = argmax
θ

ln p(w|θ). (3.70)

Let the random vector z be the hidden/unobserved variable. The EM algorithm starts

from an initial estimate θ0 and generates a sequence {θr} by repeating the following

steps:
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• E-Step: Calculate g(θ, θr) , Ez|w,θr{ln p(w, z|θ)}

• M-Step: θr+1 = argmaxθ g(θ, θr)

The EM-algorithm can be viewed as a special case of SUM algorithm [199]. In fact, we

are interested in solving the following optimization problem

min
θ

− ln p(w|θ).

The objective function could be written as

− ln p(w|θ) = − ln Ez|θ p(w|z, θ)

= − ln Ez|θ

[
p(z|w, θr)p(w|z, θ)

p(z|w, θr)

]
= − ln Ez|w,θr

[
p(z|θ)p(w|z, θ)

p(z|w, θr)

]
≤ −Ez|w,θr ln

[
p(z|θ)p(w|z, θ)

p(z|w, θr)

]
= −Ez|w,θr ln p(w, z|θ) + Ez|w,θr ln p(z|w, θr)

, u(θ, θr),

where the inequality is due to the Jensen’s inequality and the third equality follows from

a simple change of the order of integration for the expectation. Since Ez|w,θr ln p(z|w, θr)
is not a function of θ, the M-step in the EM-algorithm can be written as

θr+1 = argmax
θ

u(θ, θr).

Furthermore, it is not hard to see that u(θr, θr) = − ln p(w|θr). Therefore, under the

smoothness assumption, it is not hard to check that the BSUM assumptions are satisfied.

As an immediate consequence, the EM-algorithm is a special case of the SUM algorithm.

Therefore, our result implies not only the convergence of the EM-algorithm, but also the

convergence of the EM-algorithm with Gauss-Seidel/coordinatewise update rule (under

the assumptions of Theorem 2). In fact in the block coordinate EM-algorithm (BEM),

at each M-step, only one block is updated. More specifically, let θ = (θ1, . . . , θn) be the

unknown parameter. Assume w is the observed vector and z is the hidden/unobserved
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variable as before. The BEM algorithm starts from an initial point θ0 = (θ01, . . . , θ
0
n)

and generates a sequence {θr} according to the algorithm in Figure 21.

Algorithm 21 Pseudo code of the BEM algorithm

Initialize with θ0 and set r = 0

repeat

r = r + 1, i = r mod n+ 1

E-Step: gi(θi, θ
r) = Ez|w,θr{ln p(w, z|θr1, . . . , θri−1, θi, θ

r
i+1, . . . , θ

r
n)}

M-Step: θr+1
i = argmaxθi gi(θi, θ

r)

until some convergence criterion is met

The motivation behind using the BEM algorithm instead of the EM algorithm could

be the difficulties in solving the M-step of EM for the entire set of variables, while solving

the same problem per block of variables is easy. As an example, consider the mixture

of Gaussian model [200] where different Gaussian distributions have the same mean but

different variances. It can be checked that the update rule of EM algorithm [12] cannot

be done in closed form. However, fixing the variance, the update rule of the mean

could be done in closed form. Furthermore, by fixing the mean, the variance could be

updated in closed form and hence the BEM algorithm can be applied. To the best of our

knowledge, the BEM algorithm and its convergence behavior have not been analyzed

before.

3.3.5 Concave-Convex Procedure/Difference of Convex Functions

A popular algorithm for solving unconstrained problems, which also belongs to the class

of successive upper-bound minimization, is the Concave-Convex Procedure (CCCP)

introduced in [11]. In CCCP, also known as the difference of convex functions (DC)

programming, we consider the unconstrained problem

min
x∈Rm

f(x),
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where f(x) = fcve(x)+fcvx(x), ∀ x ∈ Rm; where fcve(·) is a concave function and fcvx(·)
is convex. The CCCP generates a sequence {xr} by solving the following equation:

∇fcvx(xr+1) = −∇fcve(xr),

which is equivalent to

xr+1 = argmin
x

g(x, xr), (3.71)

where g(x, xr) , fcvx(x) + (x − xr)T∇fcve(xr) + fcve(x
r). Clearly, g(x, xr) is a tight

convex upper-bound of f(x) and hence CCCP is a special case of the SUM algorithm and

its convergence is guaranteed by the convergence of BSUM under certain assumptions.

Furthermore, if the updates are done in a block coordinate manner, the algorithm

becomes a special case of BSUM whose convergence is guaranteed by Theorem 2. To

the best of our knowledge, the general block coordinate version of CCCP algorithm and

its convergence have not been studied before. For applications of the block coordinate

version of the constrained CCCP method in various practical problems, the readers are

referred to [15,19,107,108,134–137,201–211].

3.3.6 Stochastic (Sub-)Gradient Method and its Extensions

In this section, we show that the classical SG method, the incremental gradient method

and the stochastic sub-gradient method are special cases of the SSUM method. We also

present an extension of these classical methods using the SSUM framework.

To describe the SG method, let us consider a special (unconstrained smooth) case

of the optimization problem (2.12), where g2 ≡ 0 and X = Rn. One of the popular

algorithms for solving this problem is the stochastic gradient (also known as stochastic

approximation) method. At each iteration r of the stochastic gradient (SG) algorithm,

a new realization ξr is obtained and x is updated based on the following simple rule

[73,212–214]:

xr ← xr−1 − γr∇xg1(x
r−1, ξr). (3.72)

Here γr is the step size at iteration r. Due to its simple update rule, the SG algorithm has

been widely used in various applications such as data classification [215, 216], training
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multi-layer neural networks [217–220], the expected risk minimization [221], solving least

squares in statistics [222], and distributed inference in sensor networks [85, 223, 224].

Also the convergence of the SG algorithm is well-studied in the literature; see, e.g.,

[73, 214,225].

The popular incremental gradient method [219–222,226] can be viewed as a special

case of the SG method where the set Ξ is finite. In the incremental gradient methods,

a large but finite set of samples Ξ is available and the objective is to minimize the

empirical expectation

Ê{g(x, ξ)} =
1

|Ξ|
∑
ξ∈Ξ

g(x, ξ). (3.73)

At each iteration r of the incremental gradient method (with random updating order),

a new realization ξr ∈ Ξ is chosen randomly and uniformly, and then (3.72) is used to

update x. This is precisely the SG algorithm applied to the minimization of (3.73). In

contrast to the batch gradient algorithm which requires computing
∑

ξ∈Ξ∇xg(x, ξ), the

updates of the incremental gradient algorithm are computationally cheaper, especially

if |Ξ| is very large.

In general, the convergence of the SG method depends on the proper choice of the

step size γr. It is known that for the constant step size rule, the SG algorithm might

diverge even for a convex objective function; see [219] for an example. There are many

variants of the SG algorithm with different step size rules [227]. In the following, we

introduce a special form of the SSUM algorithm that can be interpreted as the SG

algorithm with diminishing step sizes. Let us define

ĝ1(x, y, ξ) = g1(y, ξ) + ⟨∇g1(y, ξ), x− y⟩+ α

2
∥x− y∥2, (3.74)

where α is a function of y and is chosen so that ĝ1(x, y, ξ) ≥ g1(x, ξ). One simple choice

is αr = L, where L is the Lipschitz constant of ∇xg1(x, ξ). Choosing ĝ1 in this way,

the assumptions A1-A3 are clearly satisfied. Moreover, the update rule of the SSUM
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algorithm becomes

xr ← argmin
x

1

r

r∑
i=1

ĝ1(x, x
i−1, ξi). (3.75)

Checking the first order optimality condition of (3.75), we obtain

xr ← 1∑r
i=1 α

i

(
r∑

i=1

(αixi−1 −∇xg1(x
i−1, ξi))

)
. (3.76)

Rewriting (3.76) in a recursive form yields

xr ← xr−1 − 1∑r
i=1 α

i
∇xg1(x

r−1, ξr), (3.77)

which can be interpreted as the stochastic gradient method (3.72) with γr = 1∑r
i=1 αi

.

Notice that the simple constant choice of αi = L yields γr = 1
rL , which gives the most

popular diminishing step size rule of the SG method.

Remark 6 When X is bounded and using the approximation function in (3.74), we see

that the SSUM algorithm steps become

zr =
1∑r

i=1 α
i

(
r−1∑
i=1

αizr−1 + αrxr−1 −∇xg1(x
r−1, ξr)

)
,

xr = ΠX (z
r),

where ΠX (·) signifies the projection operator to the constraint set X . Notice that this up-
date rule is different from the classical SG method as it requires generating the auxiliary

iterates {zr} which may not lie in the feasible set X .

It is also worth noting that in the presence of the non-smooth part of the objec-

tive function, the SSUM algorithm becomes different from the classical stochastic sub-

gradient method [73, 212–214]. To illustrate the ideas, let us consider a simple deter-

ministic nonsmooth function g2(x) to be added to the objective function. The resulting
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optimization problem becomes

min
x

E [g1(x, ξ)] + g2(x).

Using the approximation introduced in (3.74), the SSUM update rule can be written as

xr ← argmin
x

1

r

r∑
i=1

ĝ1(x, x
i−1, ξi) + g2(x). (3.78)

Although this update rule is similar to the (regularized) dual averaging method [228,229]

for convex problems, its convergence is guaranteed even for the nonconvex nonsmooth

objective function under the assumptions of Theorem 12. Moreover, similar to the (reg-

ularized) dual averaging method, the steps of the SSUM algorithm are computationally

cheap for some special nonsmooth functions. As an example, let us consider the spe-

cial non-smooth function g2(x) , λ∥x∥1. Setting αr = L, the first order optimality

condition of (3.78) yields the following update rule:

zr+1 ←
rzr + xr − 1

L∇g1(x
r, ξr+1)

r + 1
,

xr+1 ← shrink λ
L
(zr+1),

(3.79)

where {zr+1}∞r=1 is an auxiliary variable sequence and shrinkτ (z) is the soft shrinkage

operator defined as

shrinkτ (z) =


z − τ z ≥ τ

0 τ ≥ z ≥ −τ
z + τ z ≤ −τ

.

Notice that the algorithm obtained in (3.79) is different from the existing stochastic

subgradient algorithm and the stochastic proximal gradient algorithm [8, 226]; further-

more, if the conditions in Theorem 12 is satisfied, its convergence is guaranteed even

for nonconvex objective functions.

To see other applications of the SSUM framework, see [230,231].



Chapter 4

Numerical Experiments

In this chapter, we evaluate the numerical performance of the proposed algorithms based

on the successive convex approximation idea. A special emphasize will be given to the

interference management problem in wireless communication and dictionary learning

problem for sparse recovery.

4.1 Interference Management in Wireless Networks

4.1.1 Beamforming in Wireless Networks

In this subsection section, we numerically evaluate the performance of the proposed

WMMSE algorithm introduced in subsection 3.1.2. For ease of comparison with ex-

isting algorithms, all simulations are conducted for MIMO interference channel (the

degenerate MIMO-IBC case with one receiver per cell). The weights {αik} and noise

powers {σ2
ik
} are set equally for all users. The transmit power budget is set to P for all

transmitters, where P = 10
SNR
10 . Moreover, all transmitters (or receivers) are assumed

to have the same number of antennas, denoted by T (or R). We use uncorrelated

fading channel model with channel coefficients generated from the complex Gaussian

distribution CN (0, 1).

Fig. 4.1(a) and Fig. 4.1(b) illustrate the convergence behavior of the WMMSE

algorithm for the case of SNR = 25(dB). These plots show that the WMMSE algorithm

converges in few steps and it does so monotonically. Figure 4.1(a) uses the parameters

111
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Figure 4.1: WMMSE algorithm: (a) SISO-IFC (b) MIMO-IFC.

K = 3, ϵ = 1e − 3 in a SISO channel, while figure 4.1(b) is for MIMO interference

channel with K = 4, T = 3, R = 2, ϵ = 1e− 2.

Fig. 4.2 plots the average sum-rate versus the SNR for the SISO interference chan-

nel case. Each curve is averaged over 100 random channel realizations. The term

“WMMSE” represents running theWMMSE algorithm once while “WMMSE 10rand int”

means running the WMMSE algorithm 10 times with different initialization and then

keeping the best result. The terms “ILA” and “ILA 10rand int” are similarly defined.

It can be observed that the WMMSE algorithm and the ILA algorithm yield almost

the same performance. The performance of the brute force search method (exponential

complexity) is provided in the three users case as a benchmark. We can see that the

gap between the performance of the WMMSE algorithm and the optimal performance

is small and slowly increasing with SNR. However, repeating the WMMSE algorithm

ten times can close this performance gap.

Similar observations can be made for the MIMO interference channel case, as Fig.

4.3 illustrates. As a comparison, we also provide the performance of the MMSE algo-

rithm [112] which has been shown to perform better than the interference alignment

method [232]. Obviously, the WMMSE algorithm significantly outperforms the MMSE

algorithm in terms of the achieved sum-rate. This is due to the use of iterative weighting

matrices {Wik}.
Although the ILA algorithm yields almost the same performance as the WMMSE
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Figure 4.2: Average sum-rate versus SNR in the SISO IFC case.
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algorithm in terms of the sum rate, it has higher complexity. Figure 4.4 represents

the average CPU time comparison of the two algorithms under the same termination

criterion. The number of transmit antennas is 3, while the number of receive antennas

is 2. It can be observed that the WMMSE algorithm significantly outperform the ILA

algorithm when the number of users is large.
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Figure 4.4: Average CPU time versus the number of users in the MIMO IFC case.

4.1.2 Joint Beamforming and Scheduling

Here we present some simulations comparing different beamforming/scheduling methods

with the one proposed in subsection 3.1.3. In our numerical experiments, the path

loss of the channel coefficients are generated using the 3GPP (TR 36.814) evaluation

methodology [233], with the additional standard Rayleigh fading. As such, the channel

taps are drawn randomly from appropriately scaled Rayleigh distributions. Our first

sets of numerical experiments are obtained via 5 rounds of channel realizations (5 Monte

Carlo runs of channel generation). We consider a 19-hexagonal wrap-around cell layout

(see Figure 4.5). Each base station has three sectors, i.e., essentially 19 × 3 = 57 base

stations. These base stations serve a total of 285 users in the system. Each base station

is equipped with M antennas while each user is equipped with N antennas. We consider

the thermal noise figure of 8.3dB and the bandwidth of 15KHz for each tone. Therefore,
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the total noise power per tone is −124dBm/Hz/tone. The transmit power is 46dBm

for 600 tones, i.e., 18.21dBm/tone and we run our algorithm on a single frequency

tone of the OFDM system. We initialize our algorithm with a random transmit and

receive beamformer. Furthermore, we adopt the geometric mean utility function (i.e.,

proportional fairness) in our experiments, that is, uik = log(·) in (3.25).

Figure 4.5: 19-hexagonal wrap around cell layout

In the first numerical experiment, we consider N = 2 antennas at the receivers and

M = 4 antennas at the base stations; and we compare different transceiver design algo-

rithms for this cellular system. The “No Grouping” approach is the WMMSE algorithm

with no grouping [1] while the “Proposed Grouping Approach” represents the results of

performing Algorithm 14 with G = 3 groups. Thus, the “No Grouping” approach serves

all the users simultaneously in a single group, while the grouping approach arranges the

users into three (possibly overlapping) groups which are then served in the TDMA fash-

ion. In the “SVD-MMSE-TDMA” approach, each base station serves its own users in

a TDMA fashion by using the SVD (singular value decomposition) precoder and the

users deploy MMSE receivers. The base stations transmit simultaneously. The “Corre-

lated Signaling” refers to the WMMSE algorithm [1] applied to the extended channel
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over G time slots (defined by block diagonal channel matrices of size MG × NG) to

determine the transmit (resp. receive) beamformers of size MG× d (resp. NG× d). In

the “Random Grouping” approach, we first partition the users randomly into 3 different

groups and then we use WMMSE algorithm for beamformer design within each group

and we also use equal time allocated to all groups. Figure 4.6 represents the rate CDF

(Cumulative Distribution Function) comparison between these methods. The x−axis
corresponds to the rate values and the y−axis is the percentage of the users having

rates smaller than the value on the x−axis. As can be seen from Figure 4.6, the pro-

posed grouping method achieves a substantially higher and, at the same time, more fair

rate distribution than the standard multi-user MIMO strategy (namely, “SVD-MMSE-

TDMA”). Furthermore, there is a small additional gain if Algorithm 2 is used to further

optimize time allocation (i.e., update β using the method in Section 3.1.3). This fig-

ure also shows that correlated signaling does not provide any material improvement in

either the system throughput or user fairness over the proposed grouping approach.
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Figure 4.6: Rate CDF of different methods

Figure 4.7 depicts the convergence speed of the proposed algorithm (with no time

allocation). As can be seen, the algorithm appears to converge in a few iterations where

one iteration consists of one round of updating all the transmit and receive beamform-

ers. This fast convergence property makes the algorithm well-suited for distributed

implementation with low system overhead.
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Figure 4.8 represents the tradeoff between the performance and the convergence

speed while changing the number of groups in the system. We plot the value of the

system utility versus iteration number in the proposed algorithm. As expected, when

the number of groups increases, the convergence speed slows down, but the system

performance improves.

In all above simulations, the number of users is much more than the number of

groups. In the next simulation experiment, we examine the performance of the algorithm

in the scenario that the number of groups is comparable to the number of users. We

consider a small system with 3 cells where there are 2 users in each cell. We consider 2

antennas at the transmit side and one antenna at the receive side. The channel model is

the same as the above channel model and we averaged the results over 50 Monte Carlo

runs with independently generated channels. The results are illustrated in Figure 4.9.

We also observe that when the number of groups is comparable to the number of users,

adjusting the time of each group could improve the performance of the cell-edge users.

In fact, in this simulation, time allocation results in 21% improvement of the cell-edge

users’ rate.

Finally, we use a small example to illustrate how the groups are formed by the

proposed mehtod. We randomly select 7 base stations in the system and in each cell,

we choose 4 random users. Hence, there are a total of 28 users in the system. Table 4.1

represents the rate allocation of different users in different groups. As can be seen from

the table, although we do not have any discrete variables for user grouping in our final
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Figure 4.7: Rate CDF of different methods at various iterations
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problem formulation, the resulting rate allocation divides the users in different groups.

Furthermore, the algorithm have the group sharing property, i.e., some users are served

in multiple groups. This property, which was explained in Example 2 (subsection 3.1.3),

is the result of our problem formulation (3.16).

4.1.3 Beamforming for Max-Min Fairness

Now we present our numerical experiments comparing four different approaches for

the beamformer design in the interfering broadcast channel related to the problem

in subsection 3.1.4. The first approach for designing the beamformers is the simple

“WMMSE” algorithm proposed in [1] for maximizing the weighted sum rate of the

system. Since the sum rate utility function is not a fair utility function among the

users, we also consider the proportional fairness (geometric mean) utility function of

the users. We use the framework in [1], [6] for maximizing the geometric mean utility

function of the system and the resulting plots are denoted by the label “GWMMSE”.

Another way of designing the beamformers for maximizing the performance of the

worst user in the system is to approximate the max-min utility function. One pro-

posed approximation for the max-min utility function could be (see [234]): minik Rik ≈
log
(∑

ik∈I exp(−Rik)
)
. Therefore instead of solving problem (P), we may maximize

the above approximation of the objective by solving the following optimization problem

max
V

∑
ik∈I

exp(−Rik)

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, ∀ k ∈ K.

(4.1)

If we restrict ourselves to the case of dik = 1, ∀ ik ∈ I, then the MSE matrix Eik becomes

a scalar and thus we can denote it by eik . Using the relation (3.7) and plugging in the

optimal value for the matrix Wik yields Rik = log(e−1
ik

). Plugging in this relation
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Table 4.1: Achieved user rates in different groups/time slots

– Achieved rate in group 1 Achieved rate in group 2 Achieved rate in group 3

User 1 0 2.6669 0

User 2 0 4.7570 0

User 3 3.6187 0 0

User 4 4.5252 0 0

User 5 0 0 5.6320

User 6 1.1291 2.3090 0

User 7 1.9406 3.8585 0

User 8 0 0 11.0470

User 9 0 3.7778 4.1621

User 10 0.9279 0 0

User 11 2.5982 0 0

User 12 0 3.4498 0

User 13 0 0 1.7782

User 14 0.8661 0 0

User 15 0 0 3.1569

User 16 0 3.1501 0

User 17 0 3.9681 0

User 18 0 3.1423 0

User 19 7.8421 0 0

User 20 0 0 4.9356

User 21 0 2.3733 0

User 22 0 8.4049 0

User 23 0 0 2.3800

User 24 4.9645 0 0

User 25 6.2302 0 7.4342

User 26 0 4.0770 0

User 27 0 8.7246 0

User 28 3.3389 0 6.0817
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in (4.1), we obtain the equivalent optimization form of (4.1):

min
V

∑
ik∈I

eik

s.t.

Ik∑
i=1

Tr(VikV
H
ik
) ≤ Pk, ∀ k,

(4.2)

which is the well-known sum MSE minimization problem and we use the algorithm

in [235] to solve (4.2). The corresponding plots of this method are labeled by “MMSE”

in our figures.

In our simulations, the first four plots are averaged over 50 channel realizations. In

each channel realization, the channel coefficients are drawn from the zero mean unit

variance i.i.d. Gaussian distribution.

In the first numerical experiment, we considerK = 4 BSs, each equipped withM = 6

antennas. There are I = 3 users in each cell where each of them is equipped with N = 2

antennas. Figure 4.10 and Figure 4.11 respectively represent the rate cumulative rate

distribution function and the minimum rate in the system. The power level Pk is set

to 20dB for all BSs in Figure 4.10. As these figures show, our proposed method yields

substantially more fair rate allocation in the system.

In our second set of numerical experiments in Figure 4.12 and Figure 4.13, we

explore the system with K = 5 cells where each BS serves I = 3 users. The number of

transmit and receive antennas are respectively M = 3 and N = 2. As Figure 4.11 and

Figure 4.13 show, WMMSE and MMSE algorithms could shut off some users and lead

to zero objective function.

Figure 4.14 and Figure 4.15 show the convergence rate of the algorithm while a user

is joining the system. In these plots, there are 5 cells and 2 users in each cell initially

and at iteration 11, another user is added to one of the cells. When the extra user is

added to the system, the power for the users in the same cell is reduced by a factor of
2
3 and the rest of the power is used to serve the joined user initially. The precoder of

the joined user is initialized randomly. Figure 4.14 shows the objective function of (Q)

during the iterations while Figure 4.15 demonstrates the minimum rate of the users in

the system versus the iteration number.
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Figure 4.10: Rate CDF: K = 4, I = 3,M = 6, N = 2, d = 1
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Figure 4.11: Minimum rate in the system versus transmit power

Figure 4.16 and Figure 4.17 represent the performance and the convergence rate of

the algorithm when the channel is changing during the iterations. At iteration 15, the

channel is changed by a Rayleigh fade with power 0.1. As it can be seen from the plots,
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Figure 4.12: Rate CDF: K = 5, I = 3,M = 3, N = 2, d = 1
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Figure 4.13: Minimum rate in the system

the algorithm converges fast and it adapts to the new channel after a few iterations.
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Figure 4.14: WMMSE objective function while adding a User
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Figure 4.15: Minimum rate while adding a User

4.1.4 Expected Sum-Rate Maximization

In this subsection we numerically evaluate the performance of the SSUM algorithm

for maximizing the expected sum-rate in a wireless network. In our simulations, we



125

0 5 10 15 20 25 30
−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

Iteration Number

O
bj

ec
tiv

e 
F

un
ct

io
n 

in
 (

Q
)

Changing the Channel

Figure 4.16: WMMSE objective function while changing the channel
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Figure 4.17: Minimum rate while changing the channel

consider K = 57 base stations each equipped with M = 4 antennas and serve a two

antenna user in its own cell. The path loss and the power budget of the transmitters are

generated using the 3GPP (TR 36.814) evaluation methodology [233]. We assume that
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partial channel state information is available for some of the links. In particular, each

user estimates only its direct link, plus the interfering links whose powers are at most

η (dB) below its direct channel power. For these estimated links, we assume a channel

estimation error model in the form of ĥ = h+ z, where h is the actual channel; ĥ is the

estimated channel, and z is the estimation error. Given a MMSE channel estimate ĥ,

we can determine the distribution of h as CN (ĥ,
σ2
l

1+γSNR) where γ is the effective signal

to noise ratio (SNR) coefficient depending on the system parameters (e.g. the number

of pilot symbols used for channel estimation) and σl is the path loss. Moreover, for the

channels which are not estimated, we assume the availability of estimates of the path

loss σl and use them to construct statistical models (Rayleigh fading is considered on

top of the path loss).

We compare the performance of four different algorithms: one sample WMMSE,

mean WMMSE, stochastic gradient, and Stochastic WMMSE. In “one sample WMMSE”

and “mean WMMSE”, we apply the WMMSE algorithm [1] on one realization of all

channels and mean channel matrices respectively. In the SG method, we apply the

stochastic gradient method with diminishing step size rule to the ergodic sum rate max-

imization problem; see Section 3.3.6. Figure 4.18 shows our simulation results when each

user only estimates about 3% of its channels, while the others are generated syntheti-

cally according to the channel distributions. The expected sum rate in each iteration

is approximated in this figure by a Monte-Carlo averaging over 500 independent chan-

nel realizations. As can be seen from Figure 4.18, the Stochastic WMMSE algorithm

significantly outperforms the rest of the algorithms. Although the stochastic gradi-

ent algorithm with diminishing step size (of order 1/r) is guaranteed to converge to a

stationary solution, its convergence speed is sensitive to the step size selection and is

usually slow. We have also experimented the SG method with different constant step

sizes in our numerical simulations, but they typically led to divergence.

In Figure 4.18, we set η = 6, γ = 1 and consequently only 3% of the channel

matrices are estimated, while the rest are generated by their path loss coefficients plus

Rayleigh fading. The signal to noise ratio is set SNR = 15 (dB). Figure 4.19 illustrates

the performance of the algorithms for η = 12 whereby about 6% of the channels are

estimated.
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Figure 4.18: Expected sum rate: η = 6)
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Figure 4.19: Expected sum rate: η = 12
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4.2 Dictionary Learning for Sparse Represnetation

In this section, we apply the proposed sparse dictionary learning methods in subsec-

tion 3.2.4, namely algorithm 19, to the image denoising application; and compare its
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K−SVD Algorithm 2

K−SVD (zoomed in) Algorithm 2 (zoomed in)

Figure 4.20: Sample denoised images (σ = 100).

performance with that of the K-SVD algorithm proposed in [165] (and summarized in

Algorithm 22). As a test case, we use the image of Lena corrupted by additive Gaussian

noise with various variances (σ2).

In Algorithm 22, Ri,jS denotes the image patch centered at (i, j) coordinate. In

step 2, dictionary A is trained to sparsely represent noisy image patches by using either

K-SVD algorithm or Algorithm 19. The term xi,j denotes the sparse representation

coefficient of the patch (i, j). In K-SVD, it (approximately) solves ℓ0-norm regular-

ized problem (4.3) by using orthogonal matching pursuit (OMP) to update X. In our

approach, we use Algorithm 19 with A = {A | ∥ai∥ ≤ 1, ∀ i = 1, · · · , N} to solve the

ℓ1-penalized dictionary learning formulation (4.4). We set µi,j = c(0.0015σ+0.2), ∀ i, j,
in (4.4) with c = 1

I×J

∑
i,j ∥Ri,jS∥2, and I×J denotes the total number of image patches.

This choice of the parameter µij intuitively means that we emphasize on sparsity more

in the presence of stronger noise. Numerical values (0.0015, 0.2) are determined exper-

imentally. The final denoised image S is obtained by (4.5) and setting β = 30/σ, as

suggested in [165].
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σ/PSNR DCT K-SVD Algorithm 19
20/22.11 32 32.38 30.88
60/12.57 26.59 26.86 26.37
100/8.132 24.42 24.45 24.46
140/5.208 22.96 22.93 23.11
180/3.025 21.73 21.69 21.96

Table 4.2: Image denoising result comparison on “Lena”

Algorithm 22 Image denoising using K-SVD or algorithm 19

Require: noisy image Y, noise variance σ2

Ensure: denoised image S
1: Initialization: S = Y, A = overcomplete DCT dictionary
2: Dictionary learning:

K-SVD:

min
A,X

∑
i,j

µij∥xi,j∥0 +
∑
i,j

∥Axi,j −Ri,jS∥2 (4.3)

Algorithm 19:

min
A∈A,X

∑
i,j

µij∥xi,j∥1 +
∑
i,j

∥Axi,j −Ri,jS∥2 (4.4)

3: S update:

S = (βI+
∑
i,j

RT
i,jRi,j)

−1(βY +
∑
i,j

RT
i,jAxi,j) (4.5)

The final peak signal-to-noise ratio (PSNR) comparison is summarized in Table 4.2;

and sample images are presented in Figure 4.20. As can be seen in Table 4.2, the

resulting PSNR values of the proposed algorithm are comparable with the ones obtained

by K-SVD, where the results are averaged over 10 Monte-Carlo runs. However, visually,

K-SVD produces more noticeable artifacts (see the circled spot in Figure 4.20) than our

proposed algorithm. The artifacts may be due to the use of OMP in K-SVD which is

less robust to noise than the ℓ1-regularizer used in Algorithm 19. As for the CPU time,

the two algorithms perform similarly in the numerical experiments.



Chapter 5

Future Work

Here we briefly outline some of the possible future directions of this research:

• Parallel methods for stochastic optimization: Big data problems typically

requires data-fetching since accessing to the whole data is not possible. Is it

possible to extend our proposed parallel framework to the stochastic problems in

order to solve the big data problems with data-fetching?

• Solving the optimization problems over the network of computing nodes:

Our proposed parallel processing framework assumes that the computing nodes

are fully connected. What happens if they are not fully connected?

• Sparse dictionary learning problem with parallel processing: It is very

natural to apply the RPSUM framework to the discussed sparse dictionary learning

problem. The performance of such an algorithm should be evaluated numerically

and on real data.

• Detailed computational complexity analysis of the dictionary learning

problem: Our NP-hardness result of the sparse dictionary learning problem re-

quires that both the number of samples and the data dimension to increase. What

is the computational complexity status of the problem when one of these variables

is fixed?

• Generalization of the SSUM algorithm to the Markov chain scenario:

In many practical scenarios, the random samples of the stochastic optimization

130
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problem is not independent. For example, in the beamformer design problem,

when the samples are obtained using the estimation of the channels, it is more

reasonable to model the samples as a Markov chain rather than i.i.d samples. How

does the SSUM framework perform on this setup?

• Dealing with users joining/leaving the network in the modern heteroge-

nous networks: In a wireless heterogenous network, the users may join or leave

the network at any time. How should a beamfoming algorithm respond to such

changes?

• Joint beamfroming, scheduling, base-station assignment, and traffic en-

gineering in the heterogenous networks: Here we proposed an algorithm for

the joint beamforming and scheduling problem. However, in the modern het-

erogenous networks, each user may connect to different base stations and also the

packet of each user may be routed in different ways. What is the optimal strategy

for transmitting a packet from the cloud center to the users in the system?

• Non-asymptotic convergence analysis of the deterministic parallel suc-

cessive upper-bound minimization algorithm: In this reseach, we analyzed

the iteration complexity of the RPSUM algorithm. What happens if the blocks

are chosen based on the essentially coverable update rule?

• Iteration complexity analysis of the diminishing step-size selection rule:

In all the iteration complexity analyses of this dissertation, the step-size is constant

and fixed. It is interesting to study the diminishing step-size selection rule as well.

The result of this study could shed light on the choice of the diminishing step-size

selection rule.

• Convergence of non-convex ADMM/BSUM-M framework: In many prac-

tical optimization problems, the objective function is non-convex. What can we

say about the convergence of ADMM/BSUM-M framework when it is applied to

non-convex problems?

• Accelerated versions of the proposed methods: It is well-known that the

gradient descent method and many other first order algorithms could be acceler-

ated to obtain O(1/r2) convergence rate. Is it possible to accelerate the BSUM
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framework algorithms?

• Does the randomization help to solve the non-cooperative games: Con-

sider a simple scenario of solving a system of linear equations with Gauss-Seidel

method. As discussed in this dissertation, in order for the Gauss-Seidel method to

converge, it is sufficient and necessary that certain linear mapping (which depends

on the coefficients matrix) be contraction. In the randomized setup, the matrix

which is multiplied to the iterates is no longer fixed. What is the necessary and

sufficient condition for the randomized method to converge? This problem seems

to be related to the largest Lyapunov exponent of the random matrices product.
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Appendix A

Proofs

Proof of Theorem 1: First of all since the approximate functions are upper-bounds

of the original functions, all the iterates are feasible in the algorithm. Moreover, due to

the upper-bound and function value consistency assumptions, it is not hard to see that

h0(x
r+1) ≤ h̃0(x

r+1, xr) ≤ γh̃0(x̂
r, xr) + (1− γ)h̃0(x

r, xr) ≤ h̃0(x
r, xr) = h0(x

r),

where the second inequality is the result of convexity of h̃0(·, xr). Hence, the objective

value is nonincreasing and we must have

lim
r→∞

h0(x
r) = h0(x̄), (A.1)

and

lim
r→∞

h̃0(x̂
r, xr) = h0(x̄). (A.2)

Let {xrj}∞j=1 be the subsequence converging to the limit point x̄. Consider any fixed

point x′ satisfying

h̃i(x
′, x̄) < 0, ∀i = 1, 2, . . . ,m. (A.3)
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Then for j sufficiently large, we must have

h̃i(x
′, xrj ) < 0, ∀i = 1, 2, . . . ,m,

i.e., x′ is a strictly feasible point at the iteration rj . Therefore,

h̃0(x̂
rj , xrj ) ≤ h̃0(x

′, xrj ),

due to the definition of x̂rj . Letting j →∞ and using (A.2), we have

h̃0(x̄, x̄) ≤ h̃0(x
′, x̄).

Notice that this inequality holds for any x′ satisfying (A.3). Combining this fact with

the convexity of h̃i(·, x̄) and the Slater condition implies that

x̄ ∈ argmin
x

h̃0(x, x̄)

s.t. h̃i(x, x̄) ≤ 0, ∀i = 1, . . . ,m.

Since the Slater condition is satisfied, using the gradient consistency assumption, the

KKT condition of the above optimization problem implies that there exist λ1, . . . , λm ≥
0 such that

0 ∈ ∇f0(x̄) + ∂g0(x̄) +

m∑
i=1

λi (∇fi(x̄) + ∂gi(x̄))

f̃i(x̄, x̄) + gi(x̄) ≤ 0, ∀i = 1, . . . ,m,

λi

(
f̃i(x̄, x̄) + gi(x̄)

)
= 0, ∀i = 1, . . . ,m.

Using the upper-bound and the objective value consistency assumptions, we have

0 ∈ ∇f0(x̄) + ∂g0(x̄) +

m∑
i=1

λi (∇fi(x̄) + ∂gi(x̄))

fi(x̄) + gi(x̄) ≤ 0, ∀i = 1, . . . ,m,

λi (fi(x̄) + gi(x̄)) = 0, ∀i = 1, . . . ,m,
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which completes the proof. �

Proof of Theorem 2: The proof of part (a) is similar to the one in [13] for block

coordinate descent approach. First of all, since a locally tight upper bound of f(·) is

minimized at each iteration, we have

f(x0) ≥ f(x1) ≥ f(x2) ≥ . . . . (A.4)

Consider a limit point z. Combining (A.4) with the continuity of f(·) implies

lim
r→∞

f(xr) = f(z). (A.5)

Let us consider the subsequence {xrj} converging to the limit point z. Since the

number of blocks is finite, there exists a block which is updated infinitely often in

the subsequence {rj}. Without loss of generality, we assume that block n is updated

infinitely often. Thus, by further restricting to a subsequence, we can write

x
rj
n = argmin

xn

un(xn, x
rj−1).

Now we prove that xrj+1 → z, in other words, we will show that x
rj+1
1 → z1. Assume

the contrary that x
rj+1
1 does not converge to z1. Therefore by further restricting to a

subsequence, there exists γ̄ > 0 such that

γ̄ ≤ γrj = ∥xrj+1
1 − x

rj
1 ∥, ∀ rj .

Let us normalize the difference between x
rj
1 and x

rj+1
1 , i.e.,

srj , x
rj+1
1 − x

rj
1

γrj
.

Notice that ∥srj∥ = 1, thus srj belongs to a compact set and it has a limit point s̄. By
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further restricting to a subsequence that converges to s̄, using (2.4) and (2.5), we obtain

f(xrj+1) ≤ u1(x
rj+1
1 , xrj ) (A.6)

= u1(x
rj
1 + γrjsrj , xrj ) (A.7)

≤ u1(x
rj
1 + ϵγ̄srj , xrj ), ∀ ϵ ∈ [0, 1] (A.8)

≤ u1(x
rj
1 , xrj ) (A.9)

= f(xrj ), (A.10)

where (A.6) and (A.10) hold due to (2.4) and (2.5). The inequalities (A.8) and (A.9) are

the result of quasi-convexity of u(·, xrj ). Letting j → ∞ and combining (A.6), (A.8),

(A.5), and (A.10) imply

f(z) ≤ u1(z1 + ϵγ̄s̄, z) ≤ f(z), ∀ ϵ ∈ [0, 1],

or equivalently

f(z) = u1(z1 + ϵγ̄s̄, z), ∀ ϵ ∈ [0, 1]. (A.11)

Furthermore,

u1(x
rj+1

1 , xrj+1) = f(xrj+1) ≤ f(xrj+1)

≤ u1(x
rj+1
1 , xrj ) ≤ u1(x1, x

rj ), ∀ x1 ∈ X1.

Letting j →∞, we obtain

u1(z1, z) ≤ u1(x1, z), ∀ x1 ∈ X1,

which further implies that z1 is the minimizer of u1(·, z). On the other hand, we as-

sume that the minimizer is unique, which contradicts (A.11). Therefore, the contrary

assumption is not true, i.e., xrj+1 → z.

Since x
rj+1
1 = argminx1∈X1 u1(x1, x

rj ), we get

u1(x
rj+1
1 , xrj ) ≤ u1(x1, x

rj ) ∀ x1 ∈ X1.
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Taking the limit j →∞ implies

u1(z1, z) ≤ u1(x1, z) ∀ x1 ∈ X1,

which further implies

u′1(x1, z; d1)

∣∣∣∣
x1=z1

≥ 0, ∀ d1 ∈ Rm1 with z1 + d1 ∈ X1.

Similarly, by repeating the above argument for the other blocks, we obtain

u′k(xk, z; dk)

∣∣∣∣
xk=zk

≥ 0, ∀ dk ∈ Rmk with dk+zk ∈ Xk, ∀ k = 1, . . . , n. (A.12)

Combining (2.6) and (A.12) implies

f ′(z; d) ≥ 0, ∀ d = (0, . . . , dk, . . . , 0) s.t. d+ z ∈ X , ∀ k

in other words, z is the coordinatewise minimum of f(·).

Now we prove part (b) of the theorem. Without loss of generality, let us assume that

(2.3) has a unique solution at every point xr−1 for i = 1, 2, . . . , n− 1. Since the iterates

lie in a compact set, we only need to show that every limit point of the iterates is a

stationary point of f(·). To do so, let us consider a subsequence {xrj} which converges

to a limit point z ∈ X 0 ⊆ X . Since the number of blocks is finite, there exists a block i

which is updated infinitely often in the subsequence {xrj}. By further restricting to a

subsequence, we can assume that

x
rj
i ∈ argmin

xi

ui(xi, x
rj−1).

Since all the iterates lie in a compact set, we can further restrict to a subsequence such

that

lim
j→∞

xrj−i+k = zk, ∀ k = 0, 1, . . . , n,

where zk ∈ X 0 ⊆ X and zi = z. Moreover, due to the update rule in the algorithm, we
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have

uk(x
rj−i+k
k , xrj−i+k−1) ≤ uk(xk, x

rj−i+k−1), ∀ xk ∈ Xk, k = 1, 2, . . . , n.

Taking the limit j →∞, we obtain

uk(z
k
k , z

k−1) ≤ uk(xk, z
k−1), ∀ xk ∈ Xk, k = 1, 2, . . . , n. (A.13)

This, plus (2.4) and (2.5), implies

f(zk) ≤ uk(z
k
k , z

k−1) ≤ uk(z
k−1
k , zk−1) = f(zk−1), k = 1, . . . , n. (A.14)

On the other hand, the objective function is non-increasing in the algorithm and it has

a limit. Thus, due to the continuity of f(·), we have

f(z0) = f(z1) = . . . = f(zn). (A.15)

Using (A.14), (A.15), and (A.13), we obtain

f(z) = uk(z
k
k , z

k−1) ≤ uk(xk, z
k−1), ∀ xk ∈ Xk, k = 1, 2, . . . , n. (A.16)

Furthermore, f(z) = f(zk−1) = uk(z
k−1
k , zk−1) and therefore,

uk(z
k−1
k , zk−1) ≤ uk(xk, z

k−1), ∀ xk ∈ Xk, k = 1, 2, . . . , n. (A.17)

The inequalities (A.16) and (A.17) imply that zk−1
k and zkk are both the minimizer of

uk(·, zk−1). However, according to our assumption, the minimizer is unique for k =

1, 2, . . . , n− 1 and therefore,

z0 = z1 = z2 = . . . = zn−1 = z

Plugging the above relation in (A.13) implies

uk(zk, z) ≤ uk(xk, z), ∀ xk ∈ Xk, k = 1, 2, . . . , n− 1. (A.18)
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Moreover, by setting k = n in (A.17), we obtain

un(zn, z) ≤ un(xn, z), ∀ xn ∈ Xn. (A.19)

The inequalities (A.18) and (A.19) imply that

u′k(xk, z; dk)

∣∣∣∣
xk=zk

≥ 0, ∀ dk ∈ Rmk with zk + dk ∈ Xk, k = 1, 2, . . . , n.

Combining this with (2.6) yields

f ′(z; d) ≥ 0, ∀ d = (0, . . . , dk, . . . , 0) with zk + dk ∈ Xk, k = 1, 2, . . . , n,

which implies the stationarity of the point z due to the regularity of f(·). �
Proof of Theorem 3: First of all, due to update rule of the algorithm and the upper-

bound assumption, one can write

E
[
f(xr+1) | xr

]
≤

n∑
i=1

pri min
xi

ui(xi, x
r)

= f(xr)−
n∑

i=1

pri

(
f(xr)−min

xi

ui(xi, x
r)

)
,

which implies that f(xr) is a supermartingale; therefore f(xr) converges [236, Proposi-

tion 4.2], and

∞∑
r=1

n∑
i=1

pri

(
f(xr)−min

xi

ui(xi, x
r)

)
<∞, almost surely.

Since pri ≥ pmin > 0, ∀i, r, we must have that

lim
r→∞

(
(xr)−min

xi

ui(xi, x
r)

)
= 0, ∀i, almost surely. (A.20)

Now let us restrict our analysis to the set of realizations for which the above result

holds. Consider a limit point x̄ with {xrj} converging to x̄. Since limr→∞ f(xr) = f(x̄),
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from (A.20) we obtain

lim
j→∞

min
xi

ui(xi, x
rj ) = f(x̄), ∀i. (A.21)

Furthermore, clearly, one can write

min
xi

ui(xi, x
rj ) ≤ ui(yi, x

rj ), ∀yi ∈ Xi, ∀i. (A.22)

Combining (A.21) and (A.22), we obtain

f(x̄) ≤ ui(yi, x̄), ∀yi ∈ Xi, ∀i,

or in other words, due to the function value consistency assumption, we have

ui(x̄i, x̄) ≤ ui(yi, x̄), ∀yi ∈ Xi, ∀i.

Checking the first order optimality condition combined with the gradient consistency

assumption will complete the proof. �

Proof of Theorem 6: Let us define Ri(y) to be the minimum objective value of the

i-th subproblem at a point y, i.e.,

Ri(y) , min
xi

ui(xi, y).

Using a similar argument as in Theorem 2, we can show that the sequence of the

objective function values are non-increasing, that is

f(xr) = ui(x
r
i , x

r) ≥ Ri(x
r) ≥ f(xr+1).

Let {xrj} be the subsequence converging to a limit point z. For every fixed block index
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i = 1, 2, . . . , n and every xi ∈ Xi, we have the following series of inequalities

ui(xi, x
rj ) ≥ Ri(x

rj )

≥ uk(x
rj+1
k , xrj )

≥ f(xrj+1)

≥ f(xrj+1)

= ui(x
rj+1

i , xrj+1),

where we use k to index the block that provides the maximum improvement at iteration

rj + 1. The first and the second inequalities are due to the definition of the function

Ri(·) and the MISUM update rule, respectively. The third inequality is implied by the

upper bound assumption (2.5), while the last inequality is due to the non-increasing

property of the objective values.

Letting j →∞, we obtain

ui(xi, z) ≥ ui(zi, z), ∀ xi ∈ Xi, i = 1, 2, . . . , n.

The first order optimality condition implies

u′i(xi, z; di)

∣∣∣∣
xi=zi

≥ 0, ∀ di with zi + di ∈ Xi, ∀ i = 1, 2, . . . , n.

Combining this with (2.6) yields

f ′(z; d) ≥ 0, ∀ d = (0, . . . , di, . . . , 0) with zi + di ∈ Xi, i = 1, 2, . . . , n.

In other words, z is the coordinatewise minimum of f(·). �

Proof of Theorem 7: First of all, due to the use of Armijo step size selection rule, we

have

f(xr)− f(xr+1) ≥ −σαrf ′(xr; dr) ≥ 0. (A.23)

Consider a limit point z and a subsequence {xrj}j converging to z. Since {f(xr)} is a
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monotonically decreasing sequence, it follows that

lim
r→∞

f(xr) = f(z).

Moreover, (A.23) implies

lim
r→∞

αrf ′(xr; dr) = 0. (A.24)

By further restricting to a subsequence if necessary, we can assume without loss of

generality that in the subsequence {xrj}j the first block is updated. We first claim that

we can restrict to a further subsequence if necessary so that

lim
j→∞

drj+1 = 0. (A.25)

We prove this by contradiction. Let us assume the contrary so that there exists a

δ, 0 < δ < 1 and an ℓ ∈ {1, 2, . . .} with

∥drj+1∥ ≥ δ, ∀ j ≥ ℓ. (A.26)

Define prj+1 = drj+1

∥drj+1∥
. The equation (A.24) implies αrj+1∥drj+1∥f ′(xrj ; prj+1) → 0.

We consider the following two cases:

Case A: f ′(xrj ; prj+1) → 0 along a subsequence of {rj}. Let us restrict ourselves to

that subsequence. Since ∥prj+1∥ = 1, there exists a limit point p̄. By further restricting

to a subsequence and using the smoothness of f(·), we obtain

f ′(z; p̄) = 0. (A.27)

Furthermore, due to the strict convexity of h1(·, z),

h1(z1 + δp̄1, z) > h1(z1, z) + δh′1(x1, z; p̄1)

∣∣∣∣
x1=z1

≥ h1(z1, z), (A.28)

where p̄1 is the first block of p̄ and the last step is due to (A.27) and (2.8). On the

other hand, since x
rj+1
1 + δp

rj
1 lies between x

rj
1 and y

rj
1 , we have (from the convexity of

h1(·, xrj ))
h1(x

rj
1 + δp

rj+1
1 , xrj ) ≤ h1(x

rj
1 , xrj ).
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Letting j →∞ along the subsequence, we obtain

h1(z1 + δp̄1, z) ≤ h1(z1, z), (A.29)

which contradicts (A.28).

Case B: αrj+1∥drj+1∥ → 0 along a subsequence. Let us restrict ourselves to that

subsequence. Due to the hypothesis (A.26),

lim
j→∞

αrj+1 = 0,

which further implies that there exists j0 ∈ {1, 2, . . .} such that

f(xrj +
αrj+1

β
drj+1)− f(xrj ) > σ

αrj+1

β
f ′(xrj ; drj+1), ∀ j ≥ j0.

Rearranging the terms, we obtain

f(xrj + αrj+1

β ∥drj+1∥prj+1)− f(xrj )

αrj+1

β ∥drj+1∥
> σf ′(xrj ; prj+1), ∀ j ≤ j0.

Letting j →∞ along the subsequence that prj+1 → p̄, we obtain

f ′(z; p̄) ≥ σf ′(z; p̄),

which implies f(z; p̄) ≥ 0 since σ < 1. Therefore, using an argument similar to the

previous case, (A.28) and (A.29) hold, which is a contradiction. Thus, the assumption

(A.26) must be false and the condition (A.25) must hold. On the other hand, y
rj+1
1 is

the minimizer of h1(·, xrj ); thus,

h1(y
rj+1
1 , xrj ) ≤ h1(x1, x

rj ), ∀ x1 ∈ X1. (A.30)

Note that y
rj+1
1 = x

rj
1 + d

rj+1
1 . Combining (A.25) and (A.30) and letting j →∞ yield

h1(z1, z) ≤ h1(x1, z), ∀ x1 ∈ X1.
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The first order optimality condition and assumption (2.8) imply

f ′(z; d) ≥ 0, ∀ d = (d1, 0, . . . , 0) with z1 + d1 ∈ X1.

On the other hand, since drj+1 → 0, it follows that

lim
j→∞

xrj+1 = z.

Therefore, by restricting ourselves to the subsequence that drj+1 → 0 and repeating the

above argument n times, we obtain

f ′(z; d) ≥ 0, ∀ d = (0, . . . , dk, . . . , 0) with zk + dk ∈ Xk; k = 1, . . . , n.

Using the regularity of f(·) at point z completes the proof. �

Proof of Theorem 9: We will first prove that limr→∞ ∥x̂r−xr∥ = 0, with probability

one. To show this, let us first bound the change in the objective value in the consecutive

steps of the algorithm:

h(xr+1) = f(xr+1) +
∑
i

gi(x
r+1
i )

= f(xr+1) +
∑
i/∈Sr

gi(x
r
i ) +

∑
i∈Sr

gi (x
r
i + γr(x̂ri − xri ))

≤ f(xr+1) +
∑
i

gi(x
r
i ) + γr

∑
i∈Sr

(gi(x̂
r
i )− gi(x

r
i ))

≤ f(xr) + γr⟨∇xf(x
r), x̂r − xr⟩Sr +

(γr)2L∇F

2
∥x̂r − xr∥2Sr

+
∑
i

gi(x
r
i ) + γr

∑
i∈Sr

(gi(x̂
r
i )− gi(x

r
i ))

= h(xr) +
(γr)2L∇f

2
∥x̂r − xr∥2Sr

+ γr

(
⟨∇xf(x

r), x̂r − xr⟩Sr +
∑
i∈Sr

(gi(x̂
r
i )− gi(x

r
i ))

)
, (A.31)

where the first inequality is due to convexity of g(·); the second inequality is due to the
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Lipschitz continuity of ∇f(·); and we have also use the notation ⟨a, b⟩S ,
∑

i∈S⟨ai, bi⟩
and ∥a∥2S , ⟨a, a⟩. In order to get a typical sufficient decrease bound, we next need to

bound the last term in (A.31) by noticing that h̃i is strongly convex and therefore using

the definition of x̂ri , we have

h̃i(x
r
i , x

r) ≥ h̃i(x̂
r
i , x

r) +
τmin

2
∥x̂ri − xri ∥2, ∀i ∈ Sr,

where τmin , mini τi. Substituting the definition of h̃i and multiplying both sides by

minus one imply

−f̃i(xri , xr)− gi(x
r
i ) ≤ −f̃i(x̂ri , xr)− gi(x̂

r
i )−

τmin

2
∥x̂ri − xri ∥2.

Linearizing the smooth part and using the gradient consistency assumption (2.16) lead

to

⟨∇xif(x
r), x̂ri − xri ⟩+ gi(x̂

r
i )− gi(x

r
i ) ≤ −

τmin

2
∥x̂ri − xri ∥2.

Summing up the above inequality over all i ∈ Sr, we obtain

⟨∇xf(x
r), x̂r − xr⟩Sr +

∑
i∈Sr

(gi(x̂
r
i )− gi(x

r
i )) ≤ −

τmin

2
∥x̂r − xr∥2Sr , (A.32)

where x̂r , (x̂ri )
n
i=1. Combining (A.31) and (A.32) leads to

h(xr+1) ≤ h(xr) +
γr(−τmin + γrL∇f )

2
∥x̂r − xr∥2Sr .

Since lim supr→∞ γr < γ̄, for sufficiently large r, there exists β > 0 such that

h(xr+1) ≤ h(xr)− βγr∥x̂r − xr∥2Sr . (A.33)

Taking the conditional expectation from both sides implies

E[h(xr+1) | xr] ≤ h(xr)− βγrE[
n∑

i=1

Rr
i ∥x̂ri − xri ∥2 | xr], (A.34)

where Rr
i is a Bernoulli random variable which is one if i ∈ Sr and it is zero otherwise.
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Clearly, E[Rr
i | xr] = pri and therefore,

E[h(xr+1) | xr] ≤ h(xr)− βγrpmin∥x̂r − xr∥2, ∀r, (A.35)

and therefore {h(xr)} is a supermartingale and by the supermartingale convergence

theorem [236, Proposition 4.2], h(xr) converges and we have

∞∑
r=1

γr∥x̂r − xr∥2 <∞, almost surely. (A.36)

Let us now restrict our analysis to the set of probability one for which h(xr) converges

and
∑∞

r=1 γ
r∥x̂r − xr∥2 < ∞. Fix a realization in that set. The equation (A.36)

simply implies that, in the considered set of realizations, lim infr→∞ ∥x̂r − xr∥ = 0,

since
∑

r γ
r =∞. Next we strengthen this result by proving that limr→∞ ∥x̂r−xr∥ = 0

over the considered set of probability one. Consider the contrary that there exists δ > 0

such that ∆r , ∥x̂r − xr∥ ≥ 2δ infinitely often. Since lim infr→∞∆r = 0, there exists a

subset of indices K and {ir} such that for any r ∈ K,

∆r < δ (A.37)

2δ < ∆ir (A.38)

δ ≤ ∆j ≤ 2δ, ∀j = r + 1, . . . , ir − 1. (A.39)

Clearly,

δ −∆r
(i)

≤ ∆r+1 −∆r = ∥x̂r+1 − xr+1∥ − ∥x̂r − xr∥
(ii)

≤ ∥x̂r+1 − x̂r∥+ ∥xr+1 − xr∥
(iii)

≤ (1 + L̂)∥xr+1 − xr∥
(iv)
= (1 + L̂)γr∥x̂r − xr∥ ≤ (1 + L̂)γrδ, (A.40)

where (i) and (ii) are due to (A.39) and the triangle inequality, respectively. The

inequality (iii) is the result of Lemma 1 with L̂ ,
√
nL̃

τmin
defined in Lemma 1; and (iv) is

followed from the iteration update rule of the algorithm. Since lim supr→∞ γr < 1
1+L̂

,
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the above inequality implies that for r large enough, there exists an α > 0 such that

∆r > α. (A.41)

Furthermore, since the chosen realization satisfies (A.36), we have that

lim
r→∞

ir−1∑
t=r

γt(∆t)2 = 0. (A.42)

Combining (A.39), (A.41), and (A.42), we obtain

lim
r→∞

ir−1∑
t=r

γt = 0. (A.43)

On the other hand, using the similar reasoning as in above, we have

δ < ∆ir −∆r = ∥x̂ir − xir∥ − ∥x̂r − xr∥

≤ ∥x̂ir − x̂r∥+ ∥xir − xr∥

≤ (1 + L̂)

ir−1∑
t=r

γt∥x̂t − xt∥

≤ 2δ(1 + L̂)

ir−1∑
t=r

γt,

and hence lim infr→∞
∑ir−1

t=r γt > 0, which contradicts (A.43). Therefore the contrary

assumption does not hold and we must have limr→∞ ∥x̂r − xr∥ = 0, almost surely.

Consider a limit point x̄ with the subsequence {xrj}∞j=1 converging to x̄. Using the

definition of x̂rj , we have

lim
j→∞

h̃i(x̂
rj
i , xrj ) ≤ h̃i(xi, x

rj ), ∀xi ∈ Xi, ∀i.

Therefore, by letting j →∞ and using the fact that limr→∞ ∥x̂r−xr∥ = 0, almost surely,

we obtain

h̃i(x̄i, x̄) ≤ h̃i(xi, x̄), ∀xi ∈ Xi, ∀i, almost surely,
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which in turn, using the gradient consistency assumption, implies

⟨∇f(x̄) + d, x− x̄⟩ ≥ 0, ∀x ∈ X ,

for some d ∈ ∂g(x̄), i.e., x̄ is a stationary point of (2.12) with probability one. �

Proof of Theorem 11:

To simplify the presentation of the proof, let us define

ỹri , arg min
yi∈Xi

⟨∇xif(x
r), yi − xri ⟩+ gi(yi) +

1

2
∥yi − xri ∥2.

Clearly, ∇̃h(xr) = (xri − ỹri )
n
i=1. The first order optimality condition of the above opti-

mization problem implies

⟨∇xif(x
r) + ỹri − xri , xi − ỹri ⟩+ gi(xi)− gi(ỹ

r
i ) ≥ 0, ∀xi ∈ Xi. (A.44)

Furthermore, based on the definition of x̂ri , we have

⟨∇xi f̃i(x̂
r
i , x

r), xi − x̂ri ⟩+ gi(xi)− gi(x̂
r
i ) ≥ 0, ∀xi ∈ Xi. (A.45)

Plugging in the points x̂ri and ỹri in (A.44) and (A.45); and summing up the two equa-

tions will yield to

⟨∇xi f̃i(x̂
r
i , x

r)−∇xif(x
r) + xri − ỹri , ỹ

r
i − x̂ri ⟩ ≥ 0.

Using the gradient consistency assumption, we can write

⟨∇xi f̃i(x̂
r
i , x

r)−∇xi f̃i(x
r
i , x

r) + xri − x̂ri + x̂ri − ỹri , ỹ
r
i − x̂ri ⟩ ≥ 0,

or equivalently,

⟨∇xi f̃i(x̂
r
i , x

r)−∇xi f̃i(x
r
i , x

r) + xri − x̂ri , ỹ
r
i − x̂ri ⟩ ≥ ∥x̂ri − ỹri ∥2.
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Applying the Cauchy-Schwarz and the triangle inequality will yield to(
∥∇xi f̃i(x̂

r
i , x

r)−∇xi f̃i(x
r
i , x

r)∥+ ∥xri − x̂ri ∥
)
∥ỹri − x̂ri ∥ ≥ ∥x̂ri − ỹri ∥2.

Since the function f̃i(·, x) is Lipschitz, we must have

∥x̂ri − ỹri ∥ ≤ (1 + Li)∥xri − x̂ri ∥ (A.46)

Using the inequality (A.46), the norm of the proximal gradient of the objective can be

bounded by

∥∇̃h(xr)∥2 =
n∑

i=1

∥xri − ỹri ∥2

≤ 2

n∑
i=1

(
∥xri − x̂ri ∥2 + ∥x̂ri − ỹri ∥2

)
≤ 2

n∑
i=1

(
∥xri − x̂ri ∥2 + (1 + Li)

2∥xri − x̂ri ∥2
)

≤ 2(2 + 2L+ L2)∥x̂r − xr∥2.

Combining the above inequality with the sufficient decrease bound in (A.34), one can

write

T∑
r=0

E
[
∥∇̃h(xr)∥2

]
≤

T∑
r=1

2(2 + 2L+ L2)E
[
∥x̂r − xr∥2

]
≤

T∑
r=0

2(2 + 2L+ L2)

β̂
E
[
h(xr)− h(xr+1)

]
≤ 2(2 + 2L+ L2)

β̂
E
[
h(x0)− h(xT+1)

]
≤ 2(2 + 2L+ L2)

β̂

[
h(x0)− h∗

]
= κ,

which implies that Tϵ ≤ κ
ϵ . �

Proof of Lemma 4:
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The proof requires the use of quasi martingale convergence theorem [237], much like

the convergence proof of online learning algorithms [175, Proposition 3]. In particular,

we will show that the sequence {f̂ r(xr)}∞r=1 converges almost surely. Notice that

f̂ r+1(xr+1)− f̂ r(xr)

= f̂ r+1(xr+1)− f̂ r+1(xr) + f̂ r+1(xr)− f̂ r(xr)

= f̂ r+1(xr+1)− f̂ r+1(xr) +
1

r + 1

r+1∑
i=1

ĝ(xr, xi−1, ξi)− 1

r

r∑
i=1

ĝ(xr, xi−1, ξi)

= f̂ r+1(xr+1)− f̂ r+1(xr)− 1

r(r + 1)

r∑
i=1

ĝ(xr, xi−1, ξi) +
1

r + 1
ĝ(xr, xr, ξr+1)

= f̂ r+1(xr+1)− f̂ r+1(xr)− f̂ r(xr)

r + 1
+

1

r + 1
g(xr, ξr+1)

≤ −f̂
r(xr) + g(xr, ξr+1)

r + 1
,

where the last equality is due to the assumption A1 and the inequality is due to the

update rule of the SSUM algorithm. Taking the expectation with respect to the natural

history yields

E
[
f̂ r+1(xr+1)− f̂ r(xr)

∣∣∣∣Fr

]
≤ E

[
−f̂ r(xr) + g(xr, ξr+1)

r + 1

∣∣∣∣Fr

]

=
−f̂ r(xr)

r + 1
+

f(xr)

r + 1

=
−f̂ r(xr) + f r(xr)

r + 1
+

f(xr)− f r(xr)

r + 1
(A.47)

≤ f(xr)− f r(xr)

r + 1
(A.48)

≤ ∥f − f r∥∞
r + 1

, (A.49)

where (A.48) is due to the assumption A2 and (A.49) follows from the definition of

∥ · ∥∞. On the other hand, the Donsker theorem (see [175, Lemma 7] and [238, Chapter

19]) implies that there exists a constant k such that

E [∥f − f r∥∞] ≤ k√
r
. (A.50)
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Combining (A.49) and (A.50) yields

E
[(

E
[
f̂ r+1(xr+1)− f̂ r(xr)

∣∣∣∣Fr

])
+

]
≤ k

r3/2
, (A.51)

where (a)+ , max{0, a} is the projection to the non-negative orthant. Summing (A.51)

over r, we obtain

∞∑
r=1

E
[(

E
[
f̂ r+1(xr+1)− f̂ r(xr)

∣∣∣∣Fr

])
+

]
≤M <∞, (A.52)

whereM ,
∑∞

r=1
k

r3/2
. The equation (A.52) combined with the quasi-martingale conver-

gence theorem (see [237] and [175, Theorem 6]) implies that the stochastic process{f̂ r(xr)+

ḡ}∞r=1 is a quasi-martingale with respect to the natural history {Fr}∞r=1 and f̂ r(xr) con-

verges. Moreover, we have

∞∑
r=1

∣∣∣∣E [f̂ r+1(xr+1)− f̂ r(xr)
∣∣Fr
] ∣∣∣∣ <∞, almost surely. (A.53)

Next we use (A.53) to show that
∑∞

r=1
f̂r(xr)−fr(xr)

r+1 < ∞, almost surely. To this end,

let us rewrite (A.47) as

f̂ r(xr)− f r(xr)

r + 1
≤ E

[
−f̂ r+1(xr+1) + f̂ r(xr)

∣∣∣∣Fr

]
+

f(xr)− f r(xr)

r + 1
. (A.54)

Using the fact that f̂ r(xr) ≥ f r(xr), ∀ r and summing (A.54) over all values of r, we

have

0 ≤
∞∑
r=1

f̂ r(xr)− f r(xr)

r + 1

≤
∞∑
r=1

∣∣∣∣E [−f̂ r+1(xr+1) + f̂ r(xr)
∣∣Fr
] ∣∣∣∣+ ∞∑

r=1

∥f − f r∥∞
r + 1

.

(A.55)

Notice that the first term in the right hand side is finite due to (A.53). Hence in order to

show
∑∞

r=1
f̂r(xr)−fr(xr)

r+1 < ∞, almost surely, it suffices to show that
∑∞

r=1
∥f−fr∥∞

r+1 <

∞, almost surely. To show this, we use the Hewitt-Savage zero-one law; see [239,
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Theorem 11.3] and [75, Chapter 12, Theorem 19]. Let us define the event

A ,
{
(ξ1, ξ2, . . .) |

∞∑
r=1

∥f r − f∥∞
r + 1

<∞

}
.

It can be checked that the event A is permutable, i.e., any finite permutation of each

element of A is inside A; see [239, Theorem 11.3] and [75, Chapter 12, Theorem 19].

Therefore, due to the Hewitt-Savage zero-one law [239], probability of the event A is

either zero or one. On the other hand, it follows from (A.50) that there exists M ′ > 0

such that

E

[ ∞∑
r=1

∥f r − f∥∞
r + 1

]
≤M ′ <∞. (A.56)

Using Markov’s inequality, (A.56) implies that

Pr

( ∞∑
r=1

∥f r − f∥∞
r + 1

> 2M ′

)
≤ 1

2
.

Hence combining this result with the result of the Hewitt-Savage zero-one law, we obtain

Pr(A) = 1; or equivalently

∞∑
r=1

∥f r − f∥∞
r + 1

<∞, almost surely. (A.57)

As a result of (A.55) and (A.57), we have

0 ≤
∞∑
r=1

f̂ r(xr)− f r(xr)

r + 1
<∞, almost surely. (A.58)

On the other hand, it follows from the triangle inequality that∣∣∣∣f̂ r+1(xr+1)− f r+1(xr+1)− f̂ r(xr) + f r(xr)

∣∣∣∣
≤
∣∣∣∣f̂ r+1(xr+1)− f̂ r(xr)

∣∣∣∣+ ∣∣∣∣f r+1(xr+1)− f r(xr)

∣∣∣∣ (A.59)
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and ∣∣∣∣f̂ r+1(xr+1)− f̂ r(xr)

∣∣∣∣
≤
∣∣∣∣f̂ r+1(xr+1)− f̂ r+1(xr)

∣∣∣∣+ ∣∣∣∣f̂ r+1(xr)−f̂ r(xr)

∣∣∣∣
≤κ∥xr+1 − xr∥+

∣∣∣∣∣ 1

r + 1

r+1∑
i=1

ĝ(xr, xi−1, ξi)− 1

r

r∑
i=1

ĝ(xr, xi−1, ξi)

∣∣∣∣∣ (A.60)

≤κ∥xr+1 − xr∥+

∣∣∣∣∣ 1

r(r + 1)

r∑
i=1

ĝ(xr, xi−1, ξi)+
ĝ(xr, xr, ξr+1)

r + 1

∣∣∣∣∣
≤κ∥xr+1 − xr∥+ 2ḡ

r + 1
(A.61)

=O
(
1

r

)
, (A.62)

where (A.60) is due to the assumption B3 (with κ = (K+K ′)); (A.61) follows from the

assumption B6, and (A.62) will be shown in Lemma 9. Similarly, one can show that

|f r+1(xr+1)− f r(xr)| = O
(
1

r

)
. (A.63)

It follows from (A.59), (A.62), and (A.63) that∣∣∣∣f̂ r+1(xr+1)− f r+1(xr+1)− f̂ r(xr) + f r(xr)

∣∣∣∣ = O(1

r

)
. (A.64)

Let us fix a random realization {ξr}∞r=1 in the set of probability one for which (A.58)

and (A.64) hold. Define

αr , f̂ r(xr)− f r(xr).

Clearly, αr ≥ 0 and
∑

r
αr

r < ∞ due to (A.58). Moreover, it follows from (A.64) that

|αr+1 − αr| < τ
r for some constant τ > 0. Hence Lemma 10 implies that

lim
r→∞

αr = 0,

which is the desired result. �
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Lemma 9 ∥xr+1 − xr∥ = O(1r ).

Proof The proof of this lemma is similar to the proof of [175, Lemma 1]; see also [240,

Proposition 4.32]. First of all, since xr is the minimizer of f̂ r(·), the first order optimality

condition implies

f̂ r(xr; d) ≥ 0, ∀ d ∈ Rn.

Hence, it follows from the assumption A3 that

f̂ r(xr+1)− f̂ r(xr) ≥ γ

2
∥xr+1 − xr∥2. (A.65)

On the other hand,

f̂ r(xr+1)− f̂ r(xr) ≤ f̂ r(xr+1)− f̂ r+1(xr+1) + f̂ r+1(xr)− f̂ r(xr) (A.66)

≤ 1

r(r + 1)

r∑
i=1

|ĝ(xr+1, xi−1, ξi)− ĝ(xr, xi−1, ξi)|

+
1

r + 1
|ĝ(xr+1, xr, ξr+1)− ĝ(xr, xr, ξr+1)|

≤ θ

r + 1
∥xr+1 − xr∥, (A.67)

where (A.66) follows from the fact that xr+1 is the minimizer of f̂ r+1(·), the second

inequality is due to the definitions of f̂ r and f̂ r+1, while (A.67) is the result of the

assumptions B3 and B5. Combining (A.65) and (A.67) yields the desired result.

Lemma 10 Assume αr > 0 and
∑∞

r=1
αr

r < ∞. Furthermore, suppose that |αr+1 −
αr| ≤ τ/r for all r. Then limr→∞ αr =∞.

Proof Since
∑∞

r=1
αr

r <∞, we have lim infr→∞ αr = 0. Now, we prove the result using

contradiction. Assume the contrary so that

lim sup
r→∞

αr > ϵ, (A.68)

for some ϵ > 0. Hence there should exist subsequences {mj} and {nj} with mj ≤ nj <



178

mj+1, ∀ j so that

ϵ

3
< αr mj ≤ r < nj , (A.69)

αr ≤ ϵ

3
nj ≤ r < mj+1. (A.70)

On the other hand, since
∑∞

r=1
αr

r <∞, there exists an index r̄ such that

∞∑
r=r̄

αr

r
<

ϵ2

9τ
. (A.71)

Therefore, for every r0 ≥ r̄ with mj ≤ r0 ≤ nj − 1, we have

|αnj − αr0 | ≤
nj−1∑
r=r0

|αr+1 − αr|

≤
nj−1∑
r=r0

τ

r
(A.72)

≤ 3

ϵ

nj−1∑
r=r0

τ

r
αr (A.73)

≤ 3τϵ2

9ϵτ
=

ϵ

3
, (A.74)

where the equation (A.73) follows from (A.69), and (A.74) is the direct consequence of

(A.71). Hence the triangle inequality implies

αr0 ≤ αnj + |αnj − αr0 | ≤ ϵ

3
+

ϵ

3
=

2ϵ

3
,

for any r0 ≥ r̄, which contradicts (A.68), implying that

lim sup
r→∞

αr = 0.

�

Proof of Theorem 13:

Consider a limit point x̄ with the subsequence {xrj} converging to x̄. First of all, it
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is not hard to see that

θir(x
r+1) ≤ θ̂ir(x

r+1
ir

, xr) ≤ θ̂ir(x
r
ir , x

r) = θir(x
r), ∀r, (A.75)

where the first inequality and the last equality is due to the properties of the approxima-

tion function θ̂(·) in Assumption 5; and the second inequality is due to the update rule

of the algorithm. Due to strict convexity of the function θ̂(·, xr), the above inequality

implies that either θir(x
r+1) < θir(x

r), or xr+1 = xr. Clearly in both cases we have

P (xr+1) ≤ P (xr), ∀r, (A.76)

and therefore

lim
r→∞

P (xr) = P (x̄),

due to continuity of the potential function P (·). On the other hand, since the essentially

cyclic update rule is chosen, by restricting to a subsequence, we can assume that there

exists (α1, . . . , αT ) such that

(irj , irj + 1, . . . , irj + T − 1) = (α1, α2, . . . , αT ), ∀j

with αt ∈ {1, . . . , n}, ∀t = 1, . . . , T and {α1, α2, . . . , αT } = {1, 2, . . . , n}. Next, we will

show that

lim
j→∞

θα1(x
rj+1) = θα1(x̄), (A.77)

by using contradiction argument. First, let us rewrite (A.75) for the subsequence of

interest

θα1(x
rj+1) ≤ θ̂α1(x

rj+1
α1 , xrj ) ≤ θ̂α1(x

rj
α1 , x

rj ) = θα1(x
rj ).

Thus, lim supj→∞ θα1(x
rj+1) ≤ θα1(x̄). Combining this fact with the contrary of (A.77)

implies

θα1(x
rj + 1) ≤ θα1(x̄)− β, (A.78)

for some β > 0 and for all j large enough. Therefore, for large enough indices j, we
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have

P (xrj + 1) ≤ P (x̄)− σ(θα1(x̄)− θα1(x
rj + 1)). (A.79)

Clearly, lim infj→∞ σ(θα1(x̄) − θα1(x
rj + 1)) > 0 due to (A.78). Therefore, by letting

j →∞ in (A.79), we have

P (x̄) < P (x̄),

which is a contradiction and therefore the contrary assumption does not hold and (A.77)

must hold true. Next, we show that

lim
j→∞

xrj+1 = x̄. (A.80)

Assume the contrary. Hence by restricting to a subsequence, there exists γ̄ > 0 such

that

∥xrj+1
α1 − x

rj
α1∥ , γrj ≥ γ̄, ∀j.

Define Srj , x
rj+1
α1

−x
rj
α1

γrj . One can write,

θα1(x
rj+1) ≤ θ̂α1(x

rj+1
α1 , xrj ) (A.81)

= θ̂α1(x
rj
α1 + γrjSrj , xrj ) (A.82)

≤ θ̂α1(x
rj
α1 + ϵγ̄Srj , xrj ), ∀ϵ ∈ [0, 1] (A.83)

≤ θ̂α1(x
rj
α1 , x

rj ) (A.84)

= θα1(x
rj ), (A.85)

where (A.81) and (A.85) are due to the properties of the approximation function; in

the equations (A.82), (A.83), and (A.84), we use the update rule of the algorithm and

the convexity of the function θ̂α1(·, xr). Since Srj is in a compact ball, it has a limit

point S̄. Hence by restricting to a subsequence, letting j → ∞, and using (A.77), we

can rewrite the above inequality as

θα1(x̄) ≤ θ̂α1(x̄α1 + ϵγ̄S̄, x̄) ≤ θα1(x̄), ∀ϵ ∈ [0, 1],

which contradicts the strict convexity of θ̂(·, x̄). Therefore, the contrary assumption is
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not true and (A.80) holds true.

On the other hand, due to the update rule of the algorithm, we have

θ̂α1(x
rj+1
α1 , xrj ) ≤ θ̂(xα1 , x

rj ), ∀xα1 ∈ Xα1 .

Letting j →∞, we get

θ̂α1(x̄α1 , x̄) ≤ θ̂(xα1 , x̄), ∀xα1 ∈ Xα1 .

The first order optimality condition implies

θ̂′α1
(x̄α1 , x̄; dα1) ≥ 0, ∀dα1 with x̄α1 + dα1 ∈ Xα1 .

Using the directional derivative property of the approximation function, we have

θ′α1
(x̄; d) ≥ 0, ∀d = (0, . . . , 0, dα1 , 0, . . . , 0) with x̄α1 + dα1 ∈ Xα1 .

Repeating the above argument for other players α2, . . . , αT will complete the proof. �

Proof of Theorem 14: First of all, similar to (A.76), we can show the decrease of the

potential function at each iteration and therefore the objective value converges for any

realization of the random choices. In other words, for any realization, we must have

lim
r→∞

P (xr)− P (xr+1) = 0. (A.86)

Let x̂ri denote one of the possible optimal points at iteration r if block i is chosen, i.e.,

x̂ri ∈ arg min
xi∈Xi

θ̂i(xi, x
r).

Then similar to (A.75), we have

θi(x̂
r
i , x

r
−i) ≤ θ̂i(x̂

r
i , x

r) ≤ θ̂i(x
r
i , x

r) = θi(x
r), ∀i = 1, . . . , n, ∀r. (A.87)
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Therefore, due to the existence of the generalized potential function, we have

P (xr)− P (x̂ri , x
r
−i) ≥ σ

(
θi(x

r)− θi(x̂
r
i , x

r
−i)
)
, ∀i = 1, . . . , n, ∀r,

which combined with the randomized choice of players implies

E
[
P (xr)− P (xr+1) | xr

]
≥

n∑
i=1

piσ
(
θi(x

r)− θi(x̂
r
i , x

r
−i)
)

≥ pmin

n∑
i=1

σ
(
θi(x

r)− θi(x̂
r
i , x

r
−i)
)
,

where pmin , mini pi. By re-arranging the terms, we can write

E
[
P (xr+1) | xr

]
≤ P (xr)− pmin

n∑
i=1

σ
(
θi(x

r)− θi(x̂
r
i , x

r
−i)
)
.

Clearly the process {P (xr)}∞r=1 is a supermartingale and by the supermartingale con-

vergence theorem [236, Proposition 4.2], we have

pmin

∞∑
r=1

n∑
i=1

σ
(
θi(x

r)− θi(x̂
r
i , x

r
−i)
)
<∞,

with probability one, which in turn implies that

lim
r→∞

σ (κi(x
r)) = 0, almost surely, ∀i;

and since σ is a forcing function, we have

lim
r→∞

κi(x
r) = 0, almost surely, ∀i,

which completes the proof. �

Proof of Theorem 15: Let us define x̂i(y) = argminxi θ̂(xi, y). Consider the two
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points y, w ∈ X . Due to the first order optimality condition of x̂i(y), x̂i(w), we have

0 ≤ ⟨zi − x̂i(y),∇xi f̂i (x̂i(y), y) + ϑy⟩, ∀zi ∈ Xi, (A.88)

0 ≤ ⟨zi − x̂i(w),∇xi f̂i (x̂i(w), w) + ϑw⟩, ∀zi ∈ Xi, (A.89)

for some ϑy ∈ ∂gi(x̂i(y)) and ϑw ∈ ∂gi(x̂i(w)). Plugging x̂i(w), x̂i(w) in zi and summing

up the above equations, we obtain

⟨x̂i(w)− x̂i(y),∇xi f̂i (x̂i(y), y)−∇xi f̂ (x̂i(w), w) + ϑy − ϑw⟩ ≥ 0. (A.90)

On the other hand, due to the definition of the subgradients ϑy and ϑw, we have

gi(x̂i(w)) ≥ gi(x̂i(y)) + ⟨ϑy, x̂i(w)− x̂i(y)⟩ (A.91)

gi(x̂i(y)) ≥ gi(x̂i(w)) + ⟨ϑw, x̂i(y)− x̂i(w)⟩ (A.92)

Summing up (A.90), (A.92), and (A.91) implies

⟨x̂i(w)− x̂i(y),∇xi f̂ (x̂i(y), y)−∇xi f̂ (x̂i(w), w)⟩ ≥ 0. (A.93)

Applying the mean value theorem to the one dimensional function ϖ(t) = ⟨x̂i(w) −
x̂i(y),∇xi f̂ (tx̂i(y) + (1− t)x̂i(w), ty + (1− t)w)⟩ on the interval [0, 1], we can write

ϖ(1)−ϖ(0) =

⟨
x̂i(w)− x̂i(y) , ∇2

xixi
f̂(xi, y)

∣∣∣∣
xi=vi,y=z

(x̂i(y)− x̂i(w))

+

n∑
j=1

∇2
yjxi

f̂(xi, y)

∣∣∣∣
xi=vi,y=z

(yj − wj)

⟩
,

(A.94)

for some vi in the line segment [x̂i(w), x̂i(y)]; and for some z in the line segment [y, w].

Plugging (A.94) in (A.93) and using the fact that ∇2
xixi

f̂(xi, y) ≥ τiI, ∀xi, y, we obtain

⟨
x̂i(w)− x̂i(y) ,

n∑
j=1

∇2
yjxi

f̂(xi, y)

∣∣∣∣
xi=vi,y=z

(yj − wj)

⟩
≥ τi∥x̂i(w)− x̂i(y)∥2.
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Expanding the left hand side of the inequality combined with the Cauchy-Schwarz in-

equality implies
n∑

j=1

γij∥yj − wj∥ ≥ τi∥x̂i(w)− x̂i(y)∥. (A.95)

Writing in a matrix form, we obtain
∥x̂1(y)− x̂1(w)∥
∥x̂2(y)− x̂2(w)∥

...

∥x̂n(y)− x̂n(w)∥

 ≤


γ11
τ1

γ12
τ1

. . . γ1n
τ1

γ21
τ2

γ22
τ2

. . . γ2n
τ2

...
...

. . .
...

γn1

τn
γn2

τn
. . . γnn

τn




∥y1 − w1∥
∥y2 − w2∥

...

∥yn − wn∥

 (A.96)

Clearly, when ∥Γ∥2 < 1, we have a contraction mapping and the iterates converge

linearly. �

Proof of Lemma 7: First of all, it can be observed that choosing Q1 = Q2 = Q3 = Q∗
a

yields an objective value of λ∗ = 1; the same result holds for the case of Q1 = Q2 =

Q3 = Q∗
b , Q1 = Q2 = Q3 = Q∗

c , and Q1 = Q2 = Q3 = Q∗
d.

Let (λ,Q1,Q2,Q3) ∈ S be an optimal solution. Clearly, at least one of the users

must transmit with full power, for otherwise we could simultaneously scale (Q1,Q2,Q3)

to get a better objective function. Without loss of generality, let us assume that user 1

is transmitting with full power, i.e., Tr(Q1) = 1. Using eigenvalue decomposition of Q1,

we can write Q1 = αaaH + βbbH , where a and b are the orthonormal eigenvectors of

Q1 and the scalars α, β ≥ 0 are the eigenvalues of Q1 with α + β = 1. Since canceling

the interference results in higher rate of communication, we have

R2 = log det

I+Q2

I+
∑
m ̸=2

H2mQmHH
2m

−1


≤ log det
(
I+Q2

(
I+H21(αaa

H + βbbH)HH
21

)−1
)

= log det

(
I+Q2

(
I+ 4α a aH + 4β b bH

)−1
)

= log det

(
I+Q2

(
1

1 + 4α
a aH +

1

1 + 4β
b bH

))
≤ log det

(
I+

1

Tr(Q2)
Q2

(
1

1 + 4α
a aH +

1

1 + 4β
b bH

))
, (A.97)
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where a = 1
2H21a and b = 1

2H21b. The last inequality is due to the fact that Tr(Q2) ≤ 1.

Clearly, aHb = 0 and ∥a∥ = ∥b∥ = 1.

Let us use the eigenvalue decomposition Q2

Tr(Q2)
= θccH + (1 − θ)ddH , for some

θ ∈ [0, 1] and some orthonormal vectors c and d. Utilizing the fact that determinant is

the product of the eigenvalues and trace is the sum of the eigenvalues, we can further

simplify the inequality in (A.97) as

R2 ≤ log

{
1 + Tr

[(
θccH + (1− θ)ddH

)( 1

1 + 4α
a aH +

1

1 + 4β
b bH

)]
+ det

[(
θccH + (1− θ)ddH

)( 1

1 + 4α
a aH +

1

1 + 4β
b bH

)]}
= log

[
1 +

θx

1 + 4α
+

θ(1− x)

1 + 4β
+

(1− θ)(1− x)

1 + 4α
+

(1− θ)x

1 + 4β
+

θ(1− θ)

(1 + 4α)(1 + 4β)

]
≤ max

(x,θ,α,β)∈Y
log

[
1 +

θx

1 + 4α
+

θ(1− x)

1 + 4β
+

(1− θ)(1− x)

1 + 4α
+

(1− θ)x

1 + 4β
+

θ(1− θ)

(1 + 4α)(1 + 4β)

]
,

(A.98)

where x , |cHa|2, Y , {(x, θ, α, β) | α+ β = 1, 0 ≤ α, β, x ≤ 1}. Since the function in

(A.98) is linear in x, it suffices to only check the boundary points x = 0 and x = 1 in

order to find the maximum. The claim is that the maximum in (A.98) takes the value

of 1, and it is achieved at both boundary points.

First consider the boundary point x = 1. We have

R2 ≤ max
(θ,α,β)∈X

f(θ, α, β), (A.99)

where X , {(θ, α, β) | α+ β = 1, 0 ≤ α, β} and

f(θ, α, β) , log

(
1 +

θ

1 + 4α
+

1− θ

1 + 4β
+

θ(1− θ)

(1 + 4α)(1 + 4β)

)
(A.100)

We are interested in finding the set of optimal solutions of (A.100). In particular, we

want to characterize S1 = {(θ∗, α∗, β∗)} defined by S1 , argmax(θ,α,β)∈X f(θ, α, β).

In what follows, we will prove that S1 = {(0, 1, 0), (1, 0, 1)}. First we observe that

f(0, 1, 0) = f(1, 0, 1) = 1. Now, we show that f(θ, α, β) < 1, for all (θ, α, β) ∈ X such
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that 0 < θ < 1. Assume the contrary that there exists an optimal point (θ∗, α∗, β∗)

such that 0 < θ∗ < 1. Using the first order optimality condition ∂
∂θf(θ

∗, α∗, β∗) = 0, we

obtain θ∗ = 4β∗−4α∗+1
2 . Combining with 0 < θ∗ < 1 yields

−1

4
< β∗ − α∗ <

1

4
. (A.101)

Plugging in the value of optimal θ∗ = 4β∗−4α∗+1
2 in f(·) and simplifying the equations,

we obtain

f(θ∗, α∗, β∗) = log

(
1 +

13 + 16(β∗ − α∗)2

4(1 + 4α∗)(1 + 4β∗)

)
.

Combining with (A.101) yields

f(θ∗, α∗, β∗) ≤ log

(
1 +

14

4(1 + 4α∗)(1 + 4β∗)

)
≤ log

(
1 +

14

4(1 + 4α∗ + 4β∗)

)
= log

(
1 +

14

20

)
< 1,

which contradicts the fact that max(θ,α,β)∈X f(θ, α, β) = 1. Therefore, the optimal θ only

happens at the boundary and we have {(0, 1, 0), (1, 0, 1)} = argmax(θ,α,β)∈X f(θ, α, β).

Similarly, for the case when x = 0, we can see that the optimal solution set is {(0, 0, 1), (1, 1, 0)}.
Using these optimal values yields R2 ≤ 1. Note that in order to have equality R2 = 1,

we must have Tr(Q2) = 1 and

(x, θ, α, β) ∈ {(1, 0, 1, 0), (1, 1, 0, 1), (0, 0, 0, 1), (0, 1, 1, 0)}.

Let us choose the optimal solution (x, θ, α, β) = (1, 0, 1, 0). Therefore,

Q1 = aaH , Q2 = ddH , x = |cHa|2 = 1,

which yields aHd = 0. Repeating the above argument for user 2 and user 3, we get

Q3 = ggH with aHg = 0. Since d and g are both orthogonal to a, we obtain d =

expjϕd g. Repeating the above argument for the other pair of users yields

a = expjϕa g and aHa = 0,
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where the last relations imply that a,d, and g are the same up to the phase rotation

and they belong to the following set (after the proper phase rotation)

a ∈
{
[1 0]H , [0 1]H ,

1√
2
[j 1]H ,

1√
2
[1 j]H

}
.

Each of these points gives us one of the optimal covariance matrices in (3.33). �

Proof of Theorem 19: The proof is based on a polynomial time reduction from

the 3-satisfiability (3-SAT) problem which is known to be NP-complete. We first con-

sider an instance of the 3-SAT problem with n variables x1, x2, . . . , xn and m clauses

c1, c2, . . . , cm. For each variable xi, we consider 5 users X1i,X2i, . . . ,X5i in our interfer-

ence channel. Each user is equipped with two antennas, and the channels between the

users are specified as in (3.34)–(3.36). For each clause cj , j = 1, 2, . . . ,m, we consider

one user Cj in the system with two antennas. In summary, we totally have 5n + m

users in the system. Set the noise power σ2
k = 1, ∀k, and the power budget Pk = 1 for

all users. We define the channel between the users Ci and Cj to be zero for all j ̸= i.

Furthermore, we assume that the channel between the transmitter and receiver of user

Ci is given by

HCiCi =
√
3

[
1 0

0 0

]

Let us also assume that i) there is no interference among the blocks of users that

correspond to different variables and ii) there is no interference from the transmitter

of user Cj to the receivers of users X1i, . . . ,X5i for all i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

Consider a clause cj : yj1+ yj2+ yj3, where yj1, yj2, yj3 ∈ {x1, x2, . . . , xn, x1, x2, . . . , xn}
with xi denoting the negation of xi. We use the following rules to define the channels

from the transmitter of user Xki to the receiver of user Cj :

• If the variable xi appears in cj , we define the channel from the transmitter of X1i

to the receiver of Cj to be

[
1 0

0 0

]
.

• If the variable x̄i appears in cj , we define the channel from the transmitter of X1i

to the receiver of Cj to be

[
0 1

0 0

]
.
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• If xi does not appear in cj , we define the channel from the transmitter of X1i to

the receiver of Cj to be zero.

• The channel from transmitters of users X2i,X3i,X4i,X5i to the receiver of user Cj
is zero for all i = 1, . . . , n and j = 1, 2, . . . ,m.

As an example, Figure A.1 shows the channels for the clause cℓ : xi + x̄j + xk.

Figure A.1: Channels for the clause cℓ : xi + x̄j + xk.

Now we claim that the 3-SAT problem is satisfiable if and only if solving the problem

(3.38) for the corresponding interference channel leads to the optimum value of one. To

prove this fact, let us assume that the optimum value of (3.38) is one. According to the

Lemma 8, the only way to get the rate of one for users Xkj , k = 1, . . . , 5, j = 1, . . . , n, is

to transmit with full power either on the first antenna or on the second antenna. Now,

based on the optimal solution of (3.38), we can determine the solution of the 3-SAT

problem. In particular, if user X1i is transmitting on the first antenna, we set xi = 0.

Otherwise, if it transmits on the second antenna, we set xi = 1. By assigning values

to all the variables in this way, we claim that all clauses are satisfied. We prove by

contradiction. Assume the contrary that there exists a clause cj that is not satisfied,

i.e., all the corresponding variables are zero. Therefore, user Cj gets interference on the

first receive antenna from all three users corresponding to the variables appearing in Cj .
As the result, the interference power is 3. Since the noise power is one and the received

signal power is 3, the SINR level for user Cj is 3
1+3 which contradicts the fact that the
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minimum rate in the system is one.

Now we prove the other direction. Let us assume that the 3-SAT problem is sat-

isfiable. We claim that the optimal value of (3.38) is one. Since in each block of

5 users the optimum value is one, it suffices to show that the objective value of one

is achievable. Now, we design the covariance matrices based on the solution of the

3-SAT problem. If xi = 0, we transmit with full power on the first antenna of users

X1i,X2i, . . . ,X5i. If xi = 1, we allocate full power for transmission on the second antenna

of users X1i,X2i, . . . ,X5i. With this allocation, each user Xki, k = 1, . . . , 5, i = 1, . . . , n,

gets the rate of one. For all users Cj , j = 1, 2, . . . ,m, we transmit with full power on

the first antenna. Since 3-SAT problem is satisfiable with the given boolean allocation

of the variables, for each clause Cj at least one of the corresponding variables is one.

Therefore, the interference level at the receiver of user Cj is at most 2. Since the received

signal power at the receiver of user Cj is 3, the SINR level is at least 3
1+2 = 1 which

yields the rate of communication RCj ≥ 1. Thus, all users Cj , j = 1, . . . ,m, have rate

at least one; which completes the proof of our claim. As the result, checking whether

the objective value of one is achievable for (3.38) is equivalent to solving the instance

of 3-SAT problem. Thus, problem (3.38) is NP-hard. �

Proof of Theorem 20: The proof is based on the polynomial time reduction of the

densest cut problem. The densest cut problem can be stated as follows:

Densest Cut Problem: Given a graph G = (V,E), the goal is to maximize the ratio
|E(P,Q)|
|P | ·|Q| over all the bipartitions (P,Q) of the vertices of the graph G. Here E(P,Q)

denotes the set of edges between the two partitions and the operator | · | returns the

cardinality of a set.

Given an undirected graph G, we put an arbitrary directions on it and we define Y′ to

be the incidence transpose matrix of the directed graph. In other words, Y′ ∈ R|E|×|V |

with

• Y′
ij = 1 if edge i leaves vertex j

• Y′
ij = −1 if edge i enters vertex j

• Y′
ij = 0 otherwise
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Now let us consider the following optimization problem:

min
A′,X

∥Y′ −A′X′∥2F s.t. ∥x′
i∥0 ≤ s, 1Tx′

i = 1, ∀i (A.102)

with s = 1 and k = 2.

Claim 1: Problem (A.102) is equivalent to the densest cut problem over the graph G
[241].

Claim 2: Consider two different feasible points X′
1 and X′

2 in problem (A.102). Let A′
1

(resp. A′
2) be the optimal solution of (A.102) after fixing the variable X′ to X′

1 (resp.

X′
2). Let us further assume that ∥Y′−A′

1X1∥ ̸= ∥Y′−A′
2X2∥. Then, | ∥Y′−A′

1X1∥−
∥Y′ −A′

2X2∥ | ≥ 16
N3 .

The proof of claims 1 and 2 are relegated to the appendix section. Clearly, problem

(A.102) is different from (3.47); however the only difference is in the existence of the

extra linear constraint in (A.102). To relate these two problems, let us define the

following problem:

min
A,X

∥Y −AX∥2F s.t. ∥xi∥0 ≤ s, ∀i. (A.103)

where X is of the same dimension as X′, but the matrices Y and A have one more

row than Y′ and A′. Here the matrices Y and A have the same number of columns

as Y′ and A′, respectively. By giving a special form to the matrix Y, we will relate

the optimization problem (A.103) to (A.102). More specifically, each column of Y is

defined as follows:

yi =

[
M

y′
i

]

with M = 6N7. Clearly, the optimization problem (A.103) is of the form (3.47). Let

(A∗,X∗) denote the optimizer of (A.103). Then it is not hard to see that the first row of

the matrix A∗ should be nonzero and hence by a proper normalization of the matrices

A∗ and X∗, we can assume that the first row of the matrix A∗ is M , i.e., a∗11 = a∗12 = M .

Define h(A,X) , ∥Y′ −AX∥2F . Let w′ = (A′∗,X′∗) denote the minimizer of (A.102).

Similarly, define w , (Ã∗,X∗) where Ã∗ , A∗
2:n,: is the minimizer of (A.103), excluding

the first row. Furthermore, define w+ ,
(
Ã∗,X∗

+

)
, where X∗

+ is obtained by replacing

the nonzero entries of X∗ with one. Having these definitions in our hands, the following

claim will relate the two optimization problems (A.102) and (A.103).
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Claim 3: h(w) ≤ h(w′) ≤ h(w+) ≤ h(w) + 28
3N3 .

The proof of this claim can be found in the appendix section.

Now set ϵ = 28
3N3 . If we can solve the optimization problem (A.103) to the ϵ-accuracy,

then according to Claim 3, we have the optimal value of problem (A.102) with accuracy

ϵ = 28
3N3 . Noticing that 16

N3 > 28
3N3 and using Claim 2, we can further conclude that the

exact optimal solution of (A.102) is known; which implies that the optimal value of the

original densest cut problem is known (according to Claim 1). The NP-hardness of the

densest cut problem will complete the proof. �

Proof of Claim 1: This proof is exactly the same as the proof in [241]. Here we

restate the proof since some parts of the proof is necessary for the proof of Claim 2.

Consider a feasible point (A′, X ′) of problem (A.102). Clearly, in any column of the

matrixX ′, either the first component is zero, or the second one. This gives us a partition

of the columns of the matrix X ′ (which is equivalent to a partition over the nodes of

the graph). Let P (resp. Q) be the set of columns of X ′ for which the first (resp. the

second) component is nonzero at the optimality. Define p , |P | and q = |Q|. Then the

optimal value of the matrix A = [a1a2] is given by:

• aj1 = ±1
p , aj2 = ∓

1
q if j ∈ E(P,Q)

• aj1 = aj2 = 0 if j /∈ E(P,Q)

where aji is the j-th component of column i in matrix A. Plugging in the optimal value

of the matrix A, the objective function of (A.102) can be rewritten as:

∥Y′ −A′X′∥2F =
∑
i∈P
∥y′

i − a′1∥2 +
∑
i∈Q
∥y′

i − a′2∥2

=
∑

j /∈E(P,Q)

2 +
∑

j∈E(P,Q)

[
(1− 1

p
)2 +

p− 1

p2
+ (1− 1

q
)2 +

q − 1

q2

]
= 2 (|E| − |E(P,Q)|) + |E(P,Q)|(p− 1

p
+

q − 1

q
)

= 2|E| − |E(P,Q)|(1
p
+

1

q
)

= 2|E| − |V | |E(P,Q)|
p · q

= 2n−N
|E(P,Q)|

p.q
. (A.104)
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Hence, clearly, solving (A.102) is equivalent to solving the densest cut problem on graph

G. �

Proof of Claim 2: According to the proof of Claim 1, we can write∣∣∣∣∥Y′ −A′
1X

′
1∥2F − ∥Y′ −A′

2X
′
2∥2F
∣∣∣∣ = N

∣∣∣∣ |E(P1, Q1)|
p1q1

− |E(P2, Q2)|
p2q2

∣∣∣∣
≥ N

p1(N − p1)p2(N − p2)

≥ N

(N/2)2
=

16

N3
.

�

Proof of Claim 3: First of all, notice that the point

X =

[
1 1 · · · 1

0 0 · · · 0

]
and A =


M M

0 0
...

...

0 0


is feasible and it should have a higher objective value than the optimal one. Therefore,

N∑
i=1

(M −M(x∗1i + x∗2i))
2 + h(w) ≤ ∥Y′∥2F = 2|E| ≤ 2N2

which in turn implies that

max
i
{|1− x∗1i − x∗2i|} ≤

√
2N

M
=

1

3N6
, δ, (A.105)

since h(w) ≥ 0. Clearly, δ < 1
2 and moreover notice that for each i only one of the

elements x∗1i and x∗2i is nonzero. Therefore, any nonzero element x∗ij should be larger

than 1
2 . On the other hand, due to the way that we constructY′, we have |y′ij | ≤ 1, ∀i, j.
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This implies that |ãij | ≤ 2, ∀i, j, leading to

∥ã1∥2, ∥ã2∥2 ≤ 4N, (A.106)

where ã1 and ã2 are the first and the second column of matrix Ã. Having these simple

bounds in our hands, we are now able to bound h(w+):

h(w+) =
∑
i∈P
∥y′

i − ã1∥2 +
∑
i∈Q
∥y′

i − ã2∥2

=
∑
i∈P
∥y′

i − ã1x1i∥2 +
∑
i∈P
∥a1∥2(1− x1i)

2 + 2
∑
i∈P
⟨y′

i − ã1x1i, (x1i − 1)ã1⟩

+
∑
i∈Q
∥y′

i − ã2x2i∥2 +
∑
i∈Q
∥a2∥2(1− x2i)

2 + 2
∑
i∈Q
⟨y′

i − ã2x2i, (x2i − 1)ã2⟩

≤ h(w) +
∑
i

4N2δ2 + 2
∑
i∈P

(∥y′
i∥+ x1i∥ã1∥) · ∥ã1∥ · |1− x1i|

+ 2
∑
i∈Q

(∥y′
i∥+ x2i∥ã2∥) · ∥ã2∥ · |1− x2i|

≤ h(w) + 4N3δ2 + 2
∑
i∈P

(∥y′
i∥+ 4N)2Nδ + 2

∑
i∈Q

(∥y′
i∥+ 4N)2Nδ

≤ h(w) + 4N3δ2 + 4Nδ(
√
N∥Y′∥F ) + 16N3δ

≤ h(w) + 4N3δ2 + 4Nδ(
√
N∥Y′∥F ) + 16N3δ

≤ h(w) + 28N3δ ≤ h(w) +
28

3N3
. (A.107)

Furthermore, since w+ is a feasible point for (A.102) and due to the optimality of w′,

we have

h(w′) ≤ h(w+). (A.108)

On the other hand,

h(w) ≤ h(w′); (A.109)

otherwise, we can add the row [M M ] on top of A′ and get a lower objective for

(A.103). Combining (A.107), (A.108), and (A.109) will conclude the proof. �


