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Abstract 

 

Signal integrity engineering involves the use of electrical models and time-

domain simulation to predict signal waveform degradation as the signal propagates across 

interconnects. It is employed most prevalently in the design of large digital systems, such 

as computers. Typically, the analysis and design techniques are concentrated in the 

continuous time domain, with the evaluation of time-domain waveform signal attributes 

being the primary tool for quantification of the degradation effects. Consistent with this 

continuous time-domain approach, the system models are often identified and expressed 

in the analog frequency domain, since this is the most natural domain for model 

identification, either by electromagnetic field simulation or empirical measurement. 

This research investigation focuses on the use of digital signal processing 

techniques in the discrete time domain and associated discrete frequency domains to 

augment typical signal integrity engineering techniques. Specifically, it explores in detail 

the use of Laplace-domain (s-domain) to z-domain transform methods to convert system 

interconnect models identified in the analog frequency domains to models in the discrete 

frequency domains. The models are first converted from the analog frequency domain, 

using known vector fitting algorithms, to form a rational function approximation for the 

system in the s-domain. They are then converted from the s-domain to the z-domain 

using methods generally applied in the fields of control theory and digital filter design, 

but which are less familiar in the field of signal integrity engineering. Two new s- to z- 

domain transformation techniques are developed that are particularly well-suited for 

signal integrity applications. 

The z-domain models are then assessed thoroughly in the z-plane using a variety 

of pole-zero analysis techniques to gain further insight into the nature of the system, and 

a new enhanced graphical method is introduced for the efficient assessment of such 

models in the z-plane. The overall results of this project are targeted toward enhancing 

signal integrity design methodologies in an industrial setting. 
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Chapter 1:  Introduction and Thesis Organization 

1.1  Introduction 

Signal integrity engineering consists of the analysis and design of chip driver and 

receiver circuits, and electronic packaging interconnect structures, such that signals 

propagating between chips undergo minimal distortion. This is done through the 

prediction and analysis of time-domain voltage waveforms, using computer-aided design 

tools such as electromagnetic field solvers and circuit simulation tools. As inter-chip 

interface speeds have approached and surpassed a few tens and hundreds of MHz, signal 

integrity engineering has become an integral part of the design process for digital systems. 

This is especially true for physically large, complex systems such as computers and their 

associated subsystems, which today are comprised of interfaces which commonly operate 

in the range of a few GHz or more. Every subsystem of a modern computer, including the 

main processor-memory central electronics complex (CEC), the various input-output (IO) 

subsystems, and the data storage subsystems comprised of hard disk drive (HDD) and 

solid-state device (SSD) components, now requires signal integrity engineering. Even 

commonly-known, industry-standard externalized connections to these subsystems 

operate in the hundreds of MHz or GHz ranges, and thus require extensive signal 

integrity analysis to guarantee proper electrical functionality. 

The goal of this research project is to successfully apply known methods and 

theory from the fields of digital signal processing (DSP) and system identification (SID) 

to analysis and design problems in the field of signal integrity (SI) engineering. The 

overall objective is to significantly enhance known state-of-the-art signal integrity 

analysis and design methodologies, especially those methodologies geared toward the 

development of complex digital electronic systems such as computers. 

Extensive experience as a practicing signal integrity design engineer, and 

comprehensive academic background in signal integrity engineering theory, classic 

microwave/radio-frequency (RF) theory, and DSP theory, have all led to the observation 

that much of the method and theory of DSP can be methodically applied to the field of 
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digital signal integrity. The fundamental reason for this is that, even though the signal 

waveforms considered in signal integrity engineering are generally of a continuous-time 

(CT) nature, they are actually acquired or generated, and thus represented, as discrete-

time (DT) sequences of numbers. These waveform representations are constructed either 

by empirical acquisition, using sampling instrumentation, or by prediction as simulated 

waveforms, using SPICE or similar tools on digital computers. Even so, known DSP 

methods are not often systematically applied to signal integrity problems, at least not on a 

large scale, primarily because most practicing signal integrity engineers do not have 

significant backgrounds in DSP and the direct applicability of DSP methods is not widely 

recognized. 

This leads to the following observation, which serves as the primary motivation 

for this research project: 

Known processes and methodologies for performing signal integrity 

engineering could be significantly enhanced by borrowing and applying 

known theory and techniques from digital signal processing engineering, 

for the purposes of system analysis and system identification. Specifically, 

comprehensive time-domain analysis strategies, based mainly upon SPICE 

simulation and similar methods, could be enhanced by utilizing z-domain 

methods to improve the model development and evaluation process. In 

particular, acquiring the system transfer function 𝐻𝑑(𝑧) using s-domain 

to- z-domain transforms, and utilizing pole-zero analysis methods for 

model assessment and simplification could lead to significant 

improvements in these processes and methodologies.  

1.2  Thesis Organization 

This thesis is organized into nine additional chapters: 

Chapter 2: Background: An overview of the motivating applications, problems, and 

prevailing considerations in signal integrity engineering, as encountered in an industrial 

design environment, is presented. 
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Chapter 3: Theoretical Foundations: A review of various theoretical aspects from the 

fields of signal integrity engineering, radio-frequency (RF) and microwave engineering, 

system identification engineering, and digital signal processing engineering are presented. 

These multifaceted disciplines do not significantly overlap in their general practice. As 

such, most engineers practicing in these disciplines are not likely to have background in 

all of these areas. 

Chapter 4: Identification of the System Model: An overview of the process of model 

extraction is presented, starting with the use of scattering parameters for the interconnect 

system identification method. Once the scattering matrix is obtained, the subsequent 

development of the system analog frequency transfer function 𝐻𝑎(𝑗Ω) is presented. A 

comparison of other system identification techniques, as possible alternatives to 

scattering parameter analysis, is provided for completeness. 

Chapter 5: Development of the Transfer Function Model 𝑯𝒂(𝒔): A continuation of 

the process begun in Chapter 4 is presented, using the system identification data acquired 

in Chapter 4 to derive a more complete description of the system. The system transfer 

function 𝐻𝑎(𝑠), expressed in the s-plane of the complex analog frequency domain, is 

obtained from the analog frequency transfer function 𝐻𝑎(𝑗Ω)  found previously using 

previously known vector fitting algorithms. 

Chapter 6: Development of the Transfer Function Model 𝑯𝒅(𝒛) from 𝑯𝒂(𝒔): A 

comparison of various methods to obtain the system transfer function 𝐻𝑑(𝑧)  in the 

complex digital frequency domain from the system transfer function 𝐻𝑎(𝑠)  in the 

complex analog frequency domain is presented, using commonly-known and prevalently-

used s-to-z transforms from DSP theory. 

Chapter 7: Development of the Transfer Function Model 𝑯𝒅(𝒛) Directly from the 

Partial Fraction Expansion Terms of 𝑯𝒂(𝒔) : Demonstration of new methods for 

obtaining the system discrete transfer function 𝐻𝑑(𝑧) directly from the partial fraction 

expansion form of the system analog transfer function 𝐻𝑎(𝑠), which is the natural form 

of the output obtained directly from the vector fitting algorithms used in finding 𝐻𝑎(𝑠), 

are presented.  
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Chapter 8: Examination and Optimization of 𝑯𝒅(𝒛) Utilizing z-Plane Techniques: 

The results and insight of Chapter 6 and Chapter 7 are used to subsequently suggest novel 

methods to: 1) look for opportunities to simplify the model mathematically (which 

enables more efficiency in the analysis process); 2) appropriately select a frequency range 

for effective system identification of the model, and a sampling rate for effective 

transformation of the model from the s- to the z-domains; and 3) utilize a new graphical 

technique for assessing the relationship between the pole-zero map of 𝐻𝑑(𝑧) and the 

frequency response 𝐻𝑑�𝑒𝑗𝜔�, as well as their individual attributes simultaneously. 

Chapter 9: Signal Integrity Methodology Enhancements Resulting from the 

Utilization of the Discrete Transfer Function Model 𝑯𝒅(𝒛) : New criteria for 

comparing or selecting s- to z- transformation methods are introduced, and applied to the 

eight such transforms utilized in this project. A discussion of proposed enhancements to 

an industrial signal integrity methodology flow, utilizing the techniques developed in the 

preceding chapters, is also presented. 

Chapter 10: Conclusions and Future Work: A summary of the project’s major results 

and resulting publications, along with suggestions for possible future extensions, are 

presented. 
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Chapter 2:  Background 

2.1 Introduction 

In the design of complex electronic systems, robust signal integrity performance 

requires significant investment in analysis and design. This investment comes in the form 

of highly-trained and specialized personnel resources, expensive engineering computer-

automated design (CAD) or computer-automated engineering (CAE) tools, and in the 

form of expensive test and measurement equipment for design validation. Signal integrity 

engineers tend to have backgrounds in radio frequency (RF), microwave, or 

electromagnetic engineering or, alternatively, in analog circuit design. These skill sets do 

not necessarily overlap easily with digital designers, logic designers, or computer system 

architects, making the signal integrity role fairly specialized in many industrial design 

environments [1], [2]. 

A further complication is that signal integrity design and analysis tasks must, by 

definition, be performed concurrently with other system design tasks, and thus must be 

integrated into the overall chip-, package-, or system-level design flows [3]. This can be 

relatively complex to implement in a product design environment, especially if the 

engineering design teams are large, which is typical for the design of complex systems. 

Finally, the signal integrity engineering problem itself is technically complex, with clock 

speeds in advanced digital applications such as computers already in the GHz range. In 

such applications, even the miscellaneous peripheral interfaces typically operate in the 

hundreds of MHz [4]. Signal integrity engineering inherently requires the application of 

distributed circuit theory in lieu of lumped element theory [5], [6], which in itself requires 

even more specialized training. All of these factors require expensive investments to 

address signal integrity considerations. 

This chapter will describe the typical aspects of modern signal integrity 

engineering, from the perspective of the methodologies and tasks used in an industrial 

setting, as applied to the design of large-scale, complex electronic systems. Included in 

this description will be the major attributes of a typical system design, including the 

functional block diagram for the system, its typical physical layout characteristics, and 



 

6 

the translation of those physical attributes into an electrical model. Finally, an overview 

of the simulation methods used to generate time-domain data and frequency-domain data 

will be given, setting the context in which the rest of this project will be presented, and 

establishing the motivation for seeking new techniques to augment the existing methods. 

2.2 System Description 

Signal integrity engineering is generally required when the system designs 

become complex enough that multiple high-power, high-speed modules are required to 

implement the system. In this context, a module is defined as an integrated component 

consisting of one or more integrated circuit chips and the associated electronic package 

[7]. Some example system designs would be a typical computer workstation, a 

commercial server, or a storage system, each of which would contain sophisticated 

microprocessors and memory control modules, high-speed IO hub modules and bridges, 

high data rate and high-capacity memory devices, and high-performance hard disk and 

flash storage devices [8]. In addition, multiple high data rate system signaling interfaces, 

both custom and industry-standard, would typically be found interconnecting the various 

modules comprising the system. In a modern system, almost all of these interfaces 

typically require some type of signal integrity intervention to ensure their proper function 

with the required margin [1], and it may also be necessary to re-assess them over the 

system’s entire life cycle if some of the components in the system need to be updated [9]. 

This section will describe a typical computer system, starting with an architectural 

block diagram and a physical description of the system packaging. System packaging 

generally includes the system enclosure, and also the manner in which the system card 

and board hierarchy is designed. The translation from the architectural and physical 

descriptions to an electrical representation is followed by a model extraction or 

identification step and its subsequent formatting into a SPICE netlist or similar model 

format. This will ultimately result in an electrical simulation run in signal integrity CAE 

software to generate time-domain waveforms, for interpretation by the signal integrity 

engineer. 
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2.2.1 System Block Diagram 

Figure 2-1 shows an architectural block diagram for a typical UNIX and Linux1 

commercial server [8]. Note that the design has multiple high-speed, inter-chip signaling 

interfaces, most of which will require signal integrity analysis to achieve a functional 

design. The highest-performance interfaces, requiring the most signal integrity 

engineering, would be the processor-to-processor paths, the processor-to-memory data 

paths, the high-speed serializer/deserializer (SERDES) PCIe2 and SAS3 interfaces to the 

IO complex, and the double data rate (DDR) memory interfaces to the DIMMs.4 

 
Figure 2-1: Architectural Block Diagram for a Typical Computer System 

                                                 
1 UNIX and Linux are widely used multi-user operating systems used for desktop workstatations, 
commercial servers, and high-performance computing systems. 
2 PCIe is an industry-standard acronym for Peripheral Component Interface Express. 
3 SAS is an industry-standard acronym for Serial Attach SCSI (Small Computer System Interface). 
4 DIMM is an industry-standard acronym for dual in-line memory module. 
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It should be noted that, for the system of Figure 2-1, even the peripheral IO 

interfaces, such as JTAG5, USB6, and I2C7, may require some attention. Other examples 

of complex systems, including computer workstations, flash memory storage systems, 

and high-performance computing systems show similar characteristics, with a wide 

variety of high-speed, high-performance interfaces requiring signal integrity analysis [10], 

[11], [12], [13].  

From the system’s architectural block diagram of Figure 2-1, and after imposing 

relevant physical constraints due to system packaging characteristics, a conceptual 

physical layout of the system would be generated. The layout would be optimized to 

support any electrical, mechanical, thermal, and product or application requirements [7]. 

Examples of such constraints would be signaling and timing budgets, noise budgets, 

physical size, shape, or cost requirements, air flow and cooling requirements, and 

similarity to both the customer’s existing physical system footprint and data center 

characteristics [2], [7] . 

2.2.2 Physical Representation of an Interconnect Structure 

A typical signaling channel ultimately consists of a chip-to-chip interconnect 

structure connecting two or more modules. Figure 2-2 shows an illustration of a typical 

processor-to-controller chip structure in a modern computer workstation. The physical 

representation of this inter-chip signaling path consists of an electrical path starting on 

the sending chip at the IO driver circuit, and continuing through the 1st-level package, 

which in this case is depicted as having ceramic column grid array (CCGA) technology 

for the bottom side metal (BSM) and a controlled collapse chip connect (C4) technology 

for the top side metal (TSM). The electrical path then continues through the printed 

wiring board (PWB), through a connector interface between the PWB and a daughter 

card PWB, and then finally back through the daughter card and onto another 1st-level 

CCGA package, then finally onto the receiving chip to the IO receiver circuit. Models are 

                                                 
5 JTAG is an industry-standard acronym for Joint Test Action Group. 
6 USB is an industry-standard acronym for Universal Serial Bus. 
7 I2C is an industry-standard acronym for Inter-Integrated Circuit. 
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added for the IO transmitter and receiver circuits using transistor-level or behavioral-

level models. [2], [7], [14]. 

 
Figure 2-2: Processor-to-Controller Physical Path in a Typical Computer Application 

2.2.3 Electrical Representation in Electrical Schematic Form in SPICE 

Historically, lumped-element circuits have been used to represent undesirable 

electrical parasitic resistive, inductive, and capacitive effects, such as those due to the 

presence of circuit board vias, pads for solder attach, or connectors. Lumped elements are 

also used to represent passive components such as damping resistors, termination 

resistors, shunt capacitors, or ferrite bead inductors, which have been intentionally added 

to the path to condition the signal in a particular way [7]. Distributed-element circuit 

models, on the other hand, have been used to represent transmission lines, since 

distributed element circuit theory is based upon partial differential equation 

representations of the circuit, and can thus include the effects of propagation delay [6]. 

Indeed, the importance of the interconnect model characteristics has lead to extensive 

research into design and measurement techniques for transmission lines of the type used 

in modules, cables, and printed wiring boards (PWBs) [15]–[18]. 
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As mentioned previously, a time-domain SPICE simulation is often run to predict 

the transient waveform at the receiver. Figure 2-3 shows an electrical model 

representation of the interconnect structure of Figure 2-2, now in electrical schematic 

form. Notice that connectors and other package-to-package or package-to-chip 

boundaries are modeled with RLC lumped-element parasitic elements if the physical 

dimensions are small enough relative to the wavelength of the system’s signal waveforms, 

while PWB signal traces are modeled as transmission lines. Also labeled on the figure are 

typical waveforms at various points in the network. Notice the indicated distortion in the 

receiver’s waveform as the signal propagates over the interconnect structure. 

 
Figure 2-3: Electrical Schematic Representation of a Typical Point-to-Point Interconnection in 

SPICE Language Format 

2.2.4 Electrical Representation as Two-Port Networks 

Alternatively, for faster systems with higher frequencies of operation, various 

two-port network representations, such as scattering parameters, can be developed that 

modern SPICE programs can interpret [19]. One advantage of the scattering parameter 

format, which is shown in Figure 2-4, is that it is a natural format for characterizing or 

identifying the interconnect model, either by empirical measurement or by simulation in 

electromagnetic field simulators. Regardless of whether the scattering parameter format 

or traditional SPICE netlist format is used, the physical structure has now been translated 

to an electrical circuit structure for subsequent time-domain simulation. 



 

11 

 
Figure 2-4: Electrical Schematic Representation of an Interconnect in Scattering-Parameter Format 

2.3 Use of Simulation Techniques in Signal Integrity Engineering 

Once the electrical representation of the system is obtained, in the form of Figure 

2-3 or Figure 2-4, simulations can be run to predict system performance. Simulation is 

generally used in multiple ways. Simulations can be run in the frequency domain, using 

full-wave three-dimensional electromagnetic field solver programs, to calculate the 

desired lumped- or distributed-element circuit models. These models are then used in 

subsequent time-domain simulations to predict the time-response waveforms at the 

receiver circuit. Alternatively, the models extracted from the 3D field solvers can be 

further simulated in the frequency domain to further assess their frequency response. 

2.3.1 Model Extraction 

In order to perform a signal integrity time-domain simulation, an electrical model 

must first be created for the physical representation of the interconnect system depicted in 

Figure 2-2. This model needs to be accurate enough to adequately represent the electrical 

performance of the system to the required degree of accuracy. Beyond that, however, the 

level of complexity of the model is determined by the signal integrity engineer, and the 

resulting model that is obtained is certainly not unique. 
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known known known
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As described in the previous section, there are two approaches to developing the 

models. The first approach, used historically, has been to use a combination of lumped 

circuit elements and distributed transmission line elements to model the overall 

interconnect path in the native SPICE language of the simulation engine [20], [21]. This 

approach has the disadvantage of being less accurate at higher frequencies, due to the 

limitations of lumped-element circuit theory for modeling distributed effects, but also has 

the significant advantage of being more intuitively familiar to most electrical engineers. It 

is also easier to isolate or correlate certain characteristics visible in the simulated 

waveforms to certain circuit elements. 

Using this first approach, the lumped element representations can be extracted by 

a variety of commercially-available electromagnetic field solver tools that work directly 

on the three-dimensional physical structure of the system [22], [23], [24]. Similarly, the 

distributed element transmission line models can be extracted in the same or similar 

manner. One advantage for transmission line structures is that the distributed-element 

circuit representation can also be obtained using only a two-dimensional field solver tool 

[25], applied to the transmission line cross section, which requires considerably less 

effort. 

The second approach, used more commonly at the present time, is to use a 

scattering parameter matrix [19] or macromodeling approach [26]. Such an approach can 

be used to represent either the entire interconnect system as a single model, or to 

concatenate multiple scattering parameter matrix models, each of which represents a 

particular component of the interconnect system. The scattering parameter approach has 

the advantage of being more numerically sound at high-frequencies, since the resulting 

model is no longer based on lumped-element circuit theory, but also has the disadvantage 

of being far less intuitive for the engineer to interpret. The models are extracted using the 

same types of CAE tools used in the first approach above, but the output format of the 

models is different, in this case being either scattering parameter matrices or black box 

macromodels, not SPICE language format [4]. 
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2.3.2 Simulation Using SPICE Engines to Calculate the Transient Response 

The signal integrity analysis of a typical high-speed interface in a digital system 

usually involves prediction of the waveform shapes for the signals propagating across the 

interface. This is usually, but not always, done in the time-domain, using a circuit 

simulation tool such as SPICE. This simulation activity is expensive to undertake, 

because: (1) the CPU time and computing resource can be significant; (2) organizing and 

developing the matrix of simulations to be run requires significant insight and experience; 

(3) analyzing the vast amounts of data generated can be difficult; and (4) a typical 

computer system design can have multiple high-speed interfaces, requiring these tasks to 

be replicated multiple times. From a design flow and schedule standpoint, these high-

speed interface designs must usually be done in parallel, requiring teams of several or 

more signal integrity engineers. 

Traditionally and historically, for computer and similar digital system applications, 

time-domain analysis has dominated the field of signal integrity engineering. Much of the 

reason for this lies in the nature of the most prevalent signaling methods typically used in 

computer and other digital systems, namely, sending packets of digital ‘1s’ and ‘0s’ down 

a transmission line, as opposed to communication-theory modulation techniques used in 

RF and other systems. As a result, typical “bit strings” or “pulse trains” have significant 

frequency content, due to their non-periodic and square-wave “pulse-like” natures, 

making frequency-based analysis formulations rather cumbersome [27]. 

Fortunately, SPICE simulators have been available since the 1970s [20], [21]. 

Such tools have made it possible to analyze pulse train propagation directly in the time 

domain, especially for systems with frequencies in the tens of MHz, for which 

attenuation effects in interconnects can often be treated as negligible, and thus allowing 

the use of lossless transmission lines. With the advent of faster digital systems, however, 

which operate at frequencies in the hundreds of MHz or a few GHz, it has become 

necessary to model frequency-dependent losses in transmission line structures [2]. This 

has greatly complicated the SPICE time-domain analysis problem, stressing the ability of 

the simulators to accurately handle attenuation effects, and increasing the solution time of 
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many simulations. Table 2-1 shows a summary of well-known SPICE simulation tools 

[20], [28]–[31]. 

Tool Name Company Simulation Language Availability 
PowerSPICE IBM Corp. SPICE and ASTAP IBM Internal Use 
HSPICE Synopsis SPICE Commercially Available 
PSPICE Cadence SPICE Commercially Available 
Spectre Cadence SPICE Commercially Available 

Table 2-1: Listing of Popular SPICE Simulation Tools 

2.3.3 Simulation Using Statistical Simulation Analysis Engines to Calculate the 

Transient Response 

Table 2-2 shows a summary of well-known statistical simulation analysis (SSA) 

simulation tools [32]–[37]. These tools are relatively new, have common basis of 

operation [36], and have become popular for the design of modern high-speed SERDES 

interfaces. Examples of such tools are the industry-standard StatEye, which is available 

as an open-source application, IBM’s HSSCDR, a proprietary tool available only within 

IBM to its developers and select customers, and the commercially-available simulation 

engines from CAE software vendors ANSYS, Agilent, SiSoft, and Cadence. 

Tool Name Company Availability 
HSSCDR IBM Corp. IBM Internal Use / Select External Customers 
DesignerSI ANSYS Commercially Available 
ADS Agilent Commercially Available 
Quantum Channel Designer SiSoft Commercially Available 
StatEye stateye.org Opensource / Freeware 
Allegro Sigrity Serial 
Link Analysis Option Cadence Commercially Available 

Table 2-2: Listing of Popular Statistical Simulation Analysis Tools 

These SSA tools have the advantages of being able to simulate many thousands of 

bits in just a few seconds, and can also incorporate directly random- and stochastic 

phenomena from their probability density functions (PDFs), making it possible to account 

for random noise and channel effects. These tools make extensive use of digital signal 

processing theory, including both deterministic and stochastic effects [38]. 
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2.3.4 Assessment of Transient Response Waveforms 

Figure 2-5 shows a typical time-domain waveform for a 1-Gb/s SERDES 

interface, as generated from a SPICE simulation. Using basic circuit structures of the type 

depicted in Figure 2-3 or Figure 2-4, SPICE models are developed using standard SPICE 

element building blocks or scattering parameter model call routines. The subsequent 

simulations are performed and the resulting waveforms are evaluated in the continuous 

time domain. Simplistic models may be comprised simply of lumped resistance, 

inductance, and capacitance (RLC) elements, while more comprehensive models also 

make use of distributed-element representations, such as transmission lines. In addition, 

sophisticated models usually try to account for more numerically complex effects such as 

frequency-dependent signal attenuation and dispersion. 

 
Figure 2-5: SPICE-Generated Signal Waveform for a 1 Gb/s SERDES Interface 

A simple SPICE model may assume ideal 𝑉𝑑𝑑 and AC ground rails, where 𝑉𝑑𝑑 is 

defined as the operating voltage applied to the circuit in question. More complex 
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representations may attempt to incorporate noise characteristics on the rails. These 

additional characteristics can add greatly to the models’ sophistication and, usually, 

increased simulation run times result. Despite the potential for complex models and long 

simulation times, SPICE remains one of the most useful signal integrity design tools, 

because of the great flexibility and simplicity of its input language, its widespread use, 

and its general familiarity with the electrical engineering community. SPICE is a general-

purpose tool that allows for a great variety of input assumptions, its input language is in 

the format of widely understood lumped-element circuit theory, and the correlation 

between the physical representation and the electrical representation in the time domain is 

straightforward for most electrical engineers. In contrast, many frequency-domain tools 

require more interpretation, and another layer of theory superimposed into the model 

formulation. 

2.3.5 Using Simulation to Calculate the Frequency Response 

Just as both SPICE-based and SSA-based simulation tools are used to calculate 

the continuous time response of an interconnect system, they can also be used to calculate 

the analog frequency response of the system. One advantage of this is that the signal 

integrity engineer can gain further insight into the nature of the system. Examples of this 

insight would be getting a estimate of the system’s overall bandwidth characteristics, or a 

sense of its dominant poles and zeros, by looking at both magnitude response and phase 

response characteristics using a Bode plot [39], [40]. 

To obtain the frequency response, SPICE can be run in AC analysis mode, which 

essentially performs a series of sinusoidal steady-state analyses for a system like that 

shown in Figure 2-3, and expresses the results in the analog frequency domain [28], [29]. 

The frequency range over which the analysis is performed is determined and specified by 

the signal integrity engineer, and based upon the assumed frequency range of the 

system’s input and output signals. It should be noted that, since the signals are generally 

of a pulse nature as shown in Figure 2-5, the frequency content can be considerable due 

to the fact that multiple harmonic frequencies must be present to comprise the signal. 

Similarly, the SSA simulators can be used to calculated the analog frequency 

response of the interconnect model. These tools often are able to calculate the scattering 
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parameter matrices of the overall concatenated model of Figure 2-4, which can be very 

useful in examining the attenuation and reflection characteristics of the entire network. 

Even though the individual component models used to create the overall channel models 

may have been initially extracted separately in the frequency domain, the simulator may 

have the ability to synthesize the overall response as a natural output of the process of 

performing the time-domain simulation, and thus is another set of output data available 

for evaluation [32]. 

2.4 Signal Integrity Engineering in an Industrial Setting 

For the development of complex electronic systems, such as computer servers and 

large storage systems, signal integrity engineering becomes an important part of the 

design flow. It is not unusual to employ a team of several or more signal integrity 

engineers on system projects involving multiple high-speed interfaces [4]. For such 

projects, it is commonplace for the signal integrity team to share workload and break 

down the activity into various subtasks, including model development, time-domain 

simulation, and lab measurement activity. In such circumstances, is not unusual for the 

team to share model libraries, software tool licenses, and laboratory equipment. 

2.4.1 Block Diagram of a Signal Integrity Engineering Design Flow 

For large organizations, it is common for the signal integrity teams to interact 

with the other system design teams, including the card/board development teams, the 

chip/package development teams, and the system architecture teams. The cross-

functional nature of an industrial signal integrity design flow is shown in Figure 2-6. It is 

not unusual for the signal integrity teams to be involved very early in the system floor 

planning process, to ensure that the physical arrangement of the system can support the 

required signaling speeds and other performance requirements. 

Later in the design process, the signal integrity teams support the 1st-level 

package, card, and board design processes by providing specific design rules and wiring 

constraints to drive the wiring and physical design process for these components. These 

design rules and constraints are determined, either wholly or partially, by the circuit 
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simulations described in the previous section. They may also be determined by standard 

interface design specifications, past experience, or from information provided by the 

module design teams for the case where a functional module is purchased from a 3rd-

party vendor as a commercially-available component. Examples of such commonly-

available modules are microprocessors, IO hub chips, or bus expander modules. 

Finally, the signal integrity teams are involved in the verification of the designs 

once they have been completed. This post-design verification activity can consist of 

laboratory empirical measurements on prototype system hardware using high-speed 

signal analyzers, or it can be performed as another simulation set, this time using models 

extracted directly from the system CAD design data. Sophisticated design flows 

involving complex engineering tradeoffs generally emphasize early intervention by the 

signal integrity team, thereby eliminating the need for extensive post-design verification. 

 
Figure 2-6: Block Diagram of an Industrial Signal Integrity Design Process 

2.4.2 Problems and Challenges 

In principle, an industrial signal integrity engineering process follows the flow 

depicted in Figure 2-6. In reality, however, these activities involve a series of engineering 

tradeoffs involving cost, effort, available resources, and return on investment. The model 

extraction and simulation process is difficult and time-consuming, and it is not always 
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possible to execute it on all of the inter-module interconnection circuits in the system. In 

addition, in some cases the simulation tools can produce answers with numerical 

precision that is greater than what is appropriate, given the limitations of the resolution of 

the models or the level of knowledge of the system.  

Several common limitations to the effectiveness of the signal integrity 

engineering of the system are prohibitive cost, prohibitive complexity of the models and 

resulting simulation, limitations in the analysis resolution of the methodologies or 

techniques, and limitations on assumptions behind the input to the simulation tools, or 

with the simulation tools themselves. Several examples will be given in the following 

sections. 

2.4.2.1 Cost Limitations of Signal Integrity Engineering 

Cost considerations can set the level of signal integrity engineering done for a 

particular system, just as for any other engineering design activity. The following 

examples demonstrate the reality of such considerations. 

As a first example, suppose a system contains five high-speed interfaces, and that 

each high-speed interface in the system requires 100 simulations to effectively analyze. 

Suppose further that each simulation takes two hours to run, as may be the case when 

using a SPICE simulator with transistor-level driver and receiver models. Assuming 

unlimited computer resources are available, suppose further it takes a signal integrity 

engineer one week of effort (i.e., a “person-week”) to submit 100 simulations and analyze 

the results, thereby completing the design of one interface. This translates into five 

person-weeks of effort to complete the analysis of the entire system’s high-speed 

interface design. Assuming 42 hours per person-week, and an overall burden rate of 

$200/hour, this translates to (5 𝑃𝑊) 𝑥 (42 ℎ𝑜𝑢𝑟𝑠 / 𝑃𝑊) 𝑥 ($200 / ℎ𝑜𝑢𝑟)  =  $42,000 

for engineering resource to analyze the system for signal integrity using SPICE. This 

effort assumes the models were already available for subsequent use in time-domain 

SPICE simulation. Clearly, reducing the overall effort, or at least improving the quality of 

the information extracted, or better utilizing the information extracted, would have value.  

As a second example, consider the aforementioned 500 simulations which are 

required to analyze the design’s five high-speed interfaces. Again assuming that a single 
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SPICE simulation requires two hours to run, this translates to a total of 1000 hours of 

CPU time. Given the likelihood that the interfaces must all be designed in parallel, it may 

be reasonable to assume that five 1-CPU workstations are required to execute the project, 

or equivalently, one 5-CPU multi-user machine. Assume the latter case requires the 

purchase of a large 6-CPU machine at a cost of $12,000. 

Additional factors could also arise, such as delayed time-to-market resulting from 

analysis “re-spins” and the associated costs. The economic effects could be even more 

significant than those mentioned above if signal integrity design issues adversely affect 

the revenue stream associated with the project, due to initial time-to-market delays and 

product quality issues. 

2.4.2.2 Model Complexity Limitations in Signal Integrity Engineering 

Another commonly-encountered problem in signal integrity engineering is the 

temptation to resort to intensive computational analysis to overcome excessive model 

complexities, rather than to use models of appropriate complexity, which can be difficult 

to ascertain. This occurs when the methodology becomes over-reliant on automated 

simulation tools and techniques, thereby generating excessive, often marginally-useful 

data as the default output of the simulation tools. Such approaches are characterized by a 

lack of engineering insight that reduces or otherwise limits the usefulness of the 

generated data. This problem has become more common as more powerful and easier-to-

operate software tools, and larger and faster CPUs, have become more readily available 

and less expensive. 

Thus there is significant motivation to reduce the amount of data generated, and to 

make better use of the data that is generated. One key to this problem is to acquire and 

gain engineering insight by reviewing intermediately data as they are generated, so that 

better decisions could be made about what data to generate next, and thereby improving 

the overall efficiency of the analysis processes. 

A related problem is the natural tendency to make incremental extensions to the 

base signal integrity model structures, with more parasitic elements, more frequency-

dependent interconnect models, models with increased bandwidth, longer and more 

sophisticated bit stimulus patterns, more complex IO driver and receiver models, and 
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faster signal edge rates with inherently more frequency content. This leads to ever 

increasing model size, complexity, and simulation run times. This can lead to another 

aspect of computationally-intensive analysis, in which it becomes a challenge to simply 

get the models to run at all, because of their size and complexity. 

2.4.2.3 Limitations of the Prevalent Methodology and Techniques 

As previously mentioned, many signal integrity engineers were trained in other 

disciplines. They may have started out as digital or analog circuit designers, and became 

more specialized, or they may have been trained as microwave, RF, or transmission line 

engineers [1], [2]. More specifically, it is uncommon for signal integrity engineers to 

have significant backgrounds in discrete signal processing (DSP), system identification 

(SID), control theory, or communication theory. As a result, techniques common to those 

disciplines, such as impulse response or transfer function representations, discrete Fourier 

transforms, and pole-zero analysis techniques, tend to be relatively unfamiliar. The 

observation that many known techniques from DSP and related disciplines could be very 

useful in signal integrity engineering is largely unrecognized, and relatively little work 

has been done to advance technology transfer in this area, at least in terms of overall 

signal integrity methodology development. 

2.4.2.4 Inherent Limitations within Design Tools or Underlying Assumptions 

This lack of technology transfer between the areas of DSP and signal integrity is 

unfortunate, given the direct applicability of many DSP methods. In reality, the inter-chip 

signals in digital systems are continuous-time (CT) analog waveforms [7]. Ironically, 

however, when working with these signals, signal integrity engineers often unknowingly 

implement them as discrete-time (DT) sequences. SPICE simulators, for example, 

generate signal waveforms using discrete sequences of numbers at small (but generally 

non-uniform) “time step” intervals. Thus the waveforms are actually DT sequences, even 

though the signal integrity engineer thinks of the waveforms as CT in nature. Similarly,  

when acquiring waveforms in the laboratory, SI engineers usually use digital sampling 

analyzers (DSAs), which simply acquire discrete-time samples of the analog waveforms 

at an appropriately high sampling rate [1], [2]. Once again, data which are interpreted by 



 

22 

the signal integrity engineers as CT waveforms are actually DT sequences. As a 

consequence, for both empirical and predicted signal integrity waveforms, DSP 

techniques can usually be almost directly applied.  

 
Figure 2-7:  SPICE-Generated Waveforms Comprised of Uniform and Non-Uniform Timesteps 

The upper waveform in Figure 2-7 shows a predicted discrete-time waveform as 

produced directly by the SPICE simulator, including “stem” representations of the data 

points to highlight the discrete samples and sampling intervals. Notice the signal exhibits 

a non-uniform time step between signal samples. This is typical in SPICE, as the 

simulator adjusts the time steps based upon the slopes of all the signals being studied at 

the various circuit nodes in the system. At any point in time where any signal has a fast 

𝑑𝑖/𝑑𝑡 or 𝑑𝑣/𝑑𝑡, SPICE reduces the time step to improve resolution. At points in time 

where none of the signals are transitioning, SPICE increases the time step to save CPU 

time and storage space, with no significant loss in resolution. Since one of the 



 

23 

assumptions for most common DSP methods is a uniform sampling rate, traditional DSP 

methods are not directly applicable to this waveform. 

The lower waveform in Figure 2-7 shows the same SPICE waveform, re-

interpolated using a very simple MATLAB routine such that the resulting DT sequence 

exhibits a uniform sampling rate. Note that the CT interpolated representation is 

indistinguishable from the CT interpolated representation of the original SPICE signal, at 

least to the human eye. The advantage with this new DT sequence, however, is that DSP 

methods are directly applicable since the sequence exhibits a uniform sampling interval! 

To the signal integrity engineer, both waveforms in Figure 2-7 are equivalent CT 

waveforms, as long as the interpolated CT waveforms overlay each other closely. 

2.5 Conclusion 

This chapter has described the typical aspects of modern signal integrity 

engineering, from the perspective of the methodologies and tasks used in an industrial 

setting, as applied to the design of large-scale, complex electronic systems. Descriptions 

of a typical system design, including the functional block diagram for the system, its 

typical physical characteristics, and the translation of those physical attributes into an 

electrical model, were shown. An overview of the simulation methods used to generate 

time-domain data and frequency-domain data was given, setting the context in which 

signal integrity engineering is performed today. 

An obvious conclusion is that today’s signal integrity analysis activities are 

almost completely reliant on computationally-intensive simulation methods, and that 

these methods are primarily rooted in the continuous time domain for their interpretation, 

with analog frequency domain methods mostly limited to those activities required for 

effective extraction of models to feed the time-domain simulators subsequently. 

The rest of this project will investigate ways to utilize various frequency-domain 

analysis techniques, primarily in the discrete frequency domains, to further examine, 

develop, and optimize the models prior to invoking the time-domain simulation process. 

The primary motivation for this approach is the desire to obtain additional insight into the 

nature of the system. This will provide an opportunity to both leverage that increased 
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insight into better system designs and, possibly, to further simplify or optimize the 

models to enable more productive and effective time-domain simulation analysis. 
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Chapter 3:  Theoretical Foundations 

3.1 Introduction 

The field of signal integrity analysis is based primarily on continuous time-

domain representations of signals, and analog frequency-domain representations of 

models. Two of the greatest challenges are working with models requiring relatively 

large bandwidth and, similarly, working with signals with wide spectral content [1]. In 

contrast, the field of digital signal processing (DSP) is based primarily on discrete time-

domain representations of signals, and digital frequency-domain representations of 

models and transfer functions.  

The analytical methods most commonly used for signal integrity analysis include 

time-domain simulation methods such as SPICE, and model extraction methods based on 

electromagnetic field solvers [4]. Historically, signal integrity channel modeling has 

consisted of distributed-element transmission line representations of interconnects, and 

lumped-element parasitic representations of other discontinuities. More recently, as 

signals have surpassed 2 Gb/s, it has become increasingly common to use purely 

distributed-element representations of the entire channel in the form of s-parameters [38]. 

Frequency-based methods, if used at all, have traditionally been borrowed from the fields 

of microwave or RF engineering, or from analog control theory, and are generally 

focused in the analog frequency domains using continuous-time Fourier transform theory 

or, less commonly, using Laplace transform theory. 

The analytical methods most commonly used for digital signal processing, in 

contrast, focus on discrete-time, sampled versions of time-domain signals, and digital 

frequency domain methods associated with discrete-time systems are more commonly 

used. These frequency-domain methods, also common to the field of digital control 

theory, include z-transforms, discrete-time Fourier transforms, and discrete Fourier 

transforms that are usually implemented as fast Fourier transform (FFT) algorithms. 

Because of the widespread use of continuous time-domain and analog frequency-

domain tools and methods, and lumped- and distributed-element circuit theory, signal 

integrity analysis and the associated design methodologies have become very complex. In 
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general, methods common to digital signal processing have not been widely adopted for 

signal integrity engineering, possibly due to lack a of training and familiarity of these 

methods within the signal integrity community. 

This chapter will summarize both the key theoretical foundations employed in the 

field of signal integrity and the key theoretical foundations employed in the field of 

digital signal processing, control theory, and system identification. It will establish a 

context for the use of the latter methods in the field of signal integrity engineering. The 

overview will begin with summaries of the familiar continuous and discrete time domains, 

and their associated frequency domains which are themselves also quite familiar and 

related to their respective time domains by various Fourier transform pairs. The 

discussion will then be expanded to include the definitions of the more general, and more 

powerful, complex frequency domains represented by the Laplace and z- transforms, and 

will summarize the relation of these two transforms to both their associated Fourier 

domains as well as to each other. A brief overview of select topics from circuit theory 

will be included next, including a discussion of transmission lines and scattering 

parameters, which enable the extension of circuit theory to high-frequency networks. 

Two specialized topics, those of system identification and vector fitting, are included next, 

as these methods allow for the extraction and formulation of system models that enable 

subsequent analysis in the complex frequency domains, which is the ultimate objective. 

Finally, several mathematical formulations for key system characteristics are presented 

that allow direct assessment of system characteristics in the complex frequency planes. 

3.2 Continuous-Time and Analog-Frequency Domains 

The emphasis by signal integrity engineers on continuous-time domain 

representation of signals, and analog-frequency domain representation of models, is 

largely a result of the historical ties to analog circuit design methods for signal analysis, 

and microwave and RF engineering methods for model extraction.  

As such, signal integrity engineers almost always treat signals in the continuous-

time domain and analog-frequency domain. Figure 3-1 shows a typical transient 
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waveform at the receiver input node. The waveform is generally expressed as a function 

of continuous-time and represented on the graph as 𝑣𝑜𝑢𝑡(𝑡) vs. 𝑡, as shown. 

It is understood that the waveform has spectral component content, and this is 

typically considered in the context of the analog frequency domain. The analog frequency 

domain’s relation to the continuous-time domain is expressed formally via the 

continuous-time Fourier transform (CTFT) pair, defined as [41], [42]: 

 𝑉(𝑓) = 𝑉(𝑗Ω) = ℱ{𝑣(𝑡)} =  � 𝑣(𝑡) 𝑒−𝑗2𝜋𝑡𝑓𝑑𝑡  ,
∞

−∞

  (3.1) 

where f is the analog frequency in Hz,  Ω is the analog radian frequency in radians/sec, 

defined as [39]: 

 Ω = 2𝜋𝑓 , (3.2) 

and 

 𝑣(𝑡) = ℱ−1{𝑉(𝑓)} =  � 𝑉(𝑓) 𝑒𝑗2𝜋𝑡𝑓𝑑𝑓 .
∞

−∞

  (3.3) 

Note that this pair is specific to the continuous domains, and will be distinguished from 

other transform pairs associated with the discrete-time and discrete-frequency domains. 

 
Figure 3-1: Example SPICE Output Waveform in the Continuous Time Domain 
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Note that it is common in the literature using continuous-time and analog 

frequency concepts for the analog radian frequency to use the symbol 𝜔 instead of the 

symbol Ω chosen here. The reason for using Ω will become evident when discussing the 

discrete frequency domains in future sections. From the definition for analog radian 

frequency, the analog complex frequency can be defined as [39]: 

 𝑠 =  𝜎 + 𝑗Ω .  (3.4) 

Here σ represents the distance from the vertical frequency axis in the complex s-plane, 

and 𝑗 = √−1. The s-plane will be discussed in more detail in a following section. 

The continuous and analog domains defined above are well understood by signal 

integrity engineers. Ironically, however, many of the simulation tools and measurement 

instruments used by the engineers often make extensive use of the discrete counterparts 

of these domains. Thus, the relationships between the continuous and discrete domains 

are important. These relationships, while well-understood by digital signal processing 

(DSP) engineers, are often not visible to, or well understood by, signal integrity engineers. 

One example of the incorporation of DSP concepts into signal integrity 

engineering is that modern digital signal analyzer instruments have built-in sampling 

capabilities, as well as built-in Fast Fourier Transform algorithms. From a simulation 

standpoint, SPICE and similar transient simulator engines make use of digital sequences 

to represent continuous-time waveforms. 

3.3 Discrete-Time and Discrete-Frequency Domains 

Just as the field of signal integrity analysis is based primarily on continuous-time 

domain and analog frequency domain representation of signals, the field of digital signal 

processing (DSP) utilizes the discrete time and discrete frequency domains. 

The discrete frequency domain’s relation to the discrete time domain is expressed 

formally for a discrete sequence 𝑣(𝑛) via the discrete-time Fourier transform (DTFT) 

pair, defined as [41], [42]: 

 𝑉�𝑒𝑗𝜔�  =  � 𝑣(𝑛) 𝑒−𝑗𝜔𝑛 ,
∞

𝑛=−∞

 (3.5) 
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and 

 𝑣(𝑛)  =  
1

2𝜋
�𝑉(𝑒𝑗𝜔) 𝑒𝑗𝜔𝑛𝑑𝜔
𝜋

−𝜋

 , (3.6) 

where 𝜔 is the digital (or discrete) frequency and 𝑛 is the discrete sampling index.  

3.3.1 Discrete-Time Domain Relation to Continuous-Time Domain 

For signal integrity analysis, a discrete sequence 𝑣(𝑛) can be considered to be a 

sampled version of the causal continuous-time function 𝑣(𝑡). This relationship can be 

expressed as [43]: 

 𝑣(𝑛) = 𝑣(𝑡)|𝑡=𝑛𝑇𝑠  =  𝑣(𝑛𝑇𝑠)   𝑛 = 0, 1 ,2, … ,   (3.7) 

and where 𝑇𝑠 is the sampling interval. 𝑇𝑠 is inversely proportional to the sampling rate, 

defined as [41], [42]: 

 𝑓𝑠 =  
1
𝑇𝑠

 . (3.8) 

3.3.2 Discrete-Frequency Domain Relation to Analog-Frequency Domain 

It was mentioned previously that 𝑓 is the analog frequency and has units of Hz. Ω 

is the analog radian frequency, with units of radians/s. The discrete frequency 𝜔 has units 

of radians and is related to 𝑓, Ω, and 𝑇𝑠 as [41]: 

 𝜔 = Ω𝑇𝑠 = 2𝜋𝑓𝑇𝑆 =
2𝜋𝑓
𝑓𝑠

 . (3.9) 

Again, note the distinction in notation here between the discrete frequency 𝜔 and the 

analog radian frequency Ω. It was pointed out earlier that for non-DSP applications, the 

analog radian frequency is often denoted 𝜔, but Ω is used here to avoid confusion, given 

the present context. 

3.3.3 DTFT, DFT, FFT, and CTFT Relationships 

The relationship between the continuous-time and discrete-time Fourier 

transforms is one of the most fundamental concepts of digital signal processing. The 
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relationship of the CTFT of a continuous time signal 𝑣𝑎(𝑡) and the DTFT of its sampled 

version 𝑣(𝑛) can be expressed as [41]:  

 𝑉(𝑒𝑗𝜔) =
1
𝑇𝑠

� 𝑉𝑐(𝑗(
𝜔
𝑇𝑠

∞

𝑘=−∞

−
2𝜋𝑘
𝑇𝑠

)) , (3.10) 

where 𝑉𝑐(𝑗Ω) is the CTFT of the continuous time signal 𝑣𝑎(𝑡). Note that 𝑉(𝑒𝑗𝜔) is a 

continuous function in 𝜔 . The relation (3.10) basically states that 𝑉(𝑒𝑗𝜔) is a 

combination of frequency- and amplitude-scaled, periodically-repeated copies of 𝑉𝑐(𝑗Ω). 

The discrete Fourier transform (DFT) pair is defined as [41], [42]: 

 𝑉(𝑘) = �� 𝑣(𝑛)𝑒−𝑗
2𝜋
𝑁 𝑛

𝑁−1

𝑛=0

,   0 ≤ 𝑘 ≤ 𝑁 − 1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� , (3.11) 

and 

 𝑣(𝑛) = �
1
𝑁
�𝑉(𝑘)𝑒𝑗

2𝜋
𝑁 𝑘

𝑁−1

𝑘=0

,   0 ≤ 𝑛 ≤ 𝑁 − 1

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� . (3.12) 

where 𝑣(𝑛) and 𝑉(𝑘)  are both finite-length sequences of length N. Note that, in contrast 

to 𝑉(𝑒𝑗𝜔) , 𝑉(𝑘) is a discrete function in k, and the sequences of (3.11) and (3.12) are 

assumed to have values of zero for 𝑛  and 𝑘 values outside of the range from 0 to 𝑁 − 1. 

In terms of the relationship between the DTFT and the DFT, it can be shown [41] 

that the discrete function 𝑉(𝑘)  can be obtained by sampling the DTFT of 𝑣(𝑛) 

periodically as: 

 𝑉(𝑘) = 𝑉(𝑒𝑗𝜔)|
𝜔=2𝜋𝑁 𝑘

= 𝑉(𝑒𝑗
2𝜋
𝑁 𝑘), 0 ≤ 𝑘 ≤ 𝑁 − 1  . (3.13) 

Note that the DFT operates on discrete-time sequences of finite length, and results in a 

finite sequence in the sampled discrete frequency domain of the same length, while the 

DTFT yields an infinite-length function in the discrete frequency domain. 

The fast Fourier transform (FFT) of a finite, discrete sequence 𝑥(𝑛) is a family of 

algorithms which allow for very efficient computation of the DFT for a sequence [41]. As 

such, the FFT is not a unique transform, but rather a specific implementation of the DFT.  
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FFT algorithms make use of symmetry and periodic properties of the DFT to enable the 

performance increase. Many modern simulation tools and laboratory instruments have 

built-in FFT computation engines, to allow for easy spectral analysis of continuous time 

waveforms, which have been sampled analytically or empirically. Often the sampling 

process is not visible to the signal integrity engineers using the tools or instrumentation. 

The most well-known and common family of FFT algorithms is the Cooley-Tukey radix-

2 decimation-in-time algorithm, although there are many variations even within this 

particular family [42]. 

3.4 Complex Frequency Domain  

The s-domain and z-domain represent the complex analog and digital frequency 

domains, respectively, and aid in the analysis of differential equations and difference 

equations in the continuous time and discrete time domains under certain conditions. The 

s- and z-domains are particularly suitable for filter design, and are widely used in DSP 

and control theory. More recently, the field of signal integrity analysis has utilized these 

domains as linear macromodeling has become more widely utilized [44], [45],[46], [47]. 

3.4.1 Laplace Transform Domain, or s-Domain 

The Laplace transform domain, or s-domain, relates to the continuous-time 

domain via the unilateral Laplace transform pair, defined as [41], [42]: 

 𝑉(𝑠) = ℒ{𝑣(𝑡)} = � 𝑣(𝑡)𝑒−𝑠𝑡𝑑𝑡 ,
∞

0

 (3.14) 

and 

 𝑣(𝑡) = ℒ−1{𝑉(𝑠)} =
1

2𝑗𝜋
� 𝑉(𝑠)𝑒𝑠𝑡𝑑𝑠
𝐶

 . (3.15) 

It is also known that the bilateral Laplace transform is important for the analysis of some 

systems. The bilateral Laplace transform is defined as [41]: 

 𝑉(𝑠) = � 𝑣(𝑡)𝑒−𝑠𝑡𝑑𝑡 .  
∞

−∞

 (3.16) 
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For the Laplace transform, the region of convergence (ROC) is defined as the set of 

points in the s-plane for which the integral of (3.16) converges absolutely. The ROC is 

important when considering the stability and causality of systems. 

3.4.1.1 Definition of the Two-Dimensional s-Plane 

Note that s-domain analysis makes significant use of the concept of the complex 

two-dimensional (2D) s-plane, as shown in Figure 3-2. The relationship of the s-domain 

to the analog frequency domain Ω can be thought of as the latter mapping to the vertical 

axis of the complex s-plane where 𝜎 = 0, that is, where 𝑠 = 𝑗Ω. As such, the analog 

frequency domain can be thought of as a subset of the s-domain, with some information 

being lost when working in the Ω-domain in lieu of the s-domain [42]. 

 

Figure 3-2: Complex 2D s-Plane in the Laplace s-Domain 

Accordingly, for continuous-time systems, there are certain aspects of the system 

which can, in principle, be studied only in the complex analog frequency domain or 

continuous time domain, and for which the pertinent information becomes lost when 

working in the analog frequency domain. One obvious example of such a characteristic is 
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the stability of the system, which is known to be indicated by the requirement that all 

system poles must lie in the left-half plane of the s-plane [40]. System stability can only 

be validated by examination of responses in the continuous time domain, or in the s-plane. 

It cannot be validated in the analog frequency or analog radian frequency domains. 

3.4.1.2 Definition of System Transfer Function Ha(s) 

For a given circuit, the s-domain voltage transfer function 𝐻𝑎(𝑠) is defined as the 

ratio of the system’s output voltage to its input voltage in the s-domain, i.e.,  

 𝐻𝑎(𝑠)  =
𝑉𝑜𝑢𝑡(𝑠)
𝑉𝑖𝑛(𝑠)

=
𝐵𝑎(𝑠)
𝐴𝑎(𝑠) ,  (3.17) 

where the expressions for 𝑉𝑜𝑢𝑡(𝑠) and 𝑉𝑖𝑛(𝑠) are calculated using the Laplace transform 

of (3.14). 𝐻𝑎(𝑠) is a useful representation for understanding system characteristics in the 

complex analog frequency domain. 

 An important aspect of the transfer function 𝐻𝑎(𝑠) is its relationship to the system 

continuous time impulse response, ℎ𝑐(𝑡) , defined as the continuous time-domain 

response to the Dirac delta function 𝛿(𝑡), which is defined as 

 𝛿(𝑡)  =  �+∞, 𝑥 = 0
0, 𝑥 ≠ 0  �. (3.18) 

and for which 

 � 𝛿(𝑡)𝑑𝑡 = 1 .
∞

−∞

 (3.19) 

The impulse response is known to completely characterize the system [40], [48]. The 

transfer function 𝐻𝑎(𝑠) is related to ℎ𝑐(𝑡) via the relationship 

 𝐻𝑎(𝑠) = ℒ{ℎ𝑐(𝑡)} = � ℎ𝑐(𝑡)𝑒−𝑠𝑡𝑑𝑡 ,
∞

0

 (3.20) 

and thus the transfer function 𝐻𝑎(𝑠) is the Laplace transform of the continuous-time 

impulse response. It can be seen, therefore, that the transfer function 𝐻𝑎(𝑠)  also 

completely characterizes the system. 
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3.4.1.3 Relationship of the CTFT Domain Frequency Response Ha(jΩ) to the 

Laplace Domain Transfer Function Ha(s) 

Similar to the definition of a Laplace-domain system transfer function 𝐻𝑎(𝑠) 

given by (3.17), it is possible to define an analog frequency transfer function 𝐻𝑎(𝑗Ω), 

also referred to as the frequency response, in the analog frequency domain as: 

 𝐻𝑎(𝑗Ω)  =
𝑉𝑜𝑢𝑡(𝑗Ω)
𝑉𝑖𝑛(𝑗Ω)

=
𝐵𝑎(𝑗Ω)
𝐴𝑎(𝑗Ω) ,  (3.21) 

where the expressions for 𝑉𝑜𝑢𝑡(𝑗Ω) and 𝑉𝑖𝑛(𝑗Ω) are calculated using the continuous-time 

Fourier transform of (3.1) [41],[42]. 

Alternatively, the analog frequency response given by (3.21) can be interpreted in 

terms of the Laplace transform, as the value of 𝐻𝑎(𝑠) evaluated where 𝑠 = 𝑗Ω, which 

corresponds exactly to the imaginary frequency axis of the s-plane of Figure 3-2 [43]. 

The relationship between the system’s s-domain transfer function 𝐻𝑎(𝑠) and its analog 

frequency transfer function, 𝐻𝑎(𝑗Ω) can thus be defined formally as: 

 𝐻𝑎(𝑗Ω)  =  �𝐻𝑎(𝑠)|𝑠=𝑗Ω. (3.22) 

3.4.2 z-Transform Domain, or z-Domain 

The z-transform domain, or z-domain, relates to the discrete-time domain via the 

z-transform pair, defined as [41], [42]:  

 𝑉(𝑧) = 𝒵{𝑣(𝑛)} = � 𝑣(𝑛)𝑧−𝑛 ,
∞

n=−∞

 (3.23) 

and 

 𝑣(𝑛) = 𝒵−1{𝑉(𝑧)} =
1

2𝑗𝜋
� 𝑉(𝑧)𝑧𝑛−1𝑑𝑧 .
𝐶

 (3.24) 

For the z-transform, the region of convergence (ROC) is defined as the set of points in 

the z-plane for which the sequence 𝑣(𝑛)𝑧−𝑛 is absolutely summable, i.e., 

 𝑅𝑂𝐶 = � � |𝑣(𝑛)𝑧−𝑛|
∞

n=−∞

< ∞� . (3.25) 

The ROC is important when considering the stability and causality of systems. 
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3.4.2.1 Definition of the Two-Dimensional z-Plane 

Note that z-domain analysis makes significant use of the concept of the complex 

two-dimensional (2D) z-plane, as shown in Figure 3-3. The relationship of the z-domain 

to the discrete frequency domain 𝜔 can be thought of as the latter mapping to the unit 

circle of the z-plane where |𝑧| = 1 . As such, the discrete frequency domain can be 

thought of as a subset of the z-domain, with some information being lost when working 

in the 𝜔-domain in lieu of the z-domain [42]. 

Accordingly, for discrete systems, there are certain aspects of the system which 

can, in principle, be studied only in the complex z-domain or the discrete time domain, 

and for which the pertinent information becomes lost when working in the discrete 

frequency 𝜔-domain. One obvious example of such a characteristic is the stability of the 

system, which is known to be indicated by the requirement that all system poles lie inside 

the unit circle of the z-plane [40]. System stability of discrete systems can thus only be 

validated by examination of responses in the discrete time domain, or in the z-plane. It 

cannot be validated in the discrete frequency domain. 

 

Figure 3-3: Complex 2D z-Plane in the z-Domain, Showing Unit Circle at |z| = 1 
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3.4.2.2 Definition of System Digital Transfer Function Hd(z) 

Analogously to the case of the Laplace domain, a system digital transfer function 

can be defined in the z-domain as: 

 𝐻𝑑(𝑧)  =  
𝑉𝑜𝑢𝑡(𝑧)
𝑉𝑖𝑛(𝑧)

=
𝐵𝑑(𝑧)
𝐴𝑑(𝑧) ,  (3.26) 

where the expressions for 𝑉𝑜𝑢𝑡(𝑧)  and 𝑉𝑖𝑛(𝑧)  are calculated using the z-transform of 

(3.23). Like 𝐻𝑎(𝑠)  in the complex analog frequency domain, 𝐻𝑑(𝑧)  is a useful 

representation for understanding system characteristics in the complex discrete frequency 

domain. 

An important aspect of the digital transfer function 𝐻𝑑(𝑧) is its relationship to the 

system discrete-time impulse response, ℎ𝑑(𝑛) , defined as the discrete time-domain 

response to the Kronecker delta function 𝛿(𝑛), which is defined as 

 𝛿(𝑛)  = � 1,𝑛 = 0
0,𝑛 ≠ 0 .

� (3.27) 

The impulse response is known to completely characterize the system [41], [42], [49]. 

The transfer function 𝐻𝑑(𝑧) is related to ℎ𝑑(𝑛) via the relationship 

 𝐻𝑑(𝑧) = 𝒵{ℎ𝑑(𝑛)} = � ℎ𝑑(𝑛)𝑧−𝑛 ,
∞

n=−∞

 (3.28) 

and thus the digital transfer function 𝐻𝑑(𝑧)  is the z-transform of the discrete-time 

impulse response. It can be seen, therefore, that the digital transfer function 𝐻𝑑(𝑧) also 

completely characterizes the system. 

Under certain conditions and with certain limitations, it is possible to approximate 

𝐻𝑑(𝑧) from the knowledge of 𝐻𝑎(𝑠) using a variety of methods, and this process will be 

a major topic of this dissertation. 

3.4.2.3 Relationship of the DTFT Domain Frequency Response Hd(ejω) to the z-

Transform Domain Digital Transfer Function Hd(z) 

Similar to the definition of a z-domain system digital transfer function 𝐻𝑑(𝑧) 

given by (3.26), it is possible to define a digital frequency transfer function 𝐻𝑑�𝑒𝑗𝜔�, also 

referred to as the frequency response, in the discrete frequency domain as: 
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 𝐻𝑑�𝑒𝑗𝜔�  =
𝑉𝑜𝑢𝑡(𝑒𝑗𝜔)
𝑉𝑖𝑛(𝑒𝑗𝜔)

=
𝐵𝑎�𝑒𝑗𝜔�
𝐴𝑎(𝑒𝑗𝜔) ,  (3.29) 

where the expressions for 𝑉𝑜𝑢𝑡(𝑒𝑗𝜔) and 𝑉𝑖𝑛(𝑒𝑗𝜔) are calculated using the discrete-time 

Fourier transform of (3.5) [41],[42]. 

Alternatively, the discrete frequency response given by (3.29) can be interpreted 

in terms of the z-transform, as the value of 𝐻𝑑(𝑧)  evaluated where 𝑧 = 𝑒𝑗𝜔 , which 

corresponds exactly to the unit circle of the z-plane of Figure 3-3 [43]8. The relationship 

between the system’s z-domain transfer function 𝐻𝑑(𝑧)  and its ω-domain frequency 

response, or frequency transfer function, 𝐻𝑑�𝑒𝑗𝜔� can be defined formally as: 

 𝐻𝑑�𝑒𝑗𝜔�  =  �𝐻𝑑(𝑧)|𝑧=𝑒𝑗𝜔. (3.30) 

3.4.3 Ha(s) to Hd(z) Transformation Methods 

Direct conversion from the s-domain to the z-domain is useful for modifying 

system transfer functions for subsequent examination and analysis. Techniques for this 

conversion are well-established in filter theory, and these techniques can be applied 

directly to signal integrity problems as well [41]. 

An exact mapping from the s-plane to the z-plane is established through the 

relationship 

 𝑧 = 𝑒𝑠𝑇𝑠  , (3.31) 

but a difficulty arises from the fact that the frequency response in the discrete frequency 

𝜔 -domain is periodic. Essentially, mapping between the continuous- and discrete-

frequency domains involves mapping the 𝑗Ω axis from the complex s-plane to the unit 

circle in the complex z-plane. Note that this mapping would be periodic, and thus non-

unique, at continuous frequencies Ω that correspond to discrete frequencies greater than 

𝜔 = 2𝜋. 

Three widely-used s-domain to z-domain transformations that can be readily 

applied to filter design and signal integrity problems are the bilinear transformation, the 

matched-Z transformation, and the impulse invariant method transformation [41]–[43]. 

                                                 
8 The 𝑗Ω axis in the s-plane of Figure 3-2 is warped into a circle with radius equal to 1 in the z-plane of 
Figure 3-3 using the transformation 𝑧 = 𝑒𝑗𝜔 = 𝑒𝑗Ω𝑇𝑠 . 
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These are particularly useful if the performance specifications are given in the frequency 

domain, which is usually the case in filter design problems. 

3.4.3.1 Bilinear Transformation 

The bilinear transformation (BLT) can be used to map between the s-domain and 

z-domain, in either direction. For this transformation, the analog poles and zeros are 

mapped to discrete poles and zeros. Because it was developed for filter applications, the 

bilinear transformation carefully maintains the magnitude response of the analog filter 

between 𝐻𝑑(𝑧) and 𝐻𝑎(𝑠), although the frequencies become distorted at high frequencies 

[41].  

The bilinear transformation is based upon a 1st-order Pade approximation [43]. 

Recall that the exact map from the s- to the z-domain is given by (3.31). The 1st-order 

Pade approximation yields the inverse bilinear transformation [41], 

 𝑧 = 𝑒𝑠𝑇𝑠 ≈
1 + 𝑇𝑠

2 𝑠

1 − 𝑇𝑠
2 𝑠

  . (3.32) 

Solving (3.32) for 𝑠 yields the bilinear transformation [41]: 

 𝑠 =
2
𝑇𝑠
�
𝑧 − 1
𝑧 + 1�

 , (3.33) 

and thus the transformation from 𝐻𝑎(𝑠) to 𝐻𝑑(𝑧) using the BLT becomes 

 𝐻𝑑(𝑧) = �𝐻𝑎(𝑠)|
𝑠=2𝑇𝑠

�𝑧−1𝑧+1�
 . (3.34) 

Figure 3-4 represents graphically the relationships established between the s-plane 

and z-plane by the bilinear transform. The non-linear bilinear transform of (3.33) has the 

property that the entire 𝑗Ω axis of the s-plane maps onto the unit circle of the z-plane, 

with frequency distortion at high frequencies but note that, unlike the map  

𝑧 = 𝑒𝑠𝑇𝑠, which implies 𝜔 = Ω𝑇𝑠,  the mapping is unique, with no periodic mapping [41]. 

Another property of the bilinear transformation is that the left-half plane of the 

complex s-plane maps to the interior of the unit circle in the complex z-plane. The 

important implication here is that stability information for a given system is contained in 
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the s- and z-domains. The stability information is lost when working in the analog and 

discrete frequency domains Ω and 𝜔.  

Applying the bilinear transformation to the analog and discrete frequency 

domains results in the following relationships [43]: 

 Ω =
2
𝑇𝑠
𝑡𝑎𝑛(

𝜔
2

) ,  (3.35) 

and 

 ω = 2 𝑡𝑎𝑛−1(
ΩTs

2
)  . (3.36) 

 

Figure 3-4: Relationship Between Complex s-Plane and Complex z-Plane for the Bilinear 

Transformation 

Note the distinction between the discrete-to-continuous map given by the non-

linear bilinear transform and the linear map, namely 𝜔 = Ω𝑇𝑠 . Note from the z-plane 

diagram in Figure 3-4 that the s-plane frequencies Ω  do not translate to the z-plane 

frequencies 𝜔 via the linear map. 

For filter design problems, the frequency distortion that occurs at high frequencies 

can be compensated for at certain critical design frequencies by pre-warping these 

frequencies prior to applying the bilinear transform, using the formulas above. For filter 

design problems, these critical design frequencies are usually those which define the pass 

bands and stop bands for the filter [41]. 
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3.4.3.2 Matched-Z Transformation 

The matched-Z transformation can also be used to map between the s-domain and 

z-domain, in either direction. Like the bilinear transformation, the analog poles and 

analog zeros are mapped to discrete poles and zeros. Because it was also developed for 

filter applications, the matched-Z transformation carefully maintains the magnitude 

response of the analog filter between 𝐻𝑑(𝑧)  and 𝐻𝑎(𝑠) , but the frequencies become 

distorted at high frequencies [43]. 

Unlike the bilinear transform, for the matched-Z transform the mapping between 

the z- and s-domains does follow the exact map given by (3.31) above. The matched-Z 

transform is most easily applied with 𝐻𝑑(𝑧)  and 𝐻𝑎(𝑠)  expressed in factored form, 

namely, where 

 𝐻𝑑(𝑧) = 𝐾𝑑

⎣
⎢
⎢
⎢
⎢
⎡��z − ebkTs�
𝑀

𝑘=1

�(z − eakTs)
𝑁

𝑘=1 ⎦
⎥
⎥
⎥
⎥
⎤

;  𝑁 ≥ 𝑀 , (3.37) 

where  𝐾𝑑 is a gain constant, and  

 𝐻𝑎(𝑠) = 𝐾𝑎

⎣
⎢
⎢
⎢
⎢
⎡�(s − bk)
𝑀

𝑘=1

�(s − ak)
𝑁

𝑘=1 ⎦
⎥
⎥
⎥
⎥
⎤

;  𝑁 ≥ 𝑀 , (3.38) 

where 𝐾𝑎 is also a gain constant. The gain constants 𝐾𝑑 and 𝐾𝑎 must be matched at some 

frequency of interest when using the matched-Z transform. 

The general procedure for using the matched-Z transformation to move from the 

s-domain to the z-domain is thus [43]: 

1. Express 𝐻𝑎(𝑠) in pole-zero factored form. It is assumed all poles have a frequency of 

less than the Nyquist frequency 𝜔 = 𝜋. The poles are mapped according to the exact 

map (3.31). 
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2. Finite zeros of 𝐻𝑎(𝑠) are mapped according to the exact map (3.31) if they have 

frequency less than the Nyquist frequency 𝜔 = 𝜋 , otherwise they are mapped to 

𝑧 = −1. 

3. The gain 𝐾𝑑 of 𝐻𝑑(𝑧) of (3.37) is adjusted to match the gain 𝐾𝑎 of 𝐻𝑎(𝑠) of (3.38) at 

some frequency of interest. For low-pass filters, this frequency is often chosen at DC, 

where 𝑠 = 0 and 𝑧 = 1. For high-pass filters, this frequency is often chosen at infinite 

frequency where 𝑠 = ∞ and, by convention, 𝑧 = −1. 

Figure 3-5 shows the relationship between the complex s- and z-planes for the 

matched-Z transformation. Note that the matched-Z transformation is not a unique map, 

in that frequencies above the Nyquist frequency are all mapped to the Nyquist frequency. 

This is a controversial aspect of the matched-Z transform, but in reality differs little from 

the bilinear transform’s frequency distortion at high frequencies. The matched-Z 

transform has the advantage that it follows the exact map of (3.31) for much of the 

frequency spectrum. 

 
Figure 3-5: Relationship Between Complex s- and z-Planes for the Matched-Z Transformation 

3.4.3.3 Impulse Invariant Method Transformation 

The impulse invariant transform (IIT) is a third well-known method for mapping 

from the s- domain and z-domain, in either direction [42], [41], [43]. For this 

transformation, the analog poles are directly mapped to discrete poles via the relation 
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(3.31), just as is done for the matched-Z transformation described previously. The zeros, 

however, are mapped in a less-straightforward fashion, which is one of the main 

drawbacks of the method for some applications, such as filter design, where matching the 

frequency responses 𝐻𝑎(𝑠) and 𝐻𝑑�𝑒𝑗𝜔� is important. For certain applications, such as 

where good time-domain performance is important, for example, the IIT can work very 

well indeed [42]. 

The impulse invariant method transform carefully maintains the relationship 

between the system’s continuous-time impulse response ℎ𝑐(𝑡), and the sampled version 

of this ℎ𝑑(𝑛), where the relation between them is expressed as: 

 ℎ𝑑(𝑛) = �𝑇𝑠ℎ𝑐(𝑡)|𝑡=𝑛𝑇𝑠 = 𝑇𝑠ℎ𝑐(𝑛𝑇𝑠), 𝑛 = 0, 1, 2, … , (3.39) 

and 𝑇𝑠 is once again the sampling interval. For a continuous-time system with Laplace-

domain transfer function 𝐻𝑎(𝑠) expressed in the pole-residue form 

 𝐻𝑎(𝑠) =
𝐵𝑎(𝑠)
𝐴𝑎(𝑠) = ��

𝑐𝑘
𝑠 − 𝑎𝑘

𝑁

𝑘=1

� , (3.40) 

application of the IIT results in [41] 

 𝐻𝑑(𝑧) = �
𝑇𝑠𝑐𝑘𝑧

𝑧 − 𝑒𝑎𝑘𝑇𝑠

𝑁

𝑘=1

  . (3.41) 

In general, the matched-Z transform and the bilinear transform can better handle lower 

sampling rates than older s- to z-domain transformation methods, such as the impulse 

invariant method, and have largely replaced the latter in filter design [43]. Because of its 

prevalence and wide adoption, however, it is useful to utilize the IIT for comparison 

purposes. 

3.4.4 Time-Frequency Uncertainty Principle for Quantities Related by the Fourier 

Transform 

One of the limiting concepts when transforming between the various time and 

frequency domains, both analog and digital, is the time-frequency uncertainty principle, 

which is mathematically inherent to pairs of functions related by Fourier transforms [50], 

[51]. Perhaps the best-known example of such an uncertainty principle is that expressed 
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by Heisenberg in the field of quantum mechanics, but it can be shown to be inherent to all 

systems which have a function 𝑣(𝑡) with a Fourier transform 𝑉(𝑓), as expressed in the 

relation of (3.1). 

 The uncertainty principle for the case of time-frequency domains, such as those 

being considered in this project, can be expressed mathematically as [51]: 

 𝐷𝑜�𝑣(𝑡)�𝐷𝑜�𝑉(𝑓)� ≥ 1
16𝜋2

 , (3.42) 

where 

 𝐷𝑜�𝑣(𝑡)� = ∫ 𝑡2|𝑣(𝑡)|2𝑑𝑡∞
−∞  . (3.43) 

The significance is the realization that the resolution in the time and frequency domains is 

fundamentally limited; this realization may be more important than the quantitative result. 

The implication is that, while it may be possible to know with great precision the value of 

a function 𝑣(𝑡) in the time domain, doing so will limit the precision for which 𝑉(𝑓) can 

be known in the frequency domain, and vice versa. 

 The uncertainty principle was expressed in (3.42) in terms of the continuous-time 

Fourier transform (CTFT), but it should be clear that it applies to the DTFT pair as well. 

The time-frequency uncertainty principle, in a variety of forms, has pragmatic 

implications for the expected performance of systems related to signal processing, filter 

design, image processing, and a variety of engineering and scientific applications, as is 

evident by mangy patents and publications, e.g., [52], [53], [54], [55], [56]. 

3.5 Circuit Theory 

Signal integrity engineers make significant use of circuit theory for their analyses. 

The SPICE simulators make use of high level programming languages, such as SPICE or 

ASTAP, for their input [20], [21]. These languages follow the conventions of standard 

lumped-element circuit theory as their basis, adding special functions and formulations 

for transistors, transmission lines, and other special-purpose elements. Distributed-

element circuit theory is more generalized, and includes such concepts as transmission 

line theory and scattering-parameter theory [57]. Distributed-element circuit theory is 

required when the underlying assumptions required by lumped-element theory break 

down. An understanding of the fundamental assumptions underlying both lumped- and 
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distributed-element circuit theory is thus required for using signal integrity tools and 

interpreting the results properly. 

3.5.1 Lumped-Element Circuit Theory 

Lumped-element circuit theory is familiar to all electrical engineers, both in the 

continuous time and analog frequency domains. Most signals encountered in signal 

integrity analysis are considered in the context of the continuous time domain. Lumped-

element analysis, however, has fundamental limitations which preclude utilizing it 

exclusively for signal integrity analysis [57]. 

Lumped-element theory can be derived directly from Maxwell’s equations, and 

greatly simplifies the analysis of circuits under the right conditions. In particular, it 

allows for algebraic analysis of circuits being excited by sinusoidal stimuli in the steady 

state case, instead of differential equation solutions in the more general, time-domain 

case. Under these conditions, it is possible to covert easily between the analog radian 

frequency Ω-domain and the continuous time domain. 

The application of lumped-element theory also requires some underlying 

assumptions [57]. One important assumption that is particularly relevant to signal 

integrity engineering is that the wavelength of the signals in question must be very long 

relative to the circuit’s physical dimensions. A widely-used guideline is that the circuit 

dimensions must be smaller than about 1/10 of a wavelength [4], [6]. This is true for 

circuits with moderate physical size at very low frequencies, or for circuits with small 

physical size at moderate speeds. The theory breaks down, however, for circuits with 

huge physical size at low speeds, and circuits with moderate physical size at high speeds. 

As an example, if one considers an electrical power utility’s distribution network, 

the wavelength of a 60-Hz signal is 5000 km. Thus, for the case of 60 Hz, a transmission 

network with a length of over 500 km cannot be considered using lumped-element circuit 

theory, but the wiring network inside of a person’s house can be considered using 

lumped-element theory. 

As a second example, if one considers a printed wiring board (PWB) that is 32 cm 

by 28 cm (a standard dimension of an ATCA form factor computer blade) a 1-GHz signal 

has a wavelength of about 14 cm. Thus physical interconnects of several centimeters or 
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larger cannot be treated using lumped theory, but physical interconnects at the chip-level 

can be considered using lumped-element theory. 

3.5.2 Transmission Line Theory 

The second example above shows that lumped-element theory is not adequate for 

signal integrity problems at the PWB level, although it may be adequate at the 1st-level 

package or chip level, depending upon the frequency. Accordingly, signal integrity 

engineers have used a combination of lumped-and distributed-element circuit theory in 

their analyses since computers started to utilize signals in the few tens of MHz [1]. 

SPICE simulators were enhanced to contain built-in transmission line algorithms. Further, 

the signals found in computers are typically not purely sinusoidal, but rate pulse trains 

consisting of pseudo-random patterns of 1’s and 0’s. These signals by nature have wide 

spectra, containing not just their fundamental frequency defined by the baud rate, but also 

having significant harmonic content [4]. 

The most familiar form of distributed circuit element is the transmission line. 

Transmission line theory is well-developed mathematically and generally compatible 

with lumped-element concepts. As such, it is a natural extension of lumped-element 

theory that is easily understandable to most electrical engineers.  

Figure 3-6 shows the basic definition of a transmission line element [6]. The 

definition of a transmission line consists of the distributed resistance parameter 𝑅 , 

distributed inductance parameter 𝐿, distributed shunt conductance parameter 𝐺, and the 

distributed capacitance 𝐶 , respectively, all per unit length. In general, the 𝑅𝐿𝐺𝐶 

parameters are frequency-dependent, and this dependence must be accounted for when 

developing transmission line models for SPICE simulation [6], [57]. In the figure, an 

infinitesimally short length Δ𝑧 is shown. 

𝑅 represents the conductor loss of the line, while 𝐺 represents the dielectric loss. 

Transmission lines allow engineers to mathematically account for three real effects, 

propagation delay along the interconnect, signal attenuation in the interconnect, and 

loading effects of the interconnect. Two derived quantities from the 𝑅𝐿𝐺𝐶 representation 

are [6]: 
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 𝑍𝑜 = �
𝑅 + 𝑗Ω𝐿
𝐺 + 𝑗Ω𝐶

 , (3.44) 

where 𝑍𝑜 is the characteristic impedance of the transmission line, and 

 𝛾 = �(𝑅 + 𝑗Ω𝐿)(𝐺 + 𝑗Ω𝐶) = 𝛼 + 𝑗𝛽 , (3.45) 

where 𝛾  is the transmission line propagation constant. Again, note that 𝑍𝑜  and 𝛾  are 

frequency-dependent [6]. 

 

Figure 3-6: Basic Definition of a Transmission Line Element 

In the above relations, 𝑅 , 𝐿 , 𝐺 , and 𝐶 ,  are real numbers, while 𝑍𝑜  and 𝛾  are 

complex numbers. Thus specifying the 𝑅𝐿𝐺𝐶  parameters is completely equivalent to 

specifying 𝑍𝑜 and 𝛾, and both conventions are used depending upon the context. 𝑍𝑜 is an 

indicator of line loading and impedance mismatch effects, while 𝛾  is an indicator of 

propagation speed and attenuation effects, with the “attenuation factor” 𝛼 representing 

attenuation and the “phase constant” 𝛽 representing propagation velocity. 

The 𝑅𝐿𝐺𝐶  parameters describe the line itself. There are some additional 

parameters used in transmission line theory which describe the relationship of the line to 

circuit elements to which the line interfaces. The reflection coefficient is defined as [6]: 

 ΓL =
𝑉−
𝑉+

=
𝑍𝐿 − 𝑍𝑜
𝑍𝐿 + 𝑍𝑜

 , (3.46) 

where 𝑍𝐿 is the impedance of the load attached to the end of the line.  

Similarly, a transmission coefficient can be defined for the terminated 

transmission line [19]: 
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 𝑇𝐿 =
𝑉+ + 𝑉−
𝑉+

= 1 + Γ𝐿 =
2𝑍𝐿

𝑍𝐿 + 𝑍𝑜
 , (3.47) 

and can be seen to be the ratio of the total voltage at the load to the incident voltage at the 

input to the line. 

The transmission line’s input impedance 𝑍𝑖𝑛𝑝𝑢𝑡 is also load-dependent and can be 

expressed as [6]:  

 
𝑍𝑖𝑛𝑝𝑢𝑡
𝑍𝑜

=

𝑍𝐿
𝑍𝑜

+ 𝑡𝑎𝑛ℎ((𝛼 + 𝑗𝛽)𝑙)

1 + 𝑍𝐿
𝑍𝑜
𝑡𝑎𝑛ℎ((𝛼 + 𝑗𝛽)𝑙)

=  

𝑍𝐿
𝑍𝑜

+ 𝑡𝑎𝑛ℎ(𝛾𝑙)

1 + 𝑍𝐿
𝑍𝑜
𝑡𝑎𝑛ℎ(𝛾𝑙)

, (3.48) 

where 𝑙  is the length of the transmission line terminated in load impedance 𝑍𝐿 . For 

equations (3.44) through (3.48), sinusoidal steady-state excitation is assumed, and both 

the input and output parameters are all frequency-dependent. 

3.5.3 Scattering Parameters 

Another familiar concept of distributed circuit theory is the scattering parameter, 

or s-parameter. Scattering parameters are closely related to the concepts of reflection 

coefficients and transmission coefficients, as described in the previous section for 

transmission lines. Scattering parameters are particularly useful for circuit element and 

interconnect characterization using empirical measurements or simulation at high 

frequencies, where the concepts of voltage and currents become spatially dependent, and 

open- and short-circuit terminations become difficult to implement over any significant 

frequency range. In contrast, s-parameter measurements are made with the network 

terminated in non-reflecting or matched loads, which are easier to implement over 

practical frequency ranges [19]. 

Figure 3-7 shows a two-port network with incident and emerging waves at each 

port. The matrix of scattering parameters, or scattering matrix, is defined by this 

configuration as [57]: 

 �𝑏1𝑏2
� = �𝑆11 𝑆12

𝑆21 𝑆22
� �
𝑎1
𝑎2�, 

(3.49) 

or 
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 𝑏 =  𝑆 𝑎 , (3.50) 

where S is the scattering matrix, a is matrix of normalized incident waves, and b is the 

matrix of normalized emerging waves. 

 

Figure 3-7: Definition of Scattering Parameters for a Two-Port Network 

The elements of a and b are normalized to the impedance of the corresponding 

port as shown in Figure 3-7, namely [19], 

 𝑎𝑛 =
𝑉𝑛+
�𝑍𝑜𝑛

,       𝑏𝑛 =
𝑉𝑛−
�𝑍𝑜𝑛

  . (3.51) 

The elements of S for a given circuit are frequency-dependent and are determined 

experimentally by vector network analyzer (VNA) measurements or, if in a pre-hardware 

phase of the design, by simulation with a full-wave electromagnetic field solver using 

assumed physical and material parameters for the circuit. As such, for a two-port network, 

the scattering matrix elements are defined as [19] : 

 𝑆11 = �𝑏1
𝑎1
�
𝑎2=0

,    𝑆12 = �𝑏1
𝑎2
�
𝑎1=0

,    𝑆21 = �𝑏2
𝑎1
�
𝑎2=0

,    𝑆22 = �𝑏2
𝑎2
�
𝑎1=0

. (3.52) 

As can be seen from the above equations and Figure 3-7, as an example, S11 would be 

measured or calculated by establishing that 𝑎2 = 0 and measuring the reflected wave at 

port 1 when an incident wave 𝑎1 on port 1 is used to excite the network. This process is 

implemented by removing any source on port 2 and terminating port 2 such that nothing 

is reflected back into the network at the port 2 interface. 

From these definitions, it can be seen that the 𝑆11  and 𝑆22  parameters are 

essentially reflection coefficients similar to that defined for the transmission line 

previously, while the 𝑆12 and 𝑆21 parameters are related to the transmission coefficient 
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concept defined previously. It should also be noted that, conceptually, the two-port 

network can be generally expanded to an N-port network. This is commonly done for 

differential pairs (a four-port network), or for expanded channel models where crosstalk 

is to be evaluated with both victim and aggressor lines present [38]. The resulting channel 

models can become quite complex, and care must be taken by the signal integrity 

engineers to balance the sophistication of the model with the computational resource 

required and available, such that the resulting simulation effort remains manageable. 

3.5.4 Relationship of Transfer Function Ha(s) to Scattering Parameters  

For a given circuit, the s-domain voltage transfer function 𝐻𝑎(𝑠) can be found 

from the interconnect’s scattering parameters if the circuit’s source and load impedances 

are also known [58]. The conversion is performed as: 

 𝐻𝑎(𝑗Ω) = 𝐻𝑎(𝑓) =
𝑆21(1 + Γ𝐿)(1 − Γ𝑆)

2(1 − 𝑆22Γ𝐿)(1 − Γ𝑖𝑛Γ𝑆)
 ,  (3.53) 

where the s-parameters are as defined previously, the Γ𝐿  and Γ𝑆  are the reflection 

coefficients looking into the source and load, respectively, and Γ𝑖𝑛  is the reflection 

coefficient looking into the two-port network with the known load termination attached, 

given as:  

 Γ𝑖𝑛 = 𝑆11 + 𝑆12𝑆21
Γ𝐿

1 − 𝑆22Γ𝐿
 . (3.54) 

This relationship is important for cases where it is desired to identify the system model 

using scattering parameters, which is commonly done for signal integrity applications, 

and subsequently study the system characteristics by analyzing the transfer function or 

frequency response characteristics in the frequency domain, which is commonly done in 

DSP applications. 

3.5.5 Circuit Frequency Scaling Techniques 

Circuit scaling techniques have been used historically in the design of analog 

filters [59]. These techniques, which can involve either scaling of frequencies or circuit 

element impedances, allow the modification of a known network having a given 

frequency response to a different network having a frequency response which more 
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closely matches a desired response. Historically, these modifications were intended to be 

implemented in the circuit design, but the techniques can also work to improve the ease 

of numerical calculations or simply the analysis of the network, especially when the 

calculations become cumbersome. 

Of these techniques, those related to frequency scaling are particularly useful 

because they are easy to apply in the s-domain. As such, they become practical for 

situations where the system transfer function 𝐻𝑎(𝑠) is known, and are directly applicable 

when 𝐻𝑎(𝑠)  is given in the rational form 𝐵𝑎(𝑠) 𝐴𝑎(𝑠)⁄ . Better still, if 𝐻𝑎(𝑠)  is also 

expressed in the pole-residue form given by (3.40), then the scaling become extremely 

intuitive, and results in simple scaling to the pole, zero, and residue coefficients. 

To see this, recall the partial fraction expansion form of 𝐻𝑎(𝑠), expressed as: 

 𝐻𝑎(𝑠) =
𝐵𝑎(𝑠)
𝐴𝑎(𝑠) = ��

𝑐𝑘
𝑠 − 𝑎𝑘

𝑁

𝑘=1

� . (3.55) 

From frequency-scaling theory [59], it is known that a transfer function 𝐻𝑎(𝑠) can be 

scaled down in frequency by a factor of 𝑘𝑓 by applying the transform 𝑠 → 𝑠𝑘𝑓 on the 𝑠-

domain variable, as follows: 

 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠) = �𝐻𝑎(𝑠)|𝑠→𝑠𝑘𝑓 = �
𝑐𝑘

𝑠𝑘𝑓 − 𝑎𝑘

𝑁

𝑘=1

= �

𝑐𝑘
𝑘𝑓

𝑠 − 𝑎𝑘
𝑘𝑓

𝑁

𝑘=1

 . (3.56) 

Here the effect of the scaling factor can be clearly seen; it scales down the residue 

variables 𝑐𝑘  and the pole variables 𝑎𝑘  by a factor of 𝑘𝑓 . The net effect of this is that 

𝐻𝑝𝑟𝑜𝑡𝑜(𝑠) has the same frequency response as 𝐻𝑎(𝑠), but over a frequency range that is 

scaled down by a factor of 𝑘𝑓. 

The motivation for doing the scaling operation of (3.56) lies in the inherent 

problems in dealing with 𝐻𝑎(𝑠) at high frequencies. Specifically, for systems of the type 

used in signal integrity analysis the poles’ and residues’ values can become extremely 

large, often in the range of a few GHz or tens of GHz. This creates problems in making 

numerical calculation using computer routines, as the numerical precision limitations of 

the computers become relevant. By scaling the residue and pole values, subsequent 
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calculation of the pole-zero factored form of 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠) is significantly easier to handle 

computationally. This leads to  

 �𝐻𝑝𝑟𝑜𝑡𝑜(𝑠)� =
𝐵𝑝𝑟𝑜𝑡𝑜(𝑠)
𝐴𝑝𝑟𝑜𝑡𝑜(𝑠)

=
𝐾𝑎𝑝(𝑠 − 𝑏𝑝1)(𝑠 − 𝑏𝑝2)⋯ (𝑠 − 𝑏𝑝𝑀)

(𝑠 − 𝑎𝑝1)(𝑠 − 𝑎𝑝2)⋯ (𝑠 − 𝑎𝑝𝑁)
 , (3.57) 

where the 𝑏𝑝𝑘 and 𝑎𝑝𝑘 terms are the zeros and poles of 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠), 𝑁 is the order of the 

model, and 𝑀 is the number of finite zeros. The function is then scaled back up to the 

original frequency range, by applying the reverse transformation 𝑠 → 𝑠 𝑘𝑓⁄  on the 𝑠 -

domain variable, as follows [59]: 

 𝐻𝑎(𝑠)�= 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠)�
𝑠→ 𝑠

𝑘𝑓
=
𝐾𝑎𝑝( 𝑠𝑘𝑓

− 𝑏𝑝1)( 𝑠𝑘𝑓
− 𝑏𝑝2)⋯ ( 𝑠𝑘𝑓

− 𝑏𝑝𝑀)

( 𝑠𝑘𝑓
− 𝑎𝑝1)( 𝑠𝑘𝑓

− 𝑎𝑝2)⋯ ( 𝑠𝑘𝑓
− 𝑎𝑝𝑁)

 , (3.58) 

Comparing (3.57) and (3.58) it is easily seen that the zeros and poles of 𝐻𝑎(𝑠) are the 

zeros 𝑏𝑝𝑘 and poles 𝑎𝑝𝑘 of 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠) scaled by the factor 𝑘𝑓, that is,  

 𝑏𝑎𝑘 =  𝑏𝑝𝑘𝑘𝑓 , (3.59) 

and 

 𝑎𝑎𝑘 =  𝑎𝑝𝑘𝑘𝑓 . (3.60) 

Note that it still may not be computationally easy to calculate the overall function 𝐻𝑎(𝑠), 

due to complications which may arise from the calculation of 𝐾𝑎, but at least the process 

above enables the direct identification of the poles and zeros of 𝐻𝑎(𝑠). 

3.5.6 State-Space Representations of Systems 

As stated previously, the transfer function representation for the system allows its 

evaluation in the frequency domain. Similarly, the state space representation allows for 

the system’s evaluation in the time domain. This representation expresses the model in 

terms of its input and output signals, as well as internal variables known as state variables 

[40], [49]. One advantage of the state space representation is that it lends itself to finding 

time-domain solutions, and thus is often the basis for many time-domain simulation 

algorithms [60]. 

Like transfer function representations, state space representations can be created 

for both continuous and discrete-time systems. As such, discrete-time representations can 
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often be created to approximate continuous-time systems. This is particularly useful for 

signal integrity analysis, which is often considered in the time-domain, yet the underlying 

simulation algorithms operate essentially on sampled versions of the continuous-time 

signals [60]. As such, the relationship between the discrete-time representation of the 

system and its continuous-time counterpart may be of interest. 

3.5.6.1 State-Space Representation for Continuous-Time Systems 

For the continuous-time case, the state space representation of the system consists 

of the following [48]: 

 𝑥̇(𝑡) = 𝐹𝑠𝑠 𝑥(𝑡) + 𝐺𝑠𝑠 𝑢(𝑡) ,  and (3.61) 

 𝑦(𝑡) = 𝐻𝑠𝑠 𝑥(𝑡) + 𝐽𝑠𝑠 𝑢(𝑡) , (3.62) 

where 𝑥(𝑡) is a vector of state variables, 𝑢(𝑡) is a vector of inputs, and 𝑦(𝑡) is the vector 

of outputs. 𝐹𝑠𝑠 is the state matrix, 𝐺𝑠𝑠 is the input matrix, 𝐻𝑠𝑠 is the output matrix, and 𝐽𝑠𝑠 

is the feed-forward matrix. 

The matrices can be formulated by applying the transfer function 𝐻𝑎(𝑠) to generic 

input and output functions 𝑈(𝑠)  and 𝑌(𝑠) , respectively, and writing the algebraic 

equations in the s-domain [40]. From the algebraic representation, differential equations 

can be written in the time domain, using the inverse Laplace transform. These differential 

equations lead directly to (3.61) and (3.62) above. 

3.5.6.2 State-Space Representation for Discrete-Time Systems 

Analogously, for the discrete-time case, the state space representation of the 

system consists of the following [48]: 

 𝑥(𝑘 + 1) = Φss 𝑥(𝑘) + Γss 𝑢(𝑘) ,  and (3.63) 

 𝑦(𝑘) = 𝐻𝑠𝑠 𝑥(𝑘) + 𝐽𝑠𝑠 𝑢(𝑘) , (3.64) 

where again 𝑥(𝑘) is a vector of state variables, 𝑢(𝑘) is a vector of inputs, and 𝑦(𝑘) is the 

vector of outputs. Φss is the state matrix, Γss is the input matrix, 𝐻𝑠𝑠 is the output matrix, 

and 𝐽𝑠𝑠 is the feed-forward matrix. 
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The matrices can be formulated by applying the transfer function 𝐻𝑑(𝑧)  to 

generic input and output functions 𝑈(𝑧) and 𝑌(𝑧), respectively, and writing the algebraic 

equations in the z-domain [40]. From the algebraic representation, difference equations 

can be written in the time domain, using the inverse z-transform. These difference 

equations lead directly to (3.63) and (3.64) above. 

3.5.6.3 Relationship Between the Continuous-Time and Discrete-Time State-Space 

Representations 

The discrete-time state-space representation of (3.63) and (3.64) above can, in 

principle, be derived directly from the z-Domain transfer function 𝐻𝑑(𝑧), if it is known. 

It is also possible to create the discrete-time representation from the continuous time 

representation of (3.61) and (3.62), using the following relationships [49]: 

 Φss = 𝑒𝐹𝑠𝑠 𝑇𝑠 ,  and (3.65) 

 Γss = �� 𝑒𝐹𝑠𝑠𝜂
𝑇𝑠

0
𝑑𝜂� 𝐺𝑠𝑠 , (3.66) 

where 𝐹𝑠𝑠, 𝐺𝑠𝑠, Φss, and Γss are the matrices defined in (3.61) and (3.63) previously, and 

𝑇𝑠  is the sampling interval assumed in the conversion from the continuous-time to 

discrete-time system. This relationship is the basis for the MATLAB algorithm 

timeresp.m, which will be used extensively in later sections of this project to evaluate the 

time-domain response of continuous-time systems [61]. 

3.5.6.4 Calculating the System Transfer Function from the State-Space 

Representation 

Just as the transfer function representation can be used to formulate the state-

space representation, it is also possible to reverse the process. The transfer function 

𝐻𝑎(𝑠) can be calculated from the state equations of (3.61) and (3.62) for the continuous-

time case as follows [49]:  

 𝐻𝑎(𝑠) =
𝑌(𝑠)
𝑈(𝑠)

= 𝐻𝑠𝑠 �𝑠𝐼 − 𝐹𝑠𝑠� 𝐺𝑠𝑠 + 𝐽𝑠𝑠  ,  (3.67) 

where 𝐼 is the identity matrix and the other matrix variables are as defined previously in 

(3.61) and (3.62). 
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Similarly, the transfer function 𝐻𝑑(𝑧) can be calculated from the state equations 

of (3.63) and (3.64) for the discrete-time case, as follows [49]: 

 𝐻𝑑(𝑧) =
𝑌(𝑧)
𝑈(𝑧)

= 𝐻𝑠𝑠 �𝑧𝐼 − Φss� Γss + 𝐽𝑠𝑠 ,  (3.68) 

where 𝐼 is the identity matrix and the other matrix variables are as defined previously in 

(3.63) and (3.64). 

3.6 Time-Domain Simulation Methods 

The primary tool of signal integrity analysis is time-domain transient simulation. 

Historically, these tools have been SPICE simulator tools with enhanced algorithms to 

account for non-linear devices (usually transistors and diodes) and for distributed circuit 

elements for transmission line interconnects. SPICE-based tools date back to the early 

1970’s and typically use nodal equations of various types and Gaussian elimination 

methods for their solution [20], [21]. Essentially, this amounts to a time-domain 

convolution method. The driver and receiver models are preferably non-linear device 

models that are technology-dependent, and usually consist of hundreds of transistors. 

This results in overall simulation models of great complexity, resulting in long simulation 

times. 

More recently, the desire to simulate high-speed SERDES links, the need to 

including the feed-forward equalization (FFE) and decision-feedback equalization (DFE) 

filters in the driver and receiver models, the desire to invoke a frequency-dependent 

interconnect model, and a desire to include the associated jitter terms in a single 

comprehensive model, have all led to the development of a new class of transient 

simulators known generally as statistical simulation analysis (SSA) programs [38]. 

Unlike SPICE, these programs rely on fast convolution methods and conversion between 

the discrete time and discrete frequency domains using FFT methods, as well as 

superposition methods to formulate the various output waveforms at the end of the 

simulation. 
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3.6.1 SPICE Simulation Methods 

SPICE simulators have been in use since the early 1970s [20], [21]. Originally, it 

was not unusual for various semiconductor companies to develop their own SPICE 

simulators to match the CMOS or bipolar technologies of their manufacturing lines, 

leading to the development of multiple simulation programs. Today, there are several 

prevailing commercially-available simulation codes offered by EDA companies, and 

micro-electronics companies which own foundries formulate their models into one or 

more generally-accepted formats. 

Although differences still exist among various SPICE simulator engines, the 

underlying SPICE algorithms are based on the general principle depicted in Figure 3-8 

[62]. SPICE simulators generally have three analysis modes - DC analysis, AC analysis, 

and transient analysis. Of these, transient analysis is most import for signal integrity 

applications, although the DC analysis solution is an inherent part of the AC analysis and 

transient analysis processes as well. 

Referring to Figure 3-8, a DC analysis for a linear circuit is performed using 

blocks 3 and 4. For a non-linear DC analysis, blocks 1-6 are required. For a transient 

analysis with linear circuits, the outer loop is executed, ignoring blocks 2 and 5. For a 

transient analysis with non-linear circuits, the entire flow is required, with blocks 2-6 

being completed at each point in time 𝑡(𝑛). 

Note in particular the adaptive time step of block 7. SPICE dynamically adjusts 

the time step ℎ(𝑛) to reduce long simulation times and to improve accuracy. The basis 

for adapting the time step is the rate at which the voltages and currents being calculated 

in the nodal matrix are changing. This adaptive time step has great implications when 

applying DSP theory to SPICE-generated waveforms, as DSP theory generally assumes a 

uniform sampling interval 𝑇𝑠 for the application of various DSP methods [41], [42]. 
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Figure 3-8: General Overview of SPICE Simulator Algorithm 

3.6.2 Statistical Signal Analysis Simulation Methods 

The use of statistical signal analysis (SSA) methods is a relatively recent 

development in signal integrity analysis [38]. These methods have been developed in 

response to the need to account for the ever-increasing number of variables when 
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simulating high-speed SERDES (HSS) links. It is generally accepted that SSA-based 

methods must be employed at speeds greater than 5 Gb/s, but the methods are commonly 

employed at lower speeds in the range of 2 to 5 Gb/s [38]. SSA simulators are based on 

fast convolution and superposition methods and as such can simulate millions of bits, as 

opposed to SPICE simulators based on incremental time-stepping algorithms. 

Figure 3-9 shows a diagram of a typical HSS system [38]. The system consists of 

three primary components, namely, the transmitter circuitry, the channel, and the receiver 

circuitry. For a typical HSS link, however, the transmitter circuitry is more than just the 

IO driver; it also generally includes feed-forward equalization (FFE) circuitry to 

compensate for anticipated channel losses. Figure 3-10 shows the structure of a typical 

HSS transmitter [38]. 

 

Figure 3-9: Typical Model for an HSS Link 

 

Figure 3-10: Transmitter Model Structure 

Similarly, the receiver circuitry also generally contains decision-feedback 

equalization (DFE) circuitry, in addition to the receive threshold circuitry, to compensate 

for the fact that the eye at the receiver input might be totally closed. Figure 3-11 shows 

the structure of a typical HSS receiver [38]. 

The channel model shown in Figure 3-9 consists of the passive interconnect 

structure that usually consists of 1st- and 2nd-level packaging, the associated wiring and 

vias, and any connectors and cables. The channel model is generally developed separately, 

either by empirical extraction using vector network analyzer (VNA) measurement 
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methods, or by using simulation in a full-wave electromagnetic field solver [63]. The 

latter case is more useful from a hardware design standpoint, in that it can be done prior 

to hardware fabrication, as part of the channel design process. The former case is more 

useful for model-to-hardware correlation and hardware design validation activities. 

 
Figure 3-11: Receiver Model Structure 

The channel model is generally expressed as an s-parameter matrix, usually using 

a standard scattering parameter format. Often, the channel is broken down into 

subcomponents representing the 1st-level package for the transmitter device, the 2nd-level 

packaging consisting of board-level interconnect and cables/connectors, and the 1st-level 

package for the receiver device. The s-parameters are measured for each of these 

subcomponents separately, and then analytically concatenated to form the overall s-

parameter matrix for the channel. For the transmitter, this can be expressed as [38]: 

 𝑇𝑥(𝑗Ω) = �1 𝑇𝑥21(𝑗Ω)
1 𝑇𝑥22(𝑗Ω)� , (3.69) 

where 𝑇𝑥(𝑗Ω) is the s-parameter matrix for the transmitter. Here 𝑇𝑥21(𝑗Ω) represents the 

low-pass filter effect of rolling off the square-wave digital input to the driver stage, and 

𝑇𝑥22(𝑗Ω)is a representation of the transmitter 1st-level package’s return loss. Likewise for 

the receiver, and s-parameter matrix can be formed as [38]: 

 𝑅𝑥(𝑗Ω) = �𝑅𝑥11(𝑗Ω) 1
1 1

� ,  (3.70) 

where 𝑅𝑥(𝑗Ω) is the s-parameter matrix for the receiver. Here 𝑅𝑥11(𝑗Ω) represents the 

receiver 1st-level package’s return loss. Finally, for the 2nd-level package, the s-parameter 

matrix can be expressed as [38]: 

Decision 
Feedback 

Equalization
(DFE) FIR filter

Σ

jitter

IO Receiver
Circuitry

Decision 
Feedback 

Equalization
(DFE) FIR filter

Σ

jitter

IO Receiver
Circuitry



 

59 

 𝑆𝑐𝑏(𝑗Ω) = �
𝑆11(𝑗Ω) 𝑆12(𝑗Ω)
𝑆21(𝑗Ω) 𝑆22(𝑗Ω)� , (3.71) 

where 𝑆11(𝑗Ω) , 𝑆12(𝑗Ω) , 𝑆21(𝑗Ω) , and 𝑆22(𝑗Ω)  are measured 4-port differential data 

compiled for the channel. To determine an overall transfer function for the channel in the 

digital frequency domain, the s-parameter matrices given above must each be converted 

to chain-scattering matrix (t-matrix) parameters and multiplied using matrix algebra to 

obtain an overall t-matrix representation [57], which can then be converted back to s-

parameters. Finally, a Ω -domain transfer function 𝑇𝑟(𝑗Ω)  can be obtained from the 

channel’s overall s-parameter matrix [58]. 

Once the channel’s overall transfer function is obtained, it is used to calculate the 

response of the channel to a stimulus as defined in Figure 3-12, using fast convolution 

methods. This is called the channel pulse response and is calculated as follows [38]: 

 𝑡𝑥(𝑡) = 𝐻(𝑡)𝐻(𝑡𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡) , (3.72) 

 𝑟𝑥(𝑗Ω) = 𝑡𝑥(𝑗Ω)𝑇𝑟(𝑗Ω) , (3.73) 

and 

 𝑟𝑥(𝑡) = 𝐼𝐹𝐹𝑇(𝑟𝑥(𝑗Ω)) , (3.74) 

where 𝐻(𝑡) represents a unit-step function at 𝑡 = 0, 𝑡𝑥(𝑡) is the resulting input signal 

pulse of Figure 3-12, 𝑡𝑥(𝑗Ω) is the input signal pulse in the ω-domain, and 𝑟𝑥(𝑡) is the 

channel’s pulse response. The general principle of SSA simulation which enables the 

tremendous increase in simulation speed, and thus allows simulation of millions of bits, is 

the use of superposition principles to construct the overall channel response using 

combinations of the above pulse response 𝑟𝑥(𝑡) [38]. 

The FFE and DFE circuitry for the transmitter and receiver, respectively, must be 

included in the overall simulation of the link [38]. These FFE and DFE circuits are 

considered to be digital filters, and are generally implemented as a finite impulse 

response (FIR) filters. As such, the FFE and DFE filters have filter coefficients which 

must be set appropriately to compensate for the channel losses. Most SSA simulation 

programs have built-in algorithms to optimally set these coefficients [38]. The DFE 

coefficients are generally determined by examining various samples of the pulse response 
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waveform, while the FFE coefficients are generally determined by examining the channel 

transfer function, finding its inverse, and using an optimization algorithm to find a best-

fit to the FFE filter response that matches this inverse [64]. 

 
Figure 3-12: Pulse Stimulus for Calculation of Channel Pulse Response 

In addition to incorporating the driver, receiver, and channel models, SSA 

simulators also directly handle the various deterministic and random jitter terms 

associated with the transceiver circuitry. Deterministic jitter includes data-dependent 

jitter, duty-cycle distortion, sinusoidal jitter, periodic jitter, and bounded uncorrelated 

jitter. Random jitter includes uncorrelated unbounded Gaussian jitter, and correlated 

bounded Gaussian jitter [38], thereby enabling a comprehensive simulation including all 

physical components of the link, and incorporating the various jitter components. 

There are many different SSA simulation engines. Companies that design libraries 

of HSS transmitter and receiver macros often develop their own proprietary SSA engines 

so that they can easily provide the HSS transmitter and receiver models and define the 

associated FFE and DFE structures and associated jitter terms. One example of a 

proprietary engineer is IBM’s HSSCDR tool [32], [38]. An example of an open-source 

SSA engine is the StateEye tool [64]. The StatEye tool tends to use industry standard bus 
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specifications to define its transmitter and receiver models and associated equalization 

and jitter terms. Various computer automated design/engineering (CAD/CAE) software 

vendors also produce SSA simulation codes for purchase [33]–[35], [37]. 

3.7 System Identification 

System identification involves forming models for systems from observed data 

[65]. Generally, measured data is available for the system’s input and output, from which 

the model can be created. Both time- and frequency-domain system identification 

methods are available, and the data can be in either form. Figure 3-13 and Figure 3-14 

show the general system identification problem in the time and frequency domains, 

respectively. 

 

Figure 3-13: System Identification Problem in the Discrete Time Domain 

 

Figure 3-14: System Identification Problem in the Discrete Frequency Domains 

For systems about which little is known about the system, or for which the model 

is inherently very complex, the system can be considered to be a “black box.” For black-

box systems, the system identification process usually involves non-parametric methods. 

Examples of such methods in the time domain include impulse-response analysis and 

step-response analysis, which are common methods in DSP and control theory. In the 

frequency domain, non-parametric methods include sine-wave testing, correlation 

methods, and empirical transfer-function estimation [65]. 
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In contrast to black box methods, often there is some knowledge of the system’s 

nature and thus it is possible to make assumptions about the general form of the desired 

model. The “grey-box” concept leads to the use of parametric system identification 

methods, for which a general, finite parameter vector can be applied in an effort to bound 

the identification problem [65]. This generally involves finding an estimate for the 

parameter vector which minimizes the prediction error subject to some constraint. For 

system identification problems, it is common to use a prediction-error method (PEM) 

based on either least-squares estimator (LSE) or maximum-likelihood estimator (MLE) 

[65]. Because of the deterministic, non-stochastic nature of analog waveforms 

propagating on computer interconnects, the least-squares error estimator (LSEE) seems to 

be a reasonable choice for the prediction-error method used for signal integrity analysis 

applications. 

For time-domain parametric system-identification, Figure 3-15 shows a block 

diagram of a general output-error system, which leads to a general family of model 

structures [65]: 

 𝐴(𝑧)𝑌(𝑧) =
𝐵(𝑧)
𝐹(𝑧)

𝑈(𝑧) +
𝐶(𝑧)
𝐷(𝑧)

𝐸(𝑧) . (3.75) 

In Figure 3-15, 𝑢(𝑛) is the input sequence, 𝑦(𝑛) is the output sequence, and 𝑒(𝑛) is some 

error that enters into the system, and correspond to 𝑈(𝑧), 𝑌(𝑧)and 𝐸(𝑧), respectively, in  

 

Figure 3-15: Output-Error System Defining a General Family of Model Structures 
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the equation above. From this general family, specific model structures can be defined 

which are commonly used in system identification. These include the finite impulse 

response (FIR), auto-regression-exogeneous (ARX), auto-regressive moving average 

exogeneous (ARMAX), and auto-regressive moving average (ARMA) models, among 

others [65]. These system identification routines, like most estimation schemes, have 

batch-, sequential-, and recursive-mode forms [66]. 

 It is interesting to note a parallel between system identification and the s-

parameter concepts discussed earlier. Determination of the s-parameter matrix involves 

subjecting an unknown system to an input data sequence (in this case an incident 

wavefront) and observing an output sequence (an emerging wavefront). As such, the s-

parameters represent a type of system identification technique, even though s-parameters 

are usually considered to be an RF engineering characterization technique, and not a 

system identification technique. Another parallel is that between system identification 

methods and the pulse-response concept used in SSA simulation. The determination of 

the channel pulse response to a known input is also essentially a system identification 

method. 

3.7.1 Linear Least Squares Parameter Estimation 

The batch-mode and recursive-mode system identification routines manifested in 

MATLAB, such as the arx.m and rarx.m functions, use least-squares error (LSE) 

algorithms as their optimization criterion [67]. There are many forms of least-squares 

error estimation, such as linear least squares (LLSE), weighted least squares (WLSE), 

with batch, sequential, and recursive methods all available [66]. 

The LLSE assumes a model for the signal vector s in terms of the parameter 

vector 𝜃, namely [66], 

 𝑠 = 𝐻 ⋅ 𝜃 . (3.76) 

Here 𝐻 is an observation matrix formed by using the input and output data sequences for 

the system, using the system’s difference equation description in the discrete time domain. 

The LLSE is then given by [66]: 

 𝜃� = (𝐻𝑇 ⋅ 𝐻)−1 ⋅  𝐻𝑇 ⋅ 𝑥 , (3.77) 
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where the minimum LSE error criterion is given by: 

 𝐽(𝜃) = 𝑥𝑇𝑥 − 2𝑥𝑇𝐻 𝜃 + 𝜃𝑇𝐻𝑇𝐻 𝜃 . (3.78) 

The most difficult part of forming the LSE estimator is the creation of the observation 

matrix 𝐻. It is formed from past values of the signal vector 𝑠, and it must be carefully 

constructed. 

3.8 Macromodeling Techniques Based Upon Vector Fitting 

One important recent development in the modeling of interconnects for signal 

integrity applications is the concept of developing macromodels in the complex 

frequency domain to represent distributed-element circuits [44], [45], [46], [47]. These 

methods use vector fitting of frequency-domain or time-domain input data obtained from 

a variety of system identification methods [60]. The system identification data is most 

often given in scattering-parameter or analog frequency response format, to construct a 

rational function approximation to the transfer function 𝐻𝑎(𝑠) or 𝐻𝑑(𝑧). The formulation 

of such models offers significant computational advantages over a direct time-domain 

convolution approach to calculating the transient response [68]. In addition, transfer 

functions in the complex frequency s- or z-domains can be examined in the complex 

plane to gain intuition about the nature of the system that is lost in the analog or discrete 

frequency domains. 

For the s-domain, the resulting transfer function for the macromodel has the 

general rational function form [44]: 

 𝐻𝑎(𝑠) =
𝐵𝑎(𝑠)
𝐴𝑎(𝑠)

 . (3.79) 

The roots of 𝐵𝑎(𝑠) in the equation above are the zeros of the transfer function 𝐻𝑎(𝑠), 

while the roots of 𝐴𝑎(𝑠) are the poles of 𝐻𝑎(𝑠). When forming the macromodel for the 

system, the number of desired poles and zeros can be specified to optimize the accuracy 

of the model with respect to its complexity. The pole-zero map can then be examined in 

the complex s-plane to examine the characteristics of the model. The function 𝐻𝑎(𝑠) can 

be approximated as a partial fraction expansion of general form [44]: 
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 𝐻𝑎(𝑠) ≈ �
𝑐𝑛

𝑠 − 𝑎𝑛

𝑁

𝑛=1

+ 𝑑 + 𝑠ℎ , (3.80) 

where 𝑐𝑛  and 𝑎𝑛  are conjugate pairs and 𝑑 and ℎ are real. The vector fitting algorithm 

and associated process finds a least-squares approximation of 𝐻𝑎(𝑠) by finding estimates 

to the parameters 𝑐𝑛 , 𝑎𝑛,𝑑 , and ℎ . The process is implemented in two stages, pole 

identification and residue identification. The poles are identified by creating a rational 

function approximation for an unknown function 𝜎(𝑠) and 𝜎(𝑠)𝐻𝑎(𝑠), namely [44]: 

 �𝜎(𝑠)𝐻𝑎(𝑠)
𝜎(𝑠) � =

⎣
⎢
⎢
⎢
⎢
⎡�

𝑐𝑛
𝑠 − 𝑎�𝑛

+ 𝑑 + 𝑠ℎ
𝑁

𝑛=1

�
𝑐̃𝑛

𝑠 − 𝑎�𝑛
+ 1

𝑁

𝑛=1 ⎦
⎥
⎥
⎥
⎥
⎤

  , (3.81) 

where the poles 𝑎�𝑛  are specified by examining the frequency range, picking a set of 

multiple pairs of complex conjugate poles that span the range, and creating a rational 

function approximation for both 𝜎(𝑠) and 𝜎(𝑠)𝐻𝑎(𝑠). The equation 

 ��
𝑐𝑛

𝑠 − 𝑎�𝑛
+ 𝑑 + 𝑠ℎ

𝑁

𝑛=1

� ≈ ��
𝑐̃𝑛

𝑠 − 𝑎�𝑛
+ 1

𝑁

𝑛=1

� ⋅ 𝐻𝑎(𝑠) , (3.82) 

is linear in 𝑐𝑛, 𝑑, ℎ, and 𝑐̃𝑛 and can be solved as a least-squares problem [44], [66], [65]. 

The zeros of 𝜎(𝑠) are then found and used as the poles of the estimate for 𝐻𝑎(𝑠). The 

vector fitting process is implemented in a variety of commercial software packages and is 

readily available to signal integrity engineers [44], [69]. 

Linear macromodeling can be applied directly in the z-domain as well [46], [47]. 

For the z-domain, the resulting transfer function for the macromodel has the general 

rational function form: 

 𝐻𝑑(𝑧) =
𝐵𝑑(𝑧)
𝐴𝑑(𝑧)

 . (3.83) 

The roots of 𝐵𝑑(𝑧) in the equation above are the zeros of the transfer function 𝐻𝑑(𝑧), 

while the roots of 𝐴𝑑(𝑧) are the poles of 𝐻𝑑(𝑧). When forming the macromodel for the 

system, the number of desired poles and zeros can be specified to optimize the accuracy 
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of the model with respect to its complexity. The pole-zero map can then be examined in 

the complex z-plane to examine the characteristics of the model. The function 𝐻𝑑(𝑧) can 

be approximated as a partial fraction expansion of general form [46]: 

 𝐻𝑑(𝑧) ≈ �
𝑐𝑛

𝑠 − 𝑧−1𝑎𝑛

𝑁

𝑛=1

 , (3.84) 

where 𝑐𝑛 and 𝑎𝑛 are, in general, complex conjugate pairs. The vector fitting algorithm 

and associated process finds a least-squares approximation of 𝐻𝑑(𝑧) by finding estimates 

to the complex parameters 𝑐𝑛 and 𝑎𝑛, following a similar thought process to the s-domain 

vector fitting outlined above. 

3.9 Mathematical Characteristics of Interconnect Models 

Stability, passivity, and causality are three important properties of the models 

utilized in signal integrity analysis. These characteristics are often assumed blindly by 

signal integrity engineers, but in fact the stability, passivity, and causality conditions can 

be violated, either in the measurement or simulation of the raw frequency-domain data 

used to extract the model, or in the model extraction process itself [63]. Even worse, 

these violations are not evident by looking at the transient response waveforms, but must 

rather be examined in the complex frequency domain. Further, since electrical 

interconnects and passive lumped-element components, two of the most commonly 

modeled elements in signal integrity analysis, are inherently passive, stable and causal, it 

is unreasonable to accept models for these elements which don’t share these properties. 

Formal mathematical definitions exist for each of these properties, in both the time- and 

frequency-domains, for both continuous-time and discrete-time systems. These 

definitions will be reviewed here. 

3.9.1 Continuous-Time Systems 

The system is assumed to be a continuous-time, linear time invariant (LTI) system. 

A linear system is defined to be that for which the system response to a linear 

combination of inputs [63] 
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 𝑣𝑖(𝑡) = 𝑐1𝑣𝑖1(𝑡) + 𝑐2𝑣𝑖2(𝑡) , (3.85) 

is 

 𝑣𝑜(𝑡) = 𝑐1𝑣𝑜1(𝑡) + 𝑐2𝑣𝑜2(𝑡) , (3.86) 

where 𝑣𝑜1(𝑡) and 𝑣𝑜2(𝑡) are the system’s output responses to the input stimuli 𝑣𝑖1(𝑡) and 

𝑣𝑖2(𝑡), respectively. A time-invariant system is defined to be that for which the behavior 

does not change with time. Formally, if 𝑣𝑜(𝑡) is the output response due to input 𝑣𝑖(𝑡), 

then 𝑣𝑜(𝑡 − 𝜏) is the response to 𝑣𝑖(𝑡 − 𝜏). For an LTI system, the system input-output 

relationship can be expressed as a time-domain convolution [63] 

 𝑣𝑜(𝑡) = ℎ𝑐(𝑡) ∗ 𝑣𝑖(𝑡) = � ℎ(𝑡 − 𝜏)𝑣𝑖(𝜏)𝑑𝜏 ,
∞

−∞

 (3.87) 

where ℎ𝑐(𝑡) is the system’s continuous-time impulse response. 

3.9.1.1 Causality for Continuous-Time Systems 

 The fundamental principle of causality is that an effect cannot occur before its 

cause [63]. Mathematically, this can be defined in the continuous time domain by stating 

that a system is causal if and only if, for all input pairs 𝑣𝑖1(𝑡) and 𝑣𝑖2(𝑡) such that 

 𝑣𝑖1(𝑡) = 𝑣𝑖2(𝑡) ,       𝑡 ≤ 𝑡𝑜          ∀𝑡𝑜 , (3.88) 

then the corresponding outputs satisfy 

 𝑣𝑜1(𝑡) = 𝑣𝑜2(𝑡) ,       𝑡 ≤ 𝑡𝑜 . (3.89) 

With this definition, an LTI system is causal if and only if all the elements of its impulse 

response ℎ𝑐(𝑡) vanish for 𝑡 < 0, i.e., 

 ℎ𝑐(𝑡) = 0,      𝑡 < 0 . (3.90) 

For distributed-element systems, the causality condition is extended to account for finite 

propagation delay [70]. For distributed systems, the causality condition becomes: 

 ℎ𝑐(𝑡) = 0,        𝑡 < 𝑇𝑖𝑗 ,   𝑇𝑖𝑗 ≥ 0      ∀𝑖, 𝑗 . (3.91) 
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In the complex frequency s-domain, it is useful to use Laplace transform theory 

and the s-plane to assess causality. Given the focus on causality aspects of the system, it 

is necessary to note that we must use the bilateral Laplace transform, 

 𝑉(𝑠) = � 𝑣(𝑡)𝑒−𝑠𝑡𝑑𝑡 ,
∞

−∞

 (3.92) 

in lieu of the more common unilateral Laplace transform. The unilateral transform 

assumes the system is causal by its very construction [43]. Using the bilateral Laplace 

transform, and its associated region of convergence (ROC), we can say a system with 

impulse response ℎ𝑐(𝑡)  is causal if and only if its bilateral Laplace transform is 1) 

defined and analytic in the half-plane 𝑅𝑒{𝑠} > 𝜎𝑜 , and 2) grows not faster than a 

polynomial for 𝑅𝑒{𝑠} > 𝜎𝑜   [63]. 

3.9.1.2 Stability for Continuous-Time Systems 

 The fundamental concept of stability for an LTI system is that the system output 

response is bounded and does not grow out of control, assuming that the input stimuli to 

the system are bounded [63]. Thus stability of an LTI system, either lumped-element or 

distributed-element, is guaranteed if and only if ℎ𝑐(𝑡) is such that 

 � |ℎ𝑐(𝑡)|𝑑𝑡 < +∞
∞

−∞

 . (3.93) 

In the s-domain, the region of convergence is also important to the concept of stability. 

The stability condition expressed above in the time domain only holds if, in the s-domain, 

the ROC of the transfer function 𝐻𝑎(𝑠) corresponding to ℎ𝑐(𝑡): 1) contains the imaginary 

𝑗Ω axis, and 2) the transfer function itself 𝐻𝑎(𝑠 = ∞) is also bounded [63].  

3.9.1.3 Passivity for Continuous-Time Systems 

 A system is considered passive if it is unable to produce energy, hence the notion 

of passive lumped RLC elements and passive distributed interconnect elements like 

transmission lines. Clearly an interconnect system is a passive system. The mathematical 

definition of passivity depends on what type of n-port parameters are chosen to represent 
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the network, i.e,, impedance parameters, admittance parameters, or scattering parameters, 

etc. For the s-parameter case, the definition of passivity in the time domain becomes 

 ��𝑎𝑇(𝜏)𝑎(𝜏) − 𝑏𝑇(𝜏)𝑏(𝜏)�𝑑𝜏 ≥ 0 ,
𝑡

−∞

 . (3.94) 

where a and b are the incident and emerging waves of the n-port network, respectively, as 

depicted in Figure 3-7. It turns out that if an LTI system is passive, it is also causal [63], 

[42]. Since all passive systems are causal, any non-causal system cannot be passive. Also, 

any macromodeling process which enforces passivity will also enforce causality. 

 For the s-domain, and assuming a scattering matrix representation of the system, 

the passivity condition can be expressed by stating that a scattering matrix 𝑆(𝑠) 

represents a passive linear system if and only if 1) each element of 𝑆(𝑠) is analytic in 

𝑅𝑒{𝑠} > 0 ; 2) 𝐼 − 𝑆𝐻(𝑠)𝑆(𝑠)  is a non-negative-definite matrix for all s such that 

𝑅𝑒{𝑠} > 0 ; and 3) 𝑆(𝑠∗) = 𝑆∗(𝑠) . Here 𝐼  is the identity matrix, 𝑆∗  represents the 

complex conjugate of 𝑆, and 𝑆𝐻 is the transpose conjugate of 𝑆 [63]. 

3.9.2 Discrete-Time Systems 

For discrete-time, linear time invariant (LTI) system, a linear system is defined to 

be that for which the system response to a linear combination of inputs [63]: 

 𝑣𝑖(𝑛) = 𝑐1𝑣𝑖1(𝑛) + 𝑐2𝑣𝑖2(𝑛) , (3.95) 

is 

 𝑣𝑜(𝑛) = 𝑐1𝑣𝑜1(𝑛) + 𝑐2𝑣𝑜2(𝑛) , (3.96) 

where 𝑣𝑜1(𝑛) and 𝑣𝑜2(𝑛) are the system’s output responses to the input stimuli 𝑣𝑖1(𝑛) 

and 𝑣𝑖2(𝑛), respectively. A time-invariant system is defined to be that for which the 

behavior does not change with time. Formally, if 𝑣𝑜(𝑛) is the output response due to 

input 𝑣𝑖(𝑛) , then 𝑣𝑜(𝑛 − 𝑛𝑜)  is the response to 𝑣𝑖(𝑛 − 𝑛𝑜) . For a discrete-time LTI 

system, the system input-output relationship can be expressed as a time-domain 

convolution [63] 
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 𝑣𝑜(𝑛) = ℎ(𝑛) ∗ 𝑣𝑖(𝑛) = � ℎ𝑑(𝑛 − 𝑘)𝑣𝑖(𝑘)
∞

𝑘=−∞

 , (3.97) 

where ℎ𝑑(𝑛) is the system’s impulse response. 

3.9.2.1 Causality for Discrete-Time Systems 

 Just as in the continuous-time domain, the fundamental principle of causality in 

the discrete-time domain is that an effect cannot occur before its cause [63]. 

Mathematically, this can be defined in the discrete time domain by stating that a system is 

causal if and only if, for all input pairs 𝑣𝑖1(𝑛) and 𝑣𝑖2(𝑛) such that 

 𝑣𝑖1(𝑛) = 𝑣𝑖2(𝑛) ,       𝑛 ≤ 𝑛𝑜          ∀𝑛𝑜 , (3.98) 

then the corresponding outputs satisfy 

 𝑣𝑜1(𝑛) = 𝑣𝑜2(𝑛) ,       𝑛 ≤ 𝑛𝑜 . (3.99) 

With this definition, a discrete-time LTI system is causal if and only if all the elements of 

its impulse response ℎ𝑑(𝑛) vanish for 𝑛 < 0, i.e., 

 ℎ𝑑(𝑛) = 0,      ∀ 𝑛 < 0 . (3.100) 

In the discrete complex frequency z-domain, it is possible to use z-transform 

theory and the z-plane to assess causality. In the z-plane, for a general sequence the 

region of convergence (ROC), defined in (3.25), generally has the shape of an annulus, 

that is, 

 𝑟1 < |𝑧| < 𝑟2 . (3.101) 

For a causal system, however, the ROC can be shown to be the exterior of a circle whose 

radius intersects the outermost pole in the z-plane [42]. For such a function, the ROC of 

𝐻𝑑(𝑧) will include |𝑧| = ∞ [41]. Thus, a discrete-time system with impulse response 

function ℎ𝑑(𝑛) is causal if and only if its ROC is the exterior of a circle of radius 𝑟1 < ∞ 

and which includes 𝑧 = ∞, i.e.,  

 𝑅𝑂𝐶 =  {𝑟1 < |𝑧| ≤ ∞ }, (3.102) 

where 𝑟1 is the radius of a circle intersecting the outermost pole of the system. 
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Consistent with the above discussion, an observation can be made regarding the 

pole-zero map in the z-plane. A given pole-zero map for 𝐻𝑑(𝑧)  represents a causal 

system if and only if there are as many finite poles as finite zeros., and the ROC for 

𝐻𝑑(𝑧) is the exterior is as expressed in (3.102). 

3.9.2.2 Causality Condition for Discrete-Time Systems in the ω-Domain 

While the condition expressed as (3.102) is a valid test for causality, it is difficult 

to assess because it must be tested for all values of z. Fortunately, for systems which are 

real, causal, and stable, causality can also be checked in the discrete frequency 𝜔-domain 

using the discrete Hilbert transform relationships [42], [71]: 

 𝐻𝑑𝐼�𝑒𝑗𝜔� = −
1

2𝜋
𝒫 �𝐻𝑑𝑅�𝑒𝑗𝜔�

𝜋

−𝜋

cot
𝜔 − 𝜃

2
𝑑𝜃 , (3.103) 

and  

 𝐻𝑑𝑅�𝑒𝑗𝜔� = 𝑥(0) +
1

2𝜋
𝒫 �𝐻𝑑𝐼�𝑒𝑗𝜔�

𝜋

−𝜋

cot
𝜔 − 𝜃

2
𝑑𝜃 , (3.104) 

Where 𝐻𝑑�𝑒𝑗𝜔� = 𝐻𝑑𝑅�𝑒𝑗𝜔� + 𝑗𝐻𝑑𝐼�𝑒𝑗𝜔� and 𝒫{… } indicates that the integral must be 

evaluated using Cauchy principal values. 

3.9.2.3 Stability for Discrete-Time Systems 

 The fundamental concept of stability for a discrete-time LTI system is that the 

system output response is bounded and does not grow out of control, assuming that the 

input stimuli to the system are bounded [41], [42]. Thus stability of a discrete-time LTI 

system is guaranteed if and only if ℎ𝑑(𝑛) is such that 

 � |ℎ𝑑(𝑛)|
∞

𝑛=−∞

< +∞ . (3.105) 

In the z-domain, the region of convergence is also important to the concept of stability. 

The stability condition expressed above in the discrete time domain only holds if, in the 
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z-domain, the ROC of the transfer function 𝐻𝑑(𝑧) corresponding to ℎ𝑑(𝑛) contains the 

unit circle. 

For a discrete-time causal system, the condition for stability in the z-plane can be 

further narrowed. Since, for a causal system, the ROC is as prescribed in (3.102), and the 

poles cannot reside in the ROC, a causal LTI system is stable if and only if all the poles 

of its system are inside the unit circle [41], [42]. 
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Chapter 4:  Identification of the System Model 

4.1 Introduction 

The first step in performing signal integrity analysis is to develop a 

comprehensive simulation model for use in predicting waveform degradation in the 

interconnection channel, commonly referred to as the interconnect model. The analysis is 

usually conducted in the time domain, using a SPICE simulator [72] or, alternatively, a 

statistical simulation analysis (SSA) simulator such as IBM’s HSSCDR [32]. Historically, 

the interconnect portion of the models have been created in SPICE language utilizing 

lumped elements such as inductors, capacitors, and resistors, along with distributed 

elements such as transmission lines to handle the signal propagation delay [29]. More 

recently, as frequencies have increased, it has become common to represent the 

interconnect models using scattering parameters [73]. This leads to some advantages 

associated with model extraction, and to some disadvantages associated with the ability 

to parameterize some aspects of the model, such as the transmission lines’ lengths. 

The overall objective of this research project is to examine the interconnect 

model’s characteristics using techniques borrowed from other disciplines in electrical 

engineering, prior to invoking the simulator in the time domain. The motivation is to 

obtain additional insight into the nature of the interconnect system that can be leveraged 

into the subsequent time-domain analysis, thereby minimizing the computationally-

intensive simulation cases that must be run, and saving effort, iterations, and time in the 

product design cycle. 

As a first step toward this goal, an initial model must be obtained for the system 

interconnect. This process is essentially a system identification (SID) problem, and can 

be approached using a variety of methods [65]. In this chapter, the identification of the 

model will be done in various frequency domains, both discrete and analog, using the 

models’ frequency transfer functions 𝐻𝑎(𝑗Ω), 𝐻𝑑(𝑒𝑗𝜔), and 𝐻𝑑(𝑘). Examination of the 

resulting analog transfer function 𝐻𝑎(𝑠) and the discrete transfer function 𝐻𝑑(𝑧) that are 

ultimately developed from these frequency transfer functions will be done in subsequent 

chapters. The advantages and disadvantages of each of the system identification methods 
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will be compared and contrasted. At the end of the chapter, a single system identification 

method will be selected for use in the remainder of the project. 

4.2 SPICE Circuit Representation for a 4th-Order Test Circuit with Delay 

The first step in analyzing the system characteristics is to obtain the channel 

models used to describe the system interconnects, using a system identification (SID) 

technique [63]. The model identification will be performed using several known system 

identification methods from the fields of radio-frequency (RF) and digital signal 

processing (DSP) engineering. The advantages and disadvantages of the various methods 

will be compared and contrasted, and a single system identification method will be 

selected as the one to be utilized from this point forward. 

Figure 4-1 shows the test circuit that will be used to compare the various system 

identification methods. The circuit consists of lumped circuit elements to represent 

packaging parasitics, and a lossy transmission line distributed circuit element to represent 

what would most commonly be stripline or microstrip transmission line structures in a 

printed circuit board, package substrate, or other form of electronic packaging for an 

integrated circuit chip [1].  

 
Figure 4-1: Test Circuit with Lumped Elements and Transmission Line with Precise Distributed 

Element Representation 

Note that the ladder network representation of the transmission line in Figure 4-1 

is comprised of an infinite number of sections that are infinitesimally small, with Δ𝑧 → 0, 

which leads to a description of the transmission line with partial differential equations, in 

accordance with distributed circuit theory of transmission lines [6]. As such, it must be 

emphasized that the transmission line’s 𝑅𝐿𝐺𝐶 parameters are distributed elements, not 
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lumped elements, as indicated by the fact they are expressed in per unit length quantities 

which must be multiplied by Δ𝑧 to have normal resistive, capacitive, and inductive units. 

The depiction of the test circuit of Figure 4-1, while mathematically precise, is not 

a convenient circuit schematic representation for repetitive use. Figure 4-2 shows a more 

convenient and typical representation of the test circuit, with the ladder network 

representation of the transmission line element of Figure 4-1 replaced with the cylindrical 

symbol representing the transmission line [1], [7]. This symbol will be used for 

distributed transmission line elements throughout the remainder of this project. 

 

Figure 4-2: Test Circuit with Lumped Elements and Transmission Line with Convenient Electrical 

Schematic Representation 

It should be emphasized that the test circuit as defined in Figure 4-1 and Figure 

4-2 is intentionally arbitrary, and is thus somewhat oversimplified as compared to a real 

channel model encompassing the entire signal path in a typical electronic system. Such a 

model often includes the overall path from a controlled-collapse chip connect (C4) on the 

sending module, through 1st- and 2nd-level packaging, and finally terminating at the C4 

on the receiving module. 9  The values of the lumped elements were chosen as a 

reasonable representation of parasitic effects of the electronic packaging, such as 

connectors, solder connections, and terminal leads. The presence of the transmission line 

is important for studying the effects of attenuation, dispersion, and propagation delay in 

the system, as these effects are frequency-dependent and thus non-intuitive in nature [16], 

[17], [74]. 

The simplified model shown includes four reactive lumped elements. Without the 

transmission line element, it is easily seen that the system’s transfer function in the 

                                                 
9 The term “controlled collapse chip connect” and associated C4 acronym are most commonly used within 
IBM Corporation. The more common term in the industry at large is “flip chip.” 
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Lossy RLGC model
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complex frequency domain, 𝐻𝑎(𝑠), would consist of a 4th-order rational polynomial [40]. 

The addition of the transmission line element introduces attenuation, dispersion, and 

delay into the system [6], and significantly complicates the form and order of 𝐻𝑎(𝑠), 

leading to a rational function of higher order to account for the propagation delay [74]. 

Nevertheless, the test circuit of Figure 4-2 will be referred to as the “4th-order test circuit 

with delay” or, often, as simply the “4th-order test circuit.” 

For the test circuit of Figure 4-2, a typical signal integrity analysis would consist 

of a time-domain simulation performed in SPICE or a similar tool [2], [72]. The 

simulation would be performed by assuming the test circuit of Figure 4-2 as the channel 

interconnect model, and by applying a driver circuit model at the input and a receiver 

circuit model at the output. Figure 4-3 shows the overall circuit including the driver, 

interconnect, and receiver load circuit models, with circuit nodes labeled as shown. 

 

Figure 4-3: 4th-Order Test Circuit (with Delay) with Driver Circuit and Receiver Circuits Attached 

The resulting time-domain output waveforms obtained from SPICE simulation of 

the circuit depicted in Figure 4-3 are displayed in Figure 4-4. Here the signal waveform 

𝑣𝑖𝑛𝑡𝑒𝑟(𝑡) represents the driver input waveform, which is a perfect square- and pulse-type 

signal. The node  𝑣𝑖𝑛𝑝𝑢𝑡(𝑡) represents the driver output waveform, which is distorted due 

to the loading of the interconnect plus its own load and the associated reflections. The 

node labeled 𝑣𝑜𝑢𝑡(𝑡) is the voltage at the output of the interconnect, at the input to the 

receiver load circuit. Note that the driver output waveform 𝑣𝑖𝑛𝑝𝑢𝑡(𝑡)  can also be 

considered to be the input waveform to the interconnect circuit, and that it is significantly 

different than the ideal pulse input of 𝑣𝑖𝑛𝑡𝑒𝑟(𝑡). In subsequent chapters, at times it will be 

convenient to excite the various interconnect models obtained using different methods 

with the 𝑣𝑖𝑛𝑝𝑢𝑡(𝑡) signal, so that the resulting output can be compared directly with that 

obtained originally from SPICE. 
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Figure 4-4: Time-Domain Output Waveforms for the 4th-Order Test Circuit (with Delay) 

4.3 Creating a Frequency Transfer Function Model for the 4th-Order Test Circuit 

(with Delay) Using Various System Identification Methods 

There are various ways to represent a system model for subsequent analysis. The 

most obvious method is to express the model in the native language of the SPICE 

simulator. As stated previously, these languages most commonly rely on lumped 

elements and distributed elements for their input. They also can generally understand 

some other input formats, such as scattering parameter matrices, other types of two-port 

network parameters, and various transfer function representations. For this reason, there 

are various options when selecting model format for a signal integrity simulation.  

Since SPICE and SSA simulators natively understand circuit element and 

scattering parameter representations, these are the most commonly-used representations 
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for signal integrity analysis. For this research project, however, the representation of 

choice will generally be in voltage transfer function format. There are three reasons for 

this. First, these transfer function formats are defined in the complex frequency domains, 

i.e., the s-domain for continuous time systems, and the z-domain for discrete-time 

systems. Since one of the stated objectives of this research project is the study of the 

interconnect models in these domains, it seems natural to work with the transfer function. 

Second, the entire fields of digital signal processing and control theory work largely in 

these domains. Since another stated objective of the research project is to borrow 

methods from those fields, it also makes sense for that reason. Third, vector fitting 

methods are available which make conversion of system identification data into the s- 

and z-domains very straightforward. For all of these reasons, the general strategy will be 

to obtain voltage transfer function models 𝐻𝑎(𝑠) and 𝐻𝑑(𝑧) in the complex frequency 

domains. 

4.3.1 System Identification Using Scattering Parameter Identification Method 

As stated previously, the test circuit of Figure 4-2 can be simulated directly in 

SPICE, using an assumed input waveform, to predict the time-domain output waveform 

for a given termination. The motivation here is different, however, and is to study the test 

circuit in the frequency domain by calculating an analytical form of the system transfer 

function. One popular method for model identification is that of scattering parameter 

characterization, in which the parameters are calculated using an AC sweep of sinusoidal 

voltage frequencies over the desired frequency range [19]. The scattering parameters for 

the test circuit can be obtained empirically for a fabricated system using vector network 

analyzer (VNA) measurements, but in a typical industrial design process they are usually 

obtained using electromagnetic field simulation prior to hardware fabrication [63]. 

4.3.1.1 Calculation of Scattering Parameters for the Test Circuit 

For the case of the 4th-order test circuit of Figure 4-2, the scattering matrix was 

calculated for the test circuit using HSPICE [29] in AC analysis mode. Note that, 

although scattering parameter characterization can be considered to be a frequency-

domain system identification technique, it is not commonly described in this way in RF 
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and microwave literature. Likewise, the system identification literature often does not 

recognize scattering parameter characterization as a system identification technique, 

either [65]. Figure 4-5 shows the relationship of the scattering matrix to the test circuit. 

Note the scattering-parameter port definitions as they are defined in the figure. 

 
Figure 4-5: Application of Scattering Parameter Concepts to the Test Circuit 

Figure 4-6 through Figure 4-9 show Bode plots of test circuit’s scattering 

parameters’ magnitude and phase, as calculated by HSPICE [29] over a frequency range 

of 0 to 10 GHz. Note the ripple effects exhibited in the magnitude responses in all four 

figures. These result primarily from the lumped circuit elements present on the ends of 

the 4th-order test circuit. Note the phase responses for the pass-through parameters 

𝑆12 and 𝑆21  exhibit linear phase characteristics, which are characteristic of systems with 

propagation delay [19], [75], in this case due primarily to the presence of the transmission 

line element. 
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Figure 4-6: S11 of the 4th-Order Test Circuit with Delay, as Calculated in HSPICE 

 
Figure 4-7: S12 of the 4th-Order Test Circuit with Delay, as Calculated in HSPICE  
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Figure 4-8: S21 of the 4th-Order Test Circuit with Delay, as Calculated in HSPICE 

 
Figure 4-9: S22 of the 4th-Order Test Circuit with Delay, as Calculated in HSPICE 



 

82 

4.3.1.2 Independent Validation of the Scattering Parameter Matrix 

Because of the ripple features of the scattering parameters’ magnitude responses, 

primarily due to the presence of the lumped elements in the test circuit of Figure 4-2, the 

scattering parameters were re-extracted over a broader frequency range out to 20 GHz in 

HSPICE, and also validated independently by calculating them independently in ANSYS 

Designer [33]. The results are shown to be virtually equivalent between the two tools and 

are shown in Figure 4-10 through Figure 4-13. 

Ideally, in an industrial design flow, the scattering parameters would be verified 

by fabricating the hardware and performing empirical measurements using a vector 

network analyzer (VNA) to validate the simulated scattering parameters are valid. Often, 

however, there are practical limitations regarding how effectively this can be done. In 

such a case, duplicating the simulation on a different tool platform can provide some 

additional confidence that the results are valid. This is a common technique when the 

design processes have a significant pre-fabrication emphasis, which is often the case. 

 
Figure 4-10: S11 of the 4th-Order Test Circuit, as Calculated in HSPICE and ANSYS Designer 
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Figure 4-11: S12 of the 4th-Order Test Circuit, as Calculated in HSPICE and ANSYS Designer 

 
Figure 4-12:  S21 of the 4th-Order Test Circuit, as Calculated in HSPICE and ANSYS Designer 
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Figure 4-13: S22 of the 4th-Order Test Circuit, as Calculated in HSPICE and ANSYS Designer 

4.3.1.3 Calculation of the System Analog Frequency Transfer Function Ha(f) from 

the Scattering Parameter Matrix 

After the initial characterization step, an analog domain frequency transfer 

function, 𝐻𝑎(𝑗Ω) = 𝐻𝑎(𝑓) , can now be derived from the test circuit’s scattering 

parameters using the relation [76] 

 
𝑉𝑜𝑢𝑡(𝑗Ω)
𝑉𝑆(𝑗Ω)

=
𝑆21(1 + Γ𝐿)(1 − Γ𝑆)

2(1 − 𝑆22Γ𝐿)(1 − Γ𝑖𝑛Γ𝑆)
 ,  (4.1) 

where 

 Γ𝑖𝑛 = 𝑆11 + 𝑆12𝑆21
Γ𝐿

1 − 𝑆22Γ𝐿
 , (4.2) 

and where the general configuration is shown in Figure 4-14. Here Γ𝐿  and Γ𝑆  are the 

reflection coefficients looking into the load and source, respectively, and thus Γ𝑖𝑛 is the 

reflection coefficient looking into the network terminated in the load impedance 

corresponding to Γ𝐿. The general configuration is shown in Figure 4-14. 
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Figure 4-14: Definition of Parameters for Frequency Transfer Function Calculation 

It should be noted that the definition of the input voltage associated with the 

transfer function 𝐻𝑎(𝑠) here is as 𝑉𝑖𝑛(𝑗Ω) is as shown in the figure, and that 

 𝑉𝑜𝑢𝑡(𝑗Ω) = 𝐻𝑎(𝑗Ω)𝑉𝑖𝑛(𝑗Ω)   . (4.3) 

Here 𝐻𝑎(𝑠) was calculated using the commercially-available MATLAB function s2tf.m 

[58] to implement equations (4.1) and (4.2) above, by assuming 𝑍𝑆 = 0 and 𝑍𝐿 = 50 Ω, 

and resulting in 𝐻𝑎(𝑗Ω) = 𝑉𝑜𝑢𝑡(𝑗Ω) 𝑉𝑖𝑛(𝑗Ω)⁄ = 𝑉𝑜𝑢𝑡(𝑗Ω) 𝑉𝑆(𝑗Ω)⁄ , which is only true for 

𝑍𝑆 = 0. It should be noted that the use of 𝑍𝑆 = 0 is not meant to represent the true output 

impedance of the driver circuit, but rather is a method to compel the s2tf.m function to 

calculate the transfer function per the definition in (4.3) and Figure 4-14. By defining the 

transfer function in this way, the source impedance 𝑍𝑆  is separated from the transfer 

function 𝐻𝑎(𝑠), and thus must be accounted for as part of the driver circuit. 

4.3.1.4 Relationship Between the Frequency Transfer Function Ha(f) and the 

Scattering Parameter S21 

For the 4th-order test circuit, 𝐻𝑎(𝑗Ω)  was calculated using the commercially-

available MATLAB function s2tf.m [58] to implement equations (4.1) and (4.2) above, 

by assuming 𝑍𝑆 = 0 and 𝑍𝐿 = 50 Ω, resulting in 𝐻𝑎(𝑗Ω) = 𝑉𝑜𝑢𝑡(𝑗Ω) 𝑉𝑆(𝑗Ω)⁄ . Note that 

the calculation of the frequency transfer function requires knowledge of the source’s 

output impedance 𝑍𝑆 and the load impedance 𝑍𝐿. As a result, it is clear that the frequency 

transfer functions and transfer functions for the interconnect are application-specific, as 

should be expected [40]. Figure 4-15 shows the magnitude and phase responses for the 

frequency transfer function 𝐻𝑎(𝑗Ω) = 𝐻𝑎(𝑓) for the 4th-order test circuit, plotted with the 

𝑆21  scattering parameter for comparison. 
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Note that the frequency transfer function and 𝑆21 parameter have similar shapes, 

but that they are not identical. This has lead to 𝑆21  being commonly cited as an 

approximation for 𝐻𝑎(𝑗Ω) [77].  In fact, for the case of an ideal transmission line with 

characteristic impedance 𝑍𝑜 = 𝑍𝐿 , where 𝑆11 = 𝑆22 = 0, and where Γ𝑆 = −1 (𝑍𝑠 = 0) 

and Γ𝐿 = 0, (4.2) reduces to  

 �Γ𝑖𝑛| S11=S22=Γ𝐿=0 = 0 + 𝑆12𝑆21
0

1 − 0 ∙ 0
= 0, (4.4) 

and (4.1) becomes 

 �𝑉𝑜𝑢𝑡(𝑗Ω)
𝑉𝑆(𝑗Ω)

�
Γ𝑆=−1, Γ𝐿=0

=
𝑆21(1 + 0)(1 − (−1))

2(1 − 0 ∙ 0)(1 − 0 ∙ (−1))
=  𝑆21 . (4.5) 

This is clearly not true in general, but rather only under the stated conditions for the 

transmission line and load and source impedances. 

 
Figure 4-15: Frequency Transfer Function Ha(jΩ) for the 4th-Order Test Circuit as Calculated by 

MATLAB's s2tf.m Function 

 After deriving the analog frequency transfer function 𝐻𝑎(𝑗Ω), the analog complex 

frequency s-domain transfer function 𝐻𝑎(𝑠) can be determined as a rational function 
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approximation using a vector fitting process, such as that developed by Gustavsen [44]. 

Obtaining a model in the complex frequency domain has several advantages, including 

the ability to study the model in the complex s-plane using pole-zero analysis. It is also 

possible to convert 𝐻𝑎(𝑠)  into the complex digital transfer function 𝐻𝑑(𝑧)  using a 

bilinear transform [41], a matched-Z transform [78], an impulse invariant method 

transform [79], or other methods. This transformation enables the direct use of digital 

signal processing (DSP) techniques to study the model in the complex z-plane, again 

using pole-zero analysis, and enabling the application of yet another well-developed body 

of analytical theory and methods. These methods will be addressed in subsequent 

chapters. 

4.3.2 System Identification Using Linear Least Square Error (LLSE) Method 

Another widely-recognized method for identification of system transfer functions, 

in this case taken from the field of traditional system identification, is that based on the 

minimization of linear least square error (LLSE). This method is based on an assumed 

model structure and utilizes time-domain waveform data. One common model structure 

that suits our case is the auto-regressive with exogenous input (ARX) structure [65]. This 

method is implemented in the arx.m function in the MATLAB system identification 

toolbox [67], which is utilized here for convenience. The development of models based 

on this method will be compared to the analog frequency domain’s scattering parameter 

system identification method of the last section, and the discrete frequency-domain’s 

system identification method of the next section. 

Figure 4-16 shows the transient input and output waveforms for the 4th-order test 

circuit, for the case with source output impedance 𝑍𝑆 = 50 Ω. The sampled form of these 

waveforms can be used, along with the sampling rate, to generate an ARX model for the 

test circuit. Application of the function, assuming a sampling interval 𝑇𝑠 = 5 ps, results in 

the following transfer function model in the complex discrete frequency domain for the 

4th-order test circuit: 

 𝐻𝑑(𝑧) =
(2.958𝑧4 + 1.56𝑧3 − 6.979𝑧2 + 9.7700𝑧 − 4.887)(10−4)

𝑧4 − 2.662𝑧3 + 2.102𝑧2 − 0.2087𝑧 − 0.2314
 𝑧−172 (4.6) 
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which can be seen to be a 4th-order system with delay, as expected. Note that one 

advantage of this method is that the output of the process comes out naturally in the 

desired form of the z-domain transfer function 𝐻𝑑(𝑧) . The LLSE-based method as 

implemented in the arx.m function results in a transfer function 𝐻𝑑(𝑧) expressed as a 

ratio of two polynomials, 𝐵𝑑(𝑧) 𝐴𝑑(𝑧)⁄ , which lends itself naturally to studying poles and 

zeros in the complex frequency domain. This is an advantage, because from this form the 

pole-zero map can be created, which is one of the major objectives of this research 

project. 

 
Figure 4-16: Transient Waveforms Calculated by SPICE for the 4th-Order Test Circuit for the Case 

When Zs = 50 Ω and a 1-ns Pulse Input 

Figure 4-17 shows the pole-zero plot in the z-plane for the 4th-order test circuit. 

Finally, note also the presence of the 172 multiple poles at 𝑧 = 0, also shown on the plot 

of Figure 4-17. From the shifting property of the z-transform, which states that 

 𝒵{𝑣(𝑛 − 𝑛𝑜)} = 𝑉(𝑧) ⋅ 𝑧−𝑛𝑜  , (4.7) 

where 

 𝒵{𝑣(𝑛)} = 𝑉(𝑧), (4.8) 
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it can be seen that the 𝑧−172 term corresponds to a pure delay of 172 × 5 𝑝𝑠 = 860 ps, 

and recall that the original transmission line in the 4th-order test circuit carried a 

propagation delay of 860 ps. It might be reasonable to expect, based on this observation, 

that the model of (4.6) might have very good phase performance, since the phase 

response is an important characteristic of a system with propagation delay. 

 
Figure 4-17: Pole-Zero Map of the 4th-Order Test Circuit in the z-Plane Using SID arx.m Function 

Figure 4-18 shows the frequency response plot for the model 𝐻𝑑(𝑧) expressed in 

(4.6). Note that the phase response is indeed very good, corresponding well with the 

phase results for the analog frequency transfer function 𝐻𝑎(𝑓), as shown in Figure 4-15. 

The correlation is not as good in the magnitude response, however, as can been seen by 

noting that the significant rolloff or “knee” in the magnitude curve does not occur at the 

same frequency, nor does the ripple effect that is so evident in Figure 4-15 show up in 

Figure 4-17. Nevertheless, the fact that the ARX method suggests a 4th-order model for a 

system with four reactive elements, and with a separated delay term approximately equal 
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to the known propagation delay of the system, is satisfying. It may be reasonable, based 

on these results, to surmise that accurately modeling the ripple effects may require a 

model for 𝐻𝑎(𝑠) or 𝐻𝑑(𝑧) of significantly higher order than four. 

 
Figure 4-18: Frequency Response of the 4th-Order Test Circuit Transfer Function Hd(z) Obtained by 

LLSE ARX System Identification Method 

Finally, the transfer function 𝐻𝑑(𝑧)  can be assessed by comparing its time 

response to that given by originally by SPICE, since knowledge of the discrete transfer 

function 𝐻𝑑(𝑧) is equivalent to being able to express the system’s difference equations in 

the discrete time domain [49]. This is analogous to the fact that knowledge of the analog 

transfer function 𝐻𝑎(𝑠) is equivalent to being able to express the system’s differential 

equations in the continuous time domain [40]. Figure 4-19 shows the output waveform 

generated using MATLAB’s lsim.m function [80] and its comparison to the original 
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SPICE waveforms. It can be seen that the system propagation delay, edge rate, and 

attenuation characteristics are all slightly off the original SPICE waveforms, although the 

system propagation delay is captured fairly well.  

 
Figure 4-19: Transient Response of the 4th-Order Test Circuit Transfer Function Hd(z) Obtained by 

LLSE ARX System Identification Method, vs. SPICE 

4.3.3 System Identification Using a Method to Estimate the Frequency Transfer 

Function from Time- and/or Frequency-Domain Waveform Data 

As stated previously, the motivation is to study the test circuit of Figure 4-2 in the 

complex frequency domain by calculating a system transfer function 𝐻𝑎(𝑠) or 𝐻𝑑(𝑧). 

The previous section used system identification techniques based on input and output 

waveforms in the sampled time domain, assumed an ARX model structure, and thus 

represented a parametric method. Another technique for deriving the transfer function is 
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to use known system identification methods that utilize frequency-domain input and 

output waveforms. One such method that is well-known in the system identification 

literature is the empirical transfer function estimate (ETFE), which represents a non-

parametric system identification method, in that the resulting estimate has no assumed 

underlying model structure [65]. The ETFE is given by the following: 

 𝐻𝑑(𝑒𝑗𝜔) =
𝑉𝑜𝑢𝑡(𝑒𝑗𝜔)
𝑉𝑖𝑛(𝑒𝑗𝜔)

  , (4.9) 

where 𝑉𝑜𝑢𝑡(𝑒𝑗𝜔) and 𝑉𝑖𝑛(𝑒𝑗𝜔)  are the output and input waveforms, respectively, in the 

discrete frequency domain and 𝑁 is the length of the output and input data sequences. 

Here, the input transient waveform was again assumed to be known as an ideal 1-

ns pulse of known risetime, and the output transient response waveform was again 

derived using the HSPICE simulator directly in transient analysis mode, just as in the 

previous section. These waveforms are represented in Figure 4-20 for the case where the 

source has output impedance 𝑍𝑆 = 0.  

 
Figure 4-20: Transient Waveforms for the 4th-Order Test Circuit for Case with ZS = 0 and a 1-ns 

Pulse Input 
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Note again that, in a normal signal integrity design flow, the objective of the 

signal integrity analysis would be met here, since the typical goal of predicting the 

system’s transient output waveform would have been achieved. In this case, however, 

there is an additional objective of obtaining and examining the system’s transfer function 

model in the complex frequency domain, so the SID methods are now employed. Once 

the transient waveforms have been obtained from the SPICE simulator, they are re-

sampled to have a uniform time step and transformed into the sampled digital frequency 

domain using an Fast Fourier transform (FFT) implementation of the discrete Fourier 

transform (DFT) [41]. The DFT representations are depicted in Bode plots for the 

transformed waveforms, as shown in Figure 4-21. 

 
Figure 4-21: Frequency-Domain Input and Output Signals for the 4th-Order Test Circuit for the 

Case Where Zs = 0 and for a 1-ns Pulse Stimulus 

Applying (4.9), an estimate can be calculated for the test circuit’s frequency 

transfer function in the discrete frequency domain. This estimate for 𝐻𝑑(𝑒𝑗𝜔) is shown as 
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the solid curve in Figure 4-22. For comparison, note the shape of the frequency response 

for the function 𝐻𝑎(𝑗Ω), derived using (4.1) and (4.2), and depicted in Figure 4-15. It can 

be seen when examining the 𝐻𝑑(𝑒𝑗𝜔) frequency response curve in Figure 4-22 that there 

are unnatural spikes in the magnitude response due to the zero values present in the 1-ns 

pulse input waveform’s DFT representation of the DTFT function 𝑉𝑖𝑛(𝑒𝑗𝜔), as depicted 

in Figure 4-21, and which end up in the denominator of 𝐻𝑑(𝑒𝑗𝜔) in (4.9). This is a 

common occurrence when using the ETFE, and the general procedure is to ignore such 

values when forming the estimate [65]. 

 
Figure 4-22: Frequency Response of 4th-order Test Circuit Frequency Transfer Functions Hd(ejω) 

Obtained by the Empirical Transfer Function Estimate System Identification Method 

Another option would be to pick an input excitation waveform that would not 

contain any zeros in its DFT representation of the DTFT function 𝑉𝑖𝑛(𝑒𝑗𝜔). Indeed, it can 

be seen by examination of the magnitude responses for 𝑉𝑜𝑢𝑡(𝑒𝑗𝜔) and 𝑉𝑖𝑛(𝑒𝑗𝜔) in Figure 

4-21 that the frequency content is actually rather sporadic, with widely-varying amplitude 
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and periodic nulls in both the input and output waveforms. It would be desirable to utilize 

a time-domain input waveform that would have more robust and consistent frequency-

domain content over the frequency interval being considered. 

From this standpoint, consider an impulse stimulus function, given by the N-point 

sequence 𝑣𝑖𝑛(𝑛) = 𝛿(𝑛), where 𝛿(𝑛) is the Dirac delta function, defined as 

 𝑣𝑖𝑛(𝑛) = 𝐴𝛿(𝑛) = ��𝐴,
0,
�      𝑛 = 0
     𝑛 ≠ 0� . (4.10) 

The Dirac delta function is known to have extremely robust frequency content, as can be 

seen from its N-point discrete Fourier transform (DFT) representation 𝑉𝑖𝑛(𝑘), given by 

 𝑉𝑖𝑛(𝑘) = ��𝐴,
0,
�      0 ≤ 𝑘 ≤ 𝑁 − 1

   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 � [41] . (4.11) 

Thus it is seen that the function 𝑉𝑖𝑛(𝑘)  has uniform magnitude response frequency 

content in the sampled digital frequency domain. Note the similarity here to the uniform 

frequency content obtained for the scattering-parameter identification method used in the 

analog frequency domain earlier, obtained in that case by a sinusoidal frequency sweep 

process over the desired frequency range. Because of the more robust frequency content, 

it is reasonable to expect that the input function given in (4.10) might lead to a better 

ETFE result, if for no other reason than the zero-valued data points are no longer present, 

and due to the fact that all frequency values over the range will get represented equally. 

 Figure 4-23 shows the transient waveforms for an HSPICE simulation using an 

impulse input. HSPICE was used with an impulse at 𝑡 = 1 ns, implemented as a single 

sample of 0.5 𝑉 at that time instant using HSPICE’s piecewise linear (PWL) function 

[29]. Figure 4-24 shows 𝑉𝑜𝑢𝑡(𝑒𝑗𝜔) and 𝑉𝑖𝑛(𝑒𝑗𝜔) for the case of the Dirac delta function 

input. From these two figures, it can be seen that the impulse response stimulus has the 

disadvantage of reduced amplitude of the time-domain signal 𝑣𝑜𝑢𝑡(𝑡), or 𝑣𝑜𝑢𝑡(𝑛), at the 

system output. This is evident in the time-domain waveforms of Figure 4-23, and could 

easily lead to possible inaccuracies in the time-domain if the waveforms are used directly 

for time-domain system identification. The advantage of the impulse stimulus is fully 

realized, however, when transforming to the frequency domain, given that the output 

waveform 𝑉𝑜𝑢𝑡(𝑒𝑗𝜔)  has better amplitude characteristics than its frequency-domain 

counterpart derived with the 1-ns pulse input stimulus, and as can be clearly seen by 
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comparing the frequency-domain waveforms for 𝑉𝑜𝑢𝑡(𝑒𝑗𝜔) and 𝑉𝑖𝑛(𝑒𝑗𝜔) in Figure 4-21 

and Figure 4-24.  

 
Figure 4-23: Transient Waveforms for the 4th-Order Test Circuit for Source with ZS = 0 and an 

Impulse Input Stimulus 

Figure 4-25 compares the derived frequency transfer functions 𝐻𝑑(𝑒𝑗𝜔) obtained 

using the Dirac delta impulse and 1-ns pulse stimuli. Note that the response obtained 

using the impulse response does not exhibit the spikes due to the zero-valued points in 

the frequency domain representation of the 1-ns pulse input waveform, as expected. It 

appears that the use of the impulse stimulus is a better approach for obtaining the 

frequency transfer function when using the ETFE method. 
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Figure 4-24: Frequency-Domain Waveforms for the 4th-Order Test Circuit for Source ZS = 0 and an 

Impulse Input Stimulus 

Note that frequency and/or transfer function models for the 4th-order test circuit 

have been obtained in three ways. The analog frequency transfer function 𝐻𝑎(𝑗Ω) was 

obtained using scattering parameter characterization to identify the model in the 

continuous analog frequency domain. The discrete frequency transfer function 𝐻𝑑(𝑒𝑗𝜔) 

was obtained using both a time-domain SID method assuming an ARX model structure, 

and by using the time-domain input and output waveforms’ DFT representations in the 

discrete frequency domain to calculate the empirical transform function estimate, with no 

assumed model structure. The ARX method gives the transfer function representation 

𝐻𝑑(𝑧), and subsequently 𝐻𝑑(𝑒𝑗𝜔), while the ETFE only gives the frequency transfer 

function 𝐻𝑑(𝑒𝑗𝜔). It will now be possible to examine the system in more detail using 
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common DSP methods, both by examining the frequency transfer functions themselves 

further, and also by deriving and examining the associated system transfer functions in 

the z- and s-planes for the complex digital and analog frequency domains, respectively. 

This latter analysis in the complex frequency domains will be undertaken in later chapters. 

 
Figure 4-25: Frequency Responses of 4th-Order Test Circuit Frequency Transfer Functions Hd(ejω) 

Obtained Using Empirical Transfer Function Estimate with Varying Input Frequency Content 

4.4 Comparison of Frequency Responses Generated Using the Various Transfer 

Function Models 

To this point, frequency responses have been calculated for the 4th-order test 

circuit using three different methods. First, the analog frequency response 𝐻𝑎(𝑗Ω) was 
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formulated using scattering parameters as the system identification method, with 

subsequent conversion of the scattering parameters to the system frequency transfer 

function 𝐻𝑎(𝑗Ω) using (4.1) and (4.2). Second, the discrete frequency response 𝐻𝑑(𝑒𝑗𝜔) 

was generated from 𝐻𝑑(𝑧) using the ARX system identification function. Finally, the 

frequency response 𝐻𝑑(𝑒𝑗𝜔) was generated using the empirical transfer function estimate. 

The three discrete frequency responses are shown, for both magnitude and phase, in 

Figure 4-26, along with the analog frequency response 𝐻𝑎(𝑗Ω)  for the 4th-order test 

circuit. 

 
Figure 4-26: Comparison of Frequency Responses Hd(ejω) and Ha(jΩ)  Obtained Via LLSE ARX-

Based, ETFE-Based, and Scattering Parameter Based System Identification Methods 
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4.5 Conclusions  

In this chapter, three different system identification methods were used to identify 

a model for the 4th-order test circuit, with the objective of comparing and contrasting the 

approaches for the purpose of choosing a primary method to utilize for the remainder of 

this research project. The first method identified the model in the analog frequency 

domain (𝑓 -domain). The second method identified the model in the complex digital 

frequency domain (z-domain). The third method identified the model in the digital 

frequency domain (𝜔-domain). 

The first method, utilizing scattering parameters in the analog frequency domain, 

has the advantages of working well at extremely high frequencies, being implementable 

on commonly-available VNA measurement equipment or commonly-available software 

simulation packages, and leveraging well-known theory from the field of RF engineering. 

This method also has the advantage of being the most commonly practiced in the field of 

signal integrity engineering. The disadvantages are that the resulting frequency transfer 

function cannot be directly examined in the digital frequency domains, or easily 

compared to functions expressed in those domains. 

The second method, utilizing an LLSE-based system identification method in the 

time domain, has the advantage of giving output directly in the complex z-domain, which 

lends itself directly to analysis in that domain. It also has the advantage of easily 

separating out the delay terms as a 𝑧−𝑛𝑜  term. It is characterized by a known model 

structure (ARX) with assumed order, but this can be a disadvantage if the assumption is 

not a good one. 

The third method, using the empirical transfer function estimate, has the 

advantage of working well with experimental data, but has no assumed underlying model 

structure. It is expressed in the digital frequency domain (𝜔 -domain), and cannot be 

easily compared to functions expressed in the analog frequency domains. 

Because of the advantages associated with the scattering parameters method, 

namely its applicability to high frequencies and the high degree of familiarity with it in 

the field of signal integrity engineering, it will be the primary system identification 

method used in this study from this point forward. The advantages of examining the 
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system model in the complex frequency domains are evident from Figure 4-17. It would 

be advantageous to find a method for examining the 4th-order test circuit in both the 

complex analog frequency domain (s-domain) and the complex digital frequency domain 

(z-domain) each time a frequency response is obtained. 
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Chapter 5:  Development of the Transfer Function Model Ha(s)  

5.1 Introduction 

As seen in the previous chapter, examination of the system transfer function 

model in the complex frequency domain, either analog or digital, has the potential to be 

useful for the analysis of interconnect models for use in signal integrity applications. It is 

known that there are computational advantages to expressing the system transfer function 

model as a rational function approximation 𝐻𝑎(𝑠)  in the complex analog frequency 

domain [44], [72], namely, 

 𝐻𝑎(𝑠)  =  
𝐵𝑎(𝑠)
𝐴𝑎(𝑠) , (5.1) 

and insight can also be gained by examining the model 𝐻𝑎(𝑠) in the complex s-domain 

plane by studying the pole-zero maps [40], [48]. For both of these reasons, it can be 

advantageous to formulate the system model in the complex analog frequency domain. 

Similarly, it may be reasonable to expect that the same advantages would be 

gained by formulating the system transfer function model as a rational function 

approximation 𝐻𝑑(𝑧)  in the complex digital frequency domain. In such a case, the 

expression would take the form 

 𝐻𝑑(𝑧)  =  
𝐵𝑑(𝑧)
𝐴𝑑(𝑧) , (5.2) 

and the pole-zero map would be formulated in the complex z-plane [41], [42]. 

In this chapter, the analog transfer function 𝐻𝑎(𝑠) will be generated for the 4th-

order test circuit, introduced in the previous chapter. First, the advantages of generating 

the rational function approximation of (5.1) will be discussed, including the nature of the 

relationship of the transfer function 𝐻𝑎(𝑠) to the frequency transfer function 𝐻𝑎(𝑗Ω), also 

introduced in the last chapter. The concept of a known and widely-used vector fitting 

method will then be introduced, with a focus on why the resulting transfer function model 

is most naturally expressed in partial fraction expansion form. The vector fitting process 

will then be applied to the 4th-order test circuit, and the frequency response performance 

of the fitted model will be compared to the original frequency transfer function 𝐻𝑎(𝑗Ω). 
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Some practical considerations of applying the vector fitting process to high-speed 

interconnect systems will be discussed, as well as some problematic aspects of converting 

the partial fraction expansion form to pole-zero factored form. This difficulty is an 

unfortunate and somewhat unexpected result, and it can hamper attempts to calculate the 

desired pole-zero map in the s-plane for interconnect systems. 

 A convenient process borrowed from frequency scaling concepts used in filter 

theory will be introduced to solve the problem of converting from partial fraction 

expansion form to pole-zero factored form. This process will then be applied to the 

transfer function 𝐻𝑎(𝑠) for the 4th-order test circuit, previously calculated using vector 

fitting. The pole zero map of the 4th-order test circuit will then be plotted in the s-plane 

for further analysis. Finally, the chapter will conclude with some attempts to lower the 

order of the model 𝐻𝑎(𝑠) by separating out the principal delay 𝑇𝑑 of the system due to 

the transmission line distributed element, and with a discussion of the time-domain 

responses calculated with the new s-domain models. 

5.2 Motivation for Generating a System Model Ha(s) from Ha(jΩ) 

In addition to the computational advantages and the additional insight to be 

gained from studying the system model in the complex frequency s-plane, another reason 

for studying the transfer function in this domain is that there is simply more information 

present in the function [43]. For example, the frequency transfer function 𝐻𝑎(𝑓) =

𝐻𝑎(𝑗Ω) is simply the function 𝐻𝑎(𝑠) evaluated on the imaginary axis of the complex s-

plane, i.e., where 𝑠 = 𝑗Ω, as shown previously in Chapter 3. One problem with this is that 

the imaginary axis is exactly the dividing line between stable and unstable regions of the 

s-plane, so operating here is ambiguous from a system stability perspective. 

In addition to the system’s stability characteristics, it is also known that the 

system’s passivity and causality characteristics are also assessable in the complex 

frequency domain [63]. These characteristics are important to the accuracy of the model 

when it is utilized in subsequent time-domain simulations. Figure 5-1 shows a Venn 

diagram depicting the relationship between the analog system transfer function 𝐻𝑎(𝑠) 

and the system frequency transfer function 𝐻𝑎(𝑗Ω) , and the fact that the frequency 
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transfer function contains a subset of the information contained in the transfer function 

[43], [81]. 

 
Figure 5-1: Venn Diagram Showing Ha(jΩ)  as a Subset of Ha(s) 

5.3 Development of System Model from Scattering-Parameter Identification Data 

After deriving the analog frequency transfer function 𝐻𝑎(𝑓) = 𝐻𝑎(𝑗Ω) , the 

analog complex frequency s-domain transfer function 𝐻𝑎(𝑠)  can be determined as a 

rational function approximation using a vector fitting process, such as that developed by 

Gustavsen [44]. This method uses 1st-order sections of the partial fraction expansion of 

𝐻𝑎(𝑠) as basis functions, and works by minimizing the least-squares error (LSE) when 

performing the fit to the 𝐻𝑎(𝑗Ω)  frequency data. Obtaining a model in the complex 

frequency domain has several advantages, including the ability to study the model in the 

complex s-plane using pole-zero analysis. It must be noted, however, that the process of 

fitting 𝐻𝑎(𝑗Ω)  data to 𝐻𝑎(𝑠)  involves adding information artificially back into the 

function, given that 𝐻𝑎(𝑗Ω)  is a subset of 𝐻𝑎(𝑠), per Figure 5-1. The procedure for 

determining the pole placement is a key attribute of the overall fitting algorithm. 
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It should be noted that there are multiple vector fitting algorithms available [26], 

[45], [82]–[84] which are also least-squares error based. Some of these alternate vector 

fitting methods utilize time-domain data, some use different basis functions, and some 

actually provide discrete frequency transfer functions as output. For this research project, 

however, the method by Gustavsen has been chosen for the vector fitting process for 

three reasons. First, the method works directly on analog frequency domain system 

identification data, which is the data type provided naturally in the scattering parameters. 

Recall that scattering parameter characterization was chosen in Chapter 4 as the system 

identification method of choice for this research project. Second, the method provides as 

output the complex analog frequency domain transfer function 𝐻𝑎(𝑠) , which is the 

desired output. Third, the Gustavsen method is the orginal groundbreaking vector fitting 

method, and as such has the widest acceptance, popularity, and usage. 

In addition to studying the characteristics of 𝐻𝑎(𝑠)  in the s-plane, it is also 

possible to convert 𝐻𝑎(𝑠)  into the complex digital frequency transfer function 𝐻𝑑(𝑧) 

using the bilinear transform, matched-Z transform, or impulse invariant transform [41], 

[42], [48]. This transformation to the z-domain enables the direct use of digital signal 

processing (DSP) techniques to also study the model in the complex z-plane, again using 

pole-zero analysis, and enabling the application of yet another well-developed body of 

analysis theory and methods. The process for converting the analog transfer function 

𝐻𝑎(𝑠)  to the discrete transfer function 𝐻𝑑(𝑧)  for the 4th-order test circuit will be 

addressed starting in the next chapter. 

5.3.1 Development of High-Order Rational Function Approximation for the 

Transfer Function 

For the 4th-order test circuit (with delay) of Figure 5-2 below, the vector fitting 

method [44] was applied to the frequency transfer function 𝐻𝑎(𝑗Ω) found previously in 

Chapter 4, and reproduced in Figure 5-3 for convenience. The vector fitting process [44] 

was implemented using the function rationalfit.m from the MATLAB RF Toolbox [85]. 

The function calculates the analog transfer function 𝐻𝑎(𝑠)  in the partial fraction 

expansion form, given by 
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𝐻𝑎(𝑠) = 𝐻𝑓𝑖𝑡(𝑠) =

𝐵𝑎(𝑠)
𝐴𝑎(𝑠) = ��

𝑐𝑘
𝑠 − 𝑎𝑘

+ 𝐷
𝑁

𝑘=1

� 𝑒−𝑠𝑇𝑑  , (5.3) 

where 𝑐𝑘  are the residues, 𝑎𝑘  are the poles, 𝐷 is a direct term, and 𝑇𝑑  is the principal 

delay in the system. 

 
Figure 5-2: 4th-Order Test Circuit with Delay, with Lumped Elements and Transmission Line 

Distributed Elements Exhibiting Attenuation and Delay 

 
Figure 5-3: Frequency Transfer Function Ha(jΩ) for the 4th-Order Test Circuit as Calculated by 

MATLAB's s2tf.m 

1 nH 100 mΩ 2 nH 200 mΩ

1 pF 1.5 pFZo=50 Ω, Td=172 ps/inch
length=5.0 in. (12.7 cm)
Lossy RLGC model
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The partial fraction expansion form of (5.3) is particularly well suited for 

computational efficiency and certain forms of macromodeling, namely, for those cases 

when one wants to use SPICE to implement the transfer function [69]. It is less useful for 

the generation of pole-zero plots, in that the pole-residue form does not explicitly contain 

the zero locations. 

5.3.1.1 Application of Vector Fitting to Test Circuit with Both Lumped and 

Distributed Circuit Elements 

For the test circuit of Figure 5-2, application of the vector fitting method results in 

a rational function approximation of order 𝑁 = 38, with the resulting residue and poles: 

Hfit =      Name: 'Rational Function' 

         A: [38x1 double] 

         C: [38x1 double] 

         D: 0.00000000000000e+000 

      Delay: 0.00000000000000e+000 

 

Hfit.A (poles): 

   -811.301747649996e+006 + 62.6383961389511e+009i 

   -811.301747649996e+006 - 62.6383961389511e+009i 

   -922.553331967392e+006 + 58.8645791261448e+009i 

   -922.553331967392e+006 - 58.8645791261448e+009i 

   -840.000334044065e+006 + 55.1859997694428e+009i 

   -840.000334044065e+006 - 55.1859997694428e+009i 

   -801.893040759086e+006 + 51.5363788366618e+009i 

   -801.893040759086e+006 - 51.5363788366618e+009i 

   -752.548927442329e+006 + 47.9148916581749e+009i 

   -752.548927442329e+006 - 47.9148916581749e+009i 

   -707.906808921076e+006 + 44.3411771832699e+009i 

   -707.906808921076e+006 - 44.3411771832699e+009i 

   -664.354109842137e+006 + 40.8226824020884e+009i 

   -664.354109842137e+006 - 40.8226824020884e+009i 

   -622.942571713608e+006 + 37.3823622414724e+009i 

   -622.942571713608e+006 - 37.3823622414724e+009i 

   -588.741481284223e+006 + 34.0308172637667e+009i 

   -588.741481284223e+006 - 34.0308172637667e+009i 
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   -568.618933856333e+006 + 30.7617627236480e+009i 

   -568.618933856333e+006 - 30.7617627236480e+009i 

   -572.431728818528e+006 + 27.5132535650082e+009i 

   -572.431728818528e+006 - 27.5132535650082e+009i 

   -593.267078547925e+006 + 24.2377882060778e+009i 

   -593.267078547925e+006 - 24.2377882060778e+009i 

   -640.881500974578e+006 + 20.9248376337208e+009i 

   -640.881500974578e+006 - 20.9248376337208e+009i 

   -718.950383029931e+006 + 17.5832353370390e+009i 

   -718.950383029931e+006 - 17.5832353370390e+009i 

   -836.675956859968e+006 + 14.2297393689657e+009i 

   -836.675956859968e+006 - 14.2297393689657e+009i 

   -1.00055187509432e+009 + 10.8626355351864e+009i 

   -1.00055187509432e+009 - 10.8626355351864e+009i 

   -1.20232183821542e+009 + 7.52716435006931e+009i 

   -1.20232183821542e+009 - 7.52716435006931e+009i 

   -1.89594172946475e+009 + 1.37169754112862e+009i 

   -1.89594172946475e+009 - 1.37169754112862e+009i 

   -1.48679092164604e+009 + 4.32243039821584e+009i 

   -1.48679092164604e+009 - 4.32243039821584e+009i 

 

Hfit.C (residues): 

   -1.73852934794800e+006 - 26.2708411050488e+006i 

   -1.73852934794800e+006 + 26.2708411050488e+006i 

   -8.24303825217920e+006 + 41.4050159010097e+006i 

   -8.24303825217920e+006 - 41.4050159010097e+006i 

    10.6496644695613e+006 - 51.4515929111338e+006i 

    10.6496644695613e+006 + 51.4515929111338e+006i 

   -15.6571524241655e+006 + 70.2649722725269e+006i 

   -15.6571524241655e+006 - 70.2649722725269e+006i 

    23.8639194084585e+006 - 95.2955868474050e+006i 

    23.8639194084585e+006 + 95.2955868474050e+006i 

   -36.4588811070515e+006 + 132.627262930310e+006i 

   -36.4588811070515e+006 - 132.627262930310e+006i 

    58.1053232347736e+006 - 186.249684023465e+006i 

    58.1053232347736e+006 + 186.249684023465e+006i 

   -92.2082884384281e+006 + 260.644045288611e+006i 
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   -92.2082884384281e+006 - 260.644045288611e+006i 

    145.752355494734e+006 - 354.215536527997e+006i 

    145.752355494734e+006 + 354.215536527997e+006i 

   -216.926351522417e+006 + 453.193718680551e+006i 

   -216.926351522417e+006 - 453.193718680551e+006i 

    303.617987794913e+006 - 540.228969060364e+006i 

    303.617987794913e+006 + 540.228969060364e+006i 

   -388.596953686796e+006 + 597.792392665498e+006i 

   -388.596953686796e+006 - 597.792392665498e+006i 

    474.006576266303e+006 - 640.027033540279e+006i 

    474.006576266303e+006 + 640.027033540279e+006i 

   -562.528834982324e+006 + 683.509659954728e+006i 

   -562.528834982324e+006 - 683.509659954728e+006i 

    664.153806393791e+006 - 750.242170671481e+006i 

    664.153806393791e+006 + 750.242170671481e+006i 

   -779.791856803139e+006 + 880.441163055487e+006i 

   -779.791856803139e+006 - 880.441163055487e+006i 

    909.064697800649e+006 - 1.08586528432533e+009i 

    909.064697800649e+006 + 1.08586528432533e+009i 

    315.633604159649e+006 - 2.55454508038771e+009i 

    315.633604159649e+006 + 2.55454508038771e+009i 

   -815.147449572848e+006 + 1.58808034659710e+009i 

   -815.147449572848e+006 - 1.58808034659710e+009i . 

Figure 5-4 shows a comparison of the original frequency response 𝐻𝑎(𝑗Ω) , 

determined in Chapter 4, and the frequency response obtained from the fitted function 

𝐻𝑎(𝑠) with the order 𝑁 = 38. Note that there are no visually discernible differences in 

the two frequency responses. 

The system order of 𝑁 = 38 is much greater than 𝑁 = 4, which is the expected 

order of the system, given the presence of the four lumped reactive circuit elements. This 

difference can be considered and justified from several perspectives. One consideration is 

that of the delay present in the system due to the transmission line, which inherently 

exhibits signal propagation delay, and this artificially raises the order of the rational 

function approximation due to the need to incorporate this delay into the rational function 

approximation. This importance of the delay characteristic of the system is very apparent 
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in the linear nature of the phase response depicted in Figure 5-4. Alternatively, the delay 

can be modeled by using a Pade or other approximation to calculate the delay term 𝑒−𝑠𝑇𝑑   

[86], such as by using an all-pass filter as suggested by Laasko [87], or by similar means 

[74], [85]. 

 
Figure 5-4: Comparison of Ha(jΩ) to the Frequency Response of the 4th-Order Test Circuit (with 

Delay) Rational Function Approximation of Order N = 38 

The higher order can also be predicted by examining the shape of the magnitude 

response in Figure 5-4, in which 19 local maxima can be seen in the curve for 𝐻𝑎(𝑗Ω). 

These maxima correspond to the transfer function’s pole locations. Mirroring the 

response around the s-plane’s horizontal axis into the negative frequency plane would 

lead to twice that number, or 38, poles. Similarly, it can also be surmised from the 

magnitude response of 𝐻𝑎(𝑗Ω) in Figure 5-4 that the rational function approximation 
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would have approximately 38 zeros, corresponding to the 19 local minima seen in the 

frequency response plot. 

5.3.1.2 Application of Vector Fitting to Test Circuit with Transmission Line Element 

Only 

It should be re-emphasized that the high order of the rational function 

approximation required for the transfer function 𝐻𝑎(𝑠) of the test circuit of Figure 5-2 is 

primarily driven by the propagation delay present in the system, and not by the presence 

of the ripple in the magnitude response of Figure 5-4. Even though the pole locations 

correspond to the relative maxima in the magnitude response, it must be noted that the 

linear nature of the phase response also drives the requirement for high order, as the 

vector fitting algorithm fits 𝐻𝑎(𝑠) to both the magnitude and phase responses. 

To highlight this, the vector fitting procedure was repeated for another test circuit, 

which consists of only the lossy transmission line element of the original test circuit of 

Figure 5-2, minus the lumped element parasitics. For this “tline-only” test circuit, 

application of the method results in a rational function approximation of order 𝑁 = 28, 

with the resulting residue and poles: 

Hfittline = Name: 'Rational Function' 

         A: [28x1 double] 

         C: [28x1 double] 

         D: 0.00000000000000e+000 

      Delay: 0.00000000000000e+000 

      

Hfittline.A (poles): 

   -75.2845752436545e+009 +                      i 

   -4.14236419397871e+009 + 63.1684476212423e+009i 

   -4.14236419397871e+009 - 63.1684476212423e+009i 

   -5.84301077012365e+009 + 57.5139430689521e+009i 

   -5.84301077012365e+009 - 57.5139430689521e+009i 

   -6.58297410735073e+009 + 51.4939786928858e+009i 

   -6.58297410735073e+009 - 51.4939786928858e+009i 

   -6.91469887696315e+009 + 45.2550447752978e+009i 

   -6.91469887696315e+009 - 45.2550447752978e+009i 
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   -6.99106711608555e+009 + 38.8877998994609e+009i 

   -6.99106711608555e+009 - 38.8877998994609e+009i 

   -6.85744370420003e+009 + 32.4081736257760e+009i 

   -6.85744370420003e+009 - 32.4081736257760e+009i 

   -6.76709883329316e+009 + 25.9765726906887e+009i 

   -6.76709883329316e+009 - 25.9765726906887e+009i 

   -5.74925570085032e+009 + 19.6989186624169e+009i 

   -5.74925570085032e+009 - 19.6989186624169e+009i 

   -1.63913809064564e+009 + 16.4431642588000e+009i 

   -1.63913809064564e+009 - 16.4431642588000e+009i 

   -4.34966156292034e+009 + 12.5348700210011e+009i 

   -4.34966156292034e+009 - 12.5348700210011e+009i 

   -2.17946999811561e+009 + 9.62334723883865e+009i 

   -2.17946999811561e+009 - 9.62334723883865e+009i 

   -3.10504096615936e+009 + 5.13075077163452e+009i 

   -3.10504096615936e+009 - 5.13075077163452e+009i 

   -2.69544824929447e+009 + 2.64845896089899e+009i 

   -2.69544824929447e+009 - 2.64845896089899e+009i 

   -511.126271044357e+006 +                      i 

 

Hfittline.C (residues): 

    371.495917369539e+009 +                      i 

   -13.3212253037825e+009 + 3.29701731415621e+009i 

   -13.3212253037825e+009 - 3.29701731415621e+009i 

   -300.350530981887e+006 + 59.3166054984497e+009i 

   -300.350530981887e+006 - 59.3166054984497e+009i 

    113.070715111657e+009 + 47.4462286597139e+009i 

    113.070715111657e+009 - 47.4462286597139e+009i 

    144.973260083148e+009 - 105.464086815018e+009i 

    144.973260083148e+009 + 105.464086815018e+009i 

    5.58326181683103e+009 - 210.504680477202e+009i 

    5.58326181683103e+009 + 210.504680477202e+009i 

   -148.352096294877e+009 - 147.709935880510e+009i 

   -148.352096294877e+009 + 147.709935880510e+009i 

   -189.110262351593e+009 + 13.1950525581950e+009i 

   -189.110262351593e+009 - 13.1950525581950e+009i 

   -59.2685409081308e+009 + 78.3794157106934e+009i 
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   -59.2685409081308e+009 - 78.3794157106934e+009i 

    71.3035569389376e+006 - 196.406674760020e+006i 

    71.3035569389376e+006 + 196.406674760020e+006i 

   -14.7898179409498e+009 + 30.9477744246598e+009i 

   -14.7898179409498e+009 - 30.9477744246598e+009i 

   -985.215435394210e+006 - 720.511369711315e+006i 

   -985.215435394210e+006 + 720.511369711315e+006i 

   -6.99741396263038e+009 + 7.20779366610419e+009i 

   -6.99741396263038e+009 - 7.20779366610419e+009i 

   -6.34209554895659e+009 - 1.63310597824881e+009i 

   -6.34209554895659e+009 + 1.63310597824881e+009i 

    27.7658657285994e+006 +                      i . 

Figure 5-5 shows a comparison of the original frequency response 𝐻𝑎(𝑗Ω) , 

determined from the scattering parameters for the “tline-only” test circuit, and the 

frequency response obtained from the fitted function 𝐻𝑎(𝑠). In this case the fit resulted in 

order 𝑁 = 28. Note that there are only very minor differences in the two responses. 

 
Figure 5-5: Comparison of Ha(jΩ) to the Frequency Response of the Tline-Only Test Circuit’s 

Rational Function Approximation of Order N = 28 
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5.3.2  Process for Converting from Partial Fraction Expansion Form to Pole-Zero 

Factored Form for Transfer Functions with Poles and Residues at High Frequencies 

Generally, it is possible to convert from the partial fraction expansion form of 

𝐻𝑎(𝑠) in (5.3) to the pole-zero factored form, 

 𝐻𝑎(𝑠) =
𝐵𝑎(𝑠)
𝐴𝑎(𝑠)

=
𝐾𝑎(𝑠 − 𝑏𝑎1)(𝑠 − 𝑏𝑎2)⋯ (𝑠 − 𝑏𝑎𝑀)

(𝑠 − 𝑎𝑎1)(𝑠 − 𝑎𝑎2)⋯ (𝑠 − 𝑎𝑎𝑁)
 , (5.4) 

where the 𝑏𝑎𝑘 and 𝑎𝑎𝑘 terms are the zeros and poles of 𝐻𝑎(𝑠), 𝐾𝑎 is a gain term, 𝑁 is the 

order of the model and the number of poles, and 𝑀 is the number of finite zeros. This can 

be done using computer routines such as the residue.m function in MATLAB [88].The 

fully factored form of 𝐻𝑎(𝑠) shown in (5.4) has two distinct advantages: 1) the poles and 

zeros are directly evident in the s-plane; and 2) the matched-Z transformation can be 

directly applied when 𝐻𝑎(𝑠) is expressed in this form [43]. The process for applying the 

matched-Z and other s- to z-domain transforms will be discussed in detail in the 

following chapters. Now that the frequency transfer function 𝐻𝑎(𝑗Ω) has been used to 

derive the transfer function 𝐻𝑎(𝑠) using vector fitting, it is possible to study the pole-zero 

map of 𝐻𝑎(𝑠) in the s-plane to gain further insight into the nature of the system. 

With some difficulty, the pole-zero factored form of 𝐻𝑎(𝑠) was calculated for the 

4th-order test circuit’s 38th-order partial fraction expansion. The difficulty arises in the 

calculation of the zeros in the polynomial 𝐵𝑎(𝑠) when converting from the pole-residue 

form of (5.3), due to large pole and residue values. Frequency scaling techniques were 

used to transform the function into a prototype filter in a much lower frequency band 

prior to calculating 𝐵𝑎(𝑠), using a lowpass to lowpass transformation [59], as follows: 

 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠) = �𝐻𝑎(𝑠)|𝑠→𝑠𝑘𝑓 = �
𝑐𝑘

𝑠𝑘𝑓 − 𝑎𝑘

𝑁

𝑘=1

= �

𝑐𝑘
𝑘𝑓

𝑠 − 𝑎𝑘
𝑘𝑓

𝑁

𝑘=1

 . (5.5) 

Once 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠) was obtained in partial fraction expansion form, as shown in (5.5), it was 

converted to a ratio of two polynomials and reduced to factored form, as follows [59]: 

 �𝐻𝑝𝑟𝑜𝑡𝑜(𝑠)� =
𝐵𝑝𝑟𝑜𝑡𝑜(𝑠)
𝐴𝑝𝑟𝑜𝑡𝑜(𝑠)

= 𝐾𝑎𝑝
(𝑠 − 𝑏𝑝1)(𝑠 − 𝑏𝑝2)⋯ (𝑠 − 𝑏𝑝𝑀)
(𝑠 − 𝑎𝑝1)(𝑠 − 𝑎𝑝2)⋯ (𝑠 − 𝑎𝑝𝑁)

 , (5.6) 
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where the 𝑏𝑝𝑘 and 𝑎𝑝𝑘 terms are the zeros and poles of 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠), 𝑁 is the order of the 

model, and 𝑀 is the number of finite zeros. The function is then converted back to the 

desired frequency range, using frequency scaling as follows [59]: 

 𝐻𝑎(𝑠) �= 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠)�
𝑠→ 𝑠

𝑘𝑓
=
𝐾𝑎𝑝 �

𝑠
𝑘𝑓
− 𝑏𝑝1� �

𝑠
𝑘𝑓
− 𝑏𝑝2�⋯� 𝑠𝑘𝑓

− 𝑏𝑝𝑀�

� 𝑠𝑘𝑓
− 𝑎𝑝1� �

𝑠
𝑘𝑓
− 𝑎𝑝2�⋯� 𝑠𝑘𝑓

− 𝑎𝑝𝑁�
 . (5.7) 

Comparing (5.6) and (5.7) it is easily seen that the zeros 𝑏𝑎𝑘 and poles 𝑎𝑎𝑘 of 𝐻𝑎(𝑠) are 

the zeros 𝑏𝑝𝑘 and poles 𝑎𝑝𝑘 of 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠) scaled by the factor 𝑘𝑓, that is,  

 𝑏𝑎𝑘 =  𝑏𝑝𝑘𝑘𝑓 , (5.8) 

and 

 𝑎𝑎𝑘 =  𝑎𝑝𝑘𝑘𝑓 . (5.9) 

The overall process outlined above is summarized in the block diagram of Figure 5-6. 

Note the use of the frequency scaling processes as indicated in the figure. 

 
Figure 5-6: Process for Converting Ha(s) from Pole-Residue to Pole-Zero Factored Form 

The results of the vector fitting process are shown in the pole-zero map of Figure 

5-7. These results, and specifically the factored form of (5.4) above, will be utilized in 

Chapter 6 for the application of the matched-Z transform to create a transfer function 

𝐻𝑑(𝑧) in the complex digital frequency domain. Note that the function exhibits 38 poles, 

as indicated in the figure, and 37 zeros. As such, the system can be considered to have 

one zero at infinity, so that the system is physically realizable [43], [81]. Note also that 

all of the system poles are located in the left-half plane, so that the system is stable, but 

that not all the zeros are located in the left-half plane. The implication of this last 

observation is that the system is not a minimum-phase system, but this should be 

expected given the phase characteristics exhibited in the frequency response and the fact 

that the system has significant propagation delay [40], [49]. 

Obtain Ha(s) in 
partial fraction 

expansion 
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low-pass transform 
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Figure 5-7: Pole-Zero Plot in s-Plane for Ha(s) of the 4th-Order Test Circuit with Order N=38 

Further study of the system in the complex s- and z-planes will be undertaken in 

later chapters. It should be noted that the frequency scaling process outlined in 

Figure 5-6 for converting 𝑯𝒂(𝒔) from partial fraction expansion form to pole-zero 

factored form has been externally published in the public domain by IBM as a 

technical disclosure publication [89], as a result of this research project. 

5.3.3 Development of Reduced-Order Rational Function Approximation Model with 

Separated Delay 

A tradeoff can be made between the model’s order and the model’s accuracy. This 

accuracy can be quantified in either the frequency domain response or in the time domain 

response. For the 4th-order test circuit of Figure 5-2, the frequency response 𝐻𝑎(𝑗Ω) 

shown in Figure 5-3 is compared in Figure 5-8 to that of a rational function 

approximation where 𝑁 is forced to be 4, and a principal constant delay 𝑇𝑑 is specified as 
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defined in (5.3). Application of the vector fitting method in this fashion results in a 

rational function approximation with the following values: 

Hfit4th =  Name: 'Rational Function' 

A: [4x1 double] 

C: [4x1 double] 

D: 0.00000000000000e+000 

Delay: 838.713532249092e-012 

Hfit4th.A(poles): 

-6.79632293858445e+009 + 29.0023263230531e+009i 

-6.79632293858445e+009 - 29.0023263230531e+009i 

-13.2081587156437e+009 + 10.7603223014198e+009i 

-13.2081587156437e+009 - 10.7603223014198e+009i 

Hfit4th.C(residues): 

-4.00787915096367e+009 + 3.52211244818399e+009i 

-4.00787915096367e+009 - 3.52211244818399e+009i 

 4.08025510536357e+009 - 10.9990579501479e+009i 

 4.08025510536357e+009 + 10.9990579501479e+009i . 

 
Figure 5-8: Comparison of Ha(jΩ) to a 4th-Order Rational Function Approximation of Order N = 4 
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It is seen in Figure 5-8 that the magnitude response of the reduced-order model 

generally follows that of 𝐻𝑎(𝑗Ω), but that it certainly does not capture all the local 

maxima and minima, unlike the case for 𝑁 = 38 depicted in Figure 5-4. Note also that 

the phase response is modeled very accurately by the reduced-order model.  

5.4 Assessment of Model Generation Results 

A complete assessment and comparison of the s-domain system transfer function, 

generated by vector fitting and expressed in the pole-residue form of (5.3), requires a 

close examination of both the frequency and time-domain responses, in addition to their 

assessment in the s-domain using the pole-zero maps of Figure 5-7. A comparison of the 

frequency responses for the transfer functions 𝐻𝑎(𝑠)  of orders 𝑁 = 38  and 𝑁 = 4 , 

respectively, with that of the original frequency transfer function 𝐻𝑎(𝑗Ω) was performed 

in the previous section. 

Figure 5-9 shows this comparison of the transient response to a single 1-ns pulse 

stimulus, for the cases of using HSPICE to generate the response directly from the circuit 

description in the native SPICE language, and of using the model 𝐻𝑎(𝑠) generated by the 

Gustavsen vector fitting method set to optimize for low fitting error, resulting in the 

model of 𝑁 = 38 described previously. In the latter case, the time-domain response is 

calculated using MATLAB’s timeresp.m function, which assumes as input 𝐻𝑎(𝑠) in the 

form of (5.3), and generates a continuous time state-space formulation [61]. The 

continuous-time state-space formulation is then transformed into a discrete-time state-

space formulation using known methods for numerical solution by computer [48], [49]. 

Note that the results display almost perfect correlation from the standpoint of a visual 

examination of the waveforms. The remarkable correlation suggests that the timeresp.m 

function’s underlying algorithms may closely mimic those used in HSPICE. 
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Figure 5-9: Transient Response Comparison of Models Derived Using HSPICE and N =38 

Figure 5-10 shows a comparison of the transient response to a single 1-ns pulse 

stimulus, for the cases of using HSPICE to generate the response directly from the circuit 

description in the native SPICE language, and of using the model 𝐻𝑎(𝑠) generated by 

vector fitting with the order restricted to 𝑁 = 4, again using MATLAB’s timeresp.m 

function to calculate the response. Note that the results display good accuracy in the 

signal’s propagation delay, but less accuracy in the waveform’s amplitude and peak 

prediction. 
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Figure 5-10: Transient Response Comparison of Models Derived Using HSPICE and N = 4 with 
Extracted Principal Delay 

 It should be noted that the 𝐻𝑎(𝑠)  generated forcing 𝑁 = 4  and included the 

separated delay term, as represented in (5.3), resembles closely the mathematical form of 

the function identified in Chapter 4 using the ARX method. In that case, the delay term 

was represented by the 𝑧−𝑛𝑜 term, but the system was also 4th-order. Clearly, the vector 

fitting method used here, utilizing analog frequency domain data in lieu of the time-

domain data used for the ARX method, performs well in comparison, and has the 

advantages of working natively with the scattering parameter data’s natural format. 
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5.5 Conclusions Regarding Ha(s) Model Attributes 

The process described in this section for generating a transfer function 𝐻𝑎(𝑠) in 

the Laplace domain from measured or simulated scattering-parameter data is summarized 

in the block diagram in Figure 5-11. Note that this process is inherently dependent upon 

the use of scattering parameter characterization as a system identification technique, upon 

the relationship between the scattering parameter data and the system’s frequency 

response 𝐻𝑎(𝑗Ω), and upon the use of a vector fitting method to construct the system’s 

Laplace-domain transfer function 𝐻𝑎(𝑠) in the form of a rational function approximation. 

Furthermore, if s-plane analysis of the transfer function is desired, then the additional 

step of converting the function from pole-residue form to pole-zero factored form is 

required, and the application of  frequency scaling techniques to execute this conversion 

may be required for signal integrity interconnect systems. 

There also can be variations on the process by constraining the order of the 

rational function approximation and including a separable delay term, specified in (5.3), 

with frequency response results shown in Figure 5-8 and time-domain response results 

shown in Figure 5-10. The advantage of doing this is model simplification, with the 

resulting fitted transfer function model potentially being of much lower order, at the 

expense of some accuracy in reproducing the original frequency response 𝐻𝑎(𝑗Ω) and 

time-domain response. 

 
Figure 5-11: Summary for Process for Generating Ha(s) from S(f) 

For the purposes of comparison, the next chapter will focus on studying the 

system characteristics in the z-domain, as opposed to the s-domain. To do this, it will be 

necessary to develop the transfer function 𝐻𝑑(𝑧) in the discrete z-domain, as opposed to 

the transfer function 𝐻𝑎(𝑠) in the analog s-domain. This will be done by invoking some 

well-known, widely-adopted s- to z- domain transformations. 

  

S-parm data
(simulated or 

empirical)
S(f) s2tf.m

Ha(f)
rationalfit.m
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Chapter 6:  Development of Transfer Function Model Hd(z) from Ha(s)  

6.1 Introduction 

As seen in the previous chapter, examination of the system model in the complex 

frequency domain, either analog or digital, can be convenient. There are computational 

advantages to expressing the discrete transfer function 𝐻𝑑(𝑧)  as a rational function 

approximation, namely [44], 

 𝐻𝑑(𝑧)  =  
𝐵𝑑(𝑧)
𝐴𝑑(𝑧) =

∑ 𝑏𝑘𝑧−𝑘𝑀
𝑘=0

∑ 𝑎𝑘𝑧−𝑘𝑁
𝑘=0

  ,        𝑀 ≤ 𝑁. (6.1) 

In addition, insight can be gained by examining the model 𝐻𝑑(𝑧) in the complex z-

domain plane by studying the relative positions of the poles and zeros, and assessing their 

effects on the system’s frequency response. For both of these reasons, it can be 

advantageous to formulate the transfer function 𝐻𝑑(𝑧) in the complex digital frequency 

domain. 

 In this chapter, the discrete transfer function 𝐻𝑑(𝑧) will be generated for the 4th-

order test circuit. Since scattering parameter characterization has been selected as the 

primary system identification method, the focus will be on generating 𝐻𝑑(𝑧) from the 

analog transfer function 𝐻𝑎(𝑠) , using several s- to z-domain transformations, even 

though it should be noted that there are alternative system identification methods that 

allow for the direct realization of 𝐻𝑑(𝑧) . One set of alternative methods uses time-

domain identification techniques followed by either parametric methods [67] or non-

parametric methods to find the discrete frequency transfer function 𝐻𝑑(𝑒𝑗𝜔)  [90]. 

Another set of methods uses various forms of vector fitting in the discrete-time or 

discrete-frequency domain [26], [82]. The approach chosen here to generate 𝐻𝑑(𝑧) from 

𝐻𝑎(𝑠) using scattering parameters is based on three practical considerations. First, recall 

that 𝐻𝑎(𝑗Ω) is a natural output of the scattering parameter identification procedure once 

the source and load characteristics of the system are added [58]. The system identification 

data required for the alternative methods are neither as convenient nor as prevalent. 

Second, the wide prevalence and acceptance of the original analog frequency-domain 

vector fitting algorithm [44] gives great confidence in its robustness and viability, and 
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this algorithm works directly on 𝐻𝑎(𝑗Ω) when finding the transfer function 𝐻𝑎(𝑠). Third, 

and perhaps most importantly, it is desirable to obtain and retain the analog transfer 

function 𝐻𝑎(𝑠) to enable examination in the s-plane, and to provide a direct comparison 

with its digital counterpart 𝐻𝑑(𝑧) in the z-plane. 

In this chapter, some practical considerations for generating the discrete transfer 

function 𝐻𝑑(𝑧)  will be discussed for the three most widely used s- to z-domain 

transformation methods. These methods are the bilinear transform (BLT), the matched-Z 

transform (MZT), and the impulse invariant transform (IIT). The process for deriving 

𝐻𝑑(𝑧) from 𝐻𝑎(𝑠) using each method will be presented, as well as some problematic 

aspects of generating the function in each case. 

6.2  Motivation for Generating the Discrete Transfer Function Hd(z) from the 

Analog Transfer Function Ha(s) 

In addition to the computational advantages to be gained from studying the 

transfer function in the discrete complex frequency z-plane, another fundamental reason 

for working in this domain is that there is simply more information present in the z-

domain than in the discrete frequency 𝜔 -domain [43]. For example, the discrete 

frequency transfer function 𝐻𝑑(𝑒𝑗𝜔)  is simply the discrete transfer function 𝐻𝑑(𝑧) 

evaluated on the unit circle of the complex z-plane, i.e., where 𝑧 =  𝑒𝑗𝜔, as explained 

previously in Chapter 3. One problem with working with the frequency transfer function 

on the unit circle is that the unit circle is exactly the boundary between stable and 

unstable regions of the z-plane, so operating here is ambiguous from a transfer function 

stability perspective. In addition to the system’s stability characteristics, it is also known 

that the system’s causality and passivity characteristics are also reflected best in the 

complex frequency domain [63]. 

Figure 6-1 shows a Venn diagram depicting the general relationship between the 

system transfer function 𝐻𝑑(𝑧), the system frequency transfer function 𝐻𝑑(𝑒𝑗𝜔), and the 

system sampled frequency transfer function 𝐻𝑑(𝑘) . As the figure shows, system 

frequency transfer functions contain subsets of the information contained in system 

transfer function. Note the similarity between the diagram for the various digital 
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frequency domains and the diagram of Chapter 5 for the various analog frequency 

domains. Note also, however, that there is now an additional domain, namely, the 

sampled digital frequency domain, for which there is no corresponding domain in the 

analog case. 

 

Figure 6-1: Venn Diagram Showing Hd(k) as a Subset of Hd(ejω)  as a Subset of Hd(z) 

 It is clear that the digital complex z-domain and the analog complex s-domain are 

analogous in nature, in that they both transform from their respective discrete-time and 

continuous-time domains, and that they both contain stability and causality information. 

Both the z-domain and the s-domain thus represent alternate but complete descriptions of 

the time domain, albeit from a different viewpoint. In contrast, the corresponding 

discrete-time Fourier transform and continuous-time Fourier transform domains do not 

represent such a complete picture, with the most obvious deficiency being the absence of 

system stability information [43], [81], [49], [42]. 

 Regardless of their similarities, it should be noted there are also a few significant 

differences between the s-domain and z-domain that have some practical implications 

regarding their application. One practical difficulty with using the s-domain at high 
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frequencies has to do with the scales of the real and imaginary axes. In particular, the 

imaginary component of the complex frequency values can get very large at high 

frequencies, making it impractical to plot the poles and zeros on a linear scale in such a 

way that the origin, imaginary axis, and real axis of the complex plane can be easily 

observed simultaneously on the same plot. Since the imaginary axis of the s-plane 

represents the stability boundary, not being able to see it adequately in a visual pole-zero 

plot is a significant limitation. 

In contrast, in the z-domain, the frequency variation simply rotates circularly 

around the origin, as described in Chapter 3. The s-domain is exponentially warped into 

the z-domain via the relationship 𝑧 = 𝑒𝑠𝑇𝑠. While this may create aliasing problems and 

ambiguities above the Nyquist frequency, if the sampling rates are carefully and 

appropriately selected these limitations are avoided, and the visual plotting is much easier 

to interpret because the axis scaling is more reasonable. In addition, the stability 

boundary represented by the unit circle is always easily observable in the plot. These 

advantages, and the fact that there exists a multitude of tools and techniques from the 

field of digital signal processing (DSP) for the analysis of transfer functions expressed in 

the z-domain, leads to a desire to evaluate the transfer function 𝐻𝑑(𝑧) in the z-domain for 

signal integrity applications. This is true even if the system model was originally 

identified in the analog frequency domain, as is the case when using scattering parameter 

characterization. 

There are several known methods from the field of DSP theory which can be 

applied to the problem of transforming between the s- and z-domains [42], [41]. In this 

chapter, three of these methods, namely, the bilinear transform, the matched-Z transform, 

and the impulse invariant transform, will be applied to the analog transfer function 𝐻𝑎(𝑠) 

for the 4th-order test circuit. The resulting discrete transfer function 𝐻𝑑(𝑧) will then be 

available to further analyze the characteristics of this system in the z-domain. 

6.3 Development of Discrete Transfer Function Hd(z) Using the Bilinear Transform 

One of the most popular and well-known methods for transforming from the s-

domain to the z-domain is the bilinear transform (BLT), discussed previously in Chapter 
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3. It simplifies the exact mapping from the s-plane to the z-plane of 𝑧 = 𝑒𝑠𝑇𝑠 by using a 

1st-order Pade approximation, 

 𝑧 = 𝑒𝑠𝑇𝑠 ≈
1 + 𝑇𝑠

2 𝑠

1 − 𝑇𝑠
2 𝑠

  . (6.2) 

Solving (6.2) for s results in the bilinear transformation, also found previously in Chapter 

3, as [42]: 

 𝑠 =
2
𝑇𝑠
�
𝑧 − 1
𝑧 + 1�

 . (6.3) 

Recall from Chapter 5 that the analog transfer function for the 4th-order test circuit 

was represented by a rational function approximation with order 𝑁 = 38, and that this 

function was expressed in terms of a partial fraction expansion of the form: 

 𝐻𝑎(𝑠) =
𝐵𝑎(𝑠)
𝐴𝑎(𝑠) = ��

𝑐𝑘
𝑠 − 𝑎𝑘

+ 𝐷
𝑁

𝑘=1

� 𝑒−𝑠𝑇𝑑  , (6.4) 

For the case where 𝑁 = 38, nearly a perfect fit for the magnitude and phase responses of 

𝐻𝑎(𝑠) was obtained using the vector fitting process, with a resulting order of 𝑁 = 38 and 

no separated principal delay term, i.e., 𝑇𝑑  =  0 in (6.4) above. It was also shown that a 

reasonable approximation to 𝐻𝑎(𝑠) could be obtained in the form of (6.4) above with 

𝑁 =  4 and 𝑇𝑑  =  839 ps, if the order were constrained artificially to 𝑁 = 4. 

Applying the bilinear transform to the general partial fraction expansion of (6.4) 

for the case when 𝑇𝑑  =  0, results in the following general equation for 𝐻𝑑(𝑧): 

 𝐻𝑑(𝑧) = �𝐻𝑎(𝑠)|
𝑠=2𝑇𝑠

�𝑧−1𝑧+1�
= ��

𝑇𝑠𝑐𝑘
2 − 𝑎𝑘𝑇𝑠

(𝑧 + 1)

𝑧 − 2 + 𝑎𝑘𝑇𝑠
2 − 𝑎𝑘𝑇𝑠

+ 𝐷
𝑁

𝑘=1

� . (6.5) 

The derivation of (6.5) is included in Addendum 6A: to this chapter. Note that (6.5) gives 

an expression for 𝐻𝑑(𝑧) in terms of the poles 𝑎𝑘 and residues 𝑐𝑘 of the partial fraction 

expansion form of 𝐻𝑎(𝑠) of (6.4) above, assuming there is no direct term 𝐷 or delay term 

𝑒−𝑠𝑇𝑑. This is advantageous when converting a transfer function in the s-domain that is 

presented in the pole-residue form. 

 Applying the relation (6.5) to the 4th-order test circuit with 𝑁 = 38 and 𝑇𝑠 = 40 

ps results in the pole-zero map in the z-plane shown in Figure 6-2. Note that the poles are 
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all within the unit circle, suggesting that the system is stable, while there are zeros both 

inside and outside the unit circle, suggesting that the system is not a minimum phase 

system [41]. It should also be explicitly noted that the pole and zero locations depicted in 

Figure 6-2 were obtained without first performing pre-warping at specified frequencies. 

The pre-warping process is usually undertaken when utilizing the bilinear transform, to 

compensate for the inaccuracies and practical difficulties encountered with the utilization 

of the Pade approximation for the exponential map, as expressed in (6.2) [41]–[43].  

 
Figure 6-2: Pole-Zero Map in z-Plane for the 4th-Order Test Circuit for N = 38 and Ts = 40 ps using 

the Bilinear Transform with No Pre-Warping 
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6.4 Development of Discrete Transfer Function Hd(z) Using the Matched-Z 

Transform 

A second well-known method for transforming from the s-domain to the z-

domain is the matched-Z transform (MZT), discussed previously in Chapter 3 [43], [48], 

[49]. It utilizes the exact map 𝑧 = 𝑒𝑠𝑇𝑠  for all poles, and for all zeros which have 

imaginary components at less than the Nyquist frequency. Zeros with imaginary 

components at greater than the Nyquist frequency are explicitly placed at 𝑧 = −1. As 

described in Chapter 3, application of the matched-Z transform requires that the 

expression for the analog transfer function 𝐻𝑎(𝑠) be expressed in pole-zero factored form, 

as follows: 

 𝐻𝑎(𝑠) = 𝐾𝑎

⎣
⎢
⎢
⎢
⎢
⎡�(𝑠 − 𝑏𝑘)
𝑀

𝑘=1

�(𝑠 − 𝑎𝑘)
𝑁

𝑘=1 ⎦
⎥
⎥
⎥
⎥
⎤

 ;  𝑁 ≥ 𝑀 . (6.6) 

In this case, the resulting discrete transfer function 𝐻𝑑(𝑧) assumes the form: 

 𝐻𝑑(𝑧) = 𝐾𝑑

⎣
⎢
⎢
⎢
⎢
⎡�(𝑧 − 𝑒𝑏𝑘𝑇𝑠)
𝑀

𝑘=1

�(𝑧 − 𝑒𝑎𝑘𝑇𝑠)
𝑁

𝑘=1 ⎦
⎥
⎥
⎥
⎥
⎤

 ;  𝑁 ≥ 𝑀 , (6.7) 

which is also seen to be in pole-zero factored form in the z-domain. 

One very significant problem with the application of the matched-Z 

transformation to functions 𝐻𝑎(𝑠) that have been obtained by vector fitting is that those 

functions are not obtained in the pole-zero factored form of (6.6), but rather in the partial 

fraction expansion form of (6.4), which is expressed in terms of poles and residues. The 

process for converting the function 𝐻𝑎(𝑠) can be problematic for functions of high order 

with poles and zeros located at high frequencies, due to the limitations in numerical 

precision for computations involving large numbers [60]. This problem was encountered 

for the 4th-order test circuit, and ultimately solved using frequency scaling network 
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analysis techniques as described in Chapter 5 and [89], which allowed the large numbers 

to be avoided in the calculation. 

Once 𝐻𝑎(𝑠) for the 4th-order test circuit was obtained in factored form of (6.6), 

the matched-Z transformation was applied and 𝐻𝑑(𝑧) was obtained in the factored form 

(6.7). From the factored form of 𝐻𝑑(𝑧) it is straightforward to construct the pole-zero 

map in the z-plane, as shown in Figure 6-3. Note that the pole and zero locations are 

different from the bilinear transform case of Figure 6-2 for those locations at higher 

frequencies of  𝜔. This is due to the fact that no pre-warping of critical frequencies has 

been undertaken for the bilinear transform case. The advantage of the matched-Z 

transform over the bilinear transform, at least as applied in Figure 6-2, lies in the 

simplicity of pole and zero mapping that is so clearly evident in Figure 6-3. 

 
Figure 6-3: Pole-Zero Map in z-Plane for the 4th- Order Test Circuit for N = 38 and Ts = 40 ps Using 

the Matched-Z Transform 
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6.5 Development of Discrete Transfer Function Hd(z) Using Bilinear Transform 

Variations with Frequency Pre-Warping 

The results for the matched-Z transform show that it is possible to get a 

reasonable discrete frequency transfer function 𝐻𝑑(𝑧) using an s-domain to z-domain 

transformation. The pole-zero map of Figure 6-3 for the matched-Z transform leads to the 

conclusion that the pole-zero map of Figure 6-2 obtained using the bilinear transform is 

unacceptable. In reality, this should not be surprising, given that the BLT is known to 

warp the frequency variable at higher frequencies [41]–[43]. 

Because of the extreme popularity of the bilinear transform in digital signal 

processing applications, it would still be desirable to find a way to apply it for signal 

integrity applications. Thus, in this section two additional attempts will be made to 

improve upon the BLT results, by re-applying the BLT using two variations of pre-

warping the frequency prior to transforming to the z-domain. The first method, widely 

used in the design of digital filters, will apply pre-warping at a single critical frequency of 

interest. This technique, which amounts to a form of frequency scaling, has the effect of 

matching the magnitude and phase responses of 𝐻𝑎(𝑠)  and 𝐻𝑑(𝑧)  at that particular 

frequency [41]. The second method involves pre-warping the entire discrete frequency 

vector, 𝜔 , determining a warped version of the frequency transfer function 𝐻𝑎(𝑗𝛺) , 

fitting an s-domain rational function to the warped frequency transfer function, and then 

applying the BLT to the warped frequency transfer function to obtain 𝐻𝑎(𝑠) [91]. 

6.5.1 Development of Discrete Transfer Function Hd(z) Using the Bilinear 

Transform with Pre-Warping of Critical Frequency 

In order to confirm that the discrepancy in the pole-zero mapping between the 

bilinear transform and matched-Z transform was due to frequency warping, and to 

improve the overall pole-zero map obtained using the bilinear transform, a second 

attempt was made to calculate the pole and zero positions using the BLT. For this second 

attempt, pre-warping of the critical frequency 10 GHz for the low-pass analog filter was 

applied before invoking the transform of (6.5), with the resulting pole-zero map shown in 

Figure 6-4. Addendum 6B: contains a derivation for a general pre-warping technique at 
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an arbitrary frequency that shows that pre-warping can be considered as another 

application and implementation of the concept of frequency scaling [42], [59], [92]. 

Note that the poles now cover approximately the same overall frequency range 

around the circle, but that the pole spacing still does not match the pole-zero diagram for 

the matched-Z transform of Figure 6-3. It can also be seen that the zero positions are 

significantly off. From this, it can be seen that the BLT’s inherent method of matching 

the frequency response 𝐻𝑑(𝑒𝑗𝜔) at 𝜔 = 0 [92] may be the better approach than trying to 

match at high frequencies for this high-order system. It could also be suggested that, for a 

frequency response with a significant number of poles and zeros with critical positions 

over a broad frequency range, that the bilinear transform’s characteristics may not be 

adequate for this application, even with this additional step of pre-warping the critical 

frequency value, because frequency distortion cannot be avoided over the entire range. 

 
Figure 6-4: Pole-Zero Map in z-Plane for the 4th-Order Test Circuit for N = 38 and Ts = 40 ps Using 

the Bilinear Transform with Pre-Warping Applied at 10 GHz 
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6.5.2 Development of Discrete Transfer Function Hd(z) Using the Bilinear 

Transform with Pre-Warping of Entire Discrete Frequency Vector 

In an effort to further improve the overall results of the pole-zero map obtained 

using the bilinear transformation, a third attempt was made to calculate the pole and zero 

positions using the BLT. For this third attempt, pre-warping of the entire discrete 

frequency variable 𝜔 was applied, per the process by formulated by Ikai, and patented by 

Fujitsu [91]. The discrete frequency 𝜔 is first pre-warped as follows: 

 𝜔𝑐 = 2 tan
ω
2

  , (6.8) 

where 𝜔𝑐 is the pre-warped discrete frequency. The variable 𝜔𝑐, is then re-interpolated 

over its new range so that it has a uniform frequency interval, and re-expressed as 𝜔𝑐′ , 

defined as the re-interpolated version of 𝜔𝑐 . The original frequency transfer function 

𝐻𝑎(𝑓) is now re-plotted vs.  𝜔𝑐′ ,  becoming a new frequency transfer function 𝐻𝑎′ ( 𝜔𝑐
′

2𝜋𝑇𝑠
). 

The vector fitting process [44], [85] is now applied to 𝐻𝑎′ ( 𝜔𝑐
′

2𝜋𝑇𝑠
), resulting in rational 

function approximation 𝐻𝑎′ (𝑠′). It is this new function to which the bilinear transform is 

applied, resulting in: 

 𝐻𝑑(𝑧) = �𝐻𝑎′ (𝑠′)|𝑠′= 2
𝑇𝑠
�𝑧−1𝑧+1�

 .  (6.9) 

The resulting pole-zero map obtained from this process is shown in Figure 6-5. Note the 

great improvement in the spacing of the poles and zeros, and the favorable comparison of 

the pole locations to those predicted by the matched-Z transform in Figure 6-3. 

It is also apparent when comparing the z-plane pole-zero maps of Figure 6-3 and 

Figure 6-5 that, while the pole locations are now very close, there is still some significant 

variation in the zero locations as compared to the results given by the matched-Z 

transform. In particular, two outlier zeros are present in the right portion of the z-plane. 

The effect of this variation in the locations of the zeros on the overall performance of the 

interconnect system will be considered in more detail in subsequent sections.  

Figure 6-6 depicts a block diagram summarizing the process for calculating 𝐻𝑑(𝑧) 

using the bilinear transform with pre-warping of the entire frequency variable 𝜔, as just 

described. 
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Figure 6-5: Pole-Zero Map in the z-Plane for the 4th-Order Test Circuit for N=38 and Ts=40 ps Using 

the Bilinear Transform with Pre-Warping Applied to the Entire Frequency Vector ω 

 
Figure 6-6: Summary of Process for Calculating Hd(z) Using the Bilinear Transform with Pre-

Warping of the Entire Frequency Vector ω 

6.6 Development of Discrete Transfer Function Hd(z) Using Impulse Invariant 

Transform 

In addition to the bilinear transform and the matched-Z transform, a third 

common method for transforming from the s-domain to the z-domain is the impulse 

Form the
pre-warped 
frequency 

variable ωc'

Replot
Ha(f) vs. ωc'

to form
Ha '(ωc'/2πTS)

Apply vector 
fitting to 

Ha '(ωc'/2πTS) to
form Ha '(s')

Calculate Hd(z) as

1
12)()(

+
−

=′
′′=

z
z

T
sad

s

sHzH



 

134 

invariant transform (IIT), also discussed previously in Chapter 3 [41]–[43]. It utilizes the 

exact  𝑧 = 𝑒𝑠𝑇𝑠 map for all poles, but the zeros are not mapped in a such a straightforward 

manner [81]. Specifically, for an s-domain transfer function 𝐻𝑎(𝑠) expressed in the pole-

residue form of (6.4), and with 𝑇𝑑 = 0, utilizing the impulse invariant transform leads to 

the z-domain transfer function 𝐻𝑑(𝑧) expressed as: 

 𝐻𝑑(𝑧) = �
𝑇𝑠𝑐𝑘𝑧

𝑧 − 𝑒𝑎𝑘𝑇𝑠

𝑁

𝑘=1

  , (6.10) 

where 𝑐𝑘 are the residues and 𝑎𝑘 are the poles of the original analog function 𝐻𝑎(𝑠). Note 

that, like the case for the bilinear transform, the impulse invariant transform lends itself 

naturally to application to analog transfer functions 𝐻𝑎(𝑠) which are expressed in pole-

residue form, which was not the case for the matched-Z method.  

Applying the impulse invariant transform as indicated in the relation (6.10) to 

𝐻𝑎(𝑠) for the 4th-order test circuit with 𝑁 = 38 and 𝑇𝑠 = 40 𝑝𝑠 results in the pole-zero 

map in the z-plane, as shown in Figure 6-7. 

 
Figure 6-7: Pole-Zero Map in z-Plane for the 4th-Order Test Circuit for N = 38 and Ts =  40 ps Using 

the Impulse Invariant Transform 



 

135 

Note that the poles are all within the unit circle, suggesting that the system is 

stable, and that the poles’ locations map in exactly the same manner as those found when 

using the matched-Z transform, as depicted previously in Figure 6-3. This is expected, 

since the pole mapping uses the same 𝑧 = 𝑒𝑠𝑇𝑠  algorithm for both the matched-Z and 

impulse invariant transforms. The zero locations, however, can be seen to map quite 

differently when using the two methods. Note specifically in Figure 6-7 the zero at the 

origin of the z-plane. This zero at 𝑧 = 0 does not have a corresponding pole in the s-plane, 

unless it is considered to be the pole at 𝑠 → ∞, which is not a satisfying result, since the 

zero at a high analog frequency in the s-plane has mapped to a zero at a low discrete 

frequency in the z-plane.  Indeed, it is this very problem with the impulse invariant 

transform (IIT) that has led to its decreased use as a filter frequency-domain design tool 

[81]. 

It should be noted here that this problem with the IIT should not be surprising, 

given the transformation’s origin. Recall from Chapter 3 that the IIT originated by 

mapping the continuous-time impulse function ℎ𝑐(𝑡)  to the discrete-time impulse 

function ℎ𝑑(𝑛), leading to great certainty in the time-domain representation of ℎ𝑑(𝑛). 

The time-frequency uncertainty principle then becomes relevant, leading to some 

uncertainty in the frequency domain or, equivalently in this case, with 𝐻𝑑(𝑧). 

6.7 Assessment of Discrete Transfer Function Generation Results via Examination 

of Frequency-Domain and Time-Domain Responses 

A complete assessment and comparison of the z-domain discrete transfer 

functions given by (6.5), (6.7), and (6.10) using the bilinear transform (BLT), matched-Z 

transform (MZT), and impulse invariant transform (IIT), respectively, require a close 

examination of their frequency-domain and time-domain responses, in addition to the 

pole-zero maps examined above. The following sections will assess these responses for 

the system of the 4th-order test circuit (with delay). 

Note that the time-frequency uncertainty principle introduced in Chapter 3 applies 

here, and that there are tradeoffs involved when choosing how to assess the model 

performance. Specifically, the time-frequency uncertainty principle states that it is not 
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possible to have low uncertainty in the time domain and the frequency domain responses 

simultaneously [50]. Even though uncertainty is present, however, additional knowledge 

of the system characteristics in both the time and frequency domains still can be expected 

to provide a more complete understanding than examination of the system in only a 

single domain. 

6.7.1 Frequency Response Comparison of Models  

The frequency responses 𝐻𝑎(𝑗Ω) and 𝐻𝑑(𝑒𝑗𝜔) associated with the system transfer 

functions 𝐻𝑎(𝑠) and 𝐻𝑑(𝑧), respectively, are comprised of both the magnitude response 

and the phase response. Examination of these responses enables a more complete 

assessment of the system’s pole and zero locations, and lends additional insight into how 

the associated system models will ultimately perform. Frequency domain representations 

are common in applications where sinusoidal excitation signals are present, where 

stability is an important consideration, or when frequency band characteristics are an 

important design constraint [39], [40], [48]. Examples of fields where frequency-domain 

design methods are widely used are power systems, communication systems utilizing 

carrier signals, feedback-based control systems, and filter design. 

In previous sections, the transfer function 𝐻𝑑(𝑧) was generated in the complex 

frequency domain using the bilinear transform, the matched-Z transform, and the impulse 

invariant transform, and the pole-zero maps were plotted. From this pole-zero analysis, it 

was seen that there was variation in the resulting pole placement for the bilinear 

transform which was correctable with considerable pre-warping efforts, and also 

variation in the zero placement for all three of the transforms. In all cases, the system was 

seen to be stable, as indicated by the fact that all of the poles were located inside the unit 

circle in the z plane. Beyond these important generalizations, however, it was difficult to 

assess more exact implications on the system’s time and frequency responses using only 

the pole-zero map assessments. 

6.7.1.1 Frequency-Domain Responses for Hd(z) Obtained Using Bilinear Transforms  

Figure 6-8 shows a comparison of the analog frequency response 𝐻𝑎(𝑗Ω) versus 

the discrete frequency responses 𝐻𝑑(𝑒𝑗𝜔) calculated using the bilinear transform, for the 
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three cases where there was: 1) no pre-warping; 2) pre-warping at the single critical 

frequency 𝑓 = 10 GHz; and 3) pre-warping of the entire discrete frequency variable 𝜔. 

Note that the only discrete frequency response 𝐻𝑑(𝑒𝑗𝜔) that correlates well with the 

analog response 𝐻𝑎(𝑗Ω) is that obtained when the entire frequency variable is pre-warped, 

and that this response overlays the analog response almost perfectly. 

 
Figure 6-8: Frequency Response Hd(z) for 4th-Order Test Circuit using BLT0, BLT1, and BLT2  

It was stated previously that the pole-zero maps for 𝐻𝑑(𝑧) obtained using the 

bilinear transform, both without pre-warping, and with pre-warping applied only at 

𝑓 = 10 GHz, exhibited significant variation in pole and zero placement, and that it was 

difficult to get good correlation with the pole-zero map generated using the matched-Z 

transform over the entire frequency range. The same characteristic is seen in Figure 6-8, 

in that the response can be made to match at a given frequency, but not over the entire 

frequency range. This is seen to be true for both the magnitude response and phase 

response. It is clear that the bilinear transform exhibits serious problems in transforming 
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the 4th-order test circuit’s transfer function unless the entire frequency vector is warped 

and the complex process depicted in Figure 6-6 is applied. 10 , 11 , 12  A significant 

disadvantage of this process is that the vector fitting step is not applied directly to the 

analog frequency response 𝐻𝑎(𝑗Ω), but rather to a pre-warped version 𝐻𝑎′ ( 𝜔𝑐
′

2𝜋𝑇𝑠
), and thus 

the resulting macromodel’s s-domain transfer function 𝐻𝑎′ (𝑠′) becomes an intermediate 

set of data that is ultimately thrown away. In contrast, with the matched-Z transform and 

impulse invariant transform, the model 𝐻𝑎(𝑠) obtained via vector fitting is useful for both 

s-domain analysis and also as the analog model on which the s- to z- transformation is 

directly applied. 

6.7.1.2 Frequency-Domain Responses for Hd(z) Obtained Using Matched-Z and 

Impulse Invariant Transforms 

Figure 6-9 shows a comparison of the frequency response 𝐻𝑎(𝑗Ω)  versus the 

frequency responses 𝐻𝑑(𝑒𝑗𝜔)  calculated using both the matched-Z transform and the 

impulse invariant transform. Note that these transform methods give significantly better 

performance in replicating the analog function’s magnitude and phase response than the 

BLT methods with no pre-warping or pre-warping at only a single critical frequency. The 

phase response is seen to be particularly good for both the MZT and IIT cases, an 

important observation given that the propagation delay that is present in the system is one 

of the most important system characteristics to model accurately. Notice the matched-Z 

transform’s magnitude response starts to droop vs. the analog response at high 

frequencies. This is an artifact of the process where the analog gain 𝐾𝑎 and the digital 

gain 𝐾𝑑 of (6.6) and (6.7), respectively, are being matched at DC. 

                                                 
10 BLT0 represents the bilinear transform without pre-warping. 
11 BLT1 represents the bilinear transform with pre-warping only at 10 GHz. 
12 BLT2 represents the bilinear transform with pre-warping of the entire discrete frequency vector. 
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Figure 6-9: Frequency Response Hd(z) for 4th-Order Test Circuit Using the Matched-Z and Impulse 

Invariant Transforms 

One interesting observation regarding the frequency responses of Figure 6-9 is 

that the differences in the zero positions resulting from the two transformation methods, 

which would intuitively seem to be significant based on assessment of the pole-zero maps 

of Figure 6-3 and Figure 6-7, apparently have minimal effect on the frequency response 

for frequencies under about 6 GHz, although they do affect the magnitude response at 

high frequencies. These differences can only be due to the difference in zero positions or 

the gain, because the matched-Z method and the impulse invariant transformations map 

the poles in an identical manner. 

6.7.2 Time-Domain Response Comparison of Models  

In many cases in signal integrity engineering, the ultimate objective with a system 

transfer function model or frequency transfer function model is to use the model for 

calculating the time-domain response to a known stimulus [93]. In contrast to the fields 

mentioned previously, which use primarily frequency-domain analysis, there are several 
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fields which utilize primarily time-domain analysis. Examples of such fields are signal 

integrity engineering and the simulation of transients on power transmission lines [7], 

[68]. In this regard, it would be interesting to use the system transfer functions 𝐻𝑑(𝑧) 

developed in this section from 𝐻𝑎(𝑠)  using the bilinear transform (BLT), matched-Z 

transform (MZT), and impulse invariant transform (IIT) to calculate the time response of 

the system. 

It should be noted that, in fields dominated by time-domain analysis, it is not 

unusual to immediately move from a transfer function model to a state-space 

representation, without giving much thought to the frequency characteristics of the 

system that would be evident by examining the transfer function model in the various 

frequency domains. Recall that the transfer functions 𝐻𝑎(𝑠) or 𝐻𝑑(𝑧) can be used to 

calculate the time responses by writing differential equations or difference equations, 

respectively [40]. From these equations, a state matrix formulation can be formulated 

allowing direct calculation of the time responses [48], [49]. For the examples to follow, 

the calculation of the time responses was handled directly using known MATLAB 

functions timeresp.m [61] for 𝐻𝑎(𝑠) and lsim.m for 𝐻𝑑(𝑧) [80]. 

6.7.2.1 Time-Domain Responses for Hd(z) Obtained Using Bilinear Transforms  

One method for assessing the time responses calculated from 𝐻𝑑(𝑧) is to compare 

them directly to the time response obtained using 𝐻𝑎(𝑠). Recall that the time response 

calculated from 𝐻𝑎(𝑠) was assessed previously vs. that obtained from SPICE in Chapter 

5, and determined to overlap almost perfectly. This correlation, along with qualitative 

evaluation of the frequency response, helped to generate confidence that 𝐻𝑎(𝑠)  was 

providing a reasonable representation of the system, even though a system of fairly high 

order 𝑁 = 38 was required.  

 Figure 6-10 shows the transient response obtained using the analog transfer 

function 𝐻𝑎(𝑠) obtained from vector fitting in Chapter 5 and the transfer functions 𝐻𝑑(𝑧) 

of Figure 6-8 obtained using the bilinear transform without pre-warping, with pre-

warping at the single frequency 𝑓 = 10 GHz, and with pre-warping applied to the entire 
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frequency vector13,14,15. Note that the transient response for the case where pre-warping 

was applied only at 𝑓 = 10 GHz correlates poorly from the perspective of propagation 

delay, which is directly attributable to the curved nature of the phase curve shown in 

Figure 6-8. 

 
Figure 6-10: Time Response of the 4th-Order Test Circuit Calculated Using Hd(z) Obtained from 

BLT0, BLT1, and BLT2 

The transient response for the non pre-warped case shows better delay 

characteristics, although it can be seen that the delay is off in this case as well. Note that 

both cases exhibit significant ripple near the voltage rails. While neither the delay nor the 

                                                 
13 BLT0 represents the bilinear transform without pre-warping. 
14 BLT1 represents the bilinear transform with pre-warping only at 10 GHz. 
15 BLT2 represents the bilinear transform with pre-warping of the entire discrete frequency vector. 
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ripple inaccuracies are desirable, for a distributed system with inherent propagation delay 

the misrepresentation of the system’s delay characteristics is particularly troubling. 

It should also be noted that the inaccuracies of the delay for both the pre-warped 

and the non pre-warped cases are non-causal in nature. This type of inaccuracy is 

considered particularly bad because it is indicating something happens before it is 

physically possible [63]. In contrast, it can be seen from Figure 6-10 that the BLT 

implemented using the Ikai method, where the entire discrete frequency variable 𝜔 has 

been pre-warped per the process of Figure 6-6, has excellent correlation in the transient 

response to that of the original analog transfer function 𝐻𝑎(𝑠). Recall from Figure 6-8 

that application of the Ikai method also led to excellent correlation of the discrete 

frequency response 𝐻𝑑(𝑒𝑗𝜔)  to the analog frequency response 𝐻𝑎(𝑗𝛺) . Clearly, the 

application of the Ikai method at least enables the BLT to be useful for signal integrity 

applications, despite the complexity and drawbacks of the method. 

6.7.2.2 Time-Domain Responses for Hd(z) Obtained Using Matched-Z and Impulse 

Invariant Transforms 

Figure 6-11 shows the transient responses obtained using the transfer function 

𝐻𝑎(𝑠)  obtained from vector fitting in Chapter 5 and the transfer functions 𝐻𝑑(𝑧)  of 

Figure 6-9 obtained using the matched-Z transformation and the impulse invariant 

transformation. Note that the transient responses for both cases show very good 

correlation with the response generated directly from 𝐻𝑎(𝑠). Recall from Figure 6-3 and 

Figure 6-7 that both transforms map the poles in an identical manner, that both 

transforms resulted in 𝐻𝑑(𝑧) functions with good phase characteristics, and that only the 

zeros mapped differently between the two transforms. Any deviations in system delay 

characteristics are difficult to detect, at least using manual visual comparisons. It is 

becoming clear from the combined analysis of the pole-zero maps, the frequency 

responses, and the time-domain responses, that the positions of the zeros may not be that 

significant, and that the phase characteristics are very significant, to the time-domain 

response of the system. 
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Figure 6-11: Time Response of the 4th-Order Test Circuit Calculated Using Hd(z) Obtained from the 

Matched-Z and Impulse Invariant Transforms  

6.7.3 Additional Comments Regarding Results for Hd(z) Obtained with Bilinear, 

Matched-Z, and Impulse Invariant Transforms 

As mentioned previously, the Laplace domain and z-domain can be considered to 

be analogous, since both are complex frequency domains and both contain complete 

information regarding stability, causality, and passivity [42]. From this standpoint, it 

might seem reasonable to expect that either domain is equally suited to performing pole-

zero analysis of transfer functions. Nevertheless, it is clear from the examples studied 

here that the z-domain has several advantages over the Laplace domain in this regard, 

some of which are largely pragmatic in nature. 

Even though the bilinear transform did not perform well in the transformation of 

the function 𝐻𝑎(𝑠) in the s-domain to the function 𝐻𝑑(𝑧) in the z-domain, it did have one 

advantage that proved useful. That advantage was that the transformation, as expressed in 

(6.5), was directly applicable to the partial fraction expansion form of 𝐻𝑎(𝑠), expressed 

in (6.4). This characteristic, which is shared by the impulse invariant transformation of 
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(6.10), allows the function to be transformed without first having to convert to a ratio of 

factored polynomials in the form of (6.6), a difficult step that is required by the matched-

Z transform. A major advantage of this is that any effects of inadequate numerical 

precision encountered in converting from pole-residue form to rational function form are 

not encountered until the function is already transformed into z-domain, allowing the 

application of known techniques to mitigate this problem [59]. Thus the bilinear 

transformation has an inherent advantage in handling numerical precision issues, but 

suffers from poor performance due to frequency aliasing. Similarly, the impulse invariant 

method has this same inherent advantage, but suffers from limitations in its zero-mapping 

characteristics.  

In contrast, the matched-Z transformation has good zero and pole matching 

characteristics, good frequency response characteristics, and good time response 

characteristics, at the expense of some exposure to numerical precision issues. Clearly, it 

would be advantageous to have a form of the matched-Z transform that could be applied 

to the 1st-order functions of (6.4), giving the dual advantages of avoiding the numerical 

precision issues seen when converting between pole-residue form and rational function 

form in the s-domain, and allowing the use of the previously-mentioned, known 

techniques for mitigating the numerical precision limitations in the z-domain. 

At the time just prior to the publication of this dissertation, the application of 

these methods to signal integrity applications had been under consideration for 

patent protection. These methods will now be submitted for publication as an 

Institute of Electrical and Electronic Engineers (IEEE) peer-reviewed journal 

article [94].16 

6.8 Conclusions Regarding Ha(s) to Hd(z) Transformation Methods 

The results presented in this chapter demonstrate that it is possible to successfully 

transform the analog complex frequency domain transfer function 𝐻𝑎(𝑠) into the digital 

complex frequency domain transfer functions 𝐻𝑑(𝑧)  using common methods. These 

                                                 
16 For information regarding the final disposition of publication status, please contact the author of this 
dissertation after 31 July 2014. Contact information is listed in Appendix 2. 
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methods were effective enough to enable pole-zero analysis in the z-plane and useful 

examination of the frequency responses. In addition, it was shown to be possible to use 

the 𝐻𝑑(𝑧) transfer functions derived by these methods for accurate calculation of the time 

response. 

Of these methods used for calculating 𝐻𝑑(𝑧), the bilinear transform seemed to 

have the most difficulties in matching both the frequency and time responses of 𝐻𝑎(𝑠). 

Most notably, unless the entire discrete frequency 𝜔  is pre-warped prior to the 

application of the BLT, significant distortion can be seen in the pole and zero locations 

relative to those given by the matched-Z transformation and the impulse invariant 

transformation. Attempting to match the frequency response at a single critical frequency 

point was not significantly helpful, due to both the nature and shape of the frequency 

response magnitude and phase curves. In addition, the bilinear transform demonstrated 

relatively poor correlation in the phase response, for both the case when no pre-warping 

was applied, and when pre-warping was applied only to a single frequency point. This 

was an unfortunate development given the propagation delay inherent in the system. The 

time response obtained using the bilinear transform for these two cases also did not 

overlay well with that obtained from 𝐻𝑎(𝑠). 

Fortunately, the problems the BLT displayed with poor matching of the phase and 

time-domain responses disappeared when the discrete frequency 𝜔 was pre-warped over 

its entire range, and the method by Ikai was applied. The process had disadvantages, 

however, in that it required complex manipulation of the frequency response, the creation 

of a pre-warped version of the analog frequency response, and a vector fitting step 

applied to this pre-warped response which resulted in a pre-warped version of the analog 

transfer function, all before the BLT could be applied. This process is not as 

straightforward as the matched-Z and impulse invariant transforms, and the pre-warped 

versions of the frequency and transfer functions were not useful for analog domain 

analysis, so they were simply discarded. 

In contrast, the matched-Z transform resulted in a straightforward mapping of the 

pole and zero locations from the s-plane to the z-plane. The locations agreed relatively 

well with results utilizing the impulse invariant transform. The frequency response 
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exhibited good matching to that for 𝐻𝑎(𝑠)  in the magnitude response, with some 

deviation showing up only near the Nyquist frequency 𝑓𝑁 due to the expected presence of 

a zero there at 𝑧 = −1 [81], and even better matching in the phase response. The time 

response correlation with that given by 𝐻𝑎(𝑠), and also with that given by 𝐻𝑑(𝑧) using 

the impulse invariant transform, was also excellent. 

Similar to the matched-Z transform, the impulse invariant transform also 

exhibited good correlation between 𝐻𝑑(𝑧) and 𝐻𝑎(𝑠). The frequency response exhibited 

excellent correlation with 𝐻𝑎(𝑠) , both in the magnitude and phase responses. The 

magnitude response matched that for 𝐻𝑎(𝑠) even better than that of 𝐻𝑑(𝑧) obtained using 

the matched-Z transformation, especially near the Nyquist frequency 𝑓𝑁 since there was 

no zero there, but rather at the origin 𝑧 = 0. The phase response was almost identical to 

both that of 𝐻𝑑(𝑧) using the matched-Z transform, and that of 𝐻𝑎(𝑠). The time response 

also overlaid that from 𝐻𝑎(𝑠) almost perfectly, as expected since the impulse invariant 

transformation it based on preserving the shape and properties of the impulse response 

ℎ𝑎(𝑡) in the sampled domain [42]. 

In the next chapter, additional attention will be given to the s- to z-domain 

transformations utilized in this chapter, introducing modified versions of both the bilinear 

transform and the matched-Z transform that can operate directly on the 1st-order sections 

of 𝐻𝑎(𝑠).  

Addendum 6A:  Derivation of Bilinear Transform Expression for the Partial 

Fraction Expansion Form of Ha(s) and Hd(z) 

 Included below is the derivation of the expression of 𝐻𝑑(𝑧) using the bilinear 

transform in (6.5), as applied to the partial fraction expansion form of 𝐻𝑎(𝑠) as expressed 

in (6.4). It is assumed that the propagation delay 𝑇𝑑 = 0, i.e., (6.4) becomes: 

 𝐻𝑎(𝑠) =
𝐵𝑎(𝑠)
𝐴𝑎(𝑠) = ���

𝑐𝑘
𝑠 − 𝑎𝑘

𝑁

𝑘=1

� + 𝐷� . (6.11) 

Applying the bilinear transform,  
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 𝐻𝑑(𝑧) = �𝐻𝑎(𝑠)|
𝑠=2𝑇𝑠

�𝑧−1𝑧+1�
= ��

𝑐𝑘
2
𝑇𝑠
�𝑧 − 1
𝑧 + 1� − 𝑎𝑘

+ 𝐷
𝑁

𝑘=1

� . (6.12) 

Multiplying the numerator and denominator polynomials by 𝑇𝑠
2

(𝑧 + 1) leads to 

 𝐻𝑑(𝑧) = ��
𝑇𝑠𝑐𝑘

2 (𝑧 + 1)

(𝑧 − 1) − 𝑇𝑠𝑎𝑘
2 (𝑧 + 1) 

+ 𝐷
𝑁

𝑘=1

� . (6.13) 

Grouping like terms in the denominator, this simplifies further to 

 𝐻𝑑(𝑧) = ��
𝑇𝑠𝑐𝑘

2 (𝑧 + 1)

(1 − 𝑇𝑠𝑎𝑘
2 )𝑧 − (1 + 𝑇𝑠𝑎𝑘

2 ) 
+ 𝐷

𝑁

𝑘=1

� . (6.14) 

Finally, isolating the 𝑧 term in the denominator and the 𝑧 + 1 term in the numerator, 

along with explicitly expressing the 𝑇𝑠 2⁄  term, leads to 

 𝐻𝑑(𝑧) =

⎝

⎜
⎜
⎜
⎛
�

𝑐𝑘
𝑇𝑠
2

1 − 𝑎𝑘
𝑇𝑠
2

(𝑧 + 1)

𝑧 −
1 + 𝑎𝑘

𝑇𝑠
2

1 − 𝑎𝑘
𝑇𝑠
2

 

+ 𝐷
𝑁

𝑘=1

⎠

⎟
⎟
⎟
⎞

 . (6.15) 

Rearranging terms slightly to simplify the ratio terms above leads to the form 

 𝐻𝑑(𝑧) = ��

𝑇𝑠𝑐𝑘
2 − 𝑎𝑘𝑇𝑠

(𝑧 + 1)

𝑧 − 2 + 𝑎𝑘𝑇𝑠
2 − 𝑎𝑘𝑇𝑠

+ 𝐷
𝑁

𝑘=1

� , (6.16) 

which is exactly the relation expressed in (6.5). Note that this form has the advantages of 

explicitly showing the pole value, isolating the gain term 𝐾𝑑  of (6.7) and showing 

explicitly that 𝐻𝑑(𝑧) has a zero at 𝑧 = −1. 

Addendum 6B:  Derivation of Bilinear Transform Expression Pre-warping Factor 

Hd(z) 

 The bilinear transform of (6.3) automatically matches the frequency response at 

the DC frequency 𝜔 = 0  [92], leading to frequency warping distortion at higher 

frequencies. To account for this, (6.16) can be modified to match the frequency response 
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at an arbitrary frequency Ω𝑜, instead of at the DC point. To do so, frequency scaling 

techniques can again be applied, as was done previously in Chapter 5.  

 Specifically, the bilinear transform gives the digital transfer function 𝐻𝑑(𝑧) at a 

particular frequency of interest 𝜔𝑜, which maps on the 𝑗Ω axis to the distorted frequency  

 𝛺𝑤𝑎𝑟𝑝 =
2
𝑇𝑠

tan
Ω𝑜𝑇𝑠

2
 , (6.17) 

rather than to the desired frequency of interest Ωo that was originally observed in the 

analog transfer function 𝐻𝑎(𝑠) . To correct for this, a pre-warping procedure can be 

applied prior to application of the bilinear transform [42]. 

Using frequency scaling, the analog transfer function 𝐻𝑎(𝑠) given by (6.11) can 

be first transformed to a prototype filter with the specified frequency at Ω = 1 Hz, using 

 𝐻𝑝𝑟𝑜𝑡𝑜(𝑠) = �𝐻𝑎(𝑠)|𝑠→𝑠𝑘𝑓𝑢𝑝 =  �𝐻𝑎(𝑠)|𝑠→𝑠Ω𝑜. , (6.18) 

then scaled back upward in frequency to the pre-warped transfer function 𝐻𝑝𝑟𝑒𝑤𝑎𝑟𝑝(𝑠) as 

follows: 

 𝐻𝑝𝑟𝑒𝑤𝑎𝑟𝑝(𝑠) = �𝐻𝑝𝑟𝑜𝑡𝑜(𝑠)�
𝑠→ 𝑠

𝑘𝑓𝑑𝑜𝑤𝑛

= �𝐻𝑝𝑟𝑜𝑡𝑜(𝑠)�
𝑠→ 𝑠

Ω𝑤𝑎𝑟𝑝
= �𝐻𝑎(𝑠)|

𝑠→ 𝑠Ω𝑜
Ω𝑤𝑎𝑟𝑝

. . (6.19) 

The overall effective scaling factor 𝑘𝑒𝑓𝑓 can then be defined as 

 𝑘𝑒𝑓𝑓 =
Ω𝑤𝑎𝑟𝑝
Ω𝑜

 =

2
𝑇𝑠

tanΩ𝑜𝑇𝑠2
Ω𝑜

 ,  (6.20) 

where the frequency scaling convention 𝑠 → 𝑠 𝑘𝑒𝑓𝑓⁄  has been adopted. This scaling 

factor can be applied using (6.19) to 𝐻𝑎(𝑠) as a general pre-warping function,  

 𝐻𝑝𝑟𝑒𝑤𝑎𝑟𝑝(𝑠) = �𝐻𝑎(𝑠)|𝑠→ 𝑠
𝑘𝑒𝑓𝑓

 , (6.21) 

prior to the application of the bilinear transform (6.5). This approach is particularly useful 

when 𝐻𝑎(𝑠)  is expressed in the pole-residue form of (6.11) as a partial fraction 

expansion. 
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Chapter 7:  Development of the Transfer Function Model Hd(z) Directly 

from the Partial Fraction Expansion Terms of Ha(s) 

7.1 Introduction 

It was shown in Chapter 6 that it is advantageous to be able to convert directly 

between 𝐻𝑎(𝑠)  and 𝐻𝑑(𝑧)  partial fraction expansion representations of the transfer 

function, without the requirement of first converting to pole-zero factored form. The 

primary motivation is twofold. First, the partial fraction expansion form of 𝐻𝑎(𝑠), a pole-

residue form, is the most likely form of the expression for 𝐻𝑎(𝑠) to be encountered in a 

signal integrity engineering application, since this form is the natural output of the 

frequency-domain vector fitting process [44]. The pole-residue form, incidentally, also 

lends itself well to time-domain computations in SPICE [63]. Second, the process for 

converting 𝐻𝑎(𝑠) from partial fraction expansion form to pole-zero factored form is very 

difficult for systems with poles and residues in the GHz range, which is common for 

signal integrity interconnect systems. 

In particular, it was shown in Chapter 6 that it is possible to make the conversion 

from 𝐻𝑎(𝑠) in partial fraction expansion (pole-residue) form to 𝐻𝑑(𝑧) using either the 

bilinear transform (BLT) or the impulse invariant transform (IIT), with the resulting 

expression for 𝐻𝑑(𝑧) itself also remaining in pole-residue form. In contrast, with the 

matched-Z transform (MZT) it is not possible to make the conversion from the s-domain 

to the z-domain without first converting 𝐻𝑎(𝑠)  to a pole-zero factored form. This is 

because the transform is based on directly mapping poles and zeros from the s-plane to 

the z-plane, with the resulting expression for 𝐻𝑑(𝑧) itself also remaining in pole-zero 

factored form. The prerequisite conversion process from a pole-residue representation to 

a pole-zero representation in the s-domain was shown to be difficult for the 38th-order 

rational function approximation for 𝐻𝑎(𝑠) , due to the effects of limited numerical 

precision when performing the computations. This was primarily caused by the large 

numerical values for the poles and residues of 𝐻𝑎(𝑠). This problem was ultimately solved 

by applying frequency scaling techniques [89] to 𝐻𝑎(𝑠) prior to converting from pole-

residue form to pole-zero factored form. 
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The application of the matched-Z transform (MZT) to the problem of converting 

𝐻𝑎(𝑠)  to 𝐻𝑑(𝑧)  is nevertheless still appealing. The matched-Z transform is 

straightforward, intuitive, and does not require consideration for pre-warping of 

frequencies [43]. If the function 𝐻𝑑(𝑧) could be obtained in pole-residue form using the 

matched-Z transform, with the analog function 𝐻𝑎(𝑠) also in pole-residue form, as was 

done for the impulse invariant transform (IIT) and bilinear transform (BLT), that would 

be advantageous. 𝐻𝑑(𝑧) could then be converted to pole-zero factored form in the z-

domain, where the poles and residue values would be much smaller. It would then still be 

possible to study the system characteristics in the z-domain, using a pole-zero map in the 

z-plane, with its inherent advantages over s-plane analysis discussed previously in 

Chapter 6. 

One point to remember when performing any of these transformations is that all 

of the widely-used methods for converting from the s-domain to the z-domain, namely, 

the bilinear transformation, the matched-Z transformation, and the impulse invariant 

transformation, are themselves approximations with some known limitations [41]–[43]. 

One obvious idea, then, is to develop new transform methods that may be more practical 

for high-order rational function approximations for 𝐻𝑎(𝑠). Even with some tradeoffs in 

accuracy, such functions could be very useful as long as the limitations are understood.  

This chapter will expand upon the methods of the past chapter for generating 

𝐻𝑑(𝑧) from 𝐻𝑎(𝑠) and for assessing the models’ performance in the z-plane, discrete-

frequency 𝜔  domain, and time domain. First, the general expressions for conversion 

algorithms for the bilinear transform, the impulse invariant transform, and the matched-Z 

transforms will be developed, and the transforms will be applied directly to the various 

1st-order sections which comprise the pole-residue form of 𝐻𝑎(𝑠). Second, an attempt 

will be made to determine whether the application of the matched-Z transform to these 

1st-order sections of 𝐻𝑎(𝑠) can result in a valid representation of 𝐻𝑑(𝑧), similar to the 

approach used by the bilinear transform and the impulse invariant transform. Third, an 

attempt will be made to determine whether the application of bilinear transform to these 

1st-order sections of 𝐻𝑎(𝑠)  can result in a better representation of 𝐻𝑑(𝑧)  than was 

achieved in Chapter 6, by changing the strategy for pre-warping frequencies to match the 



 

151 

gain response. Finally, the results of the application of the new transforms directly to the 

1st-order sections will be compared and contrasted in detail, leading to a set of general 

guidelines for the usage and application of s- to z-domain transformations to system 

interconnect models in signal integrity engineering. 

7.2 Transfer Function Representation as an Expansion of 1st-Order Partial Fraction 

Terms 

Recall that, because of the prevalence of vector fitting macromodeling processes 

in signal integrity engineering [26], [44], [45], [82], [84], the 𝐻𝑎(𝑠) function is most 

likely to be encountered in the partial fraction expansion form of its rational function 

approximation [63]: 

 𝐻𝑎(𝑠) =
𝐵𝑎(𝑠)
𝐴𝑎(𝑠) = ��

𝑐𝑘
𝑠 − 𝑎𝑘

+ 𝐷
𝑁

𝑘=1

� 𝑒−𝑠𝑇𝑑  . (7.1) 

Ignoring the direct term 𝐷 and delay term 𝑒−𝑠𝑇𝑑  for the moment, note that the partial 

fraction expansion in (7.1) form is a sum of 1st-order partial fraction sections of the form 

 𝐻𝑎𝑘(𝑠) =
𝑐𝑘

𝑠 − 𝑎𝑘
 . (7.2) 

Note also that, in the s-plane, this 1st-order function 𝐻𝑎𝑘(𝑠) would have a pole at 𝑠 = 𝑎𝑘 

and that 

 lim
𝑠→∞

𝐻𝑎𝑘(𝑠) = lim
       𝑠→∞

𝑐𝑘
𝑠 − 𝑎𝑘

= 0 , (7.3) 

thus 𝐻𝑎𝑘(𝑠) can also be said to have a zero at infinity [43]. As mentioned previously, one 

of the pragmatic limitations of s-plane analysis is the presence of poles and zeros at 

distances very far from the axes’ origin, and this is a good example of such a case. 

It is useful to now examine the transformation of these s-domain 1st-order terms 

using various s-domain to z-domain transform methods. For some high-order transfer 

functions, even if it is difficult to obtain a pole-zero map of the entire transfer function 

𝐻𝑎(𝑠) or 𝐻𝑑(𝑧), it still may be possible to gain some insight by studying a pole-zero map 

of the various 1st-order sections. In some cases, it may be useful to study both the pole-
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zero map of the overall function and the pole-zero map of the 1st-order sections. In either 

case, the ultimate objective is to gain insight into the nature of the system. 

7.2.1 Transformation of 1st-Order Partial Fractions Using the Bilinear Transform 

Applying the bilinear transform to the 1st-order partial fraction section of (7.2) 

results in  

 𝐻𝑑𝑘𝐵𝐿𝑇(𝑧) = �𝐻𝑎𝑘(𝑠)|
𝑠=2𝑇𝑠

 �𝑧−1𝑧+1�
=

𝑇𝑠𝑐𝑘
2 − 𝑎𝑘𝑇𝑠

(𝑧 + 1)

𝑧 − 2 + 𝑎𝑘𝑇𝑠
2 − 𝑎𝑘𝑇𝑠

  . (7.4) 

In contrast to the s-domain function 𝐻𝑎𝑘(𝑠) in (7.2) above, which was found to have a 

single zero at infinity and a single pole at 𝑠 = 𝑎𝑘 , the transformed z-domain function 

𝐻𝑑𝑘𝐵𝐿𝑇(𝑧) of (7.4) has a single zero at 𝑧 = −1, and a single pole at 𝑧 = 2+𝑎𝑘𝑇𝑠
2−𝑎𝑘𝑇𝑠

. 

Note in particular that the z-domain version has a zero with a position that is less 

ambiguous in the z-plane than it had been in the s-plane. It also has the advantage of 

being clearly visible at a finite location 𝑧 = −1 on the real z axis in the z-plane, as 

opposed to being located off the plot in an infinite location in the s-plane. 

7.2.2 Transformation of 1st-Order Partial Fractions Using the Matched-Z 

Transform 

Applying the matched-Z transform to the 1st-order partial fraction section of (7.2) 

results in  

 𝐻𝑑𝑘𝑀𝑍𝑇(𝑧) =
− 𝑐𝑘

2𝑎𝑘
(1 − 𝑒𝑎𝑘𝑇𝑠)(𝑧 + 1)

𝑧 − 𝑒𝑎𝑘𝑇𝑠
  , (7.5) 

assuming that the digital gain parameter 𝐾𝑑𝑘 of 𝐻𝑑𝑘𝑀𝑍𝑇(𝑧) is matched to the analog gain 

parameter 𝐾𝑎𝑘 of 𝐻𝑎𝑘(𝑠) at the DC point, namely, where 𝑠 = 0 and 𝑧 = 1. In contrast to 

the s-domain function 𝐻𝑎𝑘(𝑠) in (7.2) above, which was found to have a single zero at 

infinity and a single pole at 𝑠 = 𝑎𝑘 , the transformed z-domain function 𝐻𝑑𝑘𝑀𝑍𝑇(𝑧) of 

(7.5) has a single zero at 𝑧 = −1, and a single pole at 𝑧 = 𝑒𝑎𝑘𝑇𝑠. 

Note in particular that the z-domain version has a zero with a position that is less 

ambiguous in the z-plane than it had been in the s-plane, just as in the case for the 
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bilinear transform. Note also, however, that the pole position given by the bilinear 

transform and the matched-Z transform are different, due to the different mapping 

methods used for the poles. 

7.2.3 Transformation of 1st-Order Partial Fractions Using the Impulse Invariant 

Transform 

Applying the impulse invariant transform to the 1st-order partial fraction section 

of (7.2) results in  

 𝐻𝑑𝑘𝐼𝐼𝑇(𝑧) =
𝑇𝑠𝑐𝑘𝑧

𝑧 − 𝑒𝑎𝑘𝑇𝑠
  . (7.6) 

In contrast to the s-domain function 𝐻𝑎𝑘(𝑠) in (7.2) above, which was found to have a 

single zero at infinity and a single pole at 𝑠 = 𝑎𝑘 , the transformed z-domain function 

𝐻𝑑𝑘𝐼𝐼𝑀(𝑧) of (3.39) has a single zero at 𝑧 = 0, and a single pole at 𝑧 = 𝑒𝑎𝑘𝑇𝑠. 

Note in particular that the z-domain version has a zero with a position that is less 

ambiguous in the z-plane than it had been in the s-plane, just as in the case for the 

bilinear transform and the matched-Z transform. Note also, however, that the zero 

position of 𝑧 = 0 given by the impulse invariant transform and the position of  𝑧 = −1 

given by the bilinear and matched-Z transforms are considerably different. It could be 

argued that the impulse invariant transform actually maps the zero position incorrectly 

[81].  

7.2.4 Comparison of Results for Various Transformation Methods for the 1st-Order 

Partial Fractions 

Table 7-1 shows a comparison of the various results for all 38 individual 1st-order 

sections 𝐻𝑑𝑘(𝑧) for the 4th-order test circuit using the bilinear, matched-Z, and impulse 

invariant transforms, where the 1st-order partial fraction terms have general form: 

 𝐻𝑑𝑘(𝑧)  =  
𝐵𝑑𝑘(𝑧)
𝐴𝑑𝑘(𝑧) =  

𝑏1𝑘𝑧 + 𝑏0𝑘
𝑧 − 𝑝𝑘

,  (7.7) 

as compared to (7.4), (7.5), and (7.6), respectively. 
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Parameter 
Bilinear Transform 

(BLT) 
Impulse Invariant 
Transform (IIT) 

Matched-Z 
Transform (MZT) 

zeros -1 (x38) 0 (x38) -1 (x38) 

poles 

-0.21893±0.96287i -0.77876±0.57506i -0.77876±0.57506i 

-0.15944±0.97166i -0.68039±0.68259i -0.68039±0.68259i 

-0.097013±0.98018i -0.57486±0.77753i -0.57486±0.77753i 

-0.029911±0.98411i -0.45633±0.85418i -0.45633±0.85418i 

0.041792±0.98354i -0.3289±0.91291i -0.3289±0.91291i 

0.11755±0.97723i -0.19584±0.95215i -0.19584±0.95215i 

0.19679±0.96431i -0.060443±0.9719i -0.060443±0.9719i 

0.27832±0.94397i 0.073574±0.97261i 0.073574±0.97261i 

0.36089±0.91547i 0.20319±0.95536i 0.20319±0.95536i 

0.44339±0.87804i 0.32629±0.92145i 0.32629±0.92145i 

0.52577±0.83008i 0.44287±0.87127i 0.44287±0.87127i 

0.60759±0.77015i 0.55244±0.80527i 0.55244±0.80527i 

0.68671±0.69695i 0.65275±0.72384i 0.65275±0.72384i 

0.76011±0.61019i 0.74107±0.62843i 0.74107±0.62843i 

0.82416±0.5106i 0.81461±0.52121i 0.81461±0.52121i 

0.87567±0.3995i 0.87149±0.40445i 0.87149±0.40445i 

0.91172±0.28104i 0.91017±0.28263i 0.91017±0.28263i 

0.92559±0.050897i 0.92557±0.050835i 0.92557±0.050835i 

0.92865±0.16191i 0.92821±0.1621i 0.92821±0.1621i 

Table 7-1: Comparison of 1st-Order Sections’ Pole/Zero Parameters for the Bilinear, Impulse 

Invariant, and Matched-Z Transforms 

Notice from the table that the zero locations of the 1st-order sections are identical for the 

bilinear and matched-Z transforms, while the pole locations are identical for the matched-

Z and impulse invariant transforms, as expected. 

Figure 7-1 shows a pole-zero plot in the z-plane for each of the 38 1st-order 

functions 𝐻𝑑𝑘𝐵𝐿𝑇(𝑧)  given by (7.4).  Note that each 1st-order function has a zero at 

𝑧 = −1, while the poles are same as those shown for the overall function 𝐻𝑑(𝑧) derived 

by the bilinear transform in Chapter 6. Notice that the pole locations are compressed over 

a smaller frequency range due to the frequency warping effects observed in Chapter 6, 

and which are inherent to the bilinear transform [42]. 
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Figure 7-1: Pole-Zero Plot in the z-Plane for 1st-Order Sections of Hd(z) Derived Using the Bilinear 

Transform, for the 4th-Order Test Circuit 

Figure 7-2 shows a pole-zero plot in the z-plane for each of the 38 1st-order 

functions 𝐻𝑑𝑘𝑀𝑍𝑇(𝑧)  given by (7.5). Note that each 1st-order function has a zero at 

𝑧 = −1, while the poles are same as those shown for the overall function 𝐻𝑑(𝑧) derived 

by the matched-Z transform in Chapter 6. Notice that the pole locations are not 

compressed over the smaller frequency range depicted in Figure 7-1, due to the fact that 

the matched-Z transform does not exhibit frequency warping like the bilinear transform 

[43]. 
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Figure 7-2: Pole-Zero Plot in the z-Plane for 1st-Order Sections of Hd(z) Derived Using the Matched-

Z Transform, for the 4th-Order Test Circuit 

Figure 7-3 shows a pole-zero plot in the z-plane for each of the 38 1st-order 

functions 𝐻𝑑𝑘𝐼𝐼𝑇(𝑧) given by (7.6). Note that each 1st-order function has a zero at 𝑧 = 0, 

as opposed to at 𝑧 = −1 for the bilinear and matched-Z transform cases. The poles, on 

the other hand, are same as those shown for the overall function 𝐻𝑑(𝑧) derived by the 

impulse invariant transform in Chapter 6. The poles are also identical to those found 

using the matched-Z transform, and are not compressed over the smaller frequency range 

depicted in Figure 7-1, due to the fact that the impulse invariant transform does not 

exhibit frequency warping like the bilinear transform [43]. 



 

157 

 
Figure 7-3: Pole-Zero Plot in the z-Plane for 1st-Order Sections of Hd(z) Derived Using the Impulse 

Invariant Transform, for the 4th-Order Test Circuit 

7.3 Improved Overall Ha(s) to Hd(z) Transformation Functions Based Upon s-to-z-

Domain Transformations Applied to 1st-Order Sections Hak(s) 

The results obtained in Chapter 6 for the development of the digital complex 

frequency domain transfer functions 𝐻𝑑(𝑧) from 𝐻𝑎(𝑠), using the three most well-known 

s- to z-domain transformations, are mixed at best. The bilinear transform, when matched 

at DC or at 10 GHz, demonstrates poor magnitude and phase response characteristics, 

although it performs very well when the entire discrete frequency 𝜔 was pre-warped. The 

matched-Z transform demonstrates excellent phase response characteristics, but only fair 

magnitude response characteristics. It was extremely difficult to apply, however, with the 

primary reason being that the conversion of 𝐻𝑎(𝑠) from partial fraction expansion form 



 

158 

to pole-zero factored form was difficult. The impulse invariant transform (IIT), somewhat 

surprisingly, demonstrated both good phase response and good magnitude response 

characteristics when compared to that for 𝐻𝑎(𝑠). Unfortunately, the IIT is also known to 

inherently map the zeros incorrectly from a frequency response perspective, which is 

bothersome. Finally, it was observed that it was notably easier to work directly with the 

partial fraction expansion form of 𝐻𝑎(𝑠), regardless of which transform was invoked. 

From these results it is clearly desirable to find improved, practical methods for 

transforming transfer functions for the s-domain to the z-domain. Ideally, these 

transforms would be directly applicable to the pole-residue form of 𝐻𝑎(𝑠), have excellent 

frequency response characteristics from both a phase and magnitude perspective, be 

easily factorable so that the pole-zero map can be studied in the z-plane, and exhibit 

excellent correlation in the time-domain response. Knowing the limitations imposed by 

the time-frequency uncertainty principle [50], the approach to finding these transforms 

will be to use ideas and observations noted in the previous chapter and build upon the 

results presented there. 

7.3.1 Modified Matched-Z Transform for Evaluation of Hd(z) of High Order 

It has been observed above that, while the overall function 𝐻𝑎(𝑠) can be difficult 

to convert from partial fraction expansion form to factored form for high-order functions, 

working with the 1st-order factors of 𝐻𝑎(𝑠) when doing transformations is quite intuitive. 

It would be useful to create a method for re-assembling the 1st-order converted functions 

in the z-domain back into an overall function 𝐻𝑑(𝑧) that could be assessed using pole-

zero analysis. Further, it is desirable to use the matched-Z transform to convert the 1st-

order factors from the s- to z-domain, in order to take advantage of the straightforward 

mapping approach, to avoid the pre-warping requirement of the bilinear transform, and to 

avoid the incorrect mapping of zeros that is inherent to the impulse invariant transform. 

The first step in applying such a modified matched-Z method is to create the 1st-

order partial fraction terms, in accordance with (7.5). This was implemented with a 

simple MATLAB function which uses 𝑐𝑘  and 𝑎𝑘  of (7.5) as the function inputs, and 

𝐵𝑑𝑘(𝑧) and 𝐴𝑑𝑘(𝑧) of (7.5) as outputs. Assuming that the gain parameter of 𝐻𝑑𝑘𝑀𝑍𝑇(𝑧) is 
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matched to that of 𝐻𝑎𝑘(𝑠) at the DC point, i.e., where 𝑠 = 0 and 𝑧 = 1, the modified 

matched-Z transform (MMZT) assumes the following form: 

 𝐻𝑑𝑀𝑀𝑍𝑇(𝑧) = �𝐻𝑑𝑘𝑀𝑍𝑇(𝑧) =
𝑁

𝑘=1

�
− 𝑐𝑘

2𝑎𝑘
(1 − 𝑒𝑎𝑘𝑇𝑠)(𝑧 + 1)

𝑧 − 𝑒𝑎𝑘𝑇𝑠

𝑁

𝑘=1

  . (7.8) 

It should be noted that this modified matched-Z transform, while having the same poles 

as the traditional matched-Z transform, will not have the same zeros. The modified 

matched-Z transform is thus not identical to the traditional matched-Z transform. 

 To complete the implementation of the MMZT, a routine is needed to perform the 

sum of the individual 1st-order 𝐻𝑑𝑘𝑀𝑍𝑇(𝑧)  factors, such that the function can be 

assembled into factored form to enable pole-zero analysis in the z-plane. This can be 

done with an iterative procedure to build up the numerator polynomial using successive 

concatenations of polynomial multiplication, as follows. Rewriting (7.8) in terms of its 

numerator and denominator polynomials and introducing a new constant 𝑐̃𝑘, gives 

 𝐻𝑑𝑀𝑀𝑍𝑇(𝑧) = �𝐻𝑑𝑘(𝑧) =
𝑁

𝑘=1

�
𝑐̃𝑘(𝑧 + 1)
𝑧 − 𝑒𝑎𝑘𝑇𝑠

𝑁

𝑘=1

 = �
𝐵𝑑𝑘(𝑧)
𝐴𝑑𝑘(𝑧)

𝑁

𝑘=1

 , (7.9) 

where  

 𝑐̃𝑘 = −
𝑐𝑘

2𝑎𝑘
(1 − 𝑒𝑎𝑘𝑇𝑠) , (7.10) 

and the MZT subscript on the 1st-order partial fraction terms 𝐻𝑑𝑘(𝑧) has been dropped, 

since the process is understood from this point to be based on the matched-Z transform. It 

can be seen by examining (7.9) and (7.10) that the coefficients of the polynomials 𝐵𝑑𝑘(𝑧) 

and 𝐴𝑑𝑘(𝑧) can easily be calculated from the poles and residues of 𝐻𝑎(𝑠), and thus the 

1st-order terms 𝐻𝑑𝑘(𝑧) terms can be formed. 

 The iterative procedure for calculating 𝐻𝑑𝑀𝑀𝑍𝑇(𝑧)  can now be executed as 

follows. Starting with 

 𝐻𝑑𝑀𝑀𝑍𝑇(𝑧) = �𝐻𝑑𝑘(𝑧) =
𝑁

𝑘=1

𝐻𝑑1(𝑧) + 𝐻𝑑2(𝑧) + 𝐻𝑑3(𝑧) + ⋯, (7.11) 

note that a representation based on two 1st-order terms would be: 
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 𝐻𝑑12(𝑧) = 𝐻𝑑1(𝑧) +  𝐻𝑑2(𝑧) =
𝐵𝑑1(𝑧)
𝐴𝑑1(𝑧)

+
𝐵𝑑2(𝑧)
𝐴𝑑2(𝑧)

  . (7.12) 

Combining the 1st-order partial fraction expansion terms, this becomes 

 𝐻𝑑12(𝑧) =
𝐵𝑑1(𝑧)
𝐴𝑑1(𝑧)

+
𝐵𝑑2(𝑧)
𝐴𝑑2(𝑧)

 =
𝐵𝑑1(𝑧)𝐴𝑑2(𝑧) + 𝐵𝑑2(𝑧)𝐴𝑑1(𝑧)

𝐴𝑑1(𝑧)𝐴𝑑2(𝑧)
=
𝐵𝑑12(𝑧)
𝐴𝑑12(𝑧)

 , (7.13) 

where new numerator and denominator polynomials 𝐵𝑑12(𝑧)  and 𝐴𝑑12(𝑧)  have been 

calculated. Continuing the procedure by adding the next 1st-order partial fraction term,  

 𝐻𝑑123(𝑧) = 𝐻𝑑12 + 𝐻𝑑3(𝑧) =
𝐵𝑑12(𝑧)
𝐴𝑑12(𝑧)

+
𝐵𝑑3(𝑧)
𝐴𝑑3(𝑧)

  , (7.14) 

and again combining the partial fraction terms, this becomes the 2nd-order term 

 𝐻𝑑123(𝑧) =
𝐵𝑑12(𝑧)
𝐴𝑑12(𝑧)

+
𝐵𝑑3(𝑧)
𝐴𝑑3(𝑧)

 =
𝐵𝑑12(𝑧)𝐴𝑑3(𝑧) + 𝐵𝑑3(𝑧)𝐴𝑑12(𝑧)

𝐴𝑑12(𝑧)𝐴𝑑3(𝑧)
 . (7.15) 

Obviously the process can be continued until the function 𝐻𝑑𝑀𝑀𝑍(𝑧)  has been fully 

calculated and expanded into pole-zero factored form. This recursive, iterative procedure, 

along with the direct use of the traditional matched-Z transformation to map the 1st-order 

partial fraction expansion terms, form the basis for a new, modified matched-Z transform 

(MMZT).  

7.3.1.1 Assessment of Modified Matched-Z Transform Results Using Pole-Zero 

Analysis 

 Applying the modified matched-Z transform to the 38th-order transfer function 

𝐻𝑎(𝑠) for the 4th-order test circuit results in the pole-zero map depicted in Figure 7-4, 

using 𝑇𝑠 = 40 ps. Note that the function 𝐻𝑑(𝑧) has 38 poles and 38 zeros, by definition, 

and that all are finite. As discussed previously, in the s-plane it is likely that there would 

be one or more zeros at infinity. Note that the poles all fall inside the unit circle, but they 

are close to the unit circle boundary, suggesting the function could go unstable without 

some care. Note also the alternating positions of the poles and zeros as the circle is 

traversed. This corresponds to the 19 local minima and maxima seen in the original 

frequency response curve 𝐻𝑎(𝑗Ω) in the preceding chapters. 

 If the pole-zero map of Figure 7-4 is carefully examined, it can be seen that there 

are only 37 zeros visible, instead of the expected 38. It turns out that there is another zero 
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located at 𝑧 ≈ −235.8, which is somewhat inconvenient, since a stated objective is to be 

able to view the entire pole-zero map on the same plot. Nevertheless, a method for 

reliably generating 𝐻𝑑(𝑧) from the partial fraction expansion form of 𝐻𝑎(𝑠) has been 

established that will yield usable pole-zero plots in the z-plane.  

 
Figure 7-4: Pole-Zero Plot in the z-Plane for Hd(z) for the 4th-Order Test Circuit Obtained Using the 

Modifed Matched-Z Transform with Kd=Ka at DC and Ts=40 ps 

A complete assessment and comparison of the z-domain system transfer functions 

given by (7.8) using the new modified matched-Z transform (MMZT) requires a close 

examination of the frequency and time-domain responses, in addition to the pole-zero 

maps examined above. The following sections will assess these responses for the case of 

the modified matched-Z transform, as applied to the system of the 4th-order test circuit. 

Note that the time-frequency uncertainty principle introduced in Chapter 3 applies here, 

and that there are tradeoffs involved when choosing how to assess the model performance. 

Specifically, it is not possible to have low uncertainty in the time domain and the 

frequency domain responses simultaneously [50]. 



 

162 

7.3.1.2 Frequency Response of Traditional Matched-Z and Modified Matched-Z 

Transforms’ Transfer Functions 

The frequency responses 𝐻𝑎(𝑗Ω) and 𝐻𝑑(𝑒𝑗𝜔) associated with the system transfer 

functions 𝐻𝑎(𝑠) and 𝐻𝑑(𝑧), respectively, are comprised of both the magnitude response 

and the phase response. Examination of these responses enables an exact assessment of 

the system’s pole and zero locations and lends additional insight into how the associated 

system model will ultimately perform when used for waveform prediction purposes [42], 

[49]. In the previous section, the transfer function 𝐻𝑑(𝑧) was generated in the complex 

frequency domain using a modified matched-Z transform, and the pole-zero map was 

plotted in Figure 7-4. From this analysis, it was seen that the there was variation in the 

resulting zero placement for the modified matched-Z transform (MMZT) when compared 

to the traditional matched-Z transform (MZT) utilized in Chapter 6, but the system was 

still seen to be stable, as indicated by the fact that all of the poles were located inside the 

unit circle in the z plane. The implications of the variations of the zero positions from the 

new transform are, as of yet, unclear. Beyond these important generalizations, however, it 

was difficult to assess more exact implications on the system’s time and frequency 

responses using only the pole-zero map assessment. 

Figure 7-5 shows a comparison of the frequency response 𝐻𝑎(𝑗Ω)  versus the 

frequency responses 𝐻𝑑(𝑒𝑗𝜔) calculated using modified matched-Z, traditional matched-

Z, and impulse invariant transforms. Note that neither magnitude response of 𝐻𝑑(𝑒𝑗𝜔) 

obtained using the modified or traditional matched-Z transforms correlates perfectly with 

the response 𝐻𝑎(𝑗Ω), but that the phase responses of 𝐻𝑑(𝑒𝑗𝜔) both align very nicely with 

that for 𝐻𝑎(𝑗Ω). Interestingly, both the magnitude and phase responses of 𝐻𝑑(𝑒𝑗𝜔) found 

using the impulse invariant transform show excellent correlation with 𝐻𝑎(𝑗Ω). 

It is clear from the examination of Figure 7-5 that both the modified and 

traditional matched-Z transforms have significant deviations from 𝐻𝑎(𝑠)  in their 

magnitude responses, apparently due to the presence of a distinct zero at the Nyquist 

frequency 𝑓𝑁 = 12.5 GHz, which corresponds to the point 𝑧 = −1 on the pole-zero plot 

of Figure 7-4. The excellent correlation in the phase responses 𝐻𝑑(𝑒𝑗𝜔) to that of 𝐻𝑎(𝑗Ω) 

suggests that all three transforms, i.e., the modified matched-Z, the traditional matched-Z, 
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and the impulse invariant, are all well-suited for systems exhibiting propagation delay. 

Furthermore, all three transforms appear to be superior to the bilinear transformation in 

their phase response characteristics, unless the complex process involving the pre-

warping of the entire frequency variable 𝜔 is invoked. 

 
Figure 7-5: Frequency Response Hd(z) for the 4th-Order Test Circuit Using the Matched-Z 

Transform, Impulse Invariant Transform, and MMZT1 Transforms17 

Finally, there was a clear advantage to using the modified matched-Z transform 

over the traditional matched-Z transform, in that the MMZT could be applied directly to 

the pole-residue form of 𝐻𝑎(𝑠) , and the troublesome conversion step to pole-zero 

factored form in the s-domain was avoided entirely, moving this conversion step to the z-

domain, where the numerical magnitudes are easier to handle. The matching of the 

                                                 
17 MMZT1 stands for the modified matched-Z transform with matching of the 1st-order sections’ analog 
gain terms 𝐾𝑎𝑘 to the corresponding digital gain terms 𝐾𝑑𝑘 at frequency 𝑠 = 0 (DC). 
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magnitude response of the MMZT was inferior to that of the MZT, however, and the 

presence of the MMZT’s far outlying zero at approximately 𝑧 ≈ −235.8 is still troubling. 

7.3.1.3  Time Domain Response of Modified Matched-Z Transform’s Transfer 

Function 

Recall from Chapter 6 that the ultimate objective with a system transfer function 

or frequency transfer function model is often to use the model for calculating the time-

domain response to a known stimulus [93]. In this regard, it would be interesting to use 

the system transfer function 𝐻𝑑(𝑧), derived from 𝐻𝑎(𝑠) in the previous sections using the 

new modified matched-Z transform (MMZT), to calculate the time responses of the 

system. 

Recall again from Chapter 6 that the transfer functions 𝐻𝑎(𝑠) or 𝐻𝑑(𝑧) can be 

used to calculate the time responses [40]. By writing differential equations or difference 

equations, respectively, a state matrix representation can be formulated, allowing direct 

calculation of the time responses [48], [49]. The calculation of the time responses was 

handled directly using known MATLAB functions timeresp.m [61] for 𝐻𝑎(𝑠) and lsim.m 

for 𝐻𝑑(𝑧) [80]. Recall also from Chapter 6 the method for assessing the time responses 

calculated from 𝐻𝑑(𝑧) by comparing them directly to the time response obtained using 

𝐻𝑎(𝑠). Recall also that the time response calculated from 𝐻𝑎(𝑠) was assessed previously 

versus that obtained from SPICE in Chapter 5, and determined to overlap almost 

perfectly. This correlation, along with qualitative evaluation of the frequency response, 

helped to generate confidence that 𝐻𝑎(𝑠) was providing a reasonable representation of 

the system, even though a system of fairly high order 𝑁 = 38 was required.  

Figure 7-6 shows the transient response obtained using the transfer function 

𝐻𝑎(𝑠) obtained from vector fitting in Chapter 5, compared to the transfer function 𝐻𝑑(𝑧) 

represented by the pole-zero map in Figure 7-4, and obtained using the new modified 

matched-Z transformation (MMZT). Note that the transient response calculated using 

𝐻𝑑(𝑧) shows very good correlation with the response generated directly from 𝐻𝑎(𝑠), and 

that this correlation includes signal edge-rate characteristics, amplitude characteristics, 

and propagation delay characteristics. Again noting from Figure 7-4 that the modified 

matched-Z transform maps the poles in an identical manner to that of the traditional 
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matched-Z transform, and that the zero positions are mapped differently with outlier 

zeros, it is apparent that this discrepancy in the zero positions doesn’t seem to affect the 

transient response significantly. 

Recalling the frequency response plot from Chapter 6 for the traditional matched-

Z transform and from Figure 7-5 for the MMZT, it is seen that both the traditional 

matched-Z transform and the modified matched-Z transform result in 𝐻𝑑(𝑧) functions 

with good phase characteristics. Any deviations in system propagation delay 

characteristics are also difficult to detect, as seen in Figure 7-6, at least using manual 

visual comparisons. The phase-response correlation to that for 𝐻𝑎(𝑠)  overrides the 

mismatches seen in the magnitude responses for both the MMZT and MZT transforms. 

 
Figure 7-6: Time Response Calculated Using Hd(z) for the 4th-Order Test Circuit Obtained from the 

Modified Matched-Z Transform with Kd=Ka at DC 
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7.3.2 Modified Bilinear Transform Method for Evaluation of Hd(z) of High Order 

The principal ideas behind the development of the MMZT in the previous section, 

namely, that it is desirable to work directly with the 1st-order sections of 𝐻𝑎(𝑠), and that 

it is easier to convert from pole-residue form to pole-zero factored form in the z-domain 

than it is in the s-domain, lead to the notion that it may be possible to improve upon the 

bilinear transform results of Chapter 6 as well. One of the important steps in the MMZT 

was that the gain-matching process was applied to each 1st-order section 𝐻𝑎𝑘(𝑠) 

individually via (7.5), as opposed to matching the gains 𝐾𝑎 and 𝐾𝑑 of the overall transfer 

functions 𝐻𝑎(𝑠) and 𝐻𝑑(𝑧), respectively, at DC. Similarly, it is known that the bilinear 

transform magnitude response can be matched at a particular frequency using the pre-

warping process of [42] and demonstrated explicitly in Chapter 6. 

When this pre-warping process was applied to the overall transfer function 𝐻𝑑(𝑧) 

in Chapter 6, both at DC and at 𝑓 = 10 GHz, the results were extremely poor, both for 

the phase and magnitude responses, and this translated to a poor result for the time 

response as well. However, the experience of the previous section for matching the gains 

separately for each individual 1st-order section for the MMZT leads to the notion that a 

better result may be obtained if the pre-warping process is applied individually to each 

1st-order section 𝐻𝑎𝑘(𝑠). Then, the resulting 1st-order sections in the z-domain 𝐻𝑑𝑘(𝑧) 

can be subsequently recombined to form 𝐻𝑑(𝑧) , just as was done for the MMZT 

transform. Thus the 1st-order section 𝐻𝑑𝑘𝐵𝐿𝑇(𝑧) of (7.4) becomes 

 𝐻𝑑𝑘𝑀𝐵𝐿𝑇(𝑧) = ���𝐻𝑎𝑘(𝑠)|𝑠= 𝑠
𝑘𝑒𝑓𝑓𝑘

��
𝑠=2𝑇𝑠

(𝑧−1)
(𝑧+1)

, (7.16) 

where 

 𝑘𝑒𝑓𝑓𝑘 =
Ω𝑤𝑎𝑟𝑝𝑘
Ω𝑜𝑘

 =

2
𝑇𝑠

tan
Ω𝑜𝑘𝑇𝑠

2
Ω𝑜𝑘

, (7.17) 

and where Ω𝑜𝑘 is the analog radian frequency to be matched to for the kth 1st-order 

section. To select this match frequency, recall the analog 1st-order sections 𝐻𝑎𝑘(𝑠) have 

the form 
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 𝐻𝑎𝑘(𝑠) =
𝑐𝑘

𝑠 − 𝑎𝑘
 , (7.18) 

and note that, if the analog pole locations are further defined as 

 𝑎𝑘 = 𝑎𝑅𝑘 + 𝑗𝑎𝐼𝑘 , (7.19) 

then the pole frequencies Ω𝑜𝑘 to be matched are selected from 𝑎𝑘 in the s-plane as 

 Ω𝑜𝑘 = 𝑎𝐼𝑘 . (7.20) 

Applying this modified bilinear transform (MBLT) results in multiple 1st-order 

sections 𝐻𝑑𝑘𝑀𝐵𝐿𝑇(𝑧) that can then be recombined from a partial fraction expansion form 

to pole-zero factored form, using the same process as that used for the MMZT, as 

outlined in (7.11) through (7.15) in the previous section. 

 Figure 7-7 summarizes the process for implementing the modified bilinear 

transform outlined above. At the time just prior to the publication of this dissertation, 

this new modified bilinear transform (MBLT) had been under consideration for 

patent protection. It will now be submitted for publication as an Institute of 

Electrical and Electronic Engineers (IEEE) peer-reviewed journal article [95].18 

  

Figure 7-7: Summary of Process for Implementing the Modified Bilinear Transform (MBLT) 

7.3.2.1 Assessment of Modified Bilinear Transform Results Using Pole-Zero 

Analysis  

Figure 7-8 shows the pole-zero map for the function 𝐻𝑑(𝑧) for the 4th-order test 

circuit, as derived using this modified bilinear transform, again for a sampling period 

𝑇𝑠 = 40 ps. Note the considerable improvement of both the spacing of the poles and 

zeros, as well as their position and magnitude, as compared to the results in Chapter 6 for 

the bilinear transform when no pre-warping is used, or pre-warping is applied to the 

                                                 
18  For information regarding the final disposition of the modified bilinear transform’s (MBLT’s) 
publication status, please contact the author after 31 July 2014. Contact information is listed in Appendix 2. 
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single critical frequency 𝑓 = 10 GHz. It can be seen that the MBLT’s pole and zero 

locations and spacing also compare favorably to the maps in Chapter 6 for the bilinear 

transform where the entire discrete frequency variable 𝜔  was pre-warped, for the 

matched-Z transform, and for the impulse invariant transform. 

 
Figure 7-8: Pole-Zero Plot in the z-Plane for Hd(z) for the 4th-Order Test Circuit Obtained Using the 

Modified Bilinear Transform with Ts=40 ps 

Note also the comparison to the pole-zero plot of Figure 7-4 for the MMZT. 

Similar to the MMZT plot, there are a couple of outlying zeros, although for the MBLT 

the situation is better. The outliers are seen to be located at 𝑧 ≈ −3.96 ± 1.49, and are at 

least visible on a reasonably-scaled pole-zero map in the z-plane, unlike the case for the 

MMZT in the previous section. 

Finally, as has been the case for all of the s- to z-domain transforms, a complete 

assessment and comparison of the z-domain system transfer functions obtained using the 
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new modified matched-Z transform requires a close examination of the frequency and 

transient responses, in addition to the pole-zero maps examined in the previous section. 

7.3.2.2  Frequency Response of the Modified Bilinear Transform Transfer Function  

In the previous section, the transfer function 𝐻𝑑(𝑧) was generated in the complex 

frequency domain using the modified bilinear transform (MBLT), and the pole-zero map 

was plotted in Figure 7-8. From this analysis, it was seen that the there was tremendous 

improvement in the resulting pole placement over the traditional bilinear transform, 

which was seen in Chapter 6 to perform poorly when the gain of 𝐻𝑑(𝑧) was matched 

only at DC or the frequency 𝑓 = 10 GHz. There was variation in the resulting zero 

placement for the modified bilinear transform when compared to the modified matched-Z 

transform, but the system was seen to be stable, as indicated by the fact that all of the 

poles were located inside the unit circle in the z plane. The implications of the variations 

of the zero positions from the new transform are, as of yet, not totally clear. Beyond these 

important generalizations, however, it is difficult to assess more exact implications to the 

system’s time and frequency responses using only the pole-zero map assessment. 

Figure 7-9 shows a comparison of the original analog frequency response 𝐻𝑎(𝑗Ω) 

versus the discrete frequency response 𝐻𝑑(𝑒𝑗𝜔) calculated using the modified bilinear 

transform. Note that the magnitude response of 𝐻𝑑(𝑒𝑗𝜔) obtained using the modified 

bilinear transform now matches the response 𝐻𝑎(𝑗Ω) at each pole’s frequency location. 

This is the condition that was forced by matching the gain of each individual 1st-order 

section 𝐻𝑎𝑘(𝑠) in (7.16) and (7.17) at the analog pole frequencies 𝑎𝑘, and this condition 

seems to carry through when recombining the 1st-order sections in the overall transfer 

function 𝐻𝑎(𝑠). Perhaps more importantly, the phase response of 𝐻𝑑(𝑒𝑗𝜔) obtained with 

the modified bilinear transform now aligns very nicely with that for 𝐻𝑎(𝑗Ω), something 

that was not true for the bilinear transform before when matched to only DC or to 𝑓 = 10 

GHz in Chapter 6. 
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Figure 7-9: Frequency Response of Hd(z) for the 4th-Order Test Circuit Obtained Using the Modified 

Bilinear Transform with Ts=40 ps 

The net result is that the modified bilinear transform shows reasonable correlation 

in the magnitude response, and excellent correlation in the phase response, to the analog 

frequency domain response 𝐻𝑎(𝑗Ω). This is a tremendous improvement over application 

of the bilinear transform utilizing no pre-warping, or when pre-warping at only a single 

critical frequency. The matching of the magnitude response is perhaps not quite as good 

as when using the bilinear transform as implemented using the Ikai method, but the 

MBLT has one advantage over that method in that the MBLT transform operates directly 

on the vector fitted function 𝐻𝑎(𝑠), and does not require the vector fitting step to be 

applied to a pre-warped version of 𝐻𝑎(𝑠). 

It is clear from the examination of Figure 7-9 that 𝐻𝑑(𝑧)  obtained with the 

modified bilinear transform still has significant deviations from 𝐻𝑎(𝑠) in its magnitude 

responses, although 𝐻𝑑(𝑧) now matches the 𝐻𝑎(𝑠) at every pole location, as desired. The 
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excellent correlation now found in the phase response 𝐻𝑑(𝑒𝑗𝜔) to that of 𝐻𝑎(𝑗Ω) is a 

tremendous improvement, and suggests that the modified bilinear transform may be 

better suited for systems exhibiting propagation delay. Clearly, the new transform has 

huge advantages over the bilinear transform matched at only a single frequency, which 

was basically unusable in the forms demonstrated in Chapter 6. Finally, the modified 

bilinear transform shares an advantage with both the modified matched-Z transform 

(MMZT) and the impulse invariant transform (IIT), in that the MBLT can also be applied 

directly to the pole-residue form of 𝐻𝑎(𝑠). Accordingly, the troublesome conversion step 

to pole-zero factored form in the s-domain is avoided entirely, moving this conversion 

step to the z-domain, where the numerical magnitudes are easier to handle. 

7.3.2.3  Time Domain Response of Modified Bilinear Transform Transfer Function  

Figure 7-10 shows the transient response obtained from the analog transfer 

function 𝐻𝑎(𝑠)  obtained from vector fitting in Chapter 5 and the discrete transfer 

function 𝐻𝑑(𝑧) represented by the pole-zero map in Figure 7-8, obtained using the new 

modified bilinear transformation (MBLT). Note that the transient response calculated 

using 𝐻𝑑(𝑧) shows improved correlation with the response generated directly from 𝐻𝑎(𝑠), 

particularly in the rising and falling edges, the overall propagation delay characteristics, 

and the general amplitude characteristics. There is ripple in the time response calculated 

by the modified bilinear transform’s transfer function, however. It can also be seen that 

the MBLT’s time response is likely non-causal, as is indicated by the fact that the rising 

edge and falling edges of the MBLT response occur slightly ahead of the analog transfer 

function’s time response calculation [63]. 

The results shown in Figure 7-10 further demonstrate that the bilinear transform 

modifications incorporated in the MBLT, namely, the matching of the frequency 

responses 𝐻𝑑𝑘(𝑒𝑗𝜔) of the 1st-order sections of 𝐻𝑑(𝑧) to 𝐻𝑎𝑘(𝑓) at the corresponding 

pole frequencies for each analog section, make the MBLT a viable option for converting 

analog transfer functions in the s-domain to digital transfer functions in the z-domain. In 

fact, the tremendous improvement in the performance of the MBLT over the BLT using 

either no pre-warping or pre-warping at only a single critical frequency suggests that a 
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similar modification to the MMZT’s gain matching strategy might yield a similar 

improvement. 

 
Figure 7-10: Time Response Calculated Using Hd(z) for the 4th-order Test Circuit Obtained from the 

Modified Bilinear Transform with Ts=40 ps 

7.3.3 Modified Matched-Z Transform for Evaluation of Hd(z) with Enhancements to 

Gain Matching of 1st-Order Sections 

It was noted in Figure 7-5 that the modified matched-Z transform had excellent 

matching of the phase response of 𝐻𝑑(𝑧) to the phase response of 𝐻𝑎(𝑠), but that the 

magnitude response of 𝐻𝑑(𝑧) fell off from that of 𝐻𝑎(𝑠) increasingly rapidly at high 

frequencies. Recall that the modified matched-Z transform matched the gain 𝐾𝑑 of 𝐻𝑑(𝑧) 

to the gain 𝐾𝑎  of 𝐻𝑎(𝑠)  at the DC point where 𝑠 = 0  and 𝑧 = 1 . There were also 

significant deviations in the positions of the zeros of 𝐻𝑑(𝑧) for the MMZT, including a 

bothersome outlier zero very far from the origin on the negative real axis, as compared to 

the zero positions of 𝐻𝑑(𝑧) found when using the traditional matched-Z transform. 
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The tremendous improvement in the performance of the MBLT over the BLT 

suggests that a similar modification to the MMZT algorithm, i.e., matching 𝐾𝑑𝑘 to 𝐾𝑎𝑘 of 

the 1st-order sections 𝐻𝑑𝑘(𝑧) and 𝐻𝑎𝑘(𝑠), respectively, at each individual pole frequency 

of 𝐻𝑎𝑘(𝑠), might yield a similar improvement. Specifically, it would be desirable to 

improve the matching of the magnitude response of 𝐻𝑑(𝑧)  to that of 𝐻𝑎(𝑠) , and to 

improve the position of the zeros relative the positions found by the traditional matched-

Z transform (MZT). 

To implement this modification, the 1st-order section 𝐻𝑑𝑘(𝑧) with form 

 𝐻𝑑𝑘(𝑧)  =  
𝐵𝑑𝑘(𝑧)
𝐴𝑑𝑘(𝑧) =  

𝑏𝑑𝑘(𝑧 + 1)
𝑧 − 𝑒𝑎𝑘𝑇𝑠

,  (7.21) 

is again paired with the 1st-order section 𝐻𝑎𝑘(𝑠) with form 

 𝐻𝑎𝑘(𝑠) =
𝑐𝑘

𝑠 − 𝑎𝑘
 . (7.22) 

The condition for gain matching is now changed from the previous derivation of the 

MMZT, where the gains were matched at DC, i.e., where 𝑠 = 0 and 𝑧 = 1, to a new gain 

condition where the gains are now matched differently at the radian frequency of the 

analog pole 𝑎𝑘  for each analog 1st-order section. More specifically, if the analog pole 

location is specified as 

 𝑎𝑘 = 𝑎𝑅𝑘 + 𝑗𝑎𝐼𝑘 , (7.23) 

then the pole frequency to be matched is selected from 𝑎𝑘 in the s-plane as 

 𝑠 = 𝑗𝐼𝑚[𝑎𝑘] = 𝑗𝑎𝐼𝑘 = 𝑗2𝜋𝑓𝑘 , (7.24) 

and this is matched in the z-plane to the location 

 𝑧 = 𝑒𝑗𝑎𝐼𝑘𝑇𝑠  (7.25) 

in the z-plane. Thus, the new gain matching condition for each 1st-order section of the 

MMZT can be expressed mathematically as  

 ��𝐻𝑎𝑘(𝑠)|𝑠=𝑗𝑎𝐼𝑘 = 𝐻𝑑𝑘(𝑧)� 𝑧=𝑒𝑗𝑎𝐼𝑘𝑇𝑠 , (7.26) 

which leads to the final expression for the MMZT: 

 𝐻𝑑𝑀𝑀𝑍𝑇(𝑧) = �𝐻𝑑𝑘𝑀𝑀𝑍𝑇(𝑧) =
𝑁

𝑘=1

�

𝑐𝑘(𝑒𝑗𝑎𝐼𝑘𝑇𝑠 − 𝑒𝑎𝑘𝑇𝑠)
(𝑗𝑎𝐼𝑘 − 𝑎𝑘)(𝑒𝑗𝑎𝐼𝑘𝑇𝑠 + 1) (𝑧 + 1)

𝑧 − 𝑒𝑎𝑘𝑇𝑠

𝑁

𝑘=1

  . (7.27) 
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The expression of (7.27) can be directly compared to the previous expression for 

the MMZT in (7.8), for which the MMZT gain matching was performed at DC for each 

1st-order section. Applying this revised modified matched-Z transform again results in 

multiple 1st-order sections 𝐻𝑑𝑘𝑀𝑀𝑍𝑇(𝑧), that can also then be recombined from the partial 

fraction expansion sum form of (7.27) to pole-zero factored form, using the same process 

as that used for the MMZT and MBLT, as outlined in (7.11) through (7.15) previously. 

Expression of 𝐻𝑑𝑀𝑀𝑍𝑇(𝑧) in pole-zero factored form again enables the creation of the 

pole-zero map in the z-plane. 

Figure 7-11 summarizes the process for implanting the modified matched-Z 

transform outlined above. 

At the time just prior to the publication of this dissertation, this new 

modified matched-Z transform (MMZT) had been under consideration for patent 

protection. It will now be submitted for publication as an Institute of Electrical and 

Electronic Engineers (IEEE) peer-reviewed journal article [95].19 

 
Figure 7-11: Summary of Process for Implementing the Modified Matched-Z Transform (MMZT) 

7.3.3.1 Assessment of Modified Matched-Z Transform Results with 1st-Order Gain 

Matching Transfer Function Using Pole-Zero Analysis  

Applying the modified matched-Z transform of (7.27) to the 38th-order transfer 

function 𝐻𝑎(𝑠)  for the 4th-order test circuit, this time with gain matching at the pole 

frequencies of each 1st-order section 𝐻𝑎𝑘(𝑠) instead of at DC, results in the pole-zero 

map depicted in Figure 7-12, using 𝑇𝑠 = 40 ps. Note that the function 𝐻𝑑(𝑧) also has 38 

poles and 38 clearly-visible zeros, and that all zeros are now easily viewable on the plot. 

                                                 
19  For information regarding the final disposition of the modified matched-Z transform’s (MMZT’s) 
publication status, please contact the author after 31 July 2014. Contact information is listed in Appendix 2. 
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The outlier zeros have been eliminated. As discussed previously, in the s-plane it is likely 

that there would be at least one zero at infinity. 

Note that the poles all fall inside the unit circle, although they are close to the unit 

circuit boundary suggesting the function could go unstable without some care. Note also 

the alternating positions of the poles and zeros as the circle is traversed. This corresponds 

to the 19 local minima and maxima seen in the original magnitude response of 𝐻𝑎(𝑗Ω).  

A close comparison of the pole-zero maps of Figure 7-4, which represented the 

MMZT with gain matching at DC, and Figure 7-12, which represents the MMZT with 

gain matching at the individual pole frequencies, shows that the pole locations are 

identical, as expected, but that the zero positions are different. This should be expected 

since the residual values have changed between the expressions of (7.8) and (7.27). Aside 

from these subtle differences in the zero positions, it is difficult to compare the effect of 

the change in the gain matching condition between these two forms of the MMZT. It will 

be necessary to continue the comparison by assessing the performance of the function 

𝐻𝑑(𝑧) by looking at the frequency response and the time response. 

 
Figure 7-12: Pole-Zero Plot in the z-Plane for Hd(z) for the 4th-Order Test Circuit Obtained Using 

the Modified Matched-Z Transform with Kdk=Kak at Individual Pole Frequencies with Ts=40 ps 
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7.3.3.2 Frequency Response of Modified Matched-Z Transform Transfer Function 

with 1st-Order Gain Matching 

Figure 7-13 shows a comparison of the original analog frequency response 

𝐻𝑎(𝑗Ω) versus the discrete frequency response 𝐻𝑑(𝑒𝑗𝜔) calculated using the modified 

matched-Z transform of (7.27), where the gains of the 1st-order sections 𝐻𝑑𝑘(𝑧) are now 

matched at the pole frequencies of each 1st-order section 𝐻𝑎𝑘(𝑠), instead of at DC. Note 

that the magnitude response of 𝐻𝑑(𝑒𝑗𝜔) obtained using the new MMZT now matches the 

response 𝐻𝑎(𝑗Ω)  extremely well, performing just as well as the impulse invariant 

transform and bilinear transform using the Ikai method, as shown in Chapter 6. The 

condition that was forced by matching the gain of each individual 1st-order section 

𝐻𝑎𝑘(𝑠) seems to carry through remarkably well when recombining the 1st-order sections 

of the overall transfer function 𝐻𝑎(𝑠). 

 
Figure 7-13: Frequency Response of Hd(z) for the 4th-Order Test Circuit Obtained Using the 

Modified Matched-Z Transform with Kdk=Kak at Individual Pole Frequencies 
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Perhaps just as importantly, the phase response of 𝐻𝑑(𝑒𝑗𝜔) obtained with this 

improved version of the MMZT maintains its excellent matching characteristics to that 

for 𝐻𝑎(𝑗Ω), something that was also true for the modified matched-Z transform even 

when gains were matched at DC for each 1st-order section.. The net result is that this new 

version of the MMZ shows greatly improved correlation in the magnitude response, 

maintains excellent correlation in the phase response, and now rivals the performance of 

the IIT and BLT using the Ikai method [91] when matching to the analog frequency 

domain response 𝐻𝑎(𝑗Ω). 

This revised form of the MMZT is a tremendous improvement over the traditional 

matched-Z transform, the bilinear transforms applied either with no pre-warping or pre-

warping at only a single critical frequency, the modified bilinear transform, and the 

previous version of the modified matched-Z transform with gain matching of 1st-order 

sections at DC. In addition, unlike the BLT using the Ikai method [91], the MMZT can be 

applied directly to the vector fitted version of 𝐻𝑎(𝑠), and not to a pre-warped version of 

the s-domain transfer function. 

7.3.3.3  Time Domain Response for Modified Matched-Z Transform with 1st-Order 

Gain Matching Model  

Figure 7-14 shows the transient response obtained from the analog transfer 

function 𝐻𝑎(𝑠)  obtained from vector fitting in Chapter 5, and the discrete transfer 

function 𝐻𝑑(𝑧) represented by the pole-zero map in Figure 7-12 obtained using the new 

modified matched-Z transformation (MMZT), in this case with the gain matching applied 

at the corresponding pole frequency for each analog 1st-order section 𝐻𝑎𝑘(𝑠). Note that 

the transient response calculated using 𝐻𝑑(𝑧)  shows excellent correlation with the 

response generated directly from 𝐻𝑎(𝑠), just as it did for the case of the MMZT with the 

gain matching applied at DC. Recall from Figure 7-4 and Figure 7-12 that the modified 

matched-Z transform with gain-matching at the individual pole frequencies maps the 

poles in an identical manner to that of the modified matched-Z transform with gain 

matching at DC, although the zero positions are mapped differently, due to the fact that 

the residues in (7.8) and (7.27) are different. Both versions of the modified matched-Z 

transform result in 𝐻𝑑(𝑧) functions with excellent phase characteristics. As such, any 
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deviations in system propagation delay characteristics are also difficult to detect, as seen 

in Figure 7-14, at least using manual visual comparisons. 

When comparing to the MBLT, it is clear that the MMZT with gain matching 

applied at 1st-order sections is superior at matching the time response characteristics, and 

it does not display the non-causal behavior of the MBLT, either. The net result is that this 

new version of the MMZT displays equivalent time-domain performance to the impulse 

invariant transform, traditional matched-Z, BLT using the Ikai method, and modified 

matched-Z transform with DC gain matching. It has superior time-domain performance 

the BLT when using no pre-warping or pre-warping at only a single frequency, and 

superior time-domain response performance to that of the MBLT.  

 
Figure 7-14: Time Response Calculated Using Hd(z) for the 4th-Order Test Circuit Obtained from the 

Modified Matched-Z Transform with Kdk=Kak at Individual Pole Frequencies 
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7.3.4 Additional Comments Regarding the Transform of 1st-order Sections of Ha(s) 

to 1st-Order Sections of Hd(z) 

It should be re-emphasized here that applying the impulse invariant transform to 

the 1st-order sections of 𝐻𝑎(𝑠) represents no change from the normal application of that 

method, as there is nothing inherent in the process for applying the transform that 

precludes it. On the other hand, for the modified bilinear transform, the process of 

applying the pre-warping process to each individual 1st-order section is a novel technique. 

Similarly, for the modified matched-Z transforms introduced in this section, both the 

application of the matched-Z transform to the individual 1st-order sections 𝐻𝑎𝑘(𝑠), as 

opposed to 𝐻𝑎(𝑠)  itself, and the technique of matching the gain parameter at the 

individual pole frequencies of the 1st-order sections 𝐻𝑎𝑘(𝑠) are both novel methods. 

The remarkable improvement shown in the pole-zero mapping locations, the 

frequency response matching, and the time-response matching for the MBLT enables the 

pragmatic use of the very familiar and popular BLT for signal integrity applications, 

whereas before the BLT was shown to be basically unusable unless the Ikai method was 

invoked, with its disadvantage that it must be applied to a pre-warped version of 𝐻𝑎(𝑠). 

Similarly, the remarkable improvement in the magnitude response for the MMZT when 

imposing the gain matching at the pole frequencies of the analog 1st-order sections, along 

with its stable time response performance and known advantages over the IIT in 

transforming the zero locations, make this version of the MMZT the preferred technique 

for performing 𝐻𝑎(𝑠) to 𝐻𝑑(𝑧) transformations. 

Finally, the new MMZT transform introduced in this chapter was seen to handle 

the 1st-order terms of the partial fraction expansion form of 𝐻𝑎(𝑠) equally as well as the 

BLT and IIT. It shared the advantages of mapping the infinite zeros encountered in the s-

plane to a known location in the z-plane. That zero location of 𝑧 = −1 was the same as 

that given by the bilinear transform. It mapped the poles in an equivalent manner to the 

IIT, the BLT using the Ikai method, and the MBLT. The MMZT mapping was seen to be 

superior to the pole mapping given by the BLT for the cases of no pre-warping and pre-

warping at only a single critical frequency. Furthermore, even though the zeros of the 

resulting, recombined function 𝐻𝑑(𝑧) are different than those given more directly by the 
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traditional matched-Z transform, this ambiguity in zero placement is better than that 

given inherently by IIT. 

7.4 Conclusions Regarding the Practical Considerations of Working with Hd(z) 

Models and Ha(s) to Hd(z) Transformation Methods 

The results of Chapter 6 and Chapter 7 indicate that it is possible to gain 

significant insight into the nature of the system by looking at the pole-zero map of 𝐻𝑑(𝑧), 

and by looking at the magnitude and phase response characteristics of 𝐻𝑑(𝑒𝑗𝜔), while 

simultaneously maintaining an understanding of the resulting time-domain response 

characteristics. It was emphasized that all three of these assessments are necessary to 

maintain a complete understanding of the system. 

In addition, it was clearly seen that the new modified matched-Z transform, when 

applied using the gain matching condition at each 1st-order section’s analog pole 

frequency, has advantages over each of the three most commonly-known methods for 

transforming between the s- and z-domains: 1) it maps the zeros more precisely than the 

impulse invariant transform; 2) it transforms from the s- to z-domain more seamlessly 

than the traditional matched-Z transform and the bilinear transform using the Ikai method, 

due to the ability of working directly with the partial fraction expansion form of 𝐻𝑎(𝑠), 

albeit with some resulting differences in the resulting zero locations in 𝐻𝑑(𝑧); and 3) it 

has superior frequency response matching characteristics to that of the modified bilinear 

transform. 

Even with these successful results, some problems and challenges remain. 

Frequency response waveforms 𝐻𝑎(𝑗Ω)  with complicated profiles lead to rational 

function approximations 𝐻𝑎(𝑠) with high orders, such as the 38th-order function obtained 

for the system of the 4th-order test circuit. Each of the known transformation methods 

leads to a different set of zero locations in the z-plane. Finally, a full set of methods for 

making use of z-domain analysis needs to be developed in order to fully realize the 

advantages associated with the z-plane. 

It remains to be seen whether the differences in the zero placement between the 

various transforms are due mainly to the different applications of the zero mapping 
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approach, or due more to the numerical uncertainty issues associated with the process of 

converting from pole-residue form to the pole-zero factored form. The next chapter will 

seek clarification on several of these issues, and introduce some techniques for 

optimizing the system and gaining further insight by studying the pole-zero maps in the 

z-plane.  
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Summary of Modified Bilinear Transform (MBLT) Characteristics

 
Figure 7-15: MBLT Frequency Response Comparison for the 4th-Order 

Test Circuit 20,21 

                                                 
20  For the 4th-Order Test Circuit plots on this page, the derived transfer 
function 𝐻𝑑(𝑧) has order 𝑁 = 38 and a sampling interval of 𝑇𝑠 = 40 ps. 
21 At the time just prior to the publication of this dissertation, the new modified 
bilinear transform (MBLT) had been considered for patent protection, and will 
now be submitted for publication as an IEEE peer-reviewed journal article 
[95]. 

 

Figure 7-16: MBLT Time Response Comparison for the 4th-Order Test 

Circuit 
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Summary of Modified Matched-Z Transform (MMZT) Characteristics 

(for the case where the gains of the 1st-Order Sections are Matched at the Analog Pole Frequencies)

 

Figure 7-17: MMZT Frequency Response Comparison for the 4th-Order 

Test Circuit 2223 

                                                 
22  For the 4th-Order Test Circuit plots on this page, the derived transfer 
function 𝐻𝑑(𝑧) has order 𝑁 = 38 and a sampling interval of 𝑇𝑠 = 40 ps. 
23 At the time just prior to the publication of this dissertation, the new modified 
matched-Z transform (MMZT) had been considered for patent protection, and 

 
Figure 7-18: MMZT Time Response Comparison for the 4th-Order Test 

Circuit 

 

                                                                                                           
will now be submitted for publication as an IEEE peer-reviewed journal article 
[95]. 
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Addendum 7A:  MATLAB Computer Program Listing for Modified Matched-Z 

Transform with Gain Matching at DC ( s = 0 and z = 1 ) 

Function BAzk = matchz0(Bsk,Ask,Ts)   
 
%MATCHZ0 Matched z-transformation of 1st-order transfer function 
%  Hk(s) = Bsk/(s - Ask) into Hk(z) which is of the form 
% 
%      bzk*(z + 1)          Bzk(z) 
%  Hk(z) = ----------------  = ---------, where k = 1:N 
%      z - exp(Ask*Ts)      Azk(z) 
% 
%  where 
%  bzk = Bsk*(1-exp(Ask*Ts)/(-2*Ask) 
% 
%  and two 1st-order polynomial coefficient vectors are 
% 
%  Bzk = [bzk, bzk], Azk = [1, -exp(Ask*Ts)] 
% 
%  INPUTS 
%  Bsk  =  residue coefficients for Hk(s) (Nx1) 
%  Ask  =  pole coefficients for Hk(s) (Nx1) 
%  Ts  =  sampling period [seconds] 
% 
%  OUTPUTS 
%  Bzk = numerator: 1st-order polynomial vector (Nx2) 
%  Azk = denominator: 1st-order polynomial vector (Nx2) 
%  BAzk = [Bzk,Azk]  (Nx4)   
% 
%  SYNTAX 
%  BAzk = matchz0(Bsk,Ask,Ts);      
% 
%  HHO 7-3-12, latest revision PED 8-03-13 
 
% Gain coefficient  bzk (Nx1) 
bzk = -0.5*Bsk.*(1-exp(Ask*Ts))./Ask; 
% Numerator: 1st-order polynomial vector Bzk (Nx2) 
Bzk = [bzk,bzk]; 
% Denominator: 1st-order polynomial vector Azk (Nx2) 
Azk = ones(length(Ask),2); 
Azk(:,2) = -exp(Ask*Ts); 
BAzk = [Bzk,Azk]; 
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Addendum 7B:  MATLAB Computer Program Listing for Modified Bilinear 

Transform with Gain Matching at Analog Pole Frequencies of Hak(s) 

Function BAbk = bilinxfrm0(Bsk,Ask,Ts)   
 
%BILINXFRM0 Bilinear transformation of 1st-order transfer function 
%  Hk(s) = Bsk/(s - Ask) into Hk(z) which is of the form 
% 
%   bzk*(z + 1)              Bzk(z) 
% Hk(z) = -------------------------= ---------, where k = 1:N 
%    z - (2+Ask*Ts)/(2-Ask*Ts)    Azk(z) 
% 
%  where   
%  bzk = (Ts*Bsk)/(2-Ask*Ts) 
% 
%  and two 1st-order polynomial coefficient vectors are 
% 
%  Bzk = [bzk, bzk], Azk = [1, -(2+Ask*Ts)/(2-Ask*Ts)] 
% 
%  INPUTS 
%  Bsk  =  residue coefficients for Hk(s) (Nx1) 
%  Ask  =  pole coefficients for Hk(s) (Nx1) 
%  Ts  =  sampling period [seconds] 
% 
%  OUTPUTS 
%  Bzk = numerator: 1st-order polynomial vector (Nx2) 
%  Azk = denominator: 1st-order polynomial vector (Nx2) 
%  BAbk = [Bzk,Azk]  (Nx4)   
% 
%  SYNTAX 
%  BAzk = blinxfrm0(Bsk,Ask,Ts);      
% 
%  PED 6-19-13, latest revision  6-19-13 
 
% Gain coefficient  bzk (Nx1) 
bzk = (Ts*Bsk)./(2-(Ask*Ts)); 
% Numerator: 1st-order polynomial vector Bzk (Nx2) 
Bzk = [bzk,bzk]; 
% Denominator: 1st-order polynomial vector Azk (Nx2) 
Azk = ones(length(Ask),2); 
Azk(:,2) = -(2+Ask*Ts)./(2-Ask*Ts); 
BAbk = [Bzk,Azk]; 
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Addendum 7C:  MATLAB Computer Program Listing for Modified Matched-Z 

Transform with Gain Matching at Analog Pole Frequencies of Hak(s) 

 
function BAzk = matchz0_1st(Bsk,Ask,Ts)   
 
%MATCHZ1ST Matched z-transformation of 1st-order transfer 
%  function 
%  Hk(s) = Bsk/(s - Ask) into Hk(z) which is of the form 
% 
%    bzk*(z + 1)       Bzk(z) 
%  Hk(z) = ----------------  = ---------, where k = 1:N 
%      z - exp(Ask*Ts)      Azk(z) 
% 
%  where   
%     Bsk*(exp(j*beta_sk*Ts)-exp(Ask*Ts)     
%   bzk = --------------------------------------   
%    (j*beta_sk – Ask)( exp(j*beta_sk*Ts)+1) 
% 
%  and two 1st-order polynomial coefficient vectors are 
% 
%   Bzk = [bzk, bzk], Azk = [1, -exp(Ask*Ts)] 
% 
%  INPUTS 
%     Bsk  =  residue coefficients for Hk(s) (Nx1) 
%     Ask  =  pole coefficients for Hk(s) (Nx1) 
%     Ts  =  sampling period [seconds] 
% 
%  OUTPUTS 
%     Bzk = numerator: 1st-order polynomial vector (Nx2) 
%     Azk = denominator: 1st-order polynomial vector (Nx2) 
%     BAzk = [Bzk,Azk]  (Nx4)   
% 
%  SYNTAX 
%     BAzk = matchz0(Bsk,Ask,Ts);      
% 
%     PED     10-10-13, latest revision 10-10-13 
 
% Gain coefficient  bzk (Nx1) 
beta_sk=imag(Ask); 
% bzk = -0.5*Bsk.*(1-exp(Ask*Ts))./Ask; % This matches gain at DC. 
bzk = (exp(j.*beta_sk.*Ts)-
exp(Ask*Ts))*Bsk./((exp(j.*beta_sk.*Ts)+1).*(j.*beta_sk-Ask)); % 
This matched gain at the pole's imaginary frequency. 
% Numerator: 1st-order polynomial vector Bzk (Nx2) 
Bzk = [bzk,bzk]; 
% Denominator: 1st-order polynomial vector Azk (Nx2) 
Azk = ones(length(Ask),2); 
Azk(:,2) = -exp(Ask*Ts); 
BAzk = [Bzk,Azk]; 
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Addendum 7D:  MATLAB Computer Program Listing for Impulse Invariant 

Transform  

 
function BAik = iimxfrm0(Bsk,Ask,Ts)   
 
% IIMXFRM0 Impulse invariant transformation of 1st-order  
%  transfer function Hk(s) = Bsk/(s - Ask) into Hk(z) 
which %  is of the form 
% 
%                   bzk*( z )            Bzk(z) 
%  Hk(z) = ----------------  = ---------, where k = 1:N 
%                   z - exp(Ask*Ts)      Azk(z) 
% 
%  where   
%                   bzk = Bsk*Ts 
% 
%  and two 1st-order polynomial coefficient vectors are 
% 
%    Bzk = [bzk, 0], Azk = [1, -exp(Ask*Ts)] 
% 
%           INPUTS 
%              Bsk  =  residue coefficient for Hk(s) (Nx1) 
%              Ask  =  pole coefficients for Hk(s) (Nx1) 
%              Ts  =  sampling period [seconds] 
% 
%           OUTPUTS 
%              Bzk = numerator: 1st-order polynomial vector (Nx2) 
%              Azk = denominator: 1st-order polynomial vector (Nx2) 
%              BAbk = [Bzk,Azk]  (Nx4)   
% 
%           SYNTAX 
%              BAik = iimxfrm0(Bsk,Ask,Ts);      
% 
%              PED     6-19-13, latest revision  6-19-13 
 
% Gain coefficient  bzk (Nx1) 
bzk = (Ts*Bsk); 
% Numerator: 1st-order polynomial vector Bzk (Nx2) 
Bzk = [bzk,0]; 
% Denominator: 1st-order polynomial vector Azk (Nx2) 
Azk = ones(length(Ask),2); 
Azk(:,2) = -exp(Ask*Ts); 
BAik = [Bzk,Azk]; 
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Chapter 8:  Examination and Optimization of Hd(z) Utilizing z-Plane 

Techniques 

8.1 Introduction 

One of the primary advantages of examining the system transfer functions 𝐻𝑎(𝑠) 

in the s-plane and 𝐻𝑑(𝑧) in the z-plane is that some aspects of the system are readily 

apparent. System stability, causality, and passivity properties can be determined in both 

the s-plane and the z-plane, for example, just as they can be determined in the discrete- or 

continuous-time domains [63], [96]. Opportunities for model order reduction and 

simplification may follow from examination of the pole-zero map or, at a minimum, it 

may be possible to see which poles and zeros are likely to dominate the frequency 

response and which others may have a more limited effect, and whether the model may 

be close to becoming unstable, non-causal, or non-passive [63]. 

Thus, examination of the pole-zero map may provide another level of insight 

beyond what examination in only the time domain can normally provide. This insight 

may be into the sensitivity of the model, or the system that it represents, to slight 

variances in the model’s construction or to the underlying physical construction of the 

system. The insight may be into the system’s overall complexity, and the opportunities 

for reducing this complexity, without significant reductions in accuracy. Alternatively, 

the insight may lead to the realization that the model’s resolution is limited in one domain 

or the other, due to limitations imposed by the time-frequency uncertainty principle [50]. 

In this chapter, the model for the 4th-order test circuit will be examined in the z-

plane in more detail. This examination was started in Chapter 6 by transforming 𝐻𝑎(𝑠) to 

𝐻𝑑(𝑧) using the three most widely-known s- to z-domain transformations, namely the 

bilinear transform (BLT), the impulse invariant transform (IIT), and the matched-Z 

transform (MZT) [41], [42], [48]. The examination was then continued in Chapter 7, 

where the model was converted from 𝐻𝑎(𝑠)  to 𝐻𝑑(𝑧)  using two forms of the new 

modified matched-Z transformation (MMZT) [95], which invoked two different 

strategies for gain matching between 𝐻𝑎(𝑠) to 𝐻𝑑(𝑧), and also the new modified bilinear 

transform (MBLT) [95]. The models were compared for all the transforms using pole-
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zero analysis in the z-plane, examination of the discrete frequency domain responses 

𝐻𝑑(𝑒𝑗𝜔) , and examination of the discrete time domain responses using state-space 

formulations of the newly-formed rational function approximations 𝐻𝑑(𝑧) to calculate 

the time domain response. 

The analysis of the z-plane maps will now continue in more detail, first by 

introducing a new, enhanced method for graphical analysis in the z-plane, which allows 

for simultaneous assessment of the pole-zero map of 𝐻𝑑(𝑧) and the frequency response 

𝐻𝑑(𝑒𝑗𝜔) on the same plot. Second, the assessment of pole-zero locations and their effect 

on the system characteristics, including the potential for model-order reduction utilizing 

pole-zero cancellation, will be considered. This will be done using an augmented rational 

function approximation for the 4th-order test circuit for which the model has been forced 

to a higher order. Finally, some considerations for optimizing the model’s system 

identification step and s- to z-domain transformation step by selecting an appropriate 

frequency range, in concert with an appropriate choice of the sampling interval, will be 

discussed. In the end, the z-plane analysis techniques formalized in this and the preceding 

chapters will be incorporated into a comprehensive signal integrity methodology, to be 

formally introduced in Chapter 9. 

8.2 Using the Frequency Response Hd(ejω) to Predict Attributes of the Transfer 

Function Hd(z)  

It was suggested in Chapter 5 that a simple, cursory examination of the frequency 

response 𝐻𝑎(𝑗Ω) could lead to insight regarding the expected order of the analog transfer 

function 𝐻𝑎(𝑠) obtained using the vector fitting process. Specifically, it was noted that 

the presence of 19 valleys suggested 19 zero locations, and 19 peaks suggested the 

presence of 19 pole locations. The observation of the number of pole locations in itself 

leads to the conclusion that 𝐻𝑎(𝑠) would be well-represented as a 38th-order system, 

since the 19 peaks observed would cover half the frequency range, namely, the north half 

of the s-plane, and the pole-zero map would be symmetric on the south half of the s-plane. 

It was also seen in the various transformations of 𝐻𝑎(𝑠) to 𝐻𝑑(𝑧) undertaken in Chapters 

6 and 7 that the z-domain transfer functions had the same overall system order as the 
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original s-domain transfer function, where the order 𝐻𝑎(𝑠) is determined by the order of 

the denominator polynomial of the rational function 𝐻𝑎(𝑠) or 𝐻𝑑(𝑧) [48]. 

Taking this observation further, it was natural to conclude that, in addition to 

predicting the order of the rational function required to represent 𝐻𝑎(𝑠), it would be 

possible to predict at least the imaginary parts (i.e., the 𝑗Ω part of 𝑠 = 𝜎 + 𝑗Ω) of the pole 

and zero locations in the s-plane based on this examination of 𝐻𝑎(𝑗Ω). This information, 

specifically the analog pole frequencies, was used in Chapter 7 to develop two new s-

domain to z-domain transforms, the modified matched-Z transform (MMZT) and the 

modified bilinear transform (MBLT) [95]. Both of these transforms used the analog pole 

frequencies as points at which to match the gains of the various 1st-order sections 

comprising the transformed functions of 𝐻𝑑(𝑧), which resulted in great improvement 

over previous versions of the matched-Z and bilinear transforms. As an example, the 

pole-zero plot for the 4th-order test circuit, for the case where 𝑁 = 38 and 𝑇𝑠 = 40 𝑝𝑠 for 

𝐻𝑑(𝑧), as produced utilizing the modified matched-Z transform with gain matching at the 

individual analog pole frequencies, is reproduced from Chapter 7 and shown in Figure 

8-1. The frequency response 𝐻𝑑(𝑒𝑗𝜔) corresponding to this 𝐻𝑑(𝑧) is also reproduced 

from Chapter 7 and shown in Figure 8-2. 

Careful examination of the pole-zero map of Figure 8-1 and the frequency 

response of Figure 8-2 reveals the connection between the relative minima and maxima 

of the frequency response, and the pole and zero locations in the z-plane. For example, 

note on the pole-zero map that there are poles near the positive real axis, that is, at the 

point where 𝜔 = 0. Notice that this corresponds to the 𝑓 = 0 location on the frequency 

response plot, where it is seen to be a relative maximum. Following a similar thought 

process, it is seen that the angle on the pole-zero map where 𝜔 = 𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 has two 

zeros, and that the corresponding point on the frequency response plot is 𝑓 = 12.5  GHz, 

which corresponds to the Nyquist frequency 𝑓𝑁 when the sampling interval is 𝑇𝑠 = 40 ps. 

Obviously, while these relationships are easy to recognize for the cases for 𝑓 = 0, 𝜔 = 0 

and 𝑓 = 12.5  GHz, 𝜔 = 𝜋  radians, they are more difficult to decipher for the other 

relative minima and maxima when having to switch back and forth between plots. 
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Figure 8-1: Pole-Zero Plot in the z-plane for Hd(z) for the 4th-Order Test Circuit, Derived from the 

MMZT with Gain Matching at Analog Pole Frequencies, for  N = 38 and Ts = 40 ps  

 
Figure 8-2: Frequency Response for Hd(ejω) for the 4th-Order Test Circuit, Derived from the MMZT 

with Gain Matching at Analog Pole Frequencies, for  for  N = 38 and Ts = 40 ps 
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All of these observations suggest that it would be extremely useful to observe the 

pole-zero map of 𝐻𝑑(𝑧)  and the frequency response of 𝐻𝑑(𝑒𝑗𝜔)  simultaneously, to 

enable a direct assessment of the effects of poles and zeros in the z-plane on the expected 

frequency response, and to ascertain the relationship of the pole and zero discrete 

frequencies 𝜔  to the pole-zero positions. The converse would also be true, namely, 

examination of the frequency response of an unknown system in the discrete-frequency  

𝜔 -domain could suggest the order and nature of the pole zero map. Either way, 

simultaneous examination of the system from both perspectives could lead to additional 

insight into the nature of the system. 

8.3 Combined Pole-Zero and Frequency Response Graphical Plotting Technique 

From the above discussion, it is clear that there may be inherent advantages to 

looking at the 𝐻𝑑(𝑧) transfer function’s pole-zero map in the z-plane and the frequency 

response 𝐻𝑑(𝑒𝑗𝜔) simultaneously. Specifically, it would be advantageous to view them 

both in such a way that the quantitative relationship between them is also evident. 

In this regard, it is useful to formally recall the relationship between the digital 

frequency 𝜔  and the coordinates in the z-plane. Specifically, the frequency response 

𝐻𝑑�𝑒𝑗𝜔� can be expressed in terms of the discrete transfer function 𝐻𝑑(𝑧) as [42], [43]: 

 𝐻𝑑�𝑒𝑗𝜔�  =  �𝐻𝑑(𝑧)|𝑧=𝑒𝑗𝜔. (8.1) 

More generally, 𝑧 can be related to 𝜔 as: 

 𝑧 =  𝑟𝑒𝑗𝜔 = 𝑟 ⋅ cos𝜔 + 𝑗 𝑟 ⋅ sin𝜔 = 𝑅𝑒[𝑧] + 𝑗 𝐼𝑚[𝑧], (8.2) 

so it can be seen that 

 𝜔 = tan−1
𝐼𝑚[𝑧]
𝑅𝑒[𝑧]

 . (8.3) 

Note that (8.3) is the analogous relationship to that noted in previously for the imaginary 

part of the complex variable 𝑠 in the Laplace domain, namely: 

 Ω = 𝐼𝑚[𝑠] = 𝐼𝑚[𝜎 + 𝑗Ω] . (8.4) 

From this standpoint, it can be seen that the angle 𝜔 in the z-plane is simply the 

angle of the vector drawn from the origin to the z coordinate in question measured from 

the positive horizontal axis. Recalling that 𝜔  is also the abscissa coordinate of a 
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frequency response plot, both for the magnitude response and the phase response, it is 

clear that the frequency response could be drawn on an 𝜔-axis drawn concentrically 

around the unit circle of the z plane, on the same plot. In this case, 𝜔 would represent the 

angular coordinate, and either the magnitude or phase response of 𝐻𝑑(𝑒𝑗𝜔), or both, 

could represent the radial coordinate(s). Doing this for the magnitude response, for 

example, would establish a clear visual connection between the location of the peaks and 

valleys of the frequency response in relation to the pole and zero locations in the z-plane. 

Figure 8-3 shows such a figure for the case of the pole-zero map of 𝐻𝑑(𝑧) and the 

magnitude response of 𝐻𝑑(𝑒𝑗𝜔) for the 4th-order test circuit, obtained using the new 

modified matched-Z transform introduced previously in Chapter 7, for the case where the 

gains are matched at the analog pole frequencies of the 1st-order sections of 𝐻𝑎(𝑠). It 

combines the pole-zero plot of 𝐻𝑑(𝑧)  of Figure 8-1 and the magnitude response 

�𝐻𝑑(𝑒𝑗𝜔)� portion of Figure 8-2 into a single graphical plot.  

 
Figure 8-3: Combined Frequency Response and Pole-Zero Plot for Hd(z) for the MMZT with Gain 

Matching at Analog Pole Frequencies 
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The shaded region in the north half of the z-plane represents the area of the plot 

containing the frequency response information. Recall from Chapter 3 that in the z-plane, 

the angle where 𝜔 = 0 corresponds to DC, and the angle where 𝜔 = 𝜋 corresponds to the 

Nyquist frequency 𝑓𝑁. It should be emphasized that, even though the frequency response 

is confined to the north half plane, this is only done for convenience. It is understood that 

the frequency magnitude response �𝐻𝑑(𝑒𝑗𝜔)� is symmetric about the 𝜔 = 0 axis [41], so 

it could easily be reproduced in the south half of the z-plane with symmetry around the 

horizontal axis, at the expense of cluttering the plot. 

A detailed examination of the combined plot reveals that the relative maxima 

(peaks) and relative minima (valleys) of the magnitude response curve do indeed 

correspond to the presence of poles and zeros, respectively. Specifically, it can be seen 

that the peak or valley in the magnitude response occurs at the same angle 𝜔 as the 

corresponding pole or zero, and thus the direct link between the pole-zero map and the 

frequency response has been established. It should be pointed out that the plot of Figure 

8-3 contains only the magnitude response of 𝐻𝑑(𝑒𝑗𝜔), not the phase response. It would 

also be possible to create a combined plot of the pole-zero map and the phase response of 

𝐻𝑑(𝑒𝑗𝜔) or, alternatively, a combined plot containing both responses. Clearly, the choice 

of which options to include on the pole-zero map would be dictated from a practical 

standpoint by which specific aspects of 𝐻𝑎(𝑠) and 𝐻𝑑(𝑒𝑗𝜔) are under consideration. 

Several other characteristics of the 4th-order test circuit system can be seen in the 

combined plot of Figure 8-3. One interesting characteristic is that the zeros alternate 

between positions outside and inside the unit circle as 𝜔 increases. It was already noted 

in Figure 8-2 that the system exhibits nearly linear phase response characteristics, and 

that fact can be seen here in that a well-known characteristic of linear phase FIR systems 

is that they have reciprocal zeros on the inside and outside of the unit circle [81]. While 

not quite perfectly linear phase, as seen by the phase responses depicted in Figure 8-2, it 

can be seen that the general trend holds for the IIR 4th-order test circuit system. 

To complement Figure 8-3, Figure 8-4 through Figure 8-10 show the combined 

pole-zero map and frequency magnitude response plot for the system transfer functions 

𝐻𝑑(𝑧) and frequency transfer functions 𝐻𝑑(𝑒𝑗𝜔) obtained from 𝐻𝑎(𝑠) using the modified 
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matched-Z transform with gain matching at DC, traditional matched-Z, impulse invariant, 

and various bilinear transforms, respectively, of Chapters 6 and 7. The differences in the 

zero locations obtained using each method are clearly visible, as was noted previously. 

The pole locations are identical for the IIT and all three variations of the matched-Z 

transform, whereas the four versions of the bilinear transform shown in Figure 8-7 

through Figure 8-10 show different pole locations due to the different pre-warping 

methods. The next section will focus in more detail on the effects of pole and zero 

locations on the overall frequency responses of the model. 

The computer code which implements the graphical technique used to create the 

plots in Figure 8-3 through Figure 8-10 is included in Addendum 8A: . At the time just 

prior to the publication of this dissertation, this new graphical plotting technique 

had been under consideration for patent protection. It will now be submitted for 

publication as an IEEE peer-reviewed publication [94], [95].24 

 
Figure 8-4: Combined Frequency Response and Pole-Zero Plot for Hd(z) for the MMZT with Gain 

Matching at DC 
                                                 
24 For information regarding the final disposition of the graphical method’s publication status, please 
contact the author of this dissertation after 31 July 2014. Contact information is listed in Appendix 2. 
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Figure 8-5: Combined Frequency Response and Pole-Zero Plot for Hd(z) for the MZT 

 
Figure 8-6: Combined Frequency Response and Pole-Zero Plot for Hd(z) for the IIT 
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Figure 8-7: Combined Frequency Response and Pole-Zero Plot for Hd(z) for the BLT with no Pre-

Warping 

 
Figure 8-8: Combined Frequency Response and Pole-Zero Plot for Hd(z) for the BLT with Pre-

Warping @ 10 GHz 
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Figure 8-9: Combined Frequency Response and Pole-Zero Plot for Hd(z) for the BLT with Pre-

Warping of Entire ω Vector (Ikai Method) 

 
Figure 8-10: Combined Frequency Response and Pole-Zero Plot for Hd(z) for the MBLT with Pre-

warping to Analog Pole Frequencies 
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8.4 Effect of Individual Pole and Zero Locations on Frequency Response 

Characteristics 

Figure 8-11 shows an enhanced version of the combined frequency response and 

pole-zero graphical plot, for the case of the MMZT with gain matching of the 1st-order 

sections at the analog pole frequencies. The enhancements include the addition of dashed 

lines, for select pole locations, which show very clearly the correlation of the pole 

locations with the corresponding peaks of the magnitude response curve. Recall from the 

discussion in the previous section that the discrete frequency variable 𝜔  increases 

counter-clockwise around the unit circle. 

 
Figure 8-11: Enhanced Version of the Combined Frequency Response and Pole-Zero Plot for Hd(z) 

Highlighting Correlation of Pole Positions to Frequency Response Peaks 

In contrast to the correlation of the pole locations to the relative maxima (peaks) 

of the magnitude response curve, it is clear looking at Figure 8-11 that the zero locations 
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do not correlate as strongly to the relative minima (valleys) of the magnitude response. 

The primary reason for this discrepancy is the more-distant position of the zeros relative 

to the unit circle, as opposed to the poles, which are very close. 

8.4.1 Major Effects of the Poles and Zero Locations Relative to the Unit Circle 

One significant factor influencing the relative effect of various poles and zeros on 

the system response, as known from both control systems theory and digital signal 

processing theory, is their proximity to the stability boundary in either the s-plane or the 

z-plane. Specifically, it is known from linear time-invariant (LTI) system theory that 

poles and zeros which are closer to this boundary have a more direct effect on the system 

response characteristics than those which are farther away [40], [42], [48].  

Recognition of this fact leads immediately to an increased understanding of the 

nature of the 4th-order test circuit’s characteristics, as observed throughout this project. 

Specifically, a detailed examination of the z-plane pole-zero plots of Figure 8-3 through 

Figure 8-10 reveals that the system poles are very close to (but within) the unit circle 

|𝑧| = 1 , while the zeros are farther away, both within and outside the unit circle. 

Furthermore, it has been clear throughout Chapters 6 and 7 that it is the zero positions 

that tend to vary the most when using the various s- to z-transformations, and that the 

effect of this variation on the time-domain and frequency-domain responses has been 

fairly minimal. In contrast, variations in the pole positions, such as those encountered 

with certain formulations of the bilinear transform, have had a dramatic effect on the 

overall responses in both the time and frequency domains. Clearly, the pole positions 

obtained during the initial vector fitting step are of great importance in determining the 

subsequent performance of the model and its overall characteristics, due to their 

proximity to the imaginary frequency axis in the s-plane, and thus to the unit circle in the 

z-plane after their transformation there. 

8.4.2 Major Effects of the Poles and Zero Locations Relative to the Nature of the 

Phase Response 

It is also known from (LTI) system theory that finite impulse response (FIR) 

filters with linear phase have zero positions which are reciprocal pairs and complex 
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conjugate pairs [42]. Careful examination of the z-plane pole-zero plots of Figure 8-3 

through Figure 8-10 reveals that the zero positions of 𝐻𝑑(𝑧) for the 4th-order test circuit, 

even though the transfer function is IIR in nature, share nearly this same characteristic. In 

this case, the zero locations alternate between the inside and outside of the unit circle 

with increasing 𝜔, and they clearly occur in complex conjugate pairs, unless they are on 

the real axis. 

It can also be easily demonstrated that the zeros basically mimic the reciprocal 

behavior expected for linear-phase FIR systems. Figure 8-12 shows the positions of 

hypothetical reciprocal zeros calculated from the known zero locations of 𝐻𝑑(𝑧). It is 

seen that the reciprocal locations are close to the actual zero locations, and thus it is 

reasonable to conclude the system may exhibit similar phase response characteristics. 

 
Figure 8-12: Comparison of the Zero Positions of Hd(z) with their Hypothetical Reciprocal Zero 

Locations 
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Finally, it should be noted that the characteristic of alternating zeros which 

somewhat approximate reciprocal, conjugate pairs is present regardless of which of the s- 

to z-domain transformations was initially utilized to form the transfer function 𝐻𝑑(𝑧), 

with the exception of the BLT variations of Figure 8-7 and Figure 8-8. Indeed, it should 

be recalled from Chapters 6 and 7 that these two BLT transforms did not exhibit linear 

phase characteristics. As such, it is clearly apparent that the phase characteristics 

prevalent for 𝐻𝑑(𝑧)  transforms should be expected, and that their linear nature is 

somewhat predictable from the zero locations in the z-plane. 

8.4.3 Potential for Model Simplification Utilizing Pole-Zero Cancellation 

Another obvious application of the pole-zero mapping techniques available in 

both the s- and z-domains would be assessment of whether the transfer function models 

𝐻𝑎(𝑠) and 𝐻𝑑(𝑧) could be simplified to a lower-order approximation. One method for 

doing this might be to look for poles and zeros that are near to one another, and thus 

partially or completely cancel each other. Pole-zero cancellation techniques are 

commonly used in the fields of control systems theory, for example, as a compensation 

technique [40], [48]. 

To demonstrate these techniques, the vector fitting algorithm employed 

previously to find 𝐻𝑎(𝑠) was run again on the frequency response 𝐻𝑎(𝑗Ω) of the 4th-order 

test circuit, but this time the order was forced to be higher than that of 𝑁 = 38 found 

previously. In this case, 𝑁 = 42 was chosen as the order, resulting in a transfer function 

𝐻𝑎(𝑠) with four extra poles and zeros than for the case where 𝑁 = 38. The results are 

shown in the s-plane in Figure 8-13, where the extra four poles and extra four zeros are 

shown near the origin, and they are shown to cancel completely. The pole-zero map for 

the original case of 𝑁 = 38 is included in Figure 8-14 for easy comparison. 

From this diagram, it is seen that the vector fitting method chooses the extra poles 

and zeros so that they exactly cancel. What is also clear is that, in general, the poles and 

zeros for the 𝑁 = 38 model for the 4th-order test circuit are quite far apart, and that there 

is little opportunity for pole-zero cancelation. Figure 8-15 and Figure 8-16 show the 

corresponding diagrams in the z-plane for 𝐻𝑑(𝑧) found using the MMZT, and they force 

a similar conclusion, i.e., there is little opportunity for pole-zero cancellation. 
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Figure 8-13: Pole-Zero Plot in s-Plane Showing the Effect of Pole-Zero Cancellation on Ha(s), for 

4th-order Test Circuit with N=42 

 
Figure 8-14: Original Pole-Zero Plot in s-Plane  of Ha(s), for 4th-order Test Circuit with N=38 
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Figure 8-15: Pole-Zero Plot in z-Plane Showing the Effect of Pole-Zero Cancellation on Hd(z), for 

4th-order Test Circuit with N=42, Ts=40 ps 

 
Figure 8-16: : Pole-Zero Plot in z-Plane of Hd(z), for 4th-order Test Circuit with N=38,  Ts=40 ps 
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8.5 Model Frequency Bandwidth and Sampling Rate Considerations 

It is clear that the process for generating 𝐻𝑑(𝑧)  from 𝐻𝑎(𝑠)  throughout this 

project involved a two part process: 1) a system identification step, performed using 

scattering parameter characterization in the analog frequency domain, followed by a 

vector fitting step to form 𝐻𝑎(𝑠); and 2) transforming 𝐻𝑎(𝑠) to 𝐻𝑑(𝑧) using an s- to z-

domain transformation. For both of these steps, there are decision points which have 

great implications for model accuracy, model complexity, and model usability for 

subsequent analysis. 

8.5.1 Frequency Bandwidth Determination During the System Identification Process 

A major consideration when performing the system identification step in the 

analog frequency domain is the analog frequency range over which the identification 

should occur. Generally the range is selected based on the assumed or known frequency 

spectra of the input and output signals present in the system, such that the resulting model 

has sufficient bandwidth to not overly distort the signals, either by attenuation or 

dispersion effects. In signal integrity engineering, there are also commonly-employed 

metrics based on signal risetime of the input signal [1], [2], while in transmission line 

theory the relationship of the wavelength to the physical dimensions of the circuit is often 

a primary consideration [6]. 

There are pragmatic limitations regarding bandwidth, however, as extending the 

model over a wider frequency range tends to make the rational function models derived 

using the vector fitting step more complex and of higher order. It was seen in Chapter 5, 

for example, that the frequency range over which the identification is performed directly 

influenced the resulting order of the model, along with other factors such as how closely 

the frequency response of the fitted model 𝐻𝑎(𝑠) needed to match the original frequency 

response 𝐻𝑎(𝑗Ω). 

8.5.2 Sampling Rate Determination During the s- to z-Domain Transformation 

Similarly, when working with the transfer function 𝐻𝑑(𝑧)  in the discrete 

frequency domain, it is known there are considerations related to the sampling rate 𝑓𝑠 (or, 
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equivalently, the sampling interval 𝑇𝑠) that are driven by the Shannon sampling theorem 

[41], which states the analog signal must be sampled at a rate that is greater than twice 

the largest frequency present in the signal. These considerations are primarily oriented 

toward avoiding frequency aliasing, or the introduction of phantom frequencies, into the 

discrete representation of the signal. It was found in this project, however, that there are 

additional considerations for selecting 𝑇𝑠 which are also very pragmatic in nature. These 

considerations are related to the readability of the resulting pole-zero maps and frequency 

response plots that form the basis for many of the analysis methods utilized extensively in 

this project. Interestingly, these considerations tend to favor selecting a sampling 

frequency 𝑓𝑠  that is no higher than necessary (or, equivalently, selecting a sampling 

interval 𝑇𝑠 which is no smaller than necessary). Figure 8-17 shows the z-plane map for 

the transfer function 𝐻𝑑(𝑧)  of the 4th-order test circuit, recalculated with 𝑇𝑠 = 30  ps. 

Comparing directly with Figure 8-16, for which 𝑇𝑠 = 40 ps, note that the poles and zeros 

are now concentrated around a smaller arc of the unit circle, and take up less of the 

overall plot, making it harder to read the pole and zero locations.  

 
Figure 8-17: Pole-Zero Plot in z-Plane of Hd(z), for 4th-order Test Circuit with N=38,  Ts=30 ps 
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Thus there is a tension and potential tradeoff, in both the analog domains and in 

the discrete domains, between mathematical and physical theoretical accuracy, and 

pragmatic limitations which, when imposed, make application of the methods more 

effective and easier. In the analog frequency domain, during the system identification 

step, the tradeoff is between increased model bandwidth (and thus less potential for signal 

distortion) and higher order of the resulting transfer function 𝐻𝑎(𝑠) . In the discrete 

frequency domain, during the s- to z-domain transformation step, the tradeoff is between 

higher sampling rate (and thus less opportunity for phantom frequencies due to aliasing) 

and readability of the resulting graphical diagrams used to assess the system 

characteristics. 

8.6 Conclusions Regarding z-Plane Analysis of Signal Integrity Interconnect Models 

This chapter addressed three aspects of z-domain analysis. The first consisted of 

the introduction of an enhanced graphical plotting technique, which combines the pole-

zero map of the discrete transfer function 𝐻𝑑(𝑧) in the z-plane with a plot the frequency 

response 𝐻𝑑(𝑒𝑗𝜔)  on the same figure. This technique provides for the simultaneous 

evaluation of both the pole-zero map the frequency magnitude response, and, optionally, 

the frequency phase response. At the time just prior to the publication of this 

dissertation, this new graphical plotting technique had been under consideration for 

patent protection, and will now be submitted for IEEE publication [94], [95]. 

The second discussion focused on the evaluation of the effect of the pole-zero 

positions in the z-plane, with several implications. It was highlighted that the dominant 

poles and zeros can be identified simply by noting their proximity to the unit circle and 

that, as such, the methods of this project naturally lead to the poles dominating the 

response. Next, an example was shown for an artificially forced high-order model that 

lead to excess poles and zeros that completely cancel. Examination of the cancellation 

effect, however, led to the observation that there is likely to be little opportunity for 

further pole-zero cancellation, due to the fact that the zeros and poles are, generally, 

relatively far apart. Finally, it was noted that the nearly linear phase characteristics of 

these systems is generally explainable by the pattern of zero positions that occur in 
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complex-conjugate, and nearly reciprocal pairs, very similar to a known characteristic of 

linear phase FIR filters. 

The third discussion centered on pragmatic considerations related to careful 

selection of the frequency bandwidth of the model when performing the system 

identification step in the analog frequency domain, and careful selection of the sampling 

interval when performing the s- to z- domain transformation of the transfer function. It 

was shown that increased frequency bandwidth leads to increased model complexity, 

which is undesirable, while increased sampling rates lead to a compressed spacing of the 

poles and zeros on the z-plane pole-zero map, which make the plots less readable and the 

graphical assessment techniques less useful. 

 The next chapter represents the closing topic of this research project, namely, 

proposed methodology enhancements which will improve the effectiveness of signal 

integrity analysis and design processes of the type utilized in industrial design team 

environments. These enhancements will be comprised mainly of the complex discrete 

frequency domain techniques introduced and heavily utilized in Chapters 6, 7, and 8, and 

their associated characteristics and implications. 
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Addendum 8A:  MATLAB Computer Program Listing for Combined Frequency 

Response and Pole-Zero Map 

 
function freqpzplot_bwaxes(B,A) 
 
%% Function Description 
% 08/02/2013: PED - Created function to implement combine frequency 
%             response and pole-zero plot on same graphical view. 
%             B is an input: The NUMERATOR of the z-domain transfer 
%             function. 
%             A is an input: The DENOMINATOR of the z-domain %        
%             transfer function. 
%             omega is an input: The digital frequency vector w. 
% 09/06/2013  PED - Modified function for black & white coloring for 
%             final thesis formatting.  
 
format compact; % tightens loose format, if present 
format long e ; % sets output variables to double precision 
% 
N=1024; 
omega = linspace(0,2*pi,N); 
% create vector omega for 0 to 2*pi. 
x = cos(omega); 
% generate x-coordinate for unit circle 
y = sin(omega); 
% generate y-coordinate for unit circle 
xl=linspace(-1.6, -0.95, 100); 
xr=linspace(0.95, 1.6, 100); 
yc=linspace(0.95, 1.6, 100); 
% 
rp = 1.05; % augment radius to serve as basis for w-plot 
xp = rp.*cos([omega(63*N/64:N) omega(1:33*N/64)]); 
% x-coordinate for w-plot augmented semi-circle axis 
yp = rp.*sin([omega(63*N/64:N) omega(1:33*N/64)]); 
% y-coordinate for w-plot augmented semi-circle axis 
%% 
% Compute DTFT using freqz 
Homega=freqz(B,A,omega(1:N/2)); 
Hmag=abs(Homega); 
% 
% Compute poles and zeros. 
zeros_z=roots(B); poles_z=roots(A); 
 
% Compute "wrap-around" re-mapped Hmag 
% 
Y=1.2.*max(Hmag); Yprime=0.75; 
% Yprime compresses the Hmag amplitude. 
rplus=Yprime.*(Hmag(1:N/2))./Y; 
xprime=(rp+rplus).*cos(omega(1:N/2)); 
yprime=(rp+rplus).*sin(omega(1:N/2)); 
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% Generate doughnut for Hmag response background. 
xp1 = rp.*cos([omega(63*N/64:N) omega(1:33*N/64)]); % x-coordinate 
% for w-plot max-range semi-circle 
yp1 = rp.*sin([omega(63*N/64:N) omega(1:33*N/64)]); 
 
xp2 = (rp+1.1.*max(rplus)).*cos([omega(63*N/64:N) 
omega(1:33*N/64)]); 
% x-coordinate for w-plot max-range semi-circle 
yp2 = (rp+1.1.*max(rplus)).*sin([omega(63*N/64:N) 
omega(1:33*N/64)]); 
% y-coordinate for w-plot max-range semi-circle 
 
C=0.96*[1 1 1]; 
% Shading hue for the semi-circular Hmag area of the pole-zero plot. 
 
% Plotting routines 
 
plot(x,y,'k--'); % plot unit circle 
hold on; 
fill([xp1,fliplr(xp2)],[yp1,fliplr(yp2)],C,'EdgeColor','None'); 
% Define and fill Hmag shading area. 
hold on; plot(xl,zeros(100,1),'k'); 
% plot "remapped y-axis line" at omega=pi 
hold on; plot(xr,zeros(100,1),'k'); 
% plot "remapped y-axis line" at omega=0 
hold on; plot(zeros(100,1),yc,'k'); 
% plot "remapped y-axis line" at omega=pi/2 
% hold on; plot(xp,yp,'k'); 
% plot w-plot "remapped x-axis" circle 
hold on; plot(xprime,yprime,'k'); 
% plot frequency response "wrapped-around" the pole-zero plot. 
plot(real(zeros_z),imag(zeros_z),'ok',real(poles_z),imag(poles_z) 
'xk'); % plot pole-zero map 
axis([-2.5,2.5,-2.5,2.5]); axis square; hold off; xlabel('Re[z]'); 
ylabel('Im[z]'); 
grid on; 
set(gca,'Layer','top'); 
% Bring grid to top layer of plot (i.e., forward) 
% grid off; 
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Chapter 9:  Signal Integrity Methodology Enhancements Resulting 

from the Utilization of the Discrete Transfer Function Model 

Hd(z) 

9.1 Introduction 

In Chapters 2 and 3, it was established that the current state of signal integrity 

engineering analysis methods are primarily based in the continuous-time domain and 

analog-frequency domain. The typical output data which are generated, usually by 

simulation, are continuous time-domain waveforms representing the signals traveling in 

the system and frequency-domain scattering parameter representations of the channel 

characteristics [1], [4], [72]. The discussion continued in Chapter 4 with the use of 

system identification methods to generate frequency transfer functions 𝐻𝑎(𝑗Ω)  and 

𝐻𝑑(𝑒𝑗𝜔) in the analog and digital frequency domains. From these functions, the transfer 

functions 𝐻𝑎(𝑠) and 𝐻𝑑(𝑧) were ultimately generated in the complex frequency domains, 

as described in Chapters 5 through 7. This was done using a least-squares vector fitting 

process to generate 𝐻𝑎(𝑠), followed by application of various s- to z- transformations to 

generate 𝐻𝑑(𝑧). 

A primary advantage of working in both the analog and digital complex frequency 

domains was shown, in Chapters 5 through 7, to be increased insight into the nature of 

the system, largely due to the use of graphical pole-zero analysis of the transfer functions. 

Further, the advantages of visualization in the z-plane over the s-plane were highlighted, 

due to the finite nature and better scaling of the zeros and poles relative to the origin and 

the real and imaginary axes. Finally, it was also demonstrated in Chapter 8 that it is 

possible to gain considerable insight into the nature of the system by examining the 

model extensively in the z-plane, and to leverage this additional insight into efforts to 

improve the quality of the analysis, or at least to gain confidence that an appropriate level 

of complexity has been obtained for the transfer function model [6].  

In this chapter, these methods, which are new in their systematic application to 

signal integrity applications, will be discussed in the context of an enhanced signal 

integrity engineering methodology. Such methodologies are generally used in an 
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industrial setting for the design of complex electronics systems, such as computers [4]. 

They can often involve teams of multiple signal integrity engineers, collectively running 

hundreds or thousands of time-domain simulations over the course of many months. Any 

improvements to the efficiency and effectiveness of the design methodologies thus could 

have great implications for improving the quality of the design, minimizing the expended 

resources, and limiting the time duration required to complete the design cycle. 

The discussion will begin with a description of signal integrity engineering design 

methodologies typically used today, both for basic and sophisticated users. Next, a 

summary of the various s- to z-transformations available will be presented in a form that 

allows for their evaluation for use in such a methodology. Finally, a proposal for an 

enhanced comprehensive signal integrity design methodology which incorporates these 

new methods from the field of digital signal processing will be introduced. 

9.2 Summary of a Typical Legacy Signal Integrity Engineering Process Flow 

Figure 9-1 shows a block diagram which simplistically represents the core 

activities in signal integrity engineering, which are the generation a SPICE netlist to 

represent the system model, the execution of the model in the SPICE simulator, and the 

review and interpretation of the resulting continuous-time waveforms. 

 
Figure 9-1: Core Activities Related to SPICE Simulation in Signal Integrity Engineering 

After the waveforms have been reviewed, the SPICE netlist is usually modified so that 

the simulation can be re-run, by changing one or more particular parameters and 

evaluating the effect on the waveform quality. This is done iteratively, with the resulting 

modifications ultimately resulting in an improved waveform shape, and thus better 

switching performance at the receiver and overall system timing performance [2]. 
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The block diagram of Figure 9-1 is, of course, overly simplistic in that it does not 

address the linkage that must exist between the SPICE netlist model and the physical 

system which it represents. The SPICE netlist must account for the system interconnect’s 

electrical characteristics, and accurately represent such things as the printed wiring board 

(PWB) traces’ propagation delay, as well as other electrical aspects of the interconnect. 

These include the interconnect’s characteristic impedance, pad and via parasitics, and 

conductor and dielectric losses. In addition to the interconnect model, the SPICE netlist 

would also include models for the transmitter (Tx) and receiver (Rx) circuits, and any 

termination intentionally applied to the network to improve signal integrity characteristics 

[1], [2]. 

The signal integrity analysis must account for all of these factors when the initial 

SPICE netlist model is generated. After the initial waveforms have been evaluated, an 

assessment must be performed of how any proposed changes to the SPICE netlist 

electrical model will manifest themselves as physical changes in the system. Those 

physical changes must be validated relative to other system design constraints, such as 

physical size and other mechanical features, thermal performance, power consumption, 

system cost, design complexity, and field serviceability [7]. Figure 9-2 shows an 

enhanced version of Figure 9-1 which accounts for this interaction with the overall 

system design process. 

Other details added to Figure 9-2 show the system identification step used to 

generate the distributed models for the system interconnects. It was shown in previous 

chapters that scattering parameter characterization is a useful method for identifying data 

from which the complex frequency domain models 𝐻𝑎(𝑠) and 𝐻𝑑(𝑧) can be subsequently 

derived. Similarly, it is common in the formation of SPICE netlist models for the SPICE 

simulation engine to call scattering parameters directly, as most modern industrial SPICE 

simulators can handle scattering parameter data directly as input. While this can be a 

useful feature, one problem with this approach is that it can lead to transient simulation 

results that are inaccurate due to poor passivity or causality attributes, or both [63]. 

Furthermore, it is possible this inaccuracy will be significant enough to affect the design 
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attributes, yet subtle enough that the effect may be undetectable without careful 

examination [63]. 

 
Figure 9-2: Typical Signal Integrity Engineering Design Process Flow for Basic Users, Including 

Interaction with System Design Process 

To address these potential modeling problems, many sophisticated signal integrity 

methodologies today incorporate additional model assessment steps, shown in Figure 9-3, 

to check the scattering parameter matrices for causal and passive behavior prior to 

invoking the time-domain SPICE simulator. These assessment steps are typically 

performed in the analog frequency Ω-domain, and thus the z-domain methods utilized in 

the project may offer an additional enhancement to the flow of Figure 9-3. 

Finally, note that these assessment methods, as depicted in Figure 9-3 and as 

related specifically to the field of signal integrity engineering, are directed at the 

scattering parameter matrices themselves. They are not, as such, directly applied to the 

system voltage transfer functions 𝐻𝑎(𝑠)  and 𝐻𝑑(𝑧)  generally considered in previous 

chapters, and used so prevalently in digital signal processing and control systems 

engineering. Note also that the methodologies described by the flow diagrams of Figure 
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9-1 through Figure 9-3 are used widely in industrial signal integrity design methodologies 

today. The next sections will discuss how these methodologies might be further enhanced 

using some of the digital signal processing methods applied in this project, specifically in 

the s-plane and z-plane, as described in previous chapters. 

 
Figure 9-3: Typical Signal Integrity Engineering Design Process Flow for Sophisticated Users, 

Including Interaction with System Design Process 

9.3 Comprehensive Summary and Comparison of the s-Domain to z-Domain 

Transformations Utilized in this Research Project 

As described in Chapters 6 through 8, the various s- to z-domain transformations 

used for this project have various advantages and disadvantages. As such, it would be 

useful to summarize these characteristics such that they can be systematically assessed 

for their application to the signal integrity engineering flow. The following pages 

summarize, for each transformation, the following six attributes: 

Review and 
interpret

waveforms

Wave-
forms
v(t)

Run
SPICE

Modify SPICE Netlist / Iterate

Examine s-
parameters for 

causality, 
passivity

AssembleTx/
Rx and 

interconnect 
models

Modify s-
parameters to 

stabilize model

Determine 
Tx/Rx 

Circuits

Propose 
System 
Physical 
Layout

Determine 
interconnect 
topologies

Identify 
interconnect 

models

Scattering 
parameters
matrices

Modify SPICE Design / Iterate

SPICE
netlist



 

216 

1. Pole mapping algorithm and effectiveness, where preference is given to 

algorithms which map the s-plane poles to the z-plane using the 

straightforward 𝑧 = 𝑒𝑠𝑇𝑠 alogrithm; 

2. Zero mapping algorithm and effectiveness, where preference is given to 

algorithms that map the s-plane zeros at 𝑠 → ∞ to the Nyquist frequency in 

the z-plane; 

3. Starting form of the expression for 𝐻𝑎(𝑠), where preference is given to those 

transformations which work directly with the pole-residue form; 

4. Matching obtained with the magnitude response curve of 𝐻𝑎(𝑗Ω); 

5. Matching obtained with the phase response curve of 𝐻𝑎(𝑗Ω); 

6. Matching obtained with the time-domain response calculated using 𝐻𝑎(𝑠). 

These attributes are summarized for the individual transforms in Table 9-1 through Table 

9-8, with some short explanations and supporting detail for each case. Finally, Table 9-9 

summarizes and compares the attributes of all eight transformations, with an overall score 

calculated for each transform, as a measure of its effectiveness for signal integrity 

engineering applications. 

 When utilizing these transforms for the creation of the discrete transfer function 

𝐻𝑑(𝑧), a methodical consideration of the above attributes would be a useful step. This 

will be added as a formal process step to the final, enhanced signal integrity methodology 

presented at the end of this chapter. Note that it is not assumed that only a single s- to z-

transformation should be utilized in all signal integrity engineering applications; there are 

too many variations in the performance of the transformations, and thus some tradeoffs 

arise. In addition to the six attributes listed above, there could be additional attributes that 

may be important when selecting a particular method. Some examples of additional 

attributes that may be important in a particular application would be: 

1. the presence of outlying zeros far from the z-plane origin;  

2. significant changes to the zero positions which are calculated by the 

transformation as Ts is varied; 

3. Numerical stability of the transform as it is implemented to 𝐻𝑎(𝑠). 

There are obviously numerous other attributes that could be applied. 
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Figure 9-4: Combined Pole-Zero / Frequency Response Plot for the Matched-Z Transformation 

(MZT) 

 

 
Matched-Z Transform (MZT) ± Criterion Results 

Pole Mapping 
Method Map via 𝑧 = 𝑒𝑠𝑇𝑠 ++ 

Zero Mapping 
Method 

Map via 𝑧 = 𝑒𝑠𝑇𝑠 
Zeros at ∞ map 
to 𝑧 = −1 

++ 

Starting Form for 
𝐻𝑎(𝑠) 

𝐻𝑎(𝑠) must be in 
pole-zero 
factored form 

- 

Magnitude Resp. 
Matching to 𝐻𝑎(𝑠) 

Fair; gain only 
matched at one 
frequency point 

- 

Phase Response 
Matching to 𝐻𝑎(𝑠) Excellent ++ 

Time Response 
Matching to 𝐻𝑎(𝑠) Very good + 

Table 9-1: MZT Attributes 
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Figure 9-5: Combined Pole-Zero / Frequency Response Plot for the Bilinear Transformation 

with no Pre-Warping (BLT0) 

 
BLT w/ no Pre-Warping (BLT0) ± Criterion Results 

Pole Mapping 
Method 

Poor mapping 
via 𝑠 = 2

𝑇𝑠

𝑧−1
𝑧+1

 
due to warping 

-- 

Zero Mapping 
Method 

Poor mapping 
via 𝑠 = 2

𝑇𝑠

𝑧−1
𝑧+1

 
due to warping 

-- 

Starting Form for 
𝐻𝑎(𝑠) 

𝐻𝑎(𝑠) may be in 
pole-residue 
form  

++ 

Magnitude Resp. 
Matching to 𝐻𝑎(𝑠) 

Poor; gain only 
matched at DC -- 

Phase Response 
Matching to 𝐻𝑎(𝑠) Fair - 

Time Response 
Matching to 𝐻𝑎(𝑠) Fair - 

Table 9-2: BLT w/ no Pre-Warping Attributes 
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Figure 9-6: Combined Pole-Zero / Frequency Response Plot for the Bilinear Transformation 

with Pre-Warping Only at 10GHz (BLT1) 

 
BLT w/ Pre-Warping @ 10 GHz 

(BLT1) ± 
Criterion Results 

Pole Mapping 
Method 

Poor mapping 
via 𝑠 = 2

𝑇𝑠

𝑧−1
𝑧+1

 
due to warping 

-- 

Zero Mapping 
Method 

Poor mapping 
via 𝑠 = 2

𝑇𝑠

𝑧−1
𝑧+1

 
due to warping 

-- 

Starting Form for 
𝐻𝑎(𝑠) 

𝐻𝑎(𝑠) may be in 
pole-residue 
form  

++ 

Magnitude Resp. 
Matching to 𝐻𝑎(𝑠) 

Poor; gain only 
matched at single 
frequency 

-- 

Phase Response 
Matching to 𝐻𝑎(𝑠) Poor -- 

Time Response 
Matching to 𝐻𝑎(𝑠) Poor -- 

Table 9-3: BLT w/ Pre-Warping @ 10 GHz 
Attributes  
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Figure 9-7: Combined Pole-Zero / Frequency Response Plot for Bilinear Transformation with 

Pre-Warping of Entire 𝝎 Vector (Ikai Method) (BLT2) 

 

 
BLT w/ Pre-Warping of Entire 𝝎 

Vector (Ikai Method) (BLT2) ± 
Criterion Results 

Pole Mapping 
Method 

Excellent map 
via 𝑠 = 2

𝑇𝑠

𝑧−1
𝑧+1

 
due to pre-
warping 

++ 

Zero Mapping 
Method 

Good map via 
𝑠 = 2

𝑇𝑠

𝑧−1
𝑧+1

 due to 
pre-warping; 
outlier zeros 

+ 

Starting Form for 
𝐻𝑎(𝑠) 

Required fitting 
to a prewarped 
version of 
𝐻′𝑎(𝑠′)  

-- 

Magnitude Resp. 
Matching to 𝐻𝑎(𝑠) Excellent ++ 

Phase Response 
Matching to 𝐻𝑎(𝑠) Excellent ++ 

Time Response 
Matching to 𝐻𝑎(𝑠) Very Good + 

Table 9-4: BLT w/ Pre-Warping of Entire ω 
Vector (Ikai Method) Attributes  
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Figure 9-8: Combined Pole-Zero / Frequency Response Plot for Impulse Invariant 

Transformation (IIT) 

 

 
Impulse Invariant Transform (IIT) ± Criterion Results 

Pole Mapping 
Method Map via 𝑧 = 𝑒𝑠𝑇𝑠 ++ 

Zero Mapping 
Method 

Poor mapping of 
zeros to z-plane -- 

Starting Form for 
𝐻𝑎(𝑠) 

𝐻𝑎(𝑠) may be in 
pole-residue 
form  

++ 

Magnitude Resp. 
Matching to 𝐻𝑎(𝑠) Excellent ++ 

Phase Response 
Matching to 𝐻𝑎(𝑠) Excellent ++ 

Time Response 
Matching to 𝐻𝑎(𝑠) Very Good + 

Table 9-5: IIT Attributes 
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Figure 9-9: Combined Pole-Zero / Frequency Response Plot for Modified Matched-Z 

Transformation  w/ Gain Match @ DC (MMZT1) 

 

 
Modified Matched-Z Transform with 

Gain Matching @ DC (MMZT1) ± 
Criterion Results 

Pole Mapping 
Method Map via 𝑧 = 𝑒𝑠𝑇𝑠 ++ 

Zero Mapping 
Method 

Map applied to 
1st-order Sections 
Zero of 𝐻𝑎𝑘(𝑠) 
at ∞ maps to 
𝑧 = −1; Gain 
constant 𝐾𝑑𝑘 
matched to 𝐾𝑎𝑘 
at DC 

+ 

Starting Form for 
𝐻𝑎(𝑠) 

𝐻𝑎(𝑠) may be in 
pole-residue 
form 

++ 

Magnitude Resp. 
Matching to 𝐻𝑎(𝑠) 

Fair; gain droops 
when nearing 𝑓𝑁 - 

Phase Response 
Matching to 𝐻𝑎(𝑠) Very good + 

Time Response 
Matching to 𝐻𝑎(𝑠) Very good + 

Table 9-6: MMZT with Gain Matching @ DC 
Attributes  
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Figure 9-10: Combined Pole-Zero / Frequency Response Plot for Modified Bilinear 

Transformation (MBLT) 

 

 
Modified Bilinear Transform 

(MBLT) ± 
Criterion Results 

Pole Mapping 
Method 

Excellent map 
via 𝑠 = 2

𝑇𝑠

𝑧−1
𝑧+1

 
due to matching 
response at 
analog pole 
frequencies 

++ 

Zero Mapping 
Method 

Good mapping 
using 𝑠 = 2

𝑇𝑠

𝑧−1
𝑧+1

 
due to matching 
resp. at analog 
pole frequencies; 
outlier zeros 

+ 

Starting Form for 
𝐻𝑎(𝑠) 

𝐻𝑎(𝑠) may be in 
pole-residue 
form 

++ 

Magnitude Resp. 
Matching to 𝐻𝑎(𝑠) 

Fair/Good; the 
response 
matches at 
analog pole 
frequencies, but 
not between 
those frequencies 

 

Phase Response 
Matching to 𝐻𝑎(𝑠) Excellent ++ 

Time Response 
Matching to 𝐻𝑎(𝑠) Very Good + 

Table 9-7: MBLT Attributes 
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Figure 9-11: Combined Pole-Zero / Frequency Response Plot for Modified Matched-Z 

Transform with Gain Match at Analog Pole Frequencies (MMZT2) 

 

 
Modified Matched-Z Transform with 

Gain Matching at Analog Pole 
Frequencies (MMZT2) ± 

Criterion Results 
Pole Mapping 
Method Map via 𝑧 = 𝑒𝑠𝑇𝑠 ++ 

Zero Mapping 
Method 

Map applied to 
1st-order Sections 
Zero of 𝐻𝑎𝑘(𝑠) 
at ∞ maps to 
𝑧 = −1; Gain 
constant 𝐾𝑑𝑘 
matched to 𝐾𝑎𝑘 
at the analog 
pole frequency 

++ 

Starting Form for 
𝐻𝑎(𝑠) 

𝐻𝑎(𝑠) may be in 
pole-residue 
form 

++ 

Magnitude Resp. 
Matching to 𝐻𝑎(𝑠) Excellent ++ 

Phase Response 
Matching to 𝐻𝑎(𝑠) Excellent ++ 

Time Response 
Matching to 𝐻𝑎(𝑠) Very good + 

Table 9-8: MMZT with Gain Matching at 
Analog Pole Frequencies Attributes 
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Summary of Key Attributes for all  s- to z-Domain Transform Utilized in this Project 

Criterion 
MZT 

Matched-Z 
Transform 

BLT0 
BLT w/ No  

Pre-Warping 

BLT1 
BLT w/ Pre-
Warping at 

10 GHz 

BLT2 
Pre-Warping 

of Entire 
𝝎- Vector 

IIT 
Impulse 

Invariant 
Transform 

MMZT1 
𝑲𝒂𝒌 = 𝑲𝒅𝒌 

at 𝒔 = 𝟎 (DC) 
MBLT 

MMZT2 
𝑲𝒂𝒌 = 𝑲𝒅𝒌 
at 𝒔 = 𝒂𝒌  

frequencies 
Pole Mapping 
Method ++ -- -- ++ ++ ++ ++ ++ 
Zero Mapping 
Method ++ -- -- + -- + + ++ 
Starting Form for 
𝐻𝑎(𝑠) - ++ ++ -- ++ ++ ++ ++ 
Magnitude Resp. 
Matching to 𝐻𝑎(𝑠) - -- -- ++ ++ - neutral ++ 
Phase Response 
Matching to 𝐻𝑎(𝑠) ++ - -- ++ ++ + ++ ++ 
Time Response 
Matching to 𝐻𝑎(𝑠) + - -- + + + + + 

Overall 
Transform 

Score25 
5 -6 -8 6 7 6 8 11 

Table 9-9: Summary of Key Attributes for All s- to z-Domain Transforms Utilized in This Research Project 

 

 
                                                 
25 Scoring is determined as follows: 
A rating of ‘++’ =  2 points. 
A rating of ‘+’ =  1 point. 
A rating of ‘neutral’ = 0 points. 
A rating of ‘-‘ = −1 point.  
A rating of ‘- -‘ =  −2 points.  
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As Table 9-9 above depicts, the most effective transforms, as listed in order of 

their overall transform score, are as follows: 

1. MMZT with 1st-order section gains 𝐾𝑑𝑘  and 𝐾𝑎𝑘  matched at the analog 

pole frequencies (MMZT2); 

2. MBLT; 

3. IIT; 

4. BLT using the Ikai method (BLT2); 

5. MMZT with gains matched at DC (MMZT1); 

6. Traditional Matched-Z transform (MZT); 

7. BLT with no pre-warping applied (BLT0); 

8. BLT with pre-warping applied only at 10 GHz (BLT1). 

The scores for each transformation as listed in Table 9-9 should be considered to be a 

general ranking, and a particular application may warrant a unique choice of transform. 

This new transform assessment procedure can now be incorporated as an additional tool 

in the overall signal integrity engineering design flow. The criteria of Table 9-9 has 

been published internally at IBM Corp., and is under evaluation for use in its 

industrial signal integrity design processes [97]. 

The next section will describe how this procedure could be integrated into the 

design flows of Figure 9-2 and Figure 9-3, with the end result being an enhanced 

methodology that offers great potential for improving the quality and efficiency of the 

signal integrity engineering activities associated with complex system designs. 

9.4 Optimized Signal Integrity Engineering Process Flow Incorporating Discrete 

Frequency Domain Techniques 

The signal integrity processes outlined in Figure 9-1 through Figure 9-3 are 

characterized by a complete emphasis on continuous-time domain and analog-frequency 

domain techniques for the final evaluation of the system. Further, the frequency-domain 

analysis tends to be limited to interpretation of the scattering matrices of the system 

channel, which generally does not account for the system’s source and load 

characteristics. The source and load characteristics can be included as an inherent part of 
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the transfer functions 𝐻𝑎(𝑠) and 𝐻𝑑(𝑧), if desired. It is clear from the discussions of the 

previous chapters that much insight is gained by the study of the system’s poles and zeros 

in the complex s-plane and z-plane, and the methodologies of Figure 9-1 through Figure 

9-3 could clearly be augmented by adding these processes to the overall methodology. 

Figure 9-12 shows a proposed, enhanced process for a signal integrity engineering 

design methodology which is augmented by analysis steps from the discrete frequency 

domain. Note the similarity of the upper part of the diagram with that of Figure 9-3, but 

now the lower part of the diagram shows the addition of the s- to z-domain 

transformation assessment steps and the subsequent pole-zero mapping steps in the 

complex s-plane and z-plane. For the new process, not only are the time-domain 

waveforms examined, but also the s-plane and z-plane maps.  

Optionally, additional time-domain waveforms can be generated independently 

using 𝐻𝑎(𝑠), 𝐻𝑑(𝑧), or both. These waveforms can be calculated using the MATLAB 

function timeresp.m, which works directly with the partial fraction expansion form of 

𝐻𝑎(𝑠), using the same process that was implemented in Chapter 5 [61]. Alternatively, the 

time response can be obtained using the MATLAB function lsim.m, which works with 

the rational function numerator or denominator polynomials of either 𝐻𝑑(𝑧) or 𝐻𝑎(𝑠) 

[80]. There are now as many as three sets of time-domain data to work with, consisting of 

that generated by SPICE, that generated from 𝐻𝑎(𝑠), and that generated from 𝐻𝑑(𝑧). In 

addition, there are two sets of complex frequency domain data, namely, the analog and 

digital transfer functions themselves. In the old methodology, only the time-domain data 

generated by SPICE was available. 

It should be noted that the new steps in the process of Figure 9-12 are 

implemented outside of the SPICE simulation loop. Even though it takes extra initial 

effort to perform these steps, the simulation steps are relatively fast from a computational 

standpoint, and the additional insight gained from looking at the pole-zero maps and 

associated frequency responses should allow for a faster optimization of the final design 

solution. Indeed, the true advantage of the new process of Figure 9-12 is that it might 

save iterations on the SPICE simulation process, which is computationally intensive. 
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Figure 9-12: Enhanced Comprehensive Signal Integrity Design Methodology Incorporating Discrete 

Frequency Domain Methods (New Process Steps Shown in Dashed Boxes) 
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The enhanced methodology of Figure 9-12 has been published internally at 

IBM Corp., and is under evaluation for its adoption for use in its industrial design 

processes [98]. 

9.5 Conclusions Regarding Applicability to an Industrial Signal Integrity Design 

Process 

This chapter has presented two major results which highlight the great potential 

for improving the state of signal integrity engineering design methodologies. The first 

was a process for systematic assessment and ranking of the major attributes of the eight s- 

to z-domain transformation methods used throughout this research project to calculate the 

discrete transfer function 𝐻𝑑(𝑧) from the analog transfer function 𝐻𝑎(𝑠). These eight 

methods include three variations of the widely known bilinear transformation (BLT), 

including the patented method by Ikai [91]. Also included among the eight are the well-

known impulse invariant transformation (IIT), which dominates the field of digital 

control theory, and the matched-Z transformation (MZT), which is widely used in the 

design of digital filters in the field of digital signal processing. The remaining three 

transforms, the modified bilinear transform (MBLT), and two variations of the modified 

matched-Z transform (MMZT), were developed in the course of this project, and were 

optimized for use in signal integrity engineering applications. 

More importantly, however, the summary presented in Table 9-9 provides the 

basis for an evaluation methodology that allows systematic assessment of the transforms 

for use in signal integrity engineering applications, as part of the overall signal integrity 

engineering design flow. This enhanced signal integrity design flow is the second major 

result. It is clear from the process flow diagram of Figure 9-12 that utilization of discrete 

complex frequency domain techniques, centered in the z-plane, provide both an 

additional viewpoint from which to assess the system (the discrete frequency z- and 𝜔-

domains) and additional time-domain data with which to validate the original SPICE 

time-domain solution. Even better, these new process steps can be implemented in 

parallel with the traditional SPICE process, and thus can be executed independently of 

the original design flow to whatever degree of effort and redundancy is desired. This is a 
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great advantage because it does not have the potential to disrupt the original flow, but 

rather purely augments it. 

The summary of Table 9-9 and the methodology of Figure 9-12, along with the 

development of the MBLT and MMZT in Chapter 7, the combined pole-zero graphical 

analysis technique developed in Chapter 8, and the frequency scaling technique 

developed in Chapter 5 to enable conversion from the partial fraction expansion form to 

pole-zero factored form of 𝐻𝑎(𝑠), are the major results of this research project. They 

represent a successful attempt to transfer and extend discrete frequency-domain methods 

commonly used in two distinct fields of electrical engineering (digital control systems 

engineering and digital signal processing engineering) to a third field, signal integrity 

engineering, which has been historically dominated by continuous time-domain methods 

and analog frequency-domain methods. 
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Chapter 10:  Conclusions and Future Work 

10.1 Summary of Contributions 

For this project, several new contributions have been made to two subfields of 

electrical engineering, signal integrity engineering and digital signal processing 

engineering. In addition, several of the new methods have potential application within 

other subfields of electrical engineering.  

10.1.1 Methods Applicable to the Field of Signal Integrity Engineering 

The stated goal for the project was to transfer and adapt various methods from the 

subfield of digital signal processing to the subfield of signal integrity engineering. To this 

end, the new methods emphasized the use of complex frequency domain pole-zero 

mapping techniques, and highlighted the advantages of the z-plane over the s-plane. From 

this standpoint, the project has made several significant contributions to the subfield of 

signal integrity engineering: 

1) the comprehensive, self-contained summary of the various theoretical foundations 

of the subfields of signal integrity engineering and digital signal processing 

engineering which are particularly well-suited for technology transfer between the 

two subfields, as described in Chapter 3, and to be used internally by the signal 

integrity community within IBM Corp.; 

2) a comprehensive summary and example application of the process for converting 

a two-port scattering matrix 𝑆 to an analog frequency transfer function 𝐻𝑎(𝑗Ω), as 

described in Chapter 4, and for which the MATLAB code will be used internally 

by the signal integrity community within IBM Corp.; 

3) a comprehensive summary and example application of the process for converting 

an analog frequency transfer function 𝐻𝑎(𝑗Ω)  to a complex analog frequency 

transfer function 𝐻𝑎(𝑠) using vector fitting, as described in Chapter 5, and for 

which the MATLAB code will be used internally by the signal integrity 

community within IBM Corp.; 
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4) the development of a new process for converting the transfer function 𝐻𝑎(𝑠) from 

partial fraction expansion form to pole-zero factored form utilizing low-pass to 

low-pass filter transformations, as described in Chapter 5, and published in the 

public domain by IBM Corp. as a technical disclosure publication [89]; 

5) the application of the widely-used bilinear transformation (BLT), matched-Z 

transformation (MZT), and impulse invariant transformation (IIT) to signal 

integrity applications, to be submitted for publication in the public domain as 

an IEEE peer-reviewed journal article [94]; 

6) the development of the new graphical analysis technique by which the z-plane 

map of 𝐻𝑑(𝑧)  and the frequency response 𝐻𝑑(𝑒𝑗𝜔)  are plotted on the same 

diagram, as described in Chapter 8, to be submitted for publication in the 

public domain as IEEE peer-reviewed journal articles [94], [95]; 

7) the development of the modified bilinear transform (MBLT) to first map the 1st-

order partial fraction terms from the overall partial fraction expansion of 𝐻𝑎(𝑠) to 

the z-plane, then combine the resulting overall partial fraction expansion of 𝐻𝑑(𝑧) 

to a factored pole-zero form of the numerator and denominator polynomials, as 

described in Chapter 7, to be submitted for publication in the public domain as 

an IEEE peer-reviewed journal article [95]; 

8) the development of the modified matched-Z transform (MMZT) to first map the 

1st-order partial fraction terms from the overall partial fraction expansion of 𝐻𝑎(𝑠) 

to the z-plane, then combine the resulting overall partial fraction expansion of 

𝐻𝑑(𝑧)  to a factored pole-zero form of the numerator and denominator 

polynomials, as described in Chapter 7, to be submitted for publication in the 

public domain as an IEEE peer-reviewed journal article [95]; 

9) the development of the assessment criteria and process for assessment of the 

various s- to z- transformations when used for signal integrity engineering 

applications, as described in Chapter 9, published internally within IBM Corp., 

and to be used internally by the signal integrity community within IBM Corp. 

[97]; and  
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10) the enhanced signal integrity engineering design methodology by which the 

system model and transfer functions 𝐻𝑎(𝑠)  and 𝐻𝑑(𝑧)  are examined in the 

complex frequency domains, and the new insight is used to more efficiently 

iterate on the final design solution, as described in Chapter 9, published 

internally within IBM Corp., and to be used internally by the signal integrity 

community within IBM Corp. [98]. 

Some of the new contributions described in this subsection have applications to the 

subfield of digital signal processing engineering; these will be described in the next 

section. 

10.1.2 Methods Applicable to the Field of Digital Signal Processing Engineering 

A beneficial result of developing new contributions to the subfield of signal 

integrity engineering utilizing digital signal processing methods is the enhancement of 

some of those same methods for the subfield of DSP itself. Those contributions are listed 

again here: 

1) the comprehensive, self-contained summary of the various theoretical foundations 

of the subfields of signal integrity engineering and digital signal processing 

engineering which are particularly well-suited for technology transfer between the 

two subfields, as described in Chapter 3, and to be used internally by the signal 

integrity community within IBM Corp., applies equally as well to the subfield of 

digital signal processing engineering; 

2) the comprehensive summary and example application of the process for 

converting an analog frequency transfer function 𝐻𝑎(𝑗Ω) to a complex analog 

frequency transfer function 𝐻𝑎(𝑠) using vector fitting, as described in Chapter 5, 

and for which the MATLAB code will be used internally by the signal integrity 

community within IBM Corp., is directly applicable in the subfield of digital 

signal processing engineering, for the case where a frequency response is the only 

data available; 

3) the development of a new process for converting the transfer function 𝐻𝑎(𝑠) from 

partial fraction expansion form to pole-zero factored form utilizing low-pass to 

low-pass filter transformations, as described in Chapter 5, and published in the 
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public domain by IBM Corp. as a technical disclosure publication [89], 

applies equally as well to the subfield of digital signal processing engineering; 

4) the application of the widely-used bilinear transformation (BLT), matched-Z 

transformation (MZT), and impulse invariant transformation (IIT) to signal 

integrity applications, to be submitted for publication in the public domain as 

an IEEE peer-reviewed journal article [94], applies equally as well to the 

subfield of digital signal processing engineering; 

5) the development of the new graphical analysis technique by which the z-plane 

map of 𝐻𝑑(𝑧)  and the frequency response 𝐻𝑑(𝑒𝑗𝜔)  are plotted on the same 

diagram, as described in Chapter 8, to be submitted for publication in the 

public domain as IEEE peer-reviewed journal articles [94], [95], applies 

equally as well to the subfield of digital signal processing engineering; 

6) the development of the modified bilinear transform (MBLT) to first map the 1st-

order partial fraction terms from the overall partial fraction expansion of 𝐻𝑎(𝑠) to 

the z-plane, then combine the resulting overall partial fraction expansion of 𝐻𝑑(𝑧) 

to a factored pole-zero form of the numerator and denominator polynomials, as 

described in Chapter 7, to be submitted for publication in the public domain as 

an IEEE peer-reviewed journal article [95], applies equally as well to the 

subfield of digital signal processing engineering; 

7) the development of the modified matched-Z (MMZT) transform to first map the 

1st-order partial fraction terms from the overall partial fraction expansion of 𝐻𝑎(𝑠) 

to the z-plane, then combine the resulting overall partial fraction expansion of 

𝐻𝑑(𝑧)  to a factored pole-zero form of the numerator and denominator 

polynomials, as described in Chapter 7, to be submitted for publication in the 

public domain as an IEEE peer-reviewed journal article [95], applies equally 

as well to the subfield of digital signal processing engineering; and 

8) the development of the assessment criteria and process for assessment of the 

various s- to z- transformations when used for signal integrity engineering 

applications, as described in Chapter 9, published internally within IBM Corp., 

and to be used internally by the signal integrity community within IBM Corp. 
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[97], applies equally as well to the subfield of digital signal processing 

engineering. 

Some of the new contributions described in this subsection and in the previous subsection 

have applications to other subfields of electrical engineering; these applications may or 

not be immediately recognized by practitioners in those subfields. These applications will 

be described in the next section. 

10.1.3 Methods Applicable to Fields Outside of Signal Integrity Engineering 

Another beneficial, and perhaps somewhat unexpected, result of developing new 

contributions to the subfield of signal integrity engineering utilizing digital signal 

processing methods is the applicability of these methods for other subfields of electrical 

engineering. Some suggested applications are listed here: 

1) the comprehensive summary and example application of the process for 

converting an analog frequency transfer function 𝐻𝑎(𝑗Ω) to a complex analog 

frequency transfer function 𝐻𝑎(𝑠) using vector fitting, as described in Chapter 5, 

and for which the MATLAB code will be used internally by the signal integrity 

community within IBM Corp., is directly applicable in the subfield of analog 

control engineering, for the case where a frequency response is the only data 

available; 

2) the development of a new process for converting the transfer function 𝐻𝑎(𝑠) from 

partial fraction expansion form to pole-zero factored form utilizing low-pass to 

low-pass filter transformations, as described in Chapter 5, and published in the 

public domain by IBM Corp. as a technical disclosure publication [89], is 

directly applicable in the subfields of analog and digital control engineering; 

3) the application of the widely-used bilinear transformation (BLT), matched-Z 

transformation (MZT), and impulse invariant transformation (IIT) to signal 

integrity applications, to be submitted for publication in the public domain as 

an IEEE peer-reviewed journal article [94], applies equally as well to the 

subfield of digital control engineering; 
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4) the development of the new graphical analysis technique by which the z-plane 

map of 𝐻𝑑(𝑧)  and the frequency response 𝐻𝑑(𝑒𝑗𝜔)  are plotted on the same 

diagram, as described in Chapter 8, to be submitted for publication in the 

public domain as IEEE peer-reviewed journal articles [94], [95], applies 

equally as well to the subfield of digital control engineering; 

5) the development of the modified bilinear transform (MBLT) to first map the 1st-

order partial fraction terms from the overall partial fraction expansion of 𝐻𝑎(𝑠) to 

the z-plane, then combine the resulting overall partial fraction expansion of 𝐻𝑑(𝑧) 

to a factored pole-zero form of the numerator and denominator polynomials, as 

described in Chapter 7, to be submitted for publication in the public domain as 

an IEEE peer-reviewed journal article [95], applies equally as well to the 

subfield of digital control engineering; and 

6) the development of the modified matched-Z (MMZT) transform to first map the 

1st-order partial fraction terms from the overall partial fraction expansion of 𝐻𝑎(𝑠) 

to the z-plane, then combine the resulting overall partial fraction expansion of 

𝐻𝑑(𝑧)  to a factored pole-zero form of the numerator and denominator 

polynomials, as described in Chapter 7, to be submitted for publication in the 

public domain as an IEEE peer-reviewed journal article [95], applies equally 

as well to the subfield of digital control engineering; and 

7) the development of the assessment criteria and process for assessment of the 

various s- to z- transformations when used for signal integrity engineering 

applications, as described in Chapter 9, published internally within IBM Corp., 

and to be used internally by the signal integrity community within IBM Corp. 

[97], applies equally as well to the subfield of digital control systems engineering. 

It may also be possible to extend these methods to the subfield of image processing, 

which can be considered as two-dimensional digital signal processing, with the dependent 

variables being in spatial-domain dimensions, as opposed to time-domain dimensions 

[43]. 
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10.2 Known Limitations  

The methods developed for this project, and their associated applications, are 

novel to the signal integrity engineering and digital signal processing subfields. 

Nevertheless, there are some known limitations of these methods, especially regarding 

their scope and depth of use. Although some of these limitations are due to fundamental 

limits imposed by the governing physical or mathematical laws, in most cases the 

limitations are simply to the scope of the examples selected as representative test cases. 

Some of these known limitations to the scope of this work are listed in the next section 

for the purposes of setting the context for potential future work. 

10.2.1 Random vs. Deterministic Channels 

One fundamental characteristic of the types of channels generally found within 

computer hardware is that the channels consist of guided wave structures such as 

transmission lines (widely used in printed circuit boards), or dielectric waveguides and 

fiber optic cables (used in advanced applications). In virtually every practical case these 

guided wave channels can be considered as deterministic, as opposed to stochastic. The 

latter would be found commonly with wireless communications applications, for example. 

Thus the propagation of signals in these guided wave channels is very predictable, as the 

channel characteristics do not vary with time due to weather conditions, etc., and the use 

of stochastic methods is generally not required. 

10.2.2 Least Squares Estimation vs. other Estimation Methods 

One attribute of the deterministic channel assumption is that estimation methods 

generally considered for stochastic systems, such as the maximum-likelihood estimator 

(MLE) [99], [100], are not generally required, and the optimization routines applied to 

the system identification and vector fitting processes can be least-squares error (LSE) 

based. LSE estimation methods were used in the ARX system identification methods and 

vector fitting methods demonstrated in Chapters 4 and 5, for example. The assumption of 

LSE based methods worked well for this project, but other optimization criteria could be 

used and may be optimal for other applications. 
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10.3 Future Directions 

As opposed to the non-applicability of some methods, such as the stochastic 

methods described in the previous section, there are other methods available that would 

be natural extensions to the work done for this project, due primarily to nature of the 

systems generally being considered in signal integrity engineering. One such 

characteristic of a typical system is its potential to be treated as a multi-port system. This 

can manifest itself in at least two forms, that that being a system utilizing differential 

signaling and thus differential transmission line structures, and the other being the 

undesirable effect of coupled noise between transmission line structures. Both of these 

scenarios result in the system being more appropriately considered as a multi-port system, 

or even a multiple input, multiple output (MIMO) system. 

10.3.1 Differential vs. Single-Ended Signaling, Interconnect Structures, and 

Scattering Parameters 

For the case of differential signaling, the transmission line structures are generally 

optimized so that both lines of the differential pair structure see the same noise 

environment. This has the effect of canceling out the noise, as a differential signal is 

intentionally launched as a voltage waveform between the two signal conductors.  

From a practical standpoint, the biggest impact of a differential system is that it 

takes a four-port scattering matrix to describe the system using conventional scattering 

parameters. This limits the use of the s2tf.m MATLAB function [58], [76] to convert 

from scattering parameters to the system’s analog transfer function 𝐻𝑎(𝑠). One potential 

way around this problem would be to convert the conventional scattering parameters to 

differential scattering parameters. This should enable the use of s2tf.m directly, but this 

has not been tried for this project, and thus should be considered a future extension. 

Note that, even though the differential system requires a four-port matrix of 

conventional scattering parameters, the system can still be considered to be a single-input, 

single-output (SISO) system, since there is still a single input signal and a single output 

signal under consideration. It is only the description of the transmission line structure 

which has become more complex. 
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10.3.2 Inclusion of Coupled Noise Attributes and Multiple-Input Multiple-Output 

Systems 

In signal integrity engineering, the inclusion of coupled noise effects is usually 

addressed by considering a multiple-input, multiple-output (MIMO) system [7], and is a 

significantly more difficult problem than a simple SISO differential system. Generally 

speaking, a coupled noise simulation requires both an N-port scattering parameter 

network, and the consideration of multiple input stimuli and output response signals. 

Generally, transfer function methods based on functions such as 𝐻𝑎(𝑠) and 𝐻𝑑(𝑧) are 

limited to SISO systems, and MIMO systems must be handled by state space methods 

[40]. Accordingly, the problem of coupled noise analysis can only be handled by state 

space methods, and has not been addressed in this project. 

10.3.3 Formulation of Stability, Causality, and Passivity Conditions for System 

Transfer Functions in the z-Domain 

Finally, another obvious extension to this project would be increased usage of the 

pole-zero maps in the z-plane to assess the system stability, causality, and passivity 

characteristics directly. The study of these characteristics in the s-plane is an active area 

of research in signal integrity engineering [63], [101], [102]. It is known, for example, 

that causality can be determined in the z-plane when the region of convergence is also 

known [42]. Extension and reformulation of these methods to the z-plane would be an 

obvious future direction for this research. 
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Appendix 1:  Summary of MATLAB Functions 

This appendix contains descriptions of the common MATLAB functions used in 

this research project. The descriptions are from the MATLAB help documentation, as 

accessed from the MATLAB command window. 

A1.1  MATLAB Function s2tf.m 

s2tf Calculate transfer function from 2-port S-parameters 
    TF = s2tf(S_PARAMS, Z0, ZS, ZL, OPTION) or TF =  
    s2tf(S_OBJ, ZS, ZL,OPTION) calculates a voltage or  
    power wave transfer function from 2-port scattering  
    parameters defined by a 2x2xK complex numeric array  
    S_PARAMS or by an 2-port sparameters object S_OBJ. s2tf  
    uses one of 3 definitions, determined by the value of  
    the OPTION    argument. 
  
      OPTION = 1: the voltage transfer function from  
      incident voltage to load voltage 
      TF1 = VL/Va = ((ZS+conj(ZS))/conj(ZS)) *  
        S21 * (1 + GAMMAL) * (1 - GAMMAS) / 
        (2*(1 - S22 * GAMMAL) * (1 - GAMMAIN * GAMMAS)) 
  
    Va is the incident voltage which is the output voltage 
    of the source when the input port is conjugately  
    matched, 
      Va = (conj(ZS)/(ZS+conj(ZS))) * VS 
   
      OPTION = 2: the voltage transfer function from source  
      voltage to load voltage 
      TF2 = VL/VS = S21 * (1 + GAMMAL) * (1 - GAMMAS) / 
      (2*(1 - S22 * GAMMAL) * (1 - GAMMAIN * GAMMAS)) 
  
    Here, VS is the source voltage, ZS is the source  
    impedance, and VL is the output voltage over load 
    impedance ZL.  
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      OPTION = 3: the power wave transfer function  
      TF3 = BP2/AP1 = SQRT(RS*RL) * S21 * (1 + GAMMAL) * 
      (1 - GAMMAS) /((1 - S22 * GAMMAL) * 
      (1 - GAMMAIN * GAMMAS) * ZL) 
  
    BP2 is the transmitted power wave at the 2nd port and 
    AP1 is the incident power wave to the 1st port, defined  
    by 
  
      BP2 = SQRT(RL)/ZL * VL; AP1 = VS/(2*SQRT(RS)) 
  
    and RL = real(ZL), RS = real(ZS). 
  
    The reflection coefficients are defined as: 
  
      GAMMAIN = S11 + (S12 * S21 * GAMMAL)/ 
      (1 - S22 * GAMMAL) 
      GAMMAL  = (ZL - Z0)/(ZL + Z0)  
      GAMMAS  = (ZS - Z0)/(ZS + Z0) 
  
    Z0 is the reference impedance of S-parameters. The  
    default is 50 ohms. The default values of ZS and ZL are  
    also 50 ohms. The default value of OPTION is 1. 
  
    Reference: Guillermo Gonzalez, Microwave Transistor  
    Amplifiers: Analysis and Design, 2nd edition, Prentice  
    Hall, 1996  
  
    See also powergain, rationalfit, snp2smp, gammain,  
    gammaout, sparameters 
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A1.2  MATLAB Function timeresp.m 

timeresp Compute the time response of a rational function 
    object. 
    [Y, T] = timeresp(H, U, TS) computes the output signal,  
    Y, that the rational function object, H, produces in 
    response to the given input signal U. 
  
      Y(n) = SUM(C.*X(n - DELAY/TS)) + D*U(n - DELAY/TS) 
      where  X(n+1) = F*X(n) + G*U(n), X(1) = 0 and 
      F = EXP(A*TS),  G = (F-1) ./ A; 
  
    A, C, DELAY and D are the properties of 
    RFMODEL.RATIONAL object H: 
  
              A: Complex vector of poles of the rational  
              function 
              C: Complex vector of residues of the rational  
              function 
              D: Scalar value specifying direct feedthrough  
          DELAY: Delay time (s) 
  
    H is the handle to the RFMODEL.RATIONAL object. U is  
    the input signal.    TS is the sample time of U in  
    seconds. Y is the output signal at corresponding time,  
    T, in seconds.  
  
    See also rfmodel.rational, rfmodel.rational/ispassive,  
    rfmodel.rational/stepresp, rfmodel.rational/freqresp, 
    rfmodel.rational/writeva, rationalfit 
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A1.3  MATLAB Function arx.m 

arx  Compute least squares estimate of arx models. 
     
   SYS = arx(DATA, ORDERS) 
    estimates an arx model SYS using input-output or time  
    series data DATA. 
    SYS is an IDPOLY model representing the equation: 
      A(q) y(t) = B(q) u(t-nk) + e(t) 
    arx estimates the coefficients of A and B polynomials  
    along with their standard deviations. The sample time 
    of SYS is equal to that of DATA. 
  
    DATA is time- or frequency domain estimation data  
    represented by an IDDATA or IDFRD object. See HELP  
    IDDATA or HELP IDFRD. 
  
    ORDERS = [na nb nk], the orders of A and B polynomials 
    in the arx model. 
    For multi-output systems, ORDERS has as many rows as  
    there are outputs na is then an ny|ny matrix whose i-j  
    entry gives the order of the polynomial (in the delay  
    operator) relating the j:th output to thei:th output.  
    Similarly nb and nk are ny|nu matrices. (ny:# of  
    outputs, nu:# of inputs). For a time series, ORDERS =  
    na only. 
 
See also arxOptions, arxstruc, ar, armax, bj, iv4, iv4, 
n4sid, oe, nlarx. 
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A1.4  MATLAB Function c2d.m 

c2d  Converts continuous-time dynamic system to discrete 
time. 
  
    SYSD = c2d(SYSC,TS,METHOD) computes a discrete-time  
    model SYSD with sampling time TS that approximates the  
    continuous-time model SYSC. 
    The string METHOD selects the discretization method  
    among the following: 
       'zoh'       Zero-order hold on the inputs 
       'foh'       Linear interpolation of inputs 
       'impulse'   Impulse-invariant discretization 
       'tustin'    Bilinear (Tustin) approximation. 
       'matched'   Matched pole-zero method (for SISO  
        systems only). 
    The default is 'zoh' when METHOD is omitted. The 
    sampling time TS should be specified in the time units 
    of SYSC (see "TimeUnit" property). 
  
    c2d(SYSC,TS,OPTIONS) gives access to additional  
    discretization options. Use C2DOPTIONS to create and  
    configure the option set OPTIONS. For example, you can  
    specify a prewarping frequency for the Tustin method  
    by: 
       opt =  
       c2dOptions('Method','tustin','PrewarpFrequency',.5); 
       sysd = c2d(sysc,.1,opt); 
  
    For state-space models, 
       [SYSD,G] = c2d(SYSC,Ts,METHOD) 
    also returns the matrix G mapping the states xc(t) of  
    SYSC to the states xd[k] of SYSD: 
       xd[k] = G * [xc(k*Ts) ; u[k]] 
    Given an initial condition x0 for SYSC and an initial  
    input value u0=u(0), the equivalent initial condition 
    for SYSD is (assuming u(t)=0 for t<0): 
       xd[0] = G * [x0;u0] . 
  

    See also c2dOptions, d2c, d2d, DynamicSystem.  



 

253 

A1.5  MATLAB Function impinvar.m 

impinvar Impulse invariance method for analog to digital 
filter conversion. 
    [BZ,AZ] = impinvar(B,A,Fs) creates a digital filter  
    with numerator and denominator coefficients BZ and AZ  
    respectively whose impulse response is equal to the  
    impulse response of the analog filter with  
    coefficients B and A sampled at a frequency of Fs  
    Hertz.  The B and A coefficients will be scaled by  
    1/Fs. 
  
    If you don't specify Fs, it defaults to 1 Hz. 
  
    [BZ,AZ] = impinvar(B,A,Fs,TOL) uses the tolerance TOL  
    for grouping repeated poles together.  Default value is  
    0.001, i.e., 0.1%. 
  
    NOTE: the repeated pole case works, but is limited by  
    the ability of the function ROOTS to factor such  
    polynomials. 
  
    % EXAMPLE: Illustrate the relationship between digital  
    % and analog frequency responses. 
    [b,a] = butter(4,0.3,'s'); 
    [bz,az] = impinvar(b,a,10); 
    [Ha,Wa] = freqs(b,a,512); 
    [Hz,Wz] = freqz(bz,az,512,10); 
    plot(Wa/(2*pi),20*log10(abs(Ha)),'LineWidth',2); 
    hold on; 
    plot(Wz,20*log10(abs(Hz)),'r--'); 
    xlabel('Frequency (Hz)'), ylabel('Magnitude (dB)'); 
    title('Magnitude Response Comparison'); 
    legend('Analog Filter','Digital Filter'); 
  
    See also bilinear. 
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A1.6  MATLAB Function lsim.m 

lsim  Simulate time response of dynamic systems to 
arbitrary inputs. 
  
    lsim(SYS,U,T) plots the time response of the dynamic 
    system SYS to the input signal described by U and T.  
    The time vector T is expressed in the time units of SYS  
    and consists of regularly spaced time samples. The  
    matrix U has as many columns as inputs in SYS and its  
    i-th row specifies the input value at time T(i). For  
    example,  
            t = 0:0.01:5;   u = sin(t);   lsim(sys,u,t)   
    simulates the response of a single-input model SYS to  
    the input u(t)=sin(t) during 5 time units. 
  
    For discrete-time models, U should be sampled at the 
    same rate as SYS (T is then redundant and can be  
    omitted or set to the empty matrix). For continuous- 
    time models, choose the sampling period T(2)-T(1) small  
    enough to accurately describe the input U.  lsim issues  
    a warning when U is undersampled and hidden  
    oscillations may occur. 
           
    Y = lsim(SYS,U,T) returns the output history Y. No plot  
    is drawn on the screen. The matrix Y has LENGTH(T) rows  
    and as many columns as outputs in SYS. For state-space  
    models,  
       [Y,T,X] = lsim(SYS,U,T,X0)  
    also returns the state trajectory X, a matrix with  
    LENGTH(T) rows and as many columns as states. 
   
    See also lsimplot, gensig, step, impulse, initial,     
    DynamicSystem. 
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A1.7  MATLAB Function residue.m 

residue Partial-fraction expansion (residues). 
    [R,P,K] = residue(B,A) finds the residues, poles and  
    direct term of a partial fraction expansion of the  
    ratio of two polynomials B(s)/A(s). If there are no  
    multiple roots, 
       B(s)       R(1)       R(2)             R(n) 
       ----  =  -------- + -------- + ... + -------- + K(s) 
       A(s)     s - P(1)   s - P(2)         s - P(n) 
    Vectors B and A specify the coefficients of the  
    numerator and denominator polynomials in descending  
    powers of s.  The residues are returned in the column  
    vector R, the pole locations in column vector P, and  
    the direct terms in row vector K.  The number of poles  
    is n = length(A)-1 = length(R) = length(P). The direct  
    term coefficient vector is empty if 
    length(B) < length(A), otherwise 
    length(K) = length(B)-length(A)+1. 
  
    If P(j) = ... = P(j+m-1) is a pole of multplicity m,  
    then the expansion includes terms of the form 
            R(j)        R(j+1)                R(j+m-1) 
          -------- + ------------   + ... + ------------ 
          s - P(j)   (s - P(j))^2           (s - P(j))^m 
  
    [B,A] = residue(R,P,K), with 3 input arguments and 2  
    output arguments, converts the partial fraction  
    expansion back to the polynomials with coefficients in  
    B and A. 
  
    Warning: Numerically, the partial fraction expansion of  
    a ratio of polynomials represents an ill-posed problem. 
    If the denominator polynomial, A(s), is near a  
    polynomial with multiple roots, then small changes in  
    the data, including roundoff errors, can make 
    arbitrarily large changes in the resulting poles and  
    residues. Problem formulations making use of state- 
    space or zero-pole representations are preferable. 
  
    Class support for inputs B,A,R: 
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       float: double, single 
  
    See also poly, roots, deconv. 
  



 

257 

A1.8  MATLAB Function etfe.m 

etfe   Computes the Empirical Transfer Function Estimate 
and Periodogram. 
    G = etfe(DATA)   or   G = etfe(DATA,M) 
  
    DATA is an IDDATA object and contains the input-output  
    data or a time series. See HELP IDDATA. If an input is  
    present G is returned as the etfe (the ratio of the  
    output Fourier transform to the input Fourier  
    transform) for the data. For a time series  G is  
    returned as the periodogram (the normed absolute square  
    of the Fourier transform) of the data. G is returned as  
    an IDFRD object. See HELP IDFRD. 
  
    With M specified, a smoothing operation is performed on  
    the raw spectral estimates using a Hamming Window,  
    giving a frequency resolution of about pi/M. Default, M  
    = [], gives no smoothing. 
  
    For non-periodic data, the transfer function is  
    estimated at 128 equally spaced frequencies between 0  
    (excluded) and pi. This number can be changed to N  by  
    G = etfe(DATA,M,N). 
  
    PERIODIC DATA: If the (input) data is marked as  
    periodic (DATA.Period = integer) and contains an  
    integer number of periods, the frequency response is  
    computed at the frequencies k*2*pi/period for k=0 up to  
    the Nyquist frequency. To compute the spectrum of a  
    periodic signal S, it must be an input signal: 
    DATA = iddata([],S,'Ts',Ts,'Period',per). For periodic  
    data, the arguments N and M are ignored. 
  
    FREQUENCY DOMAIN DATA: If the data set is defined in  
    the frequency domain, G is returned as an IDFRD object,  
    defined from the ratio of output to input at all  
    frequencies, where the input is non-zero. If M is  
    defined, the corresponding smoothing is applied. 
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