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Abstract

The probabilistic graphical model framework provides an essential tool to reason

coherently from limited and noisy observations. The framework has been used in an

enormous range of application domains, which include: natural language processing,

computer vision, bioinformatic, robot navigation and many more. We propose several

inference algorithms for some probabilistic graphical models. For Bayesian network

graphical models, we focus on the problem of overlapping clustering, where a data point

is allowed to belong to multiple clusters. We present an overlapping clustering algo-

rithm based on multiplicative mixture models. We analyze a general setting where each

component of the multiplicative mixture is from an exponential family, and present

an efficient alternating maximization algorithm to learn the model and infer overlap-

ping clusters. We also propose a Bayesian Overlapping Subspace Clustering (BOSC)

model which is a hierarchical generative model for matrices with potentially overlapping

uniform sub-block structures. The BOSC model can also handle matrices with missing

entries. We propose an EM-style algorithm based on approximate inference using Gibbs

sampling and parameter estimation using coordinate descent for the BOSC model. We

propose an EM-style algorithm based on approximate inference using Gibbs sampling

and parameter estimation using coordinate descent for the BOSC model.

We also consider Markov random field graphical models and address the problem

of maximum a posteriori (MAP) inference. We first show that the drought detection

problem from the climate science domain can be formulated as a MAP inference problem

and propose an automatic drought detection problem. We then present a parallel MAP

inference algorithm called Bethe-ADMM based on two ideas: tree-decomposition of the

graph and the alternating direction method of multipliers (ADMM). However, unlike

the standard ADMM, we use an inexact ADMM augmented with a Bethe-divergence

based proximal function, which makes each subproblem in ADMM easy to solve in

parallel using the sum-product algorithm. We rigorously prove global convergence of

Bethe-ADMM. The proposed algorithm is extensively evaluated on both synthetic and

real datasets to illustrate its effectiveness. Further, the parallel Bethe-ADMM is shown

to scale almost linearly with increasing number of cores.
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Chapter 1

Introduction

Probabilistic graphical models [103, 60] use a graph-based representation as the basis

for compactly encoding a complex distribution over a high-dimensional space. The

framework is quite general in that many of the commonly used statistical models (hidden

Markov models, Ising models, Karman filters) can be treated as graphical models. These

models have been widely applied across diverse fields such as statistical machine learning,

computational biology, climate science, statistical physics, communication theory, and

information retrieval.

Graphical models bring together graph theory and probability theory in a power-

ful formalism for multivariate statistical modeling. In a probabilistic graphical model,

each node represents a random variable and the edge express probabilistic relationships

between the random variables. The graph captures the way in which the joint distribu-

tion over all of the random variables can be decomposed into a product of factors each

depending only on a subset of variables. The two most common classes of graphical

models are Bayesian networks and Markov random fields.

1.1 Examples of Graphical Models

We first give a brief review of Bayesian networks and Markov random fields respectively.

1



2

1.1.1 Bayesian Networks

The underlying semantics of Bayesian networks [82] are based on directed graphs and

hence they are also called directed graphical models. A directed graphical model rep-

resents a factorization of the joint probability distribution over all random variables,

where the nodes are the random variables, and edges correspond, intuitively, to direct

influence of one node on another. One way to view the graph is as a data structure that

provides the skeleton for representing the joint distribution compactly in a factorized

way.

To be more specific, let G be a Bayesian network graph over the variables X =

{X1, . . . ,Xn}. Each random variable Xi in the network has an associated conditional

probability distribution (CPD). The CPD for Xi, given its parents in the graph, which

we denote as Pa(Xi), is P (Xi|Pa(Xi)). It captures the conditional probability of the

random variable, given its parents in the graph. CPDs can be described in a variety

of ways. For discrete valued Xi, a simple and common representation for a CPD is a

table which contains a row for each possible set of values for the parents of the node

describing the probability of different values for Xi. The joint distribution specified by

the graphical model can be expressed as a product over the CPDs:

P (X1, . . . ,Xn) =

n∏

i=1

P (Xi|Pa(Xi)) .

A Bayesian network example [60] is shown in Fig 1.1. In this graphical model,

we focus on two diseases – flu and hay fever: these are not mutually exclusive, as a

patient can have either, both, or none. Thus, we might have two binary-valued random

variables, Flu and Hayfever. We also have a 4-valued random variable Season, which is

correlated both with Flu and Hayfever. We may also have two symptoms, Congestion

and Muscle Pain, each of which is also binary-valued. Given the CPDs associated with

each random variable, the joint distribution is factorized as follows:

P (S,F,H,C,M) = P (S)P (F |S)P (H|S)P (C|F,H)P (M |F ) .

1.1.2 Markov Random Fields

Markov random fields [103] are based on undirected graphical models and hence they are

also called undirected graphical models. These models are useful in modeling a variety
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Muscle-Pain Congestion

Flu Hayfever

Season

(a)

Figure 1.1: A simple Bayesian network with 5 random variables.

of phenomena where one cannot naturally ascribe a directionality to the interaction

between variables. As in a Bayesian network, the nodes in the graph of a Markov

random field graph represent the random variables, and the edges correspond to some

notion of direct probabilistic interaction between the neighboring variables. In this

thesis, we focus on the case where each node represents a discrete random variable, i.e.,

each node can take value from some discrete space X = {1, . . . , k}.

To parameterize a Markov random field, we define potentials over cliques of the

undirected graph G = {V,E}, where V is the node set and E is the edge set. For

example, in a pairwise Markov random filed, we define potentials over the node and

edges. To be more specific, for each node i ∈ V , we have nodewise potential hi(Xi),∀xi ∈

X and each edge (i, j), we have edgewise potential hij(Xi,Xj),∀Xi,Xj ∈ X . A pairwise

Markov random field then defines a distribution over the random variables that factors

according to the potentials:

P (X) =
1

z(X)




∏

i∈V

hi(Xi)
∏

(i,j)∈E

hij(Xi,Xj)



 ,

where z(x) is the partition function to make sure P (X) is a valid distribution.
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1.2 Inference and Learning in Graphical Models

Both directed and undirected graphical models represent a full joint probability distri-

bution over the random variables and the graph structure often allows the joint distri-

bution to be used effectively for inference, i.e., answering queries using the distribution.

In particular, we want to compute the posterior probability of some random variables

given evidence on others. For example, for the directed graphical model presented in

Section 1.1.1, the inference problem can be to compute the probability of having flu if

the season is winter and the patient has the congestion symptom:

P (Flu = true|Season = winter, Congestion = true,MusclePain = false) .

Another important inference task is the maximum a posteriori (MAP) problem, which

it to find the most likely assignment to the random variables. For example, the MAP

inference problem in the graphical model presented in Section 1.1.2 is to, given the node-

wise and edgewise potentials H, compute the assignment over all the random variables

with the largest probability, i.e., maxX P (X|H).

In principle, inference problems can be solved by exhaustively summing out the joint

distribution (for the posterior query) or directly search for the most likely assignment

(for the MAP query). This approach is not very satisfactory though, as it results in

the exponential blowup of the computation. Fortunately, many types of exact inference

can be carried out for graphical models with bounded tree width and the idea is to

use dynamic programming to avoid repeated computations [63]. However, for a large

number of graphical models, exact inference is intractable and people resort to approxi-

mations. Broadly speaking, there are two major frameworks for approximate inference:

variational approaches and sampling-based approaches. In variational algorithms, we

define a class of tractable distribution Q and search for a particular instance of Q that

best approximates the original joint distribution defined by the graphical model [103].

Constructing the class of tractable distribution varies by the inference problems and

identifying the best approximation is usually formulated as an optimization problem. In

sampling-based algorithms, we construct a Markov chain whose stationary distribution

is the true joint distribution and approximate the distribution by obtaining samples

from the Markov chain. Commonly used sampling techniques include Markov Chain

Monte Carlo (MCMC) methods [6] and Gibbs sampling method [40].
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Besides the inference tasks, there are also two learning tasks for probabilistic graph-

ical models: parameter estimation and structure learning. In the parameter learning

task, we assume the dependency structure is known and the learning task is to estimate

CPDs in Bayesian networks, and the potential functions in Markov random fields. In

the structure learning task, the goal is to extract the Bayesian network and Markov

random field structure. We refer the readers to [60] for the learning task in graphical

models.

1.3 Summary of Contributions

This thesis contributes several inference algorithms for probabilistic graphical models.

For inference on Bayesian networks, our research work includes:

• We propose a probabilistic model for overlapping clustering, where each data point

can potentially belong to multiple clusters. Our overlapping clustering model is

based on Bayesian networks and we propose an efficient inference algorithm as the

overlapping clustering algorithm.

• We propose another Bayesian network graphical model to identifying overlapping

sub-blocks in given data matrices and propose an efficient sampling-based inference

algorithm.

• We apply the above overlapping clustering algorithms to solve real-world applica-

tion problems, such as microarray gene expression analysis and movie recommen-

dation systems. The empirical results show that our algorithms beat the state of

the art algorithms.

For inference on Markov random fields, we make the following contributions:

• We focus on an important climate science problem: drought detection from pre-

cipitation datasets. We formulate the detection problem as an MAP inference

problem on an MRF. After the MAP estimation is computed, we can post-process

the solution to identify major droughts. The experimental results show that our

algorithm detects all the major droughts of the last century.
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• We design a parallel MAP inference algorithm, which is well suited for large scale

MRFs. The basic idea behind the parallel algorithm is that we divide the original

problem into smaller sub-problems based on graph decomposition and each sub-

problem is independent and can be solved in parallel. One novelty of our algorithm

is that each sub-problem has closed-form solution, which makes our algorithm very

efficient.

• We implement the parallel MAP inference algorithm using Message Passing In-

terface (MPI). We carefully design the message passing scheme to fully utilize the

computing power provided by modern super computers and the empirical results

show that we obtain almost linear speedup in the number of MPI processes.

1.4 Organization of the Thesis

The technical part of the thesis is divided into two parts, which we describe below:

In Part I, we address the overlapping clustering problem. We propose overlapping

clustering models and efficient inference algorithms. This part of the thesis consists of

the following chapters:

• In Chapter 2, we show the importance of efficient overlapping clustering algo-

rithms and discuss the relevant literature. Since we formulate the overlapping

clustering problem as an inference problem on a Bayesian network, we also give

some preliminary background on constructing Bayesian networks.

• In Chapter 3, we introduce our overlapping clustering model, Multiplicative Mix-

ture Model (MMM), where each mixture component is an exponential family dis-

tribution and derive efficient overlapping clustering algorithm. We also propose a

kernelized overlapping clustering algorithm based on Gaussian MMMs. We show

the efficacy of our algorithms on both simulated and gene-expression datasets.

This chapter is primarily based on [33].

• In Chapter 4, we extend the MMM model and propose the Bayesian Overlap-

ping Subspace Clustering (BOSC) model, which can find potentially overlapping

sub-blocks in data matrices, automatically detect background noise and naturally
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handle matrices with missing values. We also show the experimental results on

both simulated and real datasets. This chapter is primarily based on [34, 108].

We discuss our research on the MAP inference problem in Part II and it is organized

as follows:

• In Chapter 5, we formally define Markov random fields (MRFs) and the MAP

inference problem and review the existing MAP inference algorithms in the liter-

ature.

• We start discussing MAP inference from Chapter 6. We use the drought detec-

tion problem as a motivating example. We formulate the problem as a MAP

inference problem on a three-dimensional grid MRF, where each node represents

a temporal/spatial location and can be in two states: dry or normal. We apply

our drought detection algorithm on a high resolution precipitation dataset of the

last century and our algorithm successfully detects all the major droughts. This

chapter is primarily based on [35].

• In Chapter 7, we propose our parallel MAP inference algorithm Bethe-ADMM. In

Bethe-ADMM, the MAP inference problem is decomposed into several subprob-

lems on trees and each subproblem is independent and can be solved in parallel.

Instead of using a quadratic penalty as in the conventional ADMM, Bethe-ADMM

adopts a penalty term based on Bethe entropy on trees, which facilities efficient

update on each subproblem. We rigorously prove the global convergence of the

ADMM algorithm. We show that our Bethe-ADMM algorithm has similar or

better performance than the existing algorithms in the MAP inference literature.

This chapter is primarily based on [37, 38].

• In Chapter 8, we discuss efficient MPI implementation of the Bethe-ADMM algo-

rithm and show empirically that our implementation scales almost linearly up to

one thousand MPI processes. This chapter is primarily based on [36].

Finally, in Chapter 9, we review the main contributions of this thesis, and discuss

future work.



Part I

Bayesian Overlapping Clustering

8



Chapter 2

Motivation and Related Work

In this Chapter, we show the importance of efficient overlapping clustering algorithms

in Section 2.1 and review the relevant literature in Section 2.2. Since we formulate

the overlapping clustering algorithm as an inference in a Bayesian network, we give the

background knowledge on Bayesian networks in Section 2.3.

2.1 Motivation

One of the most important goals of unsupervised learning is to discover meaningful

clusters in datasets. Clustering algorithms strive to discover groups or clusters of data

points which are often represented as feature vectors so that data points in the same

cluster are similar in some way. For example, if given the task of clustering movies, we

might group them by genre (Action, Animation, Comedy, Horror, ...) or alternatively

by color (black-and-white, color). Generally speaking, any particular dataset does not

have a uniquely correct clustering and the desired clustering depends on the particular

application. For instance, in gene-expression data analysis, one might want to cluster

the genes according to the biological process they participate in. In social network

analysis, one might want to cluster the actors by the communities they belong to.

In machine learning and data mining literature, there has been a huge amount of

previous work on different methods for clustering data, including mixture modeling [73],

k-means clustering [48] and spectral clustering [95, 81]. While these methods have

been widely used in practice, many of them make a strict assumption that each data

9
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point belongs to one and only one cluster; that is, there are k exhaustive and mutually

exclusive clusters explaining the data. However, in many real-life applications, some

data points may actually belong to multiple clusters. For example, in the context of

microarray data analysis, since a particular gene may participate in several biological

processes, ideally it may belong to serval clusters each of which represents a set of genes

that participate in a common biological process. In social network analysis, since a

actor can belong to multiple communities, e.g., he/she is a student at the University

of Minnesota, works for Target and lives in Loring Park neighborhood, he/she should

be placed in multiple community clusters. Similarly, when we cluster movies by genre,

obviously some movies should be in several clusters, e.g, the movie Transformers belongs

to the science-fiction cluster, the action cluster and the thriller cluster. A related

desideratum is to allow some data point not to belong to any cluster at all, possibly

because the data point is an outlier or because of the reasons based on domain semantics,

e.g., a loner in a social network. More generally, such desiderata attempts to relax the

inherent assumption that the entire set of objects available for cluster analysis is actually

a part of the cluster structure and the dataset does not contain any outliers.

Since the problem of automatically finding overlapping clusters, where an object

(data point) can potentially belong to one or more clusters, has been gaining impor-

tance in a wide variety of application domains, there is a pressing need for research

on overlapping clustering algorithms. Although there are several overlapping cluster-

ing algorithms in the machine learning literature, they are either very slow for large

datasets [50] or works only with Gaussian data [10]. In this thesis, we present Multi-

plicative Mixture Models (MMMs) as an appropriate framework for overlapping cluster-

ing. They are designed to generate overlapping from a Bayesian perspective. MMMs

can work with a variety of data types, including real data and categorical data. They

can also handle outliers in the dataset. We also propose a fast and scalable overlapping

clustering algorithm based on MMMs.

Although MMMs are useful for overlapping clustering, it can only cluster objects

with respect to all the features. However, sometimes the cluster structure of objects

is often hidden in a subset of features and a meaningful cluster contains objects with

only a subset of features. In this thesis, we focus on the matrix setting, where each row

represents an object and each column represents a feature. In some applications, we
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may want to find dense/uniform sub-blocks in a given data matrix and a dense/uniform

sub-block consists of a subset of objects that have similar feature values for a subset

of features. For example, in micro-array gene expression data analysis, one would like

to find a set of genes which co-express under a set of experimental conditions. In

a recommendation system, a uniform sub-block indicates a group of users who have

similar ratings for a group of movies.

While progress has been made in the development of subspace [78] clustering and

co-clustering algorithms [94], the existing formulations often lack the flexibility needed

to solve the problem of finding uniform sub-blocks. The lack of flexibility is often inher-

ited from properties of typical clustering formulations, such as kmeans or graph cuts. In

the current context, the desiderata can be captured by the following three requirements.

First, the sub-blocks may overlap, so that some entries may belong to more than one sub-

block. For example, in gene expression analysis, a gene can have multiple functions and

hence co-express with different groups under different experimental conditions. Most

clustering/co-clustering formulations are not designed to discover overlapping clusters.

Second, not all rows and columns may be a part of a sub-block, and the formulation

has to be flexible enough to allow that. Most existing clustering/co-clustering formula-

tions assume that all points belong to some cluster/co-cluster, and the corresponding

algorithms have no capacity to identify background noise automatically. Finally, the

matrix may have missing entries. For example, in a movie recommendation system,

the rating matrix has many missing entries, because users cannot rate all the movies.

In practice, one often imputes the missing values with row/column statistics or has a

heuristic work around. Ideally, we want the model formulation to be able to work with

sparse matrices and in fact use the sparsity to a computational advantage. Figure 2.1

shows a simple example of raw matrix data and a suitable row-column permutation to

reveal the overlapping dense block structure.

In this thesis, we also extend the multiplicative mixture model and present a Bayesian

Overlapping Subspace Clustering model which can find potentially overlapping sub-

blocks, automatically detect the background noise, and naturally handle matrices with

missing entries.
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(b) Ideal Output

Figure 2.1: An example problem: (a) Raw data with latent overlapping co-clustering
structure, (b) Ideal output from an algorithm, where rows and columns have been
permuted to reveal the structure discovered.

2.2 Related Work

2.2.1 Overlapping Clustering Algorithms

Our MMMs are closely related to the Product of Experts (PoE) model proposed by

Hinton [51]. The PoE model with k experts has p(x|Θ) = 1
c

∏k
j=1 pj(x|θj). The MMM

is different from PoE in that it uses a binary vector z to select experts. If z is the all 1

vector in MMMs, then we exactly obtain the PoE model. For general z, p(x|z,Θ) is a

PoE model over a subset of experts, chosen according to z. Training a PoE model by

maximizing the log-likelihood can be difficult because it requires the evaluation of an

intractable average over p(x|Θ). The average often requires approximate methods like

MCMC sampling to approximate it. But MCMC sampling is computational expensive

and results in high-variance estimates of the required averages. Hinton [51] advocates

the use of contrastive divergence. It isKL(Pdata||Pmodel)−KL(Pdata||Pk), where Pdata is

the empirical data distribution, Pmodel is the current estimate of the model distribution

and Pk is the distribution based on k steps of sampling.

A non-parametric Bayesian model for overlapping clustering, due to [50], is also

closely related to the proposed MMMs. Their treatment focuses on the use of non-

parametric priors based on the Indian Buffet Process [44], and uses MCMC to sample

the model parameters Θ, which can be very expensive for large datasets. The analysis

for the case when z is all zero was not explicitly handled. In comparison, our proposed

MMMs assume knowledge of k, the number of components, although an extension to

the non-parametric setting appears straightforward, following ideas in [15]. Further, we
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analyze the all zero z case to detect outlying or noisy points, and propose an efficient

alternating minimization algorithm for model learning based on optimization.

Another class of overlapping clustering models combines the expectation parameters

of component distributions, rather than the natural parameters as in MMMs. For

example, Battle et al. [10] use such an idea to discover overlapping processes from

gene expression data. Their algorithm works with the observed real gene expression

profiles X (genes × experiments), a hidden binary membership matrix Z (genes ×

processes) containing the membership of each gene in each process, and a hidden real

activity matrix A (processes × experiments) containing the activity of each process

for each experimental condition. The assumption of their model is E[xi] = Azi, i.e.,

each xi is generated from a Gaussian distribution with mean Azi, which is sum of the

activity levels of the processes that contribute to the generation of xi. Banerjee et al. [8]

generates the model from Gaussians to other exponential family distributions. However,

the additive combination rule E[xi] = Azi does not capture the intuition of overlapping

clusters, but rather of multiple processes that add together. Several related models with

a same generative structure have also appeared in the literature in the form of factorial

or multiple cause models [41, 52].

2.2.2 Co-clustering Algorithms

Our work on BOSC model is closely related to research in co-clustering algorithms

which simultaneously cluster rows and columns of a matrix. Co-clustering is originally

introduced by Hartigan [47] and the algorithm uses a local greedy splitting procedure

to identify hierarchical row and column clusters. It adopts SSQ (sum of squares) as the

cost function. Suppose the matrix is A and the non-overlapping partition is B1, . . . , Bp,

SSQ is defined as
∑

p

∑
i,j∈Bp

(Aij − bp)
2, where bp is the average value of Aij in the co-

cluster Bp. The splitting terminates when the sum of squares SSQ is small. Many other

co-clustering algorithms have been proposed to address the above partition problem

based on various cost functions. Since they are all partitional algorithms, they does

not allow overlapping structure. Dhillon et al. [28] propose an information-theoretic co-

clustering algorithm that views a non-negative matrix as an empirical joint distribution

of two discrete random variables and co-clustering is defined as a pair of maps from

rows to row-clusters and from columns to column-clusters. Clearly, these maps induce
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clustered random variables. The algorithm tries to find the optimal co-clustering that

minimizes the difference in mutual information between the original random variables

and the mutual information between the clustered random variables. The algorithm

is guaranteed to improve the quality of co-clustering gradually but it works only with

non-negative matrices. Cho et al. [24] develops two k-means like minimum sum squared

co-clustering algorithms : one with its cost function based on [47] and the other one

based on mean square residue formulated by Cheng and Church [23]. Bregman co-

clustering [7] is a very efficient, generalized co-clustering framework that works with any

distance measure known as Bregman divergence. It includes several previously proposed

co-clustering algorithm like [28] and [24] as special cases. Deodhar et al. [27] extends

the Bregman co-clustering framework so that only a predetermined number of rows

and columns are assigned to the co-clusters. Thus their algorithm can automatically

detect and prune away outlier data points which do not show interesting patterns.

Recently, Shan and Banerjee propose a Bayesian co-clustering algorithm [94]. It views

co-clustering as a generative mixture modeling problem. Each row and column have

a mixed membership respectively, from which row and column clusters are generated.

Each entry is then generated given the corresponding row and column cluster. The

algorithm works with any exponential family distribution and can handle matrices with

missing values. The algorithm is a soft co-clustering algorithm, but still does not allow

overlapping. Shafie and Milios [93] propose an overlapping co-clustering algorithm by

extending the one-way overlapping clustering algorithm in [8]. Their algorithm uses

a heuristic simultaneously on rows and columns and thus does not have a theoretical

guarantee in terms of accuracy.

Recent advances in co-clustering (bi-clustering) have often centered around problems

in bioinformatics, and gene-expression analysis in particular where the goal is to identify

subgroups of genes which have similar expression patterns for a subset of experiments.

A comprehensive survey of co-clustering methods for gene-expression analysis can be

found in [68]. Cheng and Church [23] were among the first to apply co-clustering to

gene expression data. They propose a greedy search heuristic to generate arbitrarily

positioned, overlapping co-clusters that satisfy a certain homogeneity constraint, called

mean square residue. The algorithm is a sequential algorithm, in that it produces a

co-cluster one at a time. It cannot effectively handle missing entries. Lazzeroni and
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Owen [65] propose the Plaid model, which assumes the expression value in a co-cluster

is the sum of main effect, gene effect, condition effect and a noise term which is sam-

pled from a normal distribution with zero mean. Plaid directly models overlapping

co-clusters by assuming an additive model where the expression value is the sum of

the effect from all the co-clusters a gene belongs to. The algorithm is still a sequential

algorithm and does not have a nice way of handling missing values. Tang et al. [100]

introduce the Interrelated Two-way Clustering (ITWC) that combines the results of

one-way clustering on both dimensions of the data matrix in order to produce biclus-

ters. After normalizing the rows of the data matrix, they compute the vector-angle

cosine value between each row and a predefined pattern to test whether the row values

vary much among the columns and remove ones with little variation. After that they

use a correlation coefficient as similarity measure to measure the strength of the linear

relationship between two rows or two column and perform two-way clustering. Yang

et al. [109] present an algorithm called Flexible Overlapped biClustering (FLOC) that

simultaneously produces k co-clusters whose mean residues are less than a predefined

threshold. FLOC incrementally moves a row or column out of into a co-cluster depend-

ing on whether the row or column included in that co-cluster or not. The algorithm

can produce arbitrarily positioned, overlapping co-clusters. Kluger et al. [59] apply a

spectral co-clustering algorithm on gene expression data. The largest several left and

right singular vectors of the normalized gene expression are computed and then a final

clustering step using k-means and normalized cuts is applied to the data projected to

the topmost singular vectors. The algorithm is a partitional algorithm and it models

the gene expression matrix as a bipartite graph with non-negative edge weights, thus

they are restricted to non-negative matrices.

It is worthwhile to note that some co-clustering algorithms used to analysis gene

expression datasets have different definitions of co-cluster compared to ours. The order

preserving sub-matrix algorithm [12] tries to identify the co-clusters where the values of

rows induce a linear order across the columns. Their work focuses on the relative order

of the columns in the co-cluster rather than on the uniformity of the actual values in the

data matrix as our model does. Furthermore, they define a complete model as the pair

(J, π) where J is a set of s columns and π = (j1, . . . , js) is a linear ordering of the column

J . They say that a row supports (J, π) if the s corresponding values, ordered according
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to the permutation π are monotonically increasing. Ben-Dor et al. [12] aim at finding a

complete model with highest statistically significant support. The algorithm identifies

one co-cluster at a time. Tanay et al. [99] propose the Statistical-Algorithmic Methods

for Bicluster Analysis (SAMBA) algorithm. It views the elements of the matrix as

symbolic values and try to discover subsets of rows and columns with coherent behaviors

regardless of the exact numeric values in the data matrix. Tanay et al. define a co-

cluster as a subset of genes that jointly respond across a subset of conditions. A gene

is considered to respond a certain condition if its expression level changes significantly

at that condition with respect to its normal level. The matrix is modeled as a bipartite

graph whose two parts corresponds conditions and genes respectively, with one edge

for each significant expression change. SAMBA’s goal is to discover sub-graphs with

an overall coherent evolution. In order to do that it is assumed that all the genes that

the genes in a given co-cluster are up-regulated in the subset of conditions that form

the co-cluster and the goal is then to find the largest co-cluster with this co-evolution

property.

2.2.3 Subspace and Projected Clustering Algorithms

There are two closely related classes of problems, viz subspace and projected clustering,

in the data mining literature. Many of them rely heavily on heuristic and tuning pa-

rameters. Subspace clustering algorithms essentially search for cluster structure in all

possible subspaces of the feature space according to a suitable definition of a cluster.

CLIQUE [5] is one of the first algorithms proposed to find clusters within subspaces. It

uses static grid to divide each dimension into bins and selects the bins with densities

above a threshold. Once the dense subspace are found, they are sorted by coverage,

which is defined as the fraction of the dataset covered by the dense units in the subspace.

The subspace with the largest coverage are kept. The algorithm then finds adjacent

dense grid units in each of the selected subspaces using a depth first search. clusters

are formed by combing these units using a greedy growth scheme. Since CLIQUE uses

a bottom-up search method, it produces overlapping clusters. ENCLUS [22] is another

subspace clustering algorithm based on CLIQUE. The difference is that ENCLUS mea-

sures entropy instead of density. The intuition is that a subspace with clusters has lower

entropy than a subspace without clusters. MAFIA [43] is another extension of CLIQUE
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that uses an adaptive grid based on the distribution of data to improve efficiency and

cluster quality. SUBCLU [56] is a grid-free approach that can detect subspace clusters

with more general orientation and shape than grid-based approaches, but it still uses a

global density threshold. Recently, Moise and Sander [78] propose STATPC algorithm.

Since the statistically significant regions are typically redundant, they formulate the

problem as extracting a reduced, non redundant set of statistically significant regions

from the data axis-parallel regions. The STATPC algorithm is actually an approxima-

tion algorithm to find a minimal set of these regions.

Projected clustering algorithms define a cluster as a subset of data points (rows)

and features (columns) where the data points are similar when projected on this sub-

set of features and dissimilar when projected on the other features. PROCLUS [3] is

the first projected clustering algorithm which selects a set of medoids and iteratively

refines the clustering. Initially some data points are chosen as the medoids. But before

assigning every data point to the nearest medoids, each medoid is first assigned a set of

neighboring objects that are close to it in the input space to form a tentative cluster.

For each tentative cluster, all dimension are sorted according to the average distance

between the projections of the mediod and the neighbor objects. l dimensions with the

smallest average distance are selected as the relevant dimensions for each cluster, where

l is the user parameter. Normal object assignment then resumes, but the distance be-

tween an object and a medoid is computed using only the selected dimensions. Medoids

with few assigned objects are replaced by some other objects to start a new iteration.

ORCLUS [4] is proposed to improve PROCLUS. DOC [83] is a hypercube approach

projected clustering algorithm, where each cluster is defined as a hypercube with width

2ω, where ω is a user parameter. To find a cluster, a pivot point is randomly chosen as

the cluster center and a small set of data points is randomly sampled to form a tenta-

tive cluster around the pivot point. A dimension is selected if and only if the distance

between the projected values of every sample and the pivot point on the dimension is

no more than ω. The tentative cluster is thus bounded by a hypercube with width

2ω. All data points falling into the hypercube are grouped to form a candidate cluster

and the candidate cluster with the best evaluation score is accepted. HARP [113] is a

hierarchical projected clustering algorithm. In HARP, at the beginning, each data point

is treated as a cluster and subsequently merged to form larger clusters.
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2.3 Preliminaries

2.3.1 Exponential Family Distributions

An exponential family distribution can be written in the form:

p(x|θ) = exp {〈φ(x),θ〉 − Z(θ)} , (2.1)

where θ is the natural parameter, φ(x) is the sufficient statistics and Z(θ) is the cu-

mulant function or log partition function. Z(θ) is defined by the following integral to

make sure p(x|θ) is a valid probability distribution:

Z(θ) = log

∫
exp〈φ(x),θ〉dx . (2.2)

Many commonly used probability density distributions, e.g., Bernoulli, Dirichlet, Gaus-

sian, can be written as exponential family distributions. Here, we use Bernoulli distri-

bution as an example and derive the exponential family distribution in the form (2.1)

p(x|α) = αx(1− α)1−x (2.3)

= exp
(
log
(
αx(1− α)1−x

))
(2.4)

= exp (x log α+ (1− x) log(1− α)) (2.5)

= exp

(
x log

α

1− α
+ log(1− α)

)
(2.6)

= exp
(
xθ − log(1 + eθ)

)
, (2.7)

where φ(x) = x, θ = log α
1−α and Z(θ) = log(1 + eθ).

A probability distribution p(θ) is called a conjugate prior to the exponential fam-

ily distribution p(x|θ) if the posterior distribution p(θ|x) has the same form as p(θ).

For example, the Gaussian distribution is conjugate to itself: if the likelihood func-

tion p(x|θ) is Gaussian, choosing a Guassian prior over the mean will ensure that the

posterior distribution is also a Gaussian. Conjugate priors are extremely useful tools

in Bayesian statistics, since they make things a lot more analytically tractable. In

the remainder of this section, we show that Beta distribution is the conjugate prior to
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Bernoulli distribution. The Beta-Bernoulli conjugate prior will be used in Chapter 3.

Recall that the Beta probability density function is as follows:

p(θ|α, β) =
1

B(α, β)
θα−1(1− θ)β−1 , (2.8)

where B is the beta function to ensure that the total probability integrates to 1. Assume

the Bernoulli distribution takes the form:

p(x|θ) = θx(1− θ)1−x , (2.9)

Then the posterior distribution can be written as:

p(θ|x, α, β) =
p(θ|α, β)p(x|θ)∫
p(θ|α, β)p(x|θ)dθ

(2.10)

=
θx(1− θ)1−xθα−1(1− θ)β−1

B(α, β)

B(α, β)∫
θx(1− θ)1−xθα−1(1− θ)β−1dθ

(2.11)

=
θα+x−1(1− θ)β−x

B(α+ x, β − x+ 1)
, (2.12)

which is exactly a Beta distribution parameterized by α+ x and β − x+ 1.

2.3.2 Finite Mixture Models

Assume we have a dataset X of N data points x1, . . . , xN . In a finite mixture model,

the dataset is modeled by a mixture of k probability distributions:

p(X|Θ,Π) =
N∏

i=1

k∑

j=1

πjp(xi|θj) , (2.13)

where πj is the weight on the jth component (
∑

j πj = 1) and p(x|θj) is the probability

density function for the jth component parameterized by θj . To generate a data point

using the finite mixture model, we first sample a component from the discrete distri-

bution Π and then generate the data point using the corresponding probability density

distribution.

Most of the existing literature has focussed on the case where the component distri-

butions are exponential family distributions, and the most widely used mixture models

are Gaussian mixture models, where each p(x|θ) is a Gaussian distribution. Maximum
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likelihood learning for finite mixture models can be done by applying the Expectation-

Maximization (EM) algorithm [26]. The EM algorithm iterates between two steps: (i)

For each data point xi, compute the posterior distribution p(ci = j|xi) conditioned on

the current parameter Θ estimation. The posterior distribution can be computed as:

p(ci = j|xi) =
πjp(xi|θj)∑
j′ πj′p(xi|θj′)

, (2.14)

where ci is the latent variable for xi and ci = j indicates that the data point is gener-

ated by the jth component. (ii)Optimize the model parameter Θ given the posterior

distributions computed in the first step. These two steps are iterated until convergence.



Chapter 3

Multiplicative Mixture Model for

Overlapping Clustering

In this Chapter, we present Multiplicative Mixture Models as an appropriate framework

for overlapping clustering. In Section 3.1, we present MMMs using exponential fam-

ily distributions as mixture components. Section 3.2 presents an efficient overlapping

clustering algorithm that alternates between inference and parameter estimation. In

section 3.3, we propose a kernelized overlapping clustering algorithm based on Gaus-

sian MMMs. The kernelized algorithm can allow non-linear separators for clusters. In

Section 3.4, we present experimental results on both simulated and real datasets to

demonstrate the efficacy of MMMs for overlapping clustering.

3.1 Multiplicative Mixture Models

Consider the traditional additive mixture model with k components whose density func-

tion is given by:

p(x|Θ) =

k∑

j=1

πjpj(x|θj) , (3.1)

where πj is the mixing weight for component j, pj(x|θj) is the probability density func-

tion for component j parameterized by θj and x is the data point under consideration.

From a generative model perspective, one first samples a component j with probabil-

ity πj, and then sample x ∼ pj(.|θj). Clearly, the model assumes each x to have been

21
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generated from one component, making the model unsuitable for overlapping clustering.

A few alternative approaches to mixture modeling based overlapping clustering have

been proposed in recent years [10, 8, 88]. In this paper, we consider a multiplicative mix-

ture model motivated by the product-of-experts model of [51], more recently presented

in the context of mixture modeling by [50]. For k mixture components, we assume a

(latent) binary vector z = [z1, . . . , zk] such that the conditional probability

p(x|z,Θ) =
1

c(z)

k∏

j=1

pj(x|θj)
zj , (3.2)

where c(z) is a normalization constant. The latent boolean vector z indicates which

components participated in generating x, and zj ∈ {0, 1} without any restrictions. If

π(z) defines an appropriate prior over z, then we have

p(x|Θ) =
∑

z

π(z)

c(z)

k∏

j=1

pj(x|θj)
zj . (3.3)

From a generative model perspective, one samples z with probability π(z), and then

samples x ∼ p(x|z,Θ). Since z can have multiple components as 1, the model is clearly

well suited for overlapping clustering.

There are, however, two issues with the above multiplicative model. First, the model

may not be well defined when z = 0, the all zeros vector. We emphasize that this case

should not be ignored by setting π(0) = 0, or something equivalent. In several real life

datasets, there are points which do not naturally belong to any cluster. Rather than

forcing them into an existing cluster, it may be more meaningful to have a model which

can potentially leave a few points un-clustered, depending on the structure of the data.

Secondly, since z is a boolean vector of size k, inference methods may need to go over

all 2k possible states for each data point. Even with k = 20, it amounts to considering a

million states for each point in each iteration. In practice, we want inference algorithms

that are a few orders of magnitude faster, while maintaining reasonable accuracy. We

focus on the modeling issues in the rest of this section, and develop efficient algorithms

in Section 3.2.
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3.1.1 Exponential Family Mixtures

To make the discussion concrete, we focus on MMMs where the components are expo-

nential family distributions. Recall that a distribution is in the exponential family if

the density function with respect to a base measure can be written in the form:

p(x|θ) =
dP (x|θ)

dP0(x)
= exp{s(x)T θ − ψ(θ)} , (3.4)

where θ is the natural parameter, s(x) is the sufficient statistic, and ψ(θ) is the cumulant

function, which is a convex function of Legendre type [87]. Without loss of generality, we

assume ψ(0) = 0. With the component distributions being from the same exponential

family, the conditional probability in (3.2) becomes

p(x|Θ,z) =
1

c(z)
exp





k∑

j=1

zjs(x)
T θj − zjψ(θj)



 . (3.5)

The normalization c(z) must be such that

1 =
1

c(z)

∫
exp



s(x)

T
k∑

j=1

zjθj −
k∑

j=1

zjψ(θj)



 dP0(x)

=
exp{−

∑k
j=1 zjψ(θj)}

c(z)

∫
exp



s(x)

T
k∑

j=1

zjθj



 dP0(x) .

By definition of the cumulant function, we have
∫
exp{s(x)T θ}dP0(x) = exp{ψ(θ)}.

Now if the natural parameter is
∑k

j=1 zjθj,

∫
exp



s(x)

T
k∑

j=1

zjθj



 dP0(x) = exp



ψ




k∑

j=1

zjθj






 .

It follows that

c(z) = exp



ψ




k∑

j=1

zjθj


−

k∑

j=1

zjψ(θj)



 .

Making use of the closed form for c(z), we have

p(x|Θ,z) = exp



s(x)

T
∑

j

zjθj − ψ




k∑

j=1

zjθj






 . (3.6)
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Figure 3.1: Multiplicative Mixture with 2 components. Blue points correspond to z =
[1 1].

So p(x|Θ,z) is a distribution in the same exponential family as the component distri-

butions, with natural parameter
∑

j zjθj.

Consider the component distributions to be multi-variate Gaussians. For any given

z, a direct calculation shows that p(x|z,Θ) is a Gaussian distribution with mean µ̄ and

covariance Σ̄ where

Σ̄
−1

=

k+1∑

j=1

zjΣ
−1
j and µ̄ = Σ̄




k+1∑

j=1

zjΣ
−1
j µj


 .

Figure 3.1 shows samples drawn from a multiplicative mixture of two 2-dimensional

Gaussian distributions with different choices of z. The red and green points respectively

correspond to z = [1 0] and z = [0 1], i.e., drawn from the component Gaussians; the

blue points correspond to z = [1 1], i.e., the overlapping points, and hence come from

another Gaussian distribution as discussed above.

3.1.2 The Noise Component

When z = 0, from (3.5) it follows that p(x|z,Θ) = 1, which may not be a well defined

density function depending on the domain of x, e.g., when x ∈ R
d,
∫
Rd p(x|z,Θ) =∞,

as well as the choice of the base measure P0(x). For example, the product model is

not meaningful even for 1-dimensional Gaussians with z = 0. Intuitively, the points

corresponding to z = 0 may be considered as “noise” in that they do not follow the

cluster structure implied by the multiplicative mixture model. To incorporate this into
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the generative model, we introduce another parametric exponential family as the noise

component. The noise component does not necessarily come from the same exponential

family as other base components.

Introducing another (latent) boolean variable zk+1 for the noise component, which

is 1 only when z = 0, and 0 otherwise, the conditional probability for the new model is

given by

p(x|z, zk+1,Θ) =
1

c(z)

k+1∏

j=1

pj(x|θj)
zj . (3.7)

3.1.3 Generative Model

A complete specification of the model requires an appropriate prior π(z) over z. Since

z is a boolean vector, we assume each component zj to be sampled from a Bernoulli

distribution φj , which itself has been drawn from a Beta distribution Beta(αj , βj). The

generative model (Figure 3.2) for a sample x can be described as follows:

1. Draw φj |{αj , βj} ∼ Beta(αj , βj), for j = 1, . . . , k.

2. Draw zj |φj ∼ Bernoulli(φj), for j = 1, . . . , k.

3. If z = 0, zk+1 = 1, else zk+1 = 0.

4. Draw x|{z, zk+1,Θ} ∼
1

c(z)

∏k+1
j=1 pj(x|θj)

zj .

k

α β

z

x

k

θ

k

z k+1

n

θ k+1

φ

Figure 3.2: Bayesian overlapping clustering model.
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Based on the above model, the joint distribution

p(x,z,φ|α,β,Θ) =
1

c(z)




k∏

j=1

p(φj |αj , βj)p(zj |φj)






k+1∏

j=1

p(x|θj)
zj


 .

The marginal distribution p(x|α,β,Θ) can be obtained by integrating out the latent

variables (φj , zj), j = 1, . . . , k.

3.2 Overlapping Clustering Algorithm

Given a set of data points {x1, . . . ,xn}, the task in overlapping clustering based on

MMMs is to simultaneously estimate the set of parameters (α,β,Θ) in the model, as

well as infer the latent cluster assignment vector z for each data point x. In this paper,

we formulate the problem as one of finding the mode of the joint distribution of the

observable and the corresponding latent cluster assignment p(x,z|α, β,Θ). Noting that

(x,z) for different data points are conditionally independent, the problem can be posed

as maximizing the following objective function:

L(z,α,β,Θ) =

n∑

i=1

log p(xi,zi|α,β,Θ)

=

n∑

i=1

log p(zi|α,β) +
n∑

i=1

log p(xi|zi,Θ)

=
n∑

i=1

k∑

j=1

log

(∫

φi,j

p(zi,j |φi,j)p(φi,j |αj , βj) dφi,j

)
+

n∑

i=1




k+1∑

j=1

zi,j log p(xi|θj)− log c(zi)


 .

(3.8)

Based on the above objective function, we propose an EM-style alternating maximiza-

tion algorithm to do inference and estimation. In the E- or inference step, given a set

of parameter values (α,β,Θ), we optimize L with respect to zi, i = 1, . . . , n. In the M-

or estimation step, for a given set of overlapping clusterings z, we optimize L over the

parameters (α,β,Θ). The alternating iterations are assumed to have converged when

either no zi changes in the inference step, or when the maximum absolute change over

all parameters in the estimation step is below a threshold.
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3.2.1 Inference

First, we focus on the inference step, which maximizes L over z given the parameters. A

naive approach to optimizing over z is to try every possible value of z, and choose the one

which gives the highest log-likelihood. Such an approach has to go over 2k possibilities

for each x in each iteration. As a result, such an approach will be computationally

inefficient and impractical even for moderate k. An alternative approach is to use a

fast heuristic which ensures that the log-likelihood is non-decreasing. We follow this

strategy by adopting an idea from the literature [8].

For any x, let z0 be the assignment vector from the previous inference step, let

ej, j = 1, . . . , k, be the boolean vector with the jth component being 1, and all else

zero, and E be the set of all such vectors. The heuristic tries k threads tj , j = 1, . . . , k,

each starting with z1j = z0 + ej, j = 1, . . . , k. In any thread, the algorithm first

computes the log-likelihood for z1j ; then, the algorithm finds the best assignment among

z2jj′ = z1j + ej′ , where ej′ ∈ E \ {ej}; in the next step, the best assignment among

z3jj′j′′ = z2jj′ + ej′′ , where ej′′ ∈ E \ {ej, ej′}; and so on. If the best z at any step is

better than the best at the next step, the thread terminates setting zj∗ = z. Finally,

the algorithm picks the best zj∗ among j = 1, . . . , k. Since there are k threads, each

thread has at most k steps, and each step has at most k evaluations of the log-likelihood,

the complexity of the heuristic is O(k3) (the number of evaluations is at most k
(
k
2

)
).

Furthermore, it is guaranteed to give an assignment z that is at least as good as the old

assignment, so that the log-likelihood is non-decreasing over iterations. In practice, the

heuristic took much less than worst case k
(k
2

)
and was very fast, making it appropriate

for large datasets with moderate to large k.

3.2.2 Estimation

In the estimation step, for a given set of overlapping cluster assignments, we optimize

L over the parameters (α,β,Θ). The optimization can be broken into independent

two parts—over the parameters (α,β) of the Beta distributions, and over the natural

parameters Θ of the component exponential family distributions. For a given set of z,

let mj be the total number of zi,j that are 1, so that (n−mj) is the total number of zi,j

that are 0. A direct calculation based on taking derivatives w.r.t. (αj , βj) and setting
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it to 0 shows that the optimal parameters satisfy the following equation:

αj

βj
=

mj

n−mj
.

Setting βj = 1, we only update αj = mj/(n −mj), j = 1, . . . , k in each iteration.

The dependency on the component model parameters is captured by the second term

in (4.11). We show that for any exponential family distribution, the objective function

L is concave in each θj given all other parameters are held constant. Using (3.6) in

(4.11), the objective function can be written as a function of Θ given by

f(Θ) =

n∑

i=1




k+1∑

j=1

zi,j log p(xi|θj)− log c(zi)




=

n∑

i=1


s(xi)

T
k+1∑

j=1

zi,jθj − ψ




k+1∑

j=1

zi,jθj




 .

Since ψ is the cumulant of an exponential family, it is a convex function of Legendre

type, implying that it is in C∞. Computing the second derivative of f(Θ) with respect

to θj, we have

∇2
θjf(Θ) = −

n∑

i=1

zi,j∇
2
θjψ

(
k+1∑

h=1

zi,hθh

)
,

which is negative, since ψ is a convex function implying ∇2ψ is positive. Hence, f(Θ) is

a concave function of θj. In order to find the maximizer θ∗j given all the other parameters

θh, h 6= j, taking gradient and setting it to 0, we obtain

θ∗j =
∑

i:zi,j=1

k+1∑

h=1
h 6=j

zi,hθh + (∇ψ)−1



∑

i:zi,j=1

s(xi)


 .

Since ψ is a Legendre function, the function (∇ψ)−1 will be well defined and equal

to ∇φ, where φ = ψ∗, the conjugate of the cumulant function ψ. The actual update

equation for any exponential family can be derived by plugging in the specific cumulant

function ψ and sufficient statistics s(x).

3.3 Kernelized Overlapping Clustering

In this section, we show that the proposed multiplicative model can be kernelized, and

the overlapping clustering algorithm can be extended to the general case. There are two
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key advantages to the kernelized extension: (i) Individual base clusters can be separated

by non-linear boundaries, making the approach applicable to more complex data, and

(ii) Overlapping clustering can be applied to structured data, such as strings, trees,

graphs, etc., for which a meaningful kernel can be defined [91]. To make the kernelized

extension, we implicitly map the data points to a high dimensional space and assume

that in the high dimensional space there are k spherical Gaussian clusters. If φ(.) is the

mapping function, a Gaussian in the high dimensional space can be represented as :

p(φ(x)|µ,Σ) =
exp

(
−1

2(φ(x)− µ)TΣ−1(φ(x)− µ)
)

(2π)D/2|Σ|1/2

=
exp

(
−a

2 〈φ(x), φ(x)〉+ a〈φ(x),µ)〉 − a
2 〈µ,µ〉

)

(2π)D/2a−D/2
,

where a = 1
σ2 is the inverse of the Gaussian variance so that Σ−1 = aI, µ is the mean of

the Gaussian and D is the high dimension. Plugging the above expression into (3.7),

the log-likelihood of MMM with respect to a single data point x becomes :

log p(φ(x)|z, µ̄, Σ̄) = −
D

2
log(2π) +

D

2
log(ā)−

ā

2
〈φ(x), φ(x)〉+ ā〈φ(x), µ̄〉 −

ā

2
〈µ̄, µ̄〉 ,

(3.9)

where ā =
∑k+1

j=1 zjaj and µ̄ =
∑k+1

j=1 zjajµj/ā.

A direct calculation for the estimation step shows when each component in MMM

is a Gaussian, the mean of each Gaussian µj , j = 1, . . . , k can be estimated using an

appropriate linear combination of all the data points φ(xi), i = 1, . . . , n. Let µj =
∑n

i=1 ci,jφ(xi) and ci,j ∈ R, we have:

〈φ(x), µ̄〉 =
1

ā

k+1∑

j=1

〈φ(x), zjajµj〉 =
1

ā

k+1∑

j=1

n∑

i=1

zjajci,j〈φ(x), φ(xi)〉 ,

〈µ̄, µ̄〉 =
1

ā2
〈
k+1∑

j=1

zjajµj ,

k+1∑

j′=1

zj′aj′µj′〉

=
1

ā2

k+1∑

j=1

k+1∑

j′=1

zjzj′ajaj′
n∑

i=1

n∑

i′=1

ci,jci′,j′〈φ(xi), φ(xi′)〉 .

Suppose the kernel similarity matrix is K, replacing the inner product 〈φ(xi), φ(xi′)〉

with K(xi,xi′), and plugging in the kernelized terms back in (3.9), we obtain the
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Variance Ratio 1 # Noisy Points Ratio 2

0.01 0.9572 ± 0.0048 9 0.8889 ± 0.0000

0.05 0.9320 ± 0.0037 7 0.5429 ± 0.1195

0.10 0.9240 ± 0.0081 4 0.4500 ± 0.1118

0.20 0.8824 ± 0.0193 5 0.4400 ± 0.0894

Table 3.1: Clustering accuracy on 4 simulated datasets.

objective function for kernelized overlapping clustering algorithm. The inference and

estimation step remains the same, except that we need to estimate ci,j , j = 1, . . . , k+1,

instead of µj, j = 1, . . . , k + 1.

3.4 Experimental Results

In this section, we present experimental results on simulated datasets, UCI benchmark

datasets and a microarray gene expression dataset.

3.4.1 Simulated Datasets

We start with a simple setting. Consider four 2-dimensional spherical Gaussian clusters

which centers at (2,2), (-2,2), (2,-2) and (-2,-2) and the noisy cluster centers at (0,0). We

create 4 datasets and each dataset has 400 data points. The variances of the datasets are

0.01, 0.05, 0.10 and 0.20, one for each. The data distribution plots for two datasets are

in Figure 2. The magenta points belong to one cluster, the blue points are overlapping,

and the red points are noise. Note that as the variance increases, the cluster structure

is less clear.

We run the overlapping clustering algorithm on all 4 data sets and compute two

ratios: Ratio 1 is the fraction of data points that get the correct cluster assignment,

and Ratio 2 is the fraction of the noisy data points which are correctly detected by

the algorithm (Table 3.1). When the variance is small, the algorithm works very well

in getting the correct overlapping cluster assignments as well as detecting outliers. As

expected, the performance degrades with increasing variance.

We also test our algorithm on a larger dataset, which has 2000 points from ten

15-dimensional Gaussian clusters (Table 3.2). The parameters in the generative model
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Figure 3.3: Data distributions with different variances.

are learned by running the overlapping clustering algorithm on the Pendigits dataset in

UCI Machine Learning Repository.

# Errors 0 1 2 3 4 5

Mean 0.8629 0.0949 0.0264 0.0115 0.0039 0.0004

Std 0.0313 0.0079 0.0119 0.0149 0.0062 0.0009

Table 3.2: Clustering accuracy on simulated data: Row 1 measures the number of cluster assign-
ment errors made, and Row 2 and 3 are the mean and standard deviation of the corresponding
fraction of the dataset.

3.4.2 UCI Datasets Based on Overlapping Clustering Algorithm with-

out Kernels

We run the overlapping clustering algorithm on 8 UCI datasets (Table 3.3). For all

experiments reported, we set k to be the true number of classes, and use multivariate

Gaussian with diagonal covariance matrix to model each cluster. Since the proposed

algorithm is based on alternate maximization, careful initialization is necessary. We
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Iris Ionosphere Vowel Wdbc Pima Segment Landsat Pendigits

k 3 2 11 2 2 10 6 10

d 4 32 10 30 8 16 36 15

n 150 351 528 569 768 2310 6435 10922

Table 3.3: Data Sets.

adopt the semi-supervised seeding approach [2]: we randomly select 10% of the data

points from each class and each base cluster is initialized using the means and variances

of the selected data points from the class. We run the algorithm on each dataset 5 times

with different initialization and report the result based on the one which has the highest

log-likelihood.

To make comparisons, we use 2 baseline algorithms. The first one is the overlapping

clustering algorithm described in [9], which we refer to as BSK algorithm. The second

one is the EM algorithm based on Gaussian mixture models. To get overlapping clus-

tering from EM, we threshold the posterior probability: for a given threshold t, if for

any cluster j the posterior probability p(j|x) ≥ t, we consider x belongs to cluster j.

The initialization and convergence criterion are the same for all the algorithms.

Since the UCI datasets do not have overlapping labels, we evaluate the algorithms

using predictions based on the overlapping clustering, e.g., points with multiple cluster

assignments are possibly close to the boundary of classes, and are good candidates for

support vectors in a Support Vector Machine (SVM) classifier. Before getting to the

actual experiments, we note that a dataset can be split into three subsets based on

the cluster assignments: (i) pure data points, which belong to only one cluster, (ii)

overlapping data points, which belong to more than one cluster, and (iii) noisy data

points, which do not belong to any cluster.

Experiment 1: We study the overlapping data points with the following hypothesis—

overlapping points lie close to the boundary of classes, and have higher chance of be-

coming support vectors in a SVM classifier. To test the hypothesis, we train a SVM

classifier, based on LIBSVM [20], using linear kernel and default parameter settings

on each dataset, and obtain the support vectors. Then, for each dataset, we compute

the following three ratios: Ratio 1 is the fraction of support vectors in the data set,

i.e., |Support Vectors|
n . Ratio 2 (Precision) is the fraction of overlapping points that are

support vectors, i.e., |Overlapping∩Support Vectors|
|Overlapping| and Ratio 3 (Recall) is the fraction of
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support vectors that are overlapping points, i.e., |Overlapping∩Support Vectors|
|Support Vectors| .

Based on our hypothesis, we expect Ratio 1 < Ratio 2. The result is listed in

Table 3.4. For the overlapping clustering algorithm, the inequality is true on 7 datasets.

We also find that the set of overlapping data points detected by our algorithm has a

reasonable intersection with that of support vectors. However, BSK algorithm either

fails to find any overlapping points on 6 datasets (Ratio 2 is N/A) or finds only few

overlapping data points (9 for Ionosphere and 6 for Segment). For EM algorithm,

Ratio 2 is larger than Ratio 1 in most cases, but Ratio 3 is usually very small, which

indicates that EM algorithm tends to give few overlapping points. This observation

can be explained as follows : if one of the posterior probabilities p(j|x) is large, all

the other posterior probabilities will become relatively smaller since
∑k

j=1 p(j|x) = 1.

So when we threshold on the posterior probability, we get very few overlapping data

points, making EM unsuitable for overlapping clustering. The phenomenon is obvious

for datasets with larger values of k, such as Landsat, Vowel, and Segment.

Experiment 2: The second experiment involves the union of overlapping and noisy

data points. Since the overlapping points belong to multiple clusters and noisy data

points do not belong to any cluster, the hypothesis is that they should have higher

classification error rate. Assuming there are m overlapping and noisy points, the second

experiment proceeds as follows: We train a SVM using the entire dataset, test it on

the overlapping and noisy data points to get Error Rate 1. Then we test the SVM

on m random training samples (repeated 10 times), and get Error Rate 2. Now, our

hypothesis implies Error Rate 1 > Error Rate 2. We also calculate the pair-wise p-value.

If our hypothesis is valid, we should expect a low p-value.

The experiment results are listed in Table 5. For overlapping clustering algorithm,

the inequality holds on most of the datasets. As for BSK, only 3 datasets support the

hypothesis. The result based on EM is listed in Table 6. Error Rate 1 is larger than

Error Rate 2 in most cases and the p-value is low especially for small threshold.

Experiment 3: The third experiment involves pure data points. The experiment

proceeds as follows: The SVM is trained using a 10-fold cross validation on the original

data set. In each fold, for the test points which got the correct label, we compute the

fraction of pure data points (Ratio 1). For the test points which got the wrong label,

we compute the fraction of pure data points (Ratio 2). The hypothesis is that since
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pure points are not close to class boundaries, the correctly predicted points will mostly

be pure, i.e., Ratio 1 > Ratio 2.

The results are listed in Table 3.7 along with the 10-fold cross validation classification

error rate and the p-values for a paired t-test. For overlapping clustering algorithm, the

inequality holds for most of the datasets. However, for BSK, only 2 datasets support

the hypothesis. The results based on EM is listed in Table 3.8. As we can see, the

p-value is relatively larger in quite a few cases.

3.4.3 UCI Datasets Based on Kernelized Overlapping Clustering Al-

gorithm

We also test the kernelized overlapping clustering algorithm on the 8 UCI datasets.

We use RBF kernel exp(−‖x−y‖2

d ) in the algorithm, where d is the dimension of the

original dataset. To match the assumption of using spherical Gaussians, we first z-score

the datasets. The baseline algorithm is the overlapping clustering algorithm without

kernels. After running both algorithms using five different initializations, we report the

results based on the initialization which leads to the highest log-likelihood for the over-

lapping clustering algorithm without kernels. The SVM is trained using RBF kernel

with default settings. We report the results of kernelized overlapping clustering algo-

rithm on different dimensions D1 . We still compared both algorithms using the 3

experiments. Table 3.9 represents the results of experiment 1. It shows that the ker-

nelized overlapping clustering algorithm can have higher precision (Ratio 2) than that

of baseline algorithm on most of the datasets, while maintaining higher or similar recall

(Ratio 3). For Experiment 2, the hypothesis Error Rate 1 > Error Rate 2 is supported

on all the datasets by both two algorithms. For Experiment 3, the hypothesis Ratio

1 > Ratio 2 holds on most of the datasets for both algorithms. We do not show the

detailed results due to lack of space.

We use the results on z-scored Iris as an example to show that kernelization helps to

obtain better clustering quality. Figure 3.4 shows the clustering effect of both algorithms

on a two-dimensional space. The red, blue and magenta points represent pure points

and others being overlapping points. The cluster represented by the magenta points is

far away from the other two clusters and ideally all the points at the right bottom corner

1 As it is proved in [91], the largest possible D is the size of the dataset n.



35

−0.12 −0.11 −0.1 −0.09 −0.08 −0.07 −0.06 −0.05
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(a) Without kernel

−0.12 −0.11 −0.1 −0.09 −0.08 −0.07 −0.06 −0.05
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(b) With kernel

Figure 3.4: The clustering effect of two algorithms on z-scored Iris (best seen in color).

should be labeled as pure points. However, the overlapping algorithm without kernels

finds 7 points (brown and black) as overlapping points. The kernelized algorithm only

assigns one point (blue) to the blue cluster.

3.4.4 Microarray Gene Expresssion Dataset

To find an application for the overlapping clustering algorithm, we make use of a mi-

croarray gene expression dataset. The dataset is in the form of a matrix, where each

row represents a gene and each column represents an experimental condition. The entry

of the matrix is a measurement of the activity of a gene under a certain experimental

condition. Our goal is to cluster the genes into multiple biological processes based on the

expression profiles. Since many genes are known to be multi-functional, we would ex-

pect that some genes participate in more than one biological processes, thus overlapping

clustering is a natural approach for the problem.

We evaluated our algorithm on a yeast microarray gene expression dataset. The

dataset consists of 4062 genes and 215 experimental conditions. We report results on

1354 genes that have significant changes in the gene expression, i.e., 1/3 of the genes

that have the highest variances of gene expression over the 215 experimental conditions.

The number of clusters k is fixed to be 30. As before, we compare our overlapping

clustering algorithm with BSK algorithm [10] and EM. We initialize all the algorithms

based on the preliminary clustering result given by kmeans.

Overall, our overlapping clustering algorithm predicts that 556 genes participate in

only one process, 552 in two, 219 in three and 27 in four or more, while BSK algorithm

discovers that 95 genes do not belong to any process and 397 participate in only one
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process, 383 in two, 255 in three and 224 in four or more. For EM algorithm, we set

the posterior probability threshold to be 0.01. Based on the analysis in the previous

section, it is not surprising to see that EM gives very few overlapping genes even under

this low threshold: it predicts 1324 genes participate in only one process, 27 in two and

3 in three or more. This result further illustrates that EM should not be considered for

overlapping clustering on complex datasets.

To evaluate whether the cluster assignments for the genes are reasonable from a

biological perspective, we check if the genes in each learned biological process show

any enrichment for known annotations. We make use of Gene Ontology Term Finder2

online tool, which searches for shared annotations given a set of genes and computes an

associated p-value. The p-value measures the probability of observing a group of genes

to be annotated with a certain annotation purely by chance. If a cluster of genes indeed

correspond to known biological processes, we would expect a low p-value. We consider

an annotation to be significant if the p-value associated with it is less than 10−4. Both

the overlapping clustering algorithm and BSK algorithm discover 94 different significant

annotations. Among the 62 common significant annotations, the overlapping clustering

algorithm performs better in 37 (60%) of them with lower p-values. In case a significant

annotation presents in more than one learned processes in any algorithm, we pick the

one with the lowest p-value.

We also test the kernelized overlapping clustering algorithm on the z-scored dataset.

We try three different RBF kernels, exp(−‖x−y‖2

σ2 ), σ2 = 250, 500, 750, and specify the

high dimension D to be 1354, the number of genes we use in the experiment. The

detailed result is listed in Table 3.10. Figure 3.5 shows the scatter plot of the negative

log p-value of the common significant annotations discovered by kernelized overlapping

clustering algorithm, overlapping clustering algorithm without kernels, BSK algorithm

and EM algorithm. As the results show, the proposed overlapping algorithm, especially

the kernelized version, performs favorably compared to the baseline algorithms.

2 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder.pl
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Ratio 1
Ratio 2 (Precision) Ratio 3 (Recall)

MMM BSK
Thresholded EM

MMM BSK
Thresholded EM

0.01 0.1 0.2 0.01 0.1 0.2

Iris 0.1800 0.6250 N/A 0.5172 0.6250 0.6364 0.5556 0 0.5556 0.3704 0.2592

Ionosphere 0.7493 0.9223 0.7778 0.8462 0.7143 0.6667 0.3612 0.0266 0.0418 0.0190 0.0076

Vowel 0.6913 0.8537 N/A 0.6892 0.7609 0.7778 0.1918 0 0.2795 0.0959 0.0575

Wdbc 0.1002 0.2857 N/A 0.6000 0.7000 0.7778 0.6667 0 0.1579 0.1228 0.1228

Pima 0.5208 0.6626 N/A 0.6049 0.7226 0.6629 0.2700 0 0.4975 0.2475 0.1475

Segment 0.1242 0.1338 0.6667 0.2289 0.2157 0.1818 0.5958 0.0139 0.0662 0.0383 0.0209

Landsat 0.2810 0.3872 N/A 0.5582 0.5882 0.5645 0.7129 0 0.0769 0.0387 0.0194

Pendigits 0.0890 0.0658 N/A 0.0687 0.0622 0.0388 0.1779 0 0.0327 0.0133 0.0051

Table 3.4: Experiment 1: Overlapping points have larger fraction of support vectors, i.e, Ratio 2 >

Ratio 1. MMM performs substantially better than BSK. Thresholded EM can have reasonable precision
for some (high) thresholds, but gives poor recall on many datasets.

m Error Rate 1 Error Rate 2 p-value

Iris 55 0.0182 0.0091 ± 0.0096 0.0150

Ionosphere 103 0.4272 0.3524 ± 0.0465 0.0007

Vowel 89 0.1461 0.1213 ± 0.0197 0.0032

Wdbc 182 0.0934 0.0357 ± 0.0074 0.0000

Pima 209 0.2727 0.2263 ± 0.0293 0.0007

Segment 1336 0.0314 0.0283 ± 0.0035 0.0200

Landsat 3580 0.1422 0.1100 ± 0.0040 0.0000

Pendigits 2875 0.0132 0.018 ± 0.0021 0.0000

m Error Rate 1 Error Rate 2 p-value

Iris 12 0.0000 0.0000 N/A

Ionosphere 163 0.2638 0.3429 ± 0.0357 0.0001

Vowel 77 0.0130 0.1247 ± 0.0282 0.0000

Wdbc 6 0.5000 0.0833 ± 0.1179 0.0000

Pima 54 0.0370 0.2593 ± 0.0611 0.0000

Segment 489 0.0470 0.0327 ± 0.0079 0.0003

Landsat 1018 0.1071 0.1050 ± 0.0043 0.1662

Pendigits 1459 0.0295 0.0192 ± 0.0026 0.0000

(a) Overlapping clustering algorithm (b) BSK algorithm

Table 3.5: Experiment 2: Overlapping and noisy points have higher error rates in prediction, i.e.,
Error Rate 1 > Error Rate 2. MMM performs better than BSK.

Thresholded EM
0.01 0.1 0.2

m Error Rate 1 Error rate 2 p-value m Error Rate 1 Error rate 2 p-value m Error Rate 1 Error rate 2 p-value

Iris 29 0.0345 0.0069 ± 0.0145 0.0002 16 0.0000 0.0063 ± 0.0198 0.3434 11 0.0000 0.0364 ± 0.0469 0.0368

Ionosphere 13 0.5383 0.3692 ± 0.1076 0.0008 7 0.5714 0.3286 ± 0.0964 0.0000 3 0.3333 0.5333 ± 0.2811 0.0510

Vowel 148 0.1486 0.1311 ± 0.0169 0.0095 46 0.1304 0.1261 ± 0.0521 0.7976 27 0.1111 0.1407 ± 0.0737 0.2353

Wdbc 15 0.3333 0.0267 ± 0.0344 0.0000 10 0.5000 0.0100 ± 0.0316 0.0000 9 0.5556 0.0222 ± 0.0468 0.0000

Pima 329 0.2614 0.2240 ± 0.0162 0.0000 137 0.3504 0.2204 ± 0.0228 0.0000 89 0.3258 0.2101 ± 0.0305 0.0000

Segment 83 0.0482 0.0253 ± 0.0144 0.0007 51 0.0784 0.0373 ± 0.0313 0.0024 33 0.0909 0.0091 ± 0.0287 0.0000

Landsat 249 0.1767 0.1048 ± 0.0132 0.0000 119 0.1849 0.1143 ± 0.0292 0.0000 62 0.1452 0.0887 ± 0.0382 0.0012

Pendigits 466 0.0129 0.0170 ± 0.0031 0.0025 209 0.0048 0.0234 ± 0.0080 0.0000 129 0.0078 0.0171 ± 0.0095 0.0130

Table 3.6: Experiment 2 using Thresholded EM. Thresholded EM has similar performance with MMM
when the threshold is small.
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Error Rate Ratio 1 Ratio 2 p-value

Iris 0.0133 ± 0.0422 0.6405 ± 0.1092 N/A N/A

Ionosphere 0.3914 ± 0.0632 0.7384 ± 0.0755 0.6378 ± 0.1079 0.0590

Vowel 0.2077 ± 0.0451 0.8510 ± 0.0764 0.7585 ± 0.1285 0.0683

Wdbc 0.0446 ± 0.0256 0.6963 ± 0.0721 0.1783 ± 0.2097 0.0001

Pima 0.2355 ± 0.0374 0.7482 ± 0.0725 0.6770 ± 0.0670 0.0172

Segment 0.0381 ± 0.0100 0.4250 ± 0.0385 0.3468 ± 0.1358 0.1526

Landsat 0.1320 ± 0.0169 0.4711 ± 0.0158 0.2594 ± 0.0473 0.0000

Pendigits 0.0285 ± 0.0061 0.7372 ± 0.0184 0.7907 ± 0.0709 0.0390

Ratio 1 Ratio 2 p-value

Iris 0.9190 ± 0.0756 N/A N/A

Ionosphere 0.4633 ± 0.0681 0.6509 ± 0.1312 0.0024

Vowel 0.8254 ± 0.0279 0.9806 ± 0.0415 0.0000

Wdbc 0.9945 ± 0.0089 0.8917 ± 0.1845 0.1182

Pima 0.9136 ± 0.0341 0.9905 ± 0.0202 0.0001

Segment 0.7925 ± 0.0143 0.6810 ± 0.1540 0.0484

Landsat 0.8444 ± 0.0214 0.8251 ± 0.0330 0.2004

Pendigits 0.8703 ± 0.0126 0.7794 ± 0.0603 0.0006

(a) Overlapping clustering algorithm (b) BSK algorithm

Table 3.7: Experiment 3: Pure points have higher predictive accuracy, i.e., Ratio 1 > Ratio 2. MMM
performs better than BSK.

Thresholded EM
0.01 0.1 0.2

Ratio 1 Ratio 2 p-value Ratio 1 Ratio 2 p-value Ratio 1 Ratio 2 p-value

Iris 0.8179 ± 0.0988 N/A N/A 0.8990 ± 0.0899 N/A N/A 0.9333 ± 0.0629 N/A N/A

Ionosphere 0.9715 ± 0.0391 0.9495 ± 0.0700 0.3168 0.9854 ± 0.0237 0.9707 ± 0.0505 0.4450 0.9899 ± 0.0214 0.9929 ± 0.0226 0.7871

Vowel 0.7380 ± 0.0738 0.6469 ± 0.1961 0.1657 0.9233 ± 0.0306 0.8709 ± 0.1313 0.2187 0.9561 ± 0.0289 0.9225 ± 0.0645 0.1327

Wdbc 0.9814 ± 0.0152 0.8217 ± 0.2097 0.0437 0.9907 ± 0.0098 0.8217 ± 0.2097 0.0354 0.9925 ± 0.0097 0.8217 ±0.2097 0.0328

Pima 0.5927 ± 0.0623 0.5081 ± 0.0978 0.0756 0.8542 ± 0.0685 0.7355 ± 0.1196 0.0301 0.8974 ± 0.0539 0.8437 ±0.0833 0.1294

Segment 0.9654 ± 0.0069 0.9394 ± 0.0834 0.3565 0.9793 ± 0.0060 0.9465 ± 0.0709 0.1641 0.9865 ± 0.0047 0.9662 ±0.0591 0.2867

Landsat 0.9661 ± 0.0056 0.9302 ± 0.0298 0.0029 0.9844 ± 0.0055 0.9632 ± 0.0245 0.0249 0.9912 ± 0.0042 0.9857 ±0.0136 0.2169

Pendigits 0.9570 ± 0.0052 0.9794 ± 0.0199 0.0100 0.9805 ± 0.0028 0.9971 ± 0.0090 0.0005 0.9880 ± 0.0027 0.9971 ±0.0090 0.0202

Table 3.8: Experiment 3 using Thresholded EM. The p-value is relatively large for some datasets.

Ratio 1
Ratio 2 (Precision) Ratio 3 (Recall)

MMM
Kernelized MMM

MMM
Kernelized MMM

0.1n 0.2n 0.3n 0.4n 0.1n 0.2n 0.3n 0.4n

Iris 0.34 0.7917 0.6538 0.6071 0.5862 0.5862 0.3725 0.3333 0.3333 0.3333 0.3333

Ionosphere 0.8803 0.9266 0.9621 0.9535 0.9520 0.9520 0.3269 0.4110 0.3981 0.3851 0.3851

Vowel 0.8864 0.9881 0.9134 0.9128 0.9171 0.9202 0.1774 0.2479 0.3803 0.4252 0.4679

Wdbc 0.2091 0.4198 0.7500 0.6250 0.7000 0.7000 0.4622 0.0756 0.0840 0.1176 0.1176

Pima 0.5664 0.7477 1.0000 1.0000 1.0000 1.000 0.3678 0.0138 0.0161 0.0184 0.0184

Segment 0.2801 0.3336 0.3755 0.3723 0.3716 0.3713 0.6569 0.7063 0.7141 0.7156 0.7156

Landsat 0.3111 0.3709 0.4537 0.4495 0.4481 0.4478 0.6903 0.6269 0.6354 0.6359 0.6359

Pendigits 0.1433 0.1548 0.1696 0.1697 0.1700 0.1700 0.2616 0.4025 0.4032 0.4044 0.4044

Table 3.9: Experiment 1 using both kernelized and unkernelized MMM on z-scored datasets. Kernel-
ized MMM is run with several choices of D as fraction of the dataset size n. Kernelized MMM often
has higher precision and maintains higher or similar recall on most of the datasets.

Kernels # Significant Anno. BSK Unkernelized Algo.

exp(−‖x−y‖2

250 ) 107 67% (43/64) 67% (48/72)

exp(−‖x−y‖2

500 ) 109 68% (43/63) 63% (54/86)

exp(−‖x−y‖2

750 ) 101 75% (42/56) 60% (49/82)

Table 3.10: Kernelized overlapping algorithm consistently performs better than the two base-
lines in terms of enrichment. For the fractions (a/b), b is the number of common significant
annotations, and a is the number of times the kernelized algorithm performs better.
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(d) Kernel (σ2 = 250) vs Overlap
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(e) Kernel (σ2 = 500) vs BSK
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(g) Kernel (σ2 = 750) vs BSK
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Figure 3.5: Scatter plot of the negative log p-value of the common significant annotations

discovered by all the algorithms. Both the kernelized and unkernelized overlapping clustering

algorithms perform consistently better than the baseline algorithms.



Chapter 4

Bayesian Overlapping Subspace

Clustering

In this Chapter, we present a Bayesian Overlapping Subspace Clustering algorithm

which can find potentially overlapping sub-blocks, automatically detect the background

noise and naturally handle matrices with missing values. We propose the Bayesian

Overlapping Subspace Clustering model in Section 4.1 and present an EM-style algo-

rithm to learn the sub-block assignments in Section 4.2. The experimental results on

both simulated and real datasets are presented in Section 4.3.

4.1 Bayesian Overlapping Subspace Clustering Model

The proposed Bayesian Overlapping Subspace Clustering model assumes that the num-

ber of sub-blocks k is given as an input. Each sub-block is modeled using a parametric

distribution p(·|θj), [j]
k
1 ([j]k1 ≡ j = 1, . . . , k) from any suitable exponential family. The

noise entries are modeled using another distribution p(·|θk+1) from the same family.

However, the generative model for the observed data matrix is rather different from

traditional mixture models [73] as well as the more recent mixed membership models

such as LDA [16, 45].

Suppose the data matrix X has m rows and n columns, possibly with several missing

entries. The main idea behind the proposed model is as follows: Each row u and each

column v respectively have k-dimensional latent bit vectors zu
r and zv

c which indicate

40
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their sub-block memberships. The sub-block membership for any entry xuv in the

matrix is obtained by an element-wise (Hadamard) product of the corresponding row

and column bit vectors, i.e., z = zu
r ⊙ zv

c . Given the sub-block membership z and

the block distributions, the actual observation xuv is assumed to be generated by a

multiplicative mixture model so that

p(xuv|z
u
r ,z

v
c ,Θ) =

{
1

c(z)

∏k
j=1 pj(xuv|θj)

zj if z 6= 0 ,

p(xuv|θk+1) otherwise ,
(4.1)

where c(z) is a normalization factor to guarantee that p(·|zu
r ,z

v
c ,Θ) is a valid distribu-

tion. If z = zu
r ⊙ zv

c = 0, the all zeros vector, then xuv is assumed to be generated from

the noise component p(·|θk+1). In the sequel, we will use [zu
r ⊙ zv

c = 0] to denote the

indicator of this event. Figure 2.1 shows an example of a matrix generated from such

a model with two dense blocks. The Hadamard product based generation ensures that

the matrix has uniform/dense sub-blocks with possible overlaps while treating certain

rows/columns as noise.

Since it can be tricky to work directly with latent bit vectors, we introduce suitable

Bayesian priors on the sub-block memberships. In particular, the proposed model as-

sumes that there are k Beta distributions Beta(αj
r, β

j
r), [j]k1 corresponding to the rows

and k Beta distributions Beta(αj
c, β

j
c ), [j]k1 corresponding to the columns. Let πu,jr de-

note the Bernoulli parameter sampled from Beta(αj
r, β

j
r) for row u and sub-block j

where [u]m1 and [j]k1 . Similarly, let πv,jc denote the Bernoulli parameter sampled from

Beta(αj
c, β

j
c ) for column v and sub-block j, where [v]n1 and [j]k1 . The Beta-Bernoulli

distributions are assumed to be the priors for the latent row and column membership

vectors zu
r and zv

c .

The proposed model is shown as a plate diagram in Figure 4.1. In particular, the

generative process is as follows:

1. For each co-cluster [j]k1 :

(a) For each row u, [u]m1 :

(i) sample πu,jr ∼ Beta(αj
r, β

j
r ),

(ii) sample zu,jr ∼ Bernoulli(πu,jr ).

(b) For each column v, [v]n1 :
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Figure 4.1: Bayesian Overlapping Subspace Clustering model. z = zr ⊙ zc. NE is the
number of non-missing entries in the matrix.

(i) sample πv,jc ∼ Beta(αj
c, β

j
c ),

(ii) sample zv,jc ∼ Bernoulli(πv,jc ).

2. For each (non-missing) matrix entry xuv, [u]
m
1 [v]n1 , sample

xuv ∼





1
c(zu

r⊙zv
c )

∏k
j=1 p(xu,v|θj ,z

u,j
r ,zv,j

c ) if zur ⊙ zv
c 6= 0 ,

p(xu,v|θk+1) otherwise .

Since only the observed entries in the matrix are assumed to be generated by the above

process, the model naturally handles matrices with missing values.

Note that our Bayesian Overlapping Subspace Clustering model is different from the

co-clustering framework [47, 94], which defines a co-cluster as the entries belonging to

both a row and column cluster. Thus the rows of a co-cluster are restricted to those

of the corresponding row cluster and the columns of a co-cluster are restricted to those

of the corresponding column cluster. However, our model gives the algorithm much

more flexibility to assign rows and columns to dense sub-blocks by modeling the blocks

directly.
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4.2 Analysis and Algorithm

Let Πr and Πc be m× k and n× k latent matrices which have the Bernoulli parameters

for each row and column, Zr and Zc be m× k and n× k matrices that have the latent

row and column sub-block assignments for each row and column. For convenience of

notation, let ςuv be a indicator variable for observed entries in the matrix, i.e., ςuv = 1 if

entry xuv is not missing, and 0 otherwise. Then the joint distribution over all observed

and latent variables is given by

p(X,Zr, Zc,Πr,Πc|αr,βr,αc,βc,Θ) = p(Πr|αr,βr)p(Πc|αc,βc)p(Zr|Πr)p(Zc|Πc)p(X|Θ, Zr, Zc) .

Since the observations are statistically independent given Zr, Zc, we have

p(X|Θ, Zr, Zc) =
m∏

u=1

n∏

v=1

p(xuv|Θ,z
u
r ,z

v
c)

ςuv . (4.2)

Marginalizing over all latent variables, the conditional probability of generating the

matrix X given the parameters (αr,βr,αc,βc,Θ) is given by

p(X|αr,βr,αc,βc,Θ) (4.3)

=

∫

Πr,Πc

∑

Zr ,Zc

p(X,Zr, Zc,Πr,Πc|αr,βr,αc,βc,Θ)dΠrdΠc .

Πr and Πc are integrated out in (4.3) because of conjugacy : they are generated by

Beta distributions which are conjugate priors to Bernoulli distributions which generate

Zr and Zc. Thus (4.3) does not depend on Πr and Πc. It is also important to note the

conditional probability of observing X as in (4.3) is not the product of the conditional

probability of observing each entry, i.e.,

p(X|αr,βr,αc,βc,Θ) 6=
m∏

u=1

n∏

v=1

p(xu,v|αr,βr,αc,βc,Θ)ςuv .

The equality does not hold because the entries in the matrix are not conditionally inde-

pendent given the parameters (αr,βr,αc,βc,Θ). According to the generative process,

zu
r and zv

c are sampled only once for each row and each column, so that the observa-

tions in the same row/column get coupled. Note that this is a crucial departure from

several related mixture models which assume the joint probability of all observations to

be simply a product of the marginal probabilities.
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Given the entire matrix X, the learning task is to compute the model parameters

(α⋆
r,β

⋆
r ,α

⋆
c ,β

⋆
c ,Θ

⋆) which maximize log p(X|αr,βr,αc,βc,Θ). A general approach is

to use expectation maximization (EM) algorithm [74]. However, direct calculation of

log p(X|αr,βr,αc,βc,Θ) is intractable, indicating that a direct application of EM is

not possible. In this section, we propose an EM-like algorithm alternating between

approximate inference and optimal parameter estimation to tackle the learning task.

In the E-step, since (4.3) does not depend on Πr and Πc, we approximate the expec-

tation E[log p(X,Zr, Zc|αr,βr,αc,βc,Θ)] with respect to the posterior probability of

(Zr, Zc). In the M step, we estimate parameters (α⋆
r,β

⋆
r,α

⋆
c ,β

⋆
c ,Θ

⋆) which maximize

the expectation. We iterate between the E- and M-steps until the algorithm converges.

4.2.1 Inference

In the E-step, given the model parameters (αr,βr,αc,βc,Θ), the goal is to estimate

the expectation of the log-likelihood E[log p(X,Zr, Zc|αr,βr,αc,βc,Θ)] where the ex-

pectation is with respect to the posterior probability p(Zr, Zc|X,αr,βr,αc,βc,Θ). We

use Gibbs sampling to approximate the expectation [45, 40]. In particular, we com-

pute the conditional probabilities of each row variable zu,jr and column variable zv,jc and

construct a Markov chain based on the conditional probabilities. On convergence, the

chain will draw samples from the posterior joint distribution of (Zr, Zc), which in turn

can be used to get an approximate estimate of the expected log-likelihood.

If Z
−(u,j)
r denotes the binary matrix Zr excluding zu,jr , the conditional probability

of zu,jr = 1 is given by:

p(zu,jr = 1|Z−(u,j)
r , Zc,X,Θ) ∝ p(X|Zr, Zc,Θ)p(zu,jr = 1|Z−(u,j)

r ) ,

where p(X|Zr, Zc,Θ) is as in (4.2) and

p(zu,jr = 1|Z−(u,j)
r ) =

∫ 1

0
p(zu,jr = 1|πu,jr )p(πu,jr )dπu,jr =

αj
r

αj
r + βjr

. (4.4)

Note that (4.4) does not include the count on how many rows are assigned to sub-block

j and hence has a different form compared to that for LDA [45], because the Bernoulli
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parameters Πr and Πc are sampled once for each row and column. Now,

p(zu,jr = 1|Z−(u,j)
r , Zc,X,Θ)

∝
m∏

p=1

n∏

q=1

p(xp,q|z
p
r,z

q
c,Θ)ςpq .

αj
r

αj
r + βjr

, (4.5)

∝
n∏

q=1

p(xu,q|z
u
r ,z

q
c,Θ)ςuq .

αj
r

αj
r + βjr

, (4.6)

∝
n∏

q=1

(
p(xu,q|θj)

zq,jc .p(xu,q|θk+1)
[zu

r⊙z
q
c=0]

c(zu
r ⊙ z

q
c)

)ςuq

.
αj
r

αj
r + βjr

, (4.7)

where (4.6) follows since the probability of generating the entries in the rows except

u does not depend on the value of zu,jr , and (4.7) follows since whether the entry xu,q

belongs to sub-blocks other than j does not play a role in deciding the value of zu,jr in

the product term other than the overall normalization term c(zu
r ⊙ z

q
c).

The probability of zu,jr = 0 can be derived similarly as

p(zu,jr = 0|Z−(u,j)
r , Zc,X,Θ) ∝

n∏

q=1

(
p(xu,q|θk+1)

[zu
r⊙z

q
c=0]

c(zu
r ⊙ z

q
c)

)ςuq

.
βjr

αj
r + βjr

. (4.8)

Following the same argument, we derive the probability of zv,jc as:

p(zv,jc = 1|Zr, Z
−(v,j)
c ,X,Θ) ∝

m∏

p=1

(
p(xp,v|θj)

zp,jr .p(xp,v|θk+1)
[zu

r⊙z
q
c=0]

c(zu
r ⊙ z

q
c)

)ςpv

.
αj
c

αj
c + βjc

,

(4.9)

and

p(zv,jc = 0|Zr, Z
−(v,j)
c ,X,Θ) ∝

m∏

p=1

(
p(xp,v|θk+1)

[zu
r⊙z

q
c=0]

c(zu
r ⊙ z

q
c)

)ςpv

.
βjc

αj
c + βjc

. (4.10)

The true underlying posterior distribution of (Zr, Zc) may have multiple modes. To

prevent the sampling algorithm from getting stuck in local modes, we modify the Gibbs

sampler using simulated annealing [58]. Given a temperature parameter T , the sampling
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is done following

pT (zu,jr = 0| · · · ) =
p(zu,jr = 0| · · · )

1

T

p(zu,jr = 0| · · · )
1

T + p(zu,jr = 1| · · · )
1

T

,

pT (zu,jr = 1| · · · ) =
p(zu,jr = 1| · · · )

1

T

p(zu,jr = 0| · · · )
1

T + p(zu,jr = 1| · · · )
1

T

.

When T is high, the probability distribution is almost uniform, and when T is low, more

emphasis is given to high probability states. In practice, we start with a relatively high

T and gradually decrease T to 1, when the sampling distribution is exactly the posterior

distribution of Zr and Zc.

The sampling is run for enough iterations till it converges. Then we sample from

the stationary distribution (with suitable gaps) to obtain N independent and identi-

cally distributed samples of (Zr, Zc), where N is a predefined large number. From

the samples, the expectation of the log-likelihood can be empirically estimated as:
1
N

∑N
s=1 log p(X,Zr,s, Zc,s|αr,βr,αc,βc,Θ), where Zr,s and Zc,s correspond to the sth

samples.

4.2.2 Estimation

In M-step, we estimate (α⋆
r,β

⋆
r,α

⋆
c ,β

⋆
c ,Θ

⋆) which maximizes the expectation. Note

that, given Zr and Zc, each entry in the matrix is statistically independent of each

other. So the parameter estimation problem can be formulated as maximizing the

following expected log-likelihood objective function:

L(αr,βr,αc,βc,Θ)

=
N∑

s=1

log p(X,Zr,s, Zc,s|αr,αc,Θ)

=

N∑

s=1

log p(Zr,s|αr) +

N∑

s=1

log p(Zc,s|αc) +

N∑

s=1

log p(X|Zr,s, Zc,s,Θ)

=

N∑

s=1

m∑

u=1

k∑

j=1

log p(zu,jr,s |α
j
r) +

N∑

s=1

n∑

v=1

k∑

j=1

log p(zv,jc,s |α
j
c) +

N∑

s=1

m∑

u=1

n∑

v=1

ςuv log p(xu,v|z
u
r,s,z

v
c,s,Θ) .

(4.11)
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The optimization can be broken into two independent parts—over the parameters

(αr,βr,αc,βc) of the Beta distributions, and over the natural parameters Θ of the

exponential family distributions.

A direct calculation based on taking derivatives w.r.t. (αr,αc) and setting them to

0 shows that only the ratios αr

βr
and αc

βc
matter. So we set βr = βc = 1, the all ones

vector, and only update αr and αc in each iteration. The optimal (αr,αc) parameters

satisfy the following equation:

αj
r
⋆
=

∑N
s=1

∑m
u=1 z

u,j
r,s

Nm−
∑N

s=1

∑m
u=1 z

u,j
r,s

, (4.12)

αj
c
⋆
=

∑N
s=1

∑n
v=1 z

v,j
c,s

Nn−
∑N

s=1

∑n
v=1 z

v,j
c,s

, (4.13)

where j = 1, . . . , k.

A distribution is in the exponential family if the density function with respect to a

base measure can be written in the form:

p(x|θ) =
dP (x|θ)

dP0(x)
= exp{s(x)Tθ − ψ(θ)} , (4.14)

where θ is the natural parameter, s(x) is the sufficient statistic, and ψ(θ) is the cumulant

function, which is a convex function of Legendre type [87]. Using (4.14) and ignoring

the noise component for simplicity, the last term of the objective function (4.11) can be

rewritten in a function of Θ:

f(Θ) =
N∑

s=1

m∑

u=1

n∑

v=1

ςuvs(xuv)
T

k∑

j=1

zu,jr,s z
v,j
c,sθj −

N∑

s=1

m∑

u=1

n∑

v=1

ςuvψ




k∑

j=1

zu,jr,s z
v,j
c,sθj


 .

(4.15)

Computing the second derivative of f(Θ) with respect to θj, we have

∂2f(Θ)

∂θ2
j

= −
N∑

s=1

m∑

u=1

n∑

v=1

ςuvz
u,j
r,s z

v,j
c,s

∂2ψ
(∑k

h=1 z
u,h
r,s z

v,h
c,s θh

)

∂θ2
j

,

which is negative since ψ is a convex function so the second derivation of ψ is non-

negative. Hence, f(Θ) is a concave function of each θj (not necessarily jointly concave

on Θ). We propose to use a co-ordinate descent algorithm for estimating Θ, where we

optimize only one parameter while keeping the others fixed [102]. In order to find the
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maximizer θ∗
j given all the other parameters θh, h 6= j, taking gradient and setting it to

0, we obtain

θ⋆
j =

∑

ςuvz
u,j
r,s z

v,j
c,s=1

k∑

h=1
h 6=j

zu,hr,s z
v,h
c,s θh + (∇ψ)−1




∑

ςuvz
u,j
r,s z

v,j
c,s=1

s(xuv)


 . (4.16)

Since ψ is a Legendre function, the function (∇ψ)−1 will be well defined and equal to

∇φ, where φ = ψ∗, the conjugate of the cumulant function ψ. Hence, the above updates

can be efficiently implemented.

4.3 Experimental Results

In this section, we present experimental results on simulated datasets, a microarray gene

expression dataset and a movie recommendation dataset. First, we introduce some

additional notation to be used in this section: Tstart denotes the initial temperature

parameter in simulated annealing, fT < 1 denotes the multiplicative factor by which

the temperature goes down every IT iterations; and N is the number of samples drawn

from the stationary distribution.

Since we obtain several samples from the Markov chain after it converges, the final

row and column sub-block assignments are decided by the ‘vote for majority’ fashion :

if a row/column belongs to a sub-block in more than half of the samples, we consider

the row/column belongs to that corresponding sub-block.

The implementation of the baseline algorithms [78, 94, 33] are kindly provided by

the corresponding authors. The implementation of [65] is downloaded from the author’s

webpage.

4.3.1 Simulated Datasets

We first do experiment on two simulated datasets which are easy to visualize. Both

datasets are in the form of a 200×100 matrix, whose entries are initially sampled from a

background noise distribution. For the first dataset D1, we introduce 3 non-overlapping

uniform blocks (normally distributed with different means) to replace certain sub-blocks

in the matrix (Figure 4.2(a)). The actual dataset is obtained by randomly permuting
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the rows and columns of the matrix, so that the block structure is not apparent (Fig-

ure 4.2(b)). For the second dataset D2, we introduce 4 mildly overlapping dense blocks

where the overlapping entries are generated from the multiplicative model in (4.1)

(Figure 4.3(a)). As before, the actual dataset is obtained by a random row/column

permutation (Figure 4.3(b)). We also do experiment on two other simulated datasets

with larger number of sub-blocks, one with 10 blocks and the other with 15 blocks. And

we do not provide label information to STATPC on these two datasets.

We compare the performance of the proposed algorithm to a state-of-the-art sub-

space clustering algorithm called STATPC [78] and an overlapping clustering algo-

rithm [33], which we call MMM algorithm. STATPC finds non-redundant and statisti-

cally (overlapping) regions in high dimensional data. MMM finds overlapping clusters

and automatically detects the noisy data points. To make the three algorithms compa-

rable, MMM is used to cluster the entries in the matrix, instead of the rows. STATPC

can make use of the row cluster labels if available—we give it substantial advantage

by providing the true cluster labels for all the rows. For D1, since there is no overlap,

we provide the true cluster label. For D2, we provide the true cluster labels for the

non-overlapping rows, and one of the true cluster labels for the overlapping rows. On

the contrary, the proposed algorithm does not use any form of supervision. In particu-

lar, we run kmeans on the matrix entries to get the initial estimate of the component

parameter values for BOSC and MMM—in this case, means and standard deviations

of each Gaussian component. However, kmeans does not capture the structure of the

matrix, because it rarely assigns entries to the correct sub-blocks. The noise component

is initialized with the mean and standard deviation across all entries in the matrix. We

use Tstart = 10, fT = 0.67, IT = 50 and N = 50. We do the experiment three times on

each dataset. Since we get the same results, we only report one set of results.

We quantitatively measure the performance by calculating the clustering accuracy

(Table 4.1). We consider an output sub-block corresponds to a ground truth sub-

block if that ground truth sub-block is the majority in that output sub-block. The

overall clustering accuracy is computed along all the output sub-blocks generated by

each algorithm. In particular, suppose c1 is the number of ground truth sub-blocks, c2

is the number of output sub-blocks, and aij, [i]
c1
1 [j]c21 is the number of entries from the

ith ground truth block that are also in the jth output block. The clustering accuracy is
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defined as :

Clustering Accuracy =

∑c2
j=1maxi aij

∑c1
i=1

∑c2
j=1 aij

.

After the algorithms terminate, we re-permute the rows and columns back to the

original order and see if the sub-block structure has been discovered. The results of

the first two datasets for BOSC and STATPC are shown in Figure 4.2(c)-(d) and Fig-

ure 4.3(c)-(d). For D1, the proposed algorithm can accurately find the three uniform

blocks in the matrix; STATPC can approximately detect the three uniform blocks from

the rows (where labels are provided) but dose not find the correct columns for each block.

For D2, our algorithm can still find the correct structure except for a few mistakes in

the third co-cluster; however, STATPC, does not find meaningful block structures for

most of the rows and almost all of the columns. We can see from Table 4.1 that MMM

performs poorly, because it doesn’t take the correlation between rows and columns into

account, which also highlights the motivation of our work.
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(d) Results: STATPC

Figure 4.2: Results on D1: BOSC finds the correct structure along rows and columns,
whereas STATPC finds a reasonable structure only along rows.

Accuracy Dataset 1 Dataset 2 Dataset 3 Dataset 4

BOSC 1 0.8959 0.6813 0.5723

STATPC 0.7767 0.4786 0.2670 0.1286

MMM 0.5888 0.5287 0.4560 0.3549

Table 4.1: Clustering accuracy of BOSC, STATPC and MMM on four simulation
datasets.
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(d) Results: STATPC

Figure 4.3: Results on D2: BOSC mostly finds the correct structure along rows and
columns, whereas STATPC does not get a reasonable structure.

4.3.2 Microarray Gene Expression Dataset

The microarray gene expression dataset we use consists of 4062 genes and 215 exper-

imental conditions [77]. We first select 1000 genes that have the highest variance of

expressions over the 215 conditions. We run our algorithm on this 1000 × 215 matrix

and want to find subsets of genes which highly co-express under subsets of conditions.

The number of sub-blocks is set to be 30. The annealing parameters are set as follows:

Tstart = 500, fT = 0.67, IT = 75 and N = 100. As a strong baseline, we use the Plaid

bi-clustering algorithm [65] which has been extensively used for gene-expression anal-

ysis. The Plaid algorithm finds overlapping dense regions in gene-expression datasets.

We also compare our algorithm with a model-based overlapping co-clustering (MOC)

algorithm [93] and the state-of-the-art Bayesian co-clustering (BOC) algorithm [94].

To evaluate whether the dense blocks identified are meaningful from a biological

perspective, we check if the genes in each dense block show significant enrichment for

known biological process annotations. We make use of Gene Ontology Term Finder1

online tool, which searches for shared annotations given a set of genes and computes

an associated p-value. The p-value measures the probability of observing a group of

genes to be annotated with a certain annotation purely by chance. If genes in a dense

block indeed correspond to known biological processes, we would expect a low p-value.

1 http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl
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We consider an annotation to be significant if the p-value associated with it is less than

10−4.

We initialize all algorithms by running kmeans on matrix entries. For co-clustering

algorithms, we try different combinations of row/colum cluster numbers and report the

best results. The BOC algorithm estimates for each row/column the probability of

belonging to each row/column cluster. We consider that a row/column belongs to a

row/column cluster if it has the highest probability on that row/column cluster.

The result is listed in Table 4.2. BOSC identifies 24 blocks, 13 are found to have

significant enrichment. Most of the other blocks have p-values that are of the order of

10−4. In contrast, of the 30 ‘layers’ found by the Plaid model, only 8 have significant

enrichment. Among the 30 co-clusters find by the model-based overlapping co-clustering

algorithm, 10 have significant enrichment. The Bayesian co-clustering algorithm also

finds 10 blocks with significant enrichment.

Algorithms BOSC Plaid MOC BOC

Number of Blocks with Significant Enrichment 13 8 10 10

Table 4.2: BOSC finds more dense blocks with significant enrichment.

4.3.3 MovieLens Dataset

MovieLens2 is a movie rating dataset with 100,000 ratings from 943 users on 1682

movies. The ratings are on a 1-5 scale. We work with a subset with 568 users who

submitted at least 50 ratings and 603 movies which have at least 50 ratings. The result-

ing matrix has 73544 ratings and 79% missing entries. Since different users may have

different standards and ratings can be very personal, we z-score the ratings submitted

by each user. The annealing parameters are the same as those in the gene expression

experiment and we report results with k = 20.

The blocks inferred by BOSC are qualitatively meaningful, typically consisting of

sub-groups of users with similar ratings on subsets of movies. Most blocks are coherent

and contain either good or bad movies. For example, we find that a sub-block with

high ratings contains popular movies Dances with Wolves, Titanic, The Graduate, The

2 http://www.grouplens.org/taxonomy/term/14
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Bridges of Madison County and Speed ; another sub-block with movies which are not

well received has low ratings from a group of users: Chain Reaction, Waterworld and

The Phantom.

The model also finds significant overlapping structure on movies. Overall, 177 movies

are assigned to 1 sub-block, 219 movies are assigned to 2 sub-blocks, 108 movies belong

to 3 sub-blocks , 41 movies belong to 4 or more sub-blocks and 58 movies do not belong

to any sub-block. The overlapping structure is generally consistent with the reputation

of the movies. First, critically acclaimed movies usually belongs to sub-blocks with high

ratings. For example, Shawshank Redemption and The Silence of the Lambs belong to

4 sub-blocks with very high rating. The Godfather and Schindler’s List belong to 3

sub-blocks with high ratings. Secondly, movies which are generally not well-received by

critics, like Striptease and The Beautician and the Beast are both placed in 4 sub-blocks

with very low ratings. Last, some controversial movies are placed in different sub-blocks

with either high or low ratings. For example, Lost Highway, which gains some critical

recognition but is not a box office success, is in two dense blocks, one with very low

ratings and the other with very high ratings.

If we treat each genre as a cluster, the MovieLens dataset has naturally overlapping

cluster structure, because each movie may have several genres. Following the method-

ology in [93], we then cerate 2 subsets from the dataset we use above. The first dataset

contains 220 movies from 3 genres : animation, children’s and comedy. The second

dataset contains 225 movies from 3 genres : thriller, action and adventure. We run the

BOSC algorithm with k = 20 on these 2 datasets trying to discover genres based on the

belief that similarity in the user ratings gives an indication about whether the movies

are in related genres. Since the BOC algorithm [94] can handle datasets with missing

entries, we use it as the baseline. We initialize two algorithms by running kmeans on

the matrix entries. We compare precision, recall and F-measure over pairs of movies.

Two movies are in a pair if they belong to the same cluster/genre. Precision, recall and
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F-measure are calculated as follows:

Precision =
Number of Correctly Identified Pairs

Number of Identified Pairs
,

Recall =
Number of Correctly Identified Pairs

Number of Pairs in the Original Dataset
,

F-measure = 2×
Precision × Recall

Precision + Recall
.

For the BOC algorithm, we try different combinations of the number of row clusters

and column clusters and report the best result. We do the experiment on each dataset

three times. Since we get the same results, we only report one set of results, which is

listed in Table 4.3 and 4.4. Two algorithms have comparable performance on precision,

but BOSC has higher recall and F-score.

Dataset1 BOSC BOC

Precision 0.7722 0.7727

Recall 0.6050 0.3335

F-measure 0.6784 0.4659

Table 4.3: The performance of BOSC and BOC on the first dataset with animation,
children’s and comedy movies.

Dataset2 BOSC BOC

Precision 0.6496 0.6643

Recall 1 0.5567

F-measure 0.7876 0.6058

Table 4.4: The performance of BOSC and BOC on the second dataset with thriller,
action and adventure movies.
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Chapter 5

Motivation and Related Work

In this Chapter, we emphasis the emerging need of salable MAP inference algorithm in

Section 5.1. In Section 5.2, we formally define Markov random fields and review the

existing MAP inference algorithms.

5.1 Motivation

Discrete graphical models have found applications in a wide variety of problems, includ-

ing image analysis [40], speech recognition [54], bioinformatics [30] and error correcting

codes [72]. Hidden Markov models (HMMs) [14], Markov random fields (MRFs) [103],

and conditional random fields (CRFs) [64] are popular examples of discrete graphical

models which have found widespread usage in data analysis.

Given a discrete graphical model with known structure and parameters, the problem

of finding the most likely configuration of the states is known as the MAP inference

problem. For a tree-structured graph, the problem can be solved efficiently using a

suitable dynamic programming algorithm such as the max-product algorithm [63]. For

example, for HMMs, the most likely sequence of latent states can be found efficiently

using the Viterbi decoding algorithm [32]. For general graphs, however, the MAP

inference problem is a computationally intractable integer program and is NP-hard [103].

Existing approaches to solving the general case often consider a linear programming (LP)

relaxation of the integer program. Over the past few years, several algorithms have

been proposed to solve such graph-structured LPs [67, 61, 75, 71]. Such approaches

56
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can be broadly classified into two groups: primal methods which work with the original

variables, of which the proximal approach is among the most efficient [85], and dual

methods, which works on the dual variables, of which the dual decomposition approach

is currently the most efficient [96].

In the context of large scale data analysis, the ability to apply such methods ef-

ficiently to graphs of over millions or hundreds of millions of nodes is important and

necessary. Consider the problem of detecting droughts from precipitation data of the

past 100 years at a temporal resolution of a month and spatial resolution of 0.5◦ × 0.5◦

over land. A 3-dimensional MRF (latitude × longitude × time) with neighborhood

dependencies is a suitable model for such analysis since droughts have both spatial

and temporal continuity. Assuming a boolean indicator variable of drought at each

space-time location, the graph-structured LP relaxation of the MAP inference problem

in this context has to work with approximately 7 million variables and about double

that many constraints. The key bottleneck, even in the advanced algorithms for solving

graph-structured LPs, is that they are inherently sequential [85]. Given that climate

datasets are available at much higher resolutions, especially from climate model outputs

used by the Intergovernmental Panel on Climate Change (IPCC) for future climate pro-

jections, we need algorithms for solving graph structured LPs which efficiently scale to

problem sizes of millions or hundreds of millions of nodes. Further, due to the gener-

ality of the framework, the algorithms can find applications in other domains, such as

community detection in large scale social networks, which can have millions to hundreds

of millions of users (nodes) [98].

Driven by the emerging need for scalable MAP inference algorithms, we propose a

parallel alternating directions algorithm for solving graph-structured LPs. The over-

all structure of the algorithm is based on two ideas: tree-based decomposition of a

graph-structured LP [67] and the alternating directions method of multipliers (ADMM)

[17]. The tree decomposition breaks the problem into small but overlapping parts, each

involving small number of variables and constraints. The algorithm iterates between

doing updates to variables in individual parts in parallel followed by suitable aggrega-

tion, all within the framework of ADMM. However, unlike standard ADMM, we use a

novel inexact ADM augmented by a Bethe entropy regularization, which we refer to as

Bethe-ADMM. The unusual modification in Bethe-ADM leads to an efficient projection



58

of partial solutions to subsets of constraints, leading to highly efficient iterations, and

avoids a double-loop algorithm. Through rigorous analysis, we establish correctness and

convergence of the proposed Bethe-ADMM. We also discuss its efficient parallel MPI

implementation.

5.2 Related Work

5.2.1 Pairwise Markov Random Fields

A pairwise MRF is defined on an undirected graph G = (V,E), where V is the vertex

set and E is the edge set. Each node u ∈ V has a random variable Xu associated

with it, which can take value xu in some discrete space X = {1, . . . , k}. Concatenating

all the random variables Xu, ∀u ∈ V , we obtain an n dimensional random vector

X = {Xu|u ∈ V } ∈ X
n. We assume that the distribution P of X is a Markov random

field [103], meaning that it factors according to the structure of the undirected graph

G as follows: With fu : X 7→ R, ∀u ∈ V and fuv : X × X 7→ R, ∀(u, v) ∈ E denoting

nodewise and edgewise potential functions respectively, the distribution takes the form:

P (x) ∝ exp




∑

u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv)



 . (5.1)

We can also view the distribution defined on an MRF as an exponential family

distribution with sufficient statistics φ(x) and natural parameter θ ∈ R
d:

P (x|θ) =
1

Z(θ)
exp(〈θ, φ(x)〉) , (5.2)

where Z(θ) is a normalization constant or the partition function. In a pairwise MRF,

the sufficient statistics are restricted to be only over the nodes and edges of G. In the

most general form, they are indicator functions denoting local assignments to nodes and

edges. To be more specific, for each node u ∈ V , we have

Iu;j(xu) =

{
1 if xu = j

0 Otherwise
, (5.3)

and for each edge (u, v) ∈ E, we have

Iuv;jk(xu, xv) =

{
1 if xu = j and xv = k

0 Otherwise
. (5.4)
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It is easy to see that the node-wise and edge-wise potentials f can be obtained by

combining the sufficient statistics and the natural parameter.

An important problem in the context of MRF is that of MAP inference, which is to

compute the configuration x∗ with the largest probability:

x∗ ∈ argmax
x∈Xn

exp




∑

u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv)



 . (5.5)

The above optimization problem is equivalent to the following integer programming

problem:

x∗ ∈ argmax
x∈Xn




∑

u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv)



 . (5.6)

The complexity of (5.6) depends critically on the structure of the underlying graph.

When G is a tree structured graph, the MAP inference problem can be solved efficiently

via the max-product algorithm [63]. However, for an arbitrary graph G, the MAP

inference algorithm is usually computationally intractable. The intractability motivates

the development of algorithms to solve the MAP inference problem approximately. In

the upcoming sections, we briefly review the following approximate inference algorithms:

belief propagation, linear programming (LP) relaxation [21, 67] and dual decomposition

algorithms [96]. Other approximate algorithms which are not covered in this thesis

include quadratic relaxation [86] and semi-definite relaxation [86].

We also want to emphasis that we mainly focus on MAP inference on pairwise MRFs

and in principle, there is no loss of generality in restricting to pairwise interactions, since

any higher-order MRF can be converted to pairwise MRFs by introducing auxiliary

ramdom variabels [103]. Moreover, the techniques described in this thesis can all be

generalized to apply directly to general MRFs.

5.2.2 Belief Propagation

Belief propagation (BP) is a heuristic for approximate inference that is simple to code

and scales very well with problem size. BP is an example of a message-passing algorithm,

and works by iteratively passing messages along edges of the graph. On tree-structured

graphical models, BP can be seen to be equivalent to a dynamic programming algorithm

and thus solves the inference problem exactly.
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Although belief propagation is not guaranteed to give exact results on graphical

models with cycles, it has often been observed empirically to give excellent results.

Much research has been devoted to understanding its empirical success. For example,

[105] shows that, for a graphical model that only has a single cycle, when BP converges

(it might not) it gives exact results. [11] shows that BP gives exact results when applied

to maximum weight bipartite matching problems that have a unique solution. However,

in many problems, belief propagation may not even converge to a solution. [79] observe

that convergence problems are highly correlated with BP not finding a good solution

to the MAP problem. Intuitively the problem is that of “double counting”, in which

evidence is passed around the graph multiple times without being recognized as the same

evidence already considered in previous belief updates. The problem is only compounded

in graphs with short cycles. There have been several attempts to improve BPs accuracy,

most notably by the generalized Belief Propagation (GBP) algorithm [112].

5.2.3 Linear Programming Relaxation

Marginal Polytope

In this subsection, we show how to formulate the integer MAP inference problem as

an LP. Our analysis in the sequel is based on the marginal distributions defined by the

indicator functions. In particular, taking expectations of these indicators with respect

to the distribution (5.2) yields marginal probabilities for each node u ∈ V

µu,j = Ep(x|θ)[Iu,j(xu)] =
∑

x∈Xn

p(x|θ)Iu,j(xu) , (5.7)

and for each edge (u, v) ∈ E

µuv;jk = Ep(x|θ)[Iuv;jk(xu, xv)] =
∑

x∈Xn

p(x|θ)Iuv,jk(xu, xv) . (5.8)

Note that (5.7) and (5.8) define a d-dimensional marginal vector µ. We letM(G) denote

the set of all such marginals realizable in this way

M(G) = {µ ∈ R
d|µu,j = Ep(x|θ)[Iu,j(xu)] and µuv;jk = Ep(x|θ)[Iuv;jk(xu, xv)]} .

(5.9)



61

The conditions defining membership in M(G) can be expressed more compactly in the

equivalent vector form

µ = Ep(x|θ)[φ(x)] =
∑

x∈Xn

p(x|θ)φ(x) . (5.10)

We refer to M(G) as the marginal polytope associated with the graph G.

By construction, the marginal polytope is the convex hull of the φ(x) vectors, one

for each assignment x ∈ X n to the variables of the Markov random fields. Now we

formulate the MAP inference problem (5.6) as an LP. Since the optimal value of a

linear program over a polytope can be shown to be obtained by one of its vertices and

the marginal polytope M(G) is the convex hull of the discrete set {φ(x) : x ∈ X n}, the

linear MAP inference problem is:

max
x∈Xn

〈θ, φ(x)〉 = max
µ∈M(G)

〈θ,µ〉 . (5.11)

However, the LP (5.11) is in general impractical to solve in practice, because the number

of linear constraints required to characterizeM(G) grows rapidly in n for a general graph

with cycles [103]. The LP relaxation focuses on a subset of the constraints that µ must

satisfy and the number of constraints specified in the LP relaxation is polynomial in n.

Local Polytope and LP relaxation

First, since the elements of µ are marginal probabilities, we must have the non-negative

constraints:

µu(xu) ≥ 0, ∀u ∈ V , (5.12)

µuv(xu, xv) ≥ 0, ∀(u, v) ∈ E . (5.13)

Second, the node marginals must satisfy the normalization constraints

∑

xu∈Xu

µu(xu) = 1, ∀u ∈ V . (5.14)

Last, since the node marginals over xu must be consistent with the joint marginal on

(xu, xv), we also have the marginalization constraints:

∑

xu∈Xu

µuv(xu, xv) = µv(xv), ∀(u, v) ∈ E . (5.15)
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We denote the polytope defined by (5.12)-(5.15) as L(G). By construction, L(G)

is an outer bound of M(G), i.e., M(G) ⊆ L(G). Moreover, in contrast to M(G), it

involves only a number of inequalities that is polynomial in n. Now the LP relaxation

of MAP inference problem (5.6) becomes solving the following LP:

max
µ∈L(G)

〈µ,f 〉 =
∑

u∈V

∑

xu

µu(xu)fu(xu) +
∑

(uv)∈E

∑

xu,xv

µuv(xu, xv)fuv(xu, xv) , (5.16)

subject to the constraint that µ ∈ L(G).

Since L(G) is an outer bound of M(G) and we maximize over a larger space , we

have

max
µ∈M(G)

〈θ,µ〉 ≤ max
µ∈L(G)

〈θ,µ〉 , (5.17)

i.e., the LP relaxation provides an upper bound on the value of the MAP assignment.

In general, L(G) has both integral and fractional vertices. In particular, all vertices of

M(G) are also vertices of L(G). Thus, If the solution µ to (5.16) is an integer solution,

it is guaranteed to be the optimal solution of (5.6). Otherwise, one can apply rounding

schemes [84, 85] to round the fractional solution to an integer solution.

Although standard LP solvers can be used to solve the optimization problem (5.16),

they are usually inefficient for the MAP inference problem [111], mainly because they fail

to take advantage of the underlying graph structure. Specially designed MAP inference

algorithms usually exploit the structures of the dependency graphs and some of them

solve either the primal LP (5.16) or the dual problem of (5.6).

Primal Based MAP Inference Algorithms

Although standard LP solvers can be used to solve the optimization problem (5.16),

they are usually inefficient compared to the algorithms which exploit the graph struc-

ture [111]. In this section, we briefly introduce the proximal maximization algorithm [13]

which can take advantage of the graph structure and is guaranteed to converge to the

global maximizer of (5.16).

Instead of solving the constrained LP (5.16) directly, the proximal maximization

methods solves a sequence of maximization problems:

µt+1 = argmax
µ∈L(G)

{
〈µ, f〉 −

1

wt
Dh(µ||µ

t)

}
, (5.18)
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where the subscript t = 1, 2, . . . denotes the iteration number, wt is a positive constant

and Dh(µ||ν) is a Bregman divergence [18] between µ and ν induced by the strictly

convex function h:

Dh(µ||ν) = h(µ)− h(ν)− 〈∇h(ν), µ − ν〉 .

Now we study the choice of h that will be used in the sequel. To take the advantage

of the graph structure, in principle, we can decompose the graph into N (overlapping)

parts and assign each part a strictly convex function hi, i = 1, . . . , N . Let µi denote the

components of µ that belong to part i and h =
∑N

i=1 hi . The Bregman divergence then

becomes:

Dh(µ||ν) =
N∑

i=1

hi(µi)− h(νi)− 〈∇hi(νi), µi − νi〉 .

For the sake of simplicity, we focus on a straightforward decomposition: we decom-

pose the graph into |V | nodes and |E| edges and the strictly convex function hi is the

negative entropy of the pseudomarginals:

hu =
∑

xu

µu(xu) log µu(xu),∀u ∈ V,

huv =
∑

xu,xv

µuv(xu, xv) log µuv(xu, xv) ,∀(u, v) ∈ E.

Then the Bregman divergence is the Kullback-Leibler (KL) divergence across all the

nodes and edges:

Dh(µ||ν) =
∑

u∈V

Dhu
(µu||νu) +

∑

(uv)∈E

Dhuv
(µuv||νuv) ,

where Dhu
(µu||νu) =

∑
xu
µu(xu) log

µu(xu)
νu(xu)

+µu(xu)− νu(xu). We note that this is also

the setting of one of the proximal algorithms in [85].

We now show how to solve the optimization problem (5.18) by performing the Breg-

man projection [18]. We observe that (5.18) can be solved by first obtaining the solution

µt+1,0 to the unconstrained problem of (5.18) and then projecting µt+1,0 to L(G). To

be more specific, we have:

µt+1,0 = argmax
µ

{
〈µ, f〉 −

1

wt
Dh(µ||µ

t)

}
, (5.19)

µt+1 = argmin
µ∈L(G)

Dh(µ||µ
t+1,0) . (5.20)



64

When h is the negative entropies on node and edge pseudomarginals, (5.19) has a closed

form solution. Taking derivatives and setting them to zeros yields:

µt+1,0
u (xu) = µtu exp(w

tfu(xu)) ,

µt+1,0
uv (xu, xv) = µtuv exp(w

tfuv(xu, xv)) .

Unfortunately, (5.20) does not have a closed form solution and the projection is usually

computed iteratively. In particular, we show that the projection can be obtained by

performing a sequence of cyclic Bregman projections.

We note that the polytope L(G) can be viewed as an intersection of the equality

constraints, i.e., (5.14) and (5.15) (The inequality constraints (5.12) and (5.13) are taken

care of automatically when h is the negative entropy function.). It is easy to see that

the number of constraints is NC = k|V | + 2k|E|. Denote each equality constraint as

Ci, i = 1, . . . , NC and define

µ = ΠCi
(ν) (5.21)

as the operation of projecting ν onto the constraint Ci. The Bregman projection algo-

rithm projects µt+1,0 sequentially onto each constraint Ci of L(G) in a cyclic manner,

i.e., starting from ν = µt+1,0, we perform the following operation repeatedly until con-

vergence:

µ = ΠCi
(ν),

ν = µ,

where i is the constraint index and i = 1, . . . , NC, 1, . . . , NC, 1, . . .. It can be shown [18]

that the above cyclic Bregman projection converges to the projection defined in (5.20).

It is important to point out that when the constraint set includes inequality constraints,

the Bregman projection has to be followed by a correction step [18]. We avoid this by

choosing the KL divergence as the Bregman divergence.

We now show that the projection (5.21) onto each constraint has closed form so-

lutions. We use the notation µt+1,p to denote the value of µt+1 after µt+1,0 has been

projected to L(G) p times according to the cyclic projection scheme. Consider the con-

straint on node u :
∑

xu
µu(xu) = 1 and let λu be the Lagrangian multiplier associated

with the constraint. The KKT condition is:

∇h(µ
t+1,p+1
u (xu)) = ∇h(µ

t+1,p
u (xu)) + λt+1,p+1

u .



65

Expanding the derivatives and performing some simple algebra yields:

µt+1,p+1
u (xu) = µt+1,p

u (xu) exp(λ
t+1,p+1
u ) ,

exp(λt+1,p+1
u ) =

1
∑

xu
µt+1,p
u (xu)

.

Then it follows the normalization update for each node:

µt+1,p+1
u (xu) =

µt+1,p
u (xu)∑

xu
µt+1,p
u (xu)

.

Similarly, we can derive the update for each edge

µt+1,p+1
uv (xu, xv) = µt+1,p

uv (xu, xv)

√√√√ µt+1,p
u (xu)∑

xv
µt+1,p
uv (xu, xv)

,

µt+1,p+1
u (xu) =

√
µt+1,p
u (xu)

∑

xv

µt+1,p
uv (xu, xv) .

In summary, the MAP inference algorithm (Algorithm 1) is a double loop algorithm:

In the outer loop, the algorithm performs proximal maximization and in the inner loop,

the algorithm performs cyclic Bregman projection. It is shown in [13, 85] that for

appropriate choice of weight sequence {wt}, Algorithm 1 has super-linear convergence

rate.

5.2.4 Dual Decomposition

Recall the MAP inference problem solves the following integer programming problem:

MAP (f) =
∑

u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv) . (5.22)

The main idea of dual decomposition is: we construct a dual function L(δ) and L(δ) ≥

MAP (θ) holds for all dual variables δ. Thus, L(δ) is an upper bound on the value

of the MAP assignment. We then seek a δ to make this upper bound as tight as

possible. Before we describe the dual decomposition algorithm, we first specify the dual

variables. To avoid the notation clusters, we denote e an edge (u, v) ∈ E and u ∈ e if

u is an endpoint of e. For every e ∈ E, u ∈ e and xu, we have a dual variable δe,u(xu).
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Algorithm 1 MAP inference algorithm with proximal maximization and Bregman
projection

Input: potential functions {fu, fuv}, weight sequence {w
t} and the number of integer

values k
Output: pseudomarginals µ
Initialization: µ1u(xu) =

1
k and µ1uv(xu, xv) =

1
k2

Outer Loop: For t = 1, 2, . . . until convergence
Compute µt+1 by the inner loop
1. Initialization:

µt+1,0
u (xu) = µtu(xu) exp(w

tfu(xu)) ,

µt+1,0
uv (xu, xv) = µt(uv)(xu, xv) exp(w

tfuv(xu, xv)) .

2. Inner Loop : For p = 0, 1, . . . until convergence
For each node

µt+1,p+1
u (xu) =

µt+1,p
u (xu)∑

xu
µt+1,p
u (xu)

.

For each edge

µt+1,p+1
uv (xu, xv) = µt+1,p

uv (xu, xv)

√√√√ µt+1,p
u (xu)∑

xv
µt+1,p
uv (xu, xv)

,

µt+1,p+1
u (xu) =

√
µt+1,p
u (xu)

∑

xv

µt+1,p
uv (xu, xv) .

We can interpret the dual variable as the message edge e sends to u regarding its state

xu.

Now we derive the dual optimization problem of (5.6). We first reformulate the

integer programming problem by duplicate the xuvariables, once for each edge e if u ∈ e

and enforce all the copies are equal. We use xeu to denote the copy of xu used by edge

e. We also denote xe the set of all variables {xeu}, u ∈ e used by edge e and xE the set
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of all variable copies. We rewrite (5.6) as an equivalent integer programing problem:

max
∑

u∈V

fu(xu) +
∑

e∈E

fe(x
e
e)

s.t. xeu = xu, ∀e, u ∈ e .

(5.23)

We then introduce Lagrange multipliers (dual variables) δ and define the Lagrangian:

L(δ,x,xE) =
∑

u∈V

fu(xu) +
∑

e∈E

fe(x
e) +

∑

e∈E

∑

u∈e

∑

x̄u

δe,u(x̄u))(1[xu = x̄u]− 1[xeu = x̄u]) .

(5.24)

Note that maximizing (5.24) in conjunction with the consistency constraints in (5.23)

is equivalent to (5.6):

max
x,xE

L(δ,x,xE)

s.t. xeu = xu, ∀e, u ∈ e .

(5.25)

Solving the integer programming problem (5.25) is as hard as solving the original MAP

problem (5.6). To obtain a tractable problem, we omit the consistency constraints in

(5.25) and define an upper bound L(δ) of (5.24):

L(δ) = max
x,xE

L(δ,x,xE) (5.26)

=
∑

u∈V

max
xu

(
fu(xu) +

∑

e:u∈e

δe,u(xu)

)
+
∑

e∈E

max
xe

(
fe(x

e)−
∑

u∈e

δe,u(x
e
u)

)
. (5.27)

The dual problem is to obtain a tightest upper bound by minimizing L(δ), i.e., minδ L(δ).

It is important to point out that the LP relaxation is in fact equivalent to the dual

decomposition approach discussed in this thesis. Standard duality transformations can

be used to show the convex dual of the LP (5.16) is the Lagrangian relaxation (5.27).

The connection between the LP relaxation and dual decomposition shows that these

two types of approximate inference algorithms apply equally for the MAP problem.

We also want to mention that (5.27) is not the only dual relaxation. In recent years,

a number of dual relaxation algorithms [96] have been proposed and these have been

demonstrated to be useful tools for solving large MAP inference problems. In [97], these

dual algorithms are placed under a common framework so that they can be understood

as optimizing the same objective. The authors in [97] also demonstrate how to change

from one dual representation to another in a monotone fashion relative to the common

objective.
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Block Coordinate Descent Algorithms

Block coordinate descent algorithms work by fixing the values of all dual variables

except for a set of variables and then minimizing the objective as much as possible with

respect to that set. In this subsection, we describe the MPLP algorithm [42], in which

all variables δ except δe,u(xu) for a specific edge e and both u ∈ e are fixed. We would

like to minimize L(δ) with respect to the free variables δe,u(xu):

L̄(δ) =
∑

u∈e

max
xu

(
fu(xu) +

∑

ē:u∈ē

δē,u(xu)

)
+max

xe

(
fe(xe)−

∑

u∈e

δe,u(xu)

)
(5.28)

≥ max
xe

(
fe(xe) +

∑

u∈e

δ−e
u (xu)

)
, (5.29)

where δ−e
u (xu) = fu(xu) +

∑
ē 6=e δē,u(xu). In [42], the authors derives the following

update to achieve the above lower bound:

δe,u(xu) = −δ
−e
u (xu) +

1

2
max
xe\u

(
fe(xe) +

∑

v∈e

δ−e
v (xv)

)
. (5.30)

The update (5.30) is performed on all u ∈ e and xu simultaneously. When the algorithm

converges, the MAP assignment can be obtained from the dual beliefs:

x∗u ∈ argmin
xu

(
fu(xu) +

∑

e:u∈e

δe,u(xu)

)
(5.31)

We summary the MPLP in Algorithm 2.

One key design choice to make when designing coordinate descent algorithms is

which variables to update in each iteration. For example, in the Max-Sum algorithm

[106], all of the dual variables except δe,u(xu) for a specific e and u are fixed. In [42],

the authors derive a star update, where the free dual variables are those associated

with a given node u and its neighbors. Coordinate descent algorithms using blocks

corresponding to tree-structured sub-graphs are derived in [97, 101]. For the empirical

comparison of these block coordinate algorithms, we refer the readers to [96].

Although coordinate descent algorithms decrease the dual objective at every itera-

tion, they are not generally guaranteed to converge to the dual optimum. The reason is

that although the dual objective L(δ) is convex, it is not strictly convex. This implies

that minimizing coordinate value may no be unique and thus convergence guarantees

for coordinate descent algorithms do not hold.
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Algorithm 2 MPLP Algorithm

Input: potential functions {fu, fuv}
Output: MAP assignment x∗1, . . . , x

∗
n

Initialization: δe,u(xu) = 0, ∀e ∈ E, u ∈ e, xu
Perform the following update until the change of the value of L(δ) is small enough

For each e ∈ E, perform

δe,u(xu) = −δ
−e
u (xu) +

1

2
max
xe\u

(
fe(xe) +

∑

v∈e

δ−e
v (xv)

)
,

simultaneously for all u ∈ E and xu.
Compute MAP assignment: x∗u ∈ argminxu

(
fu(xu) +

∑
e:u∈e δe,u(xu)

)
, ∀u ∈ V

Subgradient Algorithms

In this subsection, we mainly describe the subgradient algorithm [62] to solve the ap-

proximate MAP inference problem. The subgradient algorithm works on a different dual

optimization problem, which is based on rewriting the original MAP problem into a set

of sub-problems on edges. To make sure the new optimization problem is equivalent to

the original one, we impose consistency constraints on the nodes, i.e., if a node is shared

by more than one edge, its value must be consistent among these edges. To be more

specific, we have

max
xe,x

∑

e∈E

(
∑

u∈e

f̄u(x
e
u) + fe(xe)

)

s.t. xeu = xu , ∀u, e ∈ N(u)

(5.32)

where
∑

e∈N(u) f̄u(x
e
u) = fu(xu) andN(u) denotes the set of edges that share u. A simple

option is to set f̄u(x
e
u) =

1
N(u)fu(xu). It is clear that without the consistency constraints

xeu = xu, problem (5.32) would decouple into a series of smaller MAP inference problems

on edges. Therefore, it is natural to relax these coupling constraints by introducing
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Lagrange multipliers λe and form the dual function as

L(λ) = max
xe,x

∑

e∈E

(
∑

u∈e

f̄u(x
e
u) + fe(xe)

)
+
∑

e∈E

∑

u∈e

λeu(x
e
u − xu) (5.33)

= max
xe,x

∑

e∈E

(
∑

u∈e

f̄u(x
e
u) + λeux

e
u + fe(xe)

)
−
∑

e∈E

∑

u∈e

λeuxu . (5.34)

= max
xe

∑

e∈E

(
∑

u∈e

f̄u(x
e
u) + λeux

e
u + fe(xe)

)
(5.35)

The last term in (5.34) can be eliminated by directly maximizing over x, which simply

imposes the feasibility constraints on λ:

Λ =



λ

e
∣∣ ∑

e∈N(u)

λeu = 0



 . (5.36)

Then, we can set up the dual problem:

min
λ∈Λ

L(λ) = max
xe

∑

e∈E

(
∑

u∈e

f̄u(x
e
u) + λeux

e
u + fe(xe)

)
(5.37)

= max
xe

∑

e∈E

f̃e(λ
e) . (5.38)

In (5.38), we write the dual problem as a summation over serval MAP inference problems

on edges.

Th dual problem is always convex, but non-differentiable and a projected subgradi-

ent algorithm is applicable for such problems. In each iteration in the algorithm, the

following updates are performed: (i) for each edge, compute the best MAP assignment

x∗
e (ii) update the dual variables λe according to x∗

e (iii) project λ to the feasible set

Λ. The first update can be computed efficiently via the max-product algorithm. The

second updates invokes computing the subgradient of f̃e at λe. In [62], the authors

shows that the subgradient ∇f̃e(λ
e) is simply x∗

e and the dual variables can be updated

as

λe ← λe + αx∗
e , (5.39)

where α is a positive step size. The third update amounts to a centering problem and
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the projection reduces to subtracting the average vector from each λeu:

λeu ← λeu + αxe∗
u −

∑
e′∈N(u) λ

e′
u + αxe′∗

u

|N(u)|

λeu ← λeu + α

(
xe∗
u −

∑
e′∈N(u) x

e′∗
u

|N(u)|

)
.



Chapter 6

Drought Detection of the Last

Century: An MRF-based

Approach

6.1 Motivation

Droughts are one of the most damaging climate-related hazards and the consequences

are often abrupt, severe and potentially catastrophic to both society and the environ-

ment. Droughts may lead to reductions in water supply, diminished power generation,

disturbed riparian habitats as well as a host of other associated economic, political and

social activities [107]. A frequently cited example is the decades long Sahel drought

[31, 53] starting in the late 1960s, which led to widespread famine, ecosystem degrada-

tion and dispersion of its inhabitants. Other examples include the Dust Bowl event in

the central US [92] in the 1930s, which is marked by sudden reductions in precipitation.

In the climate science community, the cause of droughts has been extensively stud-

ied. For example, [89] identify the physical basis for long-term droughts and [29] an-

alyze how the increase in deserts influences climate, e.g., a reduction in precipitation

in a general circulation model (GCM). In addition to the general theory developed for

droughts worldwide, some work has been focused on specific drought events. For in-

stance, [92] perform model simulations to identify the mechanisms contributing to the

72
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Dust Bowl. [31] show how the interaction between climate and vegetation prolongs the

Sahel drought. [25] analyze the Sahel drought simulation with GCMs and projection

what may happen in the future.

Even though the importance of understanding droughts cannot be overstated, there

are few rigorous and systematic tools to detect them. The current standard of drought

detection is the Palmer Severity Drought Index (PSDI) [46]. The PSDI is based on a

supply-and-demand model of soil moisture. It uses a 0 as normal, and drought is shown

in terms of negative numbers. However, the utility of the Palmer index is weakened

by the arbitrary nature of Palmer’s algorithms, including the technique used for stan-

dardization. In a recent paper, [80] analyze global historical rainfall observations and

detect regions that have undergone large, sudden decreases in rainfall. Their algorithm

identifies the potential regions of abrupt rainfall changes using a wavelet-based method.

However, the algorithm is not fully automatic as it requires a manual inspection step

to remove the potential droughts with low magnitude of rainfall change and short span

of persistence.

In contrast, machine learning and data mining methods have been successfully ap-

plied to application domains, such as computer vision, natural language processing and

others. With a significant increase in the number of climate datasets available, we be-

lieve that relevant machine learning and data mining algorithms can also be applicable

to climate science. In this paper, we propose a drought detection algorithm based on

the well studied Markov random field model [103].

We formulate the detection problem as the one of finding the most likely configura-

tion of a binary MRF, where each node can only take two values: 1 means the node is

in a drought state and 0 means a normal state. Since the gridded precipitation dataset

we use is spatio-temporal, i.e., the dataset contains precipitation observations of the

globe over a period of time, we construct a 3-dimensional grid graph as the underly-

ing dependency graph for the MRF. More specifically, for a particular time, we model

the dependency using a 4-nearest neighbor grid, where each node represents a location.

The 3-dimensional grid can be viewed as a replication of 2-dimensional grids and the

nodes representing the same location are connected together. We design the potential

functions carefully from the climate datasets to ensure spatio-temporal consistency, i.e.,

the neighboring nodes in the 3-dimensional grid are encouraged to take the same value.
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Our goal is to estimate the binary value each node takes based on the MRF and

we consider that the nodes with value 1 are in drought states. However, in general the

integer programming problem of finding the most likely configuration is computationally

intractable and people often resort to relaxation and obtain approximate solutions [103].

Throughout the paper, we use the Linear Programming relaxation [67], which has been

extensively studied in the MRF literature. Instead of solving the LP directly, we adopt

the idea of proximal minimization [13] from the optimization literature and propose

an efficient inference algorithm. After the algorithm terminates, we round the relaxed

fractional solution and obtain the integer solution. We then identify major droughts

which are spatially widespread over long duration based on the integer solution.

We apply our drought detection algorithm on the Climate Research Unit (CRU)

precipitation dataset [76] over 106 years (1901-2006). The drought detection problem

on this dataset is of large scale, since the underlying dependency graph has over 7 million

nodes and the number of configurations is more than 27,000,000. Our algorithm is fully

automatic and solves the problem efficiently, i.e., the algorithm converges within one

and a half hours in a Linux workstation. The empirical results show that the algorithm

successfully detects the major droughts of the twentieth century, including the Dust

Bowl in the 1930s and the drought in the Sahel starting in the late 1960s. We compare

our algorithm with the drought detection algorithm in [80] and find that both algorithms

detect similar droughts.

The rest of the chapter is organized as follows: we outline the MRF-based drought

detection algorithm in Section 6.2. We show the experimental results on the CRU

dataset in Section 6.3.

6.2 MRF-based Drought Detection Algorithm

In this section, we show how droughts are detected using the proximal MAP inference

algorithm presented in Section 5.2.3.

6.2.1 Designing the Potential Functions

Climate datasets are usually spatio-temporal datasets in that they have climate variable

observations over the globe for a period of time. Suppose a precipitation dataset has
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(a) m = 3, n = 4, T =
1.

(b) m = 3, n = 4, T = 2.

Figure 6.1: The graph structure for climate datasets used in this paper.

yearly precipitation averages over a m× n global grid over T years, i.e., the resolution

is 180
m degree latitude × 360

n degree longitude. To use the MRF model, the underlying

graph structure has to be determined. To model the spatio nature of the dataset, we

use a m× n 4-nearest neighbor grid for each year. To model the temporal nature, we

construct a 3-dimensional grid by connecting the nodes representing the same location in

the T 2-dimensional grids. Figure 6.1 shows the graph structure form = 3, n = 4, T = 2.

To facilitate the discussion in the sequel, we introduce some notations first: We

denote the precipitation observation at location u at time t as ytu. The nodewise potential

of location u at time t is f tu(x
t
u). For two neighboring locations at time t, we denote

the pairwise potential as f tuv(x
t
u, x

t
v). For the same location u at time t − 1 and t, we

denote the pairwise potential as f t−1,t
u (xt−1

u , xtu).

We are now ready to define the potential functions based on the 3-dimensional grid.

To detect drought regions, we set k = 2, where xtu = 1 means that location u at time

t is in a drought state, i.e., abnormal state, and xtu = 0 means a normal state. To

define the nodewise potential function for each location u, we partition the observations

ytu, t = 1, . . . , T into two parts and we consider the observations below the p% percentile

as abnormal and the rest as normal. We also compute µabnormal
u and µnormal

u , the mean

of the abnormal and normal observations respectively. Then the nodewise potential

function comes from the log-likelihood of a Gaussian distribution

f tu(x
t
u = 1) = logN (ytu|µ

abnormal
u , σ2u) ,

f tu(x
t
u = 0) = logN (ytu|µ

normal
u , σ2u) ,
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where σu is the standard deviation of the observations at location u.

We define the pairwise potential functions to encourage label consistency, i.e., the

potential value is higher if neighboring nodes take same values. Specifically, we set the

pairwise potential as follows:

f tuv(x
t
u, x

t
v) =




C1 > 0, if xtu = xtv;

0, Otherwise.

and

f t−1,t
u (xt−1

u , xtu) =




C2 > 0, if xt−1

u = xtu;

0, Otherwise.

Intuitively, the higher C1 is, the more likely the neighboring nodes in the 2-dimensional

girds are to take same values. Similarly, the higher C2 is, the nodes representing the

same location at consecutive time intervals are to take same values.

6.2.2 Obtaining the Integer Solution from the Pseudomarginals

After the potential function is defined, we can run the MAP inference algorithm pre-

sented in Section 5.2.3 and compute the pseudomarginals µ. To find the drought regions,

we need to decode the fractional solution µ and obtain the integer configuration x. The

value each node takes tells us whether the location is in a drought state or not.

We employ a simple node-based rounding scheme to interpret the pseudomarginals

µ:

xu = argmax
x′∈Xu

µu(x
′) . (6.1)

We apply (6.1) to each node and obtain the corresponding integer solution.

Now each node has an integer value associated with it: If xtu = 1, we consider that

the location u at time t is in a drought state, otherwise it is in a normal state.

6.2.3 Drought Detection from the Integer Solution

Once we have the integer solution, we can detect droughts based on it. Since a drought

can be defined both spatially and temporally, we define it as a set of neighbouring nodes

in the three-dimensional dependency graph (Figure 6.2) whose states are drought. Thus,

the drought detection problem becomes one of finding sets of neighbouring nodes with
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drought states. To accomplish this goal, we first construct a three-dimensional adjacency

graph and calculate the connected components of this graph. We treat each connected

component as a drought. In the adjacency graph, two nodes are connected if both nodes

are in drought states, i.e., we simply remove the edges from the dependency graph if

at least one node is not in the drought state. A connected component is defined as a

subgraph of the adjacency graph in which any two vertices are connected to each other

by paths and which is connected to no additional vertices. Since a connected component

may only contain a few locations and may not be long in duration, we only pick the

sizable components and consider them as major droughts. The details as how to select

connected components are in Section 6.3.

6.2.4 Practical Issues

Algorithm 1 is a general MAP inference algorithm and can be applied to estimate the

mostly likely configuration for any pairwise MRF. In practice, we find several ways to

speed up the algorithm for our application.

The first option is that, instead of a uniform initialization on µ, we can initialize the

pseudomarginals based on the precipitation value. To be more specific, we set µtu = 1, if

the climate variable on node u at time t is below the p% percentile and µtu = 0, otherwise.

We attribute the speed up to the conjecture that the value-based initialization is more

close to the optimal solution than the uniform initialization.

The other option is to divide the globe into several disjoint parts, run the MAP

inference algorithm on each part and combine the results. Since we can estimate the

configuration for each part simultaneously, we can gain significant speed up due to

parallel computing. Some climate datasets have disjoint parts in nature. For example,

since the CRU only has precipitation over land, North America, South America and

Australia are isolated from the rest of the world.

Finally, we choose the weight scalar {w1, . . . , wT } such that wT → 0. In this case, we

observe a super-linear convergence rate if we terminate the inner loop when the change

of µ between two consecutive iterations is less than 10−3.
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6.3 Experimental Results

In this section we show the drought regions detected by the algorithm using the CRU

dataset, which has monthly precipitation from the years 1901-2006. The dataset (Figure

6.2) is of high gridded spatial resolution (0.5 degree latitude × 0.5 degree longitude) and

only includes the precipitation over land (67420 locations with precipitation records).

To eliminate the monthly variance, we convert the monthly dataset to a yearly dataset

by calculating the average precipitation over 12 months for each year.

We first apply the drought detection algorithm over the United States and the Sahel

region and show that our algorithm successfully discovers the dust bowl in the 1930s

and the prolonged drought in the Sahel starting in the late 1960s. We then apply the

algorithm to the global dataset and report the droughts that we identify.

For all the experiments, we set C1 = 0.5, C2 = 3, w1 = 1 and wt+1 = 0.8wt. We

terminate both the inner and outer loop when the change of µ between two consecutive

iterations is less than 10−3.
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75 N

60 N

45 N

30 N

15 N

0

15 S

30 S

45 S

60 S

75 S

90 S

Figure 6.2: The CRU dataset is a highly gridded dataset containing precipitation for
land locations only (red region).

6.3.1 The Dust Bowl

The Dust Bowl, in the 1930s, was one of the most devastating droughts of the past

century in the Great Plains region of the United States. The severe drought affected

almost two-thirds of the country and was infamous for the numerous dust storms that

occurred [92].
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In this subsection, we show how our approach can be used to detect the Dust Bowl

drought from the CRU precipitation dataset. We first extract the precipitation of the

United States and run the drought detection algorithm on this sub-dataset with p = 15.

After the algorithm outputs the pseudomarginals, we compute the integer solution.

Figure 6.3 shows the number of locations with drought state detected by our algorithm.

We compare our drought detection algorithm with a simple threshold algorithm: If the

precipitation in a location is lower than the p% percentile, we consider it in a drought

state. Otherwise, it is in a normal state. It is very obvious from Figure 6.3 that our

algorithm detects a drought in the US in the 1930s, while the threshold algorithm does

not provide any meaningful results.

We then compute the connected components from the integer solution and find that

the component starting from the year 1928 corresponds to the Dust Bowl region. This

connected component spans over 13 years (1928-1940). The drought region we detect is

shown in Figure 6.4. For each location in the drought region, we count the number of

years it is included in the connected component and divide this number by the number

of years that the component spans. Figure 6.4 shows the resulting ratio associated with

each location in a color. We find that the Dust Bowl map is similar to the one in [92].

We also carefully examine the solution provided by the threshold algorithm. Since

the threshold algorithm fails to capture the spatial and temporal consistency, we find

that the nodes with drought states are isolated from each other and do not form sizable

connected components. In contrast, the MRF model encourages neighboring nodes to

be in same states and, as a result, the solution by the drought detection algorithm has

less number of ‘drought’ locations, as shown in Figure 6.3.

To show the drought region detected by the algorithm is valid, we also draw a time

series plot (Figure 6.5) of the average precipitation of the Dust Bowl region we identify.

It is clear to see that a sudden reduction in precipitation occurred around 1930 and the

drought lasts for about 10 years.

6.3.2 The Sahel Region

In this subsection, we show the results of detection of the 30-year drought in the Sa-

hel starting in the late 1960s [31]. We extract the precipitation of the Sahel region

and run the drought detection algorithm on this sub-dataset. We also use the 15%
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Figure 6.3: The number of locations with drought states in the United States detected
by the drought detection and threshold algorithms.
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Figure 6.4: The dust bowl drought region, which corresponds to the connected compo-
nent starting in 1928.

percentile. Figure 6.6 shows the number of locations with drought states detected by

both algorithms. It is not surprising that the base line algorithm detects many more

drought locations than our algorithm. We find that the largest component corresponds

to the prolonged drought in the Sahel region starting in the late 1960s. The connected

component spans 31 years (1968 to 1998). The drought region we detect is shown in

Figure 6.7 and the color code is the same as the one used in Figure 6.4. We find that

the drought map is similar to the one in [53]. The time series plot (Figure 6.8) shows

the 30-year precipitation reduction in the area.
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Figure 6.5: The time series plot of the average precipitation of the Dust Bowl region.
The red ellipse shows the sudden reduction in precipitation in the 1930s.
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Figure 6.6: The number of locations with drought states in the Sahel region detected
by the drought detection and threshold algorithms.

6.3.3 Global Data

Finally, we apply our drought detection algorithm to the entire CRU dataset. We want

to emphasize that since the CRU dataset has a high resolution and the underlying 3-

dimensional grid has 7,146,520 nodes (67,420 nodes per year × 106 years), the drought

detection problem is of large scale.

Since the global precipitation exhibits large variance, a uniform percentile may not

be sufficient. To take this into account, for each location, we compute the median pre-

cipitation over the 106 years and run the k-means clustering algorithm on the medians

with k = 9. Figure 6.9 shows the 9 clusters over the globe. Intuitively, the locations in
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Figure 6.7: The prolonged drought in the Sahel region, which corresponds to the largest
connected component starting in 1968.
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Figure 6.8: The time series plot of the average precipitation of the Sahel drought region.
The red ellipse shows the decades long reduction in precipitation.

the clusters with low precipitation are more likely to experience droughts than those in

the clusters with high precipitation. Thus, we sort the clusters according to the mean

precipitation in descending order and set p = 15 for the first three clusters, p = 10 for

the next three clusters and p = 15 for the rest.

After obtaining the integer solution from the pseudomarginals, we compute the

connected components. Since a significant drought should be spatially widespread over

a long duration, we first select the largest 200 connected components and then further

pick among them the ones which last for more than 5 years. We consider the resulting

connected components as major droughts.
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Figure 6.9: The k-means clustering on the medians with k = 9. Each color repre-
sents a different cluster. The cluster in dark red (cluster index 9) indicates the lowest
precipitation while the blue cluster (cluster index 1) indicates the highest precipitation.

Our algorithm runs efficiently on the CRU dataset and converges within one and a

half hours in a Linux workstation. The significant droughts are shown in Figure 6.10-

6.13 and each sub-figure shows the droughts beginning in a particular decade. Besides

the three-decade drought in the Sahel region starting in the late 1960s and the Dust

Bowl in the 1930s, the algorithm also detects the drought in the southwest US and

northern Mexico in the 1950s, the region’s most severe drought of the 20th century

[39]. Other detected strong droughts include: the drought in northeastern China in

the 1920s, the drought in Kazakhstan in the 1930s, the drought in west Europe in the

1940s, the drought in Iran in the 1950s, the drought in eastern India and Bangladesh

in the 1960s and the drought in southern Africa in the 1980s. We find that most of the

droughts have a duration of at least 10 years. We also find that the drought regions are

mostly located in the arid and semi-arid regions and this observation is consistent with

many climate modeling studies [31, 90].

In [80], the authors list the top 30 regions of the world with abrupt decreases in

rainfall during the 20th century. Our algorithm discovers all the droughts in the list,

except for a drought in Ukraine and two droughts in Australia. The droughts found by

both algorithms are shown by black rectangles in Figure 6.10 and 6.13.
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(b) Drought starting within the period 1921-1930.

Figure 6.10: The drought regions detected by our algorithm. Each figure shows the
drought starting from a particular decade. The region in black rectangles indicate the
common drought found by [80].
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(a) Drought starting within the period 1931-1940.
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(b) Drought starting within the period 1941-1950.

Figure 6.11: The drought regions detected by our algorithm. Each figure shows the
drought starting from a particular decade. The region in black rectangles indicate the
common drought found by [80].
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Figure 6.12: The drought regions detected by our algorithm. Each figure shows the
drought starting from a particular decade. The region in black rectangles indicate the
common drought found by [80].
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Figure 6.13: The drought regions detected by our algorithm. Each figure shows the
drought starting from a particular decade. The region in black rectangles indicate the
common drought found by [80].



Chapter 7

Bethe-ADMM for Tree

Decomposition based Parallel

MAP Inference

7.1 Motivation

Given a discrete graphical model with known structure and parameters, the problem

of finding the most likely configuration of the states is known as the MAP inference

problem [103]. Existing approaches to solving MAP inference problems on graphs with

cycles often consider a graph-based LP relaxation of the integer program [21, 85, 67] .

To solve the graph-based LP relaxation problem, two main classes of algorithms

have been proposed. The first class of algorithms are dual LP algorithms [42, 55, 62,

96, 97, 101], which uses the dual decomposition and solves the dual problem. The

two main approaches to solving the dual problems are block coordinate descent [42]

and sub-gradient algorithms [62]. The coordinate descent algorithms are empirically

faster, however, they may not reach the dual optimum since the dual problem is not

strictly convex. Recent advances in coordinate descent algorithms perform tree-block

updates [97, 101]. The sub-gradient methods, which are guaranteed to converge to

the global optimum, can be slow in practice. For a detailed discussion on dual MAP

algorithms, we refer the readers to [96]. The second class of algorithms are primal LP

88
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algorithms like the proximal algorithm [85]. The advantage of such algorithms is that

it can choose different Bregman divergences as proximal functions which can take the

graph structure into account. However, the proximal algorithms do not have a closed

form update at each iteration in general and thus lead to double-loop algorithms.

As solving MAP inference in large scale graphical models is becoming increasingly

important, in recent work, parallel MAP inference algorithms [71, 75] based on the

ADMM [17] have been proposed. As a primal-dual algorithm, ADMM combines the

advantage of dual decomposition and the method of multipliers, which is guaranteed to

converge globally and at a rate of O(1/T ) even for non-smooth problems [104]. ADMM

has also been successfully used to solve large scale problem in a distributed manner [17].

Design of efficient parallel algorithms based on ADMM by problem decomposition

has to consider a key tradeoff between the number of subproblems and the size of each

subproblem. Having several simple subproblems makes solving each problem easy, but

one has to maintain numerous dual variables to achieve consensus. On the other hand,

having a few subproblems makes the number of constraints small, but each subproblem

needs an elaborate often iterative algorithm, yielding a double-loop. Existing ADMM

based algorithms for MAP inference [71, 75] decompose the problem into several simple

subproblems, often based on single edges or local factors, so that the subproblems are

easy to solve. However, to enforce consensus among the shared variables, such methods

have to use dual variables proportional to the number of edges or local factors, which

can make convergence slow on large graphs.

To overcome the limitations of existing ADMM methods for MAP inference, we

propose a novel parallel algorithm based on tree decomposition. The individual trees

need not be spanning and thus includes both edge decomposition and spanning tree

decomposition as special cases. Compared to edge decomposition, tree decomposition

has the flexibility of increasing the size of subproblems and reducing the number of

subproblems by considering the graph structure. Compared to the tree block coordinate

descent [97], which works with one tree at a time, our algorithm updates all trees in

parallel. Note that the tree block coordinate descent algorithm in [101] updates disjoint

trees within a forest in parallel, whereas our updates consider overlapping trees in

parallel.

However, tree decomposition raises a new problem: the subproblems cannot be
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solved efficiently in the ADMM framework and requires an iterative algorithm, yield-

ing a double-loop algorithm [71, 85]. To efficiently solve the subproblem on a tree, we

propose a novel inexact ADMM algorithm called Bethe-ADMM, which uses a Breg-

man divergence induced by Bethe entropy on a tree, instead of the standard quadratic

divergence, as the proximal function. The resulting subproblems on each tree can be

solved exactly in linear time using the sum-product algorithm [63]. However, the proof

of convergence for the standard ADMM does not apply to Bethe-ADMM. We prove

global convergence of Bethe-ADMM and establish a O(1/T ) convergence rate, which is

the same as the standard ADMM [49, 104]. Overall, Bethe-ADMM overcomes the lim-

itations of existing ADMM based MAP inference algorithms [71, 75] and provides the

flexibility required in designing efficient parallel algorithm through: (i) Tree decompo-

sition, which can take the graph structure into account and greatly reduce the number

of variables participating in the consensus and (ii) the Bethe-ADMM algorithm, which

yields efficient updates for each subproblem.

We compare the performance of Bethe-ADMM with existing methods on both syn-

thetic and real datasets and illustrate three aspects. First, Bethe-ADMM is faster than

existing primal LP methods in terms of convergence. Second, Bethe-ADMM is com-

petitive with existing dual methods in terms of quality of solutions obtained. Third, in

certain graphs, tree decomposition leads to faster convergence than edge decomposition

for Bethe-ADMM.

The rest of the chapter is organized as follows: We review the ADMM-based MAP

inference problem in Section 7.2. In Section 7.3, we introduce the Bethe-ADMM algo-

rithm and prove its global convergence. We discuss empirical evaluation in Section 7.4.

7.2 Related Work

In recent years, ADMM [71, 75] has been used to solve large scale MAP inference

problems. To solve (5.16) using ADMM, we need to split nodes or/and edges and

introduce equality constraints to enforce consensus among the shared variables. The

algorithm in [71] adopts edge decomposition and introduces equality constraints for

shared nodes. Let di be the degree of node i. The number of equality constraints in [71]

is O(
∑|V |

i=1 dik), which is approximately equal to O(|E|k). For binary pairwise MRFs,
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the subproblems for the ADMM in [71] have closed-form solutions. For multi-valued

MRFs, however, one has to first binarize the MRFs which introduces additional |V |k

variables for nodes and 2|E|k2 variables for edges. The binarization process increases

the number of factors to O(|V |+2|E|k) and the complexity of solving each subproblem

increases to O(|E|k2 log k). We note that in a recent work [70], the active set method

is employed to solve the quadratic problem for arbitrary factors. A generalized variant

of [71] which does not require binarization is presented in [75]. We refer to this algorithm

as Primal ADMM and use it as a baseline in Section 8.2. Although each subproblem

in primal ADMM can be efficiently solved, the number of equality constraints and dual

variables is O(2|E|k+ |E|k2). In [75], ADMM is also used to solve the dual of (5.6). We

refer to this algorithm as the Dual ADMM algorithm and use it as a baseline in Section

7.4. The dual ADMM works for multi-valued MRFs and has a linear time algorithm for

each subproblem, but the number of equality constraint is O(2|E|k + |E|k2).

7.3 Algorithm and Analysis

We first show how to solve (5.16) using ADMM based on tree decomposition. The

resulting algorithm can be a double-loop algorithm since some updates do not have

closed form solutions. We then introduce the Bethe-ADMM algorithm where every

subproblem can be solved exactly and efficiently, and analyze its convergence properties.

7.3.1 ADMM for MAP Inference

We first show how to decompose (5.16) into a series of subproblems. We can decompose

the graph G into overlapping subgraphs and rewrite the optimization problem with

consensus constraints to enforce the pseudomarginals on subgraphs (local variables) to

agree with µ (global variable). Throughout the paper, we focus on tree-structured

decompositions. To be more specific, let T = {(V1, E1), . . . , (V|T|, E|T|)} be a collection

of subgraphs of G which satisfies two criteria: (i) Each subgraph τ = (Vτ , Eτ ) is a

tree-structured graph and (ii) Each node u ∈ V and each edge (u, v) ∈ E is included

in at least one subgraph τ ∈ T. We also introduce local variable mτ ∈ L(τ) which

is the pseudomarginal [21, 67] defined on each subgraph τ . We use θτ to denote the

potentials on subgraph τ . We denote µτ as the components of global variable µ that
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belong to subgraph τ . Note that since µ ∈ L(G) and τ is a tree-structured subgraph

of G, µτ always lies in L(τ). In the newly formulated optimization problem, we will

impose consensus constraints for shared nodes and edges. For the ease of exposition,

we simply use the equality constraint µτ = mτ to enforce the consensus.

The new optimization problem we formulate based on graph decomposition is then

as follows:

min
mτ ,µ

|T|∑

τ=1

ρτ 〈mτ ,θτ 〉 (7.1)

subject to mτ − µτ = 0, τ = 1, . . . , |T| (7.2)

mτ ∈ L(τ), τ = 1, . . . , |T| (7.3)

where ρτ is a positive constant associated with each subgraph. We use the consensus

constraints (7.2) to make sure that the pseudomarginals agree with each other in the

shared components across all the tree-structured subgraphs. Besides the consensus

constraints, we also impose feasibility constraints (7.3), which guarantee that, for each

subgraph, the local variable mτ lies in L(τ). When the constraints (7.2) and (7.3) are

satisfied, the global variable µ is guaranteed to lie in L(G).

To make sure that problem (5.16) and (7.1)-(7.3) are equivalent, we also need to

guarantee that

min
mτ

|T|∑

τ=1

ρτ 〈mτ ,θτ 〉 = max
µ
〈µ,f〉 , (7.4)

assuming the constraints (7.2) and (7.3) are satisfied. It is easy to verify that, as long

as (7.4) is satisfied, the specific choice of ρτ and θτ do not change the problem. Let 1[.]

be a binary indicator function and l = −f . For any positive ρτ ,∀τ ∈ T, e.g., ρτ = 1, a

simple approach to obtaining the potential θτ can be:

θτ,u(xu) =
lu(xu)∑

τ ′ ρτ ′1[u ∈ Vτ ′ ]
, u ∈ Vτ ,

θτ,uv(xu, xv) =
luv(xu, xv)∑

τ ′ ρτ ′1[(u, v) ∈ Eτ ′ ]
, (u, v) ∈ E(τ) .

Let λτ be the dual variable and β > 0 be the penalty parameter. The following
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updates constitute a single iteration of the ADMM [17]:

mt+1
τ = argmin

mτ∈L(τ)
〈mτ , ρτθτ+λt

τ 〉+
β

2
||mτ−µ

t
τ ||

2
2 , (7.5)

µt+1= argmin
µ

|T|∑

τ=1

(
−〈µτ ,λ

t
τ 〉+

β

2
||mt+1

τ −µτ ||
2
2

)
, (7.6)

λt+1
τ = λt

τ + β(mt+1
τ − µt+1

τ ) . (7.7)

In the tree based ADMM (7.5)-(7.7), the equality constraints are only required for shared

nodes and edges. Assume there arem shared nodes and the shared node vi has C
v
i copies

and there are n shared edges and the shared edge ej has C
e
j copies. The total number of

equality constraints is O(
∑m

i=1 C
v
i k+

∑n
j=1C

e
j k

2). A special case of tree decomposition

is edge decomposition, where only nodes are shared. In edge decomposition, n = 0 and

the number of equality constraints is O(
∑m

i=1C
v
i k), which is approximately equal to

O(|E|k) and similar to [71]. In general, the number of shared nodes and edges in tree

decomposition is much smaller than that in edge decomposition. The smaller number of

equality constraints usually lead to faster convergence in achieving consensus. Now, the

problem turns to whether the updates (7.5) and (7.6) can be solved efficiently, which

we analyze below:

Updating µ: Since we have an unconstrained optimization problem (7.6) and

the objective function decomposes component-wisely, taking the derivatives and setting

them to zero yield the solution. In particular, let Su be the set of subgraphs which

contain node u, for the node components, we have:

µt+1
u (xu)=

1

|Su|β

∑

τ∈Su

(
βmt+1

τ,u (xu)+λ
t
τ,u(xu)

)
. (7.8)

(7.8) can be further simplified by observing that
∑

τ∈Su
λtτ,u(xu) = 0 [17]:

µt+1
u (xu) =

1

|Su|

T∑

τ=1

mt+1
τ,u (xu) . (7.9)

Let Suv be the subgraphs which contain edge (u, v). The update for the edge components

can be similarly derived as:

µt+1
u,v (xu, xv) =

1

|Suv|

∑

τ∈Suv

mt+1
τ,uv(xu, xv) . (7.10)
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Updating mτ : For (7.5), we need to solve a quadratic optimization problem for

each tree-structured subgraph. Unfortunately, we do not have a close-form solution for

(7.5) in general. One possible approach, similar to the proximal algorithm, is to first

obtain the solution m̃τ to the unconstrained problem of (7.5) and then project m̃τ to

L(τ):

mτ = argmin
m∈L(τ)

||m− m̃τ ||
2
2 . (7.11)

If we adopt the cyclic Bregman projection algorithm [18] to solve (7.11), the algo-

rithm becomes a double-loop algorithm, i.e., the cyclic projection algorithm projects

the solution to each individual constraint of L(τ) until convergence and the projection

algorithm itself is iterative. We refer to this algorithm as the Exact ADMM and use it

as a baseline in Section 7.4.

7.3.2 Bethe-ADMM

Instead of solving (7.5) exactly, a common way in inexact ADMMs [57, 110] is to linearize

the objective function in (7.5), i.e., the first order Taylor expansion at mt
τ , and add a

new quadratic penalty term such that

mt+1
τ = argmin

mτ∈L(τ)
〈yt

τ ,mτ−m
t
τ 〉+

α

2
‖mτ−m

t
τ‖

2
2 , (7.12)

where α is a positive constant and

yt
τ = ρτθτ + λt

τ + β(mt
τ − µt

τ ) . (7.13)

However, as discussed in the previous section, the quadratic problem (7.12) is generally

difficult for a tree-structured graph and thus the conventional inexact ADMM does not

lead to an efficient update for mτ . By taking the tree structure into account, we propose

an inexact minimization of (7.5) augmented with a Bregman divergence induced by the

Bethe entropy. We show that the resulting proximal problem can be solved exactly and

efficiently using the sum-product algorithm [63]. We prove that the global convergence

of the Bethe-ADMM algorithm in Section 7.3.3.

The basic idea in the new algorithm is that we replace the quadratic term in (7.12)

with a Bregman-divergence term dφ(mτ ||m
t
τ ) such that

mt+1
τ = argmin

mτ∈L(τ)
〈yt

τ ,mτ −mt
τ 〉+ αdφ(mτ ||m

t
τ ) , (7.14)
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is efficient to solve for any tree τ . Expanding the Bregman divergence and removing

the constants, we can rewrite (7.14) as

mt+1
τ = argmin

mτ∈L(τ)
〈yt

τ/α−∇φ(m
t
τ ),mτ 〉+φ(mτ ). (7.15)

For a tree-structured problem, what convex function φ(mτ ) should we choose? Recall

that mτ defines the marginal distributions of a tree-structured distribution pmτ over

the nodes and edges:

mτ,u(xu)=
∑

¬xu

pmτ(x1, . . . , xu, . . . , xn), ∀u∈Vτ ,

mτ,uv(xu, xv)=
∑

¬xu,¬xv

pmτ(x1,. . .,xu, xv, . . .,xn), ∀(uv)∈Eτ .

It is well known that the sum-product algorithm [63] efficiently computes the marginal

distributions for a tree structured graph. It can also be shown that the sum-product

algorithm solves the following optimization problem [103] for tree τ for some constant

ητ :

max
mτ∈L(τ)

〈mτ ,ητ 〉+HBethe(mτ ) , (7.16)

where HBethe(mτ ) is the Bethe entropy of mτ defined as:

HBethe(mτ )=
∑

u∈Vτ

Hu(mτ,u)−
∑

(u,v)∈Eτ

Iuv(mτ,uv) , (7.17)

where Hu(mτ,u) is the entropy function on each node u ∈ Vτ and Iuv(mτ,uv) is the

mutual information on each edge (u, v) ∈ Eτ .

Combing (7.15) and (7.16), we set ητ = ∇φ(mt
τ ) − yt

τ/α and choose φ to be the

negative Bethe entropy of mτ so that (7.15) can be solved efficiently in linear time via

the sum-product algorithm.

For the sake of completeness, we summarize the Bethe-ADMM algorithm as follows

:

mt+1
τ = argmin

mτ∈L(τ)
〈yt

τ/α−∇φ(m
t
τ ),mτ 〉+φ(mτ ) , (7.18)

µt+1=argmin
µ

T∑

τ=1

(
−〈λt

τ ,µτ 〉+
β

2
||mt+1

τ −µτ ||
2
2

)
, (7.19)

λt+1
τ = λt

τ + β(mt+1
τ − µt+1

τ ) , (7.20)

where yt
τ is defined in (7.13) and −φ is defined in (7.17).
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7.3.3 Convergence

We prove the global convergence of the Bethe-ADMM algorithm. We first bound the

Bregman divergence dφ:

Lemma 1 Let µτ and ντ be two concatenated vectors of the pseudomarginals on a tree

τ with nτ nodes. Let dφ(µτ ||ντ ) be the Bregman divergence induced by the negative

Bethe entropy φ. Assuming α ≥ maxτ{β(2nτ − 1)2}, we have

αdφ(µτ ||ντ ) ≥
β

2
‖µτ − ντ‖

2
2 . (7.21)

Proof: Let Pτ (x) be a tree-structured distribution on a tree τ = (Vτ , Eτ ), where |Vτ | =

nτ and |Eτ | = nτ − 1. The pseudomarginal µτ has a total of 2nτ − 1 components,

each being a marginal distribution. In particular, there are nτ marginal distributions

corresponding to each node u ∈ Vτ , given by

µτ,u(xu) =
∑

¬xu

Pτ (x1, . . . , xu, . . . , xn) . (7.22)

Thus, µu is the marginal probability for node u.

Further, there are nτ − 1 marginal components corresponding to each edge (u, v) ∈

Eτ , given by

µτ,uv(xu, xv) =
∑

¬(xu,xv)

P (x1, . . . , xu, . . . , xv, . . . , xn) . (7.23)

Thus, µuv is the marginal probability for nodes (u, v).

Let µτ ,ντ be two pseudomarginals defined on tree τ and Pµτ
, Pντ be the corre-

sponding tree-structured distributions. Making use of (7.22), we have

‖Pµτ
− Pντ ‖1 ≥ ‖µτ,u − ντ,u‖1, ∀u ∈ Vτ . (7.24)

Similarly, for each edge, we have the following inequality because of (7.23)

‖Pµτ
−Pντ ‖1≥‖µτ,uv−ντ,uv‖1, ∀(u, v) ∈ Eτ . (7.25)

Adding them together gives

(2nτ−1)‖Pµτ
−Pντ

‖1≥‖µτ−ντ‖1 ≥ ‖µτ−ντ‖2 . (7.26)
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According to Pinsker’s inequality [19], we have

dφ(µτ ||ντ ) = KL(Pµτ
, Pντ ) ≥

1

2
‖Pµτ

− Pντ
‖21 ≥

1

2(2nτ − 1)2
‖µτ − ντ‖

2
2 . (7.27)

Multiplying α on both sides and letting α ≥ β(2nτ − 1)2 complete the proof.

To prove the convergence of the objective function, we define a residual term Rt+1
τ

as

Rt+1
τ = ρτ 〈m

t+1
τ − µ∗

τ ,θτ 〉 , (7.28)

where µ∗
τ is the optimal solution for tree τ . We show that Rt+1

τ satisfies the following

inequality:

Lemma 2 Let {mτ ,µτ ,λτ} be the sequences generated by Bethe-ADMM. Assume α ≥

maxτ{β(2nτ − 1)2}. For any µ∗
τ ∈ L(τ), we have

Rt+1
τ ≤〈λt

τ ,µ
∗
τ−m

t+1
τ 〉+α

(
dφ(µ

∗
τ ||m

t
τ )−dφ(µ

∗
τ ||m

t+1
τ )

)

+
β

2

(
‖µ∗

τ−µ
t
τ‖

2
2−‖µ

∗
τ−m

t
τ‖

2
2−‖m

t+1
τ −µt

τ‖
2
2

)
, (7.29)

where Rt+1
τ is defined in (7.28).

Proof: Since mt+1
τ is the optimal solution for (7.18), for any µ∗

τ ∈ L(τ), we have the

following inequality:

〈yt
r+α(∇φ(m

t+1
τ )−∇φ(mt

τ )),µ
∗
τ−m

t+1
τ 〉≥0 . (7.30)

Substituting (7.13) into (7.30) and rearranging the terms, we have

Rt+1
τ ≤ 〈λt

τ ,µ
∗
τ −mt+1

τ 〉+ β〈mt
τ − µt

τ ,µ
∗
τ −mt+1

τ 〉

+ α〈∇φ(mt+1
τ )−∇φ(mt

τ ),µ
∗
τ −mt+1

τ 〉 . (7.31)

The second term in the RHS of (7.31) is equivalent to

2〈mt
τ − µt

τ ,µ
∗
τ −mt+1

τ 〉 = ‖m
t
τ −mt+1

τ ‖
2
2

+‖µ∗
τ−µ

t
τ‖

2
2−‖µ

∗
τ−m

t
τ‖

2
2−‖m

t+1
τ −µt

τ‖
2
2. (7.32)
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The third term in the RHS of (7.31) can be rewritten as

〈∇φ(mt+1
τ )−∇φ(mt

τ ),µ
∗
τ −mt+1

τ 〉

=dφ(µ
∗
τ ||m

t
τ )−dφ(µ

∗
τ ||m

t+1
τ )−dφ(m

t+1
τ ||m

t
τ ). (7.33)

Substituting (7.32) and (7.33) into (7.31) and using Lemma 1 complete the proof.

We next show that the first term in the RHS of (7.29) satisfies the following result:

Lemma 3 Let {mτ ,µτ ,λτ} be the sequences generated by Bethe-ADMM. For any µ∗
τ ∈

L(τ), we have

|T|∑

τ=1

〈λt
τ ,µ

∗
τ −mt+1

τ 〉 ≤
1

2β
(‖λt

τ‖
2
2 − ‖λ

t+1
τ ‖

2
2) +

β

2

(
‖µ∗

τ −mt+1
τ ‖

2
2 − ‖µ

∗
τ − µt+1

τ ‖
2
2

)
.

Proof: Let µi be the ith component of µ. We augment µτ ,mτ and λτ in the following

way: If µi is not a component of µτ , we set µτ,i = 0,mτ,i = 0 and λτ,i = 0; otherwise,

they are the corresponding components from µτ ,mτ and λτ respectively. We can then

rewrite (7.19) in the following equivalent component-wise form:

µt+1
i =argmin

µi

|T|∑

τ=1

(
〈λtτ,i,m

t+1
τ,i −µτ,i〉+

β

2
||mt+1

τ,i −µτ,i||
2
2

)
.

For any µ∗
τ ∈ L(τ), we have the following optimality condition:

−

|T|∑

τ=1

〈λtτ,i + β(mt+1
τ,i − µ

t+1
τ,i ), µ

∗
τ,i − µ

t+1
τ,i 〉 ≥ 0 . (7.34)

Combining all the components of µt+1, we can rewrite (7.34) in the following vector

form:

−

|T|∑

τ=1

〈λt
τ + β(mt+1

τ − µt+1
τ ),µ∗

τ − µt+1
τ 〉 ≥ 0 . (7.35)

Rearranging the terms yields

|T|∑

τ=1

〈λt
τ ,µ

∗
τ −mt+1

τ 〉
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≤

|T|∑

τ=1

〈λt
τ ,µ

t+1
τ −m

t+1
τ 〉−

|T|∑

τ=1

β〈mt+1
τ −µ

t+1
τ ,µ∗

τ−µ
t+1
τ 〉

=

|T|∑

τ=1

〈λt
τ ,µ

t+1
τ −mt+1

τ 〉+
β

2

|T|∑

τ=1

(
‖µ∗

τ −mt+1
τ ‖

2
2

−‖µ∗
τ − µt+1

τ ‖
2
2 − ‖µ

t+1
τ −mt+1

τ ‖
2
2

)
. (7.36)

Recall µt+1
τ −mt+1

τ = 1
β (λ

t
τ − λt+1

τ ) in (7.20), then

〈λt
τ ,µ

t+1
τ −mt+1

τ 〉−
β

2
‖µt+1

τ −mt+1
τ ‖

2
2 =

1

2β
(‖λt

τ‖
2
2 − ‖λ

t+1
τ ‖

2
2) . (7.37)

Plugging (7.37) into (7.36) completes the proof.

We also need the following lemma:

Lemma 4 Let {mτ ,µτ ,λτ} be the sequences generated by Bethe-ADMM. Then

|T|∑

τ=1

‖mt+1
τ −µ

t
τ‖

2
2 ≥

|T|∑

τ=1

‖mt+1
τ −µ

t+1
τ ‖

2
2+‖µ

t+1
τ −µ

t
τ‖

2
2 .

Proof: According to (7.20), (7.35) can be rewritten as

−

|T|∑

τ=1

〈λt+1
τ ,µ∗

τ − µt+1
τ 〉 ≥ 0 , (7.38)

which holds for any µ∗
τ ∈ L(τ). Setting µ∗

τ = µt
τ yields

−

|T|∑

τ=1

〈λt+1
τ ,µt

τ − µt+1
τ 〉 ≥ 0 . (7.39)

Similarly, we have

−

|T|∑

τ=1

〈λt
τ ,µ

t+1
τ − µt

τ 〉 ≥ 0 . (7.40)

Adding (7.39) and (7.40) them together yields

|T|∑

τ=1

〈λt+1
τ − λt

τ ,µ
t+1
τ − µt

τ 〉 ≥ 0 . (7.41)
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Recall that λt+1
τ − λt

τ = β(mt+1
τ − µt+1

τ ) in (7.20), we have

0 ≤

|T|∑

τ=1

β〈mt+1
τ − µt+1

τ ,µt+1
τ − µt

τ 〉

=
β

2

|T|∑

τ=1

‖mt+1
τ −µt

τ‖
2
2−‖m

t+1
τ −µt+1

τ ‖
2
2−‖µ

t+1
τ −µt

τ‖
2
2.

Rearranging the first two terms completes the proof.

Theorem 1 Assume the following hold: (1) m0
τ and µ0

τ are uniform tree-structured

distributions, ∀τ = 1, . . . , |T| (2) λ0
τ = 0,∀τ = 1, . . . , |T|; (3) maxτ dφ(µ

∗
τ ||m

0
τ ) = Dµ;

(4) α ≥ maxτ{β(2nτ − 1)2} holds. Denote m̄T
τ = 1

T

∑T−1
t=0 mt

τ and µ̄T
τ = 1

T

∑T−1
t=0 µt

τ .

For any T and the optimal solution µ∗, we have

|T|∑

τ=1

(
ρτ 〈m̄

T
τ − µ∗

τ , θτ 〉+
β

2
‖m̄T

τ − µ̄T
τ ‖

2
2

)
≤
Dµα|T|

T
.

Proof: Summing (7.29) over τ from 1 to |T| and using Lemma 3, we have:

|T|∑

τ=1

(
Rt+1

τ +
β

2
‖mt+1

τ − µt
τ‖

2
2

)

≤

|T|∑

τ=1

1

2β
(‖λt

τ‖
2
2−‖λ

t+1
τ ‖

2
2)+

β

2

(
‖µ∗

τ−µ
t
τ‖

2
2−‖µ

∗
τ−µ

t+1
τ ‖

2
2

)

+
β

2

(
‖µ∗

τ −mt+1
τ ‖

2
2 − ‖µ

∗
τ −mt

τ‖
2
2

)
+ α

(
dφ(µ

∗
τ ||m

t
τ )− dφ(µ

∗
τ ||m

t+1
τ )

)
. (7.42)
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Summing over the above from t = 0 to T − 1, we have

T−1∑

t=0

|T|∑

τ=1

(
Rt+1

τ +
β

2
‖mt+1

τ − µt
τ‖

2
2

)

≤

|T|∑

τ=1

1

2β
(‖λ0

τ‖
2
2−‖λ

T
τ‖

2
2)+

β

2

(
‖µ∗

τ−µ
0
τ‖

2
2−‖µ

∗
τ−µ

T
τ‖

2
2

)

+
β

2

(
‖µ∗

τ −mT
τ ‖

2
2 − ‖µ

∗
τ −m0

τ‖
2
2

)
+ α

(
dφ(µ

∗
τ ||m

0
τ )− dφ(µ

∗
τ ||m

T
τ )
)

≤

|T|∑

τ=1

β

2
‖µ∗

τ −mT
τ ‖

2
2 +α

(
dφ(µ

∗
τ ||m

0
τ )−dφ(µ

∗
τ ||m

T
τ )
)

≤

|T|∑

τ=1

αdφ(µ
∗
τ ||m

0
τ ) , (7.43)

where we use Lemma 1 to derive (7.43). Applying Lemma 4 and Jensen’s inequality

yield the desired bound.

Theorem 1 establishes the O(1/T ) convergence rate for the Bethe-ADMM in ergodic

sense. As T →∞, the objective value
∑|T|

τ=1ρτ 〈m̄
T
τ , θτ 〉 converges to the optimal value

and the equality constraints are also satisfied.

7.3.4 Extension to MRFs with General Factors

Although we present Bethe-ADMM in the context of pairwise MRFs, it can be easily

generalized to handle MRFs with general factors. For a general MRF, we can view the

dependency graph as a factor graph [63], a bipartite graph G = (V ∪ F,E), where V

and F are disjoint set of variable nodes and factor nodes and E is a set of edges, each

connecting a variable node and a factor node. The distribution P (x) takes the form:

P (x) ∝ exp
{∑

u∈V fu(xu) +
∑

α∈F fα(xα)
}
. The relaxed LP for general MRFs can be

constructed in a similar fashion with that for pairwise MRFs.

We can then decompose the relaxed LP to subproblems defined on factor trees

and impose equality constraints to enforce consistency on the shared variables among

the subproblems. Each subproblem can be solved efficiently using the sum-product

algorithm for factor trees and the Bethe-ADMM algorithm for general MRFs bears

similar structure with that for pairwise MRFs.
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7.4 Experimental Results

We compare the Bethe-ADMM algorithm with several other state-of-the-art MAP in-

ference algorithms. We show the comparison results with primal based MAP inference

algorithms in Section 7.4.1 and dual based MAP inference algorithm in Section 7.4.2

respectively. We also show in Section 7.4.3 how tree decomposition benefits the per-

formance of Bethe-ADMM. We run experiments in Section 7.4.1-7.4.3 using sequential

updates.

7.4.1 Comparison with Primal based Algorithms

We compare the Bethe-ADMM algorithm with the proximal algorithm [85], Exact

ADMM algorithm and Primal ADMM algorithm [75]. For the proximal algorithm,

we choose the Bregman divergence as the sum of KL-divergences across all node and

edge distributions. Following the methodology in [85], we terminate the inner loop if

the maximum constraint violation of L(G) is less than 10−3 and set wt = t. Similarly,

in applying the Exact ADMM algorithm, we terminate the loop for solving mτ if the

maximum constraint violation of L(τ) is less than 10−3. For the Exact ADMM and

Bethe-ADMM algorithm, we use ‘edge decomposition’: each τ is simply an edge of

the graph and |T| = |E|. To obtain the integer solution, we use node-based rounding:

x∗u = argmaxxu
µu(xu).

We show experimental results on two synthetic datasets. The underlying graph of

each dataset is a three dimensional m×n×t grid. We generate the potentials as follows:

We set the nodewise potentials as random numbers from [−a, a], where a > 0. We set

the edgewise potentials according to the Potts model, i.e., θuv(xu, xv) = buv if xu = xv

and 0 otherwise. We choose buv randomly from [−1, 1]. The edgewise potentials penalize

disagreement if buv > 0 and penalize agreement if buv < 0. We generate datasets using

m = 20, n = 20, t = 16, k = 6 with varying a.

Figure 7.1(a) shows the plots of (5.6) on one synthetic dataset and we find that the

algorithms have similar performances on other simulation datasets. We observe that all

algorithms converge to the optimal value 〈µ∗,f〉 of (5.16) and we plot the relative error

with respect to the optimal value |〈µ∗−µt,f〉| on the two datasets in Figure 8.2(a) and

8.2(b).
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Overall, the Bethe-ADMM algorithm converges faster than other primal algorithms.

We observe that the proximal algorithm and Exact ADMM algorithm are the slowest,

due to the sequential projection step. In terms of the decoded integer solution, the

Bethe-ADMM, Exact ADMM and proximal algorithm have similar performances. We

also note that a higher objective function value does not necessarily lead to a better

decoded integer solution.
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(a) Rounded solution with a = 0.5.
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(b) Relative error with a = 0.5.

1 5 10 50 100 200
0

500

1000

1500

2000

2500

3000

Time (seconds)

R
el

at
iv

e 
E

rr
or

 

 

Bethe−ADMM
Exact ADMM
Primal ADMM
Dual ADMM

(c) Relative error with a = 1.

Figure 7.1: Results of Bethe-ADMM, Exact ADMM, Primal ADMM and proximal
algorithms on two simulation datasets. Figure 7.1(a) plots the value of the decoded
integer solution as a function of runtime (seconds). Figure 8.2(a) and 8.2(b) plot the
relative error with respect to the optimal LP objective as a function of runtime (seconds).
For Bethe-ADMM, we set α = β = 0.05. For Exact ADMM, we set β = 0.05. For
Primal ADMM, we set β = 0.5. Bethe-ADMM converges faster than other primal
based algorithms.
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7.4.2 Comparison with Dual based Algorithms

In this section, we compare the Bethe-ADMM algorithm with the MPLP algorithm

[42] and the Dual ADMM algorithm [75]. We conduct experiments on protein design

problems [111]. In these problems, we are given a 3D structure and the goal is to find

a sequence of amino-acids that is the most stable for that structure. The problems

are modeled by nodewise and pairwise factors and can be posed as finding a MAP

assignment for the given model. This is a demanding setting in which each problem

may have hundreds of variables with 100 possible states on average.

We run the algorithms on two problems with different sizes [111], i.e., 1jo8 (58 nodes

and 981 edges) and 1or7 (180 nodes and 3005 edges). For the MPLP and Dual ADMM

algorithm, we plot the value of the integer programming problem (5.6) and its dual..

For Bethe-ADMM algorithm, we plot the value of dual LP of (5.16) and the integer

programming problem (5.6). Note that although Bethe-ADMM and Dual ADMM have

different duals, their optimal values are the same. We run the Bethe-ADMM based on

edge decomposition. Figure 7.3 shows the result.

We observe that the MPLP algorithm usually converges faster, but since it is a

coordinate ascent algorithm, it can stop prematurely and yield suboptimal solutions.

Figure 7.2 shows that on the 1fpo dataset, the MPLP algorithm converges to a subopti-

mal solution. We note that the convergence time of the Bethe-ADM and Dual ADM are

similar. The three algorithms have similar performance in terms of the decoded integer

solution.

7.4.3 Edge based vs Tree based

In the previous experiments, we use ‘edge decomposition’ for the Bethe-ADMM algo-

rithm. Since our algorithm can work for any tree-structured graph decomposition, we

want to empirically study how the decomposition affects the performance of the Bethe-

ADMM algorithm. In the following experiments, we show that if we can utilize the

graph structure when decomposing the graph, the Bethe-ADMM algorithm will have

better performance compared to simply using ‘edge decomposition’, which does not take

the graph structure into account.
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We conduct experiments on synthetic datasets. We generate MRFs whose depen-

dency graphs consist of several tree-structured graphs and cross-tree edges to introduce

cycles. To be more specific, we first generate m binary tree structured MRFs each with

s nodes. Then for each ordered pair of tree-structured MRFs (i, j), 1 ≤ i, j ≤ m, i 6= j,

we uniformly sample n nodes from MRF i with replacement and uniformly sample n

(n ≤ s) nodes from MRF j without replacement, resulting in two node sets Sij and

Dij . We then connect the nodes in Sij and Dij , denoting them as Eij. We repeat this

process for every pair of trees. By construction, the graph consisting of tree i, nodes in

Dij and edges in Eij, ∀j 6= i is still a tree. We will use these m augmented trees as the

tree-structured subgraphs for the Bethe-ADMM algorithm. Figure 7.4 illustrates the

graph generation and tree decomposition process. A simple calculation shows that for

this particular tree decomposition, O(m2nk) equality constraints are maintained, while

for edge decomposition, O(msk+m2nk) are maintained. When the graph has dominant

tree structure, tree decomposition leads to much less number of equality constraints.

For the experiments, we run the Bethe-ADMM algorithm based on tree and edge

decomposition with different values of s, keeping m and n fixed. It is easy to see that

the tree structure becomes more dominant when s becomes larger. Since we observe

that both algorithms first converge to the optimal value of (5.16) and then the equality

constraints are gradually satisfied, we evaluate the performance by computing the max-

imum constraint violation of L(G) at each iteration for both algorithms. The faster the

constraints are satisfied, the better the algorithm is. The results are shown in Figure 7.5.

When the tree structure is not obvious, the two algorithms have similar performances.

As we increase s and the tree structure becomes more dominant, the difference between

the two algorithms is more pronounced. We attribute the superior performance to the

fact that for the tree decomposition case, much fewer number of equality constraints are

imposed and each subproblem on tree can be solved efficiently using the sum-product

algorithm.
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Figure 7.2: Both Bethe-ADMM and MPLP are run for sufficiently long, i.e., 50000
iterations. The dual objective value is plotted as a function of runtime (seconds). The
MPLP algorithm gets stuck and does not reach the global optimum.
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(a) Rounded integer solution on 1jo8.
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(b) Dual value on 1jo8.
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(c) Dual value on 1or7.

Figure 7.3: Results of Bethe-ADMM, MPLP and Dual ADMM algorithms on two pro-
tein design datasets. Figure 7.3(a) plots the the value of the decoded integer solution as
a function of runtime (seconds). Figure 7.3(b) and 7.3(c) plot the dual value as a func-
tion of runtime (seconds). For Dual ADMM, we set β = 0.05. For Bethe-ADMM, we
set α = β = 0.1. Bethe-ADMM and Dual ADMM have similar performance in terms of
convergence. All three methods have comparable performances for the decoded integer
solution.
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(a)

(b)

Figure 7.4: A simulation dataset with m = 2, s = 7 and n = 3. In 7.4(a), the red nodes
(S12) are sampled from tree 1 and the blue nodes (D12) are sampled from tree 2. In
7.4(b) , sampled nodes are connected by cross-tree edges (E12). Tree 1 with nodes in
D12 and edges in E12 still form a tree, denoted by solid lines. This augmented tree is a
tree-structured subgraph for Bethe-ADMM.
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(a) s = 1023.
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(b) s = 4095.
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(c) s = 16383.

Figure 7.5: Results of Bethe-ADMM algorithms based on tree and edge decomposition
on three simulation datasets with m = 10, n = 20. The maximum constraint violation
in L(G) is plotted as a function of runtime (seconds). For both algorithms, we set
α = β = 0.05. The tree based Bethe-ADMM algorithm has better performance than
that of the edge based Bethe-ADMM when the tree structure is more dominant in G.



Chapter 8

Efficient MPI Implementation of

the Bethe-ADMM algorithm

To illustrate the efficiency of the Bethe-ADMM algorithm, we implement it using mes-

sage passing interface (MPI), which is a natural fit for the parallel algorithm given its

flexible message passing mechanism, along with its portability and wide adoption in

distributed and high performance clusters. The other advantage of using MPI is that

its I/O interface is optimized for a wide variety of underlying parallel file systems (PFS)

and sustains high I/O bandwidth. We evaluate our algorithms on a simulation and a

real precipitation dataset, which are both of large scale. The empirical results show

that we manage to obtain almost linear speedup in the number of cores used. The rest

of this chapter is organized as follows: we discuss the MPI implementation in detail in

Section 8.1 and present the experimental results in Section 8.2.

8.1 Parallel Implementation

In this section, we explain the key components of our MPI implementation in detail.

Our goal is to run the Bethe-ADMM algorithm on modern high performance computers

with thousands of cores and it requires us to adopt the best parallelization practice. To

achieve this goal, we carefully design our MPI implementation so that the underlying

parallel computing architecture can be fully utilized.

Since the update of mτ in (7.18) for each tree is independent, the Bethe-ADMM

108
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algorithm is inherently parallel. In the parallel Bethe-ADMM algorithm, each process

only maintains the information of a subset of trees in T and mτ is updated simultane-

ously. According to (7.19), the update of variable µ involves averaging over mτ from

the relevant trees. If these trees belong to different processes, the value of mτ needs

to be exchanged among the processes so that µ can be computed correctly. Because

of the communication occurred among the processes, the message passing framework

is a good fit for our parallel implementation. Hence, we implement the Bethe-ADMM

algorithm using MPI. We also make the following implementation assumptions: (i) The

MRF dependency graph is a regular grid shaped graph, e.g., two dimensional four near-

est neighbor grid. (ii) Each tree structured subgraph is simply an edge of G. (iii)The

input to the MAP inference algorithm is some data file, which has the potential and

graph structure information.

An efficient parallel implementation is more challenging than an efficient sequen-

tial implementation. To fully utilize the computing power provided by the underlying

parallel architecture, we need to address the following issues:

• How to design an efficient I/O scheme to load the data files, i.e., node potentials,

edge potentials and graph structure?

• How to decompose the graph so that the work load on each process is balanced?

• How to efficiently figure out, for each process, what ‘messages’ it needs to exchange

with other processes?

We illustrate in Fig 8.1 the key components of our MPI implementation. We take

advantage of the PFS so that processes can access the data file (input.nc) in parallel. We

also design a simple heuristic to partition the graph to achieve load balancing. Making

use of the graph structure information, we deploy a decentralized algorithm to figure out,

for each MPI process, the information it needs to exchange with other processes. After

each process reads the data file in parallel to fetch the relevant nodewise and edgewise

potentials, it computes the local variables mτ , communicate with other processes and

update the global variable µ.
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Figure 8.1: Bethe-ADMM parallel implementation.

8.1.1 Parallel File Loading

The data file used as input to the MAP inference algorithm contains the nodewise and

edgewise potentials and the graph structure information. We represent the graph as

a set of edges with two node ids. (Figure 8.2(a) shows an example on a simple grid

graph.) A naive way to load the data file is to have a master process read the entire

data file and send to other slave processes the information they need. This approach

is clearly not efficient because a slave process remains idle when other slave processes

receive data from the master process. Our approach is to take advantage of the PFS,

which stripes a file across multiple storage devices and enables parallel access to the

data file.

To be more specific, we adopt the Pnetcdf [66] file format for parallel data file

loading. The Pnetcdf is suitable for our implementation because the potential data and

graph structure information can be easily stored as Pnetcdf multi-dimensional arrays.

A Pnetcdf file also provides a rich suite of APIs that allow users to define metadata

which describe datasets in details, such as the number of nodes and edges of a given

graph, the type of graphs and the dimensions of the datasets. Moreover, it integrates

tightly with MPI-IO and the underlying PFS so that our algorithm can achieve high

degree of parallelism in terms of I/O operations.
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8.1.2 Graph Partitioning

To take advantage of the parallel architecture, the work load should be split evenly

among the processes and the partition should also minimize the intercommunication

among the processes. This problem is usually NP hard and most practical solutions are

based on heuristics. For example, in Pregel [69] and Giraph [1], the solution is to use

node-centric partition, where assignment of a node to a partition depends solely on the

node id. The simplest implementation is to calculate the hash value of each node id and

modulus by N, where N is the number of partitions. However this simple heuristic comes

with a cost that neighboring nodes are likely to be distributed on different processes

and thus incur high communication overhead.

In our implementation, we adopt edge-centric partition, where we evenly divide the

edges among all the processes. (Figure 8.2(b) shows the partition on a 2 × 3 grid.)

Since the underlying dependency graph is a regular shaped grid graph, edge partition

is empirically a good choice, as shown by the experimental results in Section 8.2.

8.1.3 Inter-process communication

After the graph decomposition step, each process reads from the input Pnetcdf file,

retrieve the nodewise and edgewise potentials and compute mτ . To compute µ, a simple

solution is to have a master process collect the value of mτ from the slave processes

and compute µ according to (7.19). After µ is updated, the master process has to send

µ back to each slave process so that mτ can be computed in the next iteration. This

approach is clearly not efficient and we adopt a fully distributed algorithm: each process

maintains a copy of the relevant elements of µ, receive mτ from other processes and

update µ according to (7.19).

To apply the above distributed algorithm, each process needs to figure out the

neighbor processes with which it exchanges the value of mτ . This can be done by

comparing the node ids of each process and a pair of processes need to communicate

with each other if they have sharing nodes. To be more specific, we compactly represent

the node list of a process as a list of pairs {vi, li}, where li is the length of continuous ids

starting from vi. (Figure 8.2(c) illustrates the compact representation of node lists on

two processes.) Each process then gathers {(vi, li)} from all other processes, compare
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(a) A grid with 6 nodes and 7 edges. (b) Edge-centric partition with 4 processes.

(c) Process 0 and 1 share node 0 and 1.

Figure 8.2: 8.2(a): We label the nodes row by row and represent the graph structure as
a set of edges: (0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5). 8.2(b): We use 4 MPI
processes and apply edge-centric partition. 8.2(c): The node list of process 0 can be
represented as: {{0, 3}} and the node list of process 1 can be represented as: {{0, 2},
{3, 2}}. The processes share node 1 and 0. The degree of node 1 is 3. The process 0
has partial degree of 2 (red nodes) and the process 1 has degree of 1 (green node). The
degree of node 0 is 2 and both processes have local degree of 0.

the lists with its own node list and decide what processes it communicates with. Beside

deciding the neighbor processes, each process also needs to figure out the degrees of

the sharing nodes. The degree (count) information will be used when the averaging

operation is performed according to (7.19). As a result, the neighbor process also

exchanges the local partial degree of the sharing nodes and compute the full degree

accordingly. Algorithm 3 summaries the above procedure.

Algorithm 4 shows the details on the communication occurred among the processes:

we reduce our communication cost by exchanging the partial sum of mτ rather than

individual mτ . We use asynchronous MPI APIs, which allows messages to be send or

received asynchronously while not blocking the following operations.
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Algorithm 3 NeighborFinder

1: idList = getNodeId()
2: pairCount = idList.size()
3: MPI Allgather(
4: pairCount, 1,MPI INT,
5: countArr, 1,MPI INT, comm)
6: Copy idList to sendBuf
7: Construct displacementArr from countArr
8: MPI Allgatherv(
9: sendBuf, 2 ∗ pairCount,MPI INT,

10: recvBuf, 2 ∗ countArr, displacementArr,
11: MPI INT, comm)
12: Compute neighbor processes by comparing idLists
13: Count partial degree of sharing nodes
14: Exchange partial degree with neighbor processes
15: Compute full degree of sharing nodes

8.2 Experimental Results

In this section, we present experimental results on a simulation dataset and a precipi-

tation dataset. Our experiments are conducted on Hopper [2], the Cray XE6 parallel

machine at the National Energy Research Scientific Computing Center. Hopper is a

6384 compute node cluster where each compute node consists of two twelve-core AMD

MagnyCours processors with a theoretical peak performance of 8.4 GFlop/sec per core.

6000 compute nodes have 32 GB DD3 memory each and the rest have 64 GB mem-

ory each. Hopper runs “Cray Linux Environment” (CLE) operating system which is

restricted low-overhead and optimized for high performance computing. The PFS is

Lustre with 156 I/O servers (OSTs). The measured peak write performance on Hopper

is 35 GB per second. To maximize the possible read bandwidth, we stripe our input file

across 128 stripes and the file stripe size is set to 1 MB.

8.2.1 Simulation Dataset

We show experimental results on a simulation dataset. The underlying graph is a 2

dimensional 1,000 × 10,000 grid with k = 3 and the potentials are random numbers in

[0, 1]. The resulting MRF has 10 million nodes and approximately 20 million edges.
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Algorithm 4 Exchange mτ among neighbor processes

1: for Each node u
2: partial sum[u] = 0
3: end for
4: for Each edge τ (u, v)
5: partial sum[u] += mτ [u]
6: partial sum[v] += mτ [v]
7: end for
8: idx = 0
9: MPI Request request[neighbors.size() * 2]

10: for i in neighbors
11: sharing node = getSharingNode(i)
12: copy partial sum[sharing node] to sendBuf
13: MPI ISend(sendBuf, k ∗ sharing node.size(),
14: MPI FLOAT, i, rank,
15: comm,&request[idx++])
16: MPI IRecv(recvBuf, k ∗ sharing node.size(),
17: MPI FLOAT, i, i,
18: comm,&requests[idx++])
19: end for

We apply the edge-centric partitioning and run the Bethe-ADMM algorithm for 100

iterations.

Figure 8.3(a) shows the run time performance using 8 to 1024 MPI processes. The

algorithm runs about half an hour on 8 process, and dramatically reduces to 16 seconds

on 1024 processes. The input file size is close to 1GB and data loading only takes 1.2

seconds. We attribute the speedup to our adoption of PNetCDF as well as stripping

the input file across 128 OSTs.

Figure 8.3(b) illustrates the average time it takes per process to computemτ , update

µ and communicate with neighbor processes respectively and the error bars show the

minimum and maximum time spent on these three steps across all the processes. Since

we evenly distribute the edges to the processes, the time spent on computing mτ has

little fluctuation among the processes. The time to update µ, however, also depends on

the number of neighbor processes and the number of shared nodes, hence the fluctuation

between the min and max time among all the processes becomes more obvious as the

number of processes increases. The plot shows the communication cost incurred by the
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(a) Time spent on the I/O phase and the Bethe-ADMM
optimization. The I/O cost is low.

(b) Time spent on the three steps of the Bethe-ADMM op-
timization. The communication overhead can be negligible.

(c) Almost linear speedup in the number of MPI processes

Figure 8.3: Results on the simulation dataset with 10 million nodes and 20 million edges
using 8-1024 MPI processes. The I/O and communication cost is relatively low. Overall,
the MPI implementation achieves almost linear speedup in the number of processes.
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edge-centric partition is negligible. The main reason that the communication cost is so

small is because when we partition the grid, we sweep row edges and column edges from

top to bottom, which essentially behaves as row partitioning where each process has at

most 2 neighbors and only the boundary data are exchanged.

Figure 8.3(c) shows that the Bethe-ADMM algorithm implementation achieves al-

most linear speedup while the speedup of the entire implementation (I/O phase +

Bethe-ADMM optimization) starts to deviate from the ideal case after 256 processes.

This is because as the number of MPI processes increases, each process has less work

load and optimization part becomes less dominating compared with the I/O part.

8.2.2 CRU Precipitation Dataset

In this section, we adopt Bethe-ADMM to solve the drought detection problem presented

in Chapter 6 and the precipitation dataset we use is still the CRU dataset. We run

the Bethe-ADMM algorithm on the CRU dataset for 500 iterations with edge-centric

partitioning. The input PNetcdf file is around 530 MB. The runtime performance, as

shown in Figure 8.4(a) exhibits the nice decreasing trend as it does on the simulation

data. The algorithm takes less than 2 minutes to complete with 1024 MPI processes

which would run more than two hours with 8 processes. The amount of time saved by

our implementation is tremendous.

Figure 8.4(b) illustrates the average time per process to compute mτ , communicate

with neighbors and update µ respectively. The error bars mark the minimum and

maximum time spent on these three steps across all the processes. The communication

cost on the CRU dataset is no longer negligible anymore. This is because the underlying

3 dimensional grid has missing nodes (CRU only has precipitation over land) and when

we apply edge-centric partitioning, each process may have more than two neighbors.

Hence as the number of processes increases, the number of neighbors for each process is

more dynamic and the communication pattern becomes more complicated. Figure 8.4(c)

plots the almost linear speedup on the CRU dataset. It also shows the trend that our

implementation is scalable beyond 1024 processes. This is understandable because I/O

time is only 2% of the total execution time, even at 1024 MPI processes.
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(a) Time spent on the I/O phase and Bethe-ADMM opti-
mization. The I/O cost is low.

(b) Time spent on the three steps of the Bethe-ADMM op-
timization. The communication overhead is low.

(c) Almost linear speedup in the number of MPI processes

Figure 8.4: Results on the CRU dataset with 7,146,520 nodes and 20,777,480 edges
using 8-1024 MPI processes. The I/O and communication cost is relatively low. Overall,
the MPI implementation achieves almost linear speedup in the number of processes.



Chapter 9

Conclusion and Discussion

Wh have presented our research on two important machine learning problems: overlap-

ping clustering and MAP inference in discrete graphical models.

In Chpater 3, we have presented an overlapping clustering approach based on MMMs.

The proposed MMM inherently assumes that each point is generated from a product of a

subset of the component distributions. When each component distribution in a MMM is

from an exponential family, we show that there is an efficient alternating maximization

algorithm that converges to a (local) maxima of the joint likelihood of the observations

and their assignments. We also show that when each component in a MMM is a multi-

variate Gaussian, we can use kernel techniques to get non-linear separators and obtain

better clustering quality. In practice, the algorithms are accurate, fast, and scale to

large datasets.

In Chapter 4, we have presented a systematic hierarchical generative model and

corresponding algorithms for discovering uniform sub-blocks in a given data matrix.

Preliminary empirical evidence goes significantly in favor of the proposed algorithm.

Perhaps more importantly, the BOSC model introduces a substantially novel way to

approach the problem. There are at least two important future research directions.

First, the BOSC model assumes that the number of co-clusters k is known, which is

typically not the case in several problems. We would like to investigate nonparametric

priors, such as the Indian Buffet Process [6], to relax this assumption. Second, in spite of

the effectiveness of the proposed algorithm, it is computationally slow for large datasets.

In future, we would like to investigate faster approximate inference algorithms for the

118
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BOSC model.

Due to the importance of understanding droughts, in Chapter 6, we consider the

problem of their detection and develop a fully automic drought detection algorithm.

We formulate the problem as the one of estimating the most likely configuration of a

binary MRF, where each node can be in either a drought or normal state. We adopt the

proximal maximization and Bregman cyclic projection scheme for the MAP inference

task. To maintain spatio-temporal consistency, we design the potential functions to

encourage the neighbouring nodes to take same values. We run the algorithm on the high

resolutiuon CRU precipitation dataset and it efficiently solves this large scale problem

with over 7 million variables. The empirical results shows that we successfully identify

some well-documented drought regions of the last century in different parts of the world.

We want to emphasize that even though we mainly run our algorithm on a precipitation

dataset, the methodology is applicable to other climate variables as well. We plan to

extend the current algorithm to handle multi-variate climate datasets in the future, e.g.,

incorporating the soil moisture variable to the model. We are also interested in applying

the algorithm to the model output datasets.

In Chapter 7, we propose a provably convergent MAP inference algorithm for large

scale MRFs. The algorithm is based on the tree decomposition idea from the MAP in-

ference literature and the alternating direction method from the optimization literature.

Our algorithm solves the tree structured subproblems efficiently via the sum-product

algorithm and is inherently parallel. The empirical results show that the new algo-

rithm, in its sequential version, compares favorably to other existing approximate MAP

inference algorithm in terms of running time and accuracy. The experimental results

on large datasets demonstrate that the parallel version scales almost linearly with the

number of cores in the multi-core setting.

In Chapter 8, we discuss the MPI implementation of the Bethe-ADMM algorithm

and the experimental results show that our implementation scales almost linearly with

the number of MPI processes for grid-structured graphs.
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