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Abstract 
Water quality is declining in many parts of the world due to land-use change, pollution, and other 

stressors.  In addition to the ecological impacts of these changes, water quality also affects the 

provision of multiple ecosystem goods and services including human health, recreation, and 

livelihoods.  Investments designed to protect or restore water quality can be expensive and 

decision-makers must weigh the costs of new regulations against the public benefits provided by 

clean water.  In order to make informed decisions regarding the management of our land and 

water resources, we need information on the ways that changes in water quality affect human 

well-being and the economic value of those changes.  In Chapter One I address this gap by 

introducing a comprehensive framework for the valuation of water quality-related ecosystem 

services.  In Chapter Two I apply this framework to an investigation of land-use change and 

consequences to groundwater quality and find that grassland conversion to agriculture is likely to 

result in significant costs to private well owners.  In Chapter Three I use geo-tagged social media 

to assess visitation patterns to recreational lakes and find that lake users visit clear lakes more 

frequently and travel further to lakes with greater water quality.  Using interdisciplinary 

approaches that are both generalizable and scalable, my work highlights the real costs associated 

with changes in water quality and in doing so addresses an important information gap needed to 

support environmental decision-making.
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Introduction 

Environmental decision-making in a dynamic world 

Decision-makers are increasingly called upon to make decisions with respect to land-use or 

resource management in which there is both incomplete information and great uncertainty 

surrounding potential future outcomes (Polasky et al. 2011a).  Sociologists have called these 

problems examples of “post-normal science” where decisions need to be made before “normal” 

science has come to a resolution about the major drivers and underlying system dynamics (Kuhn 

1962, Funtowicz and Ravetz 1993).  Decisions are further complicated when the interests of 

different stakeholder groups are at odds or linked to controversial policies or programs.  These 

situations are pervasive in conservation and land management today and represent one of the 

greatest challenges to the successful integration of science and policy. 

Despite these challenges, science plays an important role in ensuring that accurate and relevant 

information is available to decision-makers, even in situations of great uncertainty.  The criteria 

for research under the “post-normal science” paradigm is therefore not to study the problem until 

enough is known to make the right decision, but rather contributing information such that it 

increases the likelihood that a slightly better decision is made than in the absence of additional 

information.  This requires synthesizing information from different studies and contexts to inform 

generalizable models, simplifying complex ecological processes to capture only the most 

important variables, and creating models that are sensitive to the types of actions or policies under 

consideration by decision-makers. 

In addition to creating simplified and generalizable tools to inform decision-making, results of 

these models need to be placed in an evaluative context that provides clues to the larger 

significance of the data (Norton 1998).  A value-based description that describes a socially 

desirable state of the ecosystem carries more weight than ecological terms like “productivity” or 

“nutrient retention”.  Linking environmental changes to impacts on human well-being highlights 

the dependence of our health, recreation, and livelihoods on functioning, resilient ecosystems 

(Daily 1997). Applying anthropocentric definitions of value to ecological systems and processes 

is not without controversy (McCauley 2006).  Yet many researchers advocate that “without such 

valuations, however incomplete, contingent, or uncertain, ecological values will most often lose 

to those for which markets, laws, local control, and culture provide measures in comparable 

currencies of value” (Hulse and Ribe 2000). 
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Ecosystem services and full-cost accounting 

The choices society makes about development, restoration, land use and land management have 

consequences for natural systems and the valuable goods and services provided by ecosystems 

(MA 2005).  Some of these goods and services, such as agricultural production or timber, are 

private goods for which values can be approximated from markets.  However, environmental 

change results in changes in many other public goods for which markets do not exist to capture 

their values.  These goods include changes to air and water quality, carbon sequestration, wildlife 

habitat, and aesthetic values. This creates a situation where the values of both positive and 

negative externalities associated with decisions are poorly captured and therefore are often 

ignored in decision-making. 

The emerging field of ecosystem services assessment and valuation was developed to address the 

need for more comprehensive accounting of the consequences of actions or decisions. Today, 

there is increasing demand for tools and approaches that allow researchers and decision-makers to 

assess the provision and value of ecosystem services and the impacts of human activities on those 

values.  A suite of models are now available for assessing the production and value of ecosystem 

services (Tallis and Polasky 2009, Villa et al. 2009, Nelson and Daily 2010).  Several recent 

studies have demonstrated the potential of ecosystem services information to inform 

conservation, spatial planning, and natural resource decision-making (Nelson et al. 2008, Nelson 

et al. 2009, Liu et al. 2010, Euliss Jr et al. 2011, Perrings et al. 2011, Polasky et al. 2011b).   

Despite broad recognition of the value of the goods and services provided by nature, existing 

tools for assessing and valuing ecosystem services often fall short of the needs and expectations 

of decision-makers.  One of the fundamental challenges of mainstreaming ecosystem services 

into decision-making is linking biophysical models of ecosystem processes with impacts on 

human well-being (Carpenter et al. 2009).  For some services, establishing the relationship 

between service provision and human utility is fairly straightforward.  As noted above, 

agricultural crops and timber are products of natural systems that are directly consumed by 

humans and have a market value.  For other services, the challenges associated with linking 

biophysical and economic models are much greater. If we continue to limit ecosystem service 

assessment to services with clear approaches to assessment and valuation we systematically 

undervalue ecosystem services and prevent a full cost accounting of all the environmental and 

economic tradeoffs associated with decisions.    
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Dissertation Overview 

My research addresses the need for a new generation of tools for improved decision-making with 

respect to ecosystem services.  The types of decision contexts I am targeting include land-use or 

land management decisions, cost benefit assessments for environmental regulations, and spatial 

planning for restoration or conservation activities.  Informing decision-making in these contexts 

requires synthesizing knowledge from both the natural and social sciences, developing integrated 

biophysical and economic models, and utilizing data and approaches that are scalable, 

generalizable, and low cost.   

For my dissertation I focus on the suite of ecosystem services related to water quality. Water 

quality-related services are perhaps the most important missing component in our current 

ecosystem services toolbox. Water quality has received considerably less attention than air 

quality in the general economic literature (Olmstead 2010). Information on the value of water 

quality is needed to inform cost benefit assessments, regulatory analyses, and spatial planning 

(Griffiths et al. 2012).  However, there has been no consistent framework for estimating changes 

in water quality-related services or assigning an economic value to changes in quality.  The lack 

of a clear approach to characterize water quality-related services is a barrier to comprehensive 

ecosystem service assessment and valuation. 

There are several challenges underlying the valuation of water quality that have made it difficult 

to come up with a unifying framework for assigning economic value to changes in quality.  Water 

quality encompasses a broad suite of contaminants, including nutrients, toxins, temperature 

changes, sediments, and other pollutants, which can affect lakes, rivers, streams, wetlands, 

estuaries, and coastal endpoints.  To fully capture all of the impacts associated with an action that 

affects water quality, researchers need to consider the broad suite of constituents and the diverse 

endpoints that may be impacted.  Actions that affect water quality are often separated by space 

and time from the locations and individuals that are then affected by changing quality, making it 

difficult to deduce general patterns across regions, services, and drivers of change.  For example, 

a change in agricultural management in one watershed can have both local effects on drinking 

water quality and downstream effects on algal blooms and commercial fisheries in coastal areas.  

Finally, valuation requires the challenging task of integrating ecological, hydrological, and 

economic models.  The relationships that drive changes in water quality and subsequent changes 
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in ecosystem services are often subject to thresholds and non-linearities making them complex 

processes that are difficult to model with simple tools.   

In my first chapter (Keeler et al. 2012) I present a framework for water quality valuation that 

addresses many of the shortcomings of existing work on water quality valuation.  My approach 

links actions to changes in water quality, changes in water quality to changes in human well-

being and changes in economic value. I delineate the full suite of ecosystem services related to 

water quality and then present a template for water quality valuation that separates water quality 

into individual services that affect unique endpoints and beneficiaries.  I outline the appropriate 

inputs and outputs of integrated biophysical and economic models and refer to existing data 

sources and models that can be used to link actions all the way to economic value.   

The framework presented in Chapter One lays the groundwork for the dissertation.  I identify the 

most important water quality-related services, review the ecological and economic science related 

to the provision and value of each service, and highlight key data gaps that are barriers to 

decision-making.  In Chapters Two and Three I address two of these data gaps by applying the 

framework presented in Chapter One to case studies in water quality valuation.  

In Chapter Two I investigate the value of water quality changes associated with grassland 

conversion to agriculture.  I use a logistic regression approach to estimate how land-use change 

affects the probability of groundwater contamination by nitrate in private drinking water wells in 

southeast Minnesota.  I find that recent (2007 to 2012) grassland loss to agriculture in 

southeastern Minnesota is expected to increase the future number of wells exceeding 10 ppm 

nitrate-nitrogen by 45% (from 888 to 1,292 wells).  I link outputs of the groundwater well 

contamination model to cost estimates for well remediation, well replacement, and avoidance 

behaviors to estimate the potential economic value lost due to nitrate contamination from land-

use change.  I estimate $2.1 to 12.2 million in costs over 20 years to address the increased risk of 

nitrate contamination of wells. My approach demonstrates how biophysical and economic 

approaches can be integrated to estimate the ecosystem service consequences of land-use change. 

In Chapter Three I address the need for information on the value of water quality to lake 

recreation.  Regulatory authorities such as the Environmental Protection Agency (US EPA) and 

state agencies in charge of managing water resources need approaches to value of the public 

benefits that would result from additional investments in improving surface water quality.  I 

present a method to assess the value of changes in water quality to lake recreation using geo-

tagged photographs as a proxy for visitation.  I find that improved lake water clarity is associated 
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with greater lake visitation and that lake users are willing-to-pay greater travel costs to visit 

clearer lakes.  We estimate a one-meter increase in lake water clarity is associated with $22 in 

increased willingness-to-pay per lake visitor and would generate 1,094-1,183 additional annual 

visits per lake. 

Research impacts 

Producing science that is relevant to decision-makers is challenging.  Great uncertainty on the 

underlying drivers of complex ecological processes, as well as mismatches in the temporal and 

spatial scales of data and stakeholder information needs, make translating research to 

generalizable tools very difficult.  However, the scale of human impacts on ecosystems and the 

growing need for information on how to balance economic development, conservation, and 

impacts of decisions on human well-being requires improved integration of science and decision-

making. These three chapters introduce methods to more comprehensively assess the impacts of 

proposed actions or policies on the values of water quality-related ecosystem goods and services.   
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Chapter One 

Linking water quality and well-being for improved assessment and 

valuation of ecosystem services 

 

 

Despite broad recognition of the value of the goods and services provided by nature, existing 

tools for assessing and valuing ecosystem services often fall short of the needs and expectations 

of decision-makers.  Here I address one of the most important missing components in the current 

ecosystem services toolbox: a comprehensive and generalizable framework for describing and 

valuing water quality-related services. Water quality is often misrepresented as a final ecosystem 

service.  I argue that it is actually an important contributor to many different services, from 

recreation to human health.  I present a valuation approach for water quality-related services that 

is sensitive to different actions that affect water quality, identifies aquatic endpoints where the 

consequences of changing water quality on human well-being are realized, and recognizes the 

unique groups of beneficiaries affected by those changes.  I describe the multiple biophysical and 

economic pathways that link actions to changes in water quality-related ecosystem goods and 

services and provide guidance to researchers interested in valuing these changes.  Finally, I 

present a valuation template that integrates biophysical and economic models, links actions to 

changes in service provision and value estimates, and considers multiple sources of water quality-

related ecosystem service values without double counting.   

Introduction 
One of the fundamental challenges of mainstreaming ecosystem services into decision-making 

involves linking ecosystem processes with changes in human well-being (Bateman et al. 2011).  

This is especially true for water quality-related ecosystem goods and services.  Water quality is 

highly valued by the public, and information on water quality values is increasingly demanded by 

decision-makers.  However, there is currently no generalizable framework for linking changes in 

water quality to changes in multiple ecosystem goods and services.  If we limit ecosystem service 

assessments to those services with direct use value and market prices we systematically 

undervalue ecosystem services and fail to achieve a full accounting of all the environmental and 

economic tradeoffs associated with decisions.    
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Valuing water quality changes is particularly challenging relative to other ecosystem goods and 

services. Changing water quality affects many aspects of human well-being and benefits and/or 

costs accrue to different groups of beneficiaries at varying spatial and temporal scales.  This 

complexity contrasts with the ecosystem services of carbon sequestration where emissions are 

aggregated into a global atmospheric pool.  As a result, each unit increase in carbon emissions 

results in a more or less constant loss in value (i.e. costs associated with climate change).  By 

contrast, each unit improvement in water quality may impact only a local area, the value of which 

varies widely with spatial context and may have strongly diminishing marginal benefits within 

the local context (e.g. additional reductions in nutrient pollution entering a clean lake generate 

minimal new benefits, and those benefits are further influenced by the condition and proximity to 

substitute lakes).  Further, actions today can affect water quality far into the future with the 

consequent challenge of predicting future values. 

High uncertainty and lack of appropriate data to populate biophysical and economic models are 

also barriers to comprehensive water quality valuation.  Water quality affects people through 

numerous pathways from drinking water to recreation.  The consequences of decisions on the 

provision of water quality-related ecosystem services are often separated by space and time, 

modified by variation in baseline conditions and characterized by non-linearities and thresholds 

(Scheffer et al. 1993, Scheffer et al. 2001). The value of ecosystem services, especially for 

cultural and aesthetic values, is also likely to be uncertain.   

Previous work has made progress in identifying sources of water quality value and in developing 

economic approaches to valuation, but current water quality valuation tools fall short of the needs 

and expectations of decision-makers.  First, most water quality valuation assessments do not 

account for the multiple costs and/or benefits of water quality-related changes.  Recent 

assessments of the water quality impacts of bioenergy policy in the U.S. (see Donner and 

Kucharik 2008, Secchi et al. 2011, Costello et al. 2009) focus solely on the contribution of 

fertilizer-derived nitrogen to hypoxia in the Gulf of Mexico, neglecting other potential 

consequences for drinking water treatment costs, human health, and diminished recreational 

opportunities.  Failure to consider all of the water quality-related consequences for well-being can 

lead to a serious underestimate of the true value of changes in ecosystem services associated with 

a given action or decision.   

A second shortcoming of existing work on water quality valuation, and ecosystem services 

research in general, is that valuation assessments often are not linked with changes in 
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management, land use, or other actions that lead to water quality change (Fisher et al. 2008).  

Assessments of the total costs of eutrophication (e.g. Dodds et al. 2009) or the total value of 

ecosystem services from an ecosystem or land cover type (e.g. Costanza et al. 1997, Liu et al. 

2010) do little to help a decision-maker trying to assess the consequences of alternative actions.  

The value attributable to conserving wetlands for improved sediment retention, for example, 

needs to be assessed relative to a specified alternative land cover or management action (i.e. 

draining wetlands for agriculture or urban development). Decision-makers need models that are 

sensitive to the variation in local ecological conditions that affect the provision of ecosystem 

services, as well as to variation in local social and economic conditions that affect the value of 

ecosystem services to beneficiaries.  By failing to link valuation estimates with specific actions 

and subsequent changes in human well-being, researchers also risk double-counting of value 

(Boyd and Banzaf 2007).  

Finally, economic models for valuing water quality-related ecosystem services are often poorly 

integrated with ecological and hydrologic models.  Biophysical and economic models are 

typically developed in isolation without consideration of how the outputs of one model may feed 

into the next, making it challenging to integrate models and data.  For example, the water quality 

metrics most commonly measured by scientists are not well-connected with attributes the public 

actually values (e.g. people value the extent to which they can safely use and enjoy a lake, they 

do not directly value the concentration of phosphorus in the lake).  

A framework for water quality valuation 

I propose a new framework for the assessment and valuation of water quality-related services that 

addresses many of the shortcomings of existing work on water quality valuation.  My approach is 

comprehensive, integrates biophysical and economic research, is sensitive to alternative land use 

or management decisions, and avoids double counting of costs or benefits.  To maximize the 

potential utility for decision-making, the framework links actions to a measured or modeled 

change in water quality and then to changes in the value of ecosystem goods and services (Figure 

1).  

 

Figure 1: Framework for linking actions to values for water quality-related ecosystem services.   

Biophysical models inform the linkage between actions or changes on the landscape and a change 

in water quality (Figure 1a) as measured by changes in nutrient concentrations, sediment loading, 
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or inputs of toxins or other chemicals.  Models focusing on the characterization of changes in 

water quality include continuous daily time step models such as the Soil and Water Assessment 

Tool (SWAT, Arnold et al. 2005) and less complex models such as the Integrated Valuation of 

Ecosystem Services and Tradeoffs (InVEST, Tallis et al. 2011). These models have been used to 

estimate the water quality consequences of future land use scenarios (Nelson et al. 2009) or the 

effectiveness of conservation policies (Euliss et al. 2011). Outputs from the biophysical models 

may be expressed in terms of nutrient retention across a landscape or in loadings to specific 

aquatic endpoints.   

The second step in my framework (Figure 1b) links changes in water quality to changes in the 

provision of ecosystem goods and services that directly affect human well-being. Lack of 

appropriate models or data to describe this link often limits the potential to successfully integrate 

biophysical and economic models. Ideally, biophysical models would translate water quality 

changes to valued goods and services such as changes in catch per unit effort of fishes, frequency 

of beach closures, or the toxicity of harmful algal blooms.  However, many of these relationships 

are either poorly understood, difficult to generalize, or we lack the data to quantify the 

relationships. Specificity is also an important part of this linkage: water quality affects many 

different aspects of human well-being, so a change in one water quality constituent may affect 

different beneficiaries at varying spatial and temporal scales. 

The final linkage in the framework (Figure 1c) connects changes in ecosystem goods and services 

to changes in values.  There are numerous approaches employed by economists to place an 

economic value on water quality-related ecosystem services (Bockstael et al. 2000, Johnston et al. 

2005, Phaneuf and Smith 2005, Thompson and Segerson 2009).  In brief, economists can ask 

respondents directly how much they would be willing to pay for a given improvement in water 

quality (stated preference methods). Alternately, economists can indirectly estimate the value of 

changes in water quality through observations of human behavior such as willingness to drive 

longer distances to visit areas of higher water quality or willingness to pay for property 

neighboring waters of higher quality (revealed preference methods).  Other approaches include 

estimating the costs avoided by improving water quality (e.g., sediment dredging, drinking water 

treatment), or the costs associated with increased health risks due to contact or consumption of 

unsafe water.  In addition, valuation methods typically generate estimates of value held by people 

today given current conditions and not a dynamic assessment of values of changes in the flow of 

ecosystem services through time.  Reviews of economic approaches to water quality valuation are 

provided by Wilson and Carpenter (1999), Brauman et al. (2007), and Griffiths et al. (2012). 
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Delineating the multiple ecosystem services associated with water quality 

Defining water quality as multiple biophysical metrics that may influence the provision of many 

different “final” ecosystem services is critical for comprehensive valuation (Boyd and Banzaf 

2007).  In Figure 2 I chart the potential interactions between changes in water quality and 

multiple ecosystem services.  A single action that affects water may cause a change in another 

attribute, such as water clarity, or have a direct effect on the provision of various ecosystem 

services that affect different groups of beneficiaries.  Figure 2 builds the on the general 

framework introduced by the Millennium Ecosystem Assessment (2005) that links ecosystem 

services to constituents of well-being while adding specificity for water quality-related services. 

 Figure 2: Relationships between water quality change, multiple ecosystem goods and services, and associated 
changes in values.  Actions considered in the far left column include changing land use or land management as 
well as other drivers of water quality change such as climate change, invasive species, and atmospheric 
deposition.  Connections between columns are classified as primary or secondary based on expert opinion.  
While not representative of all possible water quality changes, pathways, and effects on well-being, the figure 
highlights the most important and often-measured services. 
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Few water quality-related services are affected by just one action, and many services in 

combination cause changes in value (Figure 2).  For example, the value of lake fishing is affected 

by changes in fish abundance and species composition but may also be influenced by water 

clarity and/or the prevalence of toxins that lead to fish consumption advisories.  Fish abundance, 

in turn, is driven by changes in phosphorus and is influenced by nitrogen, temperature, sediments, 

toxins, and interactions with other organisms.  There may also be feedbacks among services such 

that a change in the provision of one service affects the provision of another service (e.g., a 

change in lake fishing may also affect the value of boating).   

Figure 2 also illustrates how a single change in one water quality constituent can affect multiple 

ecosystem services and numerous sources of value.  Changes in nitrate loading are most 

commonly associated with changes in the extent and duration of coastal hypoxia and with the 

health risks of methemoglobinemia, often called blue-baby syndrome (Comly 1945, Fan et al. 

1987).  However, changes in nitrate can also affect the prevalence of water-borne disease-causing 

organisms, and even low levels of nitrate in drinking water can lead to increased health risks 

(Ward et al. 2011, Weyer et al. 2008).  Therefore, the total value associated with a change in the 

quality of drinking water includes both the cost of removing nitrate from drinking water and any 

loss in value associated with increased health risks from consuming water with nitrate levels that 

are high but below the drinking water standard.  Additional negative commercial or recreational 

consequences associated with hypoxia or harmful algal blooms would add to the lost value 

attributable to a single action (e.g., increased nitrogen fertilizer added upstream). 

 

A template for the assessment and valuation of water quality-related services 

Based on the services and interactions mapped in Figure 2, I present a template for integrated 

biophysical and economic modeling for comprehensive water quality valuation.  For each 

constituent of water quality change (nitrogen, phosphorus, sediment, etc.), the template identifies 

the water quality attribute most commonly valued by people, the endpoint and beneficiaries to be 

measured or modeled, and appropriate economic valuation approaches  
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Figure 3: Template for water quality valuation based on integrated biophysical and economic models.  Each row 
in the table represents a water quality change that affects an endpoint and groups of beneficiaries in a unique 
way such that there is no overlap in value.  Value estimates generated by each row in the template can be 
summed for an estimate of the value generated or lost by a given action or scenario.  For some service estimates 
(e.g. lake recreation), users will need to select a single valuation tool (e.g. hedonic model or recreation demand 
model) listed in the cell to avoid double-counting value because there may be overlap in the groups of 
beneficiaries if multiple approaches are applied to the same water quality change (e.g. lakeshore property 
owners may also be lake recreationists).  The examples given in the template are not meant to be a complete 
enumeration of all services but rather are provided as illustrative examples of the steps involved in an integrated 
approach.   
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Researchers interested in assessing water quality-related services and economic values can use 

the template to identify model requirements, key data needs, and existing tools and approaches 

for water quality valuation.  There are five steps to using the template: 

1. Identify actions and beneficiaries of interest 

Land use and land management decisions, as well as factors such as climate change and invasive 

species, have the potential to affect the source and transport of many different types of water 

quality constituents or contaminants.  Identifying the beneficiaries of interest and then working 

backwards to determine the appropriate biophysical parameters that have the greatest potential to 

affect those groups provides focus for research efforts and can ensure that subsequent work 

captures the most important drivers and ecosystem service consequences. Alternatively, if water 

quality information is available from previous monitoring or modeling, then the template can be 

used to identify all of the potential services affected by a change in a given nutrient or pollutant.  

One goal of the template is to draw attention to all of the constituents, endpoints, beneficiaries, 

and ecosystem goods and services related to changes in water quality.  Therefore, an approach 

that considers both upstream drivers and downstream beneficiaries will generate the most 

comprehensive valuation. 

2. Identify shared inputs/outputs of biophysical and economic models  

After selecting the key actions and ecosystem service changes, the next step is to identify the 

inputs and outputs that need to be included in a set of integrated biophysical and economic 

models.  In Figure 3 I use the term “valued attribute” to describe the aspect of water quality that 

can be measured or modeled in biophysical assessments and directly affects human well-being.  

For the service of clean drinking water, the valued attribute is the concentration of the nutrient or 

contaminant where increased health risks are associated with increased exposure to nitrate or 

toxins.  For other services, an additional biophysical model may be needed to translate the driver 

of water quality change into the valued attribute.  For example, stream temperature has been 

identified as a principal driver of the distribution and abundance of trout (Isaak and Hubert 2004, 

Railsback and Rose 1999).  Here, a functional relationship is needed to translate changes in 

stream temperature into changes in either the size and abundance of trout populations or the area 

of suitable habitat for each species.  As noted by Eaton and Scheller (1996), warming water 

temperatures may also alter species composition, shifting angling value from cold-water species 
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to warm-water species.  In some cases, there may be alternative choices of the valued attribute 

and what should be chosen depends on biophysical understanding, links to human well-being, and 

data availability.  

3. Select appropriate biophysical models 

Applying the framework requires the user to identify an appropriate biophysical model to capture 

the effects of an action on the valued attribute at the defined endpoint.  The ecosystem services 

model InVEST estimates how changing land use or management resulting from alternative 

policies or future scenarios will affect nitrogen and phosphorus retention (Tallis et al. 2011).  To 

use this model in my framework, nutrient outputs need to be linked to a valued attribute from 

Figure 3, such as changes in lake water clarity. Comprehensive valuation of water quality may 

require different biophysical models for each water quality constituent.  For example, a 

groundwater model could be employed for services associated with nitrate contamination of 

drinking water wells and a river basin water quality model could be used to route nutrients 

downstream to predict consequences for coastal regions.  Differing spatial and temporal lags for 

each service mean it is important to consider how the concentration of any given constituent 

changes across space and through time (Davenport et al. 2010). 

4. Select appropriate economic models 

In addition to identifying an appropriate biophysical model, applying the framework requires 

linking valued attributes at particular endpoints with economic models that measure the value of 

these attributes to specific beneficiaries.  For example, changes in the concentration of nitrate in 

groundwater affect human well-being where wells supply drinking water to residents. Economic 

models can be used to compare the well-being of people prior to and after a change in water 

quality. These models predict how changes in nitrate concentrations at drinking water sources 

will affect behavior, such as prompting the installation of treatment systems by municipal water 

treatment facilities or the purchase of bottled water by well owners.  While these costs can be 

used as proxies for economic values, it is important to distinguish the costs incurred through 

avoidance activities (the price of a new treatment system) from the true value associated with 

access to clean drinking water (difficult to measure, but likely of much greater value). 
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Economic models should measure change in value in terms of a common monetary metric.  

Where the valued attribute is a market good such as fish or shellfish, valuation is fairly 

straightforward.  However, most water quality-related ecosystem services are not directly 

associated with market goods, so values must be estimated using non-market valuation 

techniques.  Both market and non-market values are context dependent; they are influenced by 

the physical, economic, and regulatory settings in which the valuation takes place as well as on 

social or cultural norms.  For example, the amount that a user is willing to pay to engage in a 

recreational activity such as swimming varies by income level as well as by the availability of 

substitute recreational opportunities (Haab and Hicks 1997). There is also variability in 

perceptions of the way water quality affects the suitability or desirability of recreation in different 

locations.  Surveys of water recreationists in Minnesota, for example, have found that the level of 

lake water clarity users rate as “suitable for swimming” ranges from just 0.5 meters to at least 2.0 

meters depending on the baseline water quality of the region (Heiskary and Walker 1988). 

5. Consider existing models and data sources 

While there are few examples of integrated, comprehensive analyses of ecosystem services 

related to water quality, there is a wealth of useful information with which to build such an 

assessment.  I have assembled a comprehensive literature review of water quality valuation 

studies, added relevant biophysical models and case studies, and linked these references to each 

row in the valuation template presented in Figure 3 (Appendix 1.1).  In some cases, existing work 

is sufficient to translate biophysical outputs to changes in service provision and value.  However, 

few generalizable models linking actions to changes in value exist for water quality-related 

services.  In many instances, researchers will have to collect new data in their region of interest or 

make assumptions about how to adapt existing models developed in other contexts.  Recent work 

has advanced the practice of value transfer by developing valuation relationships that can be 

parameterized by the user with local data (e.g. Johnston et al. 2005, Patanayak et al. 2007).  

Discussion 
There are many challenges associated with implementing an integrated modeling approach that 

links actions to changes in the values of water quality-related services.  Current understanding of 

the biophysical dynamics that link actions to changes in valued attributes is incomplete at best, 

and there is also uncertainty surrounding economic value estimates for changes in environmental 
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amenities.  Despite these challenges, decision-makers are still called upon to make decisions 

about land use and resource management.  Below I highlight biophysical and economic 

uncertainties related to water quality valuation and then describe how my framework can help to 

identify and address these challenges.  

 

Challenges linking changes in water quality to changes in human well-being 

There are some services, such as the effects of increased nutrient loading on commercial fish and 

shellfish productivity, where uncertainties in the biophysical relationships make it difficult to 

reliably model changes in the valued attribute.  In coastal areas, nitrogen loading has been linked 

with the spatial extent and intensity of hypoxia, shifting the timing of commercial fishing seasons 

and altering the size distribution of catches (O'Connor and Whitall 2007, Diaz and Rosenberg 

2011).  Quantifying the effects of nitrogen loading on commercial fishing is difficult because 

other stressors such as over-fishing and climate change also affect fish populations (Breitburg et 

al. 2009).  Furthermore, improving water quality in ways that increase fishery productivity may 

generate little net benefits if the fishery itself is poorly managed (Freeman 1991). With the 

exception of a few well-studied systems (Huang and Smith 2011), there are no generalizable 

models that predict how a change in nutrient loading will affect fish or shellfish harvesting.  

Similar limitations apply to the relationship between harmful algal blooms and nutrient loading to 

coastal systems (Heisler et al. 2008).  There are documented statistical relationships between 

nutrient loading and harmful algal blooms (Anderson et al. 2002, Beman et al. 2005).  However, 

other physical and biological mechanisms likely modify responses to nutrient loadings (Heisler et 

al. 2008). In addition, there is no consensus on how to model changes in the recreation or 

commercial values based on the frequency, toxicity, extent, or duration of a harmful bloom.  Lack 

of ability to tie actions to changes in ecosystems and to changes in valued attributes is a major 

limitation in assessing a number of ecosystem services.  

Challenges linking changes in ecosystem goods and services to changes in value 

In some cases, biophysical relationships are well understood but the economic tools used to link 

biophysical changes to human well-being are not generalizable or are not straightforward in their 

application or interpretation.  Required inputs for predictive economic models vary depending on 

the ecosystem service measured (recreation vs. a marketed good such as fish), but common inputs 

include information on income, population, distance between users and resources valued (e.g. 
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lakes) in addition to water quality metrics. One common limitation of economic models that 

estimate changes in recreational value associated with changing water quality is that water quality 

inputs to the model are in the form of subjective water quality scales in lieu of quantitative 

biophysical metrics.  These model inputs commonly take the form of compound metrics that 

combine several variables in a water quality index (e.g. Bockstael et al. 1989), use descriptive 

terms such as swimmable, fishable, or boatable to characterize water quality (e.g. Carson and 

Mitchell 1993, Van Houtven et al. 2007), or stated preference surveys where respondents rate 

water quality on a five point scale (e.g.  Lipton 2004).  While widely used, these approaches 

provide no clear link between biophysical data on water quality and the qualitative scale used in 

the economic study.  Descriptive indices can also make it difficult to generalize model results 

across different geographical regions or demographic groups where there is variation in public 

perceptions of what constitutes clean water (Heiskary and Walker 1988).   

Finally, there are non-use values such as the intrinsic value of intact food webs or the cultural 

values associated with the existence of species or habitats that are difficult to quantify using 

economic tools. Some estimates suggest these non-use values make up a significant portion of 

total value (Brown 1993, Johnston 2009).  However, apart from stated preference surveys there 

are limited economic approaches to approximate these values which are likely to be highly 

contextual and localized. 

Even for situations where there is robust biophysical and economic data, valuation following the 

framework is time-consuming and requires careful consideration of modeling assumptions and 

the propagation of uncertainty throughout the pathway from action to value.   Still, the framework 

represents an improvement over existing “total value” approaches to ecosystem service valuation 

that tend to mask potential sources of uncertainty and make it difficult to assess confidence 

bounds on estimates of value.  Using my template, researchers can identify exactly where 

uncertainty might be greatest and conduct sensitivity analyses to explore the effects of uncertainty 

on valuation estimates all along the pathway from action to change in value.  This allows for 

transparent explanations of sources of uncertainty and can identify key gaps for future research 

investment.  Our approach also allows users to track the distributional consequences of actions by 

identifying the unique sources of value that accrue to various individuals or groups of 

beneficiaries. 
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Examples of integrated models for water quality valuation 

There are a few examples of integrated biophysical and economic models for the valuation of 

water quality that fit the proposed framework and can serve as models for future work.  Egan et 

al. (2009) coupled water quality monitoring data from lakes across Iowa with survey data on 

household characteristics and trip information to develop a recreational demand model that 

predicts lake usage and willingness to pay as a function of changing water clarity.  Huang and 

Smith (Huang and Smith 2011) developed a spatially-explicit bioeconomic model that predicts 

how changing levels of nitrogen pollution affect the ecological drivers of hypoxia.  They linked 

this biophysical model with an economic model of the commercial blue crab fishery in the Nuese 

River Estuary.  Their work was used to predict how changes in nutrient loading in the watershed 

could affect fishery rents in the estuary.  These two examples demonstrate that valuation of water 

quality is both robust and feasible when ecological and economic relationships are considered 

simultaneously in model development and parameterization.  Neither model was meant to be 

generalizable to other regions or applications, but with additional research there is potential to 

build more integrated models such as these and create new models for improved benefits transfer 

following the valuation template.   

Future work on water quality valuation should begin by improving integration of existing models 

where there is general agreement on the valued attribute and endpoint.  Biophysical models of 

changing water quality can be fed into economic tools listed in Figure 3 to estimate the net 

present values of modeled changes in water quality.  Ideally, information is needed not just on 

current values, but on changes in the stream of benefits into the future. Doing so would allow 

researchers to use dynamic optimization approaches to identify the set of action that would 

maximize the value of water quality-related services over time. 

Conclusion 
Managers are under increasing pressure to adopt practices to reduce the negative consequences of 

agriculture, grazing, timber harvesting, and other management practices on water quality.  

Information on the value of water quality improvements is needed to evaluate the return on 

investment in conservation practices as well as to inform policies or payment programs that 

compensate land owners for benefits generated by their actions.  Water quality assessments would 

be more meaningful to the public if modeled changes were presented not just as concentrations of 

nitrogen or phosphorus, but also in terms of risks to drinking water contamination, reduced fish 
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and shellfish catches, or diminished recreational opportunities.  To date there has been a lack of 

methods to inform decision-makers on how their actions would affect these valuable services.   

I have addressed this gap by introducing a generalizable framework for the assessment and 

valuation of water quality services.  This work is the first to describe the multiple biophysical and 

economic pathways that link actions to changes in water quality-related ecosystem goods and 

services. Our template overcomes many of the shortcomings of existing approaches by 

integrating biophysical and economic models, basing value estimates on marginal changes in 

service provision, and accounting for multiple sources of value without double-counting.   

Information on the provision and value of ecosystem services is increasingly informing payment 

for ecosystem services schemes and ecosystem service markets across the globe (Kinzig et al. 

2011).  Decisions such as weighing the relative consequences of agricultural extensification vs. 

intensification are highly sensitive to the value placed on water quality changes.  It is critical that 

water quality-related services are not left out of research that informs these new markets and 

decisions.  Our framework allows researchers to improve decision-making now by using existing 

models and data presented in the valuation template, while also encouraging future research that 

targets gaps in our understanding of the biophysical and economic drivers of changes in water 

quality-related values. 
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Chapter Two 

Land-use change and costs to water quality: A case study in groundwater nitrate 

contamination in southeastern Minnesota 
 

Loss of grassland from conversion to agriculture threatens water quality and other valuable 

ecosystem services.  Here I use a logistic regression approach to estimate how land-use change 

affects the probability of groundwater contamination by nitrate in private drinking water wells.  I 

found that recent (2007 to 2012) grassland loss to agriculture in southeastern Minnesota is 

expected to increase the future number of wells exceeding 10 ppm nitrate-nitrogen by 45% (from 

888 to 1,292 wells).  I link outputs of the groundwater well contamination model to cost estimates 

for well remediation, well replacement, and avoidance behaviors to estimate the potential 

economic value lost due to nitrate contamination from land-use change.  I estimate $2.8 to 12.2 

million in costs over 20 years to address the increased risk of nitrate contamination of wells. My 

approach demonstrates how biophysical and economic models can be integrated to estimate the 

ecosystem service consequences of land-use change. 

Introduction 
Largely due to rising commodity prices, grass-dominated land covers are being converted to 

annual row crops such as corn and soybeans across the Midwestern U.S. (Johnston 2013, Wright 

and Wimberly 2013). The consequences of cropland expansion include declines in habitat for 

game and non-game wildlife, declines in soil carbon storage, and increased risk of soil erosion 

(Euliss et al. 2010, Stephens et al. 2008, Culman et al. 2010, Smith and Searchinger 2012, Faber 

et al. 2012).   Grassland conversion to row-crop agricultural can also negatively affect water 

quality through the increased export of nutrients, sediment, and other agricultural chemicals 

(Donner and Kucharik 2008, Secchi et al. 2011, Wu and Liu 2012).  These changes in water 

quality may affect multiple water quality-related ecosystem goods and services including 

recreation value, property values, human health, and other aspects of wellbeing (Keeler et al. 

2012).   

The link between land-use change, changes in water quality, and impacts to people requires 

integrating biophysical models sensitive to land use change with economic approaches that assess 
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the welfare consequences of changing levels of valued goods and services. Establishing these 

links is required for cost-benefit studies and ecosystem services assessments, both of which are in 

increasing demand to support policy evaluation and decision-making. Especially with respect to 

water quality changes, the links between declines in water quality and negative effects on human 

wellbeing are assumed, but rarely quantified (Dodds et al. 2008, Griffiths et al. 2012).   

In this study, I explore the link between land-use change and changes in water quality in eleven 

counties in Southeastern Minnesota (SE MN), a region with high rates of observed grassland 

conversion to agriculture. While there are many ecosystem services that are directly or indirectly 

affected by changes in water quality (Keeler et al. 2012), I focus on what I believe to be the water 

quality-related service most sensitive to observed changes in land use and with the greatest 

potential threat to human wellbeing: the contamination of private drinking water wells by nitrate. 

The study region is characterized by high hydrologic connectivity between surface and 

groundwater due to the karst features that occur throughout SE MN (Alexander and Lively 1995, 

Tipping et al. 2001).  Statewide groundwater vulnerability maps rank much of the region in the 

“high” or “highest” vulnerability classification to contamination (Porcher 1989). This suggests 

that groundwater aquifers in the region are sensitive to changes occurring on the land surface.  In 

addition to vulnerability in the supply of clean groundwater, there is also high demand for 

groundwater resources in this part of the state. The eleven counties that make up SE MN support 

a population of over 700,000 residents, the majority of which rely on groundwater for their 

primary drinking water source (MPCA 2013).   

I focus my analysis on nitrate because it is one of the most widespread contaminants in 

groundwater systems and one of the primary components of fertilizer applied to croplands 

(MPCA 2013, Nolan et al. 2002). Nitrate is highly soluble and mobile in soil, which facilitates 

leaching into surface and subsurface pathways (Vitousek et al. 1997, Tomer et al. 2010). Nitrate 

contamination also represents a public health concern.  The US Environmental Protection Agency 

has set a maximum contaminant level (MCL) of 10 mgL-1 (10 ppm) nitrate-nitrogen due to 

concerns over the link between consumption of high levels of nitrate and methemoglobinemia or 

Blue Baby Syndrome (Spalding and Exner 1993).  Exposure to levels of nitrate below the federal 

drinking water standard (2.5 to 5.5 mgL-1 nitrate-N) has also been associated with increased risks 

of some cancers, birth defects, and spontaneous abortions (Weyer et al. 2008, Ward et al. 2000, 

Ward et al. 1996, Brender et al. 2013). 
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Previous studies on groundwater well contamination by nitrate have focused on screening for 

significant predictors of groundwater sensitivity to nitrate pollution (Burow et al. 2010), 

developing statistical models that link groundwater well contamination to well characteristics, 

nitrate sources, and transport and attenuation factors (Nolan et al. 2002, Wick et al. 2012a, Nolan 

and Hitt 2006, Lichtenberg and Shapiro 1997, Mair and El-Kadi 2013, Carbó et al. 2009), or 

studying consumer response to nitrate contamination and associated costs (Lewandowski et al. 

2008).  However, very few studies link all three components for a full cost accounting of land-use 

change impacts on groundwater contamination and economic value.  These assessments are 

needed to evaluate the benefits of regulations such as the Clean Water Act, efficiently target 

conservation and restoration resources, design incentive or payment for ecosystem services 

schemes, and understand the human costs of environmental change (Daily et al. 2009, Iovanna 

and Griffiths 2006, Kinzig et al. 2011, Tallis and Polasky 2009) 

This chapter addresses four questions related to assessing the water quality consequences of land-

use change:  1) Which biophysical and hydro-geologic factors identify groundwater wells that are 

susceptible to contamination due to land use and land-use change? 2) For these “at-risk” wells, 

what is the relationship between surface nitrate loading and groundwater nitrate contamination? 

3) Based on the modeled relationship between well contamination, surface nitrate loading and 

other variables, how many groundwater wells are likely to be at increased risk of contamination 

due to land-use change? 4) What are the societal costs associated with these modeled changes to 

groundwater quality? 

Methods 
My objective was to estimate nitrate contamination and associated costs for all recorded private 

drinking water wells in SE Minnesota.  However, well chemistry data were only available for a 

subset (less than 30% of wells in the public record).  Therefore, I first explored the relationship 

between well contamination by nitrate and likely explanatory variables affecting the source, 

transport, and attenuation of nitrate for a subset of wells with recent chemistry data and other 

known attributes. Second, I used these predictors to create a model that estimates the probability 

of well contamination.  Third, I applied this model to all wells with spatial location information 

and data on significant predictors to estimate the expected number of contaminated wells under a 

baseline and cropland expansion scenario. Finally, costs associated with well contamination were 
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applied to estimates of the number of wells at future risk of contamination due to land-use 

change.   

Well dataset 

The Minnesota Department of Health and the Minnesota Geologic Survey maintain the County 

Well Index (CWI), a spatially-explicit database of geologic and construction information from 

well logs for reported wells drilled in Minnesota since 1974. In the eleven county study region, 

there are 22,516 CWI wells with location information (located wells) and 16,126 wells without 

location information (unlocated wells) for a total of 38,642 wells.  Of these wells, 8,864 wells 

have at least one recorded nitrate chemistry reading since 1950.  Few wells have been tested 

consistently over time.  Most wells have only been sampled once, and some wells have not been 

sampled in decades.  In order to assess the influence of surface nutrient loading associated with 

recent land use in the region I narrowed the subset of wells to those with chemistry readings 

recorded over the last seven years. Previous studies linking land use and groundwater nitrate 

concentrations have found lag times of years to decades for the effects of land-use change to 

influence groundwater nitrate (Shilling and Spooner 2006, Tomer et al. 2010). For this reason, I 

include well chemistry data through the most recently recorded sampling dates (2012) and 

compare these readings to a baseline land use map for the year 2007 (NLCD Cropland Data 

Layer). 

The spatial distribution of wells with nitrate data and the location of all CWI wells are shown in 

Figure 1. I calculated the maximum concentration of nitrate recorded over the seven year period 

for each well.  I selected the maximum value (as opposed to the mean concentration) because the 

federal standard or maximum contaminant level (MCL) for nitrate of 10 mg/L (as nitrogen) 

represents the highest level allowed in drinking water.  The MCL for nitrate is a legally-

enforceable standard for public water suppliers regulated by the EPA.  Private well owners are 

not required to abide by these MCL standards, but I make the assumption that well owners will 

treat or avoid water that violates federal guidelines.   
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Figure 1. Spatial location of all located wells and wells with recent chemistry data.  The shaded polygon 
represents the eastern boundary of glacial drift deposits where the depth to bedrock is greater than 50 ft.  I 
tested the maximum nitrate concentration data for spatial autocorrelation using Moran’s I and found no 
evidence for significant spatial clustering (z = 1.51, p = 0.12). 

Explanatory variables 

I assembled a set of explanatory variables previously identified as important in explaining 

variation in well contamination by nitrate (see Appendix 2.1). Nitrate contamination of 

groundwater is related to factors that affect the source of nitrate inputs, factors that affect the 

transport or downward movement of nitrate into groundwater, and attenuation factors that relate 

to the potential for denitrification as nitrate moves through the subsurface into groundwater. 

Transport factors include the presence of confining layers that prevent downward movement of 

water, and soil characteristics that can reduce permeability and subsurface drainage.  Attenuation 

factors include the presence of organic matter, dissolved oxygen concentrations in aquifers, 

poorly drained soil, and other factors that would lead to low oxygen conditions that facilitate the 

denitrification of nitrate and hence reduce the quantity of leached N that reaches groundwater 

(Kellogg et al. 2010, MPCA 2013).  I did not have information on hydraulic gradients or sub-

surface lateral flow pathways so the model parameters only address factors related to the vertical 

transport of nitrate.   
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Depth is also an important predictor of groundwater nitrate contamination.  Shallow wells and 

wells tapping aquifers with fewer overlying layers of bedrock are more likely to be affected by 

changes in contaminant loading at the surface (Burow et al. 2010, Gurdak and Qi 2012, 

Lichtenberg and Shapiro 1997, Nolan and Hitt 2006, Gardner and Vogel 2005, Tesoriero et al. 

2004, Runkel et al. 2013).   For each well, I estimated the vertical rank as the number of geologic 

formations above the tapped aquifer, counting down from the uppermost bedrock unit (Figure 2). 

Aquifer rank below surficial bedrock was found to be significant in previous studies on 

groundwater contamination in the region (Mubarak 2003, Harkanpar 2008). 

 

Figure 2: Stratigraphic column for bedrock of southeastern Minnesota.  Numbers indicate the vertical rank of 
each formation. Numbers were assigned to each well based on the aquifer identified in the driller’s records.  I 
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then estimate the difference between the rank of the uppermost (surface) bedrock at each well site (from 
surficial geology maps) and the rank of the tapped aquifer (aquifer rank variable).  Cross-section modified from 
Mossler (2008) and Runkel et al. (2013). 

 

Similar to previous studies, I assigned soil characteristics and surface nitrate loading values to 

each well based on an estimated 500 m recharge zone around each well point (Nolan and Hitt 

2006, Nolan et al. 2002).  I evaluated other radii but found the most significant relationship 

between land use and well nitrate at 500 m.  I generated 500 m buffers around each well in 

ArcGIS and then used spatial joins and zonal statistics to assign surface nitrate load, geologic 

attributes, and soil characteristics to each well (Table 1). I acknowledge that the surface buffer for 

each well only captures vertical flow of water from the region above each well and does not 

explicitly address lateral flow paths, residence time, or aquifer volume, all of which may be 

important in predicting groundwater well contamination. 

Table 1. Variables used in fitting the nitrate contamination model.  In addition to the continuous variables listed 
here I also investigated the significance of nominal variables for surficial geology type, bedrock geology unit, 
presence of confining layers (aquitards), presence of grout in well construction, and aquifer type in predicting 
nitrate contamination.  Soils data were obtained from the USDA Natural Resources Conservation Service 
(NRCS) Soil Survey Geography database (SSURGO).  Unless otherwise noted, the soils data are based on the 
dominant component for all known layers (0-999 m). 

Explanatory variables considered in model selection Max Min Mean SD Source 
Sum of the surface load of nitrate-N around each well 
based on 2007 land use land cover (kg nitrate-N/ha/yr) 

11,429 315 2,906 2,158 See Appendix 2.3 

Aquifer rank below the uppermost bedrock unit  6 0 1.7 1.3 See Fig. 3 

Well depth (m) 850 11 283 144 County well index 

Drift thickness and permeability (scale 1-3, with 3 being 
most permeable) 

2.97 0.95 1.60 0.34 Minnesota Geologic Survey 
(categorical variable representing 
relative permeability of 
unconsolidated sediments) 

Average percent clay in well recharge zone 38.40 0.02 20.13 4.65 NRCS SSURGO  

Average percent organic matter in well recharge zone 21.38 0.01 1.27 0.95 NRCS SSURGO  

Average percent sand in well recharge zone 90.50 0.11 28.72 15.99 NRCS SSURGO  

Average drainage class in well recharge zone 6.61 1 4.40 0.81 NRCS SSURGO  

Average soil water content in well recharge zone 433.3 24.1 238.8 57.4 NRCS SSURGO  

Percent of pixels in well recharge zone classified as 
"well drained" (soil hydric groups A and B) 

100 0 60.0 26.0 NRCS SSURGO 

 

To estimate the annual average load of nitrate to the recharge zone around each well under each 

scenario, I used land use-specific nitrate export coefficients. For the baseline land-use scenario I 

used a reclassified version of the 2007 Cropland Data Layer produced by the U.S. Department of 
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Agriculture to define the extent and spatial pattern of land use around each well (See Appendix 

2.2 for reclassification scheme). Export coefficients for each major land cover or crop type were 

estimated from a literature review (See Appendix 2.3 for export coefficients) and represent the 

nitrate available for leaching through surface or subsurface pathways due to inputs from crop 

residues, fertilizers, and atmospheric deposition (Reckhow and Simpson 1980). Where possible, 

nitrate export values were adapted from field studies in similar soil and climatic conditions.  For 

example, values for corn represent annual export of nitrate observed in Minnesota watersheds 

with representative drainage, fertilizer use, and tillage (Appendix 2.3). The export coefficients 

used in this analysis were developed for a watershed water quality model for the study region and 

calibrated so that the annual water yield and nitrate export matched observed annual average 

values at the watershed outlet averaged across all surface and sub-surface flow paths (Keeler et al. 

in prep).  This approach differs from previous groundwater models which use proxies for nutrient 

load such as the percentage of agricultural or developed land, or counts of the number of septic 

systems or number of confined livestock operations in a well recharge zone (Nolan et al. 2002, 

Gardner and Vogel 2005, Wick et al. 2012b, Gurdak and Qi 2012, Liu et al. 2005).  My metric for 

nitrate load is likely to better approximate true nitrate load to the surface because values are 

adapted from field studies under similar conditions and calibrated to observed data. 

Model form and estimation 

I constructed multiple logistic regression models for binomial response variables representing 

wells that exceeded 4 mg nitrate-N L-1 (4 ppm) and wells that exceeded 10 mg nitrate-NL-1 (10 

ppm).  I selected a 4 ppm nitrate threshold because exposure at or near to this level of elevated 

nitrate has been linked to birth defects and increased risks of some cancers (Weyer et al. 2008, 

Ward et al. 2000, Brender et al. 2013).  The threshold of 10 ppm represents the maximum 

contaminant standard set by the U.S. Environmental Protection Agency (U.S. EPA 2011).   

Logistic regression predicts the probability that a sample falls within a given response category 

and does not require the response variable to be normally distributed (well nitrate concentration is 

highly skewed due to the significant number of non-detects). Logistic regression has been applied 

in many previous studies on groundwater nitrate contamination, most commonly using a 

contamination threshold of 1-3 ppm to identify wells that exceed background or naturally-

occurring levels of nitrate (Tesoriero et al. 2004, Gardner and Vogel 2005, Tesoriero and Voss 

1997, Liu et al. 2005, Gurdak and Qi 2012). 
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In logistic regression, the mean response at any level of input is the probability of being in a 

category (above or below a threshold), where 

P =  
𝑒(𝑏0 +𝑏𝑥)

1 + 𝑒(𝑏0+𝑏𝑥) 

and P is the probability of exceeding a given threshold, bo is a constant and bx is the vector of 

slope coefficients and explanatory variables.  In order to transform the probability function so that 

a linear function can be fitted to the explanatory variables a logit transformation is applied. The 

logit function is 

ln �
p

1 − p
� = bo + bx 

With this transformation, the logit is linearly related to the model parameters and standard linear 

regression tools can be used to estimate values for bo and bx.  Explanatory variables are fit to the 

logit function and then converted back into probability units.   

Screening model variables for significance 

For the subset of wells with recent chemistry data I screened all candidate explanatory variables 

for significance in a logistic regression model based on the 4 ppm and 10 ppm thresholds. The 

nominal variable representing the boundary of thick unconsolidated glacial deposits or drift was 

significant in classifying contaminated and un-contaminated wells. The drift boundary marks a 

region where the depth to bedrock is greater than fifty feet, compared to the bedrock-dominated 

eastern region where drift is thin and patchy (Figure 1).  Only nine wells located within the 

boundary of glacial drift had nitrate concentrations greater than 4 ppm (or 2% of all wells in the 

drift zone), whereas 16% of all wells outside the zone of glacial drift had nitrate levels above 4 

ppm.  Due to the observation that wells within the drift boundary appear to be fairly well 

protected from nitrate contamination I removed these wells from the sample set based on the 

conservative assumption that these wells are less sensitive to changes in land use and 

corresponding surface loading of nitrate.   

I used backwards stepwise regression using the minimum Akaike information criterion (AIC) and 

minimum Bayesian information criterion (BIC) to screen predictors for significance in JMP Pro 

10 (SAS Institute Inc.).  Additionally, I used the “best glm” (general linearized model) package in 

the statistical software package R which uses a cross-validation approach to identify significant 
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explanatory variables and parameter estimates. In a cross-validation approach, subsets of data are 

excluded as test sets, models and significant parameters are estimated based on training sets, and 

then adjusted based on performance relative to the test sets.  

Results of variable screening 

There was almost perfect agreement between the stepwise AIC, stepwise BIC, and cross-

validation approaches for identifying significant predictors. There was also general agreement 

across the two contamination thresholds, with the only exception being the explanatory variable 

percent organic matter, which was significant for only the 4ppm threshold model (Table 2). The 

other four significant predictors of groundwater well nitrate concentration were surface load of 

nitrate in a well recharge zone, percent clay in a well recharge zone, mean drainage class in a well 

recharge zone, and aquifer rank (Table 2).   

 

Table 2: Parameter estimates and significance tests for the 4ppm and 10ppm logistic regression models 

 Estimate 
Standard 
Error 

Effect Likelihood Ratio 
Tests 
Logistic 
Regressio
n 
ChiSquare 

Prob> 
ChiSquare 

4 ppm response variable where 1 = threshold exceeded 

Intercept -7.000 0.835 
  Sum of the surface load of 

nitrate-N around each well 
(kg nitrate-N/ha/yr) 0.0003 3.59e-5 51.43 <0.0001 

Average percent clay in 
well recharge zone 0.086 0.018 24.23 <0.0001 

Average percent organic 
matter in well recharge zone -0.577 0.205 11.52 0.0050 

Average drainage class in 
well recharge zone 0.987 0.134 64.94 <0.0001 

Aquifer rank below the 
uppermost bedrock unit  -0.810 0.073 151.18 <0.0001 

10 ppm response variable where 1 = threshold exceeded 

Intercept -14.538 1.409 
  Sum of the surface load of 

nitrate-N around each well 
(kg nitrate-N/ha/yr) 0.003 0.00005 46.14 <0.0001 

Aquifer rank below the 
uppermost bedrock unit  -1.103 0.126 107.39 <0.0001 
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Average percent clay in 
well recharge zone 0.166 0.031 35.10 <0.0001 

Average percent organic 
matter in well recharge zone ns Ns ns ns 

Average drainage class in 
well recharge zone 1.845 0.229 98.80 <0.0001 
 

The significance of surface nitrate load in predicting groundwater contamination indicates that 

wells in the subset are sensitive to changes in surface nitrate loading and thereby sensitive to 

changes in land use and land management in the region. Wells with higher estimated surface 

loads had higher nitrate concentrations and greater probabilities of exceeding well contamination 

thresholds.  Percent organic matter was negatively related to well contamination which may 

reflect increased rates of dentrification associated with soils with higher organic matter.  I 

expected percent clay to also be negatively related to well nitrate due to inhibition in vertical 

transport of nitrate through the soil surface (Nolan and Hitt 2006, Gurdak and Qi 2012). 

However, I found the opposite relationship suggesting either clay content is correlated with 

another unknown factor or high clay content soils are managed in a way that increases vertical 

transport of nitrate to groundwater.  Drainage class, a soil attribute derived from the Soil Survey 

Geographic Database (SSURGO) ranks soils from very poorly drained to excessively drained.  As 

mean drainage class increased, nitrate contamination also increased which could be related to 

greater vertical transport of nitrate through well-drained soils (greater drainage = greater nitrate) 

and/or related to enhanced denitrification of nitrate in poorly drained soils (poor drainage = less 

nitrate).  Aquifer rank was negatively related to nitrate contamination such that shallower aquifers 

(lower rank) were associated with higher nitrate wells (Figure 2).   

Another way to interpret the effect of an explanatory variable using logistic regression is through 

odds ratios or  
p

1 - p
  where p is the probability of exceeding the threshold value (4 ppm or 10 

ppm). If a well is equally likely to fall into either the contaminated or uncontaminated categories 

(p = 0.5), then the odds ratio is 1.  When the estimated probability of contamination is greater 

than .5, the odds ratio is positive and represents how many times more likely a well is to be 

contaminated versus uncontaminated as the value of an explanatory variable changes. The odds 

ratios for the explanatory variable of surface nitrate load are presented in Table 3.  
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Table 3: The range odds ratios for the explanatory variable surface nitrate load.  Upper and lower 95% 
confidence intervals are in parenthesis. 

 

Range Odds Ratios 

4ppm 

Range Odds Ratios 

10ppm 

Sum of the surface load of 
nitrate-N around each well 
(kg nitrate-N/ha/yr) 

17.5 

(8.0 - 38.4) 

45.8 

(15.4 - 138.8) 

 

The positive range odds ratio for surface nitrate load indicates that as nitrate load increases from 

the lowest recorded level to the highest recorded level, wells are 18 times more likely to exceed 4 

ppm nitrate or 46 times more likely to exceed a 10 ppm nitrate threshold. 

Adjusting the probability cutoff used to assign wells to categories 

To estimate the number of contaminated wells, I translated the continuous logistic regression 

model outputs in probability units into a contamination prediction for each well.  To do this, I 

needed to select the probability threshold to use in assigning wells to each response category 

(contaminated or uncontaminated) that both minimizes total error and comes closest to estimating 

the correct frequency of positive response events without overestimating contamination.  A 

description of the probability threshold selection process is included in Appendix 2.5. In short, I 

selected probability cutoffs of 0.28 for the 4 ppm model and 0.24 for the 10 ppm model because 

they minimized the total number of misclassifications (false positives and false negatives) while 

coming closest to a” true” prediction of the total number of contaminated wells without 

overestimating contamination (Figure  in Appendix 2.5). 

Results 

Application of the model to wells without chemistry data 

To answer the question of how well contamination may respond to observed changes in land use I 

applied the logistic regression model to wells in the eleven county region with location 

information. Of the 22,516 located wells 4,661 lacked aquifer characteristics needed to estimate 

the aquifer rank variable. An additional 2, 748 wells were located under the region of glacial drift 

and were also excluded, leaving 15,107 wells.  I applied the logistic regression model to this 

larger set of wells under two land use scenarios. For the baseline land use scenario I used the 

same 2007 land cover map and corresponding nutrient export values used to estimate the logistic 

regression model.  I estimated the number of wells exceeding each threshold for the training (sub-
33 

 



 

set with chemistry data) and full well dataset (Table 4).  Under the baseline scenario, 6% of 

groundwater wells were estimated to exceed a 10ppm nitrate threshold and 18% to exceed a 4 

ppm nitrate threshold (Table 4). 

Table 4. Estimated number of wells exceeding each contamination threshold for the subset of wells with 
chemistry data (training set) and the full set of located wells under the baseline and agricultural expansion 
scenario. Percent of wells in each category relative to all wells are in parentheses. 

 Training 
set under 
the 
baseline 
scenario 

2007 
Baseline 
scenario 

2012 
Agricultural 
expansion 
scenario 

Increase in the number of 
wells predicted to be at risk 
of contamination due to 
land-use change  

Estimated 
number of wells 
exceeding 4 ppm 

245 (14%) 2779 
(18%) 

3,562 
(24%) 

783 

Estimated 
number of wells 
exceeding 10 
ppm 

94 (5%) 888 (6%) 1,292 (9%) 404 

Total number of 
wells 

1777 15,856 15,856  

 
Next I estimated risk of contamination under a scenario of agricultural expansion.  The 

agricultural expansion scenario is based on the 2012 Cropland Data Layer using the same 

reclassification scheme used in the baseline 2007 land cover map.  According to the land-cover 

data, there was a 26% net loss in grass-dominated cover from the baseline 2007 landscape to the 

2012 landscape for this study region. Corn and soybean acreage increased by 27% over the same 

period. These trends are similar to those observed in recent analyses of land cover change in the 

Midwest which have shown rapid and widespread loss of grasslands to row crop expansion 

(Johnston 2013, Wright and Wimberly 2013).  Under the 2012 agricultural expansion scenario, 

the model estimated 3,562 wells at-risk of exceeding the 4 ppm threshold (a 28% increase) and 

1,292 wells at-risk of exceeding the 10 ppm threshold (a 45% increase; Table 4, Figure 3).  The 

residence time of water as it moves vertically down from the surface to each well is unknown, 

therefore I cannot assume that land-use trends observed in 2012 will be reflected in well 

contamination in the same year (Schilling and Spooner 2006, Tomer et al. 2010).  Through the 

parameter screening, I have attempted to limit the analysis to wells where it is reasonable to 

assume that there is exchange between surface and groundwater over shorter time periods 

(months to years).  However, the effects of nitrate contamination at the surface may persist for 
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years or even decades later (Tomar and Burkart 2003, Sebilo et al. 2013).  For this reason the 

agricultural expansion scenario should not be interpreted as an estimate of well contamination in 

the year 2012, but rather an estimate of potential future contamination attributable to the land use 

change trends observed in this region. 
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Figure 3: Model estimated risk to groundwater well contamination under the baseline and agricultural 
expansion scenarios. Bottom figure shows the estimated increase or decrease in risk of nitrate contamination for 
each well between the two scenarios. 
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Costs of modeled contamination 

The costs of groundwater nitrate contamination include the costs of remediation actions taken to 

either replace a contaminated well, install a filtration system or other treatment technologies, or 

the costs of avoidance behaviors such as purchasing bottled water for drinking and cooking 

(Lewandowski et al. 2008; Table 5). If water is untreated and consumed then there may be costs 

related to potential health impacts from drinking untreated water with elevated nitrate (Townsend 

et al. 2003). The costs to an individual are dependent on their inherent risk for nitrate-related 

diseases and their responses to a perceived or unperceived threat to well water quality.  For 

example, households with young children or pregnant mothers are at greater risk to 

methemoglobinemia and risks of birth defects or other prenatal conditions.  Other sub-

populations deemed to be at higher risk for nitrate-related cancers include adults with higher than 

median levels of red meat consumption (De Roos et al. 2003).   

In a study of the costs of nitrate pollution in the European Union, van Grinsven et al. (2010) 

estimated that exposure to elevated nitrate in drinking water resulted in a loss in value equivalent 

to 1000 million euros annually due to increased incidences of nitrate-related colon cancer.  The 

public health research linking elevated nitrate exposure below the drinking water standard 

(represented by the number of wells exceeding 4 ppm in the study) is still under debate (Powlson 

et al. 2008).  I also lack data on household demographics that would allow us to assess well-

specific household risk. Therefore I do not include health-related costs in my estimates.  Instead, I 

focus on the costs associated with treating, replacing, or avoiding contaminated well water. 

A 2008 study in Minnesota surveyed residents for actions taken if they perceived well 

contamination by nitrate (Lewandowski et al. 2008).  The survey was conducted in conjunction 

with well nitrate testing so hypothetical responses to contamination could be compared to actual 

responses taken by owners with confirmed cases of nitrate contamination.  Table 5 summarizes 

the costs associated with three nitrate treatment technologies, new well construction, and drinking 

bottled water to avoid exposure to elevated nitrate in home well water.  
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Table 5: Per household costs of responses to groundwater well contamination by nitrate.  Low and high cost 
estimates are based on reported costs in Lewandowski et al. 2008, Mahler 2007 and estimates from regional well 
drillers.  Bottled water costs assume two gallons daily per capita water consumption for a 2.2 person household 
at $0.33 to 1.22 per gallon (low, high bottled water cost estimates, respectively). 

 Initial costs Annual costs 

Reverse osmosis $300-1,300 $100-300 

Distillation $250-1,500 $400-500 

Anion exchange $600-2,200 $269-469 

New well $7,200-16,000 - 

Bottled water - $529-1,959 

 

I used the observed adoption rates reported by owners of contaminated wells from Lewandowski 

et al. (2008) to estimate the behavioral responses and estimated costs associated with modeled 

future risk to well contamination due to observed land-use change (Table 6). 

Table 6: Costs associated with the modeled change in future well contamination due to land-use change.  
Adoption rates are from actual responses to well contamination in Minnesota from Lewandowski et al. (2008).  
Annualized costs are based on a 20 year time horizon for best estimate costs (high and low) for each potential 
response.  Total costs represent costs over 20 years due to the number of additional predicted contaminated 
wells under the agricultural expansion scenario for each of the two contamination thresholds.  Costs are greater 
if people respond to contamination at a 4ppm threshold.   

 Adoption 
rate 

Annualized 
costs per well 

Total costs per 
well (20 year 
time horizon) 

Total costs due 
to land-use 
change for a 
4ppm threshold 
(783 wells) 

Total costs due 
to land-use 
change for a 
10ppm 
threshold 
(404 wells) 

Nitrate treatment 
(weighted by 
adoption rates 
for each of the 
three 
technologies) 

21.9% $170-406 $3,394-8,119 $580,355-
1,388,330 

$298,662-
714,462 

New well 25% $360-800 $7,200-16,000 $1,411,200-
3,136,000 

$727,200-
1,616,000 

Bottled water 25% $529-1,959 $10,599-39,186 $2,077,522-
7,680,534 

$1,070,560-
3,957,826 

Do nothing 37.5% - - - - 
Total Cost    $4,069,077-

12,204,864 
$2,069,422-
6,288,289 

  

The model predicts 783 additional wells are at-risk of exceeding 4ppm nitrate and 404 additional 

wells are at-risk of exceeding 10ppm nitrate due to land-use change in the region.  The twenty 
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year cost of this increased well contamination was estimated at $2.1-12.2 million depending on 

the threshold of contamination that triggers household action and cost assumptions for each 

response (Table 6).  I assume the adoption rates of each potential action based on actual surveyed 

responses to elevated nitrate by private well owners in Minnesota (Lewandowski et al. 2008), 

which includes 37.5% of well owners doing nothing about their nitrate problem.   If I assume that 

all households will treat for nitrate using the least-cost approach (installing a reverse-osmosis 

treatment system), then costs would be $0.9-2.9 million for treating all of the additional wells 

exceeding 10 ppm, or $1.8-5.7 million for treating all additional wells exceeding 4 ppm. Even 

though this scenario assumes all households will treat for nitrate (as opposed to only 62.5% of 

households based on actual responses) cost estimates for this scenario are lower because all 

households choose the lowest-cost approach.  There may be other motivating factors besides cost 

that would influence a household decision to adopt a particular response as evident from the 

range of observed responses to nitrate contamination documented in Lewandowski et al. (2008). 

These estimates also assume that all households are aware of the nitrate contamination.  Previous 

surveys of nitrate contamination in groundwater wells showed that significant percentages of 

consumers are not aware of the nitrate levels in their wells.  In the Minnesota survey of well 

owners, only 29% of respondents had tested their wells for nitrate within the last three years 

(Lewandowski et al. 2008).  A study of nitrate contamination in California drinking water found 

greater than 50% of surveyed residents in areas with high nitrate water were not aware that nitrate 

was the source of contamination.  The same study found that exposure to high nitrate water was 

concentrated in areas with low awareness of the problem and greater numbers of low-income 

households with fewer financial resources to deal with water contamination (Moore et al. 2011). 

Cost estimates are likely to be underestimates as many wells in the region were excluded from the 

analysis because they were not in the well record, lacked specific location information (16,126 

wells), or were missing data on explanatory variables (an additional 4,661 wells).  Assuming 

these wells followed the same patterns observed for wells with location and attribute data, the 

total costs attributable to land use change would more than double. Finally, well remediation 

costs do not include health-related impacts due to consumption of elevated nitrate for those 

households that do not treat or avoid nitrate-contaminated water.  These health-related costs are 

uncertain, but may exceed estimated treatment costs (van Grinsven et al. 2010, Sutton et al. 

2011).  Health impacts related to other agricultural contaminants in untreated private drinking 

water wells represent additional and additive costs (Gilliom 2007). 
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Discussion 
The results of the logistic regression model identified surface nitrate load, percent clay, percent 

soil organic matter, drainage class, and aquifer rank as significant predictors of groundwater 

nitrate contamination in SE Minnesota. Surface nitrate loading was significantly related to land 

use change in the region, and the model applied to all located wells found observed land-use 

change increased the number of nitrate-contaminated wells.  This result was consistent with 

previous studies that found a significant positive relationship between shallow aquifer 

concentrations of nitrate and the percent of agricultural lands in well recharge zones (Lichtenberg 

& Shapiro 1997, Tesoriero and Voss 1997, Nolan et al. 2002, Gardner and Vogel 2005, Liu et al. 

2005, Nolan and Hitt 2006, Gurdak and Qi 2012, Wick et al. 2012, Mair et al. 2013).   

Tests for model fit and predictability indicated good model performance but also highlight the 

challenges associated with predicting groundwater well contamination. In the absence of detailed 

information on subsurface geology, groundwater flow and transport models, spatially-explicit 

estimates of groundwater recharge, and information on aquifer volume and chemistry, it is 

difficult to accurately predict groundwater contamination over time and space. Factors considered 

in this study represent vertical transport pathways and processes that affect nitrate levels, but do 

not capture lateral movement of nitrate which can be especially important in Karst regions where 

groundwater flow paths are highly variable and difficult to estimate from surface characteristics 

(Runkel et al. 2003, 2013). Additionally, there are significant temporal lags in groundwater 

systems. It may take years or decades for the land-use related nitrogen inputs to affect 

groundwater nitrate concentrations in private wells (Tomer and Burkart 2003, Sebilo et al. 2013).   

The potential future costs to private well owners due to the estimated increase in nitrate 

contamination from agricultural expansion were $2.1-12.2 million dollars over 20 years. These 

costs are conservative because a large number of wells were excluded from the analysis due to 

data availability.  Cost estimates also do not include any health impacts associated with drinking 

untreated water for residents that are unaware of nitrate contamination or chose not to treat or 

avoid consuming contaminated water.  While likely an underestimate of the total costs of well 

contamination in the region, groundwater remediation costs are unlikely to exceed the value of 

crop production due to agricultural expansion. A full cost accounting of the impacts of water 

quality changes in SE MN should include not only well remediation costs, but also human health 

impacts of drinking contaminated water (nitrate and other contaminants not considered here), 
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costs to municipal water suppliers, recreational costs associated with eutrophication in regional 

lakes and rivers, lost property values due to algal blooms or degraded water quality, and costs 

associated with nutrient export to the Gulf of Mexico related to hypoxia. Three municipalities in 

the SE region are already responding to high nitrate levels in their public water supply (St. 

Charles, Lewiston, and Utica) and in Olmsted County the Galena aquifer and parts of the St. Peter 

and Prairie du Chien aquifers have been abandoned as sources of drinking water due to high 

nitrate levels (Terry Lee, Olmsted County Planning Department). 

There are other drivers of change in the region that may exacerbate the negative water quality 

impacts of agricultural expansion.  Groundwater extraction for irrigation, municipal water use, 

and water-intensive industries such as ethanol refineries and frack-sand mining are increasing 

demand on groundwater resources. As groundwater extraction increases it can change the 

hydraulic gradient and facilitate the draw-down of polluted water from upper aquifers.  Grassland 

ecosystems in MN provide numerous other ecosystem services not considered in this paper that 

also generate significant public benefits threatened by increased rates of agricultural expansion 

(Noe et al. in prep, Stephens et al. 2008, Culman et al. 2010, Euliss et al. 2010, Faber et al. 2012). 

In conclusion, this paper demonstrates the link between land use change, water quality changes, 

and impacts on human well-being following the interdisciplinary framework proposed by Keeler 

et al. (2012).  The explanatory variables used in this analysis are widely available from state and 

federal geo-spatial databases and the approach outlined here could easily be applied to other 

regions.  I find that land-use change will likely increase costs to hundreds of private well owners 

across southeastern Minnesota.  These costs are in addition to the costs already born by well-

owners due to baseline land use change in this predominantly agricultural region.  While the costs 

may not exceed the value of the agricultural production, they may be useful in allocating 

resources to compensate affected individuals or to identify factors that could be incorporated into 

spatial decision support tools to target lands for conservation or best management practices 

designed to reduce groundwater contamination. 
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Chapter Three 

Recreational demand for clean water: Evidence from geo-tagged photo 

visitation of lakes 
More than 41,000 waters are listed as impaired by the U.S. Environmental Protection Agency 

under the Clean Water Act.  Regulations designed to address these impairments can be costly, 

raising questions about the value of the public benefits that would result from additional 

investments in improving surface water quality.  Cost benefit studies often rely on costly surveys 

or other detailed data collection about the study site, limiting the use of nonmarket valuation 

methods. Here I present an approach to assess the value of changes in water quality to lake 

recreation that offers the rigor of a revealed preference method, but can be executed with free and 

widely-available data.  My approach uses geo-tagged photographs uploaded to the photo-sharing 

website flickr as a proxy for recreational visits to lakes.  I find that improved lake water clarity is 

associated with greater lake photo-visitation and that lake users are willing to pay more to visit 

clearer lakes.  I estimate a one-meter increase in lake water clarity in Minnesota and Iowa lakes is 

associated with $22 in increased willingness-to-pay per lake visitor and would generate 1,094 – 

1,183 additional annual visits per lake.  This study could be used to inform more efficient 

allocation of state resources to protect clean water by evaluating the potential benefits of 

addressing a growing list of aquatic impairments. 

Introduction 
Lakes, rivers, and streams provide many benefits to the general public, but these benefits are not 

well captured in markets.  This is problematic because information on the value of water 

resources is needed to inform many policy and regulatory contexts.  For example, the 

Environmental Protection Agency (US EPA) is required to estimate the benefits and costs 

associated with major rules and regulations designed to safeguard aquatic habitat (e.g. Federal 

Register Executive Order 12291; Feb. 17, 1981).  Information is needed on the relationship 

between stressors such as pollution and consequences for ecosystem services like aquatic 

recreation and human health. Cost benefit assessments for water quality changes are also 

considered in the design of payment and incentive programs and in spatial planning decisions 

related to investments in conservation or habitat restoration (Olmstead 2010, Griffiths 2012).  
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Despite high demand for information on water quality values, estimates often fall short of the 

needs and expectations of decision-makers (Keeler et al. 2012).  Valuation data is time-

consuming and expensive to collect, existing value estimates are often not transferrable to other 

decision-contexts, and value estimates are not expressed in terms of marginal changes in stressors 

such as increased pollutant loads or land-use change. The previous chapter addressed this gap 

through an investigation of treatment costs and human health impacts associated with 

groundwater contamination.  In this chapter, I contribute a second advancement in the science of 

ecosystem service valuation by developing a generalizable approach to assessing how a change in 

water quality affects the value of lake recreation.   

Recreation is an important water quality-related service, especially in developed countries where 

it has shown to be one of the greatest contributors to the economic value of water quality (Dodds 

et al. 2009).  While the biological effects of degraded water quality are well-studied, measuring 

the relationship between water quality changes and recreational value is challenging (Wilson and 

Carpenter 1999, Corrigan et al. 2007, Bateman et al. 2011, Doi et al. 2013). In a 2009 paper 

Dodds et al. estimated the lost recreational value from eutrophication in the U.S. at $0.4-1.2 

billion per year.  They arrived at this estimate by assuming lakes classified as hypereutrophic 

were closed for a defined number of days each year.  The change in recreational value was equal 

to the value of the number of trips lost due to eutrophication.  The value estimates produced by 

Dodds et al. have been used by subsequent ecosystem services assessments (Compton et al. 2011) 

and while they are Illustrative of the value of water, they do little to assist decision-makers in 

understanding the marginal value of a predicted or proposed change in water quality. 

To arrive at a value of water quality where no market exists to determine a value, economists 

must use nonmarket tools.  Stated preference approaches use surveys to ask how much 

respondents would be willing to pay for a stated improvement in water quality. For example, 

Matthews et al (2002) asked residents how much they would be willing to pay for a 40% 

reduction in phosphorus to the Minnesota River.  Carson and Mitchell (1993) used a contingent 

valuation survey to evaluate the net benefits of the Clean Water Act, arriving at an estimate of 

$29.2 billion annually (in 1992 dollars). Stated preference surveys such as these are useful in 

eliciting both use and non-use values for water resources.  However, the benefits estimates from 

stated preference approaches can be difficult to adapt to other contexts.  The researcher must 

assume how to translate the stated value to proposed improvements in other environments for 

different levels of water quality changes.    
43 

 



 

Revealed preference approaches are an alternative to stated preference methods that infer values 

for non-market goods based on how people tradeoff private goods (time, money) in response to 

variation in the quality of a public good (Champ et al. 2003, Freeman 2003, Phaneuf and Smith 

2005).  Hedonic studies are a type of revealed preference approach where the value of water 

quality is determined from variation in property values.  In a study of lakeshore property values in 

Minnesota, Steinnes (1992) found that a one foot increase in water clarity increases lakeshore 

land values by $206 per lot (in 1987 dollars).  Other studies have also found a positive 

relationship between water clarity and property values (Boyle and Brochard 2003, Krysel et al. 

2003, Michael et al. 1996). 

A second revealed preference approach uses observations of the recreational choices made by 

users of recreational sites to estimate the value placed on water quality and other site attributes 

(Smith et al. 1986, Dumas et al. 2005).  Travel cost estimates assume users have to pay increased 

mileage costs, user fees, and time as they travel greater distances.  These travel costs serve as 

proxies for the market price of an environmental good or service (Bockstael et al. 1995).  Using a 

travel cost approach, Egan et al. (2009) found that if water quality in all Iowa lakes improved to 

the level of the highest quality lake in the state it would generate an additional value of $150 per 

household per year ($180 million statewide). Travel cost studies from other regions have found 

similar trends with water quality improvements associated with greater value to lake, river, or 

beach recreation (Parsons and Kealy 1992, Bockstael et al. 1987, Phaneuf 2002, Van Houtven et 

al. 2007).  

Similar to stated preference approaches, travel cost and hedonic studies have limitations.  

Collecting survey or site-specific data is expensive and time consuming and most decision-

makers do not have the resources to conduct studies for each application where information on 

water quality values is needed (Bateman et al. 2011, Griffiths et al. 2012).  Even in the state of 

Minnesota which places great value on aquatic habitats and resources and where information on 

the value of lake recreation is likely in high demand, the last survey on Minnesota lake recreation 

was completed over 20 years ago and only assessed angler trips to lakes (Feather et al. 1995).   

In this study I propose an approach for estimating the value of changes in lake water quality using 

data from online social media that circumvents the need for survey data.  This approach offers the 

same rigor as the revealed preference approaches based on hedonic models or travel cost studies, 

without relying on expensive or time-consuming data collection methods.  Instead, I take 
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advantage of the increase in spatially-explicit crowd-sourced content available online.  These 

volunteered data are increasing in volume each year and allow researchers the opportunity to 

rapidly and inexpensively study user behavior and preferences over space and time (Li et al. 

2013, Preis et al. 2013, Sun et al. 2013).   

In this chapter, I use geo-tagged photographs uploaded to the photo-sharing website flickr as a 

proxy for surveyed lake visitation.  I first test the method by comparing photo-visitation data with 

survey data for household trips to Iowa lakes.  Next, I use multiple regression to evaluate which 

lake attributes and other factors best explain lake photo-visitation to Minnesota and Iowa lakes.  I 

then apply the regression model to a scenario of increased water quality to evaluate the change in 

lake visitation and associated value to lake recreation. 

Methods 
Using data from geo-tagged photographs to estimate visitation is an approach first introduced by 

Wood et al. (2013).  Wood et al. used photos uploaded to the photo-sharing website Flickr to 

estimate recreational visits to natural and cultural attractions around the world and found that 

photo-visitation is a reliable proxy for empirical visitation rates (Wood et al. 2013).  To assess 

photo visitation at Minnesota and Iowa lakes, I queried Flickr for all photos taken within the 

boundaries of 3,055 lakes in Minnesota and 135 lakes in Iowa.  I selected these states because of 

the availability of water quality data and surveyed lake visitation (for Iowa lakes) and because the 

region represents a gradient of water quality from relatively undisturbed oligotrophic lakes to 

lower-quality eutrophic lakes. Each lake was buffered to a distance of 30 meters to account for 

photos taken along the shoreline.  This returned a total of 41,852 unique geo-tagged photos for 

Minnesota and Iowa lakes.  For Minnesota, lake photos represent about 3% of all geo-tagged 

Flickr photos taken anywhere in the state over the same period. 

For each lake that returned geo-tagged photos, I estimated the annual number of unique photo-

user-days per lake which represents the number of unique combinations of users and lake 

destinations within a 24 hour period.  For example, if an individual took multiple photos at the 

same lake in the same day, that lake would be assigned a single photo-user-day.  Photo-user-days 

were averaged across the eight year period for which photos were downloaded (2005 to 2012).  In 

Minnesota, 1079 lakes were visited and photographed by Flickr users and in Iowa, 72 lakes had 

geo-tagged Flickr photos (Figure 1).  
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Figure 1: Distribution of photo visitation in Minnesota and Iowa lakes as measured by Flickr photos.  Photo-
days per lake represents the sum of all unique daily lake and user combinations uploaded to Flickr from 2005 to 
2012.  There was no evidence for spatial autocorrelation of photo days per lake based on Moran’s I test (z = 1.12, 
p = 0.26) 

In addition to the number of unique photo-visits I also downloaded the user profiles associated 

with individuals that uploaded lake photos.  About 40% of Flickr-users with uploaded lake photos 

provided information in their online profile that revealed their home location.  Flickr-visitors to 

Minnesota lakes came from 47 states and 36 countries, with 66% of visitors reporting a home 

location from Minnesota.  There were significantly fewer photo-visitors to Iowa lakes, 

representing 20 states and no international visitors.   

Does photo visitation represent empirical visitation? 

Wood et al. (2013) compared empirical visitation to Flickr-photo-estimated visitation from nine 

datasets representing 836 different natural and cultural attractions worldwide.  As expected, photo 

visitation was an underestimate of total surveyed visitation.  However, the relationship between 
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photo visits and surveyed visits was significant and positive (Wood et al. 2013).  To evaluate the 

applicability of the photo-visitation method to lakes, I obtained data from a statewide survey of 

Iowa lake users conducted by Iowa State University (Evans et al. 2011). Survey information on 

lake visitation was reported for five years (2002-2005 and 2009) for 86 lakes in Iowa.  I 

calculated average annual trips per lake over the five years of available data and plotted these 

values against Flickr-photo visitation (Figure 2).  I found good agreement between photo 

visitation and surveyed visitation to Iowa lakes (R2 = 0.65).  These results are similar to the 

regression between surveyed visits to Minnesota State Parks and Flickr-photo-estimated visitation 

presented in Wood et al. (2013; R2 = 0.70, Figure 2).  

 

Figure 2: Average photo visitation per year to Iowa lakes and Minnesota state parks compared with empirical 
visitation from user surveys.  Each observation is a lake in Iowa or a state park in Minnesota. Dotted line is a 1:1 
relationship between photo visitation and surveyed visitation.  Minnesota state park data are adapted from 
Wood et al. 2013.  Trendline equations are non-linear fits of the un-transformed data plotted on log-log axes, 
where x is photo-visitation (user days per year) and y is empirical visitation (trips per year).  Corresponding R2 
values for each regression are 0.65 (Iowa) and 0.70 (Minnesota). 

Lake attributes 

To explain variation in photo visitation to lakes I assembled data on a variety of potential 

explanatory variables including lake water quality, lake depth and size, and near-lake population 

(Table 1).  I also gathered spatial data on the locations of public water access sites, state park and 

wilderness boundaries, and the presence of aquatic invasive species from the MN Department of 

Natural Resources (deli.dnr.state.mn.us/ ).  Iowa water quality data were provided by Iowa State 

University as part of the Iowa Lakes Study (http://www.card.iastate.edu/lakes, John A. Downing, 
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Iowa State University) and Minnesota water quality data were provided by the Minnesota 

Pollution Control Agency (MPCA, Steven Heiskary).  Spatial data on water access for each lake 

was joined to the lake polygons in ArcGIS (ESRI ArcMap. 10.2). 

Table 1: Lake attributes for Minnesota and Iowa lakes.  Iowa lake water quality and clarity data are annual 
averages from 2005 to 2012 based on three sampling events (early-, mid-, and late-summer).  Minnesota clarity 
data are annual averages from 2005 to 2012 for multiple sampling events per lake per year from May to 
September. 

 

Minnesota Iowa 
Mean (Range) Mean (Range) 

Total number of lakes 2103 128 
Lake size (acres) 1043 (2 - 302,822) 350 (7 - 5,300) 
Lake clarity (m) 2.7 (0.1 - 10.2) 1.1 (0.2 - 5.5) 
Lake depth (m) 12.8 (0.3 - 65.5) 6.5 (1.2 - 42.1) 
Chlorophyll (ug/L) 19.6 (0.5 - 257.5) 47.9 (2.8 - 187.7) 
Total phosphorus (ug/L) 54.3 (1.0 - 492.3) 100.8 (11.7 - 384.8) 
Boat launch (1 = yes) 0.57 (0 – 1) 0.27 (0 – 1) 
Near-lake population 
(people) 

916,862 (28,456 – 
3,460,526) 

419,780 (121,512 – 
1,088,103) 

Average travel time 
(min) 180 (2 – 853) 163 (21 – 468) 
Lake cyanobacteria 
biomass (mg/L) No data 138.1 (8.8 – 892.1) 
Lake phytoplankton 
biomass (mg/L) No data 148.5 (12.6 – 8,987.7) 
Lake temperature (C)  No data 24.9 (18.1 – 29.0) 
State Park (1 = yes) 0.008 (0 – 1) No data 
Aquatic invasive species 
(1 = present) 0.3 (0 - 1) No data 

 

Several lakes were missing water quality data or measurements were only available for a few 

sampling periods.  Water clarity as measured by secchi depth was available for the greatest 

number of lakes.  Long-term average values from 2005 to 2012 were used for most lakes in Iowa 

and Minnesota.  When Minnesota lakes were missing water clarity data from secchi depth 

measurements, I substituted remotely-sensed water clarity data from the Minnesota Lake Browser 

(lakes.gis.umn.edu/ ).  These lake clarity estimates are based on the relationship between satellite-

derived spectral-radiometric responses (color bands) and empirical measurements of lake clarity 

and are available for the years 2005 and 2008 (Kloiber et al. 2002, Olmanson et al. 2011).  The 

distribution of lake clarity across Iowa and Minnesota is shown in Figure 3.  The study region 
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encompasses a wide range of lakes from very clear lakes (greater than 10 meters clarity) to low-

clarity lakes (less than 0.5 meter clarity), making it a good study system to evaluate the effects of 

water quality on lake visitation.   

 

Figure 3: Distribution of lake water clarity in Iowa and Minnesota lakes from 2005 to 2012. 

In addition to lake water quality and other lake attributes, I also assigned a population estimate to 

each lake as an indicator of the number of potential lake visitors living in proximity to each lake.  

I expected that the number of lake visits would be greater for lakes in densely populated areas 

than in rural areas.  To estimate the population variable for each lake I created a raster layer 

representing the population density (in people per square mile) from census data for Iowa, 

Minnesota, neighboring states and Canada.  I then created near-lake “visitation-sheds” for each 

lake representing an 80 km radius (~50 miles) around each lake and summed the number of 

people living in each lake zone.  This distance was selected because it corresponds with the 

threshold used by the U.S. National Tourism Resources Review Commission to define a tourist 

(i.e. tourists are individuals traveling greater than 50 miles from their hometown).  
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Photo-data can also be used to estimate the distance traveled or time spent from a user’s stated 

home location to a lake destination.  For the subset of Flickr users that provided information on 

their locality in their online Flickr profile I mapped each user’s hometown to spatial coordinates 

in a database of populated places (Figure 4).  I only considered users with hometowns in nearby 

Midwestern U.S. states (Minnesota, Michigan, Indiana, Illinois, Iowa, North Dakota, South 

Dakota, Colorado, Nebraska, Missouri, Kansas, and Wisconsin).  Users with reported home 

localities in other states were assumed to have used air-travel or other modes of transportation to 

visit Minnesota and Iowa lakes and were excluded from the route analysis.   
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Figure 4: Map of lakes, origins (user hometowns), and routes traveled to visit lakes.  Homes and destinations 
were derived from Flickr photos and routes estimated using ESRI ArcGIS Business Analyst. 

 

To estimate the distance traveled to visit a lake I used a route analysis in ArcGIS.  Each home 

location and lake destination was assigned an X and a Y coordinate.  I used the ESRI ArcGIS 

Business Analyst Desktop and 2012 NAVTEQ Street Data to estimate the distance traveled and 

travel time from each home location to visited lake (Figure 4).  I eliminated trips where users 

visited the same lake or nearby lakes on consecutive days.  For consecutive-day trips of less than 

50 miles (distance from home to lake destination) I assumed users returned home between each 

lake visit. For trips greater than 50 miles I deleted routes where the same lake or different lakes 

were visited on consecutive days, assuming that the visitor stayed at or near the lake overnight 

and did not return home between lake visits.  After cleaning consecutive day trips I had a 

database of 6,438 trips to Minnesota and Iowa lakes from 12 neighboring states (Figure 4).  For 

each lake visited by a Flickr-user with known home location, I estimated the average time and 
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distance traveled to visit that lake.  Of the 2,233 lakes in the dataset, 946 were visited by users 

with home location information and assigned an average travel time value (Table 1). 

Results 

Does near-lake population affect lake visitation? 

As expected, lakes in densely populated areas received the majority of visits (as measured in 

annual Flickr-photo-user days).  However, lakes in sparsely populated areas also received many 

visits (Figure 5).  This relationship was most evident in Minnesota where lakes within the 

boundaries of the Twin Cities Metropolitan Area were frequently visited, but lakes in very remote 

and unpopulated parts of the state such as lakes in the Boundary Waters Canoe Area Wilderness 

were also among the most visited (Figure 5).   Due to the bi-modal relationship between lake 

visitation and near-lake population I centered the population variable in the multiple linear 

regression model (subtracted mean population from each lake population estimate) and included a 

squared term for population.  There was not a significant relationship between near-lake 

population and lake visitation for the subset of Iowa lakes. 

Figure 5: Relationship between average photo-user-days and population near each lake.  Points represent 
individual lakes.  Population surrounding each lake was measured by summing population density within an 80 
km radius around each lake. Red points are lakes in the Twin Cities metro area.  Blue points are lakes in the 
Boundary Waters Canoe Area Wilderness. 
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Which factors predict lake visitation? 

If lake visitors value lake water quality, then I would expect more visits to higher quality lakes 

than to lower quality lakes, accounting for other valued lake attributes. I used multiple linear 

regression to evaluate the relationship between lake visits and lake-specific explanatory variables 

(Table 2).  I first evaluated state-specific relationships between photo-visitation and explanatory 

variables (Appendix 3.1).  For the final regression models considering both Iowa and Minnesota 

lakes I excluded variables that were missing from either state (e.g. data on invasive species were 

not available for Iowa lakes).  I also eliminated variables with significant pairwise correlations 

(see Appendix 3.2).  In the combined dataset, lake water clarity was significantly positively 

correlated with lake depth (deeper lakes tend to be clearer) and negatively correlated with total 

phosphorus and chlorophyll (Appendix 3.2).  Of these variables, lake clarity is the one most likely 

to be perceived by lake visitors and was available for the greatest number of lake destinations. 

For these reasons, and because previous work found water clarity was a better proxy for 

perceived water quality than most other physical water quality attributes (Jeon et al. 2005), I 

selected clarity as the variable to include (Table 2).   

Table 2: Multiple linear regression for lake attributes and photo visitation per lake where the response variable 
is log(photo-user-days*yr-1).  Each observation refers to a lake located in Minnesota or Iowa (n = 2,233 lakes). 

 
Estimate SE Effect test 

Intercept 0.097 0.016 <0.0001 
Lake size (acres) 5.23E-06 4.40E-07 <0.0001 
Lake clarity (m) 0.012 0.003 <0.0001 
Centered population -3.17E-08 1.15E-08 0.0059 
Centered population squared 3.92E-14 6.62E-15 <0.0001 
Boat launch (1 = yes) 0.038 0.004 <0.0001 
Boundary Waters (1 = yes) 0.047 0.008 <0.0001 
Iowa or MN (1 = Iowa) 0.060 0.009 <0.0001 

 

I found lake size, lake water clarity, near-lake population, presence of a boat launch, lakes within 

the Boundary Waters region, and a dummy variable for Iowa or Minnesota to be significant 

predictors of annual average per-lake visitation (Table 2).  The relationship between visitation 

and lake clarity was positive such that lakes with greater water clarity are associated with 

increased numbers of visits.  As expected, larger lakes also receive more visits than smaller lakes 

and lakes with a boat launch.    
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Which factors affect the distance traveled to visit lakes? 

In addition to the number of visits to each lake, preference for lake attributes can also be inferred 

by how far recreationists travel to visit lakes.  Individuals have choices in where they spend their 

recreation time.  By using travel time as a proxy for the value individuals place on various lake 

attributes I can infer how much (in terms of time) users are willing to trade-off to visit lakes of 

greater water quality accounting for other lake attributes.  Again I used multiple linear regression 

to construct a model of travel time as a function of lake attributes (Table 3).   

Table 3: Parameter estimates, standard error (SE) and effect tests for lake attributes used in multiple linear 
regression model where the response variable is time spent traveling to each lake (one-way).  Observations 
represent all unique combinations of users and lake destinations on non-consecutive days (n = 6438 routes). 

 
Estimate SE Effect test 

Intercept 207.50 7.02 <0.0001 
Lake size (acres) 0.001 0.00007 <0.0001 
Lake clarity (m) 28.07 1.44 <0.0001 
Boat launch (1 = yes) 6.51 2.07 0.0017 
Boundary waters (1 = yes) 137.83 5.08 <0.0001 
Iowa or Minnesota (1 = Iowa) 43.29 3.77 <0.0001 
    

 
Similar to the analysis of photo user visitation, I found a significant positive relationship between 

lake water clarity and lake size and travel time, such that longer routes were associated with 

larger clearer lakes.  Longer travel times were also associated with lakes in the Boundary Waters 

wilderness and lakes with a boat launch.  A best fit model estimates that a user is willing to spend 

an additional 56 minutes in travel time (round-trip) for each additional meter improvement in lake 

clarity.  This translates to approximately $22.26 per trip that a given user is willing to trade-off 

for improved water quality assuming one-third the average hourly wage rate and a mileage cost of 

$0.30 per mile (Parsons 2003, Table 4). 
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Table 4: Estimated average per-lake travel costs associated with increased water clarity. *Median hourly wage 
estimates from MN and IA are averages for all occupations from the U.S. Bureau of Labor Statistics (2012). 
Value represents weighted average reflecting the relative proportion of trips to Iowa and Minnesota lakes. The 
one-third hourly wage adjustment is a commonly-used lower bound estimate used to value time in the recreation 
literature (Parsons 2003). 

Additional travel 
time per lake due 
to a 1 m increase 
in lake clarity 
(min per round-
trip) 

Median hourly wage 
in MN and IA for 
2012 

One-third of 
weighted 
median hourly 
wage for MN 
and IA* 

Value of 
wages 
(wage * travel 
time) 

Value of 
mileage 
(0.30 per 
mile * 
miles 
traveled)  

Total 
travel 
costs  

56 $17.74 (MN) and 
$15.33 (IA) 

$5.85  $5.46 $16.80 $22.26 

 

 

Would improvements to lake water quality increase the number of visits to lakes? 

From my analysis, there is evidence to suggest that lake recreationists visit clear lakes more often 

than less-clear lakes and travel greater distances to visit lakes of higher quality.  To estimate how 

a change in water quality would affect the number of visits to lakes, I use the estimated 

relationship from the regression equation specified in Table 2.  I estimate the change in photo-

visitation between a scenario of baseline water clarity and for a scenario where the water clarity 

of all lakes is increased by one-meter.  If I assume that the relationship between photo-visitation 

and surveyed visitation to Iowa lakes holds for all lakes in the sample region, I can convert the 

model estimates of the change in photo-visitation into an estimate of annual trips per lake (based 

on data presented in Figure 2).  Using this approach I calculate an average increase of 1,136 

annual trips per lake (1,094 to 1,183 lower and upper 95% mean confidence limits) as a result of a 

one meter increase in lake water clarity (estimated from the regression equation specified in Table 

2).   

I estimate the value associated with increased trips using data on average daily trip expenditures 

from the U.S. Fish and Wildlife Survey of Fishing, Hunting, and Wildlife-Associated Recreation 

(US FWS 2011).  I multiplied the estimated increase in recreational trips due to improved water 

clarity by values of trip-related expenditures for Iowa and Minnesota residents from the US FWS 

survey.  Assuming a weighted average per trip expenditure of $40.69 ($17 per trip for activities in 

Iowa and $43 per trip for activities in Minnesota) I estimate a per lake increase in value of 

$44,519 to $48,141 per year due to improved water quality (based on lower and upper confidence 

limits for mean increases in trips per lake from Table 2).  These per-trip expenditures reflect the 
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costs of food, lodging, and transportation associated with an average visit and are not equivalent 

to consumer surplus, or the additional welfare generated by a change in water clarity.  

Multiplying the trip expenditures by the estimated increased visits for the total number of lakes in 

the region would yield a large value.  However, this would also assume that as lake water quality 

improves it generates additional visits to each lake, instead of shifting allocation of visits from 

some lakes to others.  In reality, recreationists have a finite number of trips they can spend in a 

given time period and improved water quality may increase the total number of visits slightly, but 

will more likely shift visits from other recreational activities or away from lower-quality sites. 

Discussion and Conclusions 
I used photo visitation data to understand the role of lake water quality in the behavior of lake 

recreationists and the value lake users place on water quality.  I found that lake users visit clear 

lakes more often than less-clear lakes and they are willing to trade-off more of their time and 

travel expenses to visit higher quality lakes.  Other studies investigating the value of lake water 

quality have found similar evidence for the role of water clarity in lake visitation (Feather et al. 

1995, Phaneuf et al. 2002, Egan et al. 2009, Ge et al. 2013).  Unlike these studies, my approach is 

easily replicable to any decision context at low cost without relying on survey data. 

I estimate a per trip willingness-to-pay of $22 and increased visits representing trip-related 

expenditures of $44,519 to 48,141 annually per lake due to a one meter change in lake clarity.  Ge 

et al (2013) used a meta-analysis of contingent valuation and travel cost studies to assess the 

economic value of a similar water quality change and found an annual per household willingness 

to pay of $45 for a one meter improvement in lake clarity.  They also found that people are 

willing to pay more to avoid degradation than to invest in improvements in degraded water 

quality (Ge et al. 2013). Krysel et al. (2003) also considered the value of a one meter increase in 

lake clarity through assessment of changes to lakeshore property values in the Mississippi 

Headwaters region of Minnesota.  They found increased water clarity resulted in an average 

property value increase of $5.8 million per lake. 

While these estimates are illustrative of the value placed on lakes, the most policy-relevant value 

information describes how a given change in quality at an individual lake may affect site-specific 

demand for recreation.  More complex random utility models offer the ability to estimate welfare 

associated with specific water quality improvements (Bockstael et al. 1987, Hicks and Strand 

2000, Phaneuf 2002).  A random utility model estimates the probability that an individual user 
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will visit a given lake on a particular choice occasion as a function of lake attributes and other 

variables.  The random utility model assumes that a user will chose to maximize their utility by 

selecting the lake that represents the most enjoyment at the lowest travel cost.  These models 

require researchers to specify the choice set from which individuals chose a recreation 

destination.  Because the choice set of potential sites in my study is large (over 2,000 lakes) and I 

have limited information on the choices made by individual users, it is difficult to apply a random 

utility model.  In the future, I plan to use geo-spatial clustering techniques (see Popescu and 

Grefenstette 2010, Jahanbakhsh et al. 2012) to identify hometown information for all lake users 

taking photos (not just those providing this information in their user profile) which would greatly 

increase the sample size of user-lake combinations with route information.  

It is important to note that the value estimates associated with changes in lake recreation are not 

representative of the full value of a given change in water quality.  Water quality changes affect 

multiple water-related ecosystem services which are additive to changes in recreational value 

(Keeler et al. 2012).  These include health effects associated with drinking or contact with 

contaminated water and non-use values, both of which can make up significant percentage of the 

total value associated with a given change in water quality (Bockstael et al. 1989, Johnston et al. 

2003, Townsend et al. 2003). 

There are several advantages of my approach over survey methods or site counts.  Photo-

visitation data are considerably less expensive and time consuming to collect.  Large sets of lakes 

or other attractions can be evaluated quickly, making it easy to scale analyses.  My method also 

allows researchers to capture information on all visits, not just those originating from in-state 

users.  I found almost 40% of lake visits originated from out of state, information that would not 

have been captured on survey instruments targeting in-state residents.   

There are also disadvantages to the photo-visitation methodology.   I know that Flickr-users are 

not necessarily representative of all recreationists (Li et al. 2013).  Their behavior and preferences 

may differ from those of the true set of lake users.  At present, I know very little about why 

Flickr-users take photos, what activities they were engaging in while at the lake, and how those 

activities differ from other lake users.  Many lakes received less than one photo per year on 

average resulting in small sample sizes for many lake observations.  As the usage of photo-

sharing websites and other geo-tagged social media increases, it will increase the robustness of 

photo-visitation estimates.  Despite these limitations, my validation comparison using Iowa lake 
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data and previous work across multiple sites (Wood et al. 2013) suggests that photo-visitation is a 

reliable proxy for empirical visitation.  

Evidence that people prefer to recreate in higher quality lakes may not seem surprising.  

However, there are many factors that may explain patterns of lake visitation and it is notable that 

water quality still emerges as an important predictor even when accounting for other variables.  

This paper contributes information on how recreational value changes with changes in water 

quality, research that is needed to inform regulatory cost-benefit assessments (Griffiths et al. 

2012).  Next steps for adapting this approach include scaling up to link photo-visitation estimates 

to regional and national databases on lake water quality.  These data can be overlain with data on 

known impairments to evaluate the return on investments to improve surface water quality from a 

single lake up to state or regional-scales.  In the future, I expect geo-tagged data on recreational 

demand to advance spatial planning, inform resource investments, and improve our understanding 

of the behavior and preferences of surface-water users. 
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Appendices 

Appendix 1.1 References for case studies, research papers, models, or 

illustrative examples to support application of the water quality valuation 

template presented in Figure 3. 

Lake Recreation 

Relationship between phosphorus loading and lake water clarity 
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Appendix 2.1 

Evaluation of model fit 

I used two statistical tests to evaluate the predictive ability of the multivariate logistic regression 

model.  The Lack of Fit or Goodness of Fit test addresses whether more complex terms are 

needed in the current model or if there appears to be enough information with the existing 

variables. The null hypothesis for this test is that the model fits the data, therefore a higher p-

value indicates a well-calibrated model.  For both the 4ppm and 10ppm logistic regression 

models, the lack of fit p-value was 1.0 indicating that there is little to be gained by introducing 

additional variables to the model.  

I also used Receiver Operating Characteristic (ROC) curves to evaluate each model (Figure 2.1).  

Curves which are further to the left and higher on the vertical axis have greater predictive 

capacity.  The accuracy of the model is represented as the tradeoff between specificity or the rate 

of false positives and sensitivity, which is the rate of true positives.  Accuracy is measured by the 

area under the ROC curve (AUC), where an area of 1 represents a perfect model and an area of .5 

represents zero predictability. The AUC estimates for the 4 ppm and 10 ppm models are 0.77 and 

0.86, respectively, represent fair to good predictive power and meet or exceed AUC estimates 

from previous groundwater models (Gurdak and Qi 2012). 
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Figure 2.1: ROC curves for the 4ppm model (top) and 10ppm model (below).  Axes represent the rate of false 
positives (specificity) and true positives (sensitivity). The greater the area under the curve, the better the 
predictive ability of the model.  The straight line is drawn at a 45 degree angle tangent to the ROC Curve and is 
useful in identifying the probability threshold which balances the frequency of false negatives and false positives. 
AUC 4ppm = .77, AUC for 10ppm = 0.86 
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Appendix 2.2 

Selecting a probability threshold to apply to the logistic regression model 

Figure 2.2 plots a range of probability thresholds based on how these values influence the total 

error rate and rate of positive detection.  For the 4 ppm model, a probability threshold of 0.27 

predicted 98% of the total number of contaminated wells (true positives + false positives/total 

number of observed positives), with a 15% total error rate (number of false positives + the 

number of false negatives/total samples).  The lowest total error rate was at a cutoff probability of 

0.36, with 12% error.  At this level, the model estimates only 52% of the total number of actual 

contaminated wells (Chapter 1, Figure 5).  For the 10 ppm model, a 0.23 cutoff predicted 100% 

of the total number of actual contaminated wells and yielded a 6% error rate. Minimizing total 

error rate to the lowest value of 5% selects a cutoff of 0.39 which predicts only 44% of total 

contamination (Chapter 1, Figure 5). The penalty of raising the probability cutoff to positive rate 

detection was greater than the penalty to total error, therefore I selected probability cutoffs based 

on values just above the 100% threshold (0.28 for the 4 ppm model and 0.24 for the 10 ppm) 

which slightly under-predicts the total number of contaminated wells.   Note that these thresholds 

are greater (more conservative) than the probability cutoffs identified in the ROC curves 

(Appendix 2.1) which represent an equal balance between the frequency of false negatives and 

false positives.  The 45 degree angle tangent to the ROC curve representing this point for the 4 

ppm model corresponds with a 0.16 cutoff and a 0.08 cutoff for the 10 ppm model. 
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Figure 2.2: Plot of the total error rate and the rate of positive detection (correct number of 

contaminated wells) for each probability threshold.  The vertical line marks the threshold where 

the model correctly predicts the total number of contaminated wells. 
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Appendix 3.1 
For each state, I fit each explanatory variable in a bi-variate regression with photo-user-days per 

lake as the response variable.  Significance and dwerection (+/-) of the relationships are presented 

below for Iowa and Minnesota lakes, where nd = no data ad ns = non-significant where p > 0.10. 

Bivariate regressions for lake attributes and visitation for Minnesota and Iowa lakes 

 

Minnesota Iowa 
n = 2120 lakes n = 138 lakes 

Lake size (acres) <0.0001 (+) <0.0001 (+) 
Lake clarity (m) ns 0.0015 (+) 
Lake depth (m) <0.0001 (+) <0.0001 (+) 
Chlorophyll (ug/L) ns 0.0410 (-) 
Total phosphorus (ug/L) ns 0.0622 (-) 
Near-lake population 
(people) <0.0001 (+) ns 
   
Lake cyanobacteria 
biomass (mg/L) nd 0.0125 (+) 
Lake phytoplankton 
biomass (mg/L) nd 0.0167 (+) 
Lake temperature (C)  nd 0.0745 (-) 
State Park  ns nd 
Boat launch  <0.0001 (+) 0.0390 (+) 
Number of ramps <0.0001 (+) nd 
Number of docks <0.0001 (+) nd 
Number of toilets <0.0001 (+) nd 
Number of ADA 
facilities <0.0001 (+) nd 
Percent littoral area ns nd 
Aquatic invasive species 
(1 = present) <0.0001 (+) No data 
Boundary waters lake ns - 
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Appendix 3.2 

Pairwise correlations of explanatory variables evaluated in regression models for visitation and 

travel time.  Data represent all lakes in Minnesota and Iowa with water quality attributes.  Red 

values (bold) are correlations greater than 0.5, blue values (italics) are for correlations greater 

than 0.25.  As expected, lake clarity is negatively correlated with chlorophyll and total 

phosphorus and positively correlated with lake depth. 

Pairwise correlations of lake explanatory variables for combined lake data 

 

Lake size 
(acres) 

Lake clarity 
(m) 

Lake 
depth 
(m) 

Chloroph
yll 
(ug/L) 

Total 
phosphoru
s (ug/L) 

Near lake 
population (no. 
people in 80 km 
radius) 

Lake size (acres) 
 

-0.01 0.06 -0.03 -0.01 -0.05 
Lake clarity (m) -0.01 

 
0.60 -0.55 -0.46 -0.33 

Lake depth (m) 0.06 0.60  -0.38 -0.32 -0.18 
Chlorophyll (ug/L) -0.03 -0.55 -0.38 

 
0.64 0.27 

Total phosphorus 
(ug/L) -0.01 -0.46 -0.32 0.64 

 
0.21 

Near lake 
population (no. 
people in 80 km 
radius) -0.05 -0.33 -0.18 0.27 0.21  
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