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PHASE FIELD EQUATIONS IN THE SINGULAR LIMIT
OF SHARP INTERFACE PROBLEMS

GUNDUZ CAGINALPt anp XINFU CHEN{

Abstract. In one of the singular limits as interface thickness approaches zero, solutions to the phase
field equations formally approach those of a sharp interface model which incorporates surface tension.
Here, we use a modification of the original phase field equations and prove this convergence rigorously in
the one-dimensional and radially symmetric cases.
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1. Introduction.

In this paper we consider solutions to a phase field model and prove that they are
governed by solutions to a sharp interface model [see 7 and the references therein] (encom-
passing surface tension and kinetic undercooling) in a singular limit of vanishing interface
thickness. The proof is restricted to the one-dimensional and radially symmetric cases,
although a formal analysis indicates a more general result [6, 7].

The convergence of solutions to the phase field equations to those of sharp interface
problems such as the Stefan model or the Hele-Shaw model was suggested by the asymp-
totic analysis [6-8]. It has already been proven rigorously in the special cases of steady
state problem [1, 9, 21] and the traveling wave problem [11]. Related theorems also include
in (4, 10, 16, 22].

The relevant sharp interface problems may be described as a material in a region
Q C RY which may be in either of two phases, e.g. solid and liquid (denoted by — and +
respectively). The heat diffusion equation applies to each phase. Across the interface, T,
the latent heat of fusion must be dissipated or absorbed in accordance with the conservation
of energy. Since there is considerable practical, as well as theoretical, interest in these
equations, we write these equations in the dimensional form as

oT
pcspm-é—t— = K AT in Q\T, (1.1)
plmv = Ky [VT . n]; on I (1.2)

where T is the (absolute) temperature, p the density, cspm the specific heat per mass, units
of Energy(Mass - Degree)™1, K. the thermal conductivity, units of Energy(Area - Time -
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Temp Grad)~! = Energy(LengthV~2.Degree - Time) ™!, I, the latent heat per mass, units
of Energy(Mass)™!, v the normal velocity of the interface (positive if directed toward the
liquid), n the unit vector normal to the interface (pointing to the liquid), and [ ]J denotes
the jump between solid and liquid. An additional condition which must be satisfied at the
interface is given by

[s] g (T(z,t) - Twm) = —ok(z,t)—aov  on T (1.3)

where s is the entropy per unit volume, units of Energy(Length™ - Degree)™!, [s]r the
difference in entropy (in equilibrium) per unit volume between the “+” phase and the
“—” phase, k the sum of principle curvatures at the point on I', o the surface tension,
units of Energy(Area)™! = Energy(Length¥ ~1)~!  and a the relaxation scaling, units of
Time - Length=2.

If o is set to be zero in (1.3), then (1.1)—(1.3) is known as the classical Stefan model [27],
a key feature of which is the distinguishability of phases based on the temperature alone.
That is, T'(z,t) > T}, implies that the point belongs to liquid, and vice versa. This simple
criterion for determining phases is no longer possible with the introduction of more realistic
physics embodied by (1.3) (with ¢ # 0) which allows for the possibility of supercooling
(i.e., the presence of liquid below the melting temperature) and analogously superheating.
The condition (1.3) with o # 0 clearly is a stablizing influence on the shape of interface

since surface tension multiplies the curvature term, thereby inhibiting interfaces with high
curvature.

A convenient dimensionless version of (1.1)—(1.3) which is often implemented in the
physics literature uses a rescaled dimensionless temperature, u, diffusivity, D, and capillary

length, dy, defined by

T-T, K
—-_—m p.=—t T — (1.4)

u = y =
lm /cspm PCspm ’ [S]Elm/cspm

(provided s is measured in the original degree rather than dimensionless temperature), so
that the equations can be written in the form

uy = DAu in Q\T, (1.1
v = D[Vu-n]y on T, (1.2")
u = —dok — adyv on I. (1.3")

Equations (1.1')-(1.3') can be studied subject to appropriate initial and boundary condi-
tions, e.g.,

u(z,0) = uo(x), z €, (1.4)
u(z,t) = us(a), z€0Q,t>0. (1.5)



Local existence and uniqueness of solutions to (1.1’)-(1.3’), (1.4), (1.5) were recently
proven by Chen and Reitich in [14].

It has been useful, from both theoretical and practical perspective, to study (sharp
interface) free boundary problems as a limit of problems with finite interfacial thickness
which incorporate some of the physical structure of the interface. Toward this end, we
consider a phase field system based on the free energy

Fi= [ave{de1vel - L6l) - 2f()| = [Fupid's  (16)

which differs from the usual phase field equations with the insertion of a function ~f()
replacing ¢ (see [8, p. 211]). Here the function G(¢) is a symmetric double well potential
with minima at +1, e.g., §(¢? — 1)?, and f(y) is a function having the property that
f'(£1) = 0, thereby ensuring that the roots of

2G/(¢) +2urf'(¢) = 0 (L7)

remain at +1. The variable ¢ is dimensionless and is called the phase or order parameter.
Since the term uvy f(¢) must have units of energy per volume with u and f(¢) dimensionless,
~ must have dimensions of energy per volume. The numerical value of v will be related to
the macroscopic parameters introduced in §2 below.

The Euler-Lagrange equations coupled with the nonequilibrium ansatz (8, p. 211]
at’p, = —6F[bp

with aé? as a relaxation time then implies the phase equation

ab’o = EAp + %g(w) + 2uy f' () (1.8)

where g(¢) := G'(p). This equation is coupled with the conservation of energy equation
1

using the units of (1.1')—(1.3"), so that (1.8), (1.9) can be studied subject to suitable initial
and boundary conditions. Although a variety of such conditions may be imposed, a key
feature must include the vanishing of ¢; far from the interface so that the usual heat
equation is attained in these regions.

The interface is now specified implicitly as the set of points on which ¢ vanishes; i.e.,
I(t) := {z € Q| ¢(t,z) = 0} (1.10)

comprises the interface.



2. The phase field model and the macroscopic parameters.

The difference between the previously studied phase field models [7 and the reference
therein] and (1.8), (1.9) is the form of the entropy term arising from —2uvyf(y) in the free
energy (1.6). The original equations in which vf(¢) = ¢ assume a linear approximation
to the change in entropy density between phases. Although the linear approximation is
convenient for many mathematical purposes, it is possible to consider nonlinear approxi-
mations within the transition region. The physical accuracy can be expected to be of the
same order as the linear approximation if the value of 4 is adjusted to reflect the (macro-
scopic) difference in entropy density of the pure phases. (A modified consistent phase field
model was recently reformulated in [18].)

Noting that the entropy difference incorporates temperature units, which in this case
have been scaled by l;;, /cspm, one has the thermodynamic identity for the entropy difference
per unit volume,

OF

oF
[S]E =~ T ou

Ou

=00 -2f(-1) =2 [ Flode. ()

p=1 p=-1

Hence, the relation (2.1) defines «.

Two scales emerge naturally from the phase equation (1.8): a length scale, ¢, and a
surface tension scale (Energy/Length™¥ 1), &, given by

=
b=

e:=¢€a and 7:=fa” 2. (2.2)

Noting that €2 is the coefficient of the Laplacian in (1.8), we define a coordinate system
in which r is signed distance (positive in liquid) from the interface, I'(t), and a stretched
or “inner” coordinate

p:=r]/e. (2.3)

If we define ® as the solution of the ordinary differential equation
3" + g(®) =0, ®(+oo) = +1, ®(0) =0, (2.4)

then ®(p) is the O(1) inner expansion for ¢ (see [7] for more details).

We now focus on the surface tension, o, in terms of its relation with ¢ and a. With
a simply thermodynamic setting, the surface tension is obtained from a suitable local
interpretation of the difference between the free energy of the system minus the average of
the free energies in the pure phases (normalized with respect to surface area A); i.e.,

oo hm TA®) - 3(FHD+F(-D)

measure of A—0 measure of A

(2.5)



A calculation [8; p239] shows that, to leading order in ¢, the surface tension is given by
o= “‘I"Hz}ﬂ(n)fa_% =ma, m = “‘I)’”2L2(R)- (2.6)

Noting that a = ¢/ = em/o, one can write (1.8) as

€
atpy = Ap +9(p) + 277: uf'(p). (2.7)
Using (2.1) for v and defining
P m s
n:i=— = , .
1 f(eyde  f() = F(=1)
we obtain finally the system
n
ag’or = "Dy + (o) + euf'(¢), (2.9)
uy + -;—tpt = DAu (2.10)

where dy = o /[s]T since the additional factor in (1.4) has been absorbed into the dimen-
sionless temperature.

For the prototype double-well potential

1
Gp) =50~ 10 9l9)=G'(p) = 50— ¥*) (211)
one has m = 2/3, while the choice of
Fle) = (1 - @7 (2.12)

implies n = 5/4. In this case the solution ® to (2.4) is given by

®(p) = tanh g (2.13)

3. A formal asymptotic analysis.

We perform a preliminary asymptotic analysis for the equations (2.9), (2.10) which
‘will establish the heuristic basis for the convergence of the phase field equations to the

sharp interface model (1.1')—(1.3'). Sections 4-8 will then provide a rigorous proof of the
convergence to this limit.



The basic strategy in attaining this limit is similar to that of Section IV of [6]. Using
the scaling defined by (2.2), one considers the distinguished limits as ¢ — 0 but @ is held
fixed. (This corresponds to fixed do in (2.9).)

Suppose that in (2.9), (2.10), ¢ varies much more rapidly across the interface (from
—1 in solid to +1 in liquid) than does u, and that ¢ can be approximated by a function of
the form ¢((r — vt)/e); that is, the independent derivative with respect to time is of high
order. Then (2.9) can be written as

n
—aEvp, = ¢pp texg,+---+ 9(¢) + 5%“1”(45) (3-1)
where “...” are terms of order ¢2.
We assume an expansion of the form ¢ = ¢° + 4! + ---. Then equating the O(1)

terms in (3.1) gives

0 +9(6%) =0. (3.2)

For the prototype potentials given by (2.11), the solution is given by (2.13). The equation
for the O(¢) order terms in (3.1) is

L +¢'(4°)! = H := —avg® — xe?, — dﬁouf'(qs"). (3.3)

Noting that the derivative of the O(1) solution, d)?,, satisfies the homogeneous equation
corresponding to (3.3), one obtains the solvability condition

0= = [ L= avdh — wdh— Tur ()] dp (3.4)

Under the assumption that u varies slowly near the interface, i.e., when f'(¢°) is of
significant order, one has, upon using (2.8), the simplification (to leading order)

fo’e) 1
/ Tl (8)83dp = Tu / @ = (3.5)

—-—u.
—oo do

Finally, using the definition of m in (2.6), one obtains the interfacial relation (to leading
order)

u = —do(av + k) on I, (3.6)

Note that ¢° has a transition layer behavior at the interface and attains constant values
outside of a region of width ¢ form the interface (similar to the function tanhr/2¢ in the
original coordinates), so that ¢, vanishes. Then an asymptotic solution (u,¢) to (2.9),

(2.10) must be governed, to leading order, by a solution to the heat equation (1.1') on
Q\T.



The latent heat condition (1.2') is obtained by integrating (2.10) across the interface,

/;65 (ut + %Lpt) dr = /—66 (Durr + O(E)) dr, (3.7)

so that the boundedness of u; and the approximation ¢; = —v¢p, implies the relation

v = D[ur]+

(3.8)

which is equivalent to (1.2').

Hence, a solution to the generalized phase field equation (2.9), (2.10) is expected to have
formal asymptotics which are governed, to leading order, by the sharp interface problem

(1.1)~(1.3").

4. Statement of the rigorous result.

In this and subsequent sections we present the rigorous proof of the assertions made as
a result of the formal asymptotics in Section 3. It is convenient to replace, without loss of
generality, the coeflicients a, n/dy, and D, in (2.9), (2.10) by unity since the constants do
not influence the proof in a significant way. Also, we use the prototype g(¢) = 2(¢ — %)
since the general case is very similar. We then consider the system of equations

1

1= Ap = 5 (1= ") {20 +eu(1 - ")}, (4.1)
1

uy — Au = —5 % (4.2)

in Qr = @ x(0,T), @ = {z € RN : r; < |z| < ra}, subject to the initial-boundary
conditions

u(z,t) = uo(z, 1), (z,t) € 0rQ :=Q x {0} U x [0, T, (4.3)
o(z,0) = xp("’—lg—’"ﬂ) r€eQ, (4.4)
or = 2(1 —o?),  (2,8) €09 x [0,T] (4.5)

where r1,79 and r, are three given constants satisfying r; < ro < ry, and
U(p) =tanhp, —oo < p < oo. (4.6)

Although more general boundary conditions for u can be used without significant
changes in the proofs, we shall use (4.3) for definiteness.

7



The initial condition for ¢ ensures that the initial shape is compatible with the basic
length scale in the problem [7, 8]. The boundary condition for ¢ is compatible with the
initial condition and with vanishing ¢; and ¢, near the external boundary which are
necessary in order to attain the heat equation in the limit. While other conditions may
also be used, this particular condition is technically convenient.

For any 1 < p < 00, a € (0,1), and Q; := Q x (0,t), we introduce the norms:

Ifllw210,) = > 11878f fllrrqus (4.7)
m+2k<2
z1,t1) — f(z2,t
Ifloen = Iflcs@n +  sup  LLEni)=flnia)l (48)
(21,t2), (earta)eQ, 181 — T2|% + [t — 12
(z1,t1)#(z2,t2)
|f(z1,81) = f(z2,t2)]
| fllcaarzcq,y = I fllcocq.y + sup . , o (49)
(Q ) (Il,t1), (Iz,tz)th |33] — $2Ia + Itl — t2|0/2
(z1,t1)#(z2,t2)
||f||cl+a,(1+a)/2(Qt) = Hf“c’(l{-a)/?(Q‘) + ”azf”Ca,a/2(Qt). (4.10)

We state a standard result concerning the system (4.1)—(4.5).

LEMMA 4.1. Assume that ug € C*Y(Qr). Then for every e > 0, the system (4.1)-
(4.5) has a unique classical solution (u¢, ¢¢). Moreover,

lo*(z, 1) <1 Y(z,t) € Qr = Q x [0,T]. (4.11)

The proof of the existence of a unique solution is similar to that in [8], whereas (4.11)
follows by applying the maximum principle to the parabolic equation (4.1) (treating u® as
a known coefficient).

From now on we shall prove the following theorem:

THEOREM 4.1. Assume that ug € C*'(Q7) and is radially symmetric, and let (u®, %)

be the solution of (4.1)-(4.5). Then there ezist functions u(z,t) € C*e/2(Qr+) and S(t) €
C1+e/2([0, T*)), such that

lim u(z,t) =u(z,1), V(1) € Qx[0,T), (4.12)
i, (1) = { 1 z:f S(t) < |z| <1y, 0< ¢ < T, (4.13)
e— =1 of i <Jz|<S(H),0<t< T
where T* > 0 1s the first time such that one of the following happens:
T =T, S(T*) = ry; S(T*) =ry. (4.14)

8



Moreover, if we denote by T the set {(z,t) € Q- : |z| = S(t)}, then (u,T) is a solution to
(1.1')-(1.3'); that is,

us = Au in Qp« \ T, (4.15)
S(t) = [ur(z, )5 on T, (4.16)
3(t) = _1\;(;)1 _Bu(S(t)), o [0,T*) (4.17)

where (B is a positive constant defined in Section 8 below.

Recall that the sum of principle curvatures of a ball of radius r is %, so that equation
(4.17) is equivalent to (1.3').

To explain the idea of the proof of the theorem, we introduce a function Z¢(z,t) :

Q1 — R! defined by
Z¢(z,t) = eV (p%(a,1)). (4.18)

Since (4.11) implies that the value of ¢° is in the range of ¥, the function Z° is well-defined.
Clearly the definition of Z¢ implies that

o°(z, 1) = xp(-Z—%”—t—)) (z,t) € Qr. (4.19)

The overall strategy for the proof of the theorem is to show that Z¢ is approximately
equal to |z| — S(t) for some function S(t) € C°, a € (1/2,1). Once we prove this, we
can substitute (4.19) into (4.2) to obtain Holder estimates, for u®, independent of ¢, by
applying a potential analysis to the Green’s representation for the solution u® of the heat
equation (4.2). Having known the Holder continuity of the function u®, we then go back to
the equation (4.1), which has been well-studied in the case u® being a constant [2, 5, 12,
23, 24, 25], a known function [17], or an unknown function satisfying a parabolic equation
coupled with ¢® [13, 15, 26]. The conclusion is expressed by equations (4.13) and (4.17).
Finally, by using (4.13) and the distribution sense of equation (4.2), one obtains (4.15) and
(4.16).

To prove that Z¢ is approximately equal to |z|—S(t), we need, however, some regularity
on u®. For this reason, we introduce the functions:

M (t) = [[ulleo(Qu) (4.20)
M;(t) := [luillco@uy, (4.21)
M. (t) := M2(t) + e ML(2), (4.22)

T® :=sup{t € [0,T]: M. (1) < \/ig for all 7 € [0,1]}. (4.23)

By restricting oneself to on the interval [0, 7], one can carry out all the steps described in
the proceeding paragraph. Therefore, to complete the proof, one need only show that the

9



a priori estimate thus obtained in the interval [0,T¢] is independent of ¢ since this means

that T¢ = T.

In the following we shall denote by C the various kinds of constants which are inde-
pendent of . Also, we shall identify functions of variable (z,t) with functions of variable
(r,t) with r = |z| since all function in the sequel are radially symmetric. Finally, we shall
assume, without loss of generality, that

M.(t)>1, telo,T) (4.24)

5. C(1+9)/2 estimate for the interface.

In this section, we shall show that the interface which coincides with the zero level set
of Z¢is C(1+)/2 for any a € (0,1).

LEMMA 5.1. Let Z° and T¢ be defined as in (4.18) and (4.28). Then there ezist
positive constants g and C' > 0 such that for all € € (0,&¢) and (z,t) € Q1e, one has

N
12°(z, )] < 2ry + —T°, (5.1)
1
1 £
5 S Zi(z,1) <2, (5.2)
—CeM.(t) < Z;(2,t) — 1 < CeM.(t). (5.3)

Note that (5.3) is stronger than (5.2).
Proof. Substituting (4.19) into (4.1) yields the equation

.. vZeR 1
(Zt —AZ )\p' - |—€—|x11" --(1- \112)(2\1; +eus(l— \Iﬂ)) ~ 0. (5.4)

Using the radial coordinates and the identities
' =1-92 ¢ = 200

one can write (5.4) as

N -1 2 A A
Ze _7e _ € “ €2 Y e (2l =
(=B =25+ 2271 - )Y () —w v (S =0, (5.5)
and write the initial-boundary conditions (4.4), (4.5) as
Z(r,0) =7 — 1y, r € (r1,72), (5.6)
ZE(r1,t) = Z°(rg,t) = 1, te[0,T) (5.7)

10



where we have identified the function Z¢(z,t) with the function Z¢(r,t) with r = |z|.
Noting that

£ €
\p'(Z—) — cosh™2 (Z—) < e~ B <4k i |2°) > ke|lne],
€ 9
one can directly verify that for ¢ sufficient small, the functions
Zt i =r+ —]Xt

™1

and
Z  i=r—2rp—c¢t

are, respectively, a supersolution and a subsolution to (5.5)—(5.7), so that
Z7(rt) < Z°(r,t) < Zt(rt), r<r <y, 0<tLTE,

and therefore the asssertion (5.1) follows.

To prove (5.2), we differentiate (5.5) with respect to r and set Z°, = w, obtaining a
nonlinear parabolic equation, for w,

N -1 N -1 4

wy + 3 w + E\Ilwwr

Nw = w; — wpp —

2 2
+ 6—2\11'(11)2 - Dw —ul¥ + Eue‘I/\Il'w =0, (z,t)eQr, (5.8)

w=1, (z,t) € 0rQ. (5.9)
Set
wt(r,t) ;=14 2M.(1), r€lri,ry], 0<t<t<T"
and
- - N-1 -
w(r,t) :=1—2eM,(t) — ——t, r € [r1,re), 0<t<t<Ty

1

where Tf € (0,T¢] is any constant which can ensure w™ > 7 for all ¢ € [0,7F]. One can
verify, by using the definition of M, and the fact that % <w” <wt <2, that w and w™
are, respectively, a supersolution and a subsolution of (5.8), (5.9). Therefore, a comparison
principle for parabolic equation implies that w™ < Z¢, < w™, which, in turn, implies that
(5.2) is valid in [0, T¥].

We shall now use (5.2) to prove (5.3). Clearly, we need only prove the first inequality
in (5.3) since the inequality w < w™ implies the second inequality in (5.3).

We claim that, for a suitable pair of constants k; and k; which are independent of ¢,

the function
wi=1—kie\/Z? 4+ k2e? — kye M, (5.10)

11



is a subsolution to (5.8), (5.9).

One can compute

N -1 N -1

I::_’Lﬂt-—wrr—-—mr_i_ 3 w
T T
kieZ® N -1 k3l s N-1
== =2y — ——Z° Z°; w
(Z% + k3e2)1/2 (Z t=2 T ) + (Z¢? + k2e2)3/2 T
kieZ® 2 2 ) k3ed 2 N-—-1
= — —_—— — € Z
P G A v R
N-1

<2k max{Z°% — 1,0}|¥| + k1e|u®|T' +4 +

N -1
<k eM.(8|¥|+ T')+4 + Rt

r2

where in the third equation, we have used equation (5.5), in the first inequality, we have
used the fact that Z°¥ > 0, m <1, and Z¢2 < 4, and in the last inequality, we

have used the fact that Z¢2 —1 < wt? —1 < 4eM. and |u¢| < M.. One can also compute

II ::éqlwr + —25\1"(_132 - lw
€ €

wZ¢7Z¢, 2 _,
= —4k1\1’(252 IWYINTE + 5V (w+Dw-1u
2ko M,
< = k1|8 xgize 1>k ) — 25 o’

since Z¢, > 1/2. Finally,

M.

IIT:= —ul¥' + %uE\I/\II'Q <3 . VAR
Therefore,
Nw=I+II+III
N-1 2k, M, M.
< kyeM.(8|¥| + ') + 4 + —— ~ RlTIx(ze|>01e) — 25 A/ 3—6—\1/'.
. kQMe /
< Chive +C — kymin {9(ky), = — v (k1)} <0
1

if we first take ky large enough, and then k, large enough and ¢ small enough. Therefore by
comparison, w < Z°,, which implies that the first inequality in (5.3) holds for ¢ € [0, T¥].

Repeating the above proof in the interval [T, T¢], one can easily extend, step by step,

the valid interval for (5.2), (5.3) up to [0,7¢], and therefore complete the proof of the
lemma. [J

We can now obtain L? and Holder estimates for Z¢ (based on M,).

12



LEMMA 5.2. For allp € (1,00) and a € (0,1), there exist constants Cp and Co, which
are independent of €, such that for allt € [0,T¢] one has the bounds

“ZCHW‘fv‘(Qt) < CpM.(t), (5.11)
I|Z€“Cl+a,(l+a)/2(Q') < CaMe(t). (512)

Proof. The equation (5.5), along with the inequality (5.3), implies the inequalities

|2 — Z°1| <

1Z°-| +2[2° + 1

N -1 25 = Uy 4 s < 000,

r

Then (5.11) follows from the classical L? estimates while (5.12) follows from Sobolev em-
bedding Theorem. ]

Since Z°¢ is strictly increasing (by (5.2)), one can define the inverse, r = ﬁg(z,t), of
the function z = Z¢(r,t). It is convenient to extend R¢ to R® on R x [0, T¢] defined by

Re(z,t)  if z € [Z°(r1, 1), Z5(ra, 1)),
R(z,t):=< ry if z < Z%(rq,t), (5.13)
T2 if 2 > Z%(rg, t).
The estimate (5.3) then implies that
Z*(r,t) = [r — R°(0,1)][1 + O(eM,)]. (5.14)
LEMMA 5.3. For all a € (0,1) there ezists a constant Cy > 0 such that
Bl gacq,) S CaMc(t)  VEe(0,TF). (5.15)

This lemma follows from Lemma 5.2 and the estimate (5.2).

6. A L* bound on u® using Green’s Function.
We shall now use the heat equation (4.2) to estimate the L° bound for u®.

Let G(z,t;€,7) be the Green’s function corresponding to the boundary conditions
imposed on u; that is, G satisfies

G +A:G=0, (z,) e xQ, 0< 1<, (6.1)
G(z,t;€,7) =0, (z,t) € Qr, (€,7) €902 x[0,T), (6.2)
lintl_ G(z,t;€,7) = 8(z — &), (z,€,t) € 2 x Q x (0,T] (6.3)
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where the § function in the last equation has the standard interpretation in the sense of
distributions. By Green’s formula, a solution u® to (4.2), (4.3) is given by

u(2,1) = / Gzt €, 0)uo(x, 0)dé — / / ——(:c,t,E,T)uo(é,T)d55dT
L[ [ s nsnee s

= uy(z,t) + ug(z,t) — -;-u;,(:v,t) (6.4)

where n is the normal to the surface element dS of 0f.

Note that u; + uy is a solution to

—Av=0 inQr, (6.5)
v = u on 0rQ, (6.6)

so that one has, for a constant M, (depending only on ¢, 2, and T, the bound
||u1 + u2||01,1/2(QT) S Mo. (67)

Hence, we need only analyze the regularity of u3 in order to obtain the L or Holder
estimate for u®.

The following lemma establishes a recursive relation for M1 (t).

LEMMA 6.1. For any a € (0,1) and q € (1,%), there exists a constant Cq 4, which
is independent of €, such that for allt € [0,T¢],

Ou®

Ml = ‘ el < N a—1 g 3—[aqi221 . .
. ar llooo, < Co g€ "M (t)t™ 2 + M, (6.8)
Proof. We need only estimate |ug ,|. Denoting
é(r,t;r',T) :=/ G(:c,t;{,r)'l | dSedr, (6.9)
{le|=r"} sI=r

one gets

i T2 __ 1 t Za
wr= [ [t naar =1 [ 76w ()25 arar
0 T ] T

14



Differentiating both sides with respect to r yields

8u3 / /r2
- 1/q
< ;IIZ‘TIILq'{/ / IGTI"I\IJ’|"dr’dr} (6.10)
0 T
1 T2 1/p t Ty N1/ 1/q
i DA | su / p'|Pe / / G,|7 }
5“ “Lq {(TG[OI?t] ™ | I ) 0 ( r | )

1
where 1/¢+1/¢' =1(¢>1)and 1/p+1/p'=1(p > 1).

One may write a basic inequality [20, chapt 1] involving the Green’s function as

t ra |7. — | rev'12\ qp 1/p'
qr T—r /
/(; (/r1 |G| dr dT < C'/ / |t — Tl3/2 EIE ) dr }

< Ctm T (6.11)

|\1:’ )12¢ lar'dr

where C' depends only on €. Since 0 < ¥' <1 and Z¢, > 1/2, one has

T2 o Z* (ra,7) 7N 1 7€
\I!"’q</ \I/'=e/ v’ d < 4e. 6.12
‘/7'1 | | - T Ze(r1,T1) ( )Ze ( ) ( )

Setting p = alq, substituting (6.11), (6.12) into (6.10), and using the L? estimate for Z¢
[(5.11)], one obtains the bound

3u3

’ < C M, (1)t m H 0 1ge — ceomtpg (i)™=,
and therefore the lemma follows. 0

To get the L* bound for us, we utilize the identities

o= [ / Gl t3,7) = [0°(6,7) — o7(6, 1) dedr
- [eleen ds— [ [ efren-vn)acar
-/ G(m,t;s,O)[soE(s,t) o0+ [ [ acaleten - o) dear
/Gxtsm “(6,1) ~ ¢°(6,0) // o (@61 [(6,7) — (6, 0)] dedr

- [ [ B nen[Gaen - 2]
=A(z, 1) + B(a:,t) +C(z,t) (6.13)

where integration by parts in ¢, the heat equation for GG, and Green’s theorem have been
used.
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LEMMA 6.2. For any a € (1/2,1), there ezists a positive constant Co, such that for
any positive constant § and for all (z,t) € Q1 one has the bounds

|A(z,) + B(z,1)| < 2, (6.14)
IC(z,t)| < 8+ C4 (5—% + Me(t)aa—%), (6.15)
M°<C+C, (5-% + Me(t)éa—%). (6.16)

Proof. We need only prove (6.14) and (6.15) since (6.16) follows from (6.4), (6.7),
(6.14) and (6.15).
Using the bound |¢| < 1 (Lemma 4.1), one obtains

t
4+ 5l < 20w lel{ [ Gaieode+ [ [ Fangnisary <2

Write C(z,t) as

max{0,t—6} t
C(z,t) = (/ +/ )/---dédr: c® 4+ c®
0 max{0,t—8} Q

ma.x{O,t—é} Ty
c® .— / / Gr(r,t;r', 1) [(pi,(r',t) - gof_,(r',r)] dr'dr,
0 T

4 T2 .
c® .= / / G (ryt;r',7) [goi,(r',t) — cpi,(r',r)] dr'dr.
max{0,t—6} Jry (617)

Integrating by parts for the integral C(!) and using the bound
|ér/r/(r,t,r','r)| <C(t- 7')_%,

one finds that C() is bounded by C'§~%.

To estimate C(?), we substitute ¢ by ¥(Z¢/¢) in (6.17) and use the change of variables
n = Z°¢ /e, obtaining

¢ Z5(rast)fe _
CO(z,1) = / / G . (r t; R (en, 1), 1) (n)dndr

max{0,t—6} JZ¢(r,t)/e
t Z%(r2,7) /e -
-/ / G (1,13 R¥(em, 7), 7) ¥ () dydr.
max{0,t—6} JZ¢(ry,7) /e

By dividing the 1 integration of the first integral into the three parts:
Z¢(r1,7) /e Z*%(rq,1) Z°(ra,t) /e
Srvnse * b o
Ze(ry,t) /e Ze(r1,7m) /e Z¢(rq,7) /e
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one obtains the bound

1C®)(z,1)|
" Z‘!:z,r! _ _
< ar G (ryt; RE(en, 1), 7) — G (ry 8, RE(en, 7), )| W/ ()
/rlmx{O,t—&} —Zﬂ-:']'—fl
o) t ~
+2 / ¥ (n) / (G (r,t, R (en, 1), 7)ldr
—00 max{0,t—6,0}

=C( 4 c(),

The integral C*? is bounded by 8 since for all r,r' € (r1,72), one has

t
/ |G (ryt,r, 7)|dr < 2.

max{0,t—6}

The integral C(?!) can be estimated by

¢ Z(ra,0) /e N _
c®) S/ dT/ dn¥' ()| G (1, 857", 7)| R (en, 7) — R%(en, 1))
max{t—6,0} Ze(r1,t) /e
t e o)
S/ dT/ dn¥'(n)Ct — 7|32 Co M. (t)|t — 7|
max{t—6,0} —o0

<CoM.(t)§*71/2

where the mean value theorem and Lemma 5.3 have been used. Combining all the esti-
mates, one obtains (6.15) and the lemma. [J

THEOREM 6.1. There ezist positive constants €9 and C such that for for alle € (0, ¢o),
one has the bound

[u®llze(@r) < C- (6.18)

Proof. Using (6.8) (with ¢ = £(1 + 2+La))’ (6.16), and the definition of M, in (4.22),

one has

M.(1) € Car [1 46732 4 ML (1612 ¢ s“Me(t)}. (6.19)

Choosing ¢ and 6 satisfying

1
E(C)YCO,,T S 5 C'ar,T(SO(_l/‘2 S Z’

N

one has, from (6.19), the bound
M.(t) <2Car[1+674] =My, forall te[0,T7), €€ (0,c0]. (6.20)

17



Further choosing ¢ sufficient small such that

1
2/

one concludes, from the definition of T in (4.23) and the estimate (6.20), that

Mof

T*=T

if € < &g. This comletes the proof of Theorem 6.1. ]

Having the estimate (6.20), Lemmas 5.2 and 5.3 can be strengthened as follows:

THEOREM 6.2. There ezists a constant g9 > 0 such that for all € € (0,¢0), @ € (0,1),
one has

”Re”C“(Rl x[0,T7) S CQ,T’ (6.21)
2%l gr4eiarrzgpy < Cat- (6.22)

7. Holder estimates for u®.

Theorem 6.2 implies that the interface (determined by Z¢ = 0 or r = R°(0,t)) does
not intersect the external walls (r = ry or r = ry) for a certain amount of time; that is,
for any sufficient small positive constant a, the constant T, defined by

T, :=sup{t € (0,T] : Z°(r1,7) < —a, Z%(rq,T) > a, Ve € (0,a?],7 € [0,1]} (7.1)
1s positive.

THEOREM 7.1. For any a € (0,1) and a > 0 sufficiently small, there ezists a positive
constant Cy o such that, for all € € (0,a?], one has

”uE”C"‘r“/?(QTa) < Ca,a (72)
where T, 1s as in (7.1).

Proof. The definition of T, implies that ¢° is exponentially close to 1 at the external
walls; i.e.,

of(z,1)? = xp?(i(—;"—tl) —14+0(e*%),  Vee(0,a3,t€[0,TL].  (7.3)
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Therefore, the right-hand side of equation (4.1) is uniformly (in €) bounded in the set
{(z,t) € Qr, : |z| < r1 +a/4 or |z| > r; — a/4}, so that (7.2) holds in the set {(z,t) €
Qr, : |z| <r1+a/8 or |z| > ry —a/8}, by the standard parabolic estimates [20].

It now remains to consider the case when
(z,t) € Q, x [0,T,], Q,:={z RN :r +a/8<|z| <7y —a/8}). (7.4)

Write u® as the sum of uj, uz, and us as in (6.4). In views of the estimate (6.7), we
need only consider uj.

Decompose uz into the sum of A, B, and C as in (6.13). One can easily conclude that
B is smooth since its kernel %(m,t; €,7) is smooth when ¢ € 02 and z € Q,.

Next we estimate C(z,t). As in the previous section, we can write C' as

Clz,t)=I+---
where
I:.= / / 77) G’ /(r,t; RE(en, ), 7) — G (r, t; Re(en,'r),r)] dndr
and --- are smooth terms since their integrands are smooth if z € 2,.

To estimate I, write I as

t i Rf(en,t) _
=/ dT/ \I/'(n)dn/ Grrpi(rytyr', 7)dr'.
0 - Re(en,7)

Then, for every z1,z2 € Q,, one has the estimate

[(z1,8) — I(z2,1)]

/ dr/ U'(n)dn

/dT/ ' (n)dn| RE (en, t) = R (en, 7)[Calt — 7) 75 3|2y — 2o

R®(en,t) _
Le(en ) “Gr’r’(.’t’rl’T)”C“(Qa)lxl N .’E2|ad7'l

|
|e AIQ

£y
ln .alp

/ dT/ W' (n)dnCplt — 7|P(t — 7)"E % |y — 2p|® (by Lemma 5.3)
<Cp,at? " le — x|
for all B € (132,1). Similarly, one can show that
[I(z,t1) — I(z,t2)| < Caalts — t2]*/2, Ve € Q,,0<t <ty < T,
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so that
1Tl gmeraas) < Cona:

Therefore, the function C(z,t) is uniformly (in €) Hélder continuous.

Finally, we estimate A. By writing it as

A= [ G0 [\If (Z—(LQ) — \P(w)]dr'

- € €
[ G roen, 9,090 g

= Tt ¢ Sﬂ,t 70 n n
Ze(ry,0) /e Z¢(Re(en,t),t)

Z%(r2,0) /e _
- / G(r,t: R*(en, 0), 0)%(n)edn,
Ze(r ,0)/6

One can use the same method as in estimating C(z,t) to conclude that

| Allcaerz(a, xjo,1] < Caa-

This completes the proof of Theorem 7.1.

8. Convergence to the sharp interface.

In this section, we shall complete the proof of Theorem 4.1; i.e., we shall show that u®
tends to the solution of the sharp interface problem as ¢ \, 0, as long as the interface of
the solution of the sharp interface problem does not touch the external walls.

By the estimates obtained in Theorem 6.1, Theorem 6.2, and Theorem 7.1, there
exists, for every sequence {e j}}";l satisfying €; \, 0 as j — oo, a subsequence, which, for
simplicity, we still denote by {€;}32,, such that for all a € (0,1) and a > 0 sufficient small,

u® (z,t) — u(z,t) uniformly in C**/?(Qr,), (8.1)
Z% (z,t) — Z(x,1) uniformly in C*T®(+)/2(Qr, (8.2)
R (0,t) — S(t) uniformly in CC+9/2(]0, T7) (8.3)

for some u € C**/%(Qr,), Z € C1T*(1+0)/2(Qr), and § € C1+)/2([0,T)), where T, is
defined in (7.1).

In the following, we shall assume that a > 0 is a fixed small constant.
Note that the interface for the solution (u®, ) of (4.1)—(4.5) is given by

re:={(z,t) € Qr: Z°(z,t) =0} = {(z,t) € Qr : |z| = R*(0,1)},
so that (8.3) indicates the interface I'®/ convergences to I' := {(z,t) € Qr : |z| = S(¢)} as
;i\ 0.
To prove the main theorem (Theorem 4.1), we need show that (u,I) is the unique

solution to the sharp interface problem (4.15)-(4.17). This will be done in Theorem 8.1
and Theorem 8.2 below.
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LEMMA 8.1. Let Z,S be as in (8.2), (8.3). Then

Z(z,t) = |z| — S(t), (z,t) € Qr, (8.4)

e 1 flz| > R(t), t€0,T],
lim % (z,t) =
j—oo

-1 if|z| < R(t), t €[0,T). (8:5)

The assertion (8.4) is a consequence of (5.14) and the uniform convergence of R¢ in

(8.3) whereas (8.5) follows from the representation ¢ = ¥(Z¢/¢), the uniform convergence
of Z¢ in (8.2), and equation (8.4).

The following theorem concerning the motion of the interface is a key feature of the
equation (4.1), the Cahn—Allen equation [2, 5, 12, 13, 15, 23-26].

THEOREM 8.1. The function S is of C'**([0,T,]) and satisfies

Sm:_%ﬁ%_m@m@, te [0, T, (8.6)

S(0)=ro (8.7)
where B is a constant defined in (8.19) below.

Proof. We need only show (8.6) since (8.7) follows from the equation Z°(z,0) = r —r.

In case u is Lipschitz in & (therefore the solution of (8.6), (8.7) is unique), one can
directly use the method developed by Chen in [12, 13] to prove the theorem. Since up
until now we only have Holder estimate for u®, we need some modifications to the method
developed in [13].

The idea of the proof is to construct, for any tq € [0,7,) and § > 0, a supersolution
5% to (4.1) in

Qto,1, = 2 X [to, Tal,

where the interface of %% (the zero level set of ¢*5%) is located at |z| = $55%(t) and
Se:d%(4) is a solution to the ODE

d N -1 —~
zl—tse’é’to(t) = —m — ﬁue(S"”é*"’(t),t) — 5, t e [to, T], (88)

S0t (4,) = S(tg) — 26 (8.9)

where uf is a mollifier of u¢ defined in (8.10) below. By first letting ¢ — 0 and then
6 — 0, we can conclude that S is a supersolution of (8.6). After using a similar argument
to conclude that S is a subsolution of (8.6), one obtains (8.6).

In the following, we shall identify ¢; with €.
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We start by modifying the function u¢. Let 4¢ be a radially symmetric C%/43/8 exten-
sion of u® in RN x R! and ((z,t) be a nonnegative smooth function supported in the unit
ball and of unit mass. We define the mollifier u¢ of u® by

~ 1 y—x 7T—1\.,
ué(z,t) := iE RNdy/Rlch(Efllz, . )u (y, 7). (8.10)

One can show directly, by using the C3/43/8 estimate for u® (Theorem 7.1), that u is
radially symmetric and satisfies

[uf(z,t) — u®(x,1)| < sup |65 (y, 7) — a%(z,t)| < CE¥/8,
ly—z|+|t—7|}/2<e/2 (8.11)

e/ 2uE,, euf,,, eufyllcoon,) < C, (8.12)

HEE”CW“»‘*/@(QT‘,) S C (813)

for some constant C' independent of e.

Next, we define the constant S which appeared in (8.8). Set
Fp, A p) i= (1= ¢*)(20 + M1 = ¢%)) + . (8.14)

Then, there exists a constant po > 0 such that for every A € [—-1,1] and p € [0, o] the
algebraic equation, for ¢,

F(p, A\ ) =0, (8.15)
has exactly three solutions: h~(\, u), h°(), u), afid AT (A, 1), and they satisfy

h™ (A, 1) < RO(A, ) < BF(A, p),
h™(Ap) <0 < hFH(A p),
hE(O\, ) > +1 + by (8.16)

for some constant b > 0. By a result of Aronson and Weinberger (3], there exists a unique
solution (A(X, ), @(A, i, p)) to the nonlinear eigenvalue problem

Qoo — AQ, + F(Q, A, 1) =0, (8.17)
QO p,£00) =hE(\, i), Q(A,p,0) =0 - (8.18)

for any A € [-1,1] and p € [0, o). We define the constant 3 by
OA
= —(0,0). 8.19
5= 20,0 (8.19)

Some properties of the solution (A(X, 1), Q(A, g, p)) are stated in the following lemma
which has been proven in the appendix of [17]
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LEMMA 8.2. There exist positive constants ¢ and A such that for any A € [—1,1] and
p € [0, po], the solution (A,Q) to (8.17), (8.18) satisfies

Q, >0, Vp € R, (8.20)
Sugl lQp’ pr, Q/\? Qz\p’ Q/\z\a A/\‘) A;L, AAAa A)\;La A;tul < A, (821)
PE

QA p,p) > RT(\, p) — Ae™°P, Vp > 0. (8.22)

Since the right-hand side of (8.8) is smooth (as a function of $¢®% and t), the ODE
system (8.8), (8.9) has a unique (local) solution S*:%t and the solution exists as long as it
remains in the interval (ry,r3). According to the definition of T, in (7.1), we can assume,
without loss of generality, that S¢%% exists in [0,T,] and

ri—aj2< 8900 () <y,  VEE[0,T]. (8.23)

We now define %% by

~ _ 56,5,t0 t
S05,6,150 = Q(eue(:c,t), 59/8, |$| - ( )>, (iL',t) € Qto,Ta’ (824)

Since for small enough €, we have
leus| <1 and %% <y,

the first two arguments for the function @ in (8.24) are in the range of its definition, so
that ¢ %% is well-defined.

To complete the proof of Theorem 8.1, we need the following Lemma.

LEMMA 8.3. For every § > 0, there ezists a constant €5 > 0 such that Ve € (0,¢5], the
function %% defined in (8.24) satisfies
=%z, 1) > o¥(z, ), (z,t) € Q¢ 1- (8.25)

Consequently,
S8t (1) < R¥(0, 1), t € [to, T). (8.26)

We continue the proof of theorem of 8.1. Since the Holder norm of the right-hand side
of (8.8) is bounded independent of ¢, the C**%([t,, T,]) norm of $¢:%% is also bounded, so
that the set {S%%}gs5<5, 0<e<es 18 €quicontinuous in C*[tg, T,]. Therefore,

Sto(t) = JEIOH+ 5@4. Se,ﬁ,to(t)
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exists, and Sy, is in C'1*[ty, T,] and satisfies

. N -1
Sto(tO) - S(to) —,BU(S(to),to)-
Hence,
(1) et S0 +h12—5(t0)
h—0t
— _lﬂ lim R (O,tO + h) — S(tO) (by (83))
h—o+ e—0+ h
e,6,t0 _
> I T B ot ZS) g (500))
h—o+ §—0+ e—0+ h
= Sulte) =~ — Bu(S(t), o) (8.27)
— Jtg\l0) — S(to) 0)yt0)- .

That is, S is a supersolution of (8.6). Similarly, we can show S is a subsolution of (8.6),
and therefore, S is a solution of (8.6).

To complete the proof of Theorem 8.1, it remains to prove Lemma 8.3. To do this, we
need an auxiliary lemma.

LEMMA 8.4. There exists a positive constant €5 > 0 such that for all € € (0,e5], one
has

Se + ebu® — A(eus,e"/®) >0, (z,t) € Q. (8.28)

Proof. By Taylor’s expansion, one has

Aeu?, /%) = A(0,0) + %ﬁ—(o, 0)eu® + 2_2(0’ 0)e*/S + O(|ew?|? + ¢*/%2)
= efuf + O(°/?)

since A(0,0) = 0 and u® is bounded. The inequality (8.28) thus holds for ¢ sufficient small.

Proof of Lemma 8.3. We need only prove (8.25) since (8.26) follows from the fact that
R#(0,t) and S*5%(t) are the zero level sets of ¢° and (%% respectively.

By means of a comparison principle for semilinear parabolic equations, one can prove
(8.25) provided that one can show the following:

0% (x,t0) < =%t (z, 1), T €, (8.29)
©%(z,1) < &%t (z,1), (z,t) € O X [to, T.], (8.30)

1
L8t = giPh — AptSh — S F(p50 e 0) 20, (2,1) € Qur,.  (831)

3
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To prove (8.29), consider two cases:

(i) |z < S(to) — ;
(i) |z| > S(to) — &.

In case (i), one has the bound

Z%(z,t) = Z%(x,t) — Z5(R5(0,1),t) = Z°.(€,t)(|z] — R*(0, 1)) < —g

by the mean value theorem, the estimate 1/2 < Z¢, < 2 (Lemma 5.1) and the fact

|R®(0,) — S(¢)] < 6/2 (8.32)

if ¢ (actually €;) is small enough. Therefore, one has

Z%(x,t
Lpe(:l:,to)Z‘I’( (6 0))
< xp(— ;f;) <—142 %
< —1+4be%8 < h™(euf,e%8)  (by (8.16))
< =% (., 1g). (8.33)

In case (ii), we can use the initial condition for %% in (8.8) to conclude that

— t —_—
¢€,6,to($’t0):Q<lx| S(£O)+26’Eu€,69/8)

6 ~
S O0(2 cue 9/8
> Q(2 e, e")
> ht(eus,e%®) — Ae/¢
>1+4 b€9/8 _ Ae—c&/e
> 1> p(z,t0) (3:34)
where (8.22) and (8.16) have been used. Combining (8.33) with (8.34), inequality (8.29)

follows.

Similarly, we can show that (8.30) holds by using (8.23) and the definition of T,.
Finally we verify (8.31). We compute the identity
1 —_
»CQOE’&’tO — _MEste,&tot + EQ,\uet

1 1N -1 — —_ —2
- [6_2Qpp + —Qp + 2Qp)\uer + 5QAAUE + 52Q)\)\uer]

e el
1 € <z ~9/8 =€ _.9/8
-2 [F(Q,eu ,0) + F(Q,eus,e’®) — F(Q,eu® ¢ )}
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Using the equation for @ [(8.17)] and the definition of F' [(8.14)], one obtains
e,6,to _& _ i €,8,to _ A(erl-';g’ 69/8) _ N — 1
Le € [ > € || ]
— [Q,\(*SAZ[g —eu®y) + 2Q paut, + 52Q)\/\Egﬂ
1 —_~
- 5 |ewr - w1 - Q1) - ]
=TI+ I+ II1I. (8.35)

One can estimate I] and III as

II>—Ce /2, (8.36)
IIT> —Ce™Y/? 4 ¢77/8 (8.37)

by using (8.11), (8.12) and (8.21).
Since S&%% satisfies the ODE (8.8), we can write I as

_ Q[ N=1 | et _ A(ewf, %) N -1

I== [Se,a,to(t) + BuE(SEEN0 (1), 8) + 6 : " ]
_ QppleteBut-Aeut, ) o s, = 2] = 5554 (t)
= [ . + B(us(S00(1),1) — ui(z,t)) + (N -1) EE0) ]
> —% [0+ CBIs=o0o(t) - Jal|"/* + C(N = 1)Jz] - 5=545(1)|
> —Ce™ /% sup p*/1Q,| > —Ce /4, (8.38)

pER?

where Lemma 8.4, (8.20), (8.13), and (8.21) have been used.
Substituting (8.36)—(8.38) into (8.35), one obtains

Lsoe'a’“ > —06_1/4 _ C€_1/2 _ 06—1/2 + 8—7/8 >0

if ¢ is sufficient small. This proves (8.31) and completes the proof of Lemma 8.2 and also
Theorem 8.1. [

THEOREM 8.2. Let
Q1 :={(z,t) € Qr, : |z| < S(1)},

Q2 :={(z,1) € Qr, : |z| > 5(1)},
I':={(z,t) € Qr. : |z| = S()}.
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Then, the function u de:ﬁned in (8.1) satisfies
u € CUHe(+a/2(Q) y o1+ (+)/2(qy),
uy—Au=0 in Q1 UQ2,
St) = [ur]; on T.

(8.39)
(8.40)
(8.41)

Proof. Let I'(z,t;£,7) be the fundamental solution of the heat operator 6; — A, and

w(z,t) be the function defined by the surface potential

t
= [ d ' :€,7)dSe.
w(z,t) /0 T»[£|=S(T) S(m)T(z,t;€,7)dSe

Then, since ' € C'**, we know [20, Chapt. 5] that

w E Cl+a,(l+a)/2(a) U Cl+a,(l+a)/2('Q_2)’
wt—Aw=0 in QIUQ2’
[wr]; =S(t) on T,

Therefore, for every ((z,t) € C§*(QT,), one has

0= //Qn [uf — Ausi +%<pf”]<—//QlUQ2(wt—Aw)C

=[] o wa-a0 -5 f[ i | " $r)0(8(r), )

Letting €; — 0 and using (8.1) and Lemma 8.1, one gets

o= [[ w-wi-c-20-3 [[ g [[ @ [ soxisenar

-/ /Q (= w)(-G - A0,

(u—w) —A(u —w) =0, Y(z,t) € Qr,,

Hence,

and therefore

u—w € C(Qr,).
Theorem 8.2 thus follows from (8.42)—(8.44). O

(8.42)
(8.43)
(8.44)

(8.45)

Recall that the solution of (4.14)—(4.16) is unique [14], so that (8.1)—(8.3) are valid
for all sequence ¢ — 0. Letting a — 0, one can conclude, from the definition of Tg, that

T, — T*, thereby proving Theorem 4.1.
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