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Abstract 
 

Initiation of fracture from a circular cavity was monitored with a cavity expansion 

apparatus for two rock materials: Berea sandstone and Indiana limestone. Fracture 

characteristic from cavity expansion tests were compared to three-point-bending (3PB) 

tests on the same rock. 

Using a particle tracking technique called digital image correlation (DIC), a discontinuity 

in the displacement field near the cavity boundary was identified at 80% and 60% peak 

internal pressure for Berea sandstone and Indiana limestone, respectively. The critical crack 

opening displacement (CCOD) was assumed to be associated with unstable crack growth 

from the 3PB tests, which occurs at peak loading. The CCOD measurements from three-

point-bend tests were 51-58μm for Berea sandstone and 15-16μm for Indiana limestone. 

The measured COD from the cavity expansion test at peak pressure was 57-90μm for Berea 

sandstone and 20-24μm for Indiana limestone. The results show the CCOD from cavity 

expansion were on average 35% higher than three-point-bend test for Berea sandstone and 

40% higher for Indiana limestone, suggesting stable growth prior to peak pressure. 
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Chapter 1 

Introduction 

An experiment is a question which science poses to Nature and a measurement is a recording 

of Nature’s answer. 

~ Max Planck (1858-1947) 

 

1.1 Motivation 

The analysis of fracture near a cavity in rock has been largely motivated by the extraction 

of petroleum and natural gas from a borehole. Stimulation of oil production by pressurizing 

a portion of a borehole was first used by the oil industry in the 1940’s. Since then a great 

amount of work has been focused on fracture from a borehole. Today, novel methods for 

fracturing boreholes in rock are being developed to promote safety and economic 

reliability. By better understanding the initiation of a fracture from a circular cavity these 

ambitions can be met. 

The problem of an expanding circular cavity in a mass is often considered one of the most 

important problems in rock mechanics (Jaeger & Cook, 1969). Tunnels, production wells, 

and cavities in rock are all governed by this problem. Elastic analysis of these structures 

often breaks down when inhomogeneity’s, such as a fracture is introduced into the mass. 

However, small-scale (10-3 – 10-6 m) analysis may provide a better understanding of the 

initiation of a fracture from a circular cavity. This thesis explores the small-scale details of 

the development of a fracture near an expanding circular cavity.  
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1.2 Objective 

The objectives of this work are to 

1) develop a novel apparatus to monitor cavity expansion; 

2) investigate how a fracture initiates near a circular cavity subjected to various stress 

distributions; 

3) use digital image correlation to investigate crack opening displacements; 

4) analyze and describe events associated with the initiation of fracture; 

 

1.3 Scope and Organization 

Chapter 2 reviews the fundamentals of linear fracture mechanics and the problem of a 

fracture near a circular cavity. Chapter 2 also gives a brief description of the digital image 

correlation (DIC) technique used for measuring the displacement field. 

Chapter 3 begins by presenting different loading distributions to induce fracture. Three 

different distributions of stress in a circular cavity are presented in the context of linear 

elasticity to highlight how fracture was produced. 

 Chapter 3 continues with a detailed description of the loading apparatus as well as the 

device used to pressurize the cavity, commonly called a “packer”. The design of the packer is 

highlighted in as well as the method used to calibrate the packer. Chapter 3 finishes with a 

description of the different kinds of rock tested as well as the experimental procedure. 

Chapter 4 highlights the results of experiments. Elastic analysis of the shear modulus 

from DIC measurement is presented for each type of rock. Also, fracture characteristics are 

compared with other experiments. Chapter 5 concludes with comments on the outcomes of 

the experiments and remarks on future developments. 
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Chapter 2 

Background 

2.1 Linear Fracture Mechanics 

Some of the first developments in fracture mechanics were by English engineers C.E. 

Inglis (1913) and A.A. Griffith (1920). Inglis’ work focused on providing a mathematical 

formalism for the stress concentration around an elliptical hole in a solid. Griffith, aware of 

this work, later considered how the Inglis solution might predict fracture for a material 

containing a crack. However, according to the Inglis solution for a perfectly sharp crack, the 

stresses would approach infinity at the crack tip and consequently the material would have 

zero strength. Instead of focusing on stresses at the crack tip, Griffith developed the concept 

of fracture based on an energy-balance approach. Griffith’s energy criterion states that 

crack growth will occur when the strain energy released by a virtual extension of the crack 

equals the energy absorbed by the material in that crack advance (Griffith, 1920). Griffith 

showed that the strain energy per unit thickness, U, due to the presence of a crack of length 

2a, in an infinite plate subjected to uniform tension, σ, is 

    
     

  
 (1) 

E’ = Young’s modulus (E) for plane stress and     (    )⁄  for plane strain. The negative 

sign indicates energy is released from the system by crack growth. The surface energy S 

associated with the creation of a traction free crack of length 2a (and unit thickness) is 

       (2) 

where γ is the surface energy [Joules/meter2]. 
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The strain energy released when the crack grows by an amount da is 

 
 (   )

  
    

     

  
 (3) 

The value of the critical crack length, ac is found by setting (3) to zero. When this condition 

is satisfied, crack growth is imminent. The stress at the critical condition is 

    √
    

   
 (4) 

Griffith’s criterion was developed from fracture observations on a brittle material, 

specifically glass. It was later realized by Irwin (1948) and Orowan (1949) that when 

ductile materials are considered, a vast majority of the strain energy released is not in the 

creation of new surface but rather in the formation of a non-linear plastic zone at the crack 

tip. A general expression for the critical strain energy release rate, Gc is 

    
  

    

  
 (5) 

where Gc accounts for all the strain energy “sinks” that contribute to fracture. 

Irwin (1958) developed the concept of the stress intensity factor, K, which quantifies the 

intensity of the stress singularity at a crack tip. Generally the formula for K is as follows: 

     √   ( ) (6) 

Ki is the stress intensity factor with i=I,II,III  for mode I (opening mode), mode II (sliding 

mode) and mode-III (tearing mode), σ is the applied stress,   is the crack length,  ( ) is a 

shape factor that depends on the geometry of the specimen and     ⁄ , where D is a 

specimen length. A crack will advance when a critical stress intensity value, Kic, is reached. 

The critical value is often called the fracture toughness and for mode I fracture the fracture 

toughness is 
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       √   ( ) (7) 

where σc is the critical stress.  

 

2.2 Critical Crack Opening Displacement 

If a stress-based approach is considered, then the stress close to the crack tip approaches 

infinity due to the inverse relationship with the distance from the crack tip, r (Figure 1). 

 

 

 

 

 

 

 

 

Because of the singularity, a damage zone develops at the tip and extends for some finite 

length and width into the medium. For brittle materials, the damage zone is characterized 

by a zone of progressive softening due to the formation of microcracks (Bažant & Planas, 

1998).  

If the condition that the damage zone is sufficiently small compared to the size of the 

structure, then the damaged zone can be considered as part of the effective crack length 

which consists of the crack length, L, and the length of a fracture process zone (FPZ), lp. 

Furthermore, it is important to note that the FPZ is modeled by cohesive tractions along the 

FPZ due to ligaments that remain unbroken as the surfaces separate (Barrenblatt, 1959; 

L 

damage zone 
𝜎~

 

√𝑟
 

r 

σ 

L 

Figure 1: (Left) The inverse relationship of stress and distance from the crack tip. 
 (Right) The development of a damage zone due to the stress singularity. 

crack 
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Dugdale, 1960). Ultimately, the opening displacement between the two surfaces reaches a 

critical value, wc, and the traction becomes zero. Figure 2 shows a visual depiction of the 

model. 

 

 

 

 

 

 

 

 

The FPZ length was observed experimentally by Labuz and Biolzi (1998) through 

locations of acoustic emission (AE).  Transducers, attached to a granite beam, detect 

acoustic emissions which are caused by the development of microcracks.  At peak load, the 

events localize and provide an estimate for the length and width of the FPZ. Properties of 

the FPZ for beam specimens of Berea sandstone was also investigated  three-point-bending 

by Lin and Labuz (2013) using a particle tracking technique based on digital image 

correlation (DIC). 

 

2.3 Fracture near an Expanding Circular Cavity 

 Bowie (1956) and Newman (1969, 1971) presented a comprehensive analytical and 

numerical treatment of a fracture near a circular cavity.  Among others, the problem was 

further developed by Beuckner (1960), Hardy (1973), Ingraffea (1977), and experimentally 

by Clifton et al. (1976). 

L 

damage zone 

L 

cohesive 
tractions 

lp 

Leff 

Figure 2: (Right) Damage zone developed from crack tip. (Left) Model of crack and damage 
zone as an effective crack length, Leff. 

crack 

wc 
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The solution for a circular hole with radial cracks subjected to internal pressure in the 

cavity can be approximated by the problem of a plate with an edge notch under uniform 

tension (Figure 3). 

 

Bowie and Freese (1972) produced solutions for the stress intensity as a function of crack 

length for the case of one and two radial cracks (Figures 4 and 5). 

L 

σ 

σ 

Figure 3: (Left) A rectangular plate with edge cracks and uniform tension. (Right) A 
hollow cylinder subjected to internal pressure with two radial cracks . 

b L 

P 2a 2b ≈ 
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Figure 4: Stress intensity of a jacketed cylinder with one radial crack – (Bowie and Freese, 1972) 

 

The plot in Figure 4 shows the dimensionless stress intensity, KI* as a function of the 

dimensionless length,   and different values of W for a single radial crack, where 

   
 

(   )
                        

 

 
 (8) 

The important thing to note is that for large values of W, stable crack growth can occur. For 

example, consider W = 7 in Figure 4. If    <   , then unstable crack growth  occurs, since 

     ⁄     For     <   <   ,  unstable crack growth occurs, but the transition to stable 

crack growth occurs once     =   . If    <   <   , then stable crack growth occurs, since 

     ⁄   . Finally, if    >   , then unstable crack growth occurs.  
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 Figure 5 shows the stress intensity curves for a hollow cylinder with two diametrically 

opposed radial cracks.    

 

Figure 5: Stress intensity for a jackeedt cylinder with two radial cracks – (Bowie and Freese, 1972) 

For the case of two radial cracks with very small crack lengths, Koiter (1965) and Bowie 

(1964) mutually concluded through a rigorous analysis that the stress intensity factor for 

this problem is: 

      √  (9) 

where C is a numerically derived constant equal to 1.1215. For larger crack lengths, the 

stress intensity depends on crack length and specimen geometry. It is important to note 

that a large value of W will promote stable crack growth.  

 The initiation of two cracks or one crack can be viewed as a competition between the 

dimensionless stress intensity factors in Figures 5 and 6. If KI* is evaluated at the same 
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crack length   for the same W, then whichever dimensionless stress intensity is larger, or 

the pressure is smaller, will indicate the formation of one or two cracks. This is because the 

dimensionless stress intensity is inversely proportional to the internal pressure, P 

   
  

  

 √  
 (10) 

Experimental observations of fracture near a circular cavity have been produced by 

Bowie and Freese (1972), Clifton et al. (1976) and Abou-Sayed (1977). Estimates of the 

fracture toughness were produced using internally pressurized pre-notched hollow 

cylinders from what was called a “burst test.” It is important to note that specimens were 

jacketed so that pressurizing fluid did not penetrate the crack, as in conventional hydraulic 

fracture experiments. Clifton et al. (1976) based the fracture toughness on extrapolation 

from a numerical analysis performed by Bowie and Freese (1972) for a specified geometry 

(b/a = 8). They observed stable crack growth in PMMA specimens and found KIc = 0.810 

MPa√ , which was comparable to other values of KIc for cast PMMA (McClintock 1966). 

Abou-Sayed (1977) extended this same type of testing and analysis to Indiana limestone 

and found that KIc = 0.80MPa√ , which was slightly below a previously measured fracture 

toughness value using a three-point-bending technique on Indiana Limestone (Schmidt and 

Huddle, 1976). They also observed that fracture toughness increases considerably with the 

application of confining pressure. They found that under 6.4 MPa of confinement, KIc 

increased by 80%. 

Typical fracture experiments often rely on a notch to mimic a “starter” crack and from 

which fracture properties can then be measured. In this work, creating a notch from the 

borehole of the specimen was not attempted. However, it is clear that a fracture initiates 

near the boundary of a circular cavity prior to peak internal pressure. In every case, it was 

observed that two diametrically opposed radial cracks were produced.  
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2.4 Digital Image Correlation 

Digital image correlation (DIC) is a particle-tracking technique that uses digital images to 

generate displacement fields.  The technique stemmed from earlier work during the 1960’s 

that introduced laser speckles as a tool for observing displacements.  The laser speckle, 

generated by shining a laser on the surface of a specimen, has a unique size, shape, and 

intensity that are products of the local microscopic imperfections.  When the specimen 

deforms, the speckles move and the surface displacement can be tracked by evaluating the 

movement of the speckle (Yamaguchi, 1981).  

Extensive numerical analysis is required to estimate the speckle movement from the 

reference image (undeformed surface) to the current image (deformed surface).  The 

process attempts to track small regions, called subsets, by performing correlation analysis 

between the two images (Peters & Ranson, 1982). The location of maximum correlation 

between the reference image and the current image coincides with the location of the 

displaced subset.  Many algorithms, with slightly different correlation functions, have been 

introduced that use methods such as coarse-fine search (Sutton et al. 1983), Newton-

Raphson (Bruck et al. 1989) and Fast Fourier Transform (Chen et al. 1993).   

 

2.3.1 DIC Basics 

 One of the great advantages for using DIC is the ease of setup, which only requires a 

camera, lens, image acquisition system, and a software package or code that can perform 

the numerical correlation.  The camera is setup perpendicular to the specimen and the lens 

is focused to ensure a clear image. The specimen is typically painted with black and white 

paint to create speckles. During an experiment, images of the specimen are taken before and 
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after deformation.  The camera converts the light energy into a digital image that consists of 

many small squares called pixels.  The total number of pixels per image is commonly called 

the resolution, which varies depending on the camera.  During the image acquisition 

process, each pixel is assigned a digital value, called a grayscale value, which is related to 

the amount of light energy at that location. Grayscale values for an eight bit digital image 

range from 0-255, where extremely bright (white) pixels have higher grayscale values than 

dark (black) pixels. 

 

 
 

 

  

 

Figure 6 displays an image of a specimen with painted speckles that was taken during a 

cavity expansion experiment. The resolution of the image is 1600x1200 pixels and each 

pixel has a grayscale value from 0-255.  There are nearly 2 million pixels in this image and 

only 255 different grayscale values, which means there are many pixels with the same 

Subset 

Region of interest 

Figure 6: (Left) a grayscale image of specimen with centered hole. 
(Right)Zoomed-in view of a region of interest (ROI) and a subset 

used for DIC analysis 
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grayscale value.  This makes it impossible to track individual pixels.  Instead, groups of 

pixels, called subsets, are tracked that have a unique pattern of grayscale values.  The size of 

the subset is set by the user and typically ranges from 20x20 pixels to 128x128 pixels. 

The objective is to scan the current image to find the new location of the displaced subset.  

The displacements can be very small and it is not necessary to scan the entire image to 

locate the subset.  Instead, the user specifies another parameter, called the region of interest 

(ROI), which is a region, many times smaller than the entire image, where the algorithm 

scans for the displaced subset.  Restricting the scanning area substantially increases the 

speed of the correlation process.  Figure 6 also shows a zoomed-in view of a region of 

interest that is almost four times larger than the subset but still very small in relation to the 

entire image. 

The user has control of many different parameters that impact the analysis. 

Depending on the desired accuracy, speed or expected deformation, the parameters can be 

adjusted to meet the specific needs.  For more accurate analysis, the software can perform a 

multi-pass method where multiple iterations are performed.  The resulting vector field from 

the first iteration is passed into the second iteration as a reference field.  The software also 

allows for overlap between subsets so that a higher resolution (vectors/area) is achieved 

without decreasing the size of the subsets.  Larger subsets are advantageous because they 

have a pattern with more information (more pixels) and thus the measured displacement is 

more precise.  Post-processing or filtering of the vector field can also be performed to 

smooth and create a continuous vector field. 
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Chapter 3 

Cavity Expansion Test 

The cavity expansion test pressurizes a central borehole in a cubic specimen. The applied 

internal pressure acts uniformly along the entire length of the borehole and as a result, a 

uniform two dimensional (2D) stress field develops along the axis of the borehole. The 

uniform distribution of internal pressure simplifies the three-dimensional problem to a 

plane-strain problem.    

3.1 Loading Configurations 

To produce a fracture from a circular cavity three different, 2D conditions were 

considered. The first and most simple condition was a circular hole subjected to internal 

pressure. The second condition was a circular hole subjected to internal pressure and far-

field principal stresses. The third condition was a circular hole subjected to an arbitrary 

distribution of tractions along the boundary. The theoretical framework in the context of 

linear elasticity is developed in the proceeding sections. 

Elasticity problems can be solved quickly by using the complex variable method 

developed by Kolosov (1909) and Muskhelishvili (1963). In the complex variable method, 

the Airy stress function, U(x,y), can be written in terms of two analytic functions which 

depend on the complex variable z: 

  (   )    [ ̅ ( )  ∫ ( )]    (11) 

where  ( ) and  ( ) are themselves complex and are often referred to as complex 

potentials; z is the complex number formally written as z = x + iy and the over bar 
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represents the complex conjugate. The relationships between the Airy stress function and 

the stresses are 

    
   

   
    

   

   
      

   

    
 (12) 

Combinations of the stress components from (12) can be solved as functions of the complex 

potentials in (11): 

          {  ( )} (13) 

              [    ( )    ( )] (14) 

 The displacement components (ux,uy) can be determined from elastic equations that 

relate the partial derivatives of the displacements to the stresses: 

   
   

  
 (   )   (   )   (15) 

   
   

  
 (   )   (   )   (16) 

where κ is a coefficient for plane strain or plane stress: 

        for plane strain                     (17) 

   
   

   
 for plane stress                     (18) 

The displacements are found from the following relationship: 

   (      )   (
  

  
  

  

  
)  (   ) ( ) (19) 

From (19) the displacements are 

   (      )    ( )     ( )   ( ) (20) 

In polar coordinates,        and               . Therefore, the displacements in 

polar coordinates are 
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  (      )    (      )    

 [  ( )     ( )̅̅ ̅̅ ̅̅ ̅   ( )̅̅ ̅̅ ̅̅ ]     

(21) 

Similarly, the stresses in polar coordinates are 

                {  ( )} (22) 

 
            (           )    

  [ ̅   ( )    ( )]     

(23) 

 

Circular Hole Subjected to Internal Pressure 

 Consider a 2D hollow cylinder with inner radius a and outer radius b. The complex 

potentials for this problem take the form (Jaeger & Cook, 1969), 

 ( )  
 

 
   ( )     (24) 

where c and d are constants that can be imaginary or real; for the this problem with radial 

symmetry the constants are real. The polar complex displacement equation is found from 

(21) and (24): 

 

  (      )  (   )  

 
 

 
 

(25) 

Separating the real and imaginary terms shows that 

      (   )   
 

 
        (26) 

The stresses are found from (22) and (23) using the complex potentials in (24): 

          (27) 
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 (28) 

Separating the real and imaginary parts in (28) gives 

        
  

  
                     (29) 

The boundary conditions are such that   ( )     and   ( )   ; the imposition of the 

boundary conditions with (27) and (29) allows the constants c and d to be solved: 

    
    

 (     )
        

      

(     )
 (30) 

The solution for the radial displacement and radial and tangential stress is found by 

substituting (30) into (26), (27) and (29): 

       (   )
     

 (     )
 

      

(     ) 
 (31) 

     
    

(     )
 

      

(     )  
 (32) 

     
    

(     )
 

      

(     )  
 (33) 

The solution for a hole in an infinite mass is found by taking the limit as b ⟶∞. The results 

for the case of plane strain are 

        (
  

 
) (34) 

      (
 

 
)
 

 (35) 

       (
 

 
)
 

 (36) 
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Circular Hole subjected to Internal Pressure and Far Field Stress 
  

The solution for a circular hole subjected to far field normal stress was first solved by the 

German engineer E.G. Kirsch in 1898. The complex potential method will again be used to 

solve for the stress and displacement fields (Jaeger & Cook, 1969): 

  ( )  
 

 
  

 (  
 

 
) (37) 

  ( )   
 

 
  

 (  
 

 
 

 

  
) (38) 

where A, B, and C are real constants. The combinations of radial and tangential stresses are 

found from (22)and (23): 

          {  ( )}    
 (           ) (39) 

              [ ̅   ( )    ( )]    ] 

   
 [          (            )     ] 

(40) 

The tangential and radial stresses are solved from (39) and the real part of (40): 

 
   

 

 
  

 [       (       )     ] (41) 

 
   

 

 
  

 [       (             )     ] (42) 

The imaginary part of (40) gives the shear stress: 

      
 

 
  

 [(             )     ] (43) 

The solutions to the constants are found from the boundary condition where the stresses 

vanish at the boundary of the hole (r = a).  

                 (44) 

The full expressions for the stresses are 
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 [  (
 

 
)
 

]  
 

 
  

 [  (
 

 
)
 

]       (45) 

    
 

 
  

 [  (
 

 
)
 

]  
 

 
  

 [   (
 

 
)
 

  (
 

 
)
 

]       (46) 

      
 

 
  

 [   (
 

 
)
 

  (
 

 
)
 

]       (47) 

The stress due to a second far-field stress,   
  can be found from (45)-(47) by replacing 

2θ with 2θ + π. The full state of stress around a hole can then be found by superposing the 

two solutions. Also, if the borehole is subjected to internal pressure, then the state of stress 

is found by superposing (45)-(47) with (35) and (36). The full state of stress including the 

addition of a second normal stress and internal borehole pressure is 
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The tangential stress varies from a minimum value of    
    

    when θ = 0 or π and 

a maximum value of    
    

    when θ = π/2 or 3π/2. A region of tensile tangential 

stress will exist if 

      
    

  (51) 

This is the criteria for hydraulic fracture initially developed by Hubbert and Willis (1957). 

 The displacement field is found by solving (21) using (37) and (38) and the results for 

constants A, B and C. The radial and tangential displacements for a hole subjected to a single 

far-field stress are 
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The change in radius of the hole is found by evaluating (52) and (53) at r = a: 
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Circular Hole Subjected to an 
Arbitrary Distribution of 
Tractions 
 
 The problem of a circular cavity 

subjected to an arbitrary distribution of 

tractions is shown in Figure 7. Uniform 

pressure P is applied to two symmetric 

arcs, - α < θ < α and π-α > θ > π+α. The 

solution to this problem is more involved 

than the preceding problems, and requires 

analysis by infinite Fourier series (Jaeger 

and Cook, 1969). The derivatives of the complex potentials are given in terms of a power 

series as 

   ( )  ∑      
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   ( )  ∑      
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The coefficients cn and dn are solved from the boundary conditions at r = a. The boundary 

conditions describe the normal and shear tractions along the boundary of the hole and are 

an infinite series that depends on the angular distribution of loading. Specifically, the 

boundary conditions are 
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a 

α 

-α 

y 

x 

P 

Figure 7: Circular hole loaded with pressure P over 
two symmetric arcs (red). 
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N is the normal traction and T is the shear traction. The coefficients  An are zero along the 

unloaded region and along the loaded region are found by solving the Fourier series and are 

related to the complex potential’s constants, cn and dn (Jaeger and Cook, 1969): 
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Inserting (59) and (60) into (56) and (57) gives 
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The stresses are found by substituting (61) and (62) into (22) and (23): 
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At the boundary r = a, the stresses are 
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At the boundary, the tangential stress reduces considerably by noting that the right-hand 

side of (66) must sum to P in the loaded region and to zero in the unloaded region. This 

allows the summation to be solved and the tangential stress is 

      
   

 
 along loaded region (69) 

     
   

 
 along unloaded 

region 
(70) 

This shows that a maximum tensile tangential stress develops at the boundary of the hole 

along the unloaded region. 

 The displacements are found by integrating the complex potentials in (61) and (62): 
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The radial and tangential displacements are found by substituting (61), (71) and (72) into 

(21): 
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At the boundary r = a, the radial and tangential displacements reduce to 
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Solutions for the stresses and displacements involve solving an infinite series. Exact 

solutions for the displacement and stress field are available at the boundary wall for θ = 0, 

π/2, 3π/2 and π (Bray, 1987; Jaeger and Cook, 1969). However, solutions away from the 

boundary (r > a) require summing the series until it converges.  

Figure 8 shows the radial stress plotted for various values of α and     ⁄ . The plot 

shows the radial stress normalized by the internal pressure (    ) versus the 

dimensionless position,    , where a is the radius of the hole. The radial and tangential 

stresses from (63) and (64) were solved by truncating the series once it converged. Figure 9 

shows the plot for tangential stress. Notice that at the boundary the tangential stress σθ is 

greater than the internal pressure for values of α that are greater than 45°. 
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Figure 8: Radial stress plotted for various angular distributions of internal pressure. 
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Figure 9: Tangential stress plotted for various angular distributions of internal pressure. 
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3.2 Cavity Expansion Apparatus 

 The cavity expansion apparatus (CEA) was designed to monitor displacements on a 

surface near an internally pressurized circular cavity. The CEA consists of the axial loading 

cell (ACL), a reaction frame for producing lateral stress on the specimen, and a urethane 

packer that produces the internal pressure in the cavity. Detailed descriptions of the 

constituent parts of the apparatus are given in the proceeding sections. 

 

3.2.1 Load Frame Design 
 
 The CEA consists of an axial loading cell (ALC) housing a prismatic specimen (Figure 10). 

The ALC consists of four 19mm (¾ in.) threaded rod, fastened with 28.6mm (1-⅛ in.) 

fasteners to top and bottom square steel platens. The platens confine the specimen along 

the axis of the borehole and promote a zero displacement condition in that direction. 

Contacting the surface was produced by tightening the fasteners. The bottom platen has a 

center hole cut-out to allow for the insertion of the urethane packer. The top platens have a 

center rectangular window cut-out using electric discharge machining (EDM) to allow 

placement for a rectangular glass platen (Figure 11). The glass platen is necessary for 

viewing displacement on the specimen’s surface with the DIC technique. 

The glass platen is made of clear, 12.7mm (½ in.) thick annealed glass from Brin 

Northwestern Glass Company (Minneapolis, MN). The strength properties of the glass are 

generally much higher than those of the specimen. The glass platen has a 20mm centered 

hole cut-out for insertion of the urethane packer. 
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Figure 10: (Left) Axial loading cell (ALC) showing the top platens and glass platen for viewing 
displacements on the surface of the specimen. (Right) ALC showing bottom platen and packer insert in 

the middle. 

  

 

Figure 11: Glass platen with center hole inside the top platen 

cubic specimen 

top platens 

bottom platen 

threaded rod 

glass platen 

urethane packer 
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Insertion of side platens into the ALC allows for applied stress on the lateral surfaces of 

the specimen from hydraulic flat-jacks (Figure 12 and 13). All platens were made of 

precision surface ground steel. The hydraulic flat-jacks consist of two thin steel plates 

welded together along the edges with in-flow and out-flow high-pressure tubing welded to 

the corners of the flat-jack. A flat-jack does not produce uniform stress due to the edges 

being welded together; for typical flat-jacks it is assumed that the outer 6mm (¼ in.) 

perimeter of the flat-jack is inoperable (Amadei and Stephansson, 1997). Hydraulic fluid is 

pumped into the flat-jack to produce an applied stress on both sides of the flat-jack. The 

hydraulic loading is controlled by an electric motor pump and the system is monitored with 

a 70 MPa (10,000 psi) capacity strain-type pressure transducer. The system also has closed-

loop feedback capabilities and can be held at a constant pressure throughout the test. 
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Figure 12: Axial loading cell (ALC) with top, bottom, and side platens.

 

Figure 13: View of the specimen and side platens. 

side platens 
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The surface area of a flat-jack was larger than the surface area of the platen that was in 

contact with the lateral surface of the specimen (Figure 14). Because of this difference in 

surface area, the applied stress on the specimen was increased by a factor that is equal to 

Aflat-jack/Aplaten. This constant was equal to 2.67 for all experiments. 

The CEA is shown in Figure 15 with the ALC placed in the center of the reaction frame. 

The reaction frame consists of four 50.8mm (2in.) thick, 381mm (15in.) diameter steel 

cylinders with an 203mm (8in.) square cut-out in the center (Figure 15). Each cylinder is 

stacked on top of the other creating a 203mm × 203mm × 203mm cubic space for 

placement of the ALC. An exploded view of the CEA is shown in Figure 16 with its 

constituent parts. Some parts have been left out in the schematic to help clarify the layout of 

the apparatus. 

 

Spacer 
Specimen 

Steel Side 
Platen 

Flat-jack 

Figure 14:Cross-section view of flat-
jack and side platens. The difference 
in surface area causes an increase in 
normal stress on the specimen. 
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Figure 15: Reaction frame with ALC. 

  

reaction frame 

ALC 
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Figure 16: Exploded view of the reaction frame, ALC and urethane packer. The ALC consists of top, bottom and glass 
platens as well as threaded rods. The reaction frame consists of circular metal plates, lateral loading platens and 
hydraulic flat-jacks. 
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The CEA has a significant advantage for controlling where the fracture will initiate. If the 

location of fracture initiation is known a priori, then the DIC camera can be positioned to 

capture the images. In conventional fracture tests, such as a three-point-bending test, a 

notched specimen is usually used so that fracture will develop at a predetermined location. 

However, preparation of a notched specimen for the cavity expansion test would be difficult 

and time consuming. For an experiment using the CEA, the location of fracture initiation is 

dependent on the applied normal stresses. For brittle materials, the normal vector to the 

fracture plane points in the direction of least principal stress. Therefore, during a test, the 

magnitude and direction of applied far-field normal stress will determine where the 

fracture initiates and where it will propagate.  

As an example, consider compressive stresses on a cube oriented in the directions as 

indicated in Figure 17. In Figure 17a, a vertical fracture plane parallel to the z-axis forms 

since the minimum stress σ3 points in the negative y-direction. Furthermore, since the 

maximum lateral stress σ1 is also known the location of fracture initiation is known. Notice, 

if σ1 = σ3 then the fracture could occur on any plane parallel to the z-direction (Figure 17b). 

If the state of stress is such as that depicted in Figure 17c, then fracture will initiate and 

propagate horizontally from the borehole and capturing fracture initiation at the borehole 

boundary would be impossible. For experiments using applied far-field stress to initiate 

fracture, the maximum stress was 3.5 – 7.0 MPa (500 – 1000 psi) and the minimum lateral 

stress was 0 MPa. 
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Figure 17: Three different orientations of the fracture plane. a) Vertical fracture plane with its normal 
vector pointing in the direction of σ3. b) Fracture initiates on any plane parallel to the z-axis when σ1 = 
σ3. c) Horizontal fracture initiates since σ3 points along the z-axis. 

 

An alternative way of developing the 

location of fracture is by the use an arbitrary 

distribution of tractions along the boundary 

of the borehole wall (refer to section 3.1 for 

theoretical framework).  Two thin 

(thickness = 0.3mm) aluminum spacers 

were inserted into the borehole between the 

urethane packer and the hole (Figure 18). 

The spacers were thin enough so that the 
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Figure 18: Plane view of spacers inserted in 
between the borehole and specimen. 
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radial stress at the boundary of the spacer and specimen was approximately equal to the 

internal pressure. However, the disjoint along the perimeter of the spacers produces a 

significant concentration of tensile tangential stress along the unloaded region. At the hole 

boundary, the concentration of tensile stress can be calculated from (70). For all 

experiments using an arbitrary distribution of tractions to produce fracture, the angular 

distribution of loading was      ⁄  (80°) Therefore at r = a: 

   ( )  
    

 
        77) 

The radial distribution of tangential stress normalized by the internal pressure for 

     ⁄  (80°) and     ⁄  is shown in Figure 19. 

 

Figure 19: Radial distribution of tangential stress for an angular distribution of tractions along the 
borehole wall. 
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3.2.2 Urethane Packer Design 
 

 The urethane packer that supplies the internal pressure in the borehole is a traditional 

straddle packer encased in a urethane sleeve (Figure 20). The overall length of the packer is 

approximately 190mm, the pressurizing interval is 150mm and the diameter is 20mm. The 

physical properties of the urethane are discussed in section 4.2. The urethane packer keeps 

pressurizing fluid from penetrating the specimen and generates uniform pressure along the 

entire length of the borehole. 

 

 

 

Figure 20: Urethane packer with end cap clamping seals. 

 
The urethane packer is usually completely inserted into a borehole with both ends of the 

packer enclosed in the specimen. The ends of the packer are made of 20mm diameter metal 

end caps. The end caps generate zero stress on the borehole boundary and are only for 

confining the fluid inside the sleeve. However, for this 2D experiment, monitoring fracture 

had to be observed at the pressurized boundary of the borehole and packer, therefore 

modification of the urethane packer was necessary. In the borehole, the urethane packer 

contacts the entire 10cm length of the borehole, leaving 5cm of the packer in contact with 

the center holes in the top and bottom platens (Figure 12). The seals at either end of the 

collar seal end cap 

 

overall length 
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packer have deteriorated over time and were incapable of supporting pressure high enough 

to initiate fracture. Therefore, collar seals where placed on both ends of the packer, where 

the urethane joins the steel end caps, to allow for higher pressures in the packer (Figure 

20).The internal pressure was monitored by a 35 MPa (5000 psi) BLH strain-type pressure 

transducer. The system also had closed-loop feedback capabilities to maintain a constant 

injection rate. Water was injected into the packer at a constant rate of 0.5-0.8 cc/min via a 

motor driven pumping system with closed-loop feedback capabilities until fracture was 

initiated. 

 

3.2.3 DIC Monitoring 
 

A charged coupled device (CCD) camera was positioned above the CEA to capture images 

throughout the test (Figure 21). The camera was mounted to a heavy steel arm and secured 

to a heavy metal base. This was used to reduce noise from vibration effects. The reaction 

frame is placed on a wooden stand to allow connection for the packers pressurizing tubes 

beneath the CEA. The digital camera used a firewire interface to communicate with a PC. 

The software used to capture images was Unibrain Fire-i 810b. The software can control the 

camera to capture images at a predefined rate and set the resolution and image size. For 

each test, 1 frame per second (FPS) was used with a grayscale 8-bit resolution and an image 

size of two megapixels (1200x1600 pixels). 

Monitoring the packer-borehole boundary with the CCD camera could not be positioned 

directly perpendicular to the surface of the specimen because of the clamping seals 

described in section4.1.2 blocked the field of view. The camera was tilted less than 1° from 

the vertical axis of the borehole. Image distortion because of the tilt was considered to be 

negligible. 
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Figure 21: The CEA mounted on a wooden base. The CCD camera was mounted on a heavy metal arm 
above the CEA. 
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3.3 Calibration 
  

The stresses associated with a sleeved packer in an elastic medium were solved by 

considering two hollow cylinders sharing the same axis of symmetry (concentric). Solutions 

for the stresses were found by considering the Lame solution reviewed in section 3.1. 

Consider two concentric hollow cylinders subjected to internal pressure, Pi, and external 

pressure, Po (Figure 22). Radial displacement, ur, is continuous at the boundary r = b. 
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ν1,G1 

ν2,G2 
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y 

c 

a 

Po 

Pi 

Figure 22: Two concentric hollow cylinders subjected to internal and 
external pressure 
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Depending on the material properties (G,ν) of the inner and outer cylinders as well as the 

radii of each cylinder, the boundary pressure, Pb, may be greater or less than the internal 

pressure, Pi. 

The displacement at the boundary r = b can be written as: 
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Solving for Pb yields 
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Therefore, from the Lamé solution for a single hollow cylinder, the solution for radial stress 

for the condition a ≤ r ≤ b is 
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where, Pb is given in (79). 

The tangential stress σθ is simply the conjugate of (80). As for the stress distribution for b 

≤ r ≤ c, this is simply the Lamé solution for inner pressure, Pi, equal to the boundary 

pressure, Pb, and outer pressure Po, the same as before. The inner radius becomes b and the 

outer radius is c. 

It is straight forward to check the boundary pressure, Pb, for the case of a cylinder inside 

a circular hole in an infinite plate. This problem implies, the outermost radius c extends to 

infinity and the external pressure Po is zero. Therefore, 
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(81) is consistent with the result for an internally pressurized annulus in an infinite plate 

(Crouch & Starfield, 1983). 

The urethane packer used in all experiments is essentially a hollow cylinder inside a 

borehole and the radial and tangential stresses are evaluated from (80) and (81). The 

stresses acting on the boundary between the urethane and specimen will be proportional to 

the internal pressure, not directly equal to it. If the shear moduli, G2>> G1 (Figure 22) such as 

the case when the urethane packer is inside a much stiffer hollow cylinder, then (81) 

reduces to 

 

   
   

  

  ⁄ (    )

(     )    

  ⁄
 (82) 

The ratio, Pb/Pi was estimated for the urethane packer with properties shown in Table 1. 

 
Table 1: Properties of urethane packer 

Inner radius, a Outer radius, b Poisson’s ratio,ν1 Shear modulus, G1 
[mm] [mm]  [MPa] 

5.5±0.1 9.7±0.1 0.47±0.3 33±2.0 
 

 
  

  
       (83) 

However, since the Poisson’s ratio of the rubber packer is not well known, a simple 

calibration procedure was used to determine the ratio Pb/Pi. 
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The calibration procedure involved a hollow T6061 aluminum cylinder (material 

properties in Table 2) with three lateral strain gages glued to the outer surface of the 

cylinder (Figure 23). The urethane packer was inserted into the aluminum cylinder and 

pressurized with water at an approximate rate of 1.2 cc/min.   

 

 

Figure 23: Hollow Aluminum Cylinder with urethane packer 

Table 2: Measured properties of hollow aluminum cylinder 

Young’s modulus, E Poisson’s ratio, ν Shear modulus, G 
[GPa]  [GPa] 

71.4 ± 3.5 0.343 ±0.02 26.6 ± 1.3 
 

The strain gages on the surface of the aluminum cylinder were Vishay 120Ω general 

purpose strain gages that measured tangential strain along the surface. Since the aluminum 

cylinder can be considered isotropic and linearly elastic, the stress-strain relationship at the 

boundary is given according to Hooke’s Law: 

T6061 Hollow Aluminum Cylinder 

Strain gage 

Rubber Packer 

Water injection 

Urethane sleeve 
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At the outer boundary r = b, the radial stress is zero and (84) reduces to 
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From the Lamé solution for an internally pressurized cylinder, the tangential stress, σθ, at 

the boundary r = b is 
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The radial stress σr is, of course, zero. 

From (85) and (86), the boundary pressure Pb is, 
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Because of the presence of the urethane sleeve inside the hollow aluminum cylinder the 

boundary pressure, Pb, will be reduced from the internal pressure Pi by a constant, C (note 

C< 1). 
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Therefore, from (88), 1/C is equal to the slope of the curve on the normalized internal 

pressure, Pi/E, versus tangential strain, εθ*, where 

   
  

  (     )

  
 (89) 

The calibration constant C for the case of the urethane packer and hollow aluminum 

cylinder with properties given in Table 1 is shown in Figure 24. 
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Figure 24: Plot showing normalized internal pressure versus tangential strain for determining 
calibration constant C. Figure in upper left corner shows the locations of the strain gages glued to 

aluminum cylinder. 

 
  

 
                

 

Comparing the calibration constant C to the result from (83) yields a percent difference of 

0.34%. Therefore, the urethane packer is calibrated accurately. 
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3.4 Specimen Preparation 

Specimens were precision ground to cubic dimensions: 100mm × 100mm × 100mm in 

size. Each surface was machined parallel to the opposite face and orthogonal to the adjacent 

face. The tolerance for the laterally loaded surfaces was allowed to be ±0.5 mm due to the 

expansion of the flat-jacks. The tolerance of the surface loaded by the ALC had to maintain a 

minimum of 100mm to allow clearance for the lateral platens. A center hole was cored with 

a 20mm diameter diamond coring bit to produce the borehole. After surface grinding and 

cutting the center hole the specimen was placed in an oven at 70° C to dry for 24 hrs. 

The rocks tested were Indiana limestone and Berea sandstone. Indiana limestone is 

calcareous stone, lightly bedded with grain size on the order of 1mm. The tested Indiana 

limestone had the following properties: shear modulus = 7.3 – 8.0 GPa, density = 2.23 

g/cm3, tensile strength = 7.4 - 8.4 MPa. The shear modulus and tensile strength were based 

on cavity expansion experiments outlined in section 4.1. Berea sandstone is thinly bedded, 

light-gray, medium to fine grained sandstone with grain sizes of 0.1 to 0.8 mm. Berea 

sandstone’s constituent minerals are 78% quartz and 16% feldspar (Krech et al. 1974). The 

tested Berea sandstone had the following properties: shear modulus, G = 3.8 – 5.6 GPa, 

density ρ = 2.11 g/cm3, tensile strength = 4.0 - 5.6 MPa.  
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3.5 Testing Procedure  

Once the specimen was properly dried, a base primer coat was applied to the surface that 

was monitored. The base primer requires 4hrs to dry. Two coats of primer were applied 

after drying. Once the primer was dried, a flat white paint was brushed on the surface. Any 

rough edges that develop from the paint were sanded down with 400 grit sandpaper. Two 

coats of paint were added to the surface. The primer and paint made for an overall thickness 

of approximately 15 μm (Kao, 2011). Throughout the application process, the dry surface 

was intermittently sprayed with a pressurized air hose to eject any stray particles. Once the 

white paint was completely dry, the speckle pattern was produced by spraying the surface 

with a flat-black aerosol spray can. The speckle pattern produced optimal displacement 

resolution when the speckles were distributed evenly with no significant clustering. 

 After the paint had completely dried, a stearic acid mixture was applied to each surface of 

the specimen that was in contact with a loading platen. The stearic acid mixture (Labuz & 

Bridell, 1993) significantly reduces stress concentration at the contact of the platen and 

specimen. Stearic acid was also applied to the painted surface and heated to create a 

transparent layer on the surface. 

 Once the specimen was prepared, it was placed in the CEA with the urethane packer 

inserted into the borehole. Depending on the chosen loading configuration, the CEA was 

assembled as described in section 4.1. Data acquisition was set at 1 Hz for both the DIC 

camera and borehole pressure monitoring. Along with borehole pressure data, the volume 

change in the packer was recorded throughout the test. Synchronized time was important 

to properly correlate DIC images with borehole pressure values, so both data acquisition 

systems were started at the same running time.  
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Chapter 4 

Results 

4.1 Measurement of Shear Modulus 

 The shear modulus, G, was measured for both Berea sandstone and Indiana limestone 

specimens. Values for the shear modulus were measured by uniformly pressurizing the 

circular cavity and monitoring surface displacements. No additional far-field stresses were 

applied. The internal pressure as a function of volume change is shown in Figure 25. 

 

 

Figure 25: Loading plot of internal pressure versus volume for Berea sandstone. 
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The incremental radial displacement contours for a Berea specimen pressurized from 1 – 

4.5MPa are shown in Figure 26.  

 

 

Figure 26: (Top) Radial displacement contours for Berea sandstone internally pressurized from 1MPa to 
4.5MPa. (Bottom) Radial displacement evaluated at the three different radii. 
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The shear modulus was computed from the average radial displacement ur in Figure 26 for 

radii equal to 15mm, 20mm and 25mm. From (34): 

    

 

 
   

   

 
 (90) 

Figure 27 shows a plot for the Berea sandstone specimen in Figure 26, where the shear 

modulus is proportional to the slope, m. 

 

Figure 27: Determination of the shear modulus for a Berea sandstone specimen. 

 

The increment of internal pressure was 3.5MPa and the slope m from Figure 27 was 2.5, 

therefore: 

   
 

 
          

The shear modulus for different specimens is shown in Table 3, along with the measured 

value of tensile strength. 
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                                            Table 3: Material parameters from cavity expansion experiment 

Specimen Shear Modulus, G Tensile Strength 
[] [GPa] [MPa] 

CE_S1 1.3 5.6 
CE_S2 2.3 4.0 
CE_S3 1.2 4.2 
CE_S4 1.5 5.0 
CE_L1 9.3 7.4 
CE_L2 8.0 8.4 
CE_L3 8.7 7.8 

UC_L1* 11-12 - 

*Measured from Uniaxial Compression (UC) tests (Makhnenko & Labuz, 2013) 
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4.2 Fracture Properties 

 Analysis of the displacement field using DIC allowed tracking the development of a 

fracture prior to peak pressure. Fracture characteristics were compared to DIC 

measurements from three-point-bending (3PB) experiments on the same rock. 

Figure 28 shows the horizontal displacement contours for an interval of 20-70% peak 

pressure. The horizontal contours show displacement left of the center line to the left and 

displacement right of the center line to the right. The color indicates magnitude of 

horizontal displacement. The center of the cavity is located at point (0,0) with radius a. The 

fracture will begin to develop at the boundary where θ ≈ 90°.  

 
Figure 28: Horizontal displacement contours for a Berea specimen 20-70% peak pressure. 

 

  
The development of a fracture at the cavity boundary prior to peak pressure was 

observed in all tested specimens. Lin and Labuz (2013) showed that in three-point-bending 

θ 

a 
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experiments, the tip of the fracture process zone (FPZ) can be identified by the location 

where the horizontal displacement contours merge. The same concept was used to track the 

development of the fracture in the cavity expansion experiments. 

Once the internal pressure increases in the cavity to a certain amount, a damage zone 

begins to form. As the internal pressure is further increased, the damage zone develops and 

the tip can be identified where the contours merge. Figure 29 shows the incremental 

horizontal displacement contours for 80-90% peak pressure. The tip of the “fracture” is 

located at y ≈ 15mm. 

 

 

Figure 29: Incremental horizontal displacement contours for 80-90% peak pressure. 
 

The initial formation of a traction free surface is assumed to be indicated by the critical 

crack opening displacement (CCOD), wc. It is the measure of the total opening displacement 

from initiation to peak load from chosen points on both sides of the crack and is often 

Tip 
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considered to be a material parameter. The points of measurement are usually located 1-

2mm on each side of the crack because measurement at exactly the crack face is not 

possible with DIC. In the cavity expansion experiments, a traction free surface was assumed 

to have developed at peak internal pressure. From the location of the crack tip an effective 

crack length Leff was measured. The effective crack length included the radius of the hole 

and the length from the boundary to where the contours merged. 

 

Indiana Limestone 

The same analysis was performed on Indiana limestone. The cavity was pressurized 

using a selected distribution of tractions (see section 3.1). For the specimen in Figure 30, 

initiation was first observed to occur between 50-60% peak pressure.  

 

 

Figure 30: Incremental horizontal displacement contours for an Indiana limestone specimen (CE_L13) 
from 50-60% peak pressure 
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Figure 31: Incremental horizontal displacement contours for an Indiana limestone specimen (CE_L13) 
from 50-80% peak pressure 

 

Figure 32 and 33 show the incremental horizontal displacement contours at 100% peak 

pressure for two different Indiana limestone specimens. The tip of the fracture is beyond 

the field of view and cannot be measured. However, from the total displacement profile the 

CCOD was measured as 24mm in Figure 32 and 20mm in Figure 33.  
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Figure 32: (Left) Incremental horizontal displacement contours for an Indiana limestone specimen 
(CE_L13) from 80-100% peak pressure (Right) Total horizontal displacement measurements from 60-

100% peak pressure along vertical lines at x = -0.9mm (left line) and x = 2.7mm (right line) 
 
 

 
 
 
 

        

Figure 33: (Left) Incremental horizontal displacement contours for an Indiana limestone specimen 
(CE_L7) from 90-100% peak pressure (Right) Total horizontal displacement measurements from 60-

100% peak pressure along vertical lines at x = -2.3mm (left line) and x = 0.3mm (right line) 
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From 3PB experiments on Indiana limestone, the critical crack opening displacement was 

measured as 16μm and the effective crack length at peak load was 16mm. Figure 34 and 35 

show the horizontal displacement contours from 60-100% peak load and the total 

horizontal displacement profile from 60-100% peak load for two different specimens.  

              

Figure 34: (Left) Incremental horizontal displacement contours for a large-size specimen (3PB_L1) from 
95% -100% peak. (Right) Total horizontal displacement measurements from 60% - 100% peak along 

vertical lines at x = -0.8mm (left line) and x = 2mm (right line) 
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Table 4 shows the fracture properties for Indiana limestone specimens from cavity 

expansion and three-point-bend experiments. 

 

Table 4: Fracture properties for Indiana limestone specimens from  
CE and 3PB experiments. 

Specimen Initiation CCOD, wc 
Effective Crack 

Length , Leff 
[] [% Peak*] [mm] [mm] 

CE_L7 60 20 >20 
CE_L13 60 24 >20 
3PB_L1 60 16 16 
3PB_L2 60 14 15 

* Peak pressure and peak load for CE and 3PB experiments respectively 
 

 

a0 = 6mm 

Tip 

lp Leff 

wc 

Figure 35: (Left) Incremental horizontal displacement contours for a large-size specimen (3PB_L2) from 90% -
100% peak. (Right) Total horizontal displacement measurements from 60% - 100% peak along vertical lines at x 

= -1mm (left line) and x = 1mm (right line) 
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Berea Sandstone 

 The Berea sandstone specimen shown in Figure 36 was pressurized using a selected 

distribution of tractions (see section 3.1). Initiation was first observed to occur between 

incremental loadings of 70-80% peak pressure. Therefore, it can be estimated that the 

fracture begins to form at 80% peak pressure. Increments of loading smaller than 10% 

proved difficult to identify where the contours merged. 

 

 

Figure 36: Incremental horizontal displacement contours for a Berea sandstone (CE_S5) from 
70-80% peak pressure 
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Figure 37 shows the development of fracture from 80-95% incremental pressure. The tip 

is now located at approximately y=20mm. 

 

Figure 37: Incremental horizontal displacement contours for a Berea sandstone (CE_S5) from 
80-50% peak pressure 

 

Figure 38 shows the horizontal displacement measurements from 90-100% peak 

pressure. From this figure, the tip of the fracture is estimated to be at y ≈ 30mm. The figure 

on the right shows total horizontal displacement (80-100% peak pressure) versus y-

position along two vertical lines located at x = -1.5mm and x = 1.7mm. The crack opening 

displacement, w, is the distance between the two curves at the hole radius (y = 10mm), for 

this Berea specimen, wc = 68μm. The effective crack length Leff was 30mm. 
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The same analysis for Indiana limestone was performed on Berea sandstone where the 

surface being monitored had normal traction applied to the surface to keep the out of plane 

displacement zero (biaxial strain).  This condition required using a glass plate in contact 

with the specimen to view displacements. The field of view was limited to a 30mm × 30mm 

window. The cavity was subjected to uniform pressure and a far-field normal stress was 

applied in one direction to allow the fracture plane to propagate parallel to the direction of 

the far-field stress. Initiation was measured at 70-80% peak pressure.  

Figure 39 and 40 show horizontal displacement contours from 95-100% peak pressure 

as well as the total horizontal profile from 80-100% peak pressure. From these figures, the 

tip of the fracture is beyond the field of view and cannot be measured. However, from the 

Figure 38: (Right) Incremental horizontal displacement contours for a Berea specimen (CE_S5) from 
90-100% peak pressure (Left) Total horizontal displacement measurements from 80-100% peak pressure 

along vertical lines at x = -1.5mm (left line) and x = 1.7mm (right line) 
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total displacement profile the critical crack opening displacement was 90μm for the 

specimen in Figure 39 and 57μm for the specimen in Figure 40.  

                 

Figure 39: (Left) Incremental horizontal displacement contours for a Berea specimen (CE_S3) from 
95-100% peak pressure (Right) Total horizontal displacement measurements from 80-100% peak 

pressure along vertical lines at x = -0.9mm (left line) and x = 2.7mm (right line) 
 

            

Figure 40: (Left) Incremental horizontal displacement contours for a Berea specimen (CE_S2) from 
90-100% peak pressure (Right) Total horizontal displacement measurements from 80-100% peak 

pressure along vertical lines at x = -0.9mm (left line) and x = 2.7mm (right line) 
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Three-point-bending tests on the Berea sandstone were analyzed in the same way as for 

the cavity expansion tests. However, the effective crack length, Leff, includes the length of the 

notch (ao = 0.2*D) and the length measured from the notch tip to the location where the 

contours merge (length of FPZ). Figure 41 and 35 show the horizontal displacement 

contours for beam specimens subjected to three-point-bend loading conditions.  

 

                      

Figure 41: (Left) Incremental horizontal displacement contours for a Berea specimen (3PB_S1) from  
90-100% peak load (Right). Total horizontal displacement measurements along vertical lines at x = -

1.6mm) and x = 1.7mm – Manning (2012) 
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Figure 42: (Left) Incremental horizontal displacement contours for a Berea specimen (3PB_S2) from 95-
100% peak (Right) Total horizontal displacement measurements from 70-100% peak along vertical 

lines at x = -1.8mm and x = 1.5mm – Manning (2012). 

 

Table 5 shows fracture measurements for Berea sandstone specimens from cavity 

expansion tests and three-point-bend experiments. 

 
Table 5: Fracture properties for Berea sandstone specimens from  
CE and 3PB experiments. 

Specimen Initiation CCOD, wc 
Effective Crack 

Length , Leff 
[] [% Peak*] [mm] [mm] 

CE_S2 70 57 >20 
CE_S3 80 90 >20 
CE_S5 80 68 30 

3PB_S1† 70 51 20 
3PB_S2† 70 58 27 

* Peak pressure and peak load for CE and 3PB experiments respectively 
† Three-point-bending tests from Manning (2012) 
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Chapter 6 

Conclusions 

 Fracture near a pressurized circular cavity in rock is critical for several important 

processes, yet few observations exist. However, with the application of the cavity expansion 

apparatus (CEA), direct measurement of fracture properties was achieved using the digital 

image correlation (DIC) technique. In addition the CEA, also provided an effective way of 

controlling where the fracture would initiate and thus made it possible to observe fracture 

initiation. 

The cavity expansion apparatus provided insight on the development of a fracture near a 

circular hole and gave convincing evidence that a discontinuity in the displacement field is 

formed prior to peak internal pressure. It was found that a “fracture” developed at 80% and 

60% peak internal pressure for Berea sandstone and Indiana limestone respectively. 

Further characterizing the fracture was achieved by assuming that the critical crack 

opening displacement (CCOD) signifies the start of unstable crack growth. From this 

assumption, it was found for cavity expansion experiments that the CCOD was 57μm-90μm 

and 20μm-24μm for Berea sandstone and Indiana limestone respectively. From three-point-

bending experiments, the CCOD was 51μm-58μm and 15μm-16μm for Berea sandstone and 

Indiana limestone respectively. On average, the CCOD was 35% higher in cavity expansion 

experiments than three-point-bend experiments for Berea sandstone and 42% higher for 

Indiana limestone, suggesting stable growth prior to peak pressure. 

Future work on this subject is open to a number of possibilities. One application would be 

modifying the CEA to accommodate fluid infiltration into the specimen. This would provide 
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a unique insight on the development of a hydraulic fracture that includes internal cavity 

pressure as well as normal tractions acting directly on the crack surface. Analyses for this 

type of loading have been developed, however  little direct experimental verification has 

been performed. 
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