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Abstract 
 

The Kirtland’s warbler (Setophaga kirtlandii) utilizes actively managed breeding habitat 

on the Hiawatha National Forest in Michigan’s Upper Peninsula. Managing the spatial 

arrangement of future breeding habitat is a complex forest management problem. While 

it is relatively simple to identify good areas to create habitat in the near future, it is 

difficult to foresee, without analysis, whether good habitat patches and amounts can be 

maintained through a full forestry rotation. Additionally, financial investments required to 

create suitable habitat are substantial, and managers should carefully consider habitat 

designs that increase breeding success. 

A harvest scheduling model was applied on the Hiawatha National Forest to explore 

opportunities for habitat management. Results help support implementation of the 2006 

Forest Management Plan, which identified goals and objectives to create and maintain 

6700 acres of age 6-16 Kirtland’s warbler (KW) habitat within a larger 33,500 acre KW 

habitat system. Applications addressed a mid-sized landscape (174,808 acres), 

comprised of 12,307 stands and a 60 year planning horizon, consisting of 30 two-year 

planning periods with KW habitat production objectives.  

Three major model explorations are documented. First, a heuristic is developed to solve 

an intractable dynamic programming (DP) problem. Secondly, a pre-processing heuristic 

is developed to pare down the number of stand-level management options that must be 

included in the harvest scheduling model. Finally, the modeling system is applied to the 

problem to identify a management strategy and show financial and spatial trade-offs of 

alternative management strategies. Results of the first exploration indicate that an 

optimal DP solution can be identified with the proposed heuristic with improved solution 

times. The second exploration shows substantial time savings from eliminating many 

KW management options without compromising solution value. The third exploration 

determines a management strategy for where and when to generate habitat on the 

Hiawatha National Forest along with the associated spatial and financial tradeoffs. 
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Chapter 1 : Introduction 
 

The Kirtland’s warbler (Setophaga kirtlandii) breeding range is limited to one of the most 

geographically restricted regions of any mainland bird in the continental United States 

(Mayfield, 1960). Since monitoring began in 1951, over 98% of the population has been 

detected Lower Michigan, and since 2000, 86% of the population has been detected in 

just five counties in northern Lower Michigan (US Fish and Wildlife Service, 2012).  

Since its passage in 1973, the Federal Endangered Species Act (16 U.S.C. 1531 et seq) 

has classified the warbler as “endangered”, which was justified by its low population 

levels discovered during the 1971 decadal census. Consequently, the Kirtland’s Warbler 

Recovery Team was commissioned in 1975 by the Secretary of Interior and drafted a 

Recovery Plan in 1976, calling for the population level to increase to 1,000 singing males 

(Byelich, et al., 1976 Updated 1985). The Plan’s strategy for increasing the population 

included cowbird control and the creation of 38,000 acres of warbler breeding habitat in 

northern Lower Michigan. Implementation of this strategy has resulted in the warbler’s 

recovery from a low of 167 singing males in 1974 to the 2090 singing males recorded in 

2012 (Byelich, et al., 1976 Updated 1985), (US Fish and Wildlife Service, 2012).  

Before 1995, the Kirtland’s warbler had been sighted outside of the Lower Peninsula of 

Michigan, but breeding activity had not been detected. Since 1995, breeding activity has 

been detected with consistency in Michigan’s Upper Peninsula, and in 2007 the first 

nests were recorded in Wisconsin and Canada (Probst, Bocetti, & Sjogren, 2003), 

(Richard, 2008), (Trick, Greveles, Ditomasso, & Robaidek, 2008). Thus, the recovery of 

the warbler is associated with breeding activity in new geographic areas. Expansion into 

new ranges presents both an opportunity and a challenge to forest managers who are 

concerned about the recovery of the species but are not currently poised to execute 

management strategies to create and maintain suitable warbler breeding habitat. The 

desired habitat occurs in young jack pine (Pinus banksiana), has a short tenure (10-20 

years, depending on site quality), high stocking densities, and a generally cited minimum 

patch size of 80 acres (32 hectares) (e.g., (Probst & Weinrich, 1993)). Donner, Ribic, 

and Probst (2010) found that larger, non-isolated patches were associated with earlier 

colonization and later abandonment, and birds may occupy patches smaller than 80 

acres if these patches are positioned in larger complexes of suitable habitat. Financial 
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investments required to create suitable habitat can be substantial, and in the context of 

covertype and age class imbalances, ensuring a steady supply of habitat in the future 

can be a challenging management problem to implement. To help offset the relatively 

high cost of habitat creation due to increased stocking levels, it is desirable to manage 

jack pine at the commercial rotation age (50 years). Managers faced challenges meeting 

desired rotation age and spatial arrangement when creating habitat in the Lower 

Peninsula. During the first 15 years of management, the strategy outlined in the 

Recovery Plan only met approximately 45% of the habitat creation goals (Kepler, Irvine, 

DeCapita, & Weinrich, 1996). 

Quality habitat has been identified as critical to the warbler’s success when population 

levels are low, as is the case in newly occupied areas (Donner, Probst, & Ribic, 2008). 

Furthermore, the spatial arrangement and patch size of the habitat is correlated with 

utilization length. Larger patches are utilized earlier and longer, as are patches that do 

not exist in isolation (Donner, Ribic, & Probst, 2010). While it may be relatively simple to 

identify good patches to create habitat in the near future (0-10 years), it can be difficult to 

foresee whether good habitat patches and amounts can be maintained through a full 

commercial rotation. Future habitat consideration is potentially the most complex part of 

the management problem. 

Cost-effectiveness is another aspect of habitat management that must be considered, 

especially given the generally more expensive cost of habitat management (due to site 

preparation intensities and increased stocking densities that require planting more 

seedlings) and the limited resources that have historically impeded the full 

implementation of habitat creation objectives (Kepler, Irvine, DeCapita, & Weinrich, 

1996). Earlier studies have emphasized the costs of management to increase the 

likelihood of species’ persistence and minimum population sizes (Marshall, Haight, & 

Homans, 1998), (Marshall, Homans, & Haight, 2000). Habitat management has proven 

effective, and recent population increases have resulted in the recommendation to 

down-list the species classification to “threatened” (Donner, Probst, & Ribic, 2008), (US 

Fish and Wildlife Service, 2012).  Including cost considerations in the analysis for where 

and when to create breeding habitat may lead to efficiencies in dollar investments while 

maintaining quality habitat characteristics. 
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Finally, when there is existing management plan guidance for the landowner (as is the 

case for National Forests), multiple management objectives may need to be considered, 

which further complicates the ability to achieve desired KW habitat goals. While 

management areas in the Lower Peninsula are dedicated almost exclusively to the 

production and maintenance of Kirtland’s habitat, management in newly colonized areas 

may be accompanied by objectives for other co-located vegetation species such as red 

pine (Pinus resinosa), oak species, and aspen (Populus tremuloides) (USDA Forest 

Service, 2006). The presence of other management objectives allows flexibility in 

designing where and when to create habitat within the larger context of the forest, but it 

also creates an added level of complexity, i.e., analyzing cover type conversions and 

alternate rotation ages associated with different species and land conditions.  

Problems that consider the spatial interaction between stands may be addressed with 

forest management models that consider the interactions between financial efficiency, 

patch size design, and diverse cover type management objectives. Forest management 

problems similar to the one faced by the Hiawatha National Forest have been the 

subject of recent studies, particularly those that have investigated core area 

management. Core area forest has been described as forest free from edge effects 

(Baskent & Jordan, 1995). Management for core area objectives is in some ways the 

inverse of forestry problems with maximum opening limitations, in that maintenance of 

compact, contiguous patches is the objective rather than dispersing harvests that create 

small patches of  young forest. Other recent studies that have analyzed the core area 

old forest problem are Rebain and McDill (2003), Wei and Hoganson (2007), Wei and 

Hoganson (2008), and Toth and McDill (2008). Specifically, the forest management 

model used to solve the KW management problem in this study is based on a dynamic 

programming (DP) heuristic first described by Hoganson and Borges (1998). The DP 

solution process is utilized because it recognizes that the problem can be divided into 

parts (stages) with each stage having a number of possible states, or unique 

combinations of conditions in the stage. Solving in parts may be efficient because it need 

not enumerate all possible solutions. In this study, the management problem on the 

Hiawatha National Forest is formulated to maximize the present net value of the forest 

while maintaining a minimum amount of KW core area breeding habitat. Management for 

large, contiguous blocks of habitat has been advocated by Probst (1988) as beneficial to 

KW colonization and breeding success. Constraining the amount of core area breeding 
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habitat may be used to identify quality spatial habitat design that creates not just large 

patches of habitat, but large, compact patches.  

Dynamic programming, however, has limited application for forest-wide problems when 

used alone. A DP formulation can find a maximum objective function value, but cannot 

directly consider constraints. Often forest management problems involve constraints on 

timber production, age distribution, or cover type amounts that cannot be directly 

captured in DP formulations, (e.g., USDA Forest Service (2006)). The DP approach, 

however, has application when fit with a decomposition approach such as Lagrangian 

relaxation. Lagrangian relaxation incorporates constraints in an LP or MIP objective 

function and weights the value of those constraints with multipliers to discourage 

constraint violation. The formulation results in a feasible optimal solution if the correct 

multipliers are used. The formulation also results in a problem with an objective function 

value that incorporates the forest-wide constaints, which may in turn be solved with a DP 

formulation. The search for valid multiplier values associated with non-spatial forest-wide 

objectives (such as harvest volume flows or age class distributions) was the focus on 

research of Hoganson and Rose (1984). Their basic approach is expanded in this study 

to include a search for multipliers that satisfy both non-spatial forest-wide objectives and 

a core area constraint for KW habitat. 

 

Study Area 

Forest managers on the Hiawatha National Forest (Figure 1.1) in Michigan’s Upper 

Peninsula capitalized on the opportunity to develop management strategies to aid in the 

warbler’s recovery during the 2006 Forest Plan Revision (USDA Forest Service, 2006). 

The Forest’s management plan contained two KW objectives: creating and maintaining 

6700 acres of suitable habitat, and allowing KW habitat management activities in blocks 

of up to 1100 acres in a given year. The stem densities of these stands are to 

correspond with the latest science provided by the U.S. Fish and Wildlife Service (USDA 

Forest Service, 2006). Suitable breeding habitat is managed on glacial outwash plains 

owned by the Hiawatha National Forest (Figure 1.1). Overall, the area for potential 

breeding habitat consists of approximately 174,500 acres comprised of 12,307 stands. 

Of the total potential area, the Forest has agreed to manage 33,500 acres in the 
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Kirtland’s warbler breeding habitat system comprised of jack pine stands between 0 and 

50 years of age. The specific acres managed as suitable breeding habitat, however, 

have not been explicitly identified. The Forest has discretion in where it places the 

33,500 acres of breeding habitat within the total 174,500 acres, and therefore has the 

opportunity to design a management system that is both financially and spatially 

efficient. 

The desired conditions for the forest’s glacial outwash plains consist of a mix of jack pine 

(Pinus banksiana), red pine (Pinus resinosa), aspen (Populus tremuloides), white pine 

(Pinus strobus), maintained open grasslands, and hardwood mixes including oak (USDA 

Forest Service, 2006). While generally it is easier to identify existing jack pine sites to 

include in the Kirtland’s warbler breeding habitat system, the forest has the opportunity 

to convert other cover types both in and out of jack pine. This opportunity is particularly 

poignant for red pine, which is readily converted to or from jack pine with even-aged 

management systems. Desired conditions for all cover types and size classes described 

by the Forest Plan are necessary considerations when identifying and scheduling the 

Kirtland’s warbler breeding habitat system on the National Forest. 

Short-term (within the next 10 years) sites suitable for habitat creation were readily 

identifiable, and the Forest was confident the 6700 acre habitat goal could be met in the 

near future. However, projections by wildlife biologists indicated that mid-term habitat 

opportunities (15-35 year) may be limited due to the current age distribution of jack pine 

on the forest (Henderson, 2006). Additionally, managers were concerned that the 

shapes and sizes of stands as currently configured may not efficiently generate compact 

patches desirable for KW habitat. This study attempts to address these two concerns 

and provides managers with options and trade-off analyses for creating and sustaining 

the desired level of Kirtland’s warbler habitat.  
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Figure 1.1: Kirtland's warbler potential habitat areas on the Hiawatha National Forest 

 

Objectives of the Study 

The main objective of this study is to provide managers with information that contributes 

to effective strategic planning for Kirtland’s warbler habitat management on the Hiawatha 

National Forest. Several scenarios are developed to examine trade-offs of different 

habitat management levels and management treatment options. Spatial information for 

managers is presented, such as the amount, arrangement, and timing of habitat design. 

First, however, the modeling solution method for finding good scenario options must be 

developed. Thus, a second main objective is to develop this modeling solution method. 

The size of the problem means it may be difficult to solve with an exact mathematical 

formulation. Therefore, there are two secondary objectives associated with the modeling 

solution method. Secondary objective (a) is to develop a heuristic search that proves 

capable of identifying the optimal solution to a problem too large to solve practicably with 

a full formulation. Secondary objective (b) is to develop a detailed pre-processing routine 

to substantially simplify the exact mathematical formulation of the problem without 

compromising optimality. 
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Model Solution Method Background 

The main focus of chapters 2 and 3 of this dissertation is to develop a heuristic solution 

method to solve a dynamic programming (DP) problem (Bellman, 1954) otherwise too 

large to solve with a complete formulation. The DP is used to capture mathematically an 

important spatial facet of the KW management problem; namely, how to arrange future 

KW breeding habitat into large patches by recognizing the value of core area breeding 

habitat. 

The problem is formulated mathematically recognizing the synergistic benefits of 

grouping stands into patches that produce core area of KW habitat. Core area measures 

the area of a patch free of edge effects (Baskent & Jordan, 1995). The amount of core 

area within a patch depends on more than patch area alone; patch shape is also 

important, with a low patch edge to area ratio having a higher proportional amount of 

core area. By changing the focus in the model from total area of KW patches to core 

area of KW patches, the model is able to consider spatial interactions when scheduling 

stands for management. 

The problem formulation to schedule the desired level of core area is solved with a DP 

optimization model. While DP has been widely applied in other disciplines (e.g.,  

scheduling production jobs on manufacturing machines (Tang, Xuan, & Liu, 2006) or 

scheduling power generation activity (Balci & Valenzuela, 2004)), its application in 

forest-level management planning has been somewhat limited. Dynamic programming 

formulations in forestry have been used extensively to solve a stand-level thinning 

problem (e.g., Hool (1966), Amidon and Akin (1968), Haight, Brodie and Dahms (1985), 

and Arthaud and Klemperer (1988)). At the forest level, Hoganson, Borges, and Wei 

(2008) describe some of the recent DP applications that include planning for contiguous 

areas of old forest on National Forests in Minnesota. In these applications, the value of 

core area of old forest was assumed to be known, and that value was used to determine 

the specific locations of where core area old forest should be developed (or maintained) 

within the larger forest. 

Finally, the Hiawatha National Forest’s forest-wide vegetation desired conditions are 

considered. The problem is not as simple as scheduling a predefined geographic area 

with a single desired condition for KW habitat. The 2006 Forest Plan (USDA Forest 
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Service, 2006) describes desired conditions that include a range of size and species 

compositions other than KW habitat to be managed in the same ecosystem type as KW 

habitat. This broader, forest-wide modeling process uses a Lagrange multiplier, or 

shadow price, search. At least two methods for identifying shadow prices in forestry 

applications have been identified. Hoganson and Rose (1984) suggest an iterative 

search process to identify prices that meet forest-wide constraints, while Paredes and 

Brodie (1989) suggest prices reflect the public’s willingness to pay for the goods and 

services produced by the forest. In this dissertation, multiplier search heuristics based on 

Hoganson and Rose (1984) are applied through a series of searches where multipliers 

are iteratively estimated, and the spatial problem is re-solved with the DP with the goal 

of meeting predetermined constraint levels. In the end, a solution is determined that 

managers may determine reasonably satisfies not on the total amount of desired KW 

habitat, but habitat that has a good design in large, contiguous patches. Additionally, the 

solution will reasonably accommodate the other desired conditions outlined by the forest 

plan, such as maintained openings, mature red pine, and evenly scheduled 

management activities through time.  

 

Organization of the Dissertation 

The objectives of this study are explored by logically conducting a series of tests to 

develop and refine a forest management model that can efficiently and accurately 

identify good management strategies for KW habitat in the context of other forest-wide 

objectives. There are three main explorations of the study, and a series of appendices 

with additional background information. 

In Chapter 2, a heuristic is described that allows an optimal solution to be found to a 

dynamic programming problem too large to solve with a single problem formulation. The 

heuristic likens the decomposition of the large DP to solving a jigsaw puzzle in logical 

steps. First, the easiest portions of the puzzle are solved, which in turn simplifies the 

solution search in the more difficult areas. The heuristic is proven capable of identifying 

the optimal solution to a DP even when the full problem is not solved with a single 

formulation.  
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Chapter 3 explores two methods that simplify the DP by logically eliminating sub-optimal 

stand management options from the DP formulation. The size of problem solved by the 

DP is dependent on the number of management options for each stand. If before the DP 

is formulated, the number of management options to include is reduced, the resulting DP 

is smaller and solves in less time. The stand-based trimming method looks at available 

management options stand-by-stand to eliminate those with the least amount of value. 

The grid-based building method uses pre-defined spatially compact subforests (grids) 

that attempt to encompass the patches of the optimal solution. Within each grid, the 

management options associated with the best patches are identified and ranked. The 

ranked options are then compared with the optimal solution for the forest to evaluate the 

effectiveness of the predefined grids on identifying the optimal management option for 

each stand. Finally, both methods are applied to the DP to determine how well and how 

quickly the optimal solution can be identified. 

Chapter 4 synthesizes the DP solution methods explored in Chapters 2 and 3 to 

demonstrate practical exploration of the main study objective; that is, to evaluate 

different management strategies for developing and maintaining a supply of Kirtland’s 

warbler habitat on the Hiawatha National Forest. Financial trade-offs of different levels of 

habitat management and projected patch dynamics are explored. The study shows 

various management strategies that allow for sustainable habitat management with 

desirable patch size and habitat amounts. 

Finally, there are three Appendices that offer further insight into some of the background 

analytical processes developed for this study.  

Appendix A introduces the Bouncing Ball algorithm for designing logical places to split 

stands into subcomponents that facilitate better patch scheduling. Some stands in the 

forest’s inventory may be non-compact; that is, they have a high edge to area ratio. 

Often these stands have portions that are “leggy”, narrow extensions that protrude into 

and amongst adjacent stands. The bouncing ball algorithm utilizes properties of a 

hexagon-based grid to split off leggy portions of stands that may be better managed with 

stands where they can contribute to more compact patch shapes. 
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Appendix B documents some Lagrange multiplier search1 trials that were used to identify 

efficient solution methods applied in Chapter 4. Since the model is comprised of 30 

constrained periods, and includes constraints for cover type and age classes in addition 

to KW habitat, the search for good multipliers is complex. Methods are introduced that 

adjust the magnitude of the search direction to be responsive to how close a proposed 

multiplier comes to identifying feasibility for a constraint.  

Appendix C describes a mapping tool that was developed to facilitate visual examination 

of model inputs and outputs. It was developed in response to the lack of access to GIS 

software, but ended up being quite useful for identifying model formulation 

improvements and interpreting model outputs. One interesting feature is that a time 

series of outputs can be loaded with a single file, and the program allows the user to 

automatically visualize habitat conditions and landscape changes as if watching a time-

lapse photography series. The tool was initially developed for hexagon-based displays, 

but was readily adapted for square-based displays used in a study based in Idaho. 

  

                                                           
1
 Lagrange multiplier search is discussed in Chapter 2 
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Chapter 2 : A Proposed Heuristic to Solve a Forest Management 

Problem with High Temporal and Spatial Complexity 

 

Introduction 

Harvest scheduling that considers spatial arrangement of activities has emerged as an 

established field of research. Cost savings may be realized when harvests are 

considered in a spatial context (Weintraub & Navon, 1976). Federal and state policies 

sometimes place restrictions on the size of clearcut openings that should be considered 

when scheduling management activities (Boston & Bettinger, 1999). When the spatial 

arrangement of harvesting activities is considered, managers may be able to either 

minimize negative impacts or maximize positive benefits to patterns on landscape (Hof & 

Bevers, 2002).  The spatial arrangement and pattern of forest management activities 

impacts the quality and quantity of other resource uses of a forest, and should therefore 

be considered in context of the timing of expected activities (Snyder & ReVelle, 1997). 

Finally, spatial patterns can be designed with harvest scheduling activities to benefit (or 

reduce negative impacts on) habitat characteristics for wildlife (Bixby, 2006). 

Improved solution techniques, recent advances in computing technology, and the need 

to recognize spatial considerations at tactical and strategic planning levels are factors 

that have caused spatial components of forest management problems to be explicitly 

incorporated into strategic forest planning models. Recent examples of this are 

extensive, but generally they focus on one of two common problems, namely, adjacency 

and old forest reserve. The adjacency problem places restrictions on the maximum 

opening or clearcut size, and the old forest reserve problem schedules contiguous large 

patches of similarly-aged older forest. Problems involving adjacency constraints were 

investigated beginning in the early 1990s, and were used to address, among other 

issues, spatial harvesting restrictions associated with USDA Forest Service National 

Forest management (Murray & Church, 1996). There are two basic formulations of the 

adjacency constraint, the Unit Restricted Model (URM) and the Area Restricted Model 

(ARM) (Murray, 1999), (Murray & Snyder, 2000). The URM is straightforward; adjacent 

units are not allowed to be harvested such that they create young forest at the same 

time. The ARM allows several units to be harvested at the same time so long as they do 

not create an opening larger than a specified size. Additional examples of early 
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adjacency constraint studies include Torres-Rojo and Brodie (1990), Lockwood and 

Moore (1993), Murray and Church (1995), Hoganson and Borges (1998), and McDill and 

Braze (2000). More recent adjacency studies often use formulations solved with exact 

methods. For example, Martins, Alvelos, and Constantino (2012) introduce a branch and 

price formulation for solving problems involving 45 to 2945 stands and three to twelve 

planning periods. Another example is a study by Goycoolea et al. (2009) that described 

solving adjacency problems with a branch and bound algorithm. 

Recent studies have also focused on designing forests in contiguous patches of 

similarly-aged cohorts to address wildlife habitat requirements. Interior dependent 

wildlife species may require certain levels of undisturbed forest free from fragmentation 

(Ohman & Lamas, 2003). Bixby (2006) discusses the concept of patch-size effect, where 

a species response to an amount of habitat is affected by the spatial arrangement of that 

habitat. The problem has been addressed by managing for target levels of core area 

forest, or forest free from edge effects (Ohman & Eriksson, 1998), (Ohman, 2000), 

(Bixby, 2006). The core area problem is in some ways the inverse of the adjacency 

problem, in that maintenance of contiguous patches is the objective rather than 

dispersing harvests to create small patches of young forest. Other recent studies that 

have analyzed the core area old forest problem are Rebain and McDilll (2003), Wei and 

Hoganson (2007), (Wei & Hoganson, 2008), and Toth and McDill (2008).  

Another type of problem has been explored is one that involves the clustering of harvest 

activities to realize cost savings. The earliest examples of these problems accounted for 

road building and access concerns, which in turn resulted in harvest units being 

clustered along commonly used road segments. Examples include Jones, et al. (1991), 

Weintraub, et al. (1995), Richards and Gunn (2000), and Contreras, Chung, and Jones 

(2008).  A second generation of studies, such as Ohman & Lamas (2003), described a 

method to constrain timber volume that is generated in close spatiotemporal proximity. 

Their study explored the trade-offs from requiring harvest aggregation at different 

intensities, and was solved with a simulated annealing technique. A more recent study 

by Ohman & Eriksson (2010) used a mixed integer programming technique to minimize 

the edge caused by harvest activities. Another study by Heinonen, Kurttila, and Pukkala 

(2007) brought together the old growth reserve and harvest clustering problem. They 

focused on aggregating hexagon-raster forest into cutting units and old growth reserves 
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by maximizing shared borders of cut units and minimizing the border between cut and 

uncut units. The harvest clustering problem, however, has remained largely unexplored, 

as indicated by the relatively few studies that have addressed it.  

Forest management problems with spatial solution components can easily fall in a realm 

of combinatorial problems too large to solve with exact optimization methods due to 

computing time and/or memory limitations. Goycoolea, et al., (2005) noted the difficulties 

in solving problems with increased planning periods. Martins, Alvelos and Constantino 

(2012) cited difficulties formulating the problem when the number of stands is too large. 

They also encountered problems so large that the branch-and-bound algorithm could not 

identify an optimal solution. Goycoolea, et al., (2009) encountered difficulties finding a 

feasible solution when green-up constraints were imposed. Computing limitations have 

resulted in numerous heuristic, meta-heuristic, and hybrid approaches used to solve 

spatial forest management problems. Heuristic searches are designed to find a good 

solution by incrementally evaluating a solution space with local search procedures, such 

as “hill climbing” (Laguna, 2002).  In a hill climb search, an initial solution is determined, 

often at random, and the solution is modified with small, incremental moves until all 

possible local moves result in inferior solutions (i.e., the current solution is the best 

among the possible moves). The solution, however, is prone to arrive at a local optimum 

inferior to an undiscovered global optimum. Heuristic searches have also been used to 

modify exact solution methods such as Linear Programming (LP). Hoganson and Rose 

(1984) describe three heuristic search methods to determine dual variable values that 

satisfy LP constraints. These heuristics, while able to derive optimal solutions, are 

challenged with arriving at an exactly feasible solution. 

The shortcomings of simple heuristic search resulted in the development of “meta-

heuristics”, a term coined by Glover (1986). In his paper, Glover indicates the purpose of 

a meta-heuristic is to modify a heuristic search procedure to escape locally optimum 

points. Many meta-heuristic solution strategies have been applied to forest management 

and spatial forest management problems. Baskent and Keles (2005) provide an 

extensive review of many of the methods that have been applied in recent times. In this 

review, they classify meta-heuristics into broad categories that include Monte Carlo 

Integer programming, controlled randomization (simulated annealing), tabu search, 

genetic algorithm, and user-specific methods. Most meta-heuristic methods can be 
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classified in the first four categories (Monte Carlo Integer programming, controlled 

randomization, tabu search, and genetic algorithm), including those with unconventional 

names such as “ant colony optimization” (i.e., tabu search, according to Laguna (2002)), 

and “great deluge”, which is a derivation of simulated annealing (Bettinger, Graetz, 

Boston, Sessions, & Chung, 2002)). One example of a user-specific method cited in the 

Baskent and Keles (2005) paper is the dynamic programming approach developed by 

Hoganson and Borges (1998). In this approach, an exact solution method (dynamic 

programming) is modified for computational feasibility by decomposing the problem into 

a series of overlapping windows. Each window, or cohort of stands smaller than the 

larger forest, contains stands that belong to one or more other windows. Schedules for 

stands that are included in more than one window are not accepted until all windows in 

which they are a part of are solved. Windows overlap in such a way to ensure multiple 

solution options are explored before a solution is accepted for a given stand. Arguably, 

this method is not a true “meta-heuristic” in that it does not modify a heuristic to escape 

local optima, but rather modifies an exact solution method so that it can be solved with 

modern computing capabilities. The commonality it has with meta-heuristic methods, of 

course, is that it does not guarantee identification of the global optimum. 

Other research has focused on combining two or more solution techniques to leverage 

advantages of each and produce superior solutions. Such studies fall into the realm of 

hybrid algorithms. Hybrid algorithms used to solve forest management problems may 

combine two or more meta-heuristic methods (e.g., Bettinger et. al (2007)) or a meta-

heuristic method with an exact solution method (e.g., Hoganson and Borges (1998)). 

One such study that combined a meta-heuristic with an exact method was conducted by 

Ohman and Eriksson (2002). In this study, simulated annealing (SA) was used to identify 

stands to manage for continuous old forest conditions, while linear programming was 

used to derive management schedules that satisfied harvest flow and ending inventory 

constraints. The study, however, resembles a lexicographic goal programming problem, 

where the spatial solution derived with SA is used to constrain the LP. A lexicographic 

goal programming formulation uses two objective functions; the solution value obtained 

from the first objective function is used as a constraint in solving the second objective 

function. In this case, the first objective function was to manage for old forest, while the 

second was to maximize net present value. The authors concede the sequential nature 

of this method may result in a sub-optimal solution. Still, the method produced better 
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solutions than simulated annealing, even though SA considered both objectives 

simultaneously.  

Contemporary studies for spatial forest management problems are becoming more 

solely focused on exact solution methods, most commonly mixed-integer programming 

(MIP). Previously, moderately sized spatial problems were unsolvable with exact 

methods due their large formulations that exceeded the available computing capacity 

required to solve them. Examples of some recent MIP applications focused on creating 

large patches of contiguous forest include Wei and Hoganson (2007), Toth and McDill 

(2008), and Ohman and Eriksson (2010). Mixed-integer programming has also been 

extensively employed to address adjacency constraints. Goycoolea M. , Murray, Vielma, 

and  Weintraub (2009) evaluate three common formulations of the Area Restriction 

Model solved with the branch-and-bound algorithm. However, they note the solution time 

for these formulations is “painfully slow”. Another solution tactic, branch-and-price, has 

been demonstrated to solve adjacency problems faster than branch-and-bound (Martins, 

Alvelos, & Constantino, 2012). Finally, solution speed can be increased by including 

constraints in the objective function. In a study designed to identify reserve site 

selections, Snyder, ReVelle, and  Haight (2004) discovered that using a weighted two-

objective formulation yielded faster results than a single objective function with forest-

wide constraints.  

Dynamic programming (DP) is another common model structure in operations research 

(Bellman, 1954) that has proven useful in solving forest management problems. The DP 

solution process is utilized because it recognizes that the problem can be divided into 

parts (stages) with each stage having a number of possible states, or unique 

combinations of conditions in the stage. Solving in parts may be efficient because it need 

not enumerate all possible solutions. For example, a problem with 9 stages and 10 

options per state would have 10^9 possible solutions (1 billion). Yet using DP, the 

problem can potentially be solved by linking solutions to 81 subproblems each with only 

10 choices. Hoganson, Borges, and Wei (2008) describe some of the history of DP in 

forestry problems. They outline early applications such as stand-level thinning, where 

the stages of a problem are the timing choices of the thin before an even-aged 

management action. More recent applications have involved solving problems for forest-

wide spatial constraints such as adjacency (Hoganson & Borges, 1998), and patches of 
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older forest core area (Hoganson H. M., Bixby, Bergmann, & Borges, 2004), (Wei & 

Hoganson, 2008). The DP formulations in forest-level modeling are often too large to be 

solved exactly with a single DP network. Therefore, Hoganson and Borges (1998)  

describe a solution strategy involving a series of overlapping subproblems, or moving 

windows. In this strategy, each window defines a group of stands that formulate a DP 

problem small enough to be solved exactly. Solutions to a portion of the stands in the 

window are accepted and used to formulate the next window. The stands with accepted 

solutions do not add to the size of the problem, and therefore the next window includes 

all the first window stands plus additional stands that span further across the forest. The 

strategy continues until all stands in the forest have been evaluated. The moving 

windows heuristic has been adapted a number of times, beginning with Borges, 

Hoganson, and Rose (1999), who explored stand sequencing strategies with irregular 

polygons. Later, Hoganson et al. (2004) modified the heuristic to address core area 

management by using the concept of influence zones, or areas of the forest that are 

dependent on coordinated management of one or more stands to meet the spatial 

objectives of the problem. Since the size of the windows can influence both solution 

speed and solution quality, Wei and Hoganson (2008) investigated model simplification 

strategies with the goal of increasing solution speed with minimal effects on solution 

quality. Dynamic programming has also been used in recent stand-level decision models 

that account for stochastic disturbance events (Ferreira, Constantino, Borges, & Garcia-

Gonzalo, 2012). Model II structures of LP harvest scheduling problems (Johnson & 

Scheurman, 1977) are easily represented as DP networks, with the Model II variables 

basically representing a DP structure of breaking the timing horizon for individual stands 

into parts, thus eliminating the need to enumerate all management options like in a 

Model I formulation.  

Dynamic programming, however, has limited application for forest-wide problems when 

used alone. A DP formulation can find a maximum objective function value, but cannot 

directly consider constraints. Often forest management problems involve constraints on 

timber production, age distribution, or cover type amounts that cannot be directly 

captured in DP formulations, (e.g., USDA Forest Service (2006)). Additionally, even with 

the simplified nature of examining solutions with a DP formulation, the problem may be 

too large to be solved with a single formulation, and requires heuristics to solve 

(Hoganson & Borges, 1998). The DP approach, however, has application when fit with a 
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decomposition approach such as Lagrangian relaxation. Lagrangian relaxation 

incorporates constraints in an LP or MIP objective function and weights the value of 

those constraints with multipliers to discourage constraint violation. The formulation 

results in a feasible optimal solution if the correct multipliers are used. The multipliers 

can be referred to by several different names, including Lagrange multipliers, marginal 

values, shadow prices, shadow costs, and dual variables. While there are few examples 

in forestry, the approach is more common in other disciplines such as scheduling 

production jobs on manufacturing machines (Tang, Xuan, & Liu, 2006) or scheduling 

power generation activity (Balci & Valenzuela, 2004).  The Hoganson, Borges, and Wei 

(2008) chapter outlines some of the forestry related DP/Lagrangian relaxation studies 

that have occurred to date. Specifically, the Hoganson and Borges (1998) study used 

DP to address adjacency constraints. The DP approach was later adapted to address 

core area for old forest without explicit constraint levels for core area (Hoganson, Bixby, 

& Bergmann, 2003), (Wei & Hoganson, 2005). Extensive work was conducted to 

improve the solution time of core area problems by Wei and Hoganson (2008). This 

study encountered two influential complexities: a large number of areas where 10 or 

more stands required coordinated management actions to create core area and buffer 

conditions that were less restrictive than core area itself which caused sub-influence 

zones to be evaluated separately. Sub-influence zones are the portion of an influence 

zone within a particular stand.  

Another challenge with DP formulations is that they become disproportionately large with 

moderate increases in stand-level decision options, a condition known as the “curse of 

dimensionality”. For example, in a DP stage that consists of five management options 

per state across eight state dimensions, there are 5^8 (390,625) unique states. If for 

each of these eight state dimensions the number of management options increased from 

5 to 10 (as would occur if there were more timing possibilities for the management 

choices), the size of the problem would increase by a factor of 2^8, or 256 (resulting in 

100 million states). Clearly, this results in a challenging problem to solve and currently 

relies on the use of the aforementioned heuristic techniques to break the problem into 

smaller pieces.  

The main objective of the study presented here is to extend the moving windows 

heuristic of solving a large dynamic programming problem by exploring techniques that 
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find better solutions in less time. The moving windows heuristic is applied to the wildlife 

management problem that sets explicit constraints for the amount of core area habitat 

desired. The study employs the use of shadow prices, or the opportunity cost associated 

with producing core area habitat. An explicit constraint on core area is an extension of 

the DP/Lagrangian relaxation studies in forestry that to date have set the shadow price 

of core area exogenously and allowed the DP to determine the levels achieved at those 

prices (Wei & Hoganson, 2005). This study assumes that the shadow price estimates 

are known or can be estimated correctly using Lagrange multiplier search techniques.  

Shadow price estimates need to be modified if the solution is infeasible or if 

complementary slackness conditions are violated excessively. The search technique 

may take hundreds, if not thousands of iterative trials before prices that result in an 

acceptable solution are found. With a solution method that calls for many DP solution 

trials combined with the fact that each DP formulation is potentially large, it is 

advantageous to explore additional heuristic methods and simplification techniques that 

allow the problem to be solved faster.  

The methods are applied to a real forest and wildlife management problem faced by 

managers on the Hiawatha National Forest (HNF) in Michigan. The Forest’s land 

management plan has an objective to create and maintain 6700 acres of suitable 

Kirtland’s warbler (Setophaga kirtlandii) habitat that can be created from regeneration 

harvest patch sizes of up to 1100 acres in a given year. Suitable habitat consists of 

young jack pine (Pinus banksiana) 6-16 years old. The forest has committed to 

maintaining 6700 acres of suitable breeding habitat on a 50-year rotation, which equates 

to a total of 33,500 acres in the habitat system (USDA Forest Service, 2006). Suitable 

areas for habitat management (sandy glacial outwash plains) on the HNF consist of 

approximately 174,500 acres comprised of 12,307 stands. The specific areas managed 

as suitable breeding habitat, however, have not been explicitly identified. The Forest has 

discretion in where it places the 33,500 acres of breeding habitat within the 174,500 

acres, and therefore has the opportunity to design a management system that is both 

financially and spatially efficient. 
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Methods 

Problem Formulation 

The basic problem explored in this study is to create a sustainable level of Kirtland’s 

warbler (KW) habitat, aggregated into large compact patches. Suitable patches can 

range from 80-1100 acres in size, (USDA Forest Service, 2006). The overall level of KW 

habitat is achieved by requiring a minimum level of core area, hereafter referred to as 

the spatial constraint or spatial objective of the problem. Core area forest is free from 

edge effects, and exists a certain buffer distance from an edge, (Ohman & Eriksson, 

1998), (Ohman, 2000), (Baskent & Keles, 2005). Core area definition in this study was 

simplified by using a two acre hexagon grid to define the stands in the forest. The grid 

was intersected with the Hiawatha National Forest’s vector-based stand layer and the 

stand with the most area in hexagon was used to attribute that hexagon. Hexagons that 

were part of the same original stand were then combined to form the stands used in this 

problem. Hexagons were chosen to simplify the core area calculation since they have 

regular spatial interactions with all adjacent hexagons (as opposed to squares or 

irregular polygons). The buffer distance implemented in this study is the area outside a 

center hexagon formed by connecting the centers of the six adjacent hexagons. The 

concept is displayed in Figure 2.1. There are portions of seven 2-acre hexagon-based 

stands depicted in this figure (they are numbered). The buffer is the large hexagon in the 

center that overlaps all seven stands to some degree. In order to produce core area, a 

cluster of at least 3 hexagons must meet the overall definition of KW habitat. In Figure 

2.1, the area in the triangle represents the amount of core area KW habitat created if 

Stands 1, 3 and 4 were managed in a coordinated manner. Core area is created by 

coordinating the management options of “influence zones” (see Bergmann (1999), and 

Hoganson, Bixby, and  Bergmann (2003)). Any influence zone is unique and it is 

comprised of all of the stands that must have coordinated management to achieve core 

area. An influence zone can be fully within one stand, or it may include parts of up to 

several stands. In this study, influence zones were designed such that an influence zone 

was never comprised of more than three stands. An example of an influence zone is the 

shaded triangle in Figure 2.1. For this zone to be core area, conditions in Stands 1, 3, 

and 4 must all meet core area conditions. Influence zones can be very large, in the 

instance of the core area of a single large stand (the center of the stand as buffered 

inward) or between two large stands that share a long border. Other buffer distances can 
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be used that would result in more stringent requirements to produce core area (e.g., if 

the buffer distance was assumed to be 1 hexagon, all 7 stands in Figure 2.1 would have 

to be coordinated to produce core area in Stand 1). Efficiencies can be gained as more 

stands are managed together to create core area in their influence zones and the 

proportion of core area to total stand area managed increases. Thus, the best solutions 

likely consist of large, contiguous patches. 

 
Figure 2.1 Influence zone and core area illustration for hexagon-based raster. The area influenced by stand 

1 is represented by the large surrounding hexagon. The triangle represents the influence zone that consists 
exclusively of Stands {1,3,4}, which is also the core area created by coordinating their management. 

 
This problem is solved with a dynamic programming (DP) formulation. Each stage of the 

problem represents the decision space for a single stand in the problem, and associated 

arcs for the stage include information about all of the decision variables, or management 

options, associated with that stand. Each state at the start of a stage in the problem is a 

unique combination of management options for stands addressed in earlier stages of the 

DP formulation. A stand is dropped as a state descriptor after all stands it interacts with 

directly (through common influence zones) have been addressed as a stage in the 

formulation. Paths between the stages (connecting states of different stages) are known 

as arcs, and can be used to indicate the value of choosing the management strategy 

associated with the two states the arc connects. The number of state dimensions at a 

given stage in this problem corresponds directly to the number of stands wide that the 

formulation (“forest”) is addressing.  This width depends on the side of the “forest” that 

corresponds with stage 1 of the formulation.  For example, if the formulation has the first 

stages associated with stands on the west side of the “forest” then width relates to width 
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in the north-south direction.  Generally, if the DP formulation starts with stands (stages) 

on the west side of the forest, then the farther west a stand is, the sooner it is addressed 

in the DP formulation.  

The DP concept is illustrated in Figure 2.2 with a simple four stand example. There are 

two opportunities to create core area with these four stands, indicated by the two 

triangles in the upper portion of the figure. The objective is to manage for the highest 

value of core area possible. For each stand, there are two management options, a and 

b. If core area is the only value recognized by the problem, and core area is valued at 2 

when management option a is used and 1 when b is used, the problem becomes 

solvable by inspection (schedule all stands with option a for a total value of 4). The 

bottom portion of the figure, however, is included to show the enumeration of the entire 

problem. While other formulations may be generated to sequence the stands in 

alternative orderings (Borges, Hoganson, & Rose, 1999), the one presented is likely one 

of the simpler formulations. The network created with the states (ovals), arcs (lines), and 

stages (there are 4, associated with each set of arcs that connect states, e.g., “start” to 

1a or 1b) is a complete enumeration of all possible management option combinations of 

the four stands. Each state is labeled with the stand number(s) and management 

option(s) associated with the management strategy of the state (e.g., 1a is stand 1 

option a). Tracing a path from “start” to “end” represents a complete scheduling strategy 

for all stands. The arcs with positive value are labeled with their value, and are shown at 

the top and bottom of the network. Again, by inspection, the path with the highest value 

can be traced through a path that schedules all four stands with management option a, 

indicated by the path at the top of the network. 
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Figure 2.2: Four stand forest with two management options per stand and corresponding DP formulation 

The general DP formulation is described in Hoganson et al. (2004) and in Wei and 

Hoganson (2008). Below is a simplified description of the formulation. 

Find  

          (2.1) 

Where 

     (2.2) 

 

         (2.3) 

         (2.4) 

In this formulation, there are N stands (and stages), represented individually as stand i 

with stands numbered to match their stage number. Equation (2.1) describes the optimal 

value of the one starting node at Stage 1, representing the maximum value of all paths 

through the network. Equation (2.2) defines how the value of each node at each stage is 

determined. In Equation 2.2,  represents the states (nodes) at stage i, state j, and 

consists of the set of unique management combinations for all stands used for state 

descriptors for the start of the stage. Each  is a decision option (management option), 

for stand i. The term ( )represents the discounted value of the non-spatial benefit of , 
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which includes both value of financial flows (revenues and costs) and the value of the 

constraints that  impacts (the shadow price of a constraint multiplied by the area of i if 

 partially satisfies the constraint). Term is the net present value of core area 

production resulting from   if at state j at the start of stage i. and includes only the 

shadow priced value of core area associated with the associated stage i decision. The 

final term of Equation (2.2), ( ), represents the optimal value of state k at the start 

of stage i+1. Equation (2.3) identifies the state k at the start of the next stage (i+1) if at 

stage i and state j decision  is made for stand i. Equation (2.4) is included to allow 

Equation (2.2) to be generically applied to the final stage of the formulation, and simply 

means that at the final stage, the value of stage N+1 is 0. The formulation is solved with 

a backwards solution approach, beginning with evaluating the final stage of the 

formulation associated with stand N, and searching through the network to find the value 

of . 

A Search Heuristic 

An objective of this study was to strengthen the moving windows heuristic (Hoganson & 

Borges, 1998) to solve a large DP problem with more precision. The study builds on 

work by Wei and Hoganson (2005) and Wei and Hoganson (2008) by testing several 

different problem formulations before scheduling any given stand. Stand management 

options can be accepted as part of the solution if they are consistently scheduled 

regardless of the problem formulation (i.e., they are robust schedules). Those stands 

where different formulations result in different management option schedules are less 

robust and should undergo more testing before they are accepted as part of the solution.  

As stands’ schedules are accepted as part of the solution, it can result in a simpler 

problem formulation for the remaining stands. The solution process can be likened to 

solving a jigsaw puzzle, where the easiest portions of the puzzle are solved first, which 

in turn may make the difficult areas easier to solve. Consider a rectangular jigsaw puzzle 

50 pieces wide by 20 pieces tall. The puzzle has two components: the pieces and the 

spaces that pieces occupy. Spaces represent stands in the forest and the pieces 

represent the management choices for those stands. The analogy deviates slightly from 

a jigsaw puzzle that has an equal number of spaces and pieces. In this puzzle, there is a 

known and unique set of pieces for each space (say, 1 to 30 potential pieces), each 

having a different color, but not all spaces include the same color choices. The colors 
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represent the different management options available for the stand. The problem can 

also be thought of a map coloring problem (e.g., Appel and Haken (1976)) yet a jigsaw 

puzzle comparison highlights the sequential nature which potentially reduces the size of 

the problem substantially as the scheduling process unfolds. 

The proposed heuristic will put the entire puzzle together multiple times.  Each time, the 

puzzle is solved in parts by selecting a starting edge of the forest and defining a width (in 

pieces) along that edge to solve all at once with a DP formulation as described earlier. 

Assume the rows of the puzzle are numbered 1-20, starting at the bottom edge. 

Consider attempt 1 comprised of rows 1-4 along the bottom edge of the puzzle with 200 

pieces. This set of rows is termed a “window”. Assume this window is solved exactly with 

reasonable speed, i.e., the optimal solution is determined for rows 1-4. However, since 

the global optimal solution depends on context in the larger puzzle, only the solutions of 

rows 1 and 2 are accepted as optimal and are in turn used to help solve the remainder of 

the area. After the first window is solved, a second window is formulated to include the 

first four rows of stands in addition to the next two rows towards the top (5 and 6) of the 

puzzle. Since the solutions to rows 1 and 2 have been determined, they do not add to 

the size of the problem formulation. When this second window is solved, the solutions to 

rows 3 and 4 are accepted as optimal, and the process continues until the top of the 

puzzle is reached.  This use of overlapping windows and DP is similar to process initially 

used by (Hoganson & Borges, 1998)  to address adjacency constraints.  

To check the efficacy of this solution, one can consider starting from a different edge, 

and perhaps even using a window a different number of rows wide. Attempt 2 might start 

at the left side of the puzzle, use windows 5 rows wide, and accept 3 rows’ solutions in 

each window moving left to right. Subsequently, the solutions from Attempts 1 and 2 

could be compared for each stand. If a stand has the same solution (piece) in each 

Attempt, one might assume it is a good or robust solution. Alternately, one could solve 

from more directions with varying numbers of rows solved each time (window widths) 

before accepting the solution for any stand.  

With this proposed heuristic, as more pieces are put into place, the remaining puzzle is 

likely easier to solve.  As the process unfolds, there may be smaller “holes” that become 

mini-puzzles and relatively easy to solve exactly with a single window (i.e., all rows are 
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included). A solution to a “hole” found with a single window can be fully accepted, since 

is the optimal solution for that portion of the puzzle.  

The proposed heuristic is illustrated in Figure 2.3. Once the possible management 

options for each stand have been identified, the maximum window width is defined by 

the modeler. This information is used to identify and solve spatially distinct subdivisions, 

or smaller puzzles that can be solved independently of each other. Subdivisions are the 

result of physical boundaries (such as roads, private lands, non-forest, etc.) that spatially 

isolate portions of the forest. Each spatially isolated portion of the forest is a subdivision. 

If a subdivision is too large to be solved with a single DP formulation, it is solved with a 

series of overlapping windows according to the current window direction and size (i.e., a 

“trial”). Two parameters (θ and δ) were considered for accepting the schedule 

(management option) for an individual stand. If the consistently chosen management 

option contributed to the spatial constraint (minimum level of core area), it was accepted 

after θ trials. If the consistently chosen option did not contribute to the spatial constraints 

(i.e., it was more valuable in contributing to net present value or other problem 

constraints), it was accepted after δ trials. Accepted management options were then the 

only options used for those stands in the ensuing DP formulation. One might consider 

different values for θ and δ to allow a solution to converge more gradually, or to explore 

options to expand patches solved after θ trials with a higher δ. Accepting management 

option schedules for stands simplifies the DP and can result in fewer windows with more 

stands included in each window.  
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Figure 2.3: The heuristic used to solve a large Dynamic Programming problem with a series of smaller 

formulations. “Rx” is an abbreviation for management option. 
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Using Subdivisions to Solve Spatial Problems 

This solution method exploits the phenomenon that a forest can be decomposed into 

smaller, spatially isolated portions of the forest called “subdivisions” that can be solved 

independently. First, there are natural barriers to achieving spatial objectives, such as 

roads, private inholdings, major water bodies, ecological site potential, etc. that can be 

recognized before the problem is formulated. Secondly, there is an economic factor that 

allows for decomposition; some stands are poor financial candidates for producing core 

area, either because of their proximity to other stands or their value in meeting other 

desired forest conditions (such as old growth or growing more valuable timber) exceeds 

the value in meeting spatial objectives. Natural barriers are considered exogenously by 

ensuring that areas incapable of contributing to core area constraints are either removed 

from the model or assigned only management options that do not produce core area. 

Such areas include non-forested areas, areas of non-ownerships, or ecological site 

conditions not suited for growing jack pine, and were identified with stand-level data 

maintained by the Hiawatha National Forest. The financial factor is considered by 

comparing the value of a stand in meeting other desired conditions (i.e. shadow prices) 

to the stand’s value in producing core area. If the stand is more valuable in contributing 

to other desired conditions, it need not be considered for core area production. 

Alternately, poor candidates may be recognized simply by virtue of them never being 

selected to satisfy the core area constraints in any DP formulation. Subdivisions are 

linked together to the overall problem formulation by the spatial shadow price (Lagrange 

multiplier) estimates. This assumption enables equal accountability across the different 

subdivisions. Searching for spatial independence based on proximity and financial value 

can identify small subdivisions that can be solved independently with a complete, exact 

DP formulation. 

The act of accepting solutions that do not contribute to spatial objectives creates another 

phenomenon that can be exploited by the proposed heuristic. That is, when stands are 

determined to be financially undesirable for contributing to the spatial constraints, they 

are removed from the problem formulation (after δ trials with a consistent solution). If 

these stands are physically located between good spatial candidates, and removing 

them isolates groups of good candidates on either side, the forest might be further split 

into smaller, easier to solve subdivisions. Therefore, it is advantageous to evaluate the 
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remaining problem for more subdivisions after each trial if polygons that do not 

contribute to spatial value are eliminated for consideration by the DP. 

Overlapping Windows Formulation 

After the problem is decomposed into subdivisions, some subdivisions are likely too 

large to solve with a complete dynamic programming formulation. When this is the case, 

the subdivision is further decomposed into overlapping subproblems (windows), a 

solution technique first described by Hoganson and Borges (1998). The concept is 

illustrated in the Figure 2.4 below, which represents the 1256 stands in the largest 

subdivision solved in this study. The subdivision has been processed to remove private 

inholdings, areas with no ecological potential to create KW habitat, roads, and water 

bodies. It has further been processed to remove all stands that have greater value 

contributing to constraints other than the core area constraint. Finally, those stands that 

have a single management option that contributes to the spatial objective (such as those 

already identified by managers) are recognized since they contribute to overall core area 

but do not add to the complexity of the DP formulation. In Figure 2.4, the first window is 

comprised of those stands at the top-right portion of the forest (“Included” and 

“Schedule”). The first stage of the DP network is in one of the two narrow ends of the 

window (either on the left or right, depending on what the user specifies) and adds 

stands to the network as it moves horizontally toward the other end of the window. The 

nature of the problem allows one to drop stands as state variables once all of its spatial 

interactions have been enumerated, thus keeping the stands used for state identifiers to 

those along a “front” that separates stands addressed in an earlier stage from stands yet 

to be included in the DP network. Once an exact solution to the DP formulation for the 

window is found, the solutions for the topmost rows of stands (“Schedule”) are accepted 

and used to help inform the next Window DP formulation. The illustration in Figure 2.4 

represents acceptance of solutions for the 40% of the area that is farthest from the 

stands yet to be included in a window (“Schedule”). 

Window size is dependent on the maximum number of nodes allowed at any one stage 

of the formulation. The number of nodes for each stage depends on the number of 

stands needed as a state identifier for the stage as well as the number of management 

options associated with those stands. For example, a DP formulation that has 4 stands 

along the front at the start of a given stage with 5 options available to each stand will 
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have 54 nodes at the start of that stage. Figure 2.4 shows a 25 million maximum node 

limit for stands that had a maximum of 5 management options available. This generally 

means the narrowest portion of the formulation is 9 stands, and the widest could be 

much greater if fewer than 5 management options are available to some of the stands 

defining the front. 

 
Figure 2.4: Moving Window illustration: 1256 stands in a subdivision solved with the model. Stands are 

aggregations of two-acre hexagons. Single option stands have a single known solution that contributes to 
the spatial objective. “Included” and “Schedule” stands are those included in the first DP Moving Window 
formulation. Solutions found for the “Schedule” stands are accepted before the next Window is formulated. 

 
Window Design 

Eight different window designs were used to test the efficacy of using overlapping 

windows to find good solutions. The side of the forest where the windows began and the 

direction of the DP formulation within that window were used to construct different 

problem formulations. Consider the simple illustration in Figure 2.5:. The oval represents 

a generic forest (the puzzle). Windows would be constructed of stands beginning at one 

edge of the forest (one of the four long, narrow arrows). Each window is solved by 

assembling the pieces starting at one end of the window and working in the narrowest 
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direction toward the other end. Each of the eight diamonds represents a different starting 

point for the DP; the narrow arrows represent the side of the forest the window starts 

from. The wide arrows illustrate the direction in which the windows overlap until the other 

side of the forest is reached. For example, windows that start at the top of the widest 

direction of the forest and move down can have a DP formulated from the left or the 

right. This particular formulation is also illustrated in Figure 2.4. 

 
Figure 2.5: Illustration of the eight different Moving Window designs.  

 
Case studies 

The dataset for this study was derived from information provided by the Hiawatha 

National Forest (HNF) in Michigan. The entire National Forest is 895,000 acres; 

however, suitable breeding habitat for the Kirtland’s Warbler is only possible on 

ecosystems that can support the host species, jack pine. Therefore, the problem was 

solved on the 174,500 acres with the greatest potential to create suitable habitat, a land 

type with well-drained, sandy soils. The dataset consisted of 12,307 stands, comprised 

of aggregations of two-acre hexagons with the process described above. Stands ranged 

from 2 to 446 acres in size, with an average size of 14 acres. Financial information for 

management costs and potential timber revenues was derived by HNF personnel, based 

on 2010 transaction information. Yield information was derived from the Forest 

Vegetation Simulator (Dixon, 2002. Revised: 2013), and is consistent with the yields 

recognized in the 2006 HNF forest planning effort. Stand-level data was derived directly 

from the database maintained by the HNF and reflected information current in 2010. 

This formulation used cover type constraints to move the forest toward the desired 

conditions outlined in the 2006 Hiawatha National Forest Land Management Plan 

(USDA Forest Service, 2006), displayed in Table 2.1. Constraints 2-7 did not include a 

spatial component; they could be met anywhere in the forest. Constraint 1 is the 
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Kirtland’s warbler habit constraint, which calls for 4500 acres of core area to be 

produced in each period of a 30-period planning horizon.  

Table 2.1: Simplified Constraint levels 

 
Constraint Type 

Level 
(acres) 

1 Spatial - KW Core Area Lower 4500 
2 Red Pine - total Lower 41000 
3 Red Pine - old age Lower 27500 
4 Maintained Openings Lower 9950 
5 Maintained Openings Upper 11150 
6 Young (age 0-10) Upper 19550 
7 Regeneration (age 0) Upper 2000 

 

This study uses a 60-year planning horizon comprised of 30 two-year planning periods 

for addressing constraints. This constrained planning horizon was chosen to 

accommodate a feasibility study of at least one full rotation of jack pine (Pinus 

banksiana) suitable for KW breeding habitat. Acres currently in the KW habitat system 

may be sub-optimal in the long term, and conversely, some longer-rotation species such 

as red pine (Pinus resinosa), that are young today, may be converted to KW habitat in 

the future. Spatial interactions between stands are determined for 180 years in order to 

calculate the discounted financial value of these interactions. Spatial conditions are 

valued 60 time steps beyond the end of the constrained planning horizon to help ensure 

that the model does not artificially truncate KW habitat at the end of constrained planning 

horizon. Two year time steps were used to accommodate the relatively short-lived nature 

of the suitable habitat (10 years). Harvest was assumed at the mid-point of each 

planning period, and this would cause problems for practical implementation of the 

derived strategy if those time periods are long relative to the temporal scale of the 

desired spatial conditions. Therefore, using two-year planning periods allows one to 

better refine harvest timing options, and recognize potential spatial interaction between 

stands. Solutions may reflect coordinated management that slowly “walks” a habitat 

patch across the landscape through time.  

Conversion into, out of, and between the different cover types, combined with the many 

different timing options for these management options, results in an abundance of 

different management options for any given stand. For the 12,307 stands recognized in 

the model, there were a total of 1.08 million management options analyzed, or an 

average of 88 per stand. Management options were also classified by whether or not 
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they contributed to the spatial constraints of the problem. In this model, management 

options that do not contribute to meeting spatial constraints (KW habitat) are 

substantially simpler to model than those that involve a spatial interaction with other 

stands. The value of each management option for each stand can be evaluated before 

the DP formulation (with equation (2.5)), and one can identify the single best non-spatial 

management option and a suite of candidate spatial options to evaluate with the DP 

formulation. The DP formulation includes the best non-spatial management option to 

identify areas that are not good KW habitat. The best non-spatial management option 

can be found with the process outlined by Hoganson and Rose (1984), where one 

evaluates all options based on the sum of their financial value and their value in meeting 

forest-wide constraints (a function of potential multiplied an estimated shadow price, or 

Lagrange multiplier) and chooses the option with the highest value.  

The set of spatial management options used in the DP was based on , where:  

 

To apply equation (2.5), one first determines , the present net value of the non-

spatial value of management option d of stand i, as a sum of discounted net financial 

flows and shadow prices multiplied by constraint levels to which they contribute. Added 

to that is the spatial value of the management option, which is dependent on the 

management options of the stands with which it shares influence zones. To calculate the 

spatial value, all influence zones Z are evaluated in which stand i is found. Each 

influence zone z contains a set of stands ( ). A search is conducted for all stands in the 

influence zone to determine the suite of management options for all stands that 

maximizes the spatial value of the influence zone. This is done by looking at the value of 

, a 0/1 value associated with the potential of stand  to produce core area with any 

management option at time t. The search of course, ensures that the k values for each 

stand  are from only a single management option for  in the end. If all stands   have 

a  =1 then , is increased by the area of the zone az multiplied by the spatial 

shadow price st multiplied by the weight  one gives to the value of influence zones. A 
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weight of 1 would add the value of the entire influence zone to the value of the 

management option, including portions that occur in other stands.  

Equation (2.5) was applied to initially to be optimistic about the value of spatial 

management options and to eliminate all options that did not beat the best nonspatial 

solution using ε = 1 (Hoganson H. M., Bixby, Bergmann, & Borges, 2004). Values 

determined with equation (2.5) were then evaluated to pare down even further the 

number of management options used in the DP formulation. The spatial alignment 

assumption was optimistic; that is, when evaluating the current option d, management 

options for other stands in the influence zone were chosen that added the greatest 

spatial value to d,. The maximum number of spatial management options available to 

any given stand was used as a starting point to pare down the number of management 

options per stand used in the DP formulation.  In this study, the maximum number of 

spatial management options was 27, which was pared this down to as low as five. Figure 

2.7 shows the number of spatial plus non-spatial management options of the full problem 

presented in this paper. To pare down the number of management options used in the 

DP formulation, the first iteration would eliminate a single option from the 95 stands with 

27 initial spatial options. The eliminated management option would be the one with the 

lowest  according to equation (2.5). Eliminated management options are then not 

used to calculate  for the remaining management options, for any stand, in 

subsequent iterations. The second iteration would pare polygons with 26 spatial 

management options down to 25 and so forth, until the desired maximum number of 

options for any stand was reached.  

Several test cases were used to examine the performance of the proposed heuristic. 

The first case presented is a small, baseline scenario that is used to extrapolate the 

lessons learned to a larger problem. The intent of the baseline scenario was to keep the 

problems small enough to derive exact solutions, large enough to be a meaningful test, 

and have starting conditions diverse enough to insulate against the possibility that a 

particular set of shadow prices would cause an anomaly in the evaluation of the solution 

method. To help simplify the problem, the above-described pre-processing was used to 

pare down management options to 6 per stand (5 spatial and 1 non-spatial). Paring 

down management options almost certainly eliminated optimal management options to 

the global problem, but information learned from these tests can be applied to a larger 
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formulation that does not eliminate optimal management options. A simplified problem 

allows one to find a global optimum for comparison of the heuristic parameters. 

Ultimately, the best heuristic parameters can then be used to solve a more complete 

enumeration of the problem that includes more management options.  

Test cases varied the following parameters: 

1. Window size: the maximum number of nodes in any given window was varied to 

assess how much simplification might be possible without sacrificing objective 

function value. Some scenarios held the window size constant; other scenarios 

allowed for the window size to expand as solutions were accepted and the 

problem was simplified. 

2. Window direction: eight different potential window directions were tested 

originating from four different sides of the forest, enumerated from each end of 

those four sides. 

3. Window direction and size: Schedules for stands were accepted after varying 

numbers of test directions and/or window sizes that all yielded the same stand 

management option for consecutive trials. The parameter varied by whether the 

chosen management option contributed to the spatial value of the solution.  

4. Core area shadow prices (Lagrange multipliers): So that a single core area price 

was not indicative of a unique situation, tests were conducted that varied the 

value of core area. Three sets of prices were chosen to reflect low, medium, and 

high core area values. It is important to note that the prices in these trials are not 

independent of other, non-spatial constraints. Other constraints that were 

violated due to satisfaction of spatial constraints had their corresponding values 

changed simultaneously. 

5. Maximum number of management options per polygon considered by the DP: 

The fewer the number of options for the DP to consider, the fewer number of 

moving windows to evaluate and the quicker the solution time. A problem with 

limited management options per stand is evaluated in the context of a problem 

with the maximum defined options per stand. 
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Results 

Baseline Scenario Description 

The first scenario analyzed (Baseline) used financial information derived at an 

intermediate stage of the overall solution process to find good shadow price estimates 

for all forest-wide constraints. That is, further adjustment to these price estimates is 

necessary to derive at an acceptable solution. The shadow prices for the spatial 

constraints (Figure 2.6) in the Baseline scenario generated a nearly feasible solution 

(i.e., constraints were generally satisfied). These prices were used in Equation (2.5) (as 

) to determine that 3826 of 12,307 stands were good candidates for KW habitat. Full 

discussion of these price levels is not warranted since they are mere approximations, but 

two observations are worth noting. First, core area is not valued in the first six periods 

since existing and recently planted KW habitat on the landscape meets the constraints 

for those periods. Secondly, there is a cyclical nature to these prices that indicates the 

interaction between the constraint levels; e.g., habitat that originates in period 7 is still 

present in period 11 and contributes to meeting constraints for each period between and 

including periods 7 and 11. A high price in period 7 may cause habitat to first appear in 

that period, but that habitat persists on the landscape for ten years, therefore causing it 

to be more-or-less “free” for periods 8-11. The history of management on this forest has 

created enough habitat to last through period 6, but it declines rather quickly (is beyond 

16 years old), meaning that a large area must become habitat in period 7 to 

accommodate the decline. 

 
Figure 2.6: Core area shadow prices used in Initial Scenarios (undiscounted dollars per acre). The center 

line is the baseline scenario, and the upper and lower lines reflect an increase and decrease of 10%, 
respectively.  
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The problem size of each subdivision can be calculated by using the price information in 

Figure 2.6 and paring the problem down to a maximum of 5 spatial management options 

and 1 non-spatial option. Efficient DP problem formulation is an optimization problem by 

itself, since there are, for instance, 200! ways to formulate a problem involving 200 

stands. Some of those formulations will be more efficient and allow for faster solution 

times with smaller overall formulations. Detailed description of how the DP was 

formulated is beyond the scope of this exercise, but the approach was basically the 

same as what was used for applications in Minnesota for National Forest Planning 

(Hoganson H. M., Bixby, Bergmann, & Borges, 2004). In a general sense, stands were 

added to the DP sequentially according to their location. If their inclusion in a stage 

resulted in a breach of the maximum node limit, they were placed into a queue while 

other nearby stands were tried. If, after a certain number of tries, the DP could not be 

formulated without breaching the maximum node limit, the window boundary was drawn, 

and the analysis proceeded to the next stand. This continued until windows were 

formulated across each subdivision in the forest. 

Tests for Varying Window Sizes 

The initial test of the baseline scenario was to incrementally increase the maximum 

number of allowable nodes in a DP from each window direction. This is a modification of 

the study done by Wei and Hoganson (2008) that studied the effect of different 

maximum node limits combined with simplification routines that eliminated small 

influence zones. The search presented here was modified to include larger maximum 

node limits and evaluate the problem from eight different perspectives, and did not trim 

out small influence zones. Computing time ranged from less than a minute for the 1000 

node limit to 82 minutes for the ten million node limit. As expected, with a higher node 

limit, one can achieve better results. The highest objective function value (28608733) 

was found with the 10 million node limit and was consistent for directions 2, 3, 4, and 8 

(bold font in Table 2.2). The first part of Table 2.2 shows that even with a 1000 node 

limit, values within 0.3% of the highest known objective function value could be found. 

Increasing the node limit to 100,000 or 1,000,000 yields values to within thousandths of 

a percentage point of the maximum value found. The second part of the table shows the 

percentage of the spatial value associated with the maximum objective function value 

(8423033). Spatial value is indicative of how much core area is produced by the solution, 

and is the discounted value of the core area produced over time (using the values in 
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Figure 2.6). Again, one can see how increasing the node limit increases the value of 

core area produced. What is striking is that the two values (overall NPV and core area 

NPV) are not correlated. An extreme case is seen with window direction 4, where the 

overall objective function value is within 0.3% of the found maximum, but the spatial 

component value is 32% lower. This indicates that while the value of the management 

scenario is nearly indistinguishable in financial terms, the spatial outcomes are quite 

different. The other notable phenomenon is seen in window direction 5, where the core 

area value is measurably higher than the maximum solution, yet the overall objective 

value is measurably lower. These two outcomes suggest there are many local optima for 

the problem very close to the global optimum, and that the quality of the solution should 

be evaluated on not only the overall financial value, but also the financial value of the 

spatial component. 

Table 2.2: Objective function percentage value and spatial value percentage results from evaluating varying 

node limits of the eight window directions. Bold values indicate maximum overall financial value. Italicized 

values indicate the lowest and highest financial values of the spatial component of the problem. 

 

 

Direction 1000 10000 100000 1000000 10000000

1 0.998 0.9994 0.9999 0.99999 0.999998

2 0.998 0.9997 0.9998 0.9999 1

3 0.998 0.9994 0.9999 0.99998 1

4 0.997 0.9996 0.9997 0.99998 1

5 0.998 0.9995 0.9999 0.99997 0.999995

6 0.999 0.9996 0.9997 0.9999 0.99998

7 0.998 0.9995 0.9999 0.99998 0.99999

8 0.997 0.9994 0.9999 0.9999 1

1 0.778 0.964 0.991 0.996 0.999

2 0.807 0.943 0.963 0.963 1

3 0.753 0.949 0.966 0.993 1

4 0.68 0.942 0.985 0.989 1

5 0.794 0.933 0.977 0.9997 1.001

6 0.815 0.936 0.97 0.965 0.996

7 0.774 0.932 0.977 0.988 0.9999

8 0.702 0.921 0.985 0.989 1
Avg. Sol. Time 

(min.)
0.5 0.8 1 6 82

Maximum Node Limit

Percent Objective Function Value

Percent Maximum Spatial Value
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Tests for solution acceptance using multiple window directions 

The first scenario used to test the window direction parameter of the heuristic was to use 

a maximum window size of 28 million nodes. Those stands that had a consistent spatial 

solution for all 8 window directions had their chosen management option accepted for 

the remainder of the trials (θ=8). Strategically, one might consider being more 

conservative in accepting non-spatial options since spatial interactions are complex and 

might become more apparent after the problem is simplified by accepting spatial 

solutions for neighboring polygons. Therefore, those stands that had consistent non-

spatial management options chosen were accepted after 12 consistent trials (δ=12).  

The problem is formulated such that after the 8 directions are searched, it cycles through 

them again in order. Table 2.3 below illustrates how the problem solves. The first Trial is 

comprised of 3826 stands split into 57 subdivisions, ranging from 6 to 1256 stands in 

size. In any given Trial, if the subdivision was solved with a single window, the solution 

was optimal and therefore was accepted for all stands within the subdivision. Fifty four of 

these subdivisions were solved in a single window in Trial 1 using the first window 

direction tried, which therefore generates an optimal solution for those subdivisions. 

Three subdivisions required multiple windows to solve, ranging from 2 to 11 windows. All 

subdivisions were solved exactly in Trial 13 after solutions for non-spatial polygons were 

accepted. There were no subdivisions included in the Trial 13 DP since all polygons’ 

solutions have been accepted and there were no decisions to make. 

Note that solving with window directions 2, 4, 5, 6, 7, and 8 all found the same (highest) 

objective function value even before any solutions were accepted, and that this is the 

same objective function value found with the initial tests of window direction (Table 2.2). 

This is a strong indication that it is an optimal solution. The same solution was found with 

differing numbers of moving windows and different window directions. The number of 

overlapping windows per subdivision is tracked for the three subdivisions that are solved 

in Trials 2-12 in the last three columns of Table 2.3. Recall that for Trials 1-8 the full suite 

of management options was available to all stands. The number of stands in each 

subdivision is in parentheses in the header row. Formulations that found the same, 

highest objective function value are in bold font. The best solution found with this 

analysis is referred to as the optimal solution for the remainder of this discussion. For the 

54 subdivisions that were solved exactly with a single pass, this holds true. For the three 

subdivisions that were not solved with an exact formulation, their consistent highest 
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value is strong evidence that the solution is at least near-optimal if it is not exactly 

optimal.  

Solution time for each window direction is indicated in the “Solution Time (Minutes)” 

column. The total analysis took nearly 18 hours of computation time. Solution time 

includes the nominal amount of pre-processing time required for identifying subdivisions 

and moving windows used in the formulation (less than 1 minute per trial). 

Table 2.3: Subdivision solution metrics for the base problem with a maximum window size of 28 million 

nodes. Consistent spatial solutions were accepted after 8 trials (θ=8) and consistent non-spatial solutions 

were accepted after 12 trials (δ=12). The best solution found with full number of available management 

options is in bold font. 

 

Tests for solution acceptance using smaller windows and multiple directions 

This same problem was solved using smaller, more numerous moving windows to test 

the efficacy of the directional search portion of the heuristic (trying formulations from 

different directions before accepting solutions). The 54 subdivisions that solved exactly 

in the 28 million node master problem could be used to evaluate the performance of 

directional search heuristic. A scenario was constructed that constrained the maximum 

window size to 10,000 nodes wide at any given point. The solution acceptance 

thresholds were the same as the first scenario (θ=8, δ=12). The problem was run for 25 

trials, found a solution (28608193) within 0.001% of Scenario 1 and solved in less than 

10 minutes. Compared to the scenario 1 solution time of 18 hours, this is a substantial 

time savings. Table 2.4 shows twelve of the subdivisions that could not be solved exactly 

with the 10,000 node limit, the percentage of NPV value found with scenario 1, and the 
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number of moving windows needed to solve them. Solutions that match scenario 1 are 

noted in bold. Solutions that match the known optimal solution are noted in bold italics. 

The numbers in parentheses in the first column indicate the window direction used to 

solve the problem. 

Several observations about Table 2.4 are worth mentioning. First, this solution method 

matched the solution of scenario 1 in all but one subdivision (see the “Final” line; 

Subdivision 26 did not match the optimal solution). Solutions for the remaining 44 

subdivisions are not shown, but all were able to match the optimal subdivision solution 

found in scenario 1. Secondly, all but 4 subdivisions matched the best scenario 1 

solution in one or more of the 8 window directions tried, even though they all required 

multiple overlapping windows to solve. The subdivision 13 solution matches the scenario 

1 solution after the consistently chosen spatial management options are accepted (trial 

9). Subdivisions 8 and 45 match the scenario 1 solution after the problem is further 

distilled by accepting consistent non-spatial solutions (Final).  Three subdivisions are 

solved with fewer moving windows after part of the solution is accepted (subdivisions 1, 

13, and 45), as evidenced by trial 1 and trial 9 which both used window direction 1, and 

Trial 9 had a portion of its solution accepted. The number of subdivisions used to 

determine the solution is not correlated with the quality of the solution. Trial 3, which 

used seven windows to solve subdivision 45 had an inferior solution to trial 6, which 

used 12 overlapping windows. Finally, note that solution performance for each window 

direction varies by subdivision. Window direction 4 finds an optimal solution for 

subdivision 1, but not for subdivision 44. Conversely, direction 3 finds the optimal 

solution for subdivision 44, but not Subdivision 1. It is therefore advantageous to accept 

the best solution for each subdivision independently, and use these solutions to compile 

a best overall solution if the problem does not converge after the specified number of 

trials.  
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Table 2.4: Select subdivision solution efficiency for the problem limited to a maximum of 10,000 nodes in any one stage of the DP. The 

top portion of the table shows percentage of the Scenario 1 solution for each subdivision for the first 9 window directions tried, as well as 

the final solution found. The second portion shows how many moving window formulations were used to find the solution. Solutions that 

match Scenario 1 are in bold italics. Subdivisions flagged with an asterisk (*) were not solved in one pass by Scenario 1; other values 

represent optimal solution for the subdivision. 

Subdivision  SD 1  SD 4  SD 8  SD 9  SD 13  SD 19  SD 25*  SD 26  SD 32*  SD 44  SD 45*  SD 50 

#Stands 107 182 146 95 225 63 255 53 322 123 1256 64 

Scenario 1 
NPV 344941 669776 1552364 372673 1023852 133728 1006529 299165 1136177 709673 4240394 425690 

Trial 1 (1) 1 0.99999 0.99807 1 0.99841 1 0.99797 0.99597 1 1 0.99839 1 

Trial 2 (2) 1 1 0.99991 1 0.99939 1 1 0.99597 1 1 0.99880 1 

Trial 3 (3) 0.98702 1 0.99987 1 0.99865 1 1 0.99820 0.99970 1 0.99935 1 

Trial 4 (4) 1 1 0.99902 1 0.99806 1 1 0.99820 1 0.99766 0.99855 1 

Trial 5 (5) 1 1 0.99991 1 0.99861 1 0.99797 0.99765 1 0.99870 0.99843 1 

Trial 6 (6) 1 1 0.99991 1 0.99919 1 1 0.99597 0.99917 1 0.99844 1 

Trial 7 (7) 1 1 0.99987 1 0.99862 1 1 0.99820 0.99970 1 0.99759 1 

Trial 8 (8) 0.99820 1 0.99895 1 0.99874 1 1 0.99820 1 1 0.99820 1 

Trial 9 (1) 1 1 0.99997 1 1 1 1 0.99597 1 1 0.99918 1 

Final 1 1 1 1 1 1 1 0.99820 1 1 1 1 

Number of windows needed to solve subdivision 
       Trial 1 (1) 3 4 3 3 7 3 5 6 5 2 25 2 

Trial 2 (2) 2 4 3 3 6 3 8 5 7 3 25 2 

Trial 3 (3) 2 7 4 3 6 3 10 3 8 3 18 6 

Trial 4 (4) 7 8 3 4 5 2 9 2 9 5 21 3 

Trial 5 (5) 3 5 4 3 7 3 4 3 6 3 23 2 

Trial 6 (6) 2 4 3 3 6 2 7 3 6 2 25 3 

Trial 7 (7) 2 7 4 3 7 3 9 2 9 4 20 6 

Trial 8 (8) 5 6 4 4 6 3 8 2 8 4 21 4 

Trial 9 (1) 2 4 3 3 4 1 5 6 5 2 16 2 
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Evidence from Table 2.4 can be used to draw several conclusions. First, decomposing 

problems into a series of overlapping windows can identify optimal solutions 

(subdivisions 1, 4, 9, 13, 19, 44 and 50). Secondly, the proposed heuristic of accepting 

the consistent portions of solutions after a number of trials can identify optimal solutions 

(subdivision 8). With relatively little effort, the proposed heuristic can also match 

solutions that were found with considerably more computational effort (subdivisions 25, 

32 and 45). Predictably, however, the heuristic does not guarantee that an optimal 

solution will be identified (subdivision 26). It is feasible that some stands in this 

subdivision have the same (wrong) management option chosen consistently for all 8 

directions, which when accepted can have a cascading effect on identifying a suboptimal 

solution for the entire subdivision. A larger window size, however, may result in a 

formulation that identifies the optimal management option in at least one window 

direction. 

Tests for combining Varying Window Directions and Varying Window Sizes 

The final tests conducted with the first set of core area prices (Figure 2.6; Baseline) were 

to evaluate combining multiple direction search with variable window sizes. As more of 

the solution was accepted and the problem became simpler, more computational power 

was allocated to those portions of the problem that were most difficult to solve. Thus, the 

hypothesis was that increasing the window size with each direction of search might lead 

to finding better solutions without increasing the solution time. Additionally, a different 

window size might perturb the problem sufficiently so as to allow a substantially different 

DP problem formulation that might help escape a local optimum. One additional pre-

processing step was added to the heuristic to make the process more efficient; that is, 

after the window size was increased and the window direction for DP formulation was 

updated, each DP direction was re-evaluated for the possibility of solution with a single 

window. The logic was that even the direction just evaluated might have been feasible to 

solve with one window if it had been allowed a formulation with a slightly larger window 

size, and it could be identified right away. If a subdivision could be solved in a single 

window in the direction other than the current one searched, that different direction was 

used to solve the DP. If multiple directions allowed the problem to be solved in a single 

window, the direction with the smallest (and thus fastest) formulation was used.  
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There were two different opportunities to increase the window size. First, a linear 

increase was used to increase window size by a set amount every trial. This might look 

like starting with a window size of 30,000 nodes, and increasing by 10,000 nodes every 

trial. The second allowable increase was to define thresholds according to the number of 

stands in the formulation. Early tests of these methods indicated that the most difficult 

portions of the problem to solve were where one or two window directions consistently 

chose slightly different solutions than the other six or seven directions. In these 

instances, it is likely more efficient to search rapidly for a window size that allows for the 

subdivision to be solved exactly. Thus, one might define a threshold such as when there 

are fewer than 100 stands left to solve, increase to a 10 million maximum node limit. A 

single, large but exact solution might take less time to solve than multiple, faster trials. 

The parameter variations to search for efficient solutions are shown in Table 2.5. The 

first column indicates the initial window size and the magnitude of increase each window 

direction. The first row starts with a maximum node count of 1000, and increases by 

1000 with each Trial. Acceptance threshold are shown in the second column, and 

indicate the number of window directions tried before accepting spatial and non-spatial 

management options, respectively. The third column indicates a threshold for the 

number of stands left in the DP before a significant window size jump is triggered, and 

the fourth column indicates the size of the jump and the ensuing increase each window 

direction. Columns five and six indicate the absolute magnitude in overall objective 

function loss and spatial loss, and the last column is the solution time in minutes.  

The trial that matched the optimal solution in the least amount of time is indicated in 

italics. It is not the smallest problem formulation, but it accepts the spatial and non-

spatial management options in the fewest number of window directions tried. There are 

a very large number of parameter variances that are not reflected in Table 2.5. The point 

is, however, that optimal or near-optimal solutions can be matched exactly by the 

simplification heuristics presented here in much less time than exact search techniques. 
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Table 2.5: Trials to test increasing window size, acceptance thresholds, and solution time. Bold values 

indicate trials that match the optimal solution. Italics indicate the trial that found the optimal solution in the 

least amount of time. 

Initial Size/ 
Increase θ/δ 

Threshold 
Stands Size/ Increase 

Total 
Loss Core Loss 

Solution 
Time 
(min.) 

1k/1k 2/4 100 50k/10k 3,283 272,882 4.49 

1k/1k 4/6 100 50k/10k 1,505 120,220 5.67 

1k/1k 8/12 100 50k/10k 719 21,822 9.27 

10k/10k 2/4 100 100k/50k 992 103,597 4.78 

10k/10k 4/6 100 100k/50k 407 75,030 5.21 

10k/10k 8/12 100 100k/50k 0 0 11.26 

30k/10k 2/4 100 1M/500k 407 75,030 6.59 

30k/10k 4/6 100 1M/500k 0 0 7.06 

30k/10k 8/12 100 1M/500k 0 0 12.64 

100k/20k 2/4 100 2M/1M 0 0 6.29 

100k/20k 4/6 100 2M/1M 0 0 8.79 

100k/20k 8/12 100 2M/1M 0 0 18.2 

 

Tests of Different Pricing Schemes 

Several core area pricing schema were tested to assess the efficacy of the heuristic on 

different problems. For these tests, the core area prices for the basic problem were 

adjusted up and down in intervals of five percentage points. Figure 2.6 shows the 10% 

increase and decrease levels that were tested (the 5% increase and decrease levels are 

not explicitly shown, but can be inferred). Each pricing scheme was solved with a 

window size of 100,000, increasing 20,000 each trial, and a θ/δ of 8/12. These were 

compared to larger problem formulations with at least a 25 million node maximum 

window size.  

Results for all four additional test cases showed that the solution found with the larger 

window size could be matched by the heuristic. Again, this gives a strong indication that 

the heuristic is applicable and relevant to other problem formulations. One interesting 

observation of the results is how sensitive the solution is to the core area pricing 

assumption. A test to increase the core area price by five percent corresponded to a 2% 

increase in overall NPV, but a 50% increase in the spatial portion of that NPV. At a 10% 

increase in core area price, the effect was more dramatic (a 4% increase in overall NPV 

and a 100% increase in the core area NPV). One phenomenon that may explain this is 

that the spatial benefits of more habitat is credited to the core area NPV, but the 

increased management costs associated with KW habitat is charged to the non-spatial 
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NPV. Still, the phenomenon highlights the sensitivity of the spatial solution and calls for a 

solution technique that is robust in determining a spatial value of the solution, not just an 

overall NPV that is close to optimal.  

Tests on Larger Problem Sizes 

One simplifying aspect of the problem presented heretofore is the maximum number of 

management options available to any stand was six; 5 spatial and one non-spatial. 

Using two-year planning periods, this does not allow a wide range of KW establishment 

options per stand. The heuristic was tested on a larger problem by formulating a problem 

that allowed up to 28 management options per stand. Figure 2.7 is a histogram of the 

number stands with the varying number of management options per stand. Of the 3927 

stands in the DP formulations, 3238 have more than 5 options. As expected, the size of 

the resulting problem increases when more management options are considered.  

 

 
Figure 2.7: Number of management options for stands used in the full analysis 

The larger problem was solved with a combination of two different methods. First, the 

heuristic described above was employed to use all possible management options to the 

DP. The second method was a strategy that pared down (i.e., trimmed) the number of 

management options sent to the DP, but followed up each trial with a hill climb search  

(Laguna, 2002) that used the DP solution as a basis and the full suite of management 

options for the search. Limiting the number of management options used in a DP 

formulation has the potential to greatly simplify the problem. The hypothesis was that the 
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trimming routine may have eliminated the global optimal management option for some 

stands from the DP formulation. Therefore, the hill-climbing heuristic started with the DP 

solution, and surveyed all possible management options for each stand to see if a 

different management option would increase the objective function value.  If a polygon 

had a management option chosen by the hill climb that was not included in the initial DP 

formulation, it was included in all subsequent DP trials. 

In all, 50 combinations of maximum management options, window size (and increase 

parameters) and θ/δ were evaluated. The maximum number of management options 

initially evaluated ranged from five to thirteen, and the “All” was used as a control. 

Window sizes were evaluated at the 10,000, 30,000, 100,000, 200,000, 500,000, 1 

million, and 2 million levels. Window size increases were set at 50% of the initial window 

size (i.e., a 30,000 window size was increased by 15,000 with each Trial). Theta/delta 

thresholds were either 2/4, 4/6, or 8/12. This resulted in nearly 400 unique parameter 

combinations that could be tested.  

Early tests indicated certain parameter combinations were not likely to yield good 

results. It became apparent that evaluating fewer than 7 management options failed to 

yield superior results even with large windows and large θ/δ acceptance levels and large 

initial window sizes. Additionally, θ/δ levels of 2/4 allowed too few trials to identify good 

solutions and θ/δ levels of 8/12, while yielding better solutions, required additional time 

that was disproportional to the solution quality improvements they rendered. Finally, 

initial windows sizes greater than 100,000 seldom produced superior solutions. The 

resulting tests generally consisted of differing initial management option levels between 

7 and 13, a θ/δ of 4/6, and initial window sizes of 30,000 and 100,000. 

Results were measured by their overall objective function value, their spatial value, and 

the amount of time it took to solve the problem. Figure 2.8 displays 36 of the better 

solutions found. The x-axis shows the percentage of the overall objective function value 

found with each test, and the y-axis shows the percentage of the overall spatial value. 

The size of the marker is inversely proportional to the amount of time it took to solve 

relative to the fastest global solution time (6.72 minutes; size=1). Larger points represent 

shorter solution times. The optimal solution is found at (1,1), found with “All” 

management options, and was found in 232 minutes (size=0.029), using a θ/δ of 8/12 

and an initial window size of 200,000. Three of the best solutions in terms of time and 
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quality are labeled with their size (for example, the marker labeled “.83” was found in 

8.13 minutes using 9 management options, a θ/δ of 2/4 and an initial window size of 

30,000). 

Figure 2.8: Scatter plot of efficiency frontier associated with tests, represented in percent of the known 

maximum. Point labels indicate relative solution time, with larger points requiring shorter solution times. 

Points with a greater horizontal value have values closer to the highest known total NPV value and points 

with a greater vertical value have higher core area value. Better solutions have a large relative size close to 

a value of (1,1).  

 

In a final note, it should be recognized that solutions with financial values within one to 

three percentage points of optimal can have a greater variation of core area production 

in any single period than the overall solution value. An example of these differences is 

shown in Figure 2.9. As mentioned earlier, the shadow prices used in this exercise 

(Figure 2.6) represent an intermediate solution in a search for a feasible solution, and so 

not all points in time meet the minimum constraint. Further adjustments to shadow price 

estimates must be made in order to meet the minimum constraints in all periods. This is 

worth mentioning because in order to make informed decisions about to adjust the 

shadow prices, it is essential to know which constraints are violated or over-achieved. In 

Figure 2.9, the final 23 periods of the planning horizon are shown for four of the solutions 

depicted in Figure 2.8 (the three with arrows, plus the optimal solution). In Figure 2.9, the 
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thick solid line is the amount of core area associated with the optimal solution. The other 

three solutions are depicted with dotted or dashed lines, and the constraint level is the 

thin solid line. All non-optimal solutions are within 0.1% of the overall financial value of 

the solution and within 3% of the spatial value of the optimum solution. Yet, one can 

observe that in many periods, there are noticeable differences in the estimated amount 

of core area between the solutions. For instance, in period 26, the optimal solution is 

within 14% of the desired constraint level, and the 11 Rx solution over-achieves the 

desired level by 43%. Similar differences can be detected in other periods as well.  

Price adjustment magnitudes for subsequent Lagrangian search iterations are based on 

how severely solutions deviate from the desired constraint levels. Logically, larger 

deviations should incur larger price adjustments. Consequently, imprecise estimates of 

core area flows through time at a given price level can cause inefficiencies in 

determining the correct shadow prices. Adding to the complexity of the problem is the 

nature of KW habitat that persists for five periods. The price for any given period affects 

at least four other periods. For example, raising the price in Period 21 could shift acres 

out of production in Period 16, even without adjusting the price in Period 16. Again, 

these phenomena highlight some of the difficulties involved in solving this problem. 

 
Figure 2.9: Core area production over time for select trials. 
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Discussion and Conclusions 

Singularity and Strengths of the Heuristic 

This heuristic herein described is distinct from random-search based heuristics. Other 

heuristic and meta-heuristic methods start with a randomly generated initial solution and 

seek ways to improve it (for example, the cellular automaton meta-heuristic described by 

Heinonen and Pukkala (2007) initiates with a random solution). The heuristic described 

above starts with an exact solution method and modifies it in order to generate a 

computationally-feasible solution. It is not an algorithm, as is branch-and-bound, simply 

because it cannot guarantee an exact solution when exactly executed, and the quality of 

the solution is sensitive to the parameter values chosen by the modeler. Yet, the 

heuristic is capable of identifying an optimal solution, which is proven in Table 2.4 where 

multiple window formulations in some subdivisions match the optimal solution found with 

a single window. In larger problems, near-optimal solutions are identified by selecting 

common components of alternate window direction and size formulations after several 

formulations are solved (see Figure 2.8). Another strength of the heuristic is the time 

savings that may be realized when parameter settings are set efficiently. Again, Figure 

2.8 indicates substantial time savings found with some parameter settings that do not 

greatly compromise the quality of the solution. In this figure, the shortest solution time is 

just under seven minutes, compared to the optimal solution, which was found in 232 

minutes. This translates into a 97% reduction in solution time associated with a nearly 

4% reduction in core area value and 0.14% reduction in overall value. Arguably, this is a 

valuable trade-off to consider when considering the time budget allowed for problem 

solution. 

It is difficult to extrapolate these findings to general recommendations for parameter 

settings with confidence, although as stated earlier, there were some patterns that 

emerged in this particular study. To reiterate, fewer than 7 management options failed to 

yield superior results regardless of θ/δ acceptance levels and window size. A θ/δ level of 

4/6 seemed to balance solution quality with solution time. Finally, since initial windows 

sizes greater than 100,000 seldom produced superior solutions, an initial window size 

between 30,000 and 100,000 might be considered. While these parameter settings 

performed well when applied to this particular forest management problem, the problem 

did represent some diversity in forest conditions, i.e., the subdivisions. Subdivisions 
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varied in size, complexity and existing vegetation conditions such as cover type and age 

distributions. The performance of parameter setting values, therefore, may be 

interpreted as being valid for a wide range of subdivision sizes and initial conditions, 

which in turn may translate well to other forest management problems. 

While perhaps not unique to this study, the presence of other constraints and the 

dynamics of the patch duration this study add a level of complexity. The approach 

presented in this study is similar to those such as Ohman and Lamas (2003) where 

harvest activities are clustered to realize economic efficiencies of scale from spatially 

coordinated harvesting activities. However, it differs in several key areas that make the 

problem more complex. First, there are more non-spatial constraints to consider, such as 

the cover type and size class constraints in Table 2.1. Also, the clustering activity 

persists over several different time periods, which means that a single stand can 

conceivably be clustered with different stands depending on the time period. This 

phenomenon indicates the third key difference, which is that the habitat is allowed to 

move dynamically across the landscape through time. That is, so long as the core area 

constraint is satisfied, the design of the habitat might take the form of either a “crawling 

amoeba”, where a single patch grows and changes shape and location through time, or 

it might consist of spatially distinct patches that are created and then disappear through 

time. In a historical context, one might have expected habitat to mimic the spatially 

distinct patches that originate and disappear in large blocks since they were created by 

wildfire. In practice, the solution will likely be implemented with a combination of these 

two possibilities. The spatial context of these patches in relation to other patches is an 

aspect of this study that is not explicitly explored, however. Donner, Ribic, and Probst 

(2010) found that larger, non-isolated patches were associated with earlier colonization 

and later abandonment, and birds may occupy relatively small patches if these patches 

are positioned in larger complexes of suitable habitat. Similar spatial concerns may arise 

when considering the year-over-year colonization patterns that require birds to locate 

suitable breeding habitat after seasonal migrations. It may be beneficial to design current 

habitat with good spatial proximity to suitable habitat from the year before. 

Future Improvements 

Additional study into the benefits of pre-processing could uncover greater efficiencies in 

the solution method. If each subdivision were analyzed for the possibility of finding an 
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exact solution with analysis of the problem size in each window direction, more 

subdivisions might be solved in a single DP formulation. For example, one might vary 

the allowable window size for each subdivision. If the default window size was 100,000 

nodes, but a subdivision could be solved exactly with a window size of one million 

nodes, one might allow the one million node formulation, thus saving computational time 

in subsequent trials. However, if another subdivision was billions or trillions of nodes 

wide, one might use a more conservative maximum node limit (such as 30,000) to solve 

the problem quickly from varying window directions before accepting solutions for certain 

stands.  

The heuristic described above allows for more exploration into what makes the “hard 

areas” difficult to solve. One can easily pare down the problem to the most difficult spots 

to examine by identifying those areas that do not solve exactly and that have differing 

solutions depending on the window size and direction. For instance, subdivision 26 in 

Table 2.4 does not find an optimal solution with a 10,000 node limit, but solves rather 

easily when the window size is increased because it can be solved exactly when the 

maximum state-per-stage limit is increased to 47,000 nodes. It could be enlightening to 

study in detail the nature of the subdivision 26 formulation and determine why it is 

consistently wrong for all 8 window directions at the 10,000 node limit. 

Finally, the management option trimming routine that employs equation (2.5) has a 

potential weakness in that it eliminates the management options for some stands that 

are included in the optimal solution (e.g., in Figure 2.8, even including the best 13 

management options does not allow the DP to find the optimal solution). Even with a 

follow-up hill climb heuristic search, the optimal solution was not identified. This outcome 

could mean that the DP never has the opportunity to identify the global optimal solution 

due to weaknesses in the pre-processing trimming routine. Stronger trimming rules that 

increase the likelihood of including the optimal management option and eliminate more 

non-optimal options for each stand would allow the DP to find better solutions with 

shorter solution times. Development of a more robust trimming routine is the subject of 

the next Chapter.  
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Chapter 3 : Selecting an Efficient Set of Management Options for 

Large Spatial Forest Management Problems 
 

Introduction 

One of the earlier studies in optimization techniques to solve forest management 

problems, Johnson and Scheurman (1977) posed this question of the US Forest 

Service: 

 “Has lack of consideration of all possible activities significantly influenced their results?” 

In the nearly forty years that have passed since this study was published, the 

fundamental conundrum remains: If too many management options are excluded from 

consideration, will the quality of the solution be compromised? Forest management 

problems are often addressed with mathematical programming techniques that select a 

management strategy for each stand to satisfy the objectives of the larger forest, and 

often include a time horizon comprised of multiple decades. Forest objectives may 

include timber harvest volumes, age class distribution, species composition or spatial 

arrangement. The basic building blocks of a forest management problem are the stands 

and the management options available for each stand. Management options in forestry 

include not only silvicultural prescriptions (e.g., thinning, clearcut, shelterwood harvest, 

etc.), but the timing of those options (including subsequent activities other than the first), 

and the resulting regeneration activity (including conversions to different species). One 

difficulty managers often encounter, however, is that the inclusion of more management 

options can result in larger problem formulations, which can in turn cause computational 

limitations when solving those problems. Studies that include spatial objectives such as 

adjacency constraints and core area scheduling have introduced combinatorial 

complexities to the mathematical problem formulation, which results in further 

complications in finding solutions with exact methods. Large spatially-explicit problem 

formulations were largely responsible for the meta-heuristic movement in forest 

management (Baskent & Keles, 2005), where solution approximation techniques were 

employed rather than exact methods.  

Recent studies in spatial forest planning, however, have returned to finding solutions 

with exact methods. Particularly, Integer Programming solved with the branch-and-
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bound algorithm is the tool of choice for recent studies that evaluate problems such as 

the Area Restriction Model for adjacency (Goycoolea M. , Murray, Vielma, & Weintraub, 

2009), minimizing harvest area perimeters (Ohman & Eriksson, 2010), or core area 

production (Wei & Hoganson, 2007). In addition to the branch-and-bound algorithm, 

branch-and-price has also been shown useful for solving larger Integer Programming 

problems involving adjacency constraints (Martins, Alvelos, & Constantino, 2012), and 

has shown promise in reducing the computational time required to solve such problems. 

However, the issue of problem size is still a limiting factor with exact solution methods. 

Some studies describe the difficulties in solving exact problems due to the problem size. 

Goycoolea et al. (2005) noted the difficulties in solving problems with increased planning 

periods. Martins, Alvelos, and Constantino (2012) cited difficulties formulating the 

problem when the number of stands is too large. They also encountered instances 

where the branch-and-bound algorithm could not identify an optimal solution. Goycoolea 

et al., (2009) encountered difficulties finding a feasible solution when green-up 

constraints were imposed. Again, the number of time periods (which is correlated with 

the number of management options per stand) caused difficulties in finding solutions. 

They suggest investment in the development of advanced pre-processing schemes 

could allow more efficient problem formulations.  

Pre-processing has been used to formulate problems that address spatial concerns. For 

example, a study by McDill and Braze (2000) evaluated many studies that were 

concerned with efficient adjacency constraint formulations. They determined that some 

formulations consistently solved faster than others. Therefore, pre-processing to 

construct an efficient problem formulation could result in solution time savings. Another 

study that evaluated pre-processing opportunities was Wei and Hoganson (2008). This 

study evaluated opportunities to simplify a spatial forest management problem that 

involved small areas of the forest with large spatial complexities, where where many 

stand interactions occurred. The trade-offs in solution time and solution value were 

shown when small but complex areas were ignored in the problem formulation. 

Examples of pre-processing to eliminate illogical or substandard management options 

are less common. Hoganson, Bixby, and Bergmann (2003) and Bixby (2006) introduce 

the concept of a “Treatment Trimmer” with the objective of paring down the number of 

management options necessary to evaluate in a forest management problem 
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formulation. For a spatial management problem, Bixby (2006) describes two 

opportunities for trimming. The study is based on a management objective to create 

patches of core older forest. The first trimming opportunity occurs when a management 

option that defined potential core older forest (spatial management option) was less 

valuable than a management option that did not. In this instance, the spatial 

management option could be eliminated from consideration, or trimmed. The second 

opportunity occurred if there were two spatial management options with overlapping 

periods of core older forest production. If one option produces core area in at least the 

same time periods as the other had a higher value, the management option with fewer 

periods of core older forest production could be trimmed.  

 

Objectives 

This study seeks to develop and evaluate pre-processing routines aimed at paring down 

the number of management options to include in forest management problem 

formulations. If many options could be evaluated cheaply and effectively before the 

problem is formulated, more concise problem formulations could be constructed that 

solved with increased speeds. The premise of this study is this: If one could identify a 

limited subset of the full suite of management options that contained the optimal 

solution, then (a) more management options could be analyzed before setting up the 

problem and (b) a larger problem could be formulated and solved with exact methods. A 

solution found with an exact method is preferred because it guarantees the selection of 

an optimal solution, whereas solution by heuristic methods cannot guarantee optimality. 

The study uses a real forest management problem faced by managers in the Upper 

Peninsula of Michigan, on the Hiawatha National Forest. Within the past two decades, 

the endangered Kirtland’s warbler (Setophaga kirtlandii) has successfully utilized 

breeding habitat within the National Forest. Suitable Kirtland’s warbler (KW) breeding 

habitat consists of 6-16 year old jack pine (Pinus banksiana) in larger patches (80+ 

acres) (USDA Forest Service, 2006). The short-lived nature of the habitat, and the 

spatial context of its location, combined with the Forest Plan’s desired conditions for 

many different cover types, results in a complex spatial management problem with many 

different management options per stand. The problem was formulated with a 60-year 

planning horizon consisting of 30 two-year time periods. The 10-year duration of KW 
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habitat meant that its duration lasted 5 time periods, a phenomenon that could be 

exploited when designing habitat in neighboring stands. That is, there was quite a bit of 

timing flexibility that maintained at least some temporal overlap in KW habitat even when 

habitat is not created during the same 2-year planning period.  

Dynamic programming (DP) was the solution technique used to help address the KW 

problem on the Hiawatha National Forest. The KW problem is similar to studies that 

have addressed old forest conditions designed in large patches. One main objective of 

the study is to create KW habitat in large patches on the landscape. The difference with 

KW habitat is that it has a shorter duration (10 years) than mature forest and it should 

not be immediately regenerated due to its young (16 year old) age. Dynamic 

programming has been successfully used to address mature forest conditions on the 

Chippewa and Superior National Forests in Minnesota (Hoganson, Bixby, & Bergmann, 

2003), (Wei & Hoganson, 2007). In these studies, forest wide constraints for desired 

condition were modeled in addition to core area of mature forest. The amount of mature 

forest was not explicitly constrained, but it was given a value. Core area of mature forest 

was scheduled by the model for several different assumed values. The resulting 

schedules were then compared and presented as alternatives to forest managers. 

Another study by Wei and Hoganson (2008) searches for ways to speed the solution 

process of a DP formulated from incomplete overlapping subproblems called windows. 

The study presented below uses information presented in the Wei and Hoganson (2008) 

study to determine DP solver parameter values (window sizes) appropriate to address 

the KW problem. 

However, solving a DP problem of the magnitude presented by the KW problem is 

neither a quick nor a simple task. The number of management options per stand can 

markedly slow the process and cause inefficiencies in the resulting management 

schedules (for example, cost more than necessary). Therefore, significant effort was 

invested in developing and testing the pre-processing techniques presented in this 

study. 
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Methods 

Two trimming methods were developed and tested to identify management options to be 

included in a forest management problem formulation: “stand-based trimming” and “grid-

based building”. Stand-based trimming begins with a list of all management options and 

pares the list down to a desirable number stand-by-stand. Grid-based building segments 

the forest into predefined overlapping grid cells comprised of multiple stands. The builder 

then determines which stand-level management options are likely to be a part of the 

global optimal solution based on their performance in the context of each grid cell. These 

management options are added to a cache of options for each stand that in turn are 

used in the mathematical problem formulation. 

Both methods were based on the assumption that each management option could be 

evaluated in the context of forest-wide constraints, such as age class or cover type mix 

conditions of the overall forest. Marginal values (also known as “shadow prices”, “dual 

values”, or “Lagrange multipliers”) of forest wide constraints were used to evaluate 

management options at the stand level. Marginal values have long been recognized as a 

valuable output of mathematical programming models. Marginal value estimates of 

forest-wide constraints have been determined with linear programming (e.g., Ohman and 

Eriksson (2002) used them to solve a spatial forest problem), solving a dual formulation 

(Hoganson & Rose, 1984), and Lagrange multiplier search (Andalaft et al., (2003)). 

Paredes and Brodie (1989) suggest marginal values represent the public’s willingness-

to-pay for the societal and management requirements of the landscape and can be used 

to connect stand-level analysis with forest-level objectives. In the study presented here, 

marginal value estimates were derived with an iterative process described by Hoganson 

and Rose (1984). Once marginal values were estimated, the financial value of each 

management option (i.e., harvested wood value less management costs) is augmented 

by the marginal values of the constraints toward which they contribute. For example, if 

an option contributes to a minimum binding constraint, the value of the option is 

increased by the marginal value of that constraint. Conversely, an option that contributes 

to a binding maximum constraint (with a negative marginal value) will reduce the value of 

that management option according to the magnitude of marginal value. A management 

option may be affected by several different types of constraints, as in the case of an 
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even-aged harvest option in the context of a problem with a maximum constraint on 

young forest and a minimum constraint on timber volume.  

Once marginal value estimates are known, they can be applied to each management 

option to eliminate options that would not efficiently achieve the spatial objectives of the 

problem. The logic is described in detail in Hoganson, Bixby and Bergmann (2003) and 

Bixby (2006). To reiterate, there is a two-step logic sequence applied to each 

management option of each stand to evaluate its inclusion in the planning model. First, if 

crediting a management option for spatial benefits from all the stands with which it may 

produce core area cannot produce a value greater than the best non-spatial 

management option for the stand, it may be eliminated from consideration. Secondly, a 

management option may be eliminated if there exists another option with a higher value 

that schedules core area in at least the same time periods. 

Even with these trimming rules, however, there were often too many management 

options remaining to solve the problem in an exact or efficient manner (Wei & Hoganson, 

2008). Early trials of this KW management study indicated it could take several hours to 

determine an optimal solution using the full suite of possible management options. This 

is not a practical solution method in the context of a marginal value search heuristic. 

The two trimming methods described in this paper are newly developed methods. Stand-

based trimming extends the concepts described by Hoganson, Bixby and Bergmann 

(2003) and Bixby (2006) by trimming beyond the set of management options described 

in these studies. Grid-based building is an entirely new concept developed and tested 

the study presented here. Both methods use a forest-wide map layer of influence zones 

(see Bergmann (1999), and Hoganson, Bixby and Bergmann (2003)) as the basis for 

spatial information used in the trimming rules.  Each influence zone is an area that can 

produce core area, or an area sufficiently far from a forest edge (Ohman & Eriksson, 

1998), (Ohman, 2000).  Each influence zone is defined by the stands that interact to 

impact the entire area of the influence zone.  For this study, the dimension of an 

influence zone represents the number of stands that influence the zone in terms of KW 

core area production. For example, in Figure 3.1, the triangle may be sufficiently far from 

any edge to be an influence zone influenced by stands 1, 2, and 3. The zone is then 

labeled {1,2,3}, which has a dimension of three. Every influence zone is defined by a 

unique combination of stands. To determine whether this influence zone produces core 
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area in period t, the condition of every stand defining the stand would need to satisfy 

required conditions for KW core area. An influence zone is not necessarily contiguous, 

as all areas dependent on a specific combination of stands for KW core area production 

need not be contiguous. An influence zone with a dimension of one is within the interior 

of stand.  By definition, an influence zone with a dimension of one it is not influenced by 

other stands, so it is spatially independent in its potential to produce core area and the 

value of the zone can be included in the non-spatial value of the stand. Influence zones 

with a dimension greater than one are recognized explicitly in the DP formulations used 

to schedule core area spatially for this study.   

 
Figure 3.1: Influence zone of a three stand forest 

 

Stand-based Trimming 

Before a stand-based trimming heuristic was applied, the maximum value of 

management option d for stand i ( ) was estimated for all stands and their associated 

management options: 

 

Where: 
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Equation (3.1) estimates the maximum value of management option d for stand i ( ) as 

the sum of estimated non-spatial returns ( ) and estimated maximum core area value 

( ) in areas dependent on interactions between management decisions for stand i and 

its neighboring stands.  The estimated non-spatial returns ( ) represent the present net 

value of the non-spatial value of the management option, including the total value of net 

financial flows and all values associated with impacts on forest-wide constraints that are 

not dependent on how neighboring stands are managed. Included in ( ) but not 

expressed explicitly in the equations, are value estimates of impacts of option d for stand 

i on all forest-wide constraints that are spatially independent impacts. These forest-wide 

impacts are valued using the per unit marginal value/cost of the associated forest–wide 

constraint, represented by each associated marginal value estimate. These forest-wide 

impacts for option d for stand i would include the benefits from the one dimensional 

influence zone that may located within the interior of stand i and thus not influenced by 

the management options selected for nearby stands.  The maximum spatially dependent 

core area value ( ) is estimated in equation (3.2), using the estimated values of each 

influence zone with a dimension of two or more that is influenced by stand i. The 

maximum value of each influence zone for management option d for stand i ( ) is 

estimated in equation (3.3) assuming all stands impacting the influence zone  will 

have their management option (dj) selected to maximize the value of the influence zone 

assuming stand i is assigned to management option di.  Equation (3.3) uses , a zero-

one variable indicating whether management option d for the associated stand (j or i) 

meets core area condition requirements in period t.  Equation (3.3) also uses the size of 

the associated influence zones (az) and the shadow price estimates (st) for core area for 

each planning period t.  By comparing for each management option d to the 

maximum based only on nonspatial returns ( ), Hoganson, Bixby and Bergmann 

(2003) and Bixby (2006) trimmed management options that could not possibly be 

optimal management options for assumed values for core area. This trimming method 

was also utilized in this study.  Furthermore, was used in this study as a value metric 

to rank management options for each stand in a stand-based trimming heuristic. 

The application of equations (3.1), (3.2), and (3.3) can be demonstrated with Figure 3.2, 

which shows the full area of influence for stand 1. Stand 1 is a part of six different 

influence zones, one of which is displayed as the triangle at the top of the image. The full 
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area influenced by stand 1 is the large hexagon that surrounds stand 1. An example 

management option for stand 1 might be di = 11, or the first management option 

considered for stand 1. Assume this management option harvests the stand in period 1, 

which results in the potential for the stand to create core area in period 4. For simplicity, 

assume period 4 is the only period for which it potentially meets the core area constraint. 

The area of stand 1 is 1 unit, and the area of each influence zone ( ) is 0.5 units. The 

value of  is calculated based on the financial value and relevant marginal values of 

constraints the management option impacts. The financial value of harvesting the stand 

with management option 1 is $100. However, there is a forest-wide maximum constraint 

on the 0-2 age class that is valued at (-$10) per unit area, since there are many stands 

that would otherwise be harvested in period 1 and violate the constraint. The  value 

for management option 1 is therefore $90. To calculate  the value of  is determined 

next. The value of core area in period 4 ( ) is $10 per unit area. Stands 3, 4, and 5 all 

have a management option that can potentially create core area in period 4, but stands 

2, 7, and 6 to not. Therefore, = 1 for stand 1, = 1 for stands 3, 4, and 5 and 

= 0 for stands 2, 6, and 7. The value of  for influence zone {1,3,4} using 

equation (1) is $5 = 0.5 * 1* $10 * 1 (the value of each term in the equation is explicitly 

stated). The value of  for influence zone {1,4,5} is also $5, since it too can potentially 

managed for core area. None of the other four influence zones can be managed for core 

area, since they include one or more of stands 2, 6, and 7 which do not have a 

management option to create core area in period 4. Thus, the value of  is $10 = $5 + 

$5 + $0 + $0 + $0 + $0, explicitly stating the maximum potential value of all six influence 

zones. Finally, = $90 + $10, according to equation (3.1).  
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Figure 3.2: Example stand and associated area of influence 

The “stand-based trimming” heuristic was developed to further pare down the number of 

management options in any stand used in the full problem formulation. The heuristic was 

applied by setting a maximum number of management options α per stand allowed in 

the full formulation. The heuristic initiates by setting a value of α’ at one fewer than the 

maximum number of management options available to any stand. If a stand has more 

management options remaining than α’, the option with the lowest  is trimmed from 

the stand’s list of available options. That trimmed management option cannot then be 

used to calculate   when evaluating other stands whose influence zones include 

stand i. Once all stands are trimmed to a maximum α’, α’ is decreased by 1 and the 

process continues until α’ = α. 

Grid-based building 

Grid-based building is a new concept presented in this study, and was developed in 

response to some of the difficulties encountered with solving the KW management 

problem. Grid-based building is a three-step process. First, the forest is divided into a 

series of overlapping grid cells. Second, an optimization problem is formulated and 

solved heuristically for the stands within each cell. Finally, the best solutions to each cell 

are collected to formulate a global optimization problem to be solved with an exact 

solution method. Perhaps a more simplistic way to state the concept is that the land area 

is sliced into small pieces, and each piece is sliced further into points in time 

corresponding to the planning periods. Estimated marginal values of forest-wide 

constraints are used to evaluate each space/time slice in the context of the global 

problem, and the best solutions of each slice are used to identify the management 
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options to use in the larger, global problem formulation. Stands are a part of multiple 

slices, both temporally and spatially, and therefore have multiple opportunities to be a 

part of a good solution. 

 

Figure 3.3: Grid cell examples with differing cell size and overlap percentages. Two cells (top and bottom) 

are depicted in each image with an area of overlap in the center. (a) depicts a 1500 acre cells with 80% 
overlap; (b) shows 1000 acre cells with 75% overlap. 

The first step in the grid-based building heuristic is to define the basic grid cells to 

evaluate. Grid cells are constructed based on the desired size and the percentage 

overlap between grid cells. Several combinations of cell size and overlap percentage 

were tested to evaluate their strength in identifying the portion of a global optimal 

solution within each cell. Custom software was written to develop a processing routine to 

enumerate all possible grid cells for a forest meeting the cell size and overlap criteria. 

The basic cell shape was circular2, and overlap was considered in both the north-south 

and east-west directions of the forest. Cell circles were pre-drawn to correspond with the 

size and overlap parameter settings. Stands were then included in each cell if more than 

60 per cent of the area of a stand fell within the circle3. Figure 3.3 shows an example of 

two different cell sizes and overlap percentages in the north-south direction. Each map 

(a) and (b) shows stands in two overlapping grid cells (top and bottom), with the area in 

the center common to both cells. Map (a) depicts 1500 acre cells with an 80 per cent 

                                                           
2
 Circular-shaped grids were used simply because they represent a more compact patch shape 

than squares. 
3
 The 60% inclusion rule is perhaps arbitrary, but it is not critical to the success of the heuristic. A 

higher percentage rule would result in smaller cells and a smaller percentage inclusion rule would 
result in larger cells that could just as easily be approximated by defining a larger or smaller circle 
size. The 60% rule was applied consistently to all grid sizes tested. 
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overlap; (b) shows 1000 acre cells with a 75 per cent overlap. Each map would have 

similar overlapping patterns in the east-west direction as well (not shown).  

As a final refinement in identifying stands in grid cells, stands were eliminated if they 

were incapable of producing core area. Some stands, due to their situation on sites not 

capable of even growing jack pine, could be eliminated from the grid because they had 

no available management options to create core area. Other stands were isolated and 

small and were not spatially situated with other stands capable of producing core area. 

In both cases, these stands were not included in any grid.  

The second step of grid-based building is to solve an optimization problem for each grid 

cell. The solution method used for this study resembles a hill-climb heuristic (Laguna, 

2002). The hill-climb heuristic initiates with a solution comprised of a selected 

management option for each stand. Each stand is analyzed with a local search for 

improvement (i.e., does a different management option improve the overall value of the 

cell?). If a different management option for a stand other than the initially selected one 

can improve the value of the cell, the stand’s selected management option is updated to 

the one that creates the higher value. The process continues through all stands until 

there are no more readily identified improvements, i.e., the top of the hill is reached. The 

weakness of the heuristic is that in a solution space with multiple hills, there is no 

guarantee the highest hill was ascended (the highest hill would be the optimal solution). 

The heuristic specific this study initially assigns a chosen management option (di) for 

each stand in the grid cell, based on the current time slice being evaluated in the cell. A 

modified version of equation (3.3) was developed to evaluate the value of management 

options other than the initially assigned option. The modification is that rather than 

assuming decision d for stand j can be chosen to maximize , the dj values have 

already been determined (with either the first selected management option, or the or an 

option resulting from a previous iteration). Equation (3.1) using the modified Equation 

(3.3) is then applied to each management option of each stand in the cell to see if a 

different management option increases the overall objective function value within the 

grid cell (i.e., the management option with the highest value  is selected). If a better 

solution (management option) was found for a stand, it was accepted and the next stand 

was evaluated in the same manner. The process continued until no better solution could 

be determined by changing a management option for any stand in the cell.  
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The heuristic was refined with a series of tests and trials to strengthen its performance. 

These tests generally varied the initially assigned management options and the number 

and types of hill climb heuristics applied in each cell. The solutions identified with each 

test were compared with an optimal solution of the problem (derived by solving a 

dynamic programming problem) to evaluate the strengths of the parameters of that test. 

These tests are not explicitly discussed here, but rather the final outcome is presented. 

The resulting heuristic used to solve each grid cell is depicted in Figure 3.4 and 

described in detail below. Briefly, within each grid cell, the largest feasible patch is 

identified in each planning period. The patch is comprised of stands with management 

options that initiate the patch in that period. A series of two hill-climb trials were then 

applied; one that sought to add KW value to those patches by adding more area (by 

selecting stands that originated KW patches in a different period) and a second one that 

sought to add overall value (including both financial and marginal value of constraints) 

by either adding or eliminating KW options from the current solution. 

Figure 3.4 shows the grid-based building heuristic used to determine good treatment 

options for each stand. It initiates in the first grid cell g with period t set to 0. For each 

period in the planning horizon, t is increased by 1, and the stands that have a 

management option that creates habitat that originates in period t are initiated with that 

schedule. For example, a stand with two management options, one that creates habitat 

from periods 4-8 and the other from 5-9, would be assigned the first when t=4 and the 

second when t=5. This group of stands that create habitat all at the same time in period t 

is termed the “parent” patch. The initial tests of the heuristic assigned stands that did not 

have a management option that created habitat originating in period t to the highest-

valued non-spatial option. However, the parent patch initiation rule was not strong 

enough by itself to identify the best management options in a grid, and the concept of 

“child” patch (groups of stands not part of the parent patch, but that can begin habitat in 

a different period) was developed to overcome these shortcomings. Observations of the 

spatial pattern of the optimal solution indicated that a patch could have temporal 

variation that required analysis beyond the parent patch alone.  
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As an example, Figure 3.5 shows two different planning periods of an optimal solution. 

Period (a) shows three disjointed patches. By Period (b) they are connected by the patch 

indicated by the circle. If only the patch originating in Period (b) was evaluated, the 

heuristic would potentially misidentify the optimal solution for the grid by missing the 

Figure 3.4: Grid-based building heuristic 
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spatial interaction with patches that originated in Period (a). In other words, evaluating 

the Period (b) patch (within the circle) alone would miss the spatial interaction with the 

other two patches shown in (a). Therefore, stands in a grid not included in the parent 

patch for period t are searched to determine alternate management option timings that 

overlap temporally with the parent patch. Stands initially assigned the alternate timing 

management option form the child patch. In the problem evaluated in this study, a 

patch’s duration was 5 periods, and a one-way search in time through 4 previous periods 

was used to create child patches with alternate timing options for other stands in the 

grid. A one-way search back through time rather than a two-way search (back and 

forward) was used to reduce redundant analyses. For example, a forward search from 

Period (a) in Figure 3.5 would identify the situation in Period (b), but a backward search 

from Period (b) would then identify the same situation and be redundant.  

Timing choices for alternate patch creation in period t were used to construct child 

patches in periods c in the grid-based heuristic. The value of c is initially set to 1 and 

then decreased to 0 in the first iteration to ensure the parent patch is evaluated by itself. 

The value of c is then decreased until all potential periods of spatial overlap with the 

parent patch are evaluated. If a stand in the grid has a management option that creates 

habitat initially in period c it is assigned that option for the initial hill climb searches.  

 
Figure 3.5: Patch dynamics in successive planning periods (a) and (b). The patch originating in period (b) 

indicated by the circle connects the patches in (a) which originate in an earlier period. 
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The grid-based building heuristic then proceeds through a series of two hill-climb 

heuristic searches to find the maximum net present value of the cell using management 

options that initiate habitat in period t. A hill-climb heuristic begins with a stand’s 

assumed management option m and evaluates the other options in the context of the 

stands with which it shares influence zones. If management option n results in a higher 

value, the stand’s assumed option is updated to n. The heuristic then moves to the next 

stand, and the search continues until no better options can be identified. 

The first hill-climb search holds the management options of stands associated with 

period t or c constant and searches management options for other stands in the grid cell 

that increase the overall value of the cell. An example of this may be when (c = t -2), and 

a stand that has a management option for (c = t -3) and not (c = t -2) increases the value 

of the grid. The second hill-climb begins with the solution to the first hill-climb and allows 

either additions or subtractions to the patch in the current solution. The grid-based 

building heuristic terminates when all periods of all grid cells have been evaluated. 

The third step in grid-based building was to identify the spatial solutions to use in the full-

forest problem formulation. In each grid cell, the t/c combination that produced the best 

value was identified for each period t. That t/c combination value was then compared to 

the best non-spatial solution value for the cell. If the value of the spatial solution was 

lower than the value of the best non-spatial solution, the spatial solution was eliminated 

from further consideration4.  

The spatial solutions retained in each grid cell (there could be multiple periods t that had 

spatial solutions better than the best non-spatial solution) were then ranked by per-acre 

value of the entire cell. Per-acre value was calculated as the value of the solution divided 

by the area of the stands in the cell. The highest (best) value was then used to calculate 

the “inferiority value” associated with other periods. An inferiority value measures how 

much less than the best cell solution an alternative management strategy is worth. For 

example, if the best solution was valued at $100 per acre, and another solution was 

valued at $90 per acre, the inferior solution would have an inferiority value of $10. In 

application, the best solution was assigned inferiority value of $0 and the other periods 

                                                           
4
 Programmatically, it is possible for the heuristic to pare down an inferior spatial solution for a 

period t in cell g to the best non-spatial solution. Tests showed this was not always the case (i.e., 
the hill-climb heuristic is limited), and therefore, the best spatial solution was always compared to 
the best non-spatial solution to filter out poor spatial solutions.  
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were assigned a value that represented the per-acre loss associated with that period 

($10 in the example). The per-acre inferiority value was retained by associating the 

value with the stand-level management options in the cell’s solution. For instance, stand 

i management option d might result in the second-best solution for grid cell g with an 

inferiority value of $0.25/acre. These ranking rules were applied to all cells, and if a 

stand’s management option was associated with a better ordinal and/or per-acre value, it 

was modified appropriately. To revisit stand i management option d in cell g, if in cell g’, 

d was part of the best solution for cell g’, d’s inferiority value was updated to $0. 

Finally, once all grid cells were processed, the values of each stand’s management 

options were ranked by ordinal position relative to the inferiority values of only that 

stand’s management options. Management options with an inferiority value of $0 were 

given an ordinal stand option rank of “1”. It was possible for several management 

options for a stand to attain this rank since a stand was generally within several of the 

overlapping grid cells and different management options for the stand could be part of 

best solution found for different cells. If a stand had more than 1 management option 

with inferiority values of $0, the second-best option was given a rank of the next 

available position. For instance, if two management options had a value of $0, they 

would both rank 1, and the second-best would rank 3. Two metrics (inferiority value in a 

cell, and ordinal position in the stand’s management options) were used as parameters 

for selecting management options to include in the model formulation of the larger KW 

problem. 

Test Scenarios 

A series of tests was conducted to evaluate the strength of each heuristic and how it is 

best applied to the larger problem formulation. Three optimal solutions for the larger 

problem formulation were determined at different spatial constraint levels. The stand-

based trimming heuristic was tested by varying the maximum number of management 

options per stand used in the DP formulation. The grid-based building heuristic was 

tested by varying the grid cell size and overlap percentages. For each size and overlap 

combination, the inferiority value and ordinal rank were identified that ensured all stand-

specific management options in the optimal solution were included in the model 

formulation of the larger KW problem.  
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There were three optimal solutions determined to evaluate the stand-based trimmer and 

grid-based builder. The three problems represented a range of problem formulations and 

solution stages one might typically encounter in solving the KW habitat problem. All of 

them included shadow price estimates for both KW core area (Figure 3.6) and other 

forest-wide constraints such as old red pine maximum area of regeneration. The 

marginal values for the 3500 and 4500 scenarios in Figure 3.6 are cyclical in nature due 

to the five-year persistence of habitat on the landscape. The current landscape condition 

has a preponderance of habitat that leaves suitability in a relatively abrupt manner 

fourteen years in the future. Therefore, another “pulse” of habitat must be created to 

supplant the current habitat, which results in relatively high marginal values in periods 7 

and 8. This habitat, in turn, leaves suitability around period 15, which results in the need 

for another pulse. The trend continues through the planning horizon, and peaks in 

marginal value for habitat occur approximately every ten years. The three optimal 

solutions that were tested were as follows: 

1. 4500 Constraint: This problem formulation had a core area constraint of 4500 

acres per time period. The formulation tested an intermediate solution where 

core area shadow prices were close to, but not fully discerned, prices that would 

produce a feasible solution. The resulting core area levels in the optimal solution 

for these price levels ranged from 2200 acres to 8000 acres. The formulation is 

typical of an analysis one might conduct part way through a Lagrange multiplier 

search routine.  

2. 3500 Constraint: This problem formulation had a core area constraint of 3500 

acres per time period. Prices were refined to the point where the solution was 

nearly feasible, that is, core area was approximately (but not exactly) 3500 acres 

in all time periods (2977-4346 acres, with an average of 3583). This formulation 

represents a typical analysis one could conduct toward the end of a Lagrange 

multiplier search, when the multipliers yield near-feasible solutions to the primal 

problem.  

3. 231 Price: This test was constructed to mimic an analysis that reflects a measure 

of society’s willingness-to-pay for a forest’s marginal social benefit (Paredes & 

Brodie, 1989). In this case, the benefit was Kirtland’s warbler habitat. It is unclear 

whether social benefit would change or hold constant if habitat or overall KW 

population is in relative short supply or over-abundance, but the per-acre value of 
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habitat is likely to decline as overall habitat or population increases. This test 

represents a scenario where the value is held constant. The price may or may 

not represent actual marginal social benefit, but is used to mimic an analysis that 

might seek to use such a value. The price was set at $231 per acre for each time 

period, which was derived as an average of the prices used in the 4500 

Constraint problem formulation. The range of core area acres in the solution is 

more varied; from a low of about 1500 acres to a high of over 19,000 acres. 

Overall, the intent of the test is to add to the diversity of management strategies 

used to evaluate the strength of the two heuristics. 

The tests were conducted on a 174,500 acre portion of the Hiawatha National Forest in 

Michigan’s Upper Peninsula. The spatial objective of the problem was to create large 

patches of age 6-16 jack pine (Pinus banksiana) with stocking densities suitable for the 

Kirtland’s warbler (Setophaga kirtlandii). This was accomplished by setting acre targets 

or financial value for core area habitat. The time horizon for the planning problem was 30 

two-year time periods. Stands were given up to 28 management options apiece, 

corresponding to the time period in which they would be harvested and contribute to the 

spatial objectives of the problem. Twenty eight was the maximum simply because the 

window for harvesting jack pine is naturally limited: age 45-70 (corresponding to 

culmination of mean annual increment and the age at which the trees typically are 

susceptible to the jack pine budworm). Also included was a series of timing choices for 

second-entry harvests (age 48-52), as well as options to convert existing habitat stands 

to non-habitat stands toward the end of the planning horizon (to allow the model 

flexibility to improve inferior habitat designs currently on the landscape). Finally, other 

cover types such as red pine were allowed treatment options for conversion to habitat. 

Figure 3.7 shows the distribution of the number of KW management options considered 

for the 3927 stands in the 4500 Constraint problem (cumulative across all subforests). 

All 3927 stands had at least one potential KW management option. 
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Figure 3.6: Undiscounted shadow prices used in the three scenarios 

 
Figure 3.7: Management Options for Stands in Forest 

Results were evaluated for each of four spatially-distinct subforests that represented a 

range of starting conditions. The four subforests are depicted in Figure 3.8. The sizes of 

the subforests range from 13,562 acres (1035 stands) in subforest 1 to 88,456 acres 

(6107 stands) in subforest 4. subforests 2 and 3 are 26,116 acres (1749 stands) and 

46,674 acres (3416 stands) respectively. Non-colored areas are either sites not suited 

for jack pine (such as rich soil sites better suited to hardwoods), non-forest (such as 

roads and lakes), or non-National Forest.  
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Five grid cell sizes and five overlap percentages were used to test the grid-based 

building heuristic. Grid cell sizes ranged from 750 acres to 2000 acres and the overlap 

percentage ranged from 60% to 80%5. Figure 3.9 shows the number of grid cells that 

result from different grid design parameter settings. Generally, the number of cells 

increases exponentially by increasing the percentage overlap. Smaller cell sizes create 

more cells to evaluate at the same level of overlap. Design considerations are important 

because intermediate tests of this study showed that smaller cells are evaluated more 

quickly than larger cells (there are fewer hill-climb searches to conduct in each cell) and 

the overall number of cells is positively correlated with evaluation time.  

 
Figure 3.8: Subforests used to evaluate management option rules. Shaded areas represent the portion of 

the forest in the analysis. Future Habitat is expected future habitat younger than 6 years old. KW Habitat is 
current KW breeding habitat. 

                                                           
5
 Mathematically, circular grids require at least a 19% overlap to ensure full coverage of the area. 
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Figure 3.9: Grid cells resulting from varying grid design parameters 

The quality of the heuristics and parameter settings are compared based on how well 

they identify the management options associated with optimal solution as well as how 

many management options are used in the DP problem formulation. The results of each 

heuristic’s parameter settings were then used to formulate and solve the DP problem. 

The quality of solution and the time require to solve the DP are also presented in the 

Results section. Tests were executed on a Hewlett-Packard machine with Intel Core 2 

vPro Processor using the Windows XP Operating system. 

 

Results 

The grid-based builder outperformed the stand-based trimmer in identifying the optimal 

solution and resulted in superior dynamic programming problem formulations and 

shorter solution times. None of the stand-based trimming trials were able to include the 

optimal management option for every stand in the DP formulation. Conversely, many of 

the grid-based building trials included all optimal management options while 

simultaneously filtering out more non-optimal management options than the stand-based 

trimming, resulting in leaner problem formulations. The leaner formulations not only 

resulted in identifying the optimal solution, but found it with increased speed. 
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Solution speed is an important consideration in this exercise, since multiple iterations of 

the DP formulation are required in the context of a larger Lagrange multiplier search 

routine used to ultimately solve the management problem. The solution time for the DP 

formulation was highly correlated with the number of management options in the 

formulation since the maximum formulation size was held constant (Figure 3.10). The 

correlation is not 100% since the actual size of the problem and solution time is 

dependent on areas of the forest that have influence zones with many management 

option combinations (Wei & Hoganson, 2008). However, the high correlation allows 

trimming efficacy to be quickly evaluated by quantifying the number of prescriptions that 

are used in the DP problem formulation. Trimming rules that eliminate more 

management options without eliminating optimal management options can be 

interpreted as superior. In a side note, the parameter settings for the DP solver were 

held constant for all trials to facilitate an unbiased time-to-solve analysis (see Wei and 

Hoganson (2008) for a discussion of the window size parameter settings of the DP 

solver). Increasing the maximum allowable DP formulation setting would have yielded 

better solutions in some of the tests, but would have required additional time to solve.  

 
Figure 3.10: Management options used in DP-based heuristic vs. solution time. Points were compiled from 

all stand-based trimming and grid-based building tests portrayed in these results (48 points) 

Stand-based Trimming Results 

Results of the stand-based trimmer are summarized in Table 3.1. This table identifies 

the number of stands where the trimmer did not identify the management option 
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associated with the optimal solution in the DP formulation (the second column) as well 

as the number of stands in the solution that did not match the optimal solution (the third 

column). The fourth and fifth columns identify solution inferiority gaps. The fourth 

column, “Obj. Ftn. Inferiority Gap”, shows the deficiency percentage of the solution 

measured against the DP objective function of the optimal solution. The fifth column, 

“Core Area Inferiority Gap”, measures the deficiency percentage of the core area value 

of the solution measured against the core area value of the optimal solution (the second 

term of Equation (3.1), adjusted to include only the core area within each stand and 

summed across all stands in the forest). The Core Area Inferiority Gap is included to 

show that while the overall value of the objective function may be close to optimum, the 

core area value may be departed by a relatively large amount (see 3500 Constraint - 

Trim to 7 Rx, which is within 0.02% of optimal, yet more than 6% departed in the 

estimated value of the KW habitat produced). Finally, the total number of management 

options used in the DP formulation is shown in the sixth column. Again, one can quickly 

evaluate this column to infer information about the solution time (shown in the final 

column)6. The solution time does not include the time required to execute the stand-

based trimming procedure, which is minor and generally takes less than a minute of 

computing time. Trimming more management options takes more time than trimming 

fewer. 

There are a few observations of stand-based trimming worth noting. First, all of the 

evaluated trim trials eliminate the optimal management option from at least as few 

stands, which in turn does not allow the solver to identify the optimal solution. The 

number of stands that miss the optimal management option (column 3) in the solution 

appears to be correlated with the number of stand-optimal management options missed 

in the initial formulation (column 2). This is not always the case, as the 4500 Constraint 

Trim to 15 Rx attempt fared worse than the Trim to 13 Rx attempt. However, this 

anomaly can be explained by a second observation, which is the problem becomes 

more difficult to solve with a more complex formulation (more included management 

options). The solver settings used in the DP, which allow the DP to find the optimal 

solution for smaller problems, are too restrictive to allow the DP to solve the more 

                                                           
6
 Solution times for the optimal solution are not shown because they required more stringent 

parameter settings, which resulted in long solution times that cannot be meaningfully compared to 
the other times in this table. 
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complex problem. A more thorough search similar to the one used in finding the optimal 

solutions would likely identify a better solution for the Trim to 15 Rx attempts. Finally, it is 

readily apparent that in order to include all optimal management options for all stands 

would result in a problem size (and solution time) similar to the “No Trim” problem size 

(compare the Total Rx Passed to DP for the 15 Rx trials with those from the “No Trim” 

trials). Ultimately, stand-based trimming as defined in this study is capable of producing 

solutions close to optimal in a reduced amount of time, but does not identify optimal 

solutions. 

Table 3.1: Stand-based trimming results, including stands without optimal prescription passed to the DP 

initially, and solution inferiority gaps in overall and spatial value. 

 

Grid-based Building Results 

Results of the grid-based builder are shown in Table 3.2. The table is an aggregation of 

information derived from all four subforests depicted in Figure 3.8. The first two columns 

of Table 3.2 show the grid cell design: cell size and the percentage overlap of the grid 

cells. The third column shows the pre-processing time required to evaluate the grids and 

Trim To Rx

Initial Stands 

with Missed 

Optimal Rx

Solution Stands 

with Missed 

Optimal Rx

Obj. Ftn.  

Inferiority 

Gap

Core Area 

Inferiority 

Gap

Total Rx 

Passed to DP

DP 

Solution 

Time (m)

7 156 272 0.097% 2.40% 26078 12.1

9 99 229 0.068% 0.71% 31055 13.9

11 61 182 0.058% 2.13% 35777 18.1

13 33 89 0.012% 0.59% 39393 23.4

15 16 116 0.027% 0.62% 42145 22.4

No Trim 0 0 0% 0% 47921 *

7 55 119 0.021% 6.38% 20839 9.2

9 39 133 0.017% 5.06% 24599 11.0

11 25 86 0.012% 4.27% 27888 13.0

13 15 85 0.002% 3.93% 30778 13.7

15 8 107 0.011% 8.07% 32555 20.5

No Trim 0 0 0% 0% 36316 *

4 123 316 0.043% 1.76% 23435 9.4

9 67 213 0.024% 1.27% 27780 11.7

11 38 197 0.017% 0.47% 31472 14.9

13 24 160 0.009% 0.94% 34677 17.1

15 9 136 0.006% 1.22% 37041 21.0

No Trim 0 0 0% 0% 41308 *

4500 Constraint

3500 Constraint

Price 231
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the fourth column is the time required to solve the resulting DP formulation. The fifth 

column represents the total time required to solve the problem. In instances where the 

builder failed to identify the management option associated with the optimal solution in 

the DP formulation, the sixth column shows a positive number.  

Table 3.2 also shows information useful for developing strategies for including 

management options in the forest-wide analyses. Max Stand Rx (column 7) indicates the 

maximum rank of any optimal stand management option for the corresponding grid cell 

size and grid cell overlap. The Inferiority Value (column 8) is the maximum per-acre 

value (in dollars) from any grid cell that must be allowed in order to include all optimal 

management options. These two metrics can be used together to pare down the number 

of management options necessary in the problem formulation. For example, the second 

line of the table shows the 2000 acre grid at 65% overlap. All optimal management 

options are captured at the 8th or better ordinal rank or an inferiority value less than 

$6.50. Therefore, it is prudent to require a management option to rank 8th or better and 

have an inferiority value less than or equal to $6.50 to be included in the full problem 

formulation. Requiring both metrics to be satisfied would eliminate a management option 

that had an inferiority value of $5.00 with a rank of 10 or one that had an inferiority value 

of $7.00 and a rank of 6. The last column shows the total number of management 

options used in the DP formulation when the two metrics are used in combination.  

There are several observations about grid-based building worth noting. Primarily, the 

heuristic out-performs stand-based trimming in both ability to include all optimal 

prescriptions in the DP formulation and the ability to reduce the number of management 

options used in the DP formulation. In those tests that were fully evaluated7, the largest 

number of missed prescriptions was four; in the 4500 Constraint 1000 acre grid with 

65% overlap. However, even this grid test still outperformed the best stand-based 

trimming tests (Table 3.1) in both including optimal management options and minimizing 

total options used in the DP formulation. The DP solution times by themselves were 

generally shorter than the solution times resulting from the stand-based trimmer, which 

again is likely due to the reduced number of management options used in the 

formulation.   

                                                           
7
 Not all combinations were evaluated due to poor performance at other constraint levels. For 

example, the 750 acre grids did not identify the optimal solution at the 3500 Constraint level, so 
were not evaluated at the 4500 Constraint level. 
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Table 3.2: Grid-based building test results 

 

Cell size

Overlap 

%

Grid 

Build 

Time (m)

DP 

Solution 

Time (m) Total Time

Initial Stands 

with Missed 

Optimal Rx

Max Stand 

Rx

Inferiority 

Value 

($US/ac)

Total Rx 

Passed to 

DP

No Trimming 28 47921

2000 65 11.2 7.55 18.75 8 $6.50 18604

2000 75 21.19 8.4 29.59 9 $5.85 19519

1500 60 7 15 22 17 $16.17 27111

1500 65 9.2 2.41 11.61 6 $2.40 10864

1500 70 12.1 4.78 16.88 6 $3.96 13365

1500 75 17.13 6.26 23.39 7 $5.78 16745

1500 80 25.9 2.9 28.8 8 $1.47 9952

1000 60 5.21 14.7* 19.9 16 $23.71 26895

1000 65 6.7 4 * * *

1000 70 9 10.98* 19.98 16 $10.53 23739

1000 75 12.7 5.1 17.8 7 $3.92 13222

1000 80 19.1 7 26.1 10 $5.49 17406

750 65

750 75

750 80

No Trimming 28 36316

2000 65 8.8 6.54* 15.34 16 $6.99 16264

2000 75 16.5 4.56 21.06 6 $6.60 12286

1500 60 5.67 1.66 7.33 8 $2.45 7100

1500 65 7.15 2.65 9.8 8 $3.64 9978

1500 70 9.6 2.67 12.27 6 $3.70 9296

1500 75 13.45 1.85 15.3 6 $2.38 7446

1500 80 20.32 1.86 22.18 6 $1.95 6830

1000 60

1000 65 5.25 1 * * *

1000 70 7.3 1 * * *

1000 75 10 3.91 13.91 8 $6.23 11803

1000 80 15.1 4.84 19.94 10 $7.84 13848

750 65 4.22 1 * * *

750 75 8.07 1 * * *

750 80 12.24 2 * * *

No Trimming 28 41308

2000 65 11.76 15.09 26.85 13 $7.92 22778

2000 75 22.28 13.56 35.84 13 $8.25 23700

1500 60 7.3 6.2* 13.3 12 $2.94 15923

1500 65 9.52 10* 19.52 19 $7.05 22818

1500 70 12.9 9.8* 22.7 13 $5.41 20274

1500 75 18.05 9.03 27.08 13 $4.79 20359

1500 80 27.27 8.87* 36.14 13 $3.84 19042

1000 60

1000 65

1000 70 9.33 7.67* 17 11 $4.67 17822

1000 75 12.87 7.81* 20.68 13 $4.00 17849

1000 80 19.48 6.4* 25.88 13 $2.72 16245

750 65 5.43 7.27* 12.7 13 $6.63 18972

750 75 10.3 7.12* 17.42 13 $5.47 18575

750 80 15.61 8.43* 24.04 18 $5.24 19538

Not Evaluated

* Solver parameter settings did not identify optimal solution

4500 Constraint

3500 Constraint

Not Evaluated

Not Evaluated

Not Evaluated

Not Evaluated

231 Price Level

Not Evaluated
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Not all of the grid based tests found the optimal solution even when all optimal 

management options were used in the DP formulation. This is particularly evident in the 

231 Price tests where only 3 of the 13 evaluated grids designs identified the optimal 

solution, even when all optimal management options were used in the DP formulation. 

Missing the optimal solution was due to two primary factors: the DP solver parameter 

settings and the difficulty in identifying the optimal solution for this particular problem. 

First, the solution parameter values for the DP were set optimistically; that is, they 

assumed the formulated problem could be solved without rigorous search. Requiring a 

more rigorous search can and did identify the optimal solution, but with added 

computation time (these independent trials not are explicitly reported). Secondly, the 

suboptimal solutions found with the DP parameter settings used in the tests in this paper 

are close to the optimal. This indicates the presence of multiple near-optimal solutions 

that are difficult for the solver to discern. Most of the tests that did not find the optimal 

solution identified a solution within an objective function value within $92 of the optimal 

$37.4 million. For at least the problem studied in this application, this inferior solution is 

both quantitatively and qualitatively very close to optimal.   

 

Interpretation and Application in the Solution Process 

The information generated with this series of tests can be used to help calibrate 

parameter settings used in applied problem solving. Calibration requires interpretation 

and synthesis of the information generated by these tests, and is not readily apparent 

from looking at Table 3.2 alone. Additionally, there is a wealth of individual subforest 

information too voluminous to succinctly display and interpret in an included table (i.e., 

Table 3.2 would have to be expanded to approximately five times as wide to also show 

results for each of the 4 suforests). The reader is instead referred to Figure 3.11, where 

each data set represented on the x-axis is a grid design that performed well for each of 

the three sets of shadow prices assumed for KW habitat. The horizontal axis labels 

indicate both grid cell size and overlap percentage. The vertical axis measures 

“Deviation from Best Identification”. For each subforest, the grid design that resulted in 

the least number of prescriptions sent to the DP was determined to be the “Best 

Identification”, and given a value of “0”. The other grid designs were measured according 

to their percentage deviation from the Best Identification. For example, a grid design that 

resulted in twice the number of prescriptions as the best would be measured as a 100% 
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increase, or “1” on the graph. The vertical lines represent the minimum and maximum 

deviation ranges from the best identified, and the dot represents the average deviation 

from the best. Each min/max/average dataset summarizes twelve sample points (three 

constraint/price levels for each of the four subforests). Finally, the right-side y-axis 

measures the time in minutes required to process the grid design, and each design’s 

time is represented with a hollow diamond. Accordingly, with larger grids cells and higher 

percentages of overlap, more time is required to evaluate all of the grids. 

Interpretation of Figure 3.11 requires a bit of subjectivity on the part of the modeler. This 

author offers that the 1500 acre grid with 70% overlap displays the best performance, 

based on the following arguments: First, it has the second-tightest performance (lowest 

maximum deviation) and second-lowest average next to the 1500 acre 80% overlap grid 

design. However, the 70% overlap grid had superior solution time performance as it was 

solved in half the time of the 80% overlap grid. Finally, the 1500 acre grid size in general 

performed with more stability than smaller grid sizes, which is why it is favored over the 

similarly performing 1000 acre 75% overlap grid. At the 1000 acre grid cell size, designs 

that had lower overlap percentages did not always identify all optimal management 

options. At the 1500 acre grid size level, all overlap percentage tests identified all 

optimal management options for all stands.  

 
Figure 3.11: Grid-based building results synthesis. Information represents performance quality for different 

grid designs. Lines and dots represent the min/max and average deviation from the best performing setting. 
Diamonds represent the computing time required to evaluate the grids.  
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Discussion and Conclusions 

Pre-processing effectiveness and efficiency 

The objective to develop a pre-processing routine that simplified the problem without 

compromising the optimal solution was met with the grid-based building technique 

demonstrated above.  In Table 3.2, the full number of management options potentially 

used in the full problem formulation is shown in the first line of each test. In grid-based 

trials, some grid designs reduced the number of management options used in the DP 

formulation by 80% or more without reducing solution quality (e.g. the 1500 acre 80% 

overlap test of the 4500 constraint level). The DP solution time reported in Table 3.2 is 

reduced when the grid builder eliminates more management options from the problem 

formulation. This evidence presents a strong case that effective pre-processing is both 

feasible and potentially efficient. 

More efficiency in pre-processing may be realized with further investigation. The grid-

based builder heuristic presented here (Figure 3.4) is a result of many investigations into 

the nature of the problem. However, there is likely more unrealized potential that could 

be exploited. For example, consider the best grid design for the 4500 Constraint trial, 

1500 acres with 80% overlap. If one includes up to 8 management options per stand 

with an inferiority value of $1.47 or less, the problem size is reduced by 79% (1-

(9952/47921)). However, if one could efficiently evaluate each subforest (Figure 3.8) 

independently and customize the inclusion parameters for each, the problem could be 

theoretically be reduced to 8217 prescriptions, a nearly 83% reduction in problem size. 

Another example involves evaluating the “last” optimal management option to be 

identified by the grid builder and question why it was so difficult. Sometimes this is based 

on luck of the grid design and its ability to evaluate the optimal patches efficiently. 

However, there may be opportunities to modify the grid-based builder heuristic to 

account for factors not yet considered. For instance, there was one management option 

that was not identified with the 750 acre 75% overlap grid design in the 3500 constraint 

test. This option was the only one not identified with a maximum stand rank of 11 or an 

inferiority value of $12.50. Why was it missed? Could rules be developed to strengthen 

the grid-based builder to capture that management option? One reason might be related 

to the one-way backwards search through time to identify child periods c. For example, 
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consider the optimal solution for a grid cell has two patch ages where 25% starts in 

period 8 and 75% starts in period 5. A forward search starting in period 5 and capturing 

period 8 might identify this situation more accurately. Finally, another inefficiency with 

the grid-based builder in that the optimal management option is often times at the top of 

the list (highest stand rank and/or $0 inefficiency value). Yet, inferior management 

options are included for those stands in the DP formulation because the global inclusion 

parameters necessary to include all optimal management options was high. In the 750 

acre 75% overlap design applied to the 3500 constraint level, 1211 of the 1263 optimal 

management options were associated with the best solution for at least one grid, yet the 

750 acre grid cell design was inferior enough to be eliminated from detailed evaluation. 

A potential weakness of the heuristic is that it may require significant testing before one 

is confident in the parameter settings used for a given problem. Problem-specific 

parameter settings are a common problem with meta-heuristic searches that can cause 

inefficiencies in the solution process (Baskent & Jordan, 2002), (Baskent & Keles, 2005). 

In grid-based building, the modeler doesn’t know beforehand the appropriate inferiority 

values and stand rank that result in the most efficient problem formulation. Therefore, 

some pre-testing should be explored to be reasonably confident in the parameter 

settings to use. However, a strength discovered in this process is that for the problem 

that was tested, a wide range of grid cell size and overlap percentage parameter settings 

were successful for different constraint levels and/or problem formulations. The 

insensitivity of these parameter settings may make it less necessary for extensive 

parameter pre-testing. Perhaps with further investigation into opportunities to improve 

the heuristic, grid design parameter values can be determined that are less sensitive to a 

particular problem. 

Another potential area for investigation is in developing other pre-processing routines. 

One area that was contemplated but not explored is the idea of time-based building. This 

concept is similar to grid-based building in that it would begin by identifying the single 

management option per stand associated with habitat generation in a parent or child 

period, and evaluating these solutions one at a time (Figure 3.4). However, instead of 

conducting these tests on a cell-by-cell basis, the entire forest would be solved with the 

resulting simplified DP formulation. After all time periods were evaluated, the solutions to 

the best time periods could be used to construct a simplified global DP across all time 



83 
 

periods. Without actually investigating this strategy it is difficult to conjecture about its 

performance, but it may overcome some of the inefficiencies of grid-based building that 

were identified. 

Further time efficiencies may be realized from limiting the frequency that the grid building 

routine is called during shadow price search, or modifying the search using smaller grid 

cells. For an application that employs an iterative search for shadow prices, the prices 

may not change substantially between iterations, so that a suite of management options 

identified for one set of prices may be relevant for a different set of slightly different 

prices. Therefore, calling the grid builder may not be necessary every iteration. 

Efficiency may also be realized by using smaller grid cell sizes since they solve faster. If, 

for instance, the stands around the edge of a cell (adjacent but not included) are 

assumed to be managed with maximal spatial alignment of the stands within the cell, the 

test may identify the optimal solution in a shorter amount of time while still limiting the 

total number of management options used in the full problem formulation. 

Computing Efficiency 

Another potential weakness of the grid-based builder approach is the time required to 

pre-process the grid cells negates some of the time savings of the DP solution (there is 

generally an inverse relationship between the time required to pre-process the grid vs. 

the time required to solve the DP (Table 3.2)). While some pre-processing time may be 

due to inefficiencies in computer code, some is due to not capitalizing on opportunities 

associated with advances in computing technology. The tests presented in this chapter 

were conducted on a Windows XP machine with an Intel Core 2 processor. This is worth 

mentioning only because solution times could be improved with technology associated 

with Windows 7 and later, combined with access to more memory. The grid builder 

routine is particularly suited to capitalize on the multiple-processor capabilities of modern 

machines with a technique known as “multi-threading”. Multi-threading utilizes a 

machine’s multiple processors to analyze discrete data instances simultaneously, thus 

increasing the overall speed of the problem solution. Windows XP Professional is not as 

efficient as later versions of Windows, in that a maximum of two physical processors can 

be executed simultaneously (Microsoft Corporation, 2002). The grid builder is suited to 

multi-threading because the solutions to each grid cell can be analyzed independently 

and then ranked after all grid cells have been solved. Multi-threading was utilized for two 



84 
 

processors in the tests described here and generally reduced analysis times to 50% of 

the time it took to analyze the grids without multi-threading. Future applications on 

machines with more than a two-processor limit would likely show substantially faster 

times for the grid building analysis. In turn, this would facilitate a more thorough up-front 

processing analysis before constructing the DP problem formulation.  

Incidentally, the DP solver may also be improved with the use of multi-threading. Each 

subforest (Figure 3.8) is a distinct problem and therefore multiple subforests can be 

solved on multiple threads and later compiled into a global solution. Furthermore, there 

are other factors (such as financial information that eliminate stands from consideration, 

or physical barriers such as roads, streams, lakes, etc.) that may break the forest into 

smaller distinct units that can be solved simultaneously with additional logical 

processors. Further investigation into the multi-threading opportunities of the DP solver 

may result in substantial time savings.  

Conclusion 

This study demonstrates that effective pre-processing routines can be developed that 

reduce solution times without compromising solution integrity. There are almost certainly 

other pre-processing strategies that can be developed based on the type of problem one 

is attempting to solve. The grid-based building processor described in this study is being 

used to investigate trade-offs of different management strategies that seek to develop 

and maintain Kirtland’s warbler breeding habitat, which is the topic of Chapter 4 of this 

dissertation.  
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Chapter 4 : Long-term planning for Kirtland’s warbler habitat: An 

application in Michigan’s Upper Peninsula 
 

Introduction 

The Kirtland’s warbler (Setophaga kirtlandii) breeding range is limited to one of the most 

geographically restricted regions of any mainland bird in the continental United States 

(Mayfield, 1960). Since monitoring began in 1951, over 98% of the population has been 

detected in Lower Michigan, and since 2000, 86% of the population has been detected 

in just five counties in northern Lower Michigan (US Fish and Wildlife Service, 2012).  

Since its passage in 1973, the Federal Endangered Species Act (16 U.S.C. 1531 et seq) 

has listed the Kirtland’s warbler as “endangered”, which was justified by its low 

population levels discovered during the 1971 decadal census. Consequently, in 1975 the 

Kirtland’s Warbler Recovery Team was commissioned by the Secretary of Interior and 

drafted a Recovery Plan in 1976. The Recovery Plan described a strategy for the 

population level to increase to 1,000 singing males (Byelich, et al., 1976 Updated 1985). 

The plan recommended a combination of cowbird control and creation of 15,379 

hectares of warbler breeding habitat in northern Lower Michigan, which has resulted in 

the warbler’s recovery from a low of 167 singing males in 1974 to 2090 singing males 

recorded in 2012 (Byelich, et al., 1976 Updated 1985), (US Fish and Wildlife Service, 

2012). Lower Michigan, however, is at the southernmost part of the jack pine’s range. 

Jack pine is most widely distributed in Canada (McCullough, 2000). While it is difficult to 

speculate, global climate change may affect the future range of the jack pine and 

associated dependent species, including the KW. Correspondingly, the future survival of 

the species may depend on breeding habitat outside of Lower Michigan. 

Before 1995, the Kirtland’s warbler (KW) had been sighted outside of the Lower 

Peninsula of Michigan, but breeding activity had not been detected. Since 1995, 

breeding activity has been detected with consistency in Michigan’s Upper Peninsula, and 

in 2007 the first nests were recorded in Wisconsin and Canada (Probst, Bocetti, & 

Sjogren, 2003), (Richard, 2008), (Trick, Greveles, Ditomasso, & Robaidek, 2008). Thus, 

the warbler’s recovery appears to have resulted in population levels that have saturated 

the Lower Peninsula breeding habitat and caused colonization in geographic areas 

outside the Lower Peninsula (Probst, Donner, Bocetti, & Steve, 2003). Expansion into 
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new geographic ranges presents both an opportunity and a challenge to forest 

managers who are concerned about the recovery of the species but are not poised to 

execute management strategies to create and maintain suitable warbler breeding 

habitat. Suitable habitat characteristics have been described by Probst (1988) and 

Kashian, Barnes and Walker (2003). The desired habitat occurs in young jack pine 

(Pinus banksiana), has a short tenure (10-20 years depending on site characteristics), 

relatively high stocking densities in patchy distributions, and a generally cited minimum 

patch size of 32 hectares (e.g., Probst and Weinrich (1993)). Donner, Ribic, and Probst 

(2010) found that larger, non-isolated patches were associated with earlier colonization 

and later abandonment, and birds may occupy patches smaller than 32 hectares if these 

patches are positioned in larger complexes of suitable habitat. Financial investments 

required to create suitable habitat can be substantial (Kepler, Irvine, DeCapita, & 

Weinrich, 1996), and in the context of cover type and age class imbalances, ensuring a 

steady supply of habitat in the future can be a challenging management problem to 

solve.  

Quality habitat has been identified as critical to KW breeding success when population 

levels are low, as is often the case in newly occupied areas (Donner, Probst, & Ribic, 

2008). Furthermore, the spatial arrangement and patch size of the habitat is correlated 

with utilization length. Larger patches are utilized earlier and longer, as are patches that 

do not exist in isolation (Donner, Ribic, & Probst, 2010). In designing a management 

strategy to respond to new colorizations, it may be relatively simple to identify good 

patches to create habitat in the near future (0-10 years). However, it can be difficult to 

foresee, without analysis, whether good habitat patches and amounts can be maintained 

through a full rotation (50 years). Future habitat consideration is potentially the most 

complex part of the KW habitat management problem. 

Cost-effectiveness is another aspect of habitat management that must be considered, 

especially given the generally more expensive cost of habitat management (due to 

increased stocking densities that require planting more seedlings) and the limited 

resources that have historically impeded the full implementation of habitat creation 

objectives (Kepler, Irvine, DeCapita, & Weinrich, 1996). Earlier studies have emphasized 

minimizing the costs of management necessary to increase the likelihood of species’ 

persistence and minimum population sizes (Marshall, Haight, & Homans, 1998), 
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(Marshall, Homans, & Haight, 2000). Since recent population increases have resulted in 

the recommendation to down-list the KW to “threatened”, habitat management appears 

effective (Donner, Probst, & Ribic, 2008), (US Fish and Wildlife Service, 2012) and the 

cost of management is arguably justified. However, cost consideration in habitat 

management strategies may lead to efficiencies in habitat investments without 

compromising the quality of the habitat. 

Finally, when there is existing management plan guidance for the landowner in a newly 

colonized geographic area (as is the case for National Forests), multiple management 

objectives may need to be considered, which further complicates the ability to achieve 

desired KW goals. While management areas in the Lower Peninsula are dedicated 

almost exclusively to the production and maintenance of KW habitat, management in 

newly colonized areas may be accompanied by objectives for other co-located 

vegetation species such as red pine (Pinus resinosa), oak (Quercus spp.), and white 

pine (Pinus strobus) (Kashian, Barnes, & Walker, 2003). The presence of other tree 

species allows flexibility in designing where and when to create habitat within the larger 

context of the forest, but it also creates an added level of complexity, i.e., analyzing 

cover type conversions and alternate rotation ages associated with different species and 

land conditions.  

The study area presented in this Chapter is the Hiawatha National Forest in Michigan’s 

Upper Peninsula. The forest is located in one of the geographic areas recently colonized 

by the Kirtland’s warbler (Figure 4.1). The forest is comprised of roughly 362,200 

hectares in two distinct geographic units of comparable size. The eastern unit is located 

between St. Ignace, Michigan on Lake Michigan and the southern shore of Lake 

Superior’s Whitefish Bay.  The western unit is located between Lake Michigan’s Big Bay 

de Noc and the town of Munising, Michigan on Lake Superior. The 2006 Hiawatha 

National Forest Plan (USDA Forest Service, 2006) has made a substantial commitment 

to manage for KW breeding habitat. Suitable breeding habitat can be managed on four 

distinct glacial outwash plains of the Hiawatha National Forest (Figure 4.1, “Potential KW 

Habitat”). These four outwash plains are comprised of approximately 12,300 stands 

representing 70,600 hectares. Of this total area, the Forest has agreed to manage 

13,600 hectares (20%) in a KW habitat system consisting of jack pine stands between 0 

and 50 years of age, of which 2711 ha are age 6-16 at any given time (USDA Forest 
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Service, 2006). The stem densities of these habitat blocks are to correspond with the 

latest science provided by the U.S. Fish and Wildlife Service. Patches of habitat can be 

generated in blocks of up to 445 hectares in a single harvest activity. The specific stands 

managed as suitable breeding habitat, however, have not been explicitly identified. The 

Forest has discretion in where it places the 13,600 hectares of breeding habitat within 

the 70,600 hectares available, and therefore has latitude to design a management 

system that is both effective for producing  KW habitat and financially efficient.  

The Hiawatha National Forest Plan (USDA Forest Service, 2006) identifies an array of 

desired future conditions that describe diverse cover types and size classes in addition 

to KW habitat, including red pine, mixed pine and oak stands, maintained openings, and 

aspen. Kirtland’s warbler habitat is one of these desired conditions and has not been 

deemed more (or less) valuable than the other desired conditions. Thus, other conditions 

must be considered appropriately when considering the design and placement of KW 

habitat. Finer scale ecological land type (ELT) information within the sandy, outwash 

plains ecosystems was used in the Forest Plan as a context to describe desired 

conditions. Ecological land types are identified by numeric code and described in detail 

in the plan’s Environmental Impact Statement Appendix I (USDA Forest Service, 2006). 

The following descriptions are brief summaries of information found in Appendix I. The 

predominant ELT in the outwash plains is 10/20, the driest and sandiest. Plan direction 

states that KW habitat is to occur primarily on this ELT, and is suitable from age 6-16. 

Other ELTs include 30, which has better soils and higher site indices than 10/20, and 

supports jack pine even though it is more suited for red pine management. Jack pine 

grows at a faster rate on ELT 30, therefore KW habitat was assumed to be suitable only 

from age 6-12. The 40/50/90 ELT has deeper, richer soil and is generally associated 

with hardwood species. Jack pine is generally not found on ELT 40/50/90. ELT 60 is a 

transitional area between uplands and lowlands, and is capable of supporting jack pine, 

but it grows at a slower rate because the ecological conditions are not as ideal for jack 

pine. On ELT 60, KW habitat was defined as lasting for a longer period of time, from age 

6-20. Finally, the 70A ELT consists of wetter, acidic site conditions. Jack pine has been 

detected on 70A growing reasonably well, and KW habitat on a 70A was defined as age 

6-16, the same as ELT 10/20. There were minor inclusions of three other ELTs and non-

forest conditions in the study area that were not constrained, managed or otherwise 

considered except for their locations could adversely affect a potential patch of KW 
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habitat. Table 4.1 shows the total area and percentage of the ELTs included in the study 

area.  

 

 
Figure 4.1: Michigan’s Upper Peninsula including the Hiawatha National Forest proclamation boundary and 

glacial outwash plains with potential KW habitat 

Table 4.1: Ecological Land Type quantities in the study area 

 

Another important factor to consider when designing KW habitat is the current condition 

of KW habitat on the landscape. Managers on the Hiawatha National Forest have been 

intentionally creating habitat for the past several years which has resulted in a 

substantial area that currently meets the age definition of suitable habitat, or will meet 

that definition within six years (data current 2010). The current condition of KW habitat 

ELT Hectares Percent

10/20 46403 66%

30 5243 7%

40/50/90 4151 6%

60 5722 8%

70A 3426 5%

Other 5799 8%

Total 70745 100%
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on the Hiawatha National Forest is shown in Figure 4.28. Currently, there are 2544 

hectares of age 6-16 KW habitat stands on the forest and an additional 2508 hectares 

that will become suitable habitat within the next six years. The impacts of these stands 

on habitat spatial arrangement will last for at least sixteen years until the most recently 

planted stands grow beyond the age of suitable habitat. 

 
Figure 4.2: Current and planned future KW habitat distribution 

Spatial problems similar to the KW habitat management problem faced by the Hiawatha 

National Forest have been the focus of past forest management studies. Several studies 

have focused on designing old forest in contiguous patches to provide habitat for 

                                                           
8
 The relative spatial arrangement of the outwash plains in this figure (and others) has been 

altered in order to compact the display. The actual geographic arrangement of these four areas is 
displayed in Figure 4.1. 
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species that inhabit forest interiors, e.g., Ohman (2000), Rebain and McDill (2003), and 

Toth and McDill (2008). Large, compact patches are associated with core area forest, or 

forest free from edge effects (Baskent & Jordan, 1995), (Ohman & Eriksson, 1998). 

Other recent studies that have analyzed the old forest core area problem are Wei and 

Hoganson (2007), and Wei and Hoganson (2008). While these studies generally 

describe techniques to schedule old forest core area, similar principles can apply to 

scheduling the young forest core area associated with KW habitat. A key difference is 

that KW habitat has a relatively short life, as it generally becomes too old to be suitable 

breeding habitat at age 16.  

Dynamic programming (Bellman, 1954) was the solution technique used to address the 

KW management problem on the Hiawatha National Forest. Dynamic programming (DP) 

has been successfully used to address mature forest conditions on the Chippewa and 

Superior National Forests in Minnesota (Hoganson, Bixby, & Bergmann, 2003), (Wei & 

Hoganson, 2007). In these Minnesota studies, forest wide constraints for desired 

condition were modeled in addition to core area of mature forest. Solutions were found 

by integrating a spatial model with a non-spatial planning model in a process described 

by Hoganson, Wei and Hokans (2005). The solution methods described by these 

Minnesota-based studies were used as a basis for addressing the objectives of this 

study. 

 

Objectives 

The objective of this study is to provide managers on the Hiawatha National Forest with 

a management strategy to create and maintain persistent Kirtland’s warbler breeding 

habitat. Specifically, the study seeks to answer the following questions: 

 Where should the HNF locate the 13,557 ha in the KW habitat management 

system?  

 Where and when should the forest schedule KW habitat regeneration within the 

KW habitat management system?  

 What level of core area should be managed to produce the total desired 2711 ha 

of KW habitat at any point in time? 
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 To what extent would managing for KW core area help increase patch sizes and 

compactness as compared to managing for low-cost KW habitat?  

 What are the likely financial tradeoffs between alternative KW management 

strategies for the Hiawatha National Forest? 

 

Methods 

Model Assumptions  

A set of basic modeling assumptions was used to construct a series of scenarios 

designed to help answer the questions posed as objectives of the study. The reason for 

keeping the assumptions consistent was to provide a basis for comparison between the 

scenarios.  Key assumptions are described in detail in the following subsections. 

Planning Horizon and Time Periods 

The planning horizon was 60 years and was modeled as a series of 30 two-year time 

periods. Sixty years was chosen to accommodate the average jack pine rotation length 

of 50 years, but with added flexibility to allow stands to convert to KW habitat later in the 

planning horizon for better spatial arrangement. KW habitat on the landscape at the 

beginning of the planning horizon will remain as KW habitat for no more than 15 years, 

including recently planted areas that will grow into suitable habitat within the next 5 years 

and remain suitable for 10 years after that.  Some of the areas currently in the KW 

habitat system may be sub-optimal in the long term, and conversely, some longer-

rotation species (such as red pine), that are young today, may be in areas ideal for 

conversion to KW habitat in the future.  The 60-year planning horizon allows for a full-

rotation feasibility study with some flexibility for conversion to occur both during and 

towards the end of the analyzed time period.  

Two year time periods were chosen to accommodate for the relatively short-lived nature 

of the suitable habitat (10 years). Using short planning periods allows one to better refine 

harvest timing options and recognize potential management coordination between 

stands. One then has the added option to design coordinated management options that 

might slowly “walk” the habitat patch through the landscape over time, in addition to the 

creating discrete patches that do not overlap temporally.  
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Management Options 

The model allowed a wide range of management option timing choices and conversion 

options for most stands in the forest. The outwash plains ecosystem in the Upper 

Peninsula where KW habitat is found has historically supported a mix of short and long-

lived species, open savannahs, and small inclusions of broad leafed species (USDA 

Forest Service, 2006). The spatial arrangement of these different cover types was and is 

dynamic, depending on the disturbance history and seed source availability.  Many 

opportunities exist to convert land areas not currently forested with jack pine to jack pine 

forest. Conversely, current jack pine stands may be converted to another cover type to 

help meet desired conditions of the forest.  

The timing of the management options is another dimension that adds complexity to the 

model. Not only do the harvest timings of an existing stand vary, but the timing of future 

harvests of the regenerated stand has variation as well. In the discipline of forest 

management, using these alternative management option timing choices in a problem 

formulation is commonly referred to as a Model I (Johnson & Scheurman, 1977). To 

demonstrate, the modeling assumption used for red pine was the stand may be treated 

after reaching age 56 through the end of the planning horizon. If the existing stand is 

currently greater than 56, this represents 30 different timing options. The stand may be 

converted to any of five different cover types, including jack pine. If converted to jack 

pine, the assumption was it could be treated at any time between age 46 and 56, which 

represents 5 timing choices for each of the initial 30 timing choices. This is tempered 

somewhat by eliminating from the analysis those choices that occur after the end of the 

planning horizon. 

Conversion into, out of, and between the different cover types, combined with the many 

different timing options for these prescription options, results in an abundance of 

possible management options for any given stand. To revisit the example of the mature 

red pine stand, the assumptions resulted in 332 unique management options. For the 

12,307 stands recognized in the model, there were a total of 1.08 million management 

options analyzed, or an average of 88 per stand. 

Each management option was associated with a set of outputs that resulted at different 

time steps as the management strategy is implemented. Outputs included revenues, 

costs, and timber yields. Saw log and pulp volumes and revenues were recognized for 
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up to four species per stand (to accommodate stands with a mix of cover types). Costs 

included sale administration, planting, and several types of site preparation activities. 

Costs and prices were derived from National Forest databases that store information 

about timber sales and were current as of 2010. The costs of regenerating KW habitat 

are displayed in Figure 4.3 where they are contrasted with the costs of regenerating jack 

pine at normal stocking levels. In the figure, there are several source cover types that 

can be used to create KW habitat, namely, aspen, openings, jack pine, former KW 

habitat, mid seral (mix of broadleaf and conifer species), and red pine. The horizontal 

axis label shows the source cover type on top and the regenerated cover type 

underneath. Generally, KW habitat regeneration is more expensive due to increased site 

preparation and planting costs associated with the high stocking densities required for 

KW breeding habitat. The lowest cost option for regenerating KW habitat is from a jack 

pine or former KW habitat stand. The highest cost option is to convert aspen. Aspen 

conversion requires rigorous site preparation and maintenance activities to rid the site of 

roots that are prone to coppice regeneration. Product volumes were consistent with 

those determined for the 2006 Hiawatha National Forest Land Management Plan. In all, 

there were 2.42 million outputs associated with 150,000 unique management options 

used in the model. 

 

Figure 4.3: Jack pine and KW habitat management costs by different origin cover types. AS = Aspen, JP = 

Jack pine, KW = KW habitat, OP = Opening, M = Mid-seral, RP = red pine 
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Other model assumptions: Objective Function, Ending Inventory, and Constraints 

The objective function for this exercise was to maximize financial net present value of 

the overall management strategy for the forest. This is simply the difference between 

management costs and the timber revenues realized through time summed across all 

stands and time periods at a 4% annual discount rate. Ending inventory of the forest was 

valued by calculating an infinite series of management actions mirroring the last full 

rotation applied to the stand before the end of the planning horizon. Spatial interactions 

between stands were valued by projecting conditions over an additional 60 two-year 

periods beyond the first 30 periods used to address forest-wide planning constraints. 

Value was given to forest conditions and KW habitat beyond the end of the planning 

horizon to help ensure that ending inventory values do not assume atypical harvesting 

right after the planning horizon and that adequate KW habitat was persistent beyond the 

end of the planning horizon.  

Constraints in a forest management model address objectives other than maximizing 

financial value, such as achieving sound ecological conditions, perpetual timber harvest, 

or desired levels of wildlife habitat. Constraints in this exercise were formulated to 

achieve the desired conditions described in the Hiawatha National Forest Management 

Plan (USDA Forest Service, 2006). Specific constraints were used to define limitations 

on regeneration (to control timber volume/even flow) and desired amounts of specific 

cover types, such as openings and red pine. Table 4.2 shows a simplified version of the 

constraints used in the model, as well as the current condition on the landscape. In the 

table, a constraint set represents the set of 30 constraints (one for each planning period) 

used to achieve the desired condition of the set. Values of individual constraints in a 

constraint set may change over time to allow the model to feasibly achieve them, as in 

the case where current condition is above or below the long-term desired condition and 

time is required to meet the constraint. Therefore, both short-term and long-term 

constraint levels are shown. Lower constraint types indicate a minimum desired level 

and Upper constraint types indicate the maximum desired level allowed. In all, these 18 

constraint sets represent 540 period-specific constraints used to define desired 

conditions in the model. One constraint that is conspicuously absent from Table 4.2 is 

KW habitat on the 10/20 ELT. The majority of KW habitat on this ELT was achieved by 

setting Upper constraints on the amount of KW habitat that could be created on other 

ELTs. The rest of the habitat, by default, must therefore be created on ELT 10/20. 
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Additionally (not shown in Table 4.2), there was a constraint set of 30 constraints for the 

desired level of KW habitat core area, set to create large, compact patches of habitat 

consistent with the overall minimum level of habitat (2711 ha) described in the Forest 

Plan. Determining the appropriate constraint level to achieve the overall habitat acreage 

is one of the objectives of this study, and therefore several levels were tested. 

Table 4.2: General constraint levels used to represent multiple management objectives of the Hiawatha 

National Forest 

 

The total amount of KW habitat in each period was constrained indirectly by searching, 

outside the model, for a core area constraint level that achieved the total habitat desired 

condition of 2711 hectares in each period. The reason for constraining core area rather 

than total area was to design habitat areas in compact, large patches. A constraint on 

total habitat without spatial consideration was surmised to be less effective at creating 

large patches. A constraint on total habitat in addition to core area had the risk of 

creating a few small patches with little core area just to meet the total habitat constraint. 

Constraint Set

Constraint 

Type

Constraint 

beginning (ha)

Constraint 

long-term (ha)

Starting 

condition (ha)

ELT 30 KW Habitat Upper 40 40 0

ELT 60 KW Habitat Upper 121 121 0*

ELT 70A KW Habitat Upper 61 61 0*

ELT 10/20 Red Pine all ages Lower 12950 12950 17517

ELT 30 Red Pine all ages Lower 2711 2711 2711

ELT 60 Red Pine all ages Lower 931 931 1044

Mature red pine - all ELTs Lower 11129 11129 11162

ELT 10/20 Openings Lower 3683 4007 3718

ELT 30 Openings Lower 20 20 219

ELT 10/20 Openings Upper 4249 4371 3718

ELT 30 Openings Upper 243 61 219

ELT 60 Openings Upper 486 81 454

ELT 10/20 Regeneration < 10 Upper 6597 6475 6824**

ELT 30 Regeneration < 10 Upper 870 870 189

ELT 40/50/90 Regeneration < 10 Upper 81 81 49

ELT 60 Regeneration < 10 Upper 688 202 721**

ELT 70A Regeneration < 10 Upper 405 405 324

ELT Non-KW Age 0-2 Upper 809 809 1177**

*Currently, habitat is scheduled to occur, but is younger than 6

** The first period constraint is not violated due to growth out of the age class
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In this study, core area was defined by using a buffer distance around the basic unit 

used to describe the landscape; the hexagon. Hexagons were chosen to simplify the 

calculation required to define spatial interactions between stands since they have regular 

spatial interactions with all adjacent cells, which is not the case for stand designs such 

as squares or irregular polygons (Heinonen, Kurttila, & Pukkala, 2007). The dataset was 

created by generating a 0.81 hectare hexagon grid that was intersected with the 

Hiawatha National Forest’s vector-based stand layer. The stand with the most area in 

each hexagon was used to attribute that hexagon. Hexagons that were part of the same 

original stand were then combined to form the stands used in this problem. The buffer 

distance implemented in this study is the area outside a center hexagon and inside of a 

larger hexagon formed by connecting the centers of the six surrounding hexagons. In 

Figure 4.4, the largest hexagon represents the buffer around stand 1. If all area within 

this buffer was KW habitat, stand 1 would qualify as core area habitat. This is generally 

accomplished by managing the adjacent stands for KW habitat. If stands 1, 3, and 4 

were all managed for KW habitat, the resulting core area would not only occur in a 

portion of stand 1, but portions of stands 3 and 4 as well (the area inside the triangle). As 

seen in Figure 4.4, the buffer distance required to create core area varies somewhat, as 

it is based on a hexagonal landscape. It can be approximated by calculating sizes of 

circles with the same proportional areas area. The area of the buffer surrounding each 

hexagon is twice the area of a single hexagon. A circle of area 0.81 ha surrounded by a 

circle of 2.43 ha would have a constant buffer distance of approximately 37 meters. The 

buffer distance affects the amount of core area required to meet the overall desired level 

of habitat (2711 hectares). The constraint level for core area required to meet the overall 

level of habitat was explored with a series of modeling scenarios. 
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Figure 4.4: Buffer distance used to define core area in this study. The area within the triangle will provide 

KW core area only when stands 1, 3 & 4 all meet the requirements for KW habitat.  

Scenarios 

Several scenarios were evaluated to provide information about the objectives of the 

study, including the spatial and financial trade-offs of alternative designs of Kirtland’s 

warbler breeding habitat. Three “benchmark” scenarios were developed to provide 

baseline information about the potential value of the forest with and without KW habitat 

consideration. A set of three full model scenarios were developed by varying the core 

area constraint to explore what level of core area should be targeted to meet the overall 

habitat goal of the Hiawatha National Forest.  

Benchmark 1(No KW) solves the forest management problem without KW habitat 

consideration. This benchmark provides a basis for the financial value of the forest if KW 

habitat concerns are not considered and can subsequently be used to evaluate the total 

cost of KW habitat. 

Benchmark 2 (No Core) introduces a KW habitat constraint of 2711 hectares per time 

period, but does not consider the spatial arrangement of KW habitat. The value of this 

benchmark can be compared with Benchmark 1 to determine the minimum financial 

costs of creating the desired level of KW habitat. 

Benchmark 3 (Core only) uses a minimum constraint of 2226 hectares of KW habitat 

core area as well as constraints on regeneration. The constraint was set at 2226 ha level 

to correspond with the 2226 hectare full scenario (described below) that was largely 

successful in achieving 2711 ha total KW habitat. Constraints for other cover types are 



99 
 

not considered. The benchmark provides a basis from which to compare the impact of 

the other constraints on KW patch and core area potential.  

The full model scenarios were developed to determine a management strategy that 

addressed all constraints, including hectares of KW habitat core area. Three scenarios 

were developed, using per-period core area constraints at 1416 ha, 1821 ha and 2226 

ha. Due to the overabundance of planned KW habitat in the next 12-14 years, both the 

1415 and 1821 scenarios had core area constraints from periods 7-30, and the 2226 

scenario had core area constraints for periods 6-30 to maintain a minimum of at least 

2711 ha of total habitat. These scenarios are the basis from which to compare the 

financial and spatial impacts of KW habitat management as well as establish the amount 

of core area that should be managed to meet the Forest Plan objective of 2711 ha of 

total habitat. Finally, these scenarios are evaluated to describe the amount of area in 

patches greater than particular size thresholds including 32.4 hectares, which has been 

cited as a minimum desirable patch size for effective KW habitat (Probst & Weinrich, 

1993). 

Solution Method 

The solution method used to identify the management strategies in this study was a 

combination of two planning models, DualPlan and DPSpace. Prior to this study, these 

two models had been integrated and used in National Forest planning in Minnesota to 

address core area of mature forest (Hoganson, Wei, & Hokans, 2005). The function of 

the DualPlan model is to identify the financial cost (marginal value) of management 

limitations (constraints) to satisfy an objective to maximize financial value of the forest-

wide management strategy. The DPSpace model then uses the marginal value 

information from the DualPlan model to schedule the stands for management. The 

DPSpace model is used because it has the ability to evaluate spatial interactions 

between stands assuming the marginal values are correct. 

The DualPlan model is based on a solution method developed by Hoganson and Rose 

(1984). The primary objective of the model is to determine how to manage the forest for 

maximum financial net present value in the context of other management and resource 

objectives. These other objectives are also known as “constraints”, as they often limit 

management activity for financial value alone. The formulation in this study involves two 

types of constraints. Non-spatial resource constraints define desired levels of cover type 
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classes (such as red pine) and/or age classes. In other studies, they may also include 

timber outputs or limits on certain activities such as clearcutting. Spatial constraints in 

this study are minimum levels of KW breeding habitat core area. DualPlan functions by 

searching for marginal values (also known as shadow prices or dual prices) of these 

constraints; that is, it attempts to determine the minimum level of foregone financial 

value the manager must incur in order to meet the constraints. For example, recognizing 

that stands are assigned to their management alternative that maximizes their estimated 

value, including their value in contributing to the forest-wide constraints, a 90-year old 

red pine stand might need to receive a marginal value (or “credit”) of $200 per hectare in 

order to maintain it as a stand contributing to a constraint requiring at least 1000 

hectares of mature forest in the solution. The $200 per hectare marginal value is 

suggesting that the manager could increase the objective function (financial value of the 

forest in this study) by about $200 per hectare if she was willing to accept only 999 

hectares of older forest and realize $200 per hectare from managing the marginal stand 

in another way. Alternately, managing for 1001 hectares would cost the manager about 

$200 more than necessary to meet the 1000 hectare constraint.  

The DPSpace model is based on work done by Hoganson and Borges (1998) to address 

adjacency constraints. The model has been adapted in this study to address the core 

area constraints for KW breeding habitat. Briefly, DPSpace determines the management 

schedules of stands by incorporating the shadow price information determined by the 

DualPlan model. DPSpace considers the spatial interactions of stands to schedule them 

simultaneously in such a way to meet both the non-spatial and the spatial constraints of 

the problem. 

The modeling process is an iterative one; that is, the DPSpace solution is used to 

evaluate how well the constraint levels are met. If the solution does not meet constraint 

levels, DualPlan is called again to determine new estimates of marginal values, and the 

process continues until an acceptable solution is reached. One phenomenon to consider 

with this system is the potential imprecision of the model solution. Since the DualPlan 

model searches for the marginal values that meet the desired constraint level, there are 

usually small deviations in how well the outputs meet the desired constraint levels. 

Deviations are partially due to the difficulty in identifying precisely accurate marginal 

values and partially due to the whole-stand management nature of the model. To revisit 
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the red pine example, consider the marginal stand; that is, the last stand that would 

qualify financially to meet the 1000 hectares constraint level9. Suppose that the marginal 

stand is two hectares, and suppose that at a marginal value (shadow price) of $199 per 

hectare, this marginal stand is not scheduled to help satisfy the constraint so only 999 

hectares are scheduled by the model. Suppose at a marginal value of $200 per hectare 

the marginal stand is scheduled to help satisfy the constraint, but then including it would 

result in managing 1001 hectares of red pine as mature forest. At a first glance, perhaps 

the problem seems solved; a 1- hectare excess meets the minimum constraint level and 

the manager should be satisfied and accept the solution. Yet, by definition, the 1- 

hectare excess could be costing the manager $200 too much. So, does the manager 

accept the 999 solution for a financial gain, or lose $200 but achieve more than the 

desired minimum 1000 hectares of red pine? A related problem that may be even more 

pronounced than the marginal stand is the problem of the marginal patch. The value of a 

patch is dependent in part on all of the stands that comprise that patch. Therefore, a 

small change in marginal value may result in a patch comprised of several stands to 

enter or exit a solution. 

 

Results 

Solutions Evaluated 

The solution method will often identify a management strategy with small imprecisions in 

meeting constraint levels. Therefore, it is desirable to measure the total imprecision 

across all constraint levels to determine whether it is an acceptable solution; that is, a 

solution that closely meets the desired constraint levels. The benchmark and scenario 

solutions presented in this study were each inspected to ensure that no singular 

constraint had a large deviation under or over the desired constraint level. Additionally, 

constraint sets were examined to ensure that any particular type of constraint was not 

consistently violated. In the solutions presented in this study, each constraint set was 

within 1% of the desired level cumulatively over all 30 planning periods. Furthermore, the 

                                                           
9
 Some stands will likely be managed at a $0 marginal value; these are the first to be included in 

the bin of stands managed to meet the 1000 hectare constraint level. If the total area is less than 
1000 at a particular marginal value, the value is increased incrementally until the constraint is 
met. In a set of heterogeneous stands, stands are likely added to the bin incrementally as the 
marginal value estimate increases. 
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solutions presented in this study met the core area constraints within 400 ha 

cumulatively over the 30 planning periods and all other constraints (Table 4.2) within 

4000 ha cumulatively over the 30 planning periods. Figure 4.5 shows how core area 

constraints were met for the 1416, 1821, and 2226 scenarios. The largest constraint 

violation in periods 7-30 is the 2226 scenario period 21 which is four percent below the 

desired constraint level. 

 
Figure 4.5: Core area constraint satisfaction. Horizontal lines are the core area constraint levels. 

Core area required for desired level of KW habitat 

The total amount of KW habitat through time resulting from the 2226 hectare core area 

constraint produced results the closest to the desired 2711 hectares of habitat in each 

time period. Figure 4.6 shows the total KW habitat resulting from constraints on core 

area at the 1416, 1821, and 2226 hectare levels. At the 2226 hectare core area 

constraint level, the poorest performing time period was period 11, which resulted in only 

2535 hectares of overall KW habitat. This is not surprising since the model was not 

explicitly constrained to meet the desired 2711 hectares of habitat. However, as 

discussed below, the patches produced in period 11 arguably have the best design of 

any of any planning period. The large patches of this period may be a positive trade-off 

for not maintaining the full 2711 desired hectares. Another observation about the 2226 

hectare core area constraint level is that there are some potential inefficiencies, most 
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notably in period 6. In period 6, the overall amount of KW habitat produced was 3244 

hectares, over 500 hectares more than required by the management plan. This result is 

mainly a holdover from the design of existing habitat that could not be effectively 

augmented. As a result, new patches needed to be created in order to meet the overall 

core area constraint (which at 2078 ha was still more than 100 ha below the constraint 

level – see Figure 4.5). Since the 2226 core area scenario resulted in a management 

strategy closest to the direction in the Forest Plan, it is used as the basis for most of the 

analysis described below.  

 
Figure 4.6: Total KW habitat resulting from constraints on core area. The horizontal line represents 2711 ha 

of desired KW habitat. 

Location and timing of KW habitat 

A possible solution for the long-term KW habitat management system on the forest is 

shown in Figure 4.7. This figure depicts results of the full 2226 scenario. The solution is 

to manage a total of 13,856 hectares of KW habitat managed in perpetuity starting in 

period 8 (after the effects of current habitat have passed). To reiterate, there are 

currently 2544 hectares of age 6-16 KW habitat stands on the forest and an additional 

2508 hectares that will become suitable habitat within the next six years. Figure 4.7 also 

shows 2819 hectares of the forest that are currently habitat or planned habitat that are 

not maintained through time. Most of the areas not maintained in the long term appear 

smaller and more isolated than the areas chosen as part of the long-term system. Small, 
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isolated patches of habitat that are currently on the landscape may be a relic of natural 

disturbance or successful natural seeding from forest management activity not explicitly 

designed to create KW habitat. They do not necessarily reflect explicit management 

decisions to create KW habitat. The data to distinguish current natural or unintentionally 

created KW habitat from intentionally designed habitat was not available for this study. 

 
Figure 4.7: Core KW habitat areas found in the 2226 scenario (13856 ha) and current KW habitat not 

maintained in the long term (2819 ha) 

The timing and location of when and where habitat should be generated on the 

landscape is a bit more difficult to display concisely.  The timing for regeneration of KW 

habitat is displayed in Figure 4.8, which shows the hectares of KW habitat regeneration 

over time scheduled by the model. Regeneration peaks every 10 years (5 time periods) 

with corresponding lower levels of regeneration every 10 years. The regeneration 
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schedule corresponds to the 10 year duration of KW habitat (age 6-16). Note that the 

present and expected future habitat on the landscape does not necessitate any 

regeneration until time period 3. Also note that at the end of the planning horizon, there 

are sufficient plantings scheduled to ensure that KW habitat is maintained beyond the 

end of the planning horizon, even though such habitat is not explicitly constrained. 

Figure 4.9 displays where the habitat occurs on the landscape at distinct points in time. 

In this figure, “Future Habitat” is recently regenerated KW habitat (less than 6 years old) 

and “KW Habitat” is currently suitable habitat 6-16 years old. In Figure 4.9, period 3 (a) is 

consistent with the first regeneration activities scheduled by the model. Period 11 (b) 

corresponds to arguably the best patch design and period 16 (c) has the poorest patch 

design (see discussion below). Finally, period 28 (d) is shown to contrast the spatial 

arrangement on the landscape one full 50-year rotation after period 3 (a).  

 
Figure 4.8: hectares of KW habitat regeneration by time period in the 2226 scenario 
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Figure 4.9: Results from 2226 scenario (2226 ha core area constraint) for select time periods. KW Habitat is 

KW habitat between the ages of 6 and 16, and Future Habitat is future KW habitat between ages 0 and 6. 

Patch Dynamics of KW habitat 

Patch dynamics are displayed by quantifying the total area of habitat in patches of 

varying minimum sizes. Total area in patches greater than 32.4 ha is displayed to 

correspond with the minimum patch size described by Probst and Weinrich (1993). The 

80.9 ha level has been described as a standard management size that is adequate to 

accommodate the KW habitat area requirement (Probst J. R., 1988). The 202.4 ha level 

corresponds to historic habitat occupation. Probst and Weinrich (1993) cite that 77% of 

the singing males were found in patches larger than 200 ha from 1979-1989.  
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Figure 4.10 shows the patch outputs through time for the 2226 ha scenario. The total 

area in KW breeding habitat is displayed along with the area of habitat in patches of at 

least the sizes listed. The “Desired” horizontal line is the 2711 hectares described in the 

Forest Plan. The period 1-5 solutions of this scenario are reflective of the nature of the 

current habitat arrangement on the landscape. These periods are characterized by an 

overabundance of total habitat, with an average of 67% in patches greater than 32.4 

hectares. In later periods, the total habitat is lowered, and the area in patches greater 

than 32.4 hectares is raised both absolutely and relatively. In the 2226 scenario, each 

period from 7-30 has at least 91% of the KW habitat in patches of at least 32.4 hectares 

(Figure 4.10). Arguably the best performing period of the 2226 scenario is period 11. 

Period 11 has the highest level of area in patches greater than 202.4 hectares in both 

absolute and percentage terms (2077 ha, or 82% of the period 11 total). Interestingly, 

period 11 also has the least amount of total habitat of the constrained periods (6-30). 

Period 16 appears to have the poorest performance as it has the least amount of area in 

patches greater than 80.9 hectares (69%) and 202.4 hectares (28%) over periods 6-30. 

Depictions of the patches in periods 11 and 16 are shown in Figure 4.9 (b) and (c). 

 
Figure 4.10: Full scenario 2226 – KW habitat area in patches of various minimum sizes 

The graphical display of patch sizes in Figure 4.10 does not capture the shape dynamics 

of the patches. Ideally, patches would not only be large, but would be as round as 
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possible to minimize the edge to area ratio of each patch. Patches with a low edge to 

area ratio can be thought of as “compact”. A limitation with this metric is that its value 

changes with the relative size of the patch. For example, a small circle will have a high 

edge to area ratio relative to a larger circle (McGarigal & Marks, 1995). However, the 

metric is relevant in this study because the desired amount of core area is the same for 

all time periods. Fortunately, compact patches are the natural result of valuing core area, 

since a circular patch has the greatest amount of core area for any shape with the same 

area. Potential compactness of patches on the ground is limited by the age and cover 

type heterogeneity of contiguous stands, as well as non-ownership and non-forested 

stands or inholdings such as roads, lakes, or lowland areas. The core area to total area 

ratio, or “compactness ratio”, is presented in this study as an indicator of patch 

compactness. Again, the metric can be meaningfully interpreted since the desired total 

amount of core area is the same for all planning periods, which means the compactness 

ratio between different periods can be compared to infer changes in compactness over 

time. To compute the metric, the buffer distance used to define core area was 

approximately 37 meters. That is, KW habitat at least 37 meters from the edge of that 

habitat is part of core area. For comparison purposes, if all KW core area was created in 

a single circle, the maximum compactness ratio is 97.3% for the 2226 scenario (slightly 

less for the 1826 and 1416 scenarios, but still greater than 96%). Results with a higher 

compactness ratio are considered to have more compact patches. 

Results for all three full scenarios have similar compactness ratios through time; 

therefore, compactness is presented explicitly for only the 2226 scenario. Compactness 

ratio for the 2226 scenario and two benchmark scenarios is displayed in Figure 4.11. 

The current compactness ratio on the landscape is 58%, and is indicative of either small 

or non-compact patches. After the influence of current habitat wanes beyond period 7, 

the ratio reaches a maximum of 87% in period 11 and a minimum of 77% in period 16. 

The long-term ratio (periods 25-30) stabilizes at about 81%. The core only benchmark 

has generally higher compactness ratios in periods 8-16, but in the longer-term (periods 

17-30) has compactness ratios lower than the 2226 scenario. This indicates that the 

presence of other cover type constraints does not generally inhibit the patch dynamics 

possible on the landscape. Management for 2711 ha of KW habitat without considering 

core area (no core benchmark) produces compactness ratios between 52% and 65%, 

similar to the current condition of the landscape. An example of compactness ratios 77% 
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and 56% is shown in Figure 4.12. This figure shows period 16 results for the 2226 

scenario (one of the poorest performing periods of the scenario) and the no core 

benchmark (a relatively representative depiction of any period of the benchmark). The 

figure also represents a condition of newly regenerated KW habitat fully determined by 

the model (the effects of existing landscape condition have passed). For context relative 

to other planning periods, period 16 is represented as the vertical line in Figure 4.11. 

 
Figure 4.11: Compactness ratios for the 2226 scenario and two benchmark scenarios 

 
Figure 4.12: Period 16 compactness ratio for 2226 scenario (77%) and no core benchmark (56%) 
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Financial costs of KW habitat 

The final objective of this study was to evaluate the financial cost of managing for KW 

habitat. Cost evaluation was achieved by measuring the present net value of timber 

revenues less management costs with a discount rate of four percent annually. There 

are two metrics of interest when considering financial value; the actual financial value of 

the management options determined by the model and an estimate of the financial value 

if the constraints were met exactly. The marginal values of the constraints are used to 

adjust the financial value of the management strategy up or down according to whether 

the constraints are over- or under- achieved. Recall the model finds a near-feasible 

solution where some constraints are not met exactly. If constraints are violated (e.g. only 

999 of 1000 desired hectares are managed), it means that the financial value of the 

management strategy is probably too high. That is, if the constraints were met exactly, it 

would cost the manager more than the solution value would indicate. Conversely, if 

constraints are over-achieved, and if those constraints come at a marginal value cost, 

the manager could realize a higher financial value if those hectares of over-achievement 

were managed in a different, more cost-effective manner. Marginal values are multiplied 

by the amount of over- or under- achievement and added to (or subtracted from) the 

actual financial value to derive the estimated financial value. 

Financial values of the benchmarks and scenarios are shown in Table 4.3. The Financial 

Value of Solution is the net present value of the revenues and costs associated with the 

management schedules determined by the model expressed in millions of dollars. 

“Estimated value of solution” is the adjusted net present value that would be realized if 

constraints were met exactly, expressed in millions of dollars. The “financial fit to 

estimated” is how close the financial value is to the estimated value in absolute 

percentage terms (expressed as a percentage of the estimated). Smaller values of this 

ratio are associated with generally balanced over- and under- constraint achievement 

levels. The solutions chosen in this study were inspected to ensure that both over- and 

under- achievements were similarly small in magnitude (rather than similarly large in 

value, which could also result in a small “financial fit to estimated”). The final columns 

express the financial value of the scenario or benchmark relative to the No KW 

benchmark.  
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Table 4.3: Financial values of benchmarks and scenarios 

 

Several observations are worth noting in Table 4.3. The Core only benchmark is higher 

than the No KW benchmark due to the absence of constraints on cover type conditions 

such as red pine and openings. The Core only benchmark represents the maximum 

financial value of the forest if KW core area habitat was the only management 

consideration other than financial value. The No core benchmark values can be 

compared with the No KW values to determine the approximate cost of managing for 

2711 hectares of KW habitat in any spatial arrangement. Managing for KW habitat 

reduces the financial value of the management strategy by an estimated 46%, nearly $7 

million in absolute terms. Aggregating KW habitat into larger patches that create 2226 

hectares of core area further reduces the present value of the management strategy by 

approximately $1 million (observed by comparing the 2226 scenario to the No core 

benchmark). While this may seem to be a large trade-off in absolute terms, percentage-

wise, the 2226 scenario estimated value is approximately 88% of the estimated value of 

the No core benchmark. Thus, most of the cost ($7 million) associated with total KW 

habitat appears to the actual costs of management activity (site preparation and 

planting), rather than the tradeoffs associated with the spatial arrangement of that 

habitat. However, $1 million cost incurred from the spatial arrangement of the activity is 

probably foregone timber value. Foregone timber value might have resulted from 

managing sites before or after their age of maximum value, managing low value sites 

that would have otherwise been left unmanaged, or from converting sites that would 

have generated better revenues as a different cover type. Finally, the 1416 scenario and 

the 1821 scenario show the potential financial value that can be realized by lowering the 

overall habitat management objectives on the forest, while maintaining the favorable 

spatial arrangement of the habitat.   

Benchmark/ 

Scenario

Financial Value 

of Solution 

($MM)

Estimated 

Value of 

Solution ($MM)

Financial Fit to 

Estimated

Financial % 

of No KW 

benchmark

No KW 14.92 14.89 0.26% 100%

No core 8.10 7.88 2.83% 54%

Core only 16.33 16.25 0.46% 109%

1416 Scenario 10.34 10.38 0.39% 69%

1821 Scenario 8.69 8.78 0.94% 58%

2226 Scenario 6.92 6.90 0.29% 46%
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Discussion 

Results of this study indicate that using core area constraints to create large, compact 

patches of wildlife habitat can be an effective way to design a management strategy for 

habitat through time. Specifically, the 2226 scenario that considered core area in 

management design created similar amounts of total habitat with substantially larger, 

more compact patches than when core area was not used to consider management 

design. In this study, the presence of resource constraints did not appear to substantially 

impact the compactness of the patches that could be created (see Figure 4.11, Core 

Only Benchmark compared to the 2226 scenario). Furthermore, the planning horizon 

and management options used in this study allowed the solution model to identify areas 

of present or expected future habitat that should be considered for conversion to cover 

types other than KW habitat. The set of stands in Figure 4.7 represents the areas to be 

considered for the KW habitat system described by the Hiawatha National Forest Plan 

due to their financial and spatial value in meeting the objectives of the plan.   

Unsurprisingly, KW habitat management has an associated cost. Table 4.3 shows that 

there are substantial costs incurred from managing for KW habitat regardless of its 

spatial arrangement. Aggregating KW habitat into large, compact patches (patches that 

have associated core area) incurs more costs. The reality of the cost of KW habitat only 

further emphasizes the importance that should be placed on making informed 

management decisions where to invest in habitat. With the proper up-front analysis, 

smart investment decisions can be made that benefit both the land manager and the 

warbler.  

To implement the management strategy proposed in this study, the Hiawatha National 

Forest management team would need to closely consider the site-specific 

recommendations of this study. The forest-wide datasets that were used to solve the 

problem do not necessarily fully capture the on-the-ground knowledge of forest 

personnel. There are likely areas of the solution that managers would identify as having 

difficulty practically applying. Furthermore, the solution to the 2226 scenario identified 

300 ha more than required by the plan. There are 13,856 ha in the solution represented 

in Figure 4.7, rather than the 13,557 ha expected in an exact solution.  This opens an 

opportunity for further adjustments that could be made if necessary to refine the solution, 

or these excess hectares could be retained in the system to act as a buffer against 
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stochastic disturbance events, such as wildfire, that are historically present in this  

ecosystem. In either instance (adjusting for feasibility or lowering the overall area 

managed for KW habitat), the assumptions in the model (such as available management 

options for the stand) could be refined and the model re-run. Another application of the 

model could be to investigate the implications of proposed future management on the 

landscape other than what is recommended by the model. The solution provided by this 

study (2226 scenario) could be used as a benchmark against which to evaluate 

alternative management strategies. Both financial value and spatial design trade-offs of 

alternative strategies could be analyzed, as well as the effect of the alternative on the 

ability to maintain a persistent level of suitable habitat into the future.  

One facet of the problem not explored in detail in this study is the conversions that occur 

in stands other than KW habitat stands. Generally, constraints maintained cover type 

quantities at their current levels. Presumably, there were current acres of red pine or 

openings (for instance) that were converted to KW habitat, and acres currently jack pine 

or KW habitat that were converted to red pine and openings. When converting a non-

jack pine stand to be part of the KW habitat system, mangers should consider whether 

the area of the converted cover type needs to be replaced somewhere on the landscape. 

Management for KW habitat alone does not necessarily meet the other objectives in the 

planning area. Furthermore, the revenue generated by management of other cover types 

was an important consideration in the management strategy proposed in this study. In 

the future, the forest could use revenues generated from timber management of other 

cover types to offset the increased planting and site preparation costs associated with 

KW habitat management.  

Finally, the implications associated with the proposed buffer distance have not been fully 

explored. The 37 meter buffer distance was a relic of using 0.81 hectare hexagons as 

the basis for the modeling exercise and is used only by the model to create large, 

compact patches. Alternative buffer designs may result in different spatial solutions. For 

instance, another simplistic buffer could be calculated as the set of six hexagons that 

surround a center hexagon. Conversely, the same buffer design strategy (i.e., buffer to 

the center of adjacent hexagons) could be used with a different base hexagon size. 

Wider buffers would likely lower the core area constraint level necessary to achieve the 

desired overall level of habitat. But, a wider buffer distance might result in larger, more 
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compact patches than those shown in this study. However, as Table 4.3 indicates, those 

larger patches might come with greater financial costs. The modeling system presented 

in this study allows managers to explore many alternative management strategies with 

the goal of creating and maintaining a steady amount of quality KW habitat on the 

Hiawatha National Forest.   
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Chapter 5 : Discussion 
 

The management direction of the 2006 Hiawatha National Forest plan (USDA Forest 

Service, 2006) includes an objective to manage for 6700 acres of Kirtland’s warbler 

(KW) breeding habitat from 6 to 16 years old in a total KW habitat system of 33,500 

acres. Ideally the habitat would be arranged in large, compact patches to maximize the 

utility of the habitat (Donner, Ribic, & Probst, 2010). Upon plan implementation, there are 

opportunities to make informed management decisions that are not only effective from a 

wildlife standpoint, but cost efficient as well. There are over 174,500 acres of potential 

habitat from which to choose the 33,500 acres of KW habitat system. Yet, there are 

other complicating factors managers face when making site-specific decisions for habitat 

placement. General forest management problems are complicated by objectives such as 

cover type and age distributions, spatial arrangement of wildlife habitat, harvest volume, 

and financial efficiency. When developing a management strategy for KW habitat, the 

objective for KW habitat should not be considered in isolation from these other factors.  

The main objective of this study was to provide managers with information that 

contributes to effective strategic planning for KW habitat management on the Hiawatha 

National Forest. This was accomplished with a series of explorations and tests to 

develop a decision support tool capable of addressing the spatial considerations of KW 

habitat, management direction for other objectives such as cover type and size class, 

and cost efficiency.  

Much of the study is to address KW habitat planning in substantial spatial and temporal 

detail. The solution method used to solve this problem builds off of a dynamic 

programming (DP) based heuristic first described by Hoganson and Borges (1998). Prior 

to this study, the DP heuristic was modified and  used in developing the forest 

management plans for the Minnesota National Forests to address core area of older 

forest (Hoganson, Borges, & Wei, 2008). For this study, attention focused on addressing 

spatial arrangement of management to provide core area of KW habitat.  The short-lived 

nature of KW habitat combined with the long-term nature of forest planning added 

substantial complexity to the overall planning situation. To recognize the short-lived 

nature of KW habitat, many more planning periods are required in a model that also 
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addresses common forest management concerns associated with forest planning.  

Shorter planning periods substantially increases the number of plausible treatment 

timing options for each stand. Past applications with the DP heuristic tracked no more 

than ten planning periods. Thirty planning periods were tracked explicitly in this study. In 

the DP formulation of the problem, timing of management options for a stand is used to 

enumerate management option combinations between a stand and its neighbors. This is 

necessary so that spatial conditions can be addressed. In some instances within the DP 

it may be desirable to enumerate potential conditions for 10 or more neighboring stands. 

In a problem with 10 planning periods, each stand may have 10 timing options 

considered in the enumeration. Doubling the number of timing options may not sound 

like a major increase in model size, yet utilizing twice as many treatment options for 

each of 10 neighboring stands increases the number of possible combinations in the DP 

by 210 or over 1000 fold.  When that number is increased threefold, as moving from 10 to 

30 periods might entail, 3 times as many options for 10 neighboring stands translates to 

310  or over 59,000 times as many combinations. This is the “curse of dimensionality” that 

is a weakness of dynamic programming.    

These difficulties are addressed by a series of explorations described in Chapters 2 and 

3. Chapter 2 describes how the DP heuristic was modified to use multiple manageably-

sized DP formulations and find consistent solutions across these formulations before 

accepting a proposed management option for a given stand.  Test results presented in 

chapter 2 were convincing: that this approach can find solutions that are optimal or near-

optimal for a set of assumed core area values. The heuristic allows one to schedule the 

more obvious stands first and then focus more attention on the more difficult areas of the 

forest to schedule. Chapter 3 examined two problem simplification strategies with the 

goal of reducing the size of the problem to be solved by reducing the number of stand-

level management options recognized. The number of management options considered 

for each stand was pared down to a limited subset that resulted in problem formulations 

that were capable of being solved exactly with increased speed. Finally, Chapter 4 

applied the problem formulation and solution strategies described in Chapters 2 and 3 to 

the management problem on the Hiawatha National Forest to derive recommendations 

for where, when, and how to develop the KW habitat system as well as meet the other 

management objectives of the forest. 
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The results of the study described in Chapter 2 showed that the proposed heuristic was 

capable of identifying an optimal solution, even when the problem was solved in parts. 

By testing several smaller problem formulations before accepting any portion of the 

solution, the heuristic was shown to match or outperform solutions that were derived 

from a single, larger problem formulation. Furthermore, the heuristic proved effective at 

reducing the time required to find a solution with relatively small compromises in 

objective function value. One solution cited in Chapter 2 reduced solution time by 97%, 

with an associated loss in objective function value of less than 0.2% relative to the 

optimal solution value. Results show promising efficiencies in problem solutions that 

have a relatively small objective function value trade-off. 

In Chapter 3, the results showed that effective pre-processing methods could reduce the 

size of a spatial problem formulation without compromising solution quality. Specifically, 

the grid-based building pre-processor proved capable of reducing the number of 

management options required to formulate a full mathematical forest management 

problem by 80% without compromising the optimal solution. The best identified pre-

processing design solved the problem described in Chapter 2 exactly with a 95% 

reduction in solution time, including the time required for pre-processing. Further 

reductions in the time required for pre-processing may be realized by using the multi-

threading capability of computers. The pre-processing method is also complicated in that 

it can be repeated throughout the solution process.  A desirable feature of this is that 

treatment options not considered at one point in the solution process can be re-

introduced later in the process as more is learned about the problem and the marginal 

values associated with the forest-wide constraints. 

Finally, in Chapter 4, the problem faced by the Hiawatha National Forest is addressed 

using the information developed from the explorations described in Chapters 2 and 3. In 

Chapter 4, several amounts of core area were used as constraints to test whether 

managing for core area could help in designing total amount of KW breeding habitat in 

large, compact patches, and sustain KW habitat close to levels targeted over time in the 

forest plan. Results indicate that constraining a minimum level of core area can result in 

overall habitat amounts close to that described by the 2006 Hiawatha National Forest 

management plan. The patches of habitat created with the core area constraints are 

substantially larger and more compact than patches created without targeting core area 
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production. Patch design, however, comes at a cost; the financial value of managing for 

large compact patches reduces the Net Present Value of this portion of the forest from 

$8 million to $7 million relative to the financial value that could be realized from 

achieving the desired level of overall habitat without spatial considerations.    

The ultimate objective of this study was to positively affect management decisions to 

create sustainable KW breeding habitat. While meeting this objective is technically 

beyond the capacity of this project, the utility of the model has been recognized by the 

Hiawatha National Forest. The modeling system was used by the forest during project-

level planning involving the largest outwash plains ecosystem (on the East side of the 

forest) in 2010. Planners were concerned with the effects that proposed KW habitat 

might have on the future sustainability of the habitat. One district-level wildlife biologist 

projected a reduction in KW habitat in 2040 by managing habitat on a 50-year rotation. 

In response to this concern, the model was run to determine alternate management 

strategies, such as conversion from other cover types not currently part of the KW 

management system. The model solution showed that habitat could be maintained in 

sufficient quantities in the future.  Managers were then able to confidently proceed with 

the proposed treatments. In the future, the results of this study may be used to help 

identify the specific areas to include in the KW habitat management system (similar to 

the solution shown in Figure 4.7). These areas could then be included in a documented 

KW management strategy developed for the forest. 

The central area of focus for this study was on efficient problem formulation and solution 

strategies. This type of research is likely to have application well into the future. Even 

though some day computing technology may develop to the point of making the problem 

addressed in this study feasible to solve with exact methods, it is difficult to foresee a 

time when efficient problem formulations will not be useful. It may be likely that the size 

and complexity of the problems keep pace with advancements in computing technology. 

This has happened in the past, when spatial considerations were included in forest 

management models that may not have been possible with older computing technology, 

and there is no reason to believe that with better tools, managers won’t seek to gain 

more knowledge that may be realized with larger, more complete problem formulations. 

The brief investigations described in Chapters 2 and 3 of this study begin to reveal some 

of the gains that can be realized immediately with current technology. More rigorous 
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investigations into studies similar to these will likely reveal more opportunities for 

solution speed improvements and more efficient problem formulations which will in turn 

allow for the capability to solve larger problems with better accuracy. 

There are several areas of future study that would improve the overall quality and 

timeliness of the solution methods described in this paper. First, there are several 

unanswered questions posed in Chapter 3 associated with grid-based building that 

would be worthwhile investigating. Some of these questions are: What are the 

characteristics of the most difficult stand for which to identify the optimal solution? Could 

better pre-processing rules be written to further pare down the problem size? Is the 

proposed pre-processing routine successful on other landscapes or other spatial 

problems? The area of pre-processing seems largely unstudied, but may have 

associated large savings in problem design, and enable larger forest management 

problems to be solved with conventional exact solution methods. 

Another area of future study that may yield dividends is the search for valid marginal 

values of constraints. The spatial problems presented in this study require hundreds, if 

not thousands, of iterations to identify good values. Each of these iterations may take 

several (up to 30) minutes of computing time. If a more efficient marginal value search 

routine could be developed, the overall time required to solve the problem might be 

substantially reduced. Some initial investigations into such savings are described in 

Appendix B, but these were not developed thoroughly enough to present as formal 

results.  

Finally, investigations into the influence of different buffer widths and initial stand designs 

were not explored in this study. Alternate buffer widths may enable design of even 

larger, more compact patches. However, the study in Chapter 4 showed that there is a 

financial trade-off associated with patch compactness. Nonetheless, if several buffer 

designs were investigated, one might be able to construct a trade-off curve to show loss 

in financial value vs. gain in patch compactness. Initial stand design is another 

potentially influential factor not explicitly explored. Stand boundaries were modified from 

their original boundaries with the process described in Appendix A. Yet, one can’t help 

but surmise that the initial spatial design of the stand boundaries has an effect on the 

potential financial value of a management strategy in a similar way that a predefined, 

finite set of management options for each stand may be potentially limiting. This was the 
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premise of a study by Heinonen, Kurttila, and Pukkala (2007). They analyzed hexagon 

cells individually to allow the management model to identify logical places to create 

stand boundaries. Cell-level planning would also likely overcome some of the difficulties 

the model encountered in meeting constraint levels exactly in instances where the 

marginal stand (or marginal patch) was larger than the area required to meet the 

constraint exactly. However, analysis at the individual hexagon level would result in a 

much larger problem formulation that would potentially require more time and computing 

power to solve. Perhaps solving a problem of this magnitude would be feasible if some 

of these suggested studies were conducted to strengthen pre-processing and the search 

for marginal values. 
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Appendix A: A stand splitting algorithm for stands represented 

by a hexagonal raster 
 

Methods 

Stand boundaries used in this analysis were generated with a three-step process. First, 

the forest-maintained stand level, irregular vector-based polygons were intersected with 

a grid of regular hexagons (using a GIS). Regular hexagons are ideal for this problem 

because they not only overcome adjacency issues that arise from using a regular grid, 

but they also facilitate the identification of influence zones commonly used in spatial 

modeling. Slivers resulting from the intersection of the two datasets were reconciled to 

ensure that each hexagon represented only a single stand. This was accomplished with 

a simple process to identify which stand comprised the majority of the hexagon and 

assigning the attributes of that stand to the entire hexagon. Secondly, all hexagons with 

the same original stand identifier were combined into the analysis stands. This resulted 

in a landscape where the edges of the stands had regular, predictable relationships, and 

the minimum distance between edges was the shortest diameter of a single hexagon. 

Again, this facilitated the identification of influence zones, and ensured that the 

maximum dimension of any influence zone was a predetermined, manageable size. 

Finally, the pixelized stands were split with the Bouncing Ball algorithm, which is 

introduced in this Appendix. 

Since one of the objectives of the problem is to identify compact patches for habitat 

management, it would be beneficial to split stands at logical points that would allow the 

pieces to be managed independently in order to spatially align with adjacent stands and 

form more compact patches. Consider the leggy, non-compact stand indicated in Figure 

A.1 by stands 113 and 115 highlighted near the top of the figure. These two stands were 

originally part of the same stand, and are arguably non-compact; a relatively large 

amount of core area could be created in 113, but if managed with 115, it would lessen 

the compactness of the entire stand.  The proposed algorithm splits the stand at the line 

between 113 and 115 and allows them to be managed independently (for example, 113 

may now be managed by itself as a compact stand and 115 may be managed with stand 

116, the two-hexagon stand to the lower right of stand 115). 
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The Bouncing Ball algorithm was developed as a way to split the original stand 

comprised (in part) of stands 113 and 115 and allow the two pieces to be managed 

independently. There are three main parameters in the algorithm specified by the 

modeler; the ball size (π), the narrowness of a stand where a split should be considered, 

or “pinch point” (θ), and the minimum number of hexagons (λ) that must be isolated 

when a split is defined. To visualize the algorithm, imagine constructing a “ball” 

consisting of π=7 hexagons – that is, a center hexagon and the six adjacent to each of 

its sides (stands 9 the lower left of Figure A.1 represents such a ball). For each polygon, 

determine whether the ball can fit inside, and if so then “bounce” it around inside until it 

gets stuck at a pinch point. When it gets stuck, determine if there is enough of the stand 

on the other side of the ball to merit a split. Applying this algorithm to a map will result in 

polygons that are smaller, yet rounder in shape. To revisit stands 113 and 115, the ball 

reached a pinch point at the narrow portion between them (when bounced from the 

stand 113 side) and the algorithm split the stands at the indicated boundary between 

them. Stands created with the algorithm are used as the basic units in all time periods of 

the subsequent problem forest management problem formulation. 

There are some detailed situations the programmer must consider when developing 

such an algorithm. First, the portion of the stand in which the ball originates matters. 

Consider stands 8 and 31, highlighted in the lower right portion of Figure A.1 which 

originally defined a single stand. The ball size used was π=7 and pinch point (θ) was 

defined as two hexagons wide. The ball originated in the stand 31 portion, resulting in 

the indicated split between stands 31 and 8. Had the ball originated in stand 8, the split 

would have occurred closer to the bottom of the figure and the size of stand 8 would 

have been two hexagons larger (and stand 31 would be two hexagons smaller. Also, if 

several ball sizes are used to split the stands, the order in which they are bounced 

matters. Consider stands 4 and 57 highlighted towards the bottom of the figure. The 

original stand (consisting of stands 4, 51, 27, and 41) was split with both a 19-hexagon 

ball10 and a 7-hexagon ball (π=19 and π=7). However, the 19-hexagon ball was 

bounced first to create stand 57. Had the 7-hexagon ball been bounced first, the split 

would have occurred farther to the top and right, and the split would have isolated only 3 

                                                           
10

 A 19-hexagon ball is comprised of a center hexagon and two “rings” of hexagons around it. 
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hexagons instead of 611.  Finally, stands completely enveloping smaller stands create an 

especially confounding situation. Consider stand 129, which is completely surrounded by 

highlighted stands 113 and 120 at the top of the figure. Stands 113 and 120 were 

originally part of the same stand. The split above stand 129 would not result in an 

isolated stand unless it was simultaneously considered with the split identified below 

stand 129. Programmatically, one must consider whether to identify both of these 

potential splits before executing the split.  

In practice, the splitting done for this dissertation was done using two-step process. First 

a 19-hexagon ball was used to identify 3 and 4 hexagon pinch points (θ=3 and θ=4). 

Secondly, a 7-hexagon ball was used to identify 1 and 2 hexagon pinch points. For a 

split to occur with either ball size, a minimum of 3 hexagons must be isolated with the 

split (λ=3). This strategy resulted in splitting a map of 9989 stands with an average size 

of 7.1 hectares into 12,307 stands with an average size of 5.7 hectares. 

Discussion 

The influence of model results on stand design was not explicitly investigated in this 

study. Presumably, there were at least some stand splits that added value to the 

solution, but further research would have to be done to determine the magnitude of the 

influence. Additionally, the algorithm likely results in a larger problem size, since more 

spatially distinct stands are created. A larger problem may negatively impact the ability 

of the solution heuristic to efficiently identify an optimal solution. This impact was not 

explicitly explored with this study, but could be a useful piece of information when 

considering if and how to apply the Bouncing Ball algorithm. 

The algorithm appears to work well for which it was intended; that is, to create a basic 

map of stands more compact than their original design. However, it does not address the 

differences in size of the resulting stands. In this dissertation, stand sizes ranged from 

0.4 hectares to over 160 hectares. While large stands may be compact, their size may 

have caused limitations in the solution value if splitting them into two or more discrete 

units would have allowed for better patch design in some periods.  

 

                                                           
11

 However, when the 19-hexagon ball was bounced later, the indicated split would still have 

occurred, for an ultimate result of the current stand 57 being split into two 3-hexagon stands. 
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Figure A.1: Illustration of original stand boundaries and boundaries created by splitting with the bouncing 

ball algorithm 
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Appendix B: Additional Shadow Price Search Techniques 
 

Introduction 

The solution heuristics presented in Chapters 2 and 3 of this dissertation are predicated 

on the notion that good shadow price multipliers (marginal values, Lagrange multipliers) 

are efficiently and accurately identified. The search for good multipliers is based on work 

done by Hoganson and Rose (1984). Specifically, the “Smooth” type of iteration is 

employed whereby the quality of a set of multipliers is measured by how closely they 

achieve the desired constraint level and adjusted accordingly. For each constraint, a 

deviation is determined in terms of the percentage of the associated absolute constraint 

level. The deviation is in turn used to determine the magnitude of the price adjustment 

tested in the next iteration of prices. For instance, if the constraint level is a minimum of 

300 hectares, and the associated multiplier resulted in 297 hectares, the deviation is 1%. 

This implies that the multiplier should be increased. Had the price resulted in a solution 

with 310 hectares, the multiplier is likely too high and should be adjusted downward in 

the next iteration. 

The magnitude of the increases and decreases (price adjustments) associated with 

different deviations is set by the modeler as a curve of linear segments, consisting of 

percentage breakpoints and associated absolute dollar adjustment (multiplier) levels (for 

example, see Figure B.1). The actual level of the multiplier adjustment is determined 

using the slope of the curve between the two points that bracket the deviation level. 

Generally, with smaller deviation percentages, it is good practice to use smaller 

multiplier adjustments since logically the price is closer to being correct. Different curves 

can be constructed for different constraint sets, since the magnitude of absolute 

constraint levels can vary greatly (e.g., a 30,000 hectare minimum constraint may 

reference a different curve than a 300 hectare minimum constraint level). 

There are two difficulties the modeler encounters when constructing these curves and 

pairing them with constraints. First, it can be difficult to easily anticipate an efficient curve 

for the constraint, especially in the context of the other constraints and multipliers that 

may also influence the given constraint. For example, a constraint on the overall level of 

red pine may also be influenced by a constraint on the overall level of forest age 0-10, 
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since some of that forest may be in the red pine cover type. Adjusting the price of the 0-

10 age class may indirectly influence the red pine constraint.  

 
Figure B.1 Example price adjustment curve 

The second difficulty is encountered when the percentage deviation is not indicative of 

the absolute multiplier adjustment that must occur in order for the constraint to be met. If 

a constraint is met at the 99% level, the corresponding adjustment according to the 

curve is $.01, and the actual multiplier must be increased $1.00 before the last 

percentage is met, it will take a minimum of 100 adjustments to satisfy the constraint. 

Conversely, if a constraint is met at the 99% level and the curve indicates an increase of 

$1.00, when only $.01 is needed to meet the level, the resulting schedule may indicate a 

large overachievement of the constraint (which, in turn would cause a downward 

adjustment of a certain magnitude, probably larger than $1.00). 

Methods 

To mitigate the difficulties associated with accurately anticipating efficient price 

adjustment curves, two adjustment controls were developed and tested; a decay factor 

control and a procedure termed “flop control”. The decay factor was used to reduce the 

absolute magnitude of the multiplier adjustments with subsequent iterations. The flop 

control was developed to intelligently detect when a) the multipliers were close to 

accurate and only required small absolute adjustments or b) the multipliers were rather 

far from accuracy and could be adjusted with a greater magnitude than what the 
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associated adjustment curve identified. The decay factor is straightforward, and the flop 

control requires more detailed explanation and testing. 

Decay Factor Control 

The decay factor was introduced to the model as the half-life of the price adjustment 

curve, expressed in the number of iterations since the modeling began. The hypothesis 

is that the modeler can more easily approximate the number of iterations before 

multiplier convergence occurred (i.e., were close to identifying feasible solutions) and 

use a corresponding decay factor, rather than predefine a precise price adjustment 

curve. The hypothesis was tested with a series of runs described below. Calculation of 

the decay factor is straightforward: 

 

Where C is the decay factor, and represents the per-iteration decay in adjustment 

magnitude. In other words, price adjustment values in the original curves are multiplied 

by C every iteration. Term H is the half-life of the original multipliers represented in 

number of iterations. If H was set to 100, the cumulative effect of multiplying by C every 

iteration would be adjustment values at ½ of the magnitude defined by the original price 

adjustment curve. 

Flop Control 

The flop control can be used in conjunction with the decay factor. The control applies to 

each unique constraint in the model, specific to each desired output level in each time 

period. The control was developed in response to the notion that if subsequent iterations 

show respective over- and under- (or under- and over-) achievement of a given 

constraint, the actual multiplier value for that constraint lies somewhere between the two 

multiplier values used for those iterations. Consecutive iterations that show over- and 

under-achievement (or the inverse) of a constraint signify a “flop”, and result each time in 

a solution that is close to correct, but is at risk of consistently failing to estimate the 

actual value. Consider an extreme example of a price adjustment that causes a 10% 

overachievement and triggers a $1 downward price adjustment. The adjustment results 

in a 15% underachievement, which in turn calls for an upward $1.50 price adjustment, 

which causes a 20% overachievement, and so forth. The appropriate price is within $1 to 

$2 of the approximated price, yet the adjustment rules are set too high. Thus, we 
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introduced another parameter to the multiplier adjustment scheme aimed towards 

minimizing, or controlling flops. 

The opposite of a flop is when the magnitude of an adjustment is too small to move the 

solution to meeting a desired constraint level. Small, incremental movement of, say, 

$0.05 are not all that useful if the appropriate price is $100 different from the current 

estimated price. In these instances, one might assume an adjustment magnitude larger 

than the default until the point of flopping or exact constraint satisfaction is reached.  

The flop control parameter was developed to respond to both large over-adjustments 

and inadequate under-adjustments that may occur concurrently in the same iteration, as 

would be the case if one multiplier was close to convergence while another one was 

quite far. Two flop control methods were developed and tested that represented 

derivations of an “S” curve; the backwards “S” curve and the sideways “S” curve. Curves 

were constructed by specifying the number of breaks in their construction (the number of 

iterations required to reach the minimum or maximum adjustment factor), the maximum 

factor (multiplier) value, and the shape of the curve. A backwards “S” curve example is 

shown in Figure B.2, and generally resembles the shape of the mirror image of an “S” 

figure. The sideways “S” generally resembles an “S” rotated 90 degrees (either 

direction).  An example of a sideways “S” curve is shown in Figure B.3. 

The rationale for constructing curves with these designs was to test whether the search 

for multipliers is aided more by sensitive (backwards “S”) or insensitive (sideways “S”) 

adjustment parameters. The backwards “S” curve was constructed based on the notion 

that the model could quickly detect flopping instances and rapidly decrease the 

adjustment magnitude to accommodate the flop, and the sideways “S” was more 

conservative before making large adjustments, but once adjustments were made, they 

were substantial. 

The backwards “S” curve was constructed by specifying three parameter values; the 

number of increments (breaks), the maximum factor value, and the curve shape factor. 

The number of breaks affected the number of iterations needed to reach the maximum 

(or minimum) factor value specified. The maximum factor value described the maximum 

modification of the default multiplier adjustment value (e.g., the default adjustment might 

be $1.00, but a constraint using a maximum factor of 5 would adjust the price by 
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5*$1.00). The shape factor controlled how quickly the factor was adjusted toward the 

maximum or minimum value.  As an example, the curve in Figure B.2 was constructed 

from 40 breaks, with a maximum factor value of 5 and a shape factor of .85. A 

backwards “S” curve was constructed from the center of the total number of breaks, and 

initiated with a value of 1. From the center of the curve, the right-side tail was 

constructed by multiplying each break by the shape factor. So the first break to the right-

of-center was in Figure B.2 is valued at 0.85, the second is 0.7225, and so forth. The 

shape factor may result in values very close to 0 at the far right end of the curve. Values 

to the left-of-center were determined with a more complicated calculation. The intention 

was to mimic the inverse of the right-of-center curve, adjusted so that the maximum 

specified value was the limit at the extreme end. Values were determined with the 

equation: 

 

Where  is the value of the break relative to center c [for example, in a graph of curve 

with 40 breaks the center break is 20], and the maximum value of i is c, which 

represents the value V0, or the value of the first break. The term  is the 

corresponding right-hand value of the curve measured i breaks from center. Finally, M is 

the maximum value specified by the modeler. To return to the value of the first break left-

of-center in Figure B.2, it is 1.6 = 1+ (5-1) * (1-0.85). 

The sideways “S” curve was developed with the notion that the default look-up table 

price adjustment curve (e.g., Figure B.1) is reasonably accurate and deviating from it 

requires more extreme circumstances. Therefore, sideways “S” curves are relatively flat 

in the center and more severely curved toward either end. Break values to the right-of-

center were calculated such that the largest breakpoint value defined by the modeler 

resulted in a 0 price adjustment. The right-of-center curve was constructed with the 

following equation: 

 

Where  is the value of the break relative to the center, and i is the break 

incrementally to the right of center. The total number I is equal to the value of c, or the 
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break index of the center value. The value of the first right-of-center adjustment factor in 

Figure B.3 is calculated with i =1, I = 10 and is 0.99 = 1-(1/10)2. Break values to the left-

of-center were determined with the same equation as the backwards “S” curve, using 

Equation B1. Values to the right-of-center were used in the equation to construct the 

shape of the curve to the left-of-center with the maximum value specified by the user. 

 
Figure B.2: Backwards S curve with 40 breaks (x-axis), a maximum factor value of 5 (y-axis) and a shape 

factor of 0.85 

 
Figure B.3: Sideways S with 20 breaks (x-axis) and a maximum value of 4 (y-axis) 

The application of the flop control curves in price adjustments was the same for both 

curve designs. A measurement of position (break number) along the curve was 
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constructed for each time period of each constraint defined in the model, and initiated at 

the center break of the curve, at c  (with a corresponding value of 1). With each iteration, 

a flop control factor was used to modify the default price adjustment defined by the look-

up table price adjustment curves (e.g., Figure B.1). If a flop was detected in a constraint, 

the break position for that constraint was moved incrementally one position to the right. 

With each flop, the break position was incremented by 1 until the maximum break value 

was reached. In an instance where there was a flop iteration followed by an iteration that 

did not flop, the magnitude of the deviation was considered to determine the break 

position. If a constraint value did not flop, but the deviation was the same or smaller, the 

break position remained the same. If, however, there was not a flop and the deviation 

was larger than the last iteration, the position was decreased by 1 so that a larger flop 

factor was used. For instances of consistent non-flopping, the position was decreased 

until it reached 0, at which the maximum price adjustment factor was used. One 

exception to these rules was that if a constraint suddenly flopped and the break position 

was less than the center break position, the break position was set at the center break 

so that the flop factor could be rapidly decreased. 

Flop Control and Decay Factor Tests 

To test the proposed search controls, a series of tests was conducted consisting of 

different control combinations and beginning price adjustment curve levels. To speed the 

tests, we used only non-spatial constraints, consisting of the constraint types and levels 

described in Chapter 2 in addition to a minimum constraint level on the desired amount 

of Kirtland’s warbler habitat (6700 acres) in each time period. Initial shadow price 

estimates were recycled from an intermediate solution that utilized a spatial constraint 

and were consistent for all tests12. 

Six types of tests were conducted, representing a range of possible combinations of the 

proposed controls. Additionally, a “Default” test was conducted to show a comparison 

effect for not using any of the proposed controls.  

Default: This test did not use either of the proposed controls. It was initiated with 

small price adjustment curves (1/100th of the magnitude of the largest price 

adjustment curves used in these tests). The hypothesis of this test was that a large 

                                                           
12

 The search heuristic should, in theory, work independently of the initial price estimates. 
Therefore, the original estimates are not described in detail. 
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number of multiplier searches each with small adjustments would eventually identify 

an acceptable solution. We made the adjustment curves small to begin with since 

experience showed that larger price adjustment curves were too severe to ever 

converge on a good solution. The test was run for 2000 iterations. 

Decay only: This test utilized the decay function only. Several beginning price 

adjustment curves were tested as well as several half-life factors, generally between 

100 and 300 iterations. 

Backwards S only: Several combinations of parameter values were used to test this 

control. Tests included variations in the number of breaks, shape factor, and 

maximum factor value.  Several initial price adjustment curves were tested, including 

flat price adjustment curves that did not vary the price adjustment by deviation 

percentage. 

Sideways S only: Several parameter values were tested that adjusted the number 

of breaks and the maximum factor value. The shape factor is not used to define the 

shapes of sideways S curves. 

Backwards S with decay: Several backwards S curve shapes and decay factors 

were tested.  

Sideways S with decay: Several sideways S with decay factors were tested. 

 

Identifying a Good Solution 

The solution method will often identify a management strategy with small imprecisions in 

meeting constraint levels. Therefore, it is necessary to measure the total imprecision 

across all constraint levels to determine whether it is a good solution, or if the search 

should continue for a better solution. Solution quality is measured with the following 

equation: 
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Where: 

 

Equation (B3) measures the quality of the solution. The expression  represents the 

quality of the solution and is a function of the financial inferiority  of the output levels 

divided by the financial value  of the management strategy. Lower  values are 

associated with solutions that have shadow price levels set that closely meet the 

constraint levels of the problem. However, a good solution must not rely on the value of 

 by itself. The absolute value of constraint deviations must also be considered, since a 

low  value may be associated with high levels of low-valued deviations from constraint 

levels. Nonetheless,  may be a useful metric in identifying how closely prices have 

been adjusted to appropriate levels. 

Equation (B4) defines how the financial value of the management strategy is 

determined. Financial value  can be determined with model output values . The  

values are the acres of stand  managed according to management option . The term 

 represents the discounted financial value of managing each acre of  with 

management option . Management option financial values the net financial value of 

revenues (such as sold value of the timber) less costs (such as planting after harvest). 

Summed over all stands  in the forest,  represents the financial value of the chosen 

management strategy for the forest. 

Equation (B5) describes in financial value how closely the constraints in the problem are 

met. The  values are marginal values of the constraint levels in the model. The other 

terms in the equation are all model inputs. Term  represents the desired level  of 

constraint . Finally,  represents the value that management option  applied to stand 

 contributes to constraint. The value  is determined by calculating the absolute value 
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of deviations from desired constraint levels multiplied by the marginal value of those 

constraints and summed over all constraints. 

In a cautionary note, a good solution must not rely on the value of  by itself. The 

absolute value of constraint deviations must also be considered, since a low  value 

may be associated with high levels of low-valued deviations from constraint levels and 

may not represent a feasible management strategy. Nonetheless, for this study of 

convergence on appropriate shadow price values,  may be a useful metric. 

 

Results 

For the limited number of control combinations and parameter tests that were 

conducted, the backwards “S” flop control combined with a decay factor performed the 

best, according to how quickly a relatively low  factor was identified. Even with low 

initially defined price adjustment curves, the “Default” test had an average  of 0.18 

(averaged over iterations 1900-2000), which stabilized in about 1000 iterations and 

never improved. The “Decay Only” test, using a half-life of 300 iterations, had an 

average  of 0.09 after 2000 iterations (averaged over iterations 1900-2000). Tests 

using the backwards “S” or sideways “S” without an associated decay factor did not 

produce remarkable results. 

Four of the best control combinations and parameter settings tests are shown in Figure 

B.4. The graph depicts the average  over ranges of 100 iterations, displayed on the x-

axis. The associated parameter settings of these tests are shown in Table B.1. All four 

tests converge to an average  value between 0.04 and 0.05 by iteration 900-1000. The 

tests with the strongest performance are arguably the “65Back_Same_100Decay” test 

with the “75Back_100Decay” tests which show the lowest average  values over all 

iteration ranges. 



142 
 

 
Figure B.4: Results from select control tests 

Table B.1: Parameter settings for select control tests 

 

 

Discussion 

One potentially surprising result of this study is the effect to the modeler’s need to 

estimate good price adjustment curves such as the one depicted in Figure B.1. A well 

designed backwards “S” curve combined with a reasonable decay factor appears to 

nullify any weaknesses in an estimated price adjustment curve. This contention is 

supported by comparing the “65Back_Same_100Decay” test with the 

“75Back_100Decay” test in Figure B.4. These two tests produced results similar in 

quality, yet the “65Back_Same_100Decay” test was initiated with a single flat price 

adjustment curve referenced by all constraints. Thus, the modeler’s time may be better 

Test

Start 

Price

Decay 

Factor Design

Max 

Factor 

Value N Breaks

Shape 

Factor

85Back_300Decay Mid 300 Back 5 40 0.85

10Side_100Decay Mid 100 Side 5 10

75Back_100Decay Mid 100 Back 5 20 0.75

65Back_Same_100Decay Flat ($2) 100 Back 5 12 0.65
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spent designing a single backwards “S” curve paired with a decay factor rather than 

designing multiple price adjustment curves. 

Efficient shadow price search is one of the most under studied portions of this project, 

and has the potential to yield some of the strongest increases in solution efficiencies. 

The science of shadow price (Lagrange multiplier) search has no doubt evolved since 

Hoganson and Rose (1984) developed the initial “Smooth” price adjustment search 

heuristic, and further research into modern search heuristics may be fruitful. No 

parameter test was able to determine a feasible solution, which is not surprising given 

the sheer number of multipliers and the potential interactions between them. A more 

rigorous exploration of the parameters described here, or a diligent literature search 

across disciplines other than forest management may reveal opportunities for greater 

improvements, and would be a welcome addition to the discipline of forest management.  
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Appendix C: Displaying Hexagon-based Stand Maps 
 

Many of the map figure displays of forests and forest conditions through time in this 

dissertation were created with custom software created specifically for this exercise in 

response to limitations in standard GIS software. One difficulty encountered in the 

development and testing of the solution model described above was a simple and 

accurate way to spatially display the inputs and outputs to detect whether the code was 

working accurately. Additionally, the output information from the model included 

vegetation conditions for over 12,000 stands for 90 time periods, which was 

cumbersome to load into a GIS program and view.  

Therefore, a display tool (MMaPPit) was developed to readily display the inputs and 

outputs of the modeling exercise. The main strength of the tool is that it enables the user 

to load information for multiple time periods with a single file and automatically generate 

a map for each time period according to a predefined color scheme. The tool then allows 

the user to “play” the maps through all time periods automatically to inspect the 

vegetation changes on the ground. The effect is similar to time-lapse photography of the 

solution. However, the user may stop the “play” at any time to inspect specific areas of 

the forest with a number of other tool features, such as zoom, identify attributes, and 

highlight specific stands. 

 

Methods and Inputs 

The MMaPPit tool was developed “from scratch” (i.e., did not use any commercial GIS 

dependent object libraries) with Visual Basic .NET (2005). The tool draws standard 

bitmap images to render the displays. The tool is manifested in a simple executable that 

can be used, theoretically, on any Windows-based machine. Simple text files are used 

as inputs, which may be easily generated, modified and viewed with a standard text 

editor. The main inputs required to display the maps are: 

1. A grid cell center coordinate file that includes polygon center coordinates and 

associated stand ID number 
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2. A time period file that includes stand ID number and attributes through all time 

periods (1 line for each stand; stand ID followed by a column for each time 

period) 

3. A color file that lists the unique attributes in the time period file and the 

associated color that should be displayed 

4. A stand attribute file (optional) that includes additional (static) characteristics of 

each stand. 

To display the map (or adjust to a pan or zoom request) there are three scales that must 

be considered. First, the overall size of the map must be determined from the minimum 

and maximum x and y coordinates in the coordinate file. This is used to determine the 

initial size of the grid cells to be displayed. Secondly, the map must be scaled to the size 

of the display window, indicated by the large, gray area that contains the map display in 

Figure C.1. Third, when a pan or zoom is invoked, the desired portion of the display 

must be determined, and scaled to the size of the display window. For instance, if a tall, 

narrow rectangle is selected to zoom to, but the display window is short and wide, the 

desired display must be appropriately adjusted in order to avert a potentially distorted 

rendering of the map image. 

Hexagons are drawn by utilizing information about the distance between hexagon 

centers determined from the full map scale and the proportion of the map to be drawn in 

the display window. This proportion is used to determine the spatial location of the six 

corner points surrounding the hexagon center. Trigonometric functions are used to draw 

these points in space, connect them with lines to form the hexagon, and fill the hexagon 

with the appropriate color, determined by the attribute of the hexagon for the time period 

and the associated color for that attribute described in the color file. The surrounding 

hexagons can be examined to determine whether they are part of the same stand or not. 

If an adjacent hexagon is part of an adjacent stand, the border between them is 

identified as an edge that may be displayed. The MMaPPit tool has a feature to display 

stand edges when desired. 

Features 

Figure C.1 highlights some of the features developed for the MMaPPit tool. These are 

described beginning with the label at the bottom right and moving in a counter-clockwise 

direction. 
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Automatically “Play” through all maps: When this button is clicked, all time 

periods are displayed sequentially, with a second or two between displays. This 

feature allows the user to watch the projected forest changes through time. The tool 

was initially developed specifically to enable this capability.  

Show stand location: This feature allows one to type in a stand ID number, or 

series of stand ID numbers. The associated stands are then highlighted on the map 

in an aqua color. This is useful for gaining insights into the spatial position of a stand, 

or seeing what other stands are nearby. 

Return to previous map view area: Resets the display to the portion of the forest 

you were viewing before. If you had zoomed into a particular area and want to return 

to the area that was zoomed from, use this feature. 

Identify: If the stand attributes file was loaded, this feature allows the user to click on 

a particular stand to see the attributes associated with that stand. A separate window 

is opened with a list of these attributes. 

Pan: This is a standard image navigation feature that allows the user to navigate 

around an area of the map. To use it, click on the starting point of the image, drag 

the hand icon the desired distance and release the mouse button. The image will be 

shifted accordingly. 

Zoom to full map extent: When this button is clicked, the full extent of the map 

image, including all stands, is displayed. 

Zoom in to selected area: This allows one to zoom to a rectangular portion of the 

map to examine those stands with greater detail. 

Show stand edges or not: Click this to toggle between whether stands edges are 

displayed or not. This feature is useful if the full forest contains many stands and 

stand edges dampen the display quality. When zoomed into a smaller portion of the 

forest, stand edges may be drawn to highlight individual stands. In Figure C.1, stand 

edges have been drawn. 
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Figure C.1: Standard features for hexagon-based MMaPPit program 

Modifications: display of squares, additional features; an example from Idaho 

The MMaPPit tool was easily adapted to display squares, which may be more commonly 

used in forestry mapping applications. Figure C.2 represents an application in the 

Selway river watershed in north central Idaho. The image depicts approximately 263,000 

squares representing 1.6 million acres. Stand boundaries are not shown, as each square 

was treated as an individual stand and the display quality would have been 

compromised.  Some additional features of the MMaPPit model are highlighted. These 

features were developed for this application, but are broadly applicable to other studies 

as well.  

Manually adjust display extent: The minimum and maximum X and Y coordinate 

values are displayed in this text box for any pan, zoom, or full extent shown in the 

display window. One can manually adjust these parameters to a custom display 

rather than using a zoom or pan tool. However, the feature is most useful when using 

two or more tool instances to display different aspects of the problem. The current 
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display shows dominant cover type. Another useful display might be size class. Still 

another might be the fire or harvest occurrences that have happened recently to 

influence the current cover type or size class pattern on the landscape. If there is 

more than one instance of the MMaPPit tool open side-by-side, one can copy and 

paste the desire view extent in this text box to synchronize the display of each 

instance. 

Adjust color display: This feature can be used to modify the color display of the 

features in the map. Previously, the only way to adjust the colors was to adjust the 

definitions in the color file and re-load the entire map dataset. 

Dynamic tally or area amounts: This quantifies the area in each classification 

displayed in the map. These quantities often change through time, and it may be 

useful to the user to see not only a spatial representation, but to see an associated 

area in each map category as well. 

Skip to any time period: Previously, one had to scroll through all time periods 

sequentially to arrive at a desired period. This feature allows the user to specify the 

desired time period and navigate there directly, bypassing all periods between the 

one currently displayed and the desired time period. 
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Figure C.2: Square-based mapping tool display of Selway river watershed in Idaho displaying newly 

developed features. 

 


