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EXECUTIVE SUMMARY

It has been recommended that Advanced Traffic Management Systems (ATMS)
must work in real-time, must respond to and predict changes in traffic conditions, and
must included areawide detection and surveillance. To support such ATMS, this project
developed a tractable, stochastic model of freeway traffic flow and travel demand which
satisfies threre primary objectives. First, the model should generate real-time estimates
of traffic state variables from loop detector data, which can in turn be used as time-
varying initial conditions for more comprehensive simulation models, such as KRONOS
or FREESIM. Second, the model should generate its own predictions of mainline and
off-ramp traffic volumes, as well as calculate the expected error associated with these
predictions, thus supporting the use of both deterministic and stochastic optimization
for determining traffic management actions. Third, the model should be capable of full
on-line implementation, in that it should be capable of estimating required parameters
from traffic detector data.

The basic model was developed by combining ideas from the theory of Markov
population processes with a new form for the relationship between traffic flow and
density, producing a stochastic version of a simple-continuum model. Kalman filtering
was then applied to the basic model to develop algorithms for (1) estimating from loop
detector counts the traffic density in freeway sections broken down by destination off-
ramp, (2) predicting main-line and off-ramp traffic volumes from given on-ramp
volumes and, (3) computing adaptive estimates of the freeway’s origin-destination

matrix from loop detector counts. Monte Carlo simulation tests were used to evaluate



three different methods for off-line estimation of model parameters, as well as to assess
the accuracy of the density estimates and volume predictions. The results indicated that
the estimation and prediction model tends to be robust with respect to the parameter
estimation scheme, and that the model generates a reasonable characterization of
estimation and prediction uncertainty. Limited tests with field data tended to confirm
the simulation results, and to emphasize the importance of real-time estimation of

freeway origin-destination matrices in generating accurate predictions.
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1. INTRODUCTION

1.1 Problem Statement

Many urban areas in the United States and throughout the woﬂd are
experiencing increasingly serious congestion pressures on their street and highway
networks, while at the same time, environmental, social and fiscal constraints combine
to limit the amount of new roadway capacity which can be constructed to relieve these
pressures. To help solve this problem, the United States and other developed countries
are turning to the deployment of Intelligent Transportation Systems (ITS) as a means
of making more effective use of existing infrastructure investments. Many ITS programs
include an Advanced Traffic Management System (ATMS), in which an improved
ability to monitor traffic conditions is combined with an array of traffic management
actions so as to more nearly optimize the use of existing roadway capacity. Three
important requirements of an effective ATMS are that (1) its actions should be based
on a consideration of their network-wide implications, (2) that they should be based on
actual traffic conditions, and (3) that the ATMS should attempt to anticipate future
congestions problems and eliminate them, instead of simply responding after a problem
has arisen. The most promising approach to de'veloping an ATMS which satisfies these
conditions is the hierarchical traffic control structure illustrated in Figure 1.1, in which
a prediction of travel demand over a time horizon of 10-30 minutes is used as input to
a network-wide optimization model. The optimal actions generated by the optimization

model are then used as objectives or constraints by the ATMS components responsible
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for direct, local control of roadways. Thus a fully successful ATMS will require not
only optimization and control algorithms, but a method for generating, in real-time,
predictions both of travel demand and of the traffic conditions which are likely to result
from proposed control actions. However, effective predictions require successful

resolution of three important issues.

1.2 Issues in Traffic Prediction

1.2.1 Deterministic Versus Stochastic Predictions

The first issue that arises in traffic prediction is whether these predictions should
be deterministic, in which it is assumed that the predicted values will occur with
certainty, of if these predictions should be stochastic, in which it is admitted that their
is some uncertainty concerning which values will occur. This uncertainty is usually
quantified by describing a probability distribution over a range of possible outcomes.
In reality, the future is never known with certainty, but deterministic predictions are
easier to generate, and when deterministic predictions are used as input to an
optimization or control algorithm, they produce "certainty equivalent" control. In certain
special cases it can be shown that certainty equivalent controls are optimal even under
conditions of uncertainty, but in most traffic management applications it will generate
overly optimistic expectations of what traffic management will achieve. This results
from the fact that most measures of traffic system performance, such as delay or total

travel time, tend to be convex functions of travel demand, in that as travel demand
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increases these measures increase, and the rate of increase in these measures also
increases as the demand increases. As an example, Figure 1.2 graphs average stopped
delay at an approach to a signalized intersection as a function of arrival rate, using
Webster’s two-term formula. It can be seen that as demand (arrival rate) increases,
stopped delay gets worse, and it gets worse at an increasing rate.

Jensen’s inequality from probability theory implies that when delay, for example,
is a convex function of demand, and when the demand prediction is subject to
uncertainty, then the expected delay will always be greater than or equal to the delay
computed using the deterministic prediction of demand. The magnitude of this
discrepancy is determined by the shape of the delay function, and the degree of
uncertainty in the demand prediction. Thus when the target measure of traffic system
performance is a markedly convex function of demand, and when predicted demand is
uncertain, actual improvement from certainty equivalent control will be less than the
predicted improvement. This in turn suggests that if stochastic predictions are available,
a genuine improvement in system performance could be obtained by switching from a
certainty equivalent optimization algorithm to one explicitly considering this

uncertainty. If only deterministic predictions are available, this option is not available.

1.2.2 Off-line Versus Real-Time Prediction

Transportation planners have engaged in a form of traffic prediction for several
decades now, in which one first estimates or predicts an origin-destination (O-D)

matrix, which gives the travel demand between combinations of origin and destination
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points on a transportation network. Traffic is then routed onto the network by assigning
the O-D volumes to modes of travel, routes and times-of-day, and the resulting traffic
volumes on various road segments or transit routes are then computed by simple
summation. Off-line traffic simulation models tend to have a similar structure, in that
the demand for travel (arrival rates and turning movement proportions) is treated as
fixed, known inputs. Given this demand, traffic is entered onto a network and then
propagated according to principles of traffic flow. An important variable for describing
traffic flow is the density of traffic on the network links, and in macroscopic models
density is computed directly via a conservation equation, while in microscopic models
density enters indirectly via a consideration of vehicle spacings.

The prediction problems faced by an ATMS differ from those solved by
planning or off-line simulation models in that an ATMS problem is likely to involve
a much shorter time horizon, and the prediction must incorporate current traffic
conditions. For example, the arrival demand at an approach to a signalized intersection
over the next 10 minutes will consist not only of traffic which enters the system from
points of origin during the next 10 minutes, but also of traffic which has already entered
the system and is enroute to a destination. Thus even if one has a reliable simulation
model at hand, its use as a component of an ATMS will require that it should be
provided with a sequence of estimated initial conditions reflecting the current traffic
conditions. At a minimum, these initial conditions must include the current traffic
densities on each link of the network, while microscopic and higher order macroscopic

models will require even more information. In addition, an enroute driver may elect to
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continue following a previously chosen route, but he or she may also chose to switch
to some other route, and the outcome of the switching decision will depend on the
driver’s destination. Thus when generating real-time, demand-responsive predictions
each link on the network in effect become a new point of origin, and it is necessary to
know not only the original O-D matrix and the traffic densities on the network links,
but a current breakdown of the densities by destination. Thus a necessary component
for real-time traffic prediction is an on-line filter which generates estimates of initial

conditions from available traffic measurements.

1.2.3 Optimal Versus Suboptimal Estimation

To summarize, it has been argued that optimal management of traffic systems
is likely to require stochastic rather than deterministic optimization, necessitating
stochastic rather than deterministic prediction models, and that real-time prediction will
require that the prediction model be continually re-initialized with current estimates of
the state of the traffic system. In principle, both optimal state-estimation and optimal
stochastic prediction could be accomplished using a stochastic state-space model of
traffic flow, coupled with a measurement equation describing how observables such as
traffic counts or lane occupancies are related to the system state. Except for very
simple traffic networks however, this will result in the need to solve a (very intractable)
nonlinear, stochastic filtering problem, suggesting that the use of suboptimal
approximations to the optimal filter and/or predictor will be required. In addition, any

prediction or filtering model is likely to require estimates of parameters characterizing
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the demand for travel and the traffic flow properties of the network, and if these
estimates can also be generated in real-time, then changes due to alterations in the
social or physical environment of the system could be accounted for. Again however,
optimal real-time parameter estimation tends to be computationally intensive, and this
suggests a practical reliance on suboptimal approaches. Whether or not a suboptimal

approach is good enough for practical purposes is an empirical question.

1.3 Objectives of This Project and Organization of This Report

When initially proposed, the principal objective of this project was to develop
a real-time prediction model of traffic flow for sections of freeway, by coupling a
predictor of on-ramp arrival rates with a macroscopic traffic flow model. Subsequent
developments have indicated however that considerable effort is being expended nation-
wide to develop traffic simulation models for use in ATMS. In particular, for freeways,
work at the University of Minnesota has produced not only the very detailed KRONOS
simulator, but advances in the development of high-order macroscopic models. In
contrast, real-time estimation of the state variables and parameters which such models
would require for real-time implementation has attracted much less attention, and it was
felt that this project could make a more important contribution, both in regard to the
national ITS effort and as a component of the ITS Institute’s effort, by tackling these
problems head on. This led to the following set of objectives for the project:

1. To develop a tractable, plausible stochastic state-space model of freeway



traffic flow;

2. To use the above model to develop a tractable filtering algorithm for
generating real-time estimates of the destination-specific traffic densities of freeway
segments, using only loop detector data;

3. To evaluate a number of procedures for estimating the model’s parameters;

4. To evaluate the accuracy of the model in predicting off-ramp and mainline
traffic volumes.

Thus the primary function of the model developed here is real-time traffic state and
parameter estimation. However, if desired the model can also generate predictions,
although not in the detail of KRONOS.

This report is organized as follows. Chapter 2 reviews the state of the art in
traffic flow modeling and parameter estimation, while Chapter 3 describes the Markov
compartment model which provides the basis for this model development. Chapter 4
describes the development of a tractable approximation to the original Markov model,
and how the approximate model is coupled with the Kalman filter to estimate
destination-specific densities. Chapter 5 describes an evaluation of several parameter
estimation schemes, while Chapter 6 describes tests of the filter and predictor using
both simulated and actual traffic data. Finally Chapter 7 lists conclusions and

recommendations for further work.
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2. REVIEW OF TRAFFIC STATE ESTIMATION AND PARAMETER

IDENTIFICATION METHODS

2.1 Introduction

The past two decades have seen important advances in the development and
application of computerized tools, that have resulting in improved freeway control
strategies. This review of traffic simulation models starts by noting that accurate
descriptions of traffic flow dynamics are needed not only for better understanding of
traffic behavior, but also for analyzing flow conditions dynamically and devising more
effective control strategies. This chapter lays the groundwork for succeeding chapters
by outlining the traffic flow model used in this study and providing a review of
methods for traffic state estimation and parameter estimation. Section 2.2 describes a
macroscopic traffic flow model, and also reviews current thinking on traffic state
estimation using detector data. Since the knowledge of the number of vehicles bound
for specific destinations on each link of the freeway network is a necessary input to
traffic prediction and to the successful development of route guidance (Davis, 1992;
Papageorgiou and Messmer, 1991), attention is given to this issue. An additional review
is given of the application of state estimation methodologies in transportation. Section
2.3 reviews the estimation of traffic flow and Origin-Destination (O-D) matrices with
an emphasis on the statistical properties of the estimators. Also, it is argued that link

count data contains more information than is used by current O-D estimation methods,
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and that this information can be used to improve the practice of O-D estimation.

2.2 Traffic Flow Models and State Estimation

2.2.1 Traffic Flow Models

Existing freeway simulation models fall into two general categories: (a)
microscopic and (b) macroscopic. In the transportation field, the microscopic models
are used to describe the behavior of individual vehicles in a network, or to analyze the
behavior of the driver-vehicle system in a stream of interacting vehicles. The
microscopic simulation models consist of a discrete simulation in which each vehicle’s
path in the network is described by car-following equations (e.g. FRESIM) or by travel
time equations (e.g. INTEGRATION). The main applications of microscopic models
have been to geometric design, safety analysis, and off-line testing and evaluation of
traffic control strategies. Yet in spite of the conceptual appeal of microscopic models,
which can track each vehicle’s destination, they have not been widely used in
developing adaptive traffic operations or control strategies. This is partly because of
computational difficulties with networks of realistic size, and partly because of some
limitations in their formulation; their assumptions are difficult to validate because
human behavior in real traffic is difficult to observe and measure.

The macroscopic continuum (hydrodynamic) models describe traffic dynamics
both in time and space via macroscopic traffic variables, such as flow, density, lane

occupancy and mean speed. Three relationships are required to describe traffic flow
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dynamics in a macroscopic way. The first relationship is inherent in the definitions of
traffic volume, speed, and density:

0 = ku @1
where

Q = Q(x,t) = traffic volume (veh/time) at location x and time t,

k = k(x,t) = density (veh/mile/lane) at location x and t, and

u = u(x,t) = space-mean speed (mile/time) at location x and t.

A second relationship, the conservation equation, has the following general form:

ok/ot + 0q/0x = g(x,t) (2.2)
where g(x,t) is a traffic generation rate.

The two fundamental equations (2.1) and (2.2) must be incorporated in all
macroscopic continuum models. The continuum models are then further separated into
the simple continuum models and the high-order continuum models, based on a third
relationship. A simple continuum model uses a relationship between the mean speed and
the traffic density under equilibrium condition:

u = uyk). (2.3)
A high-order continuum model consider acceleration and inertia effects by replacing
equation (2.3) with a momentum equation. More information on macroscopic models
can be found elsewhere (Gerlough and Huber, 1975; May, 1987;1990). Because of their
relative simplicity in computation, macroscopic continuum models are more often used
in developing traffic control strategies (Payne et al., 1987; Papageorgiou and Messmer,

1991; Kiihne, 1991; Stephanedes and Chang, 1993).
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Both simple and high-order macroscopic traffic flow models employ a steady-
state flow-density-speed relationship. Earlier models assumed a single-regime over the
complete range of flow conditions, including free flow and congested situations
(Greenshields, 1936; Greenberg, 1959; Underwood, 1962; Drew, 1965; Drake et. al,
1967; Munjal and Pipes, 1971). It was shown (Drake et. al., 1967) that most of the
single-regime models had deficiencies over some portion of the density range and
underestimated speed and flow in the density range from 20 to 60 veh/mile/lane. This
is particularly disappointing because they are not able to track faithfully the measured
field data near capacity conditions as is often needed. Later models attempted to
improve single-regime models by considering two separate regimes, such as a free-flow
regime and a congested-flow regime, and attempted to generalize these by introducing
additional parameters that could be used to distinguish between roadway environments
(Eddie, 1961; Cedar and May, 1976; Easa and May, 1980). However, both single-
regime or two-regime flow-density relationships show deficiencies in describing
freeway traffic over the full density range (May, 1990), especially in rapidly changing
traffic situations.

The application of the existing macroscopic models to ATMS strategies in their
current form raises several issues. The first issue is the lack of integration of traveler
decision-making and traffic flow (Davis, 1992). Despite some ability to describe traffic
dynamics on a freeway, most existing macroscopic models suffer from the problem that
no clear relationship exists between travel demand and dynamic traffic volume counts.

Since most macroscopic models do not differentiate their component flows by
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destination they usually specify either a fixed proportion of turns (e.g. FREFLO) or a
fixed amount of exit flow (e.g. KRONOS) at an off-ramp in a freeway, or at a junction
where there is a route choice. However, in reality both quantities depend on when
vehicles bound for the various destinations reach the junction in question (Papageorgiou
and Messmer, 1991; Davis, 1992; Vaughan and Hurdle, 1992; Daganzo, 1994).

The second issue concerns the ability of the macroscopic traffic flow models to
describe traffic dynamics on a freeway. The simple continuum model is easier to
implement than are high-order continuum models because of its simplicity in
formulation and numerical computation. However, the simple continuum model has
been criticized as not faithfully describing non-equilibrium traffic dynamics because it
does not consider acceleration and inertia effects. High-order models, on the other hand,
are in principle more realistic as they include the effects of inertia and acceleration of
the traffic mass but high-order models have not as yet proved superior to the simple
continuum model, at least in medium-to congested flow conditions (Michalopoulos et.
al., 1984), and suffer from conceptual inadequacies (Daganzo, 1994). Further, their
numerical demands are greater than those of the simple continuum model.

A questionable hypothesis in the simple continuum model approach is whether
or not an empirically determined flow-density relationship is valid under time dependent
conditions. One possible improvement is to develop a more realistic flow-density
relationship, which can describe changing traffic conditions. This goal may be achieved
by developing a two-dimensional flow-density relationship based on the assumption that

traffic flow, density or speed is a function of not only of the current location’s traffic
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condition but also of downstream traffic conditions. This approach has been explored
by Szeto and Gazis (1972), who investigated the problem of coupling between freeway
sections. It was assumed that the flow from a section 1 into the immediate downstream
section 2 depended on both the density in section 1 and the density in section 2 via a
two-dimensional flow-density relationship.

q:(t) = 1Tk, (1), ky(1)]
where q and k denote flow and density respectively. The idea of incorporating a
downstream condition is partially incorporated in many of traffic flow models; as an
acceleration term in car-following model, as an anticipation term in high-order
macroscopic traffic flow model, or via special numerical treatments in some simple
continuum models. The approach of Szeto and Gazis has been refined by Davis and
Kang (1993, 1994) who developed a 2-dimensional flow-density relationship, and by
Daganzo (1994) in his cell-transmission model.

In summary, it was argued that major limitations in the application of existing
macroscopic models to ATMS strategies are: (a) the lack of an ability to integrate
traveler decision making into the traffic flow model, and (b) the lack of a traffic flow
model which can realistically describe tratfic dynamics and yet is simple to compute
or estimate. In Chapter Three these issues will be resolved by introducing an integrated

traffic flow/demand model based on Markov processes (Davis, 1992).

2.22 Traffic State Estimation

As mentioned, successful implementation of ATMS requires accurate real-time
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information on various traffic variables. Unfortunately, almost all traffic sensors provide
limited traffic data, such as the traffic volumes and lane occupancies provided by
magnetic loop detectors, which is aggregated across a network’s O-D specific subflows.
This fact requires that some traffic variables necessary for developing ATMS strategies,
such as section density, speed, or destination-specific density, must be estimated, rather
than measured directly. Since the 1970s several researchers have applied the Kalman
filter to areas of traffic state estimation. The motivation of the research was to estimate
from sensor data the traffic information needed for control system operation. The state
dynamics equation and observation equation of a continuous discrete state space model

can be represented as

¥ = f(xB.0) + w(t) : 24

y(t) = Hx(t) + v(t) 2.5)

where x(t,) is the state vector, § is a vector of model parameters, y(t,) is an observation
vector, w(t) is the state noise process, with covariance matrix Q(t), and v(t,) is the
measurement noise process, with covariance matrix R(t,).

Gazis and Knapp (1971), Szeto and Gazis (1972), Kurkjian et al. (1980),
Akahane and Koshi (1978), Okutani (1987), Smulders (1987), and Payne (1987) all
investigated estimating a traffic state variable, say densities and/or mean speeds, from
volume, occupancy, and speed measurements. A pioneering density estimation

procedure was proposed by Gazis and Knapp (1971). In this paper, the authors
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introduced a procedure for estimating density by first calculating travel time. The
method was complicated because it required the solution of a two-point boundary value
problem. Knapp (1973) avoided the solution of a two-point boundary value problem at
the expense of storing a great deal of speed and flow data from each detector. This data
requirement problem was avoided by Ghosh and Knap (1978) by using an extended
Kalman filter based on a linear traffic flow model and a nonlinear measurement. Szeto
and Gazis (1972) have also proposed another method that does not require the solution
of a two-point boundary value problem. They obtained a pseudo measurement of the
density by computing a density value as a function of speed measurements, and then
combined this pseudo measurement with the state equation via an extended Kalman
Filter. Their method required only the calibration of a static speed-density relationship,
which is calibrated as a time invariant state variable through the Kalman filter. Such an
assumption may be appropriate in the Lincoln tunnel under homogeneous conditions,
but it cannot be expected to hold on freeways, where lane-changing, accidents, and
other sources of fluctuation must be accounted for.

It should be pointed out that most of the existing models rely on the following

exact conservation-of-vehicles equation as a state equation

X(t+A) = x(t) + [qin(t) - Qu(DI(L N) + w(t)

Here, x(t) represents the density in a specific section at time step t, and q,(t), q,.(t)

represent the input and output flows between time step t and time step t+1, which are
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assumed to be given by measurements. The terms L and N represent the length of the
section and the number of lanes, respectively. A noise term w(t) is used to model the
difference between the actual and measured change in density. Since this conservation
equation is valid when L/A > u; (the state equation has a Markovian property) the
measurement interval A should be shorter then L/u,. This enforces a measurement
interval of ﬁve seconds or less, which is very short for traditional loop detectors, for
the filters in Szeto and Gazis (1972) and Ghosh and Knapp (1978). Given that short
measurements are available however, this method is still not able to track destination-
specific densities because the observed sensor flow is given as a sum across the
destinations rather than as destination-specific subflows. Although several macroscopic
simulation models which model destination-specific subflows, are available
(Mahmassani and Jayakrishnan, 1990; Papageorgiou and Messmer, 1991; Davis, 1993),
few applications have been reported for the destination-specific density estimation.

In summary, despite the good theoretical properties of the Kalman-filtering
approach in traffic state estimation, several problems hinder a straightforward
application of the Kalman filter. The first problem is the lack of a good traffic flow
model. Most of the modern estimators obtain q(t), or q,,(t) as state dependent
quantities, and questions arise concerning how accurately the traffic flow is replicated
by the model. In addition, for a freeway of realistic size, the relations between the entry
and exit flows will depend on congestion levels, and thus require an accurate nonlinear
traffic flow model to relate link counts to state values.

The filtering problem cannot be seen as apart from a second problem, estimation
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of parameters that are inherent in the filtering model. To date, all methods for the
estimation of traffic flow and/or O-D parameters have employed prediction error
minimization (PEM) methods, where one first specifies a model for predicting the
network’s output (volume or lane occupancy) using the input counts and a trial set of
parameters. One then selects as the estimates those parameter values which minimize
some measure of the difference between the predicted outputs and the actual ones. A
prediction model is thus essential for the estimation of parameters. Our first requirement
then is a prediction model that can handle realistic networks and allows for a variety
of possible detector configurations.

The third problem is that a lack of the information about the noise covariance
matrices Q(t) and R(t,), on which the performance of the Kalman filter depends. Good
approximations of these matrices should improve the estimates. If the link volumes are
actually stochastic outcomes, as is commonly assumed, then not only the mean of the
link flows but also their covariance matrix will depend on the state vector. This in turn
means that the error terms are not independent of the state vectors, and that equations
(2.4) and (2.5) are misspecified. This suggests that there is more information about the
state vector in link count data than is used by past implementations of the Kalman filter
in traffic state estimation. However, this approach is hindered by the difficulties in
deriving the covariance of the link counts. In Chapter Three this difficulty will be
sidestepped by applying the method of large population approximation (Lehoczky,

1980) to the stochastic process describing the link volumes.
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2.3 Parameter Estimation for Traffic Flow Models

2.3.1 Approaches to Parameter Estimation

In this section we review approaches to the problem of estimating model
parameters from a large set of observations. Before any of the traffic flow models can
be used to replicate the behavior of actual freeways they must be calibrated by being
provided with estimates of several parameters. Generally these parameters can be
divided into two groups. The first group consists of traffic flow parameters, containing
quantities such as capacities, free-flow speeds, and jam densities, which describe the
evolution of the macroscopic variables mean speed and density. The other group,
containing arrival rates at on-ramps and the proportions of on-ramp traffic destined for
off-ramps, describes the demand for freeway use.

In the past the required inputs have been estimated by off-line methods, although
for ATMS it will often be necessary to have a model of the traffic system available on-
line as the system is operating. Such problems can be solved using recursive
identification methods, which means that measured input-output data are processed
sequentially as they become available, and estimates of the parameters adjusted
appropriately. An important practical advantage to using recursive methods is that they
result in considerably faster algorithms and are able to track time-varying parameters.
Since the O-D proportions of a freeway may be time-varying, the effectiveness of off-
line estimation for use in a real-time ATMS is questionable.

There are two disadvantages to recursive identification in contrast to off-line
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identification. First, the decision of what model structure to use has to be made a priori,
before starting the recursive identification procedure. In the off-line situation different
types of models can be tried out. The second disadvantage is that, with a few
exceptions, recursive methods do not give as good of estimates as off-line methods. For
long data records, the difference is not usually significant. In general, though, the
recursive algorithms are less-efficient than their off-line counterparts (Ljung and
Sdderstrdm, 1983) because the recursive constraint means that the data is not maximally
utilized. Therefore, the statistical properties of the estimators should be evaluated.
From a mathematical standpoint, all traffic flow and/or demand estimators can
be thought of as solutions of optimization problems, where a measure of fit is first
presented which varies as a function of the values of the parameters. Those parameter
values which optimize this measure are identified as "good" estimates, and the
optimizing values are usually characterized as the solution of a set of equations and/or
inequality constraints. Thus, the problem of computing these estimates is reduced to a
problem of solving a system of equations. This next section reviews various methods

which have been proposed for estimating freeway traffic flow and O-D parameters.

2.3.2 Traffic Flow Parameter Estimation

Over the past 60 years a number of traffic flow models have been proposed and
considerable research has been directed to the estimation of traffic flow model
parameters. The analysis of flow-speed-density relationships based on field

measurements can be a very difficult task. Unique demand-capacity relationships over
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time of day and over length of the roadway must be present. Even then the complete
range of flow, speed, and density values will probably not have been recorded.
Parameter values for flow, speed, and density curves are often difficult to estimate and
can greatly vary across sites. Many other factors affect flow-speed-density relationships,
such as design speed, access control, speed limits and geometrics. The most common
off-line method for the parameter estimation in a freeway traffic flow model is the
nonlinear least squares output error method (Cremer and Papageorgiou, 1981; Cremer
and May, 1985; Davis, 1993), which minimizes the sum of the squared errors between
the output of a parameterized predictor and observations of the output.

Since Szeto and Gazis (1972) applied the Kalman Filter (KF) method for the
joint parameter and state estimation for freeway system, several researchers have
applied recursive estimation methods to the problem of identifying freeway traffic flow
parameters. Most of these are Kalman filter approaches which can be considered as
adaptive implementations of optimal filters for state estimation. The state vector is
augmented by addition of unknown, but constant parameters, leading to a nonlinear
filtering problem due to the occurrence of products between parameters and states. The
Extended Kalman Filter (EKF) can in principle be applied to estimate the composite
state comprising the original state and parameters. Grewal and Payne (1976) formulated
traffic flow parameter estimation as a two-step estimation problem for their macroscopic
freeway traffic flow model. First, two traffic flow parameters, which were not
identifiable by the filter from the given data, are estimated by least-squares. Next, their

remaining two parameters were estimated by using the extended Kalman filter.
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Although these approaches showed reasonable estimation results on either
simulated data or real data, the problem of supplying a systematic state and
measurement noise was largely ignored. It is to be noted that the KF algorithm depends
on knowledge of the state and measurement noise covariances. It has been observed
from simulations and practical applications that the EKF parameter estimator, may give
biased estimates, and may sometimes diverge. The convergence behavior has been
investigated by Ljung (1987), who has demonstrated that the convergence difficulties
arise from a combination of factors. These include incorrect specification of the noise

covariances and the dependence of the Kalman gain on the parameter estimates.

2.3.3 Freeway Origin-Destination Matrices Estimation

Vehicle movement desires are generally summarized in origin-destination (O-D)
tables. For a freeway system, origins correspond to on-ramps while destinations are off-
ramps. Dynamically updated O-D tables are required for various strategies aimed at
optimal usage of existing freeway capacity, such as ramp metering, route guidance and
incident management. Historically, these O-D proportions have been estimated by
manual counting, but the ongoing deployment of real-time, adaptive traffic control
strategies indicates that automatic estimation of these proportions from traffic detector
data is becoming increasingly important. As in all statistical estimation exercises, the
quality of O-D estimates will depend on the type and quality of the data available.
Traffic counts at on-ramps provide reliable estimates of arrival rates, but obtaining O-D

matrices directly is extremely difficult and costly, so that indirect O-D estimation of the



24

O-D matrices from time-series traffic counts has received increasing attention.

As noted in Davis (1993), O-D estimation methods can be classified as either
over- or under-determined, depending on whether or not the traffic data at hand is
sufficient to produce a unique estimate of the O-D elements. For under-determined
approaches, there will be an infinite number of O-D estimates that are consistent with
the count data, and one of these is selected by first specifying a prior estimate of the
O-D matrix and then selecting as the new estimate that which is consistent with the
count data and "closest" to the prior estimate. This problem has been an active area of
research for at least 15 years, with good review of earlier work being given by Nguyen
(1984) and Spiess (1987). This under-determined approach has been incorporated in
several transportation software packages, such as FREQ, The Highway Emulator,
FRESIM and INTEGRATION. Unfortunately, these approaches are static in nature, and
tend to be biased because of reliance on prior O-D information. The limitations of
under-determined approaches were described by Cremer and Keller (1987).

The basic idea of over-determined approach is that traffic flow through a freeway
system is treated as a dynamic process in which the sequences of short period exit flow
counts depend by causal relationships upon the time-variable sequences of entrance
flows. In that way enough information can be obtained from the counts at the entrances
and the exits to obtain unique and bias-free O-D flow estimates without further a priori
information. To date, all methods for the estimation of freeway O-D matrices have
employed prediction error minimization (PEM) methods, where one first specifies a

model for predicting the freeway’s exit counts using the on-ramp input counts and a
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trial set of O-D parameters. One then selects as the estimated O-D proportions those
values which minimize some measure of the difference between the predicted exit
counts and the actual ones.

Cremer and Keller (1983) first applied an Ordinary Least Squares (OLS)
approach to the problem of estimating turning movement proportions at single
intersection, and since then a number of variants on least-squares approach have
appeared in the literature (Cremer and Keller, 1987; Nihan and Davis, 1987, 1989; Bell,
1991). In particular, Nihan and Davis (1989) show that for a single intersection, the
OLS estimator is both unbiased and consistent, and that recursive versions of OLS are
consistent and asymptotically unbiased. Generally, it appears that if the variability of
travel times between origin and destination can be ignored, the OLS-based methods can
give useful estimates of the O-D parameters, using only time-series data of the arrival
and departure counts.

However, there exist two obvious differences between freeway traffic and
intersection traffic. First, the travel times between freeway origins and destinations can
vary both as functions of the distance separating these points, and also as functions of
the intervening traffic conditions. Second, platoon dispersion effects will cause the
traffic exiting at an off-ramp to comprise of on-ramp traffic from different time
intervals. Davis (1993) reported that the performance of the OLS-based approach
incorporating a linear traffic flow model results in poor estimates. This is mainly due
to the unrealistic simplicity of the underlying linear traffic flow model. One may

improve the results by incorporating a macroscopic freeway traffic flow model.
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Unfortunately, most macroscopic models do not differentiate their component flows by
destination, and therefore lack explicit O-D routing. Thus, when the flow reaches an
off-ramp area in the freeway or junction where there is a route choice, the existing
macroscopic models usually specify either a fixed proportion of turns or a fixed amount
of exit flow. In other words, they treat on-ramp and off-ramp volumes as boundary
conditions for the simulation rather than as outputs, so that the modeling of the
destination-specific subflows is not possible. Since the majority of the recursive and
Kalman filter based methods for estimating time-varying O-D parameters that have been
presented in the literature (Okutani, 1987; Davis, 1987; Chang and Wu, 1994; Zijpp and
Hammerslag, 1994; Akiva, 1994) incorporate the linear traffic flow model, these
considerations should apply to them all. Thus in order to link on-ramp volumes to off-
ramp volumes more accurately it may be necessary. to embed the linear traffic
distribution model within a nonlinear macroscopic traffic flow model. This approach
should provide both on accurate description of traffic propagation on the links and
explicit connections of origins to destinations.

A final issue concerns the selection of estimators. Many estimators are based on
the Kalman filter because it allows the estimation of time varying parameters. Nihan
and Davis (1987) reported a superiority of the Kalman filter based method over the
other methods on freeway data. Zijpp and Hammerslag (1994) tested several methods
including least squares, constrained optimization, and the Kalman filter based methods
on both simulated and observed data for a freeway. While their state model is limited

to the linear model, the Kalman filter based method led to the best results.
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3. DEVELOPMENT AND TESTING OF A STOCHASTIC FREEWAY TRAFFIC

~ FLOW MODEL

3.1 Introduction

A dynamic traffic flow model plays an important part in traffic prediction and
control. Application of methods from stochastic systems theory for parameter
estimation, filtering and control first requires the formulation of a state-space model
describing the evolution of the system of interest. In a manner analogous to the
deterministic state space model used in earlier research (Michalopoulos et al., 1984;
1991, Cremer and May, 1985), an appropriate stochastic state space model for traffic
system can be based on a Markovian network model (Davis, 1991).

In section 3.2, a stochastic version of the simple continuum model will be
formulated as a Markov population process. In section 3.3, a new transition rate

function will be developed. In section 3.4, the stochastic model will be evaluated.

3.2 Markov Compartment Model of Freeway Traffic Flow (MARCOM)

A compartmental system is defined (Jacquez, 1985) as "a system which is made
up of a finite number of macroscopic subsystems, called compartments, each of which
is well mixed, and the compartments interact by exchanging materials. There may be

inputs from the environment into one or more of the compartments, and there may be
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outputs from one or more of the compartments into the environment." The development
and use of compartment models began in the 1940s, with the use of tracer experiments
in research into the physiology of animals and humans. Later Conlisk (1976) introduced
"interactive Markov Chains" were future transitions depend on the current distribution
of the population in the compartments. This is also termed a partial independence model
(Lehoczky, 1980). Although Markov compartment models have been applied to a
problems in a sociology, chemistry, and biochemistry, practical applications in
transportation have been limited.

Karmeshu and Pathria (1981) developed a Markov compartment model for
highway traffic and provided a "large population" analysis. Using the method of
diffusion approximations, a tractable approximation to their master equation was
derived. This equation led to the derivation of ordinary differential equations describing
the evolution of the means and variances of the compartment populations. Davis (1992)
recenily proposed an integrated traffic demand/flow model for general networks using
Markov compartment models. The essence of this idea is to treat each section of
roadway as a Markovian compartment, where the material is composed of vehicles and
the stochastic nature of material transfer is caused by the random movements of
vehicles according to a discrete time Markov chain. Conditional on the current
compartment population sizes, each particle makes its exit independently of every other
one, so that if x, denotes the current population in compartment k, p, denotes the exit
probability and y, denotes the number of exiting particles over some short time interval,

Yx 1s a binomial random variable with parameters x, and p,.
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Now imagine that a section of freeway has been divided into subsections
(segments), such that on-ramps join the freeway only at the upstream boundaries of
segments, off-ramps diverge from the freeway only at the downstream boundaries of
segments, and mainline detectors are located at the downstream boundaries of segments.
In addition, the number of lanes, grade, and other geometric characteristics are constant
within the segment. Assume that the freeway has m origins, indexed by i=1,..m, s
destinations indexed by j=1,..,s, and n sections, indexed by k=1,..,n. By convention,
origin 1 is taken to be the upstream mainline boundary of the original freeway segment,
while destination n is taken to be the downstream mainline boundary. Next, define the
following variables:

X,(t) = total remaining vehicles at origin i at time t,

X4(t) = total vehicles which have exited the segment at destination j by time t,

X,i(t) = vehicles in segment k bound for destination j, at time t,

y(t) = total vehicles counted at counter 1 up to time t.

We will assume that the total number of vehicles in the system is fixed, so that

N=2x

i*oi

(D+Z,Zx,(D+Ex4(t) 1s constant at all times t. Let

X(t) :(Kol(t)s"sxom(t)vxl 1(t)aX12(t)a--ans (t)>xd1(t)9' '5de(t))T

be a column vector containing the various compartment populations, and
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YO=, (1), ..., y, ()

be a column vector containing the count totals. Letting e, denote a column vector with
all elements equal to zero except for position g, and letting g, h index arbitrary elements
of the vector x, it will be assumed that over a very short time interval of length A,

transitions of the form

x(t+A)| | x(O] _ |€r7%
y(t+A) y(®) He,
occur with probability x,q, ,(x(t))A+0o(A). It will further be assumed that transitions with

[x(t+A) Lyt A) T-[x(@®y()']" = 0

occur with probability 1-Z,,,X.q,,(X(t)A+o(A), and all other transitions have a
probability which is o(A). Note that a x(t+A)-x(t) = e,-e, corresponds to the transition
of a vehicle from compartment g to compartment h. By defining H such that
H,, = 1 if counter I registers departure from g
0 otherwise,

y(t+A)-y(t) = He, corresponds to an increment in the counter registering departures from

compartment g. The vehicle movements follow a closed, continuous time Markov
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Figure 3.1. Markov Compartment Model of Freeway Traffic Flow
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compartment model, (or equivalently, a nonlinear birth and death process), with the
state vector augmented to include vehicle counts. In order to facilitate the interpretation
of this Markov compartment model of freeway traftic flow, a freeway system with 2-
origin and 3-destination is depicted in Figure 3.1. First, traffic arrives at origins and on-
ramp traffic is assigned to have destination j with O-D splitting probability b;. This is
equivalent té a birth process. Finally, each destination-specific flow x,,(t) propagates to
next segment or exits to off-ramps according to the transition functions g, (x(1)).
Meanwhile, counter crossings are cumulated in the counter y(t).

A continuous-time discrete-state Markov process can also be defined in terms
of particles having exponentially distributed residency times within the compartments.
At the end of its residency time a particle is transferred to one of the other
compartments with probabilities according to a Markov-chain transition matrix.
Therefore, the continuous time Markov compartment model (MARCOM) for freeway
traffic flow just described can be expressed as a simple recursive process, well suited

for computer simulation (Table 3.1).
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Table 3.1. MARCOM Freeway Traffic Simulation Model

Step 0: Given O-D splitting probabilities b; and destination specific variables x,,(0), let
t=0, i=1,...,m, k=1,....n, j=1,...;s.
Step 1: Generate the next arrival time at origin i destined for j, A;, as an exponential

outcome with parameter A by,

where A, = arrival rate from on-ramp i.

Step 2: Calculate the mainline transition rates x,,q,,(x(t)), where q,,(x(t))=mainline
transition intensity which will be derived in section 3.3.

Step 3: Generate the next transition time at each compartment k destined for j, A, as
an exponential outcome with parameter x,,q; ,(x(1)).

Step 4: Pick a minimum next arrival time A, among (A, Ay).

Step 5: Lett=t+ A

min>

update state variable x,,(t) and counter y,(t):
Xyi(tHA L) = X(t) + 1, if it is a birth compartment;

Xi(tHA L) = Xg(t) - 1, if it is a death compartment; and
Vig(tHA i) = yi(D) + 1, if detector 1 register departures from g.

Step 6: Go to Step 1.
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3.3 Development of a New Transition Rate Function for Freeway Traffic Flow

The MARkov COMpartment model (MARCOM) for freeway traffic flow not only
models the random departure and distribution of traffic but also the propagation of
traffic from on-ramps to off-ramps, in a way that preserves the random allocation of
arriving vehicles to off-ramps. To implement MARCOM, transition intensity functions
. (X(t)) are necessary that reflects traffic condition in a natural way. For the transitions
from the origin sources to mainline sections, it is reasonable to use transition intensities

of the form q,b;, where

ij*
q,; = constant arrival intensity from on-ramp i,

b, = probability a vehicle is destined for off-ramp j, given it arrives at on-ramp i.

If the origin populations x(t) are large enough so that the total arrivals during the time
period of interest is a small proportion of the original total, we can take the quantity
X,(t)q,; as being a constant A, giving Poisson arrival rates at the freeway origins
(Whittle, 1986).

To develop functions giving the transition rates within the mainline sections,
assume that at time t, the vehicles in section k have speeds assigned as independent,
identically distributed random outcomes from a common speed distribution. It is further
assumed that distances from the downstream boundary of section k are assigned as

independent, identically distributed outcomes from a uniform random variable with
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probability density 1/L,, where L, is the length of section k. Let s,, denote the location
of vehicle 1 in section k, u,; denote the speed of vehicle 1 in k, and let f (u) denote the

probability density function for the speeds. Now clearly, vehicle 1 will exit section k

only if
Su < UgA (3.1

so that

uw Jo(u
p, = Prob[vehicle | exits section k]==JOLkJ su )duds (3.2)
0
K
it follows that
P = U AL, (3.3)

where U, denotes the space mean speed in section k. The formulation can then be closed
by requiring the space mean speeds 1, to depend directly on x(t) via a form of the
equilibrium speed-density relations of traffic flow theory, giving a version of the simple
continuum model. When 4,<L,/A the Markovian property is preserved and the flow rate
is expressed as the product of density and space-mean speed. As formulated though, this

model will show a tendency to "lock up" when the densities in a section rise above the
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critical density, because the exit probabilities go to zero as U, goes to zero (Ross, 1988).
Although Markov traffic models can be extended to produce analogues of high-order
continuum models (Cremer and May, 1985; Davis, 1993), a simpler solution is to
employ the device originally due to Szeto and Gazis (1972), and allow the flow across
the boundary of two sections to depend on both the upstream and downstream densities.
It is assumed that the exiting probability from section k is the product of a passing
probability for section k, given by equation (3.3), and the probability an exiting vehicle

is not blocked by one in the downstream segment.

[Exiting prob.], = [passing prob.],{non-blocking prob.],.,

In this study, the Bell-shaped speed-density function, parameterized by free-flow speed
and critical density, is used in the passing probability function, and a function
parameterized by jam density and a value r is used as a non-blocking probability. The

continuous two-dimensional exiting probability function then takes the form

d> r
1y d
pdyd,,) - ug 2" |1- ’“1] A, dsd
‘ (3.4)
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where u; is a free-flow speed, d, is a critical density, Q, is a capacity flow, d,,,, is a jam
density, and d,=x,/(N,L,) is the traffic density in section k.
From the relationship of p, = 0,"A/L, = (Q,A)/(d,'L,), the form of the two-

dimensional transition rate is then

_%(;f)z d,, '
od,d,,,) = dkuje 1- = , d=d,
Jam (3.5

Table 3.2 shows the flow condition across section boundaries as a combination of
upstream and downstream traffic conditions. For a constant downstream density d,,,,
equation (3.5) gives an increasing cross-boundary flow as the upstream density d,
increases, up to the point where d, equals the critical density. The cross boundary flow
then remains constant, thus modeling the upstream section as (approximately) an
oversaturated finite-server queue. As the downstream density d,,, approaches the jam

density d., ., the cross boundary flow goes to zero, with the sensitivity of this effect

jam>
being governed by the exponent r. It should be noted that equation (3.5) gives an

equilibrium flow-density relationship when the upstream density d, is equal to the

downstream density d,,,. Figure 3.2 displays a plot of equation (3.5) as calibrated for



an actual segment of freeway.

Table 3.2. Flow Conditions Across Section Boundaries

Upstream Density
' Low High
Downstream Low Homogeneous Shockwave
Density High Queuing Homogeneous

38



k+1

Q : flow (vph)
density at section k
density at section k+1

Figure 3.2. Two-Dimensional Flow vs. Density Relationship
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3.4 Testing of Markov Compartment Model of Freeway Traffic Flow

(MARCOM)

As stated earlier, one of the ultimate objectives of this research is to estimate
destination-specific traffic densities on freeways. The overall solution strategy is to first
describe a Markovian traffic model, then approximate the Markovian model with a
time-varying linear stochastic model, and finally apply the theory of Kalman filtering
in order to estimate the destination-specific densities. Three questions then arise
concerning this approach: (1) how reasonable is the underlying Markovian traffic
model, (2) how accurate is the approximation and (3) how well does the resulting
Kalman filter perform? The first question becomes important since destination-specific
densities are almost impossible to observe in practice, so the accuracy of the Kalman
Filter will have to be assessed using simulated data. Although the basic idea behind
equation (3.5) is not new, the traffic flow model which results is still somewhat novel,
and it was first desired to see if a model based on equation (3.5) could produce
reasonable behavior at bottleneck. To this end, a computer program implementing the
algorithm in Table 3.1, called MARCOM, was written and used to generate flows for
the given freeway section. MARCOM can be used to generate a series of simulated on-
ramp volumes, distributing these on-ramp volumes to off-ramps using the above birth-
death model and then propagate these volumes down the freeway and out the off-ramps
in a manner consistent with the embedded traffic flow model. In this section, a

preliminary testing of the Markov traffic flow model was performed using both



41

hypothetical data and actual freeway data. First, in order to examine whether the
proposed models behave reasonably for a wide range of hypothetical flow situations,
a qualitative evaluation of the model was done. Next, a comparison with field data was

performed.

3.3.1 Qualitative Testing of MARCOM

Behavior of MARCOM at a Lane Drop Bottleneck

Figure 3.3 shows a hypothetical 5.6 km (3.5 mile) freeway section where the
number of lanes is reduced from three to two behind the fifth of twelve subsections (the
lengths of the subsections were uniformly chosen to be 457.2 m (1,500 feet)). A 60
minute simulation was started with demand of 3,000 vph and then increased to 4,800
vph, which exceeds the capacity of the two-lane section by approximately 20 percent,
and finally decreased to 1,200 vph. One can analyze the behavior of traffic near this
bottleneck by plotting the volume and density trajectories of the test section at 5 minute
intervals. As illustrated in Figures 3.4 and 3.5, MARCOM provides a reasonable
description of queue buildup and dissipation at the bottleneck section in that:
(1) Congestion starts above the bottleneck and moves in the upstream direction, while
the density within the bottleneck remains around the critical density.
(2) The volumes in the bottleneck are limited to the capacity during congestion building
and dissipation. Further, vehicles do not pass upstream subsections at a rate greater than

the capacity of the bottleneck during congestion.
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Behavior of MARCOM at an Incident Section

To test the ability of MARCOM on more complex traffic flow behavior, another
test was performed for a hypothetical geometry. Figure 3.6 shows the geometrics and
demand-capacity variation of a 7.24 km (4.5 mile) freeway section with part of the 10th
subsection is closed because of an incident (the lengths of the subsections were
unjformlyA chosen as 609.6 m (2,000 feet)). When the reduced capacity at the incident
area is less than the through demand, congestion may develop and propagate upstream.
A 150 minute simulation with constant demand of 4,200 vph was done with traffic flow
parameters of u=104.6 kph (65.0 mph), d=37.8 veh/km/lane (60.8 veh/mile/lane),
d;,;n=99.4 veh/km/lane (160 veh/mile/lane). In order to create an incident at the 10th
subsection, two lanes were closed during the interval 30-60 minutes and one lane was
closed during the interval 60-120 minutes. Figure 3.7 shows the simulated density
trajectories for selected subsections during the entire simulation period, at one minute
intervals. Figure 3.8 further describes the evolution of the flow-density relationship at
subsection eight, which is upstream of the incident subsection. Again, MARCOM
reasonably describes the expected behavior of traffic near the incident area in that:
(1) During time 30-60 minutes, congestion starts above subsection 10 and propagates
in the upstream (subsections 8 and 4) direction, while the density values within incident
area (subsection 10) remain uniform at the critical density. As congestion moves into
the upstream subsections from the incident area, the density values in these subsections

rapidly increase until they reach the right-hand side value of the basic flow-density
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Figure 3.6. Geometrics and Demand Pattern of Freeway Section with an Incident
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curve, where flow corresponds to the capacity of incident area. Further, the density
values remain fairly uniform. However, one can see that subsection 12, which is
downstream of incident area, exhibits no congestion during the incident period. When
the incident was removed, the congested queue dissipated reasonably.

(2) Flow-density plots at subsection eight remained in the uncongested region until it
was affectedrby the incident downstream (Figure 3.8). Once this subsection was affected
by the incident, the flow gradually reduced to the capacity of subsection 10 while
density values increased sharply. This congestion building process was illustrated by the
lower flow-density trajectories in Figure 3.8. Once the flow reached the capacity of the
incident area it stayed there until the capacity of downstream recovered. The congestion
dissipating process after the removal of incident is illustrated by upper flow-density
trajectories in Figure 3.8.
(3) It should be noted that an apparent discontinuity around the critical density (37.8
veh/lane/km (60.8 veh/lane/mile)) was due to rapid queue propagation upstream of the
incident section. This corresponds to field observation (Banks, 1991; Hall et. al., 1993).
While the idea of the proposed 2-dimensional flow-density relationship adopted
in MARCOM is quite simple, it allows modeling complex traffic patterns such as
mainline congestion propagation due to incidents and/or geometric bottlenencks. It
should be pointed out that such an effective description of complex traffic patterns is
possible without any special modeling ;)r boundary treatment. Further, the ability to
describe O-D routing in MARCOM could improve the description of traffic in the ramp

areas where a significant amount of lane-changing and/or spillback occurs. Since
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efficient modeling of those problems actually need destination information, traffic
dynamics, or route choice, the basic idea in MARCOM could be a valuable tool in

improving freeway traffic simulation tools.

3.3.2 Field Testing of MARCOM

Field implementation of MARCOM was accomplished by using data collected from
Interstate highway 35W in Minneapolis. The following section describes the process of

calibration and running of the MARCOM simulation program.

Example Network and Data

Figure 3.9 shows a 4.0 km (2.5 mile) long, seven-origin, four-destination
segment of northbound Interstate highway [-35W. This freeway section is separated into
10 subsections. Five-minute cumulative volume and lane occupancy measurements
during a three-hour morning peak period (6:00-9:00 a.m.) for mainline stations, on-ramp
and off-ramp stations are obtained from the Minnesota Department of Transportation
(MNDOT).

To run the stochastic simulation model MARCOM, it is necessary to know the
on-ramp arrival rates A, the origin-destination splitting probabilities b;, and the
parameters governing the flow-density relation (3.5). The arrival rates can simply be
estimated as those values that reproduce the corresponding five-minute arrival counts,
allowing the arrival rates to vary for each five-minute interval. To determine the

parameters for equation (3.5), the lane occupancy measurements were converted to
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approximate density values, and then the parameters u;, d,, d,,, and r in equation (3.5)
were estimated using nonlinear least-squares by setting d,=d,,,, corresponding to the
notion of approximate homogeneous flow. Figure 3.10 shows the observed and fitted
flow-density curve obtained for the estimates u,=107.2 kph (66.6 mph), d=40.1
vel/km/lane (64.5 veh/mile/lane), d,,=74.6 vel/km/lane (120 veh/km/lane) and r=3.
Finally, the O-D splitting probabilities b; were estimated by first using the estimated
traffic flow parameters to numerically solve the mean value equation of MARCOM for
a trial sets of b; values. For a given set of origin counts this produced estimated
destination counts, and those b; values which minimized the sum of squared errors
between forecasted and actual counts were obtained by embedding this routine in a
nonlinear optimization program. These estimates were then used as inputs to MARCOM
which simulated the Markov compartment process to generate simulated traffic counts
for various time intervals, as well as destination-specific section populations, x,(t).
The resulting comparisons of S5-minute volumes generally showed good

agreement between simulated and actual data. As indicated by the error measures in

Table 3.3, MARCOM provided a reasonable reproduction of traffic flows.
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Table 3.3. Mean Error of the Simulated Volume Results (6:00-9:00 A.M.)

Detector 63N 62N 61N 55N 53N

Station

MAPD? 2.2 2.0 2.0 2.1 2.2

MAE® 13 21 18 27 28
Note:

a: Mean absolute percentage difference between observed and simulated volumes
= [X,.,100- | ¥()-3(2) | OUN > where N =36

b: Mean absolute error between observed and simulated volumes (veh/5 min)
T Lo | ¥()-$(t) | /N , where N = 36
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4. LARGE POPULATION APPROXIMATION AND FORMULATION OF

KALMAN FILTER FOR DESTINATION-SPECIFIC DENSITY ESTIMATION

4.1 Introduction

As stated earlier a chief goal of this research is to produce estimates of the
unobserved destination-specific segment populations, x,,(t), using vehicle counts y(t)
which have been aggregated across the origin-destination subflows. This can be done
by the application of stochastic filtering theory, given the formulation of a state space
model describing the evolution of the system of interest. A state space model consists
of two components, the first being a state dynamic equation describing how the
system’s state variables change over time, the second being an observation equation
describing how observable quantities are related to the state variables. In a manner
analogous to the deterministic models used in earlier research (Michalopoulos et al.,
1984;1991; Cremer and May, 1985), a stochastic freeway traffic flow model was
developed in Chapter Three. This model, which is based on a Markovian network
model, is a stochastic state space model. The problem of estimating the unobserved
destination-specific populations x,(t) using the counts at time t can now be solved using
filtering theory. However, the resulting filtering problem will be nonlinear and often
intractably large for realistic networks. Therefore, the original nonlinear stochastic
traffic flow model will be approximated by the sum of a nonlinear deterministic process

and a linear, time-varying Gaussian stochastic process, via the method of Large
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and a linear, time-varying Gaussian stochastic process, via the method of Large
Population Approximation (LPA). Using this approximation, a Kalman filter which
tracks a freeway section’s density broken down by destination, using traffic counts, will

be derived in section 4.3.

4.2 Large Population Approximation of a Stechastic Traffic Flow Model

Approximating one Markov process with another has a rather long history
including Conlisk’s (1976) introduction of "interactive Markov chains" in discrete time
and his study on such processes using deterministic approximations. An "interactive
Markov Chains" is a population process in which the individual transition probabilities
depend on the population’s distribution over the various states. For this class of the
models, Lehoczky (1980) has shown that if the transition probabilities are extensive, the
interactive Markov chain converge weakly to a diffusion process, with specified drift
and scale terms, as the population size becomes infinite, at least over a finite time
horizon. Lehvoczky in turn draws from work by Kurtz (1978) on approximating
populations process with diffusions. Ingenbleek and Lefevre (1985) have used
approximations similar to the ones developed below to study a discrete time epidemic
model. This approach was also used by Karmeshu and Pathria (1981) on a proposed
Markov compartment model for highway traffic to provide an asymptotic analysis using
a diffusion approximation. The assumption of a large population seems reasonable for

traffic systems, and as mentioned earlier, MARCOM is a particular form of an
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distribution of the vehicles over the various sections. Therefore, given reasonable
conditions on the functions g ,(x(t)), Lehoczky’s (1980) argument can be adapted to
this case in order to show that as N, the total vehicles in the system, becomes large, the
random vectors [x(t)"y(t)"]" can be approximated by the sum of a nonlinear

deterministic process and a linear, time-varying Gaussian stochastic process

4.1
x| L [xO] ,
[y@] > [y@] 29

where  [x(r)", y(r)"]” are the deterministic, mean values resulting from the
deterministic approximation (Lehoczky, 1980) and satisfy the ordinary differential

equation

dx (2) _ _ _
" 2509, 50) = £, E0) .

0 ) ) )
d)’(i - Zg H,gxg(t)zwg 4, (X(®) = [, (x(2))

z(1) is a zero mean Gaussian random vector with covariance matrix P(t). It follows then
that [(x(r)-x(0)", (p(O)-p®))"]" will have a multivariate normal distribution with mean

0 and covariance matrix P(t), and P(t) is the unique symmetric nonnegative definite
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solution of the matrix Ricatti equation
= F(x()P()+P(OF(x(®))" + G(x(0) 4.3)

dP(f)
d

Here F(x(f)) denotes the Jacobian matrix of the right-hand side of equation (4.2) with

respect to x(f), and is given by

_ X

o) - | 4.4)
IR |
_8x(t) 1z0

where f; and f, are vectors containing the functions defined in (4.2). G(x(r)) is a

covariance matrix of a noise process with

G,(x(1) G,(x(1) (4.5)

G(x() =
O ercey 6,.60)



59

and Gk(:v_(t)) has the elements of

G &) = Y, 4,50)-x0q,&0) for i=j,

G, (x(@®) = -[x(Dg(x(®) + x(Dq,(x!)] for i,
G, (x(®) = [xg,(xNHT,

G, ;(x(®) - Hldiag(x;y_ . q,(xeNIH"

The transition intensities, qij(f(t)) were defined in Chapter 3.
In summary, it has been argued that the Markov process [x(t)", y(t)"]" for any
t can be approximated by the sum of a nonlinear deterministic process (drift term) and

a linear, time varying Gaussian stochastic process (scale term)

x(?)
y(®

x(®)
y@®

-

The probability distributions of [x(t)", p(t)']" are therefore Gaussian with mean and

, P(f(t))) (4.6)

variance given by equations (4.2) and (4.3). In passing, we note that the distributional
results will allow for the construction of a likelihood function from interactive Markov
process data, so these results will be important for both state and parameter estimation.

4.3 Formulation of Kalman Filter for Destination-Specific Density Estimation

As before, imagine that a section of freeway has been divided into subsections,



60

such that on-ramps join the freeway only at the upstream boundaries of the section, off-
ramps diverge from the freeway only at the downstream boundaries of section, and
mainline detectors are located at the downstream boundaries of sections. The task is
estimation of the number of vehicles in a freeway subsection, broken down by the
destination, x,,(t). Since the only observations are the counts of arrival vehicles g(t) and
passing Vehiéles y(t), one needs to estimate the destination-specific density information
from these observations. Therefore, the problem can be formally stated as: Given a set
of traffic flow measurements {q(t) and y(t)}, for t=1,..,N characterized by the
measurements model, find the linear minimum (error) variance estimate of the
destination-specific traffic densities x(t) characterized by the state-space model. That is,
find the best estimate x(t) given the measurement data up to time t, Y(t) =
{a(1),...q(®),y(1),....,y(O}.

The estimation procedure is based on Kalman filter that first requires the
formulation of a state-space model describing the evolution of the system of interest.

Coupled with an observation equation of the form

y(t) = Hx(1), 4.7)

the system equation in Table 4.1 define a time-varying state-space model with normally
distributed state noise. The conditional means and conditional variances are available
by solving the mean value equation (4.2) and the Ricatti equation (4.3) for a given time.

Since the approximating random process is a Gaussian process, complete estimation
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requires a knowledge of only these first and second moments. Therefore optimal
estimation is possible and no nonlinear filter is superior to the best linear filter in the
mean-square error sense, as long as the approximation is valid. The procedure for
implementing the Kalman filter for given values of the model parameters can be viewed
as a predictor-corrector algorithm, as in standard numerical integration.
Given an initial estimates (0 | 0) = X(0), $(0) = 0, P(0 | 0) = P(0), we are
now in the prediction phase of the algorithm. The differential equations (4.2) and (4.3)
are then solved numerically to give predicted compartment totals, x(f) and cumulative
counts, y(f), along with variances and covariances, P(t), for any future time t. Once
a measurement becomes available at time t,, we then calculate the Kalman gain K(t,)
and the innovation covariance HP(t |t )H". We then determine the innovation
e(t) = y(t) (1), and a measurement update of compartment totals and their
covariance terms is performed. Here we update the state using the new information in
the most recent measurement. The old, or predicted state £, | £, is used to form
the filtered state estimate £(t, | 1) The innovation is weighted by the gain K(t,) to
correct the old state estimate £, | t,_) and the associated error covariance P(t |t ).
The differential equations (4.2) and (4.3) can then be restarted with x(0) = £, | 1),
P(0)=P(t,|t,) and p(0) - 0, and the recursion continued until the next count becomes
available. The time and measurement update equations are collected for reference in

Table 4.1.
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Table 4.1. Kalman Filter for Discrete-Measurements of Continuous-Time Systems

System Model:

dx@-XO) | _ g | (O -X(0)dt e 1
[a’(v(r)—}(r))] Fx(0)) [@a)-y(mdt] G(x(1)) 2dB(1)

Measurement Model:

wy - 8 " ey < fon] P9 v we), sy ~ MOREY)
k y() k @) e Tk k

Initial conditions:

£(0 ] 0) = x(0), (0 | 0) - 0, P(0 | 0) - P(0)

Time update:

-State Estimate Propagation

| A0
N RAC0))
where

dx (5
dar
dy (1)

— L) = Y Hx 0Y g, 0)

Ligx@®) = 32, %0, (1)



-Error Covariance Propagation

dP(t)

— = FRO)PQ) + POF(X(1)" + G(x(1))

Measurement Update at Time t :

-Gain Matrix

K(t) = P(t, | t, DHT[HP(t, | t,_ )H" + R(t)]™

-State Estimate Update

R(t, | )= 2, | 1) + K@) D) - y(@)]

-Error Covariance Update

Pt | 1) - I - K)HIP(@, | 1, )
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5. DEVELOPMENT AND TESTING OF PARAMETER ESTIMATORS

5.1 Introduction

Chapters Three and Four dealt with estimation of destination-specific traffic
densities using sensor data, by first describing a Markovian traffic model, then
approximating the Markovian model with a linear stochastic model, and applying the
Kalman filter to the linear model. Although the form of the proposed filtering model
is known, it contains unknown parameters which need to be estimated. This chapter
deals with the problem of estimating (or identifying) parameters for the filtering model
using sensor data. The model’s parameters may be divided into two groups:

(a) traffic flow parameters (i.e., free flow speed, capacity, critical density, jam
density and exponent r) governing the transition functions (3.5),

(b) demand parameters (i.e., arrival rates and O-D proportions).

Here we are not developing new identification techniques but applying existing
techniques to a particular class of problems. In section 5.2, the off-line identification
of the model’s parameters is formulated as a prediction-error minimization problem. In
section 5.3, two off-line nonlinear least-squares (NLS) estimators and a quasi-maximum
likelihood (QML) estimator for identifying traffic flow and O-D parameters are
proposed. Section 5.4 describes a Monte Carlo Evaluation of two different approaches
to estimate freeway O-D proportions b; and the traffic flow parameters, the objective

being to decide which of the methods, under practically useful conditions, tend to be
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unbiased and to assess their relative statistical efficiency. In section 5.5, the

identification of model parameters is considered from a recursive (on-line) standpoint.

5.2 Approaches to Parameter Estimation

In this section we formulate the identification of the model’s parameters as an
off-line least squares problem. We wish to give an appreciation for off-line schemes for
two reasons. First, these schemes can be employed to give initial parameter estimates
for use in an on-line scheme. Second, many on-line schemes in current use can be
thought of as sequential implementations of off-line algorithms. For example, the
recursive least squares approach used by Nihan and Davis (1989) is an exact
counterpart of the linear ordinary least-squares algorithm, the Extended Kalman Filter
approach described by Chang and Wu (1993) can be viewed as a recursive
implementation of a nonlinear weighted least-squares approach, while the Kalman Filter
method tested by Ashok and Ben-Akiva (1993) is a recursive implementation of a
linear, multi-lag least squares approach. In particular, there is a natural connection
between the efficiency of an off-line estimator and the convergence rate of its recursive
counterpart, in that the standard error of estimate for the off-line estimator obtained with
a sample of size N is a lower bound for the standard error of the recursive estimator
after N iterations.

The idea underlying this approach is as followed. Traffic on a freeway is now

considered as a causal process on which certain stimuli act as inputs while any
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that the freeway has m origins, indexed by i=1,2,...m, s destinations indexed by
j=1,2,....s, and n sections, indexed by k=1,....n. Let us introduce

a state vector X = (Xyq, Xpzsees Xpgaes Xpps Xpaseees Xpo) s

an input vector at origins q = (q;, Qos-o» q)’»

an output vector at off-ramps and mainline y = (¥, ¥, --» Yo Yeroees ys+p)T,

for the whole freeway section,

and vector of unknown parameters 8 = [w', b']" = [u, d,, dp, by, byl”
Furthermore, let q(t), y(t), t=1,...,N be the time sequences of measured input and output
data collected from traffic sensors. The most common approach for the identification
of a system without a priori information is the least sqHxres prediction error method,
which minimizes the discrepancy between the model and the observation with respect

to a quadratic output error function, and the parameter identification problem can now

be formulated as the following least squares output problem:

Given the time sequence of measured input and output counts q(1),.....,q(N),
y(1),.....,y(N), a trial sets of parameter values 8, and the traffic flow model for
predicting the output counts, and initial state of traffic state x(0). Find the set of

parameters 8 which minimizes following least squares criterion

SB) =Y., PO-FEB () -5(1.8)] (5.1)
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where j(r,8) denotes the vector of predicted outputs. Attempting to minimize S with
respect to B leads to a nonlinear least squares (NLS) problem, since our traffic flow
model for predicting the output counts are nonlinear in both the state variables and the
parameters. This problem can be solved using any of a number of a standard routines
as long as the problem is well-defined, in the sense that at least a locally unique

minimizing value of § exists.
5.3 Development of Off-line Version of Parameter Estimators

In the sequel, two NLS based estimators, which are called as, respectively, Joint
NLS and Two-step NLS, and a quasi maximum likelihood estimator are developed to

identify traffic flow and O-D parameters.

5.3.1 Joint NLS Estimator

Given the arrival rates ¢(t) and a trial set of 8 values including traffic flow and
O-D parameters, the mean value equation (4.2) is solved numerically. For a given set
of origin counts this produces forecasted off-ramp and mainline counts (r,8) that are
aggregated over the measurement intervals. A final set of parameter vector 8 which
minimizes the sum of the squared errors criterion (5.1) can be computed iteratively by

a nonlinear optimization routine.
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5.3.2 Two-step NLS Estimator

Two-step NLS estimation of traffic flow and O-D parameters is formulated by
separately identifying the two groups of parameters. Let d(t) and d,,(t) denote the
average density of the upstream and the downstream segment during time interval t,
respectively, and m,(t) denotes the mainline counts at the end of segment n during time
interval k. A set of traffic flow parameters w = (u; d,, d,,)" are first identified from
mainline volume/density measurements, and then an O-D parameter vector b is
identified from on-/off-ramp counts. Note that this method assumes the availability of

density measurements as well as volume counts.

(A) Traffic flow parameter estimation:

Given a sequence of density measurements, {d,(t), d,.,(t), t=1,...,N}, at mainline
segments, and given the time sequences of mainline counts for location k, {m,(t),
t=1,...,N} as outputs, one finds the traffic flow parameter vector w by minimizing

following sum-of-squares function with respect to w

Sw) =Y, m® - maw)) (5.2)

where the predicted output (1, w) is obtained from two-dimensional flow-density

relationship
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m(tw) = du PO d<d
JANS - Y% ]e d > —e
Jam (5.3)
d d |’
cuf 1- k+1 , dk>dc

where u; is a free-flow speed, d, is a critical density, and d,, is a jam density. Given
density measurements and a trial set of w values, equation (5.3) is evaluated. A final
set of traffic flow parameter values, which minimizes the sum of squared errors between
forecasted and actual mainline counts is found by embedding this routine in a nonlinear
optimization routine. It should be mentioned that the quality of the traffic model

parameter estimates is influenced by both measurement intervals and detector locations.

(B) O-D parameter estimation

To estimate the O-D parameters, it is assumed that estimates of the traffic flow
parameters jp are known from the first step and fixed. Given an initial set of O-D
estimates b and the time sequences of measurement {q(t), t=1, ..., N} at on-ramps as
inputs, and given the time sequences of counts {y(t), t=1, ..., N} at off-ramps as
outputs, one finds the O-D parameter vector b by minimizing the following sum-of-

squares function with respect to b
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Sb) = Y, DO-5@nB)] (1) -5(t,%.5)] (5.4)

where the predicted output counts {i(sw,b) are obtained by solving the mean value

equation (4.2) numerically, given traffic flow parameters y and a trial set of b; values.

5.3.3 Quasi-Maximum Likelihood (QML) Estimation Algorithm

To apply the principle of maximum likelihood to an estimation problem requires
that the probability distribution of the data, as a function of the parameters, be given.
The maximum likelihood method can be seen as a special case of the prediction error
criterion (Ljung, 1987), where one desire to minimize‘ the negative logarithm of the
probability density of the observation sequence, with respect to unknown parameters.
More formally, let Y be a random variable whose probability density p(y.8) depends
on an unknown parameter vector 8. To estimate § from an observation y choose the
values of 8 that maximize the likelihood function L(y,8)=p(y.B).

The first step in applying the maximum likelihood method is to determine the
likelihood function. Let {y(0),y(1),....,y(N)} sequence of observation vectors. Since the
innovations (the differences between predicted and actual observations) for the large
population approximation are Gaussian, the approximate conditional likelihood (given

y(0)) is then
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1
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Ly,®-IL., exp[-Z0() (LB 'S GO-IEHN (55)

where j(,8) denotes the conditional mean of y(t) given y(t-1) and S(t,8) is the
corresponding conditional covariance matrix, and these are computed by the Kalman
filter. Rather than maximize this function directly it will be more convenient to

minimize following negative of log-likelihood function with respect to 8

LL(B) = Y, [log | S(t.8) | + ((®)-P(t.B)'S(1.B) " () -§(t.8))] (5-6)

Since the likelihood (5.5) is an approximation of likelihood for MARCOM, this
produces a quasi-maximum likelihood (QML) estimator (White, 1982).

The state dynamics equation in Table 4.1 together with the observation equation

y(t) = Hx(t,) + v(t)

comprise a linear state-space model, and at least in principle the methods of linear
systems identification (Ljung and Soderstrom, 1983) might be employed to develop
parameter estimators. It turns out however that when only partial (H is not an identity
matrix) and error prone counts are available, the Kalman filter must be employed to

compute predicted observations j(s,8), and the corresponding conditional covariance
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matrix S(t,8).

The procedure for evaluating the likelihood function for a particular value of the
parameter vector § is as follows. The initial state vector and covariance matrix are first
calculated (or assumed given) for 8. The prediction of conditional means (s | t-1) and
conditional covariance S(t,8) are obtained via the Kalman filter in Table (4.1). The
value of the likelihood function is then obtained by evaluating the equation (5.6). The
maximum likelihood estimates of the traffic flow and O-D parameters can thus be

computed by minimizing the function (5.6) with respect to 8.

5.4 Evaluation of Off-line Parameter Estimators via Monte Carlo Tests

One can distinguish two basic motivations for parameter estimation in stochastic
systems as description-oriented or applications-oriented (Goodwin and Sin, 1984). In
the description-oriented approach the main emphasis is placed on obtaining an
understanding of the process, whereas in the applications-oriented approach the main
emphasis is on achieving certain objectives (such as estimation or control of the
underlying system). This distinction may influence the choice of algorithms and the
choice of the performance criteria.

The first part of this section will be focused on the description-oriented
approach, where the attention will be given to the properties of the estimated

parameters. In evaluating the proposed estimators via Monte Carlo simulation, focus
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Figure 5.1. Geometrics of 3-Origin, 2-Destination Section (I-35W, Minneapolis)
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will be given to the properties of the proposed candidate estimators, i.e., 2-step NLS,
Joint-NLS, and QML. Next, our focus will be given to the applications-oriented
approach, which considers the degree to which the ultimate objective (destination-
specific density estimation) is achieved by the given estimators. This will be done using

a model sensitivity analysis.

5.4.1 Monte Carlo Example

A relatively simple freeway section of I-35W northbound (Figure 5.1) was
selected as an example for the Monte Carlo study. Since this section is composed of 3-
origin and 2-destination, there are six O-D pairs to be estimated. The O-D proportions

are represented by:

[bl 1>b129b21 3b229b313b32]

Data Generation

MARCOM was run to generate 50 data sets for the example freeway system
under the presumed O-D proportions, b;. Each data set consists of a simulated three-
hour sequence of five-minute periods. MARCOM took the actual on-ramp counts and
the presumed b vector as inputs, and then computed simulated counts. With the actual
on-ramp demands for a morning peak period (6:00 am - 9:00 am), MARCOM generated
traffic data in the low to moderately congested regions, which was similar to the actual

situation of the morning peak period at the example section. The simulated counts were
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aggregated to produce S-minute volume counts for mainline segments and off-ramps,
as well as mainline segment densities.

From each simulated data set it is possible, using a given estimator, to compute
estimates of the traffic flow parameters and the O-D proportion vector b, which were
used to generate this data set. FORTRAN programs NLS2STEP, NLSJOINT, and
QMLIJOINT were written and implemented on a SUN Sparcstation 1+, which evaluated
the minimization criterion in equations (5.1), (5.4) and (5.6), respectively. The traffic
flow parameter estimates in 2-step NLS were then computed using the NLS routines
EO04FDF and E04YCF, while the others were computed using the Quasi-Newton search
routine EO4JBF (NAG, 1987). The set of estimates from all 50 data sets form a
pseudorandom sample of each estimator, from which one can compute sample means
and standard deviations. The efficiencies of each estimator can then be estimated via
the sample standard deviations. Tendencies of the estimators to show bias can be
evaluated by comparing the sample means to the "true" values used in generating the

data.
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Comparison and Evaluation of Results

Table 5.1 displays the means, standard deviations, and t-statistics computed
across the 50 simulated data sets for the candidate estimators. Tendencies of the
estimators to show bias can be evaluated by comparing the sample means to "true"
values used in generating the data. The efficiencies of different estimators can be
compared via the sample standard deviations. The [ ] frame a t-test statistic for the null
hypothesis that the sample average equals the true value. The critical value for a sample
size of 50 at 0.05 level is 2.01. If the absolute value of the computed t-value is greater
than 2.01 the estimator appears biased at the 0.05 level, and the asterisk, *, in Table 5.1
denotes rejection of the null hypothesis. Table 5.1 also reports the root-mean-squared

(RMS) distance between the estimates and their true values, which is computed via

RMS, = (B - B + o

The RMS distance combines the estimation error due to inefficiency with that due to
bias to provide a single measure of these two tendencies. Initially, all the estimators
failed to give consistent estimates (large variance) of the jam density (d,,) using the
given data. It is difficult to obtain a good estimate of d,,,, without traffic data over the
range of all possible densities, 0<d<d,,. In a separate test, the estimability of the jam
density was improved using a wider range of traffic data that were generated by an

incident simulation, indicating that all the given parameters are identifiable if one has
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a full range of density measurements. Obtaining a full range of densities, however, on
a ramp-controlled freeway is not likely except during non-recurrent congestion such as
that caused by incidents. This estimability problem might be partially relieved by the
fact that jam density is a certain fixed value determined physically, and so is highly
transferable. This estimability problem of the jam density was also reported (Van Aerde,
1995). Théréfore, once jam density has been estimated from some data set, it can be
taken as fixed and considered as constant thereafter. A discussion of the results in Table
5.1 follows.

(a) All estimators produce, on the average, biased estimates of traffic flow parameters.
Again this bias might be reduced using a wider range of traffic data. With respect to
the RMS criterion, the QML algorithm is superior to the NLS-based algorithms, mainly
because of higher efficiency.

(b) The Two-step NLS estimator, on the average, was clearly the worst performer. The
quality of the O-D estimates by the NLS estimator (NLS® column in Table 5.1) was
significantly improved by using true traffic flow parameters, indicating that reducing
the ignorance concerning the traffic flow parameters is one way of improving the O-D
estimates by the Two-step NLS estimators.

(¢) Generally, the QML based estimator produces unbiased O-D estimates with lower
standard deviations than did the NLS-based estimators. Like other estimators, the QML
estimator produced the highest variability in the O-D parameter b,,, apparently due to
the low O-D flows. The flow from origin three to destination one, g;;, is 1.2 vehicles

per 5 minute, which is very low.
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Table 5.1. Comparison and Evaluation of Off-line Parameter Estimators

" Parameter | True Value | 2-step NLS | Joint NLS NLS® QML
63.98* 63.71 Known 62.12
Uy 65.0 (5.91) 3.97) 65.0 (1.88)
[1.21] [2.28] [10.817
{6.00} {4.18} {3.44}
60.85 60.82 Known 60.00
K nax 58.34 (7.04) (4.71) 58.34 (2.27)
[-2.52] [-3.72] [-5.16]
{7.47} {5.32} {2.81}
0.178 0.156 0.142 0.164
b, 0.16 (0.044) (0.053) (0.031) (0.032)
[-2.84] [0.556] [3.890] [-0.82]
qy (23.2) {0.048} {0.053} {0.036} {0.032}
0.163 0.188 0.206 0.180
b, 0.19 (0.054) (0.073) (0.040) (0.037)
[3.547 [0.168] [-2.77] [-0.88]
Qo (31.5) {0.060} {0.074} {0.043} {0.039}
0.216 0.180 0.098 0.150
b;, 0.10 (0.206) (0.256) (0.161) (0.180)
[-3.97] [-2.201 [0.06] [-1.96]
ds; (1.2) {0.237} {0.268} {0.161} {0.187}
Note:

b;: O-D proportions
q;: Average O-D flow (vel/S min) = qy(k)b;(k), where q(t) is arrival demand at on-

ramps

a : averages of estimated traffic flow parameters, sample size 50
(): standard deviations of parameters

[ ]: ttest statistic, the cut-off value t,q is 2.
{ }: root-mean-squared distance :
b : 2-step (Joint) NLS estimates by using

RMS, =/(B-B)*+o;

01 (a=0.05)
e traffic flow parameters
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(d) In this descriptive approach, it was obvious that the QML estimator had the best
statistical properties, which is consistent with theoretical expectations. However, the
price for these desirable statistical properties was a near 40-fold increase in CPU time.
The average CPU time consumptions of each estimator on a SUN Sparcstation 1+ are
reported in Table 5.2. Although the trade-off between statistical and numerical
efficiency appears unforgiving, in the applications oriented approach what happens with
the parameter estimates will be of secondary importance as long as they achieve the
ultimate objective, i.e., estimating destination-specific density. Next, our focus will be
given to this applications oriented approach. This issue will be pursued via a model

sensitivity analysis.

Table 5.2. Average CPU Time of Each Estimator

2-step NLS | Joint NLS QML
CPU Time in seconds 64.34 191.83 8324.75
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5.4.2 Sensitivity Analysis

Here the natural question concerns how the traffic flow parameters estimates
affect the quality of estimates of destination-specific density. In order to investigate the
performance differences of the filtering models for different parameter estimates the
following sensitivity analyses were performed. First, traffic flow and O-D parameters
were estimated by the three candidate parameter estimators using one day’s simulation
data. Next, a filtering model using each of the sets of estimated parameters was run.
Finally, the discrepancy between the filtering model’s results and simulation results was
quantified by the "Mean squared error" index. Table 5.3 displays the results from three
estimators along with those using true parameters.

These investigations show that the value of performance criterion differed
generally by less than 10 % when the nominal (true) parameter set was replaced by an
estimated parameter set. It is seen that the filtering model is not very sensitive to small
parameter changes from the different estimators. This demonstrates a robustness of the

filtering model to parameter estimation.
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Table 5.3. Sensitivity of the Filtering Model for Different Parameter Sets

True 2-step Joint QML

value NLS NLS
X, 12.7° 14.2 13.2 13.9
X,, 12.0° 13.2 12.8 13.7
X,, 4.8 5.7 4.6 4.7
X,, 26.7° 25.6 25.3 25.5
X, 29.3° 28.7 29.4 28.8
m, 116.2° 118.8 158.9 127.3
v, 152.7° 142.8 209.6 141.9
v, 58.4° 55.3 60.6 56.4

Note:

X estimated vehicles in section k bound for destination J, at the end of every 5 minute
m,: predicted 5-minute vehicle counts at mainline segment k
y;: predicted S-minute vehicle counts at destination ] ‘
a : Mean squared estimation error = Y X (H)-X (H))/N , where N = 36
.. -1 K k
b : Mean squared prediction error = T VO -FO)N where N = 36.
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5.5 Development and Testing of Recursive Version of O-D Parameter Estimator

5.5.1 Formulation of the adaptive filter

Basically, a recursive estimator generates a sequence of O-D estimates b(t) by
updating the estimate from the previous interval, b(t-1), using only data collected during
interval t. An advantage possessed by recursive, but not by off-line algorithms, is that
recursive algorithms can be modified so as to track parameters which show occasional
stepwise changes across time. That is, if O-D parameters are piecewise constant, and
the interval between step change is long compared to the convergence rate of the
algorithm, these changes can be tracked. Since the O-D pattern in urban freeways
during a morring peak period is likely to be changing in time, recursive estimation of
time-varying freeway O-D matrices could improve the operational efficiency necessary
for real-time applications. For example, the ability of the proposed filtering model in
predicting volumes at off-ramps would be improved.

One common implementation of recursive parameter identification is phrased as
a state estimation problem by introducing constant parameters as augmented state
variables (Grewal and Payne, 1976; Chang and Wu, 1993). This leads to a nonlinear
filtering problem. The extended Kalman filter can then be applied to estimate the
composite state comprising the original state vector and the parameters. The subject of
parameter-adaptive filtering, estimating unknown parameters as well as state variables
simultaneously, can be viewed as an application of nonlinear estimation theory.

To formulate the adaptive state estimator, the proposed system needs to be
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structured into a standard state-space model. First, it is assumed that the set of unknown

0O-D parameters evolve as a random walk process as shown in equation (5.7):

b(1) = wy() (5.7)

Combining original system equation in Table 4.1 with equation (5.7), we have the

augmented state equations

P
dt -

. F((1),b(1))% W, ()

BON - | Fxwbws | + w0 ©8)
b 0 w(0)

() 3

where §(r)=x(f)-x(f) and the measurement equations

x(t,) x(t,)
2ty - H, |Y@) | +v(t) = [0.1,0] |¥) | +v(t), v) ~ NO.R@)) ©-9)
b(r) b(r)

The error covariance matrix P(t) evolves according to
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G,(x(1) G,(x(t)) 0
= FO(@,b@)P(1)+POFx(@,b(0)T + | G, (x(H) G,(x(H) 0
0 0 0

dP() (5.10)
dt

Here F(x(f),b(r)) denotes the Jacobian matrix of the right-hand side of equation (4.2)
with respect to [)_c(t),z(t)] , and  G(x(¢)) is a covariance matrix of the diffusion
process given in equation (4.5). The matrix Q will have diagonal elements and the
strength of the noise should correspond roughly to the possible range of O-D parameter
variation. When actual counts become available at some time t,, the extended Kalman

filter algorithm is used to give a measurement update.

5.5.2 Monte Carlo Test of the Recursive O-D Parameter Estimator

The same freeway section used in the Monte Carlo tests evaluating off-line
estimators (Figure 5.1) was selected for the Monte Carlo study of the recursive

estimator.

Data Generation

In order to generate plausible time-varying O-D proportions the proposed
recursive parameter adaptive filtering model was run using a real data of morning peak
period from 6:00 am to 9:00 am. This generated a sequence of 36 five-minute O-D

proportions, b,(k), which will be referred to "true time-varying O-D proportions". Next,
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MARCOM took the actual five-minute on-ramp counts and the true time-varying O-D
proportions as input, and generate 50 data sets, each consisting of a simulated three-
hour sequence of five-minute on-ramps, off-ramps and mainline counts, for the example
freeway system.

From each simulated data set the proposed parameter-adaptive estimator was
used to estimate time-varying O-D proportions and destination-specific densities using
a FORTRAN program TVODEST, implemented on a SUN Sparcstation 1+. From the
estimates of all 50 data sets one can compute sample means and standard deviations.
Figures 5.2-5.4 show the true time-varying O-D proportions along with the 95 percent
confidence produced by the estimator. In each case the estimation range tracks the true
(simulated) O-D proportions reasonably well, with the O-D proportions that have higher
O-D subflow, qi(k)b;(k), being estimated somewhat better. This indicates that the
parameter-adaptive filtering model is performing properly in tracking time-varying O-D

proportions.
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6. PRELIMINARY TESTING AND VALIDATION OF THE FILTERING

MODEL

6.1 Introduction

The objective of this chapter is the preliminary testing of the performance of
the Kalman filter estimates of destination-specific densities. Since destination-specific
densities are almost impossible to observe in practice, the accuracy of the Kalman filter
will have to be assessed using simulated data. However, simulation experiments only
give limited insight whether a method would work in practice. Therefore the Kalman

filter will also be tested by predicting off-ramp volumes using actual freeway data.

6.2 Testing with Simulation Data

6.2.1 Experiment 1: Simulation Test with Short Section

A 1.2 km (0.75 mile) segment of northbound interstate highway [-35W was
selected for the preliminary test of the proposed filtering model using simulation (Figure
5.1). The segment contained two on-ramps and one off-ramp, giving a total of three
origins and two destinations, and was divided into three sections. Five-minute
cumulative volume and lane occupancy measurements during the three hour morning
peak period were obtained from the Minnesota Department of Transportation (MNDOT)

for stations marking the upstream and downstream segment boundaries, as well as one
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intermediate station at the boundary between the first and second subsections. Five-
minute on-ramp and off-ramp counts were available as well. Since the segment
contained two origins and three destinations, and was divided into three sections, the
state vectors are comprised of 5 compartment populations and 6 count totals, as follows

(a) 5 destination specific densities: X,,(t), X;»(t), X;,(t), X55(t), X5,(t)

(b) 3 origin counts: q,(t), q,(t), g;(t)

(¢) 2 destination counts: y,(t), y,(t)

(d) 1 mainline count: m,(t)

First, simulated data were obtained by running the stochastic traffic flow model,
MARCOM, shown in Table 3.1. The arrival rates for the simulation were simply
estimated as those values which reproduced the corresponding actual five-minute arrival
counts, while the traffic flow parameters and O-D parameters for the simulation were
estimated by the Joint-NLS estimator described in section 5.3. The origin-destination
proportions and traffic flow parameters are estimated as b,;=0.16, b,,=0.19, b,,=0.1,
u~=104.6 kph (65.0 mph), d=37.8 veh/km/lane (60.8 veh/mile/lane), d,,=99.4
veh/km/lane (160 veh/mile/lane), and r=3. The assumed parameters and on-ramp counts
were then used as inputs to MARCOM stochastic simulation model, and a three hour
simulation was performed. Instantaneous destination-specific section densities, x,(t), at
the end of every 5-minute interval, and 5-minute cumulative volume counts, y(t) and
my(t), at designated detectors were generated from the simulation output.

Next, the proposed Kalman filter model was run to estimate the destination-
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specific densities using simulated counts (q;(t), m,(t), y;(t)) as measurements. Since the
true states (simulated destination-specific densities, x,(t)) are available, one can
calculate the estimation error and the Mean Absolute Error (MAE) between simulated
and estimated values. One can also calculate the prediction error (innovation) between
predicted counts and measured counts. The low values of the MAE for x,; in Table 6.1
indicates good performance of the filtering model in tracking the simulated destination-
specific densities although it is based on an approximation of the original stochastic
processes.

To ensure that the estimator is operating properly, further tests need to be done.
A necessary and sufficient condition for a Kalman filter to be optimal is that the
innovation sequence is zero-mean and not serially correlated (Candy, 1986). If we
assume that the innovation sequence is ergodic and Gaussian, then we can use the
sample mean, ,, as test statistic to estimate m,, the population mean. To test that the
mean of the ith component of the innovation vector, e(t), is equal to zero at the 5

percent significance level (a=0.05), one can use the test statistic

T - 1.96

where jée(i) is the sample variance (assuming ergodicity) given by
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5, 1 2
ORISR0

Then the decision rule is
accept the hypothesis m(i) = 0, if |m()]|=t,,

reject the hypothesis m(i) =0, if | m@)|>t,,

where 1 (i) is the sample mean of the prediction errors for measurement component
i. Table 6.1 clearly indicates that the innovation sequence means are not significantly
different from zero.

To test for serial correlation in the innovations, one can use the normalized
sample covariance test statistic (Candy, 1986). The ith component of normalized

covariance is given by

B (ik) = R}giz;/)c) ) %El_hw[ei(t)—rﬁe(i)][e,(t+k)—n‘ze(z’)]/ﬁe(i)

and under the null hypothesis, p (i.k)=0, p (i.k) is approximately normally distributed

with mean equal to zero and variance equal to 1/N. Thus if | p (i.k) | >1.96/yN , one
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Table 6.1. Performance of the Filtering Model and Zero-mean Test
(simulated data)

MAE* m,())° | () H,
Xy 2.0 0.6 1.2
X, 2.3 -0.6 1.2
X, 1.6 -0.5 0.7
X, 3.8 -0.3 1.7
X5, 4.2 1.0 1.8
m, 8.3 -1.5 3.5 Accept
Y, 9.2 -2.1 2.5 Accept
Y, 6.1 -3.1 4.0 Accept
Note:

X,;: estimated vehicles in section k bound for destination j, at the end of every 5 minute

m,: predicted S5-minute vehicle counts at mainline section k

y;: predicted 5-minute vehicle counts at destination ]

a Mean Absolute Error between simulated and estimated values:
L | O30 | IN > where N = 36.

b : sample mean of innovation
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Table 6.2. Normalized Covariance Coefficients of the Innovations (simulated data)

1° 2 3 4 5 6 7 8 9 10
m,” 0.07 | -0.15 |-0.02 }-034 |-0.17 | -0.19 [ 0.17 | 0.16 | -0.05 0.31
v, -0.11 | -0.08 | 0.21 |-0.01 |-0.04 | -0.04 | 0.10 | -0.07 | -0.08 0.01
Y, 0.09 |-0.08 |-0.12 |-0.10 | 0.13 0.00 | 0.08 | -0.15 | -0.06 | -0.07

Note:

a : covariance lag
b : mainline station
¢ : off-ramp station

critical value for each cell = +1.96//N =~ 0.33 (N=36)

would reject the hypothesis p (i,k)=0, at the =0.05 level of significance. Table 6.2
displays the normalized covariance coefficients, which were computed from the
innovation sequences, for lags 1 through 10. The sequences of the three detector
stations are white, since 0 percent of the sample covariances exceed the confidence

limit.

6.2.2 Experiment 2: Simulation Test with Longer Section

To assess the filtering model’s accuracy for a longer section of freeway, a
second series of simulation tests was done for the 4.0 km (2.5 mile) long, seven-origin,
four-destination segment of [-35W depicted in Figure 3.9. Again three hours of
simulation data were generated and the Kalman filter model was run using the same
procedure as in the first experiment.

Figures 6.1 and 6.2 show the simulated destination-specific traffic densities
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along with the approximate 95 percent confidence interval ( ~ Lgﬁm about
the estimated sequences) produced by the Kalman filter. If the covariance estimates of
the filter are reasonable, then 95 percent of the known observation sequences should lie
within the constructed intervals. In each case the estimation range tracks the simulated
values reasonably well, with the larger volume flows being tracked somewhat better.
This indiéates that the filter, which is based on the approximation of the original

stochastic process, is performing properly for this longer segment of freeway.
6.3 Preliminary Testing of a Parameter Adaptive Filter with Field Data

The primary focus of the this last set of tests is to evaluate the advantage of the
adaptive filterings over the original filtering model. A 1.2 km (0.75 mile) segment of
northbound interstate highway 1-35W, which was used in experiment 1 (Figure 5.1),
was selected as the test site. For convenience of comparison, the original Kalman filter
model with fixed O-D proportion is referred as Model A, while the parameter-adaptive
filtering model incorporating time-varying O-D is named Model B. Since both Model
A and Model B are very similar, they were implemented with the identical initial
parameter settings to improve comparability. The origin-destination proportions for
Model A were fixed as b,;=0.16, b,,=0.19, b;;=0.1, while those of Model B were
recursively estimated. The traffic flow parameters of u=104.6 kph (65.0 mph), d =37.8
veh/km/lane (60.8 veh/mile/lane), d,,,=99.4 veh/km/lane (160 veh/mile/lane), and r=3

were used for both Model A and Model B. Next, both models were run to generate
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predicted mainline and off-ramp counts when fed by actual on-ramp counts.

Figure 6.3 shows actual 5 minute mainline counts at the end of segment 3, which
is the second destination, along with predicted counts by Model A and Model B. The
mainline volumes are tracked reasonably well by both Model A and Model B, while
Model B appears to predict the fluctuations slightly better. However, Figure 6.4 shows
that Model B is superior to Model A in tracking the off-ramp fluctuations. The test
results are further summarized in Table 6.3. The statistical test indicates that the
innovation sequences of each station for both models are zero-mean. Table 6.4 displays
the normalized covariance coefficients for the innovations. Model A results show that
the innovation sequences of mainline stations (m, and y,) were not serially correlated,
while that of the off-ramp (y,) station is. However, the test results of Model B lead to
the acceptance of the null hypothesis that every component of the innovations are not
serially correlated.

Using the MAE and serial correlation test, it was possible to show important
differences in off-ramp volume prediction ability between the original filter (Model A)

and the parameter-adaptive filter (Model B).
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Table 6.3. Performance of the Filtering Model and Zero-mean Test (field data)

MAD® m,(1) (1) H,
m;-A* 8.6 1.1 3.7 Accept
y-A 8.1 0.1 3.2 Accept
y,-A 12.7 1.6 5.6 Accept
m,-B° 8.6 1.1 3.7 Accept
y,-B 4.3 0.6 1.8 Accept
y,-B 10.9 1.2 4.4 Accept
Note:

a : results from Model-A (fixed O-D)

b : results from Model-B (time-varying O-D)

m,: mainline detector station at subsection 1

y,: destination detector station at off-ramp

y,: destination detector station at subsection 3

c: A;Iean absolute error Yiin | W) -k | IN where N is the number of measured
points
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Table 6.4. Normalized Covariance Coefficients of the Innovation (field data)

(Table 6.4-A): Model-A (fixed O-D proportions)

1* 2 3 4 5 6 7 8 9 10
m,” -0.25° 1 0.26 | -0.26 | 0.15 | -0.08 0.04 | 003 |-0.19 | 0.14 | -0.10
Y, 0.52 | 030 | 0.27 | 0.01 0.03 | -0.05 0.02 | 0.00 | -0.19 | -0.18
Y, 0.14 | -0.34 | -0.14 } 0.18 | 0.07 | -0.13 0.11 0.04 | -0.17 } 0.07

(Table 6.4-B): Model-B (time-varying O-D proportions)

1? 2 3 4 5 6 7 8 9 10
m,° -0.24° | 025 |-0.25 | 0.14 | -0.09 | 0.03 0.04 |-0.18 | 0.14 | -0.09
) 0.16 |-0.12 | 0.03 |-0.24 |-0.11 |-0.06 | 020 | 0.20 | -0.08 | -0.02
g -0.04 | -0.27 | -0.07 | 0.03 |-0.17 {-0.32 | 0.24 | 0.16 | -0.14 0.22

Note:
a: covariance lag
b: measurement stations

c: critical value for each cell =  +1.96//N (N=36) =~ 0.33
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7. SUMMARY AND CONCLUSIONS

7.1 Summary

In Chapter 1 it was argued that successful Advanced Traffic Management
Systems will need to not only predict the effects of management actions, but also
quantify the uncertainty associated with those predictions. Ignoring this uncertainty is
likely to produce overly optimistic expectations for an ATMS, while explicitly
considering this uncertainty, through the use of stochastic rather than deterministic,
optimization methods, could result in a genuine improvement of traffic system
performance. Although a considerable effort is now underway nationwide to develop
simulation and prediction models for possible use in ATMS, relatively little effort is
being devoted to either determining the initial conditions these models will need if they
are to be used in real-time, or to quantify these models’ prediction uncertainties.
Chapters 3 and 4 described a stochastic, macroscopic model of freeway traffic flow
constructed using the theory of Markov population processes, and it was argued that this
model possesses two important practical features. First, the model supports in a natural
way the use of Kalman filtering to estimate in real-time the inputs required by more
detailed freeway simulation models, such as KRONOS and FREESIM. Second, the
stochastic model can be used as a predictor in its own right and when so used it not
only generates point predictions but also computes the variance (uncertainty) associated

with those predictions. Thus it can support the use of stochastic optimization methods
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in the optimization level of the hierarchical traffic control model depicted in Figure 1.1.
Chapters 5 and 6 described a number of tests conducted to evaluate the
performance of freeway filtering and prediction models, and to test several methods for
estimating the model’s parameters using traffic data. Using Monte Carlo simulation it
was found that there is a trade-off between the statistical efficiency of a parameter
estimation procedure, as measured by the estimator’s standard error, and the numerical
efficiency, as measured by the CPU time needed to compute set of parameter estimates.
In fact, the estimation method with the best statistical properties, quasi-maximum
likelihood, was so slow that its use in a real-time context is questionable. However,
sensitivity tests showed that the choice of parameter estimator has little effect on the
accuracy of the filtering and prediction models. This is especially promising since the
two-step nonlinear least-squares estimator can be readily adapted for on-line use. Monte
Carlo simulation also indicated that filtered estimates of destination-specific traffic
densities can be generated from loop detector counts, so that the model is capable of
generating real-time estimates of the initial conditions needed by other simulation and
predictions models, and also that it can generate reasonable short term predictions of
freeway mainline and off-ramp volumes. Additional tests with field data produced an
interesting finding concerning the relation between estimated demand parameters and
the accuracy of off-ramp volume predictions. Predictions generated using a constant
freeway origin-destination (O-D) matrix showed discernable flaws, and these flaws
vanished when the constant O-D matrix was replaced by real-time estimates generated

using the extended Kalman filter.
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7.2 Conclusions and Future Work

The major conclusions of this research are:

(1) Markov population models, coupled with a large population approximation can be
used to construct a tractable, yet accurate stochastic model which integrates
freeway traffic flow and travel demand effects in a natural way.

(2) The flow-density relation incorporating both upstream and downstream densities
provides a realistic yet tractable implementation of the simple-continuum model
of traffic flow.

(3) The application of Kalman filtering theory to the above models produced an
algorithm for real-time estimation of both the destination-specific traffic densities
in freeway sections as well as the freeway’s origin-destination matrix.

(4) The filtering and prediction model appears to be reasonably robust with regard to
the method used in estimating traffic flow and origin-destination parameters.
At present, it is recommended that future work on this problem follow two lines

of investigation. First, the freeway model described in this report should be developed

into a fully real-time, implementable version. This will require developing an on-line
version of the two-step nonlinear least-squares parameter estimator, and then testing the
model on longer, more realistic segments of freeway. For real-time parameter
estimation, only the on-line version of the traffic-flow parameter estimator needs

development, as the adaptive O-D estimator described in Chapter 6 provides real-time
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estimates of the freeway origin-destination matrix. Second, to be useful in an integrated
ATMS, the stochastic modelling approach needs to be extended to networks of
signalized and nonsignalized intersections. Phase II of this project will address both of

these topics.
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