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costs the traveler imposes on occupants of other vehicles.

Peak-period urban trav-

elers both experience congestion

and create it. In making travel

decisions, most consider the

time and money costs they will

experience; few consider the

costs they impose on others by

adding to the level of conges-

tion. These imposed costs can be

very large. Our results using

Tranplan, a widely used trans-

portation-planning package, are

summarized in the figure. The

line labeled AC (for average

cost") depicts the cost a traveler

directly experiences at alterna-

tive volume/capacity ratios. The

line labeled MC (for marginal

cost") adds to AC congestion

We call the vertical distance be-

tween the two curves the gap. If the average vehicle's occupants value their travel time at

$12.50 an hour, their directly incurred time cost is 376 a vehicle mile while the gap, the costs

they impose on all other travelers, averages 266 a mile. On the most congested 10-mile stretch
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of freeway, the gap is 62ý a vehicle mile. On a few scattered road links, it exceeds $5 a mile.

Presently available electronic technologies would allow tolling all 1,200-1,500 miles of

congested roads in the Twin Cities without the enormous cost and inconvenience of toll booths

and toll collectors. Available data suggest that a 1% increase in the time-plus-money cost of

trips would leads to about a 1% reduction in the rate at which they are taken. If so, tolling all

of these roads would reduce traffic volumes by about 12% on average and by about 25% on

the most heavily congested stretches of freeway. On these stretches, congestion tolls would

average about 21k a vehicle mile. On the average road, tolls would be about 9W a mile.

Very well-off drivers and present mass-transit users would benefit from the faster trips

that reduced congestion would provide and from the increased service frequency that would

result from diverting auto travelers to transit. However, imposing congestion tolls would make

most travelers worse off; they would lose an aggregate of about $250,000 during the morning

peak hour and about $1,000,000 daily from the higher time-plus-money prices of the trips they

continue to take and from foregoing the relatively low-value trips they would no longer make

at their new, higher prices.

At the same time, however, optimal congestion tolls would eliminate these low-value

trips and would result in utilizing the road network more efficiently. As a result, toll revenues

would exceed the direct losses congestion pricing would impose on travelers. If, to repeat, a

1% increase in the time-plus-money price of an auto trip would result in about a 1% reduction

in the rate at which they are taken, total toll collections would be about $390,000 per weekday-

morning peak hour and about $1,500,000 for the day as a whole. To emphasize, tolling would

yield $1.50-1. 75 in revenue for each dollar of costs incurred by the average traveler. Thus,

tolling would make it possible to compensate losers fully with substantial money left over.

Because most would be made worse off, gaining support for congestion pricing from a majority

of Twin Cities peak-period travelers would require coupling tolls with a plan for distributing

toll revenues that would benefit them more than the tolls would cost them.

A second transportation planning package, Emme/2, permits examining the effects of



congestion pricing on different income groups. We worked with four:

Income Average Fraction Travel- Number Time Cost
Bracket Annual of All Time Value of Trips ($1,000)

Household Households ($/hour) (, 000s)
Income

< $35,000 $25,900 36.8% 5.40 104.9 161.8
$35-55,000 $44,900 28.8% 11.25 213.4 724.5
$55-75,000 $65,000 16.2% 16.25 117.4 584.7
>$75,000 $87,520 18.2% 21.88 82.3 563.7

Totals 100.0% 12.88 518.0 2,034.7

If peak-hour auto-travel rates are completely independent of travel costs, low income

travelers would have the worst of all worlds. Seeking uncongested routes to avoid tolls would

result in their trips becoming so circuitous that they would be burdened not only by tolls, but

also by spending more time on the road than they would in the absence of tolls; congestion

pricing would increase their travel costs by 93% as opposed to 24% and 42% for the high-

income group and all travelers respectively.

If congestion pricing is to be applied only to part of a congested road network, it would

be inefficient to charge those who use its tolled portions close to the costs they impose on each

other. Doing so would lead to inefficiently great diversion to the network's untolled portion.

We have restricted attention to the effects of setting charges on each tolled link equal to the

same fraction of the difference between that link's AC and MC curves, to use the figure's

notation. In the Twin Cities, aggregate benefits do not vary greatly for fractions in the 20-

40% range. With such tolls, travel-time savings largely compensate higher-income groups for

the tolls they pay; for them, tolls paid are appreciably greater than their net losses from

congestion pricing. Not so for the lowest-income group, however. Tolls are less than their

losses; tolls induce them to take more circuitous trips which results in travel that is more costly

to them in both dollars and time.

Obviously, tolling only expressways would shift traffic from them to the surface road

network. Surprisingly, pricing all congested roads would also result in greater traffic



reductions on expressways than on surface streets. Specifically, expressway and non-

expressway vehicle miles would respectively decline by 19% and 8% if a 1% increase in the

time-plus-money cost of a trip would result in a 1% reduction in auto trips. With only

expressways tolled at 25% of the difference between MC and AC, expressway vehicle miles

would decline by 8% while arterial travel would increase by 3%.

In no place of which we are aware has a spontaneous ground swell arisen for

congestion pricing. In San Francisco and the Twin Cities, at least, claiming either enhanced

efficiency or solving a funds shortage generated little enthusiasm for the concept. It may still

be possible, however, to sell congestion pricing by emphasizing an important implication of its

efficiency: getting something for nothing. While our calculations suggest that the immediate

effect of congestion pricing will be to make all but a small fraction of the population worse off,

they also suggest that tolling the entire road network would generate $1.50-$1.75 in revenue

for each dollar travelers would lose. This being the case, using electronic technologies that

can reduce collection costs to a modest fraction of total revenues, there ought to be ways of

compensating losers while leaving substantial resources to finance reduced real-estate, fuel,

and other taxes as well as transportation projects. Finding such distribution schemes should be

a primary emphasis of congestion-pricing research.



Chapter 1: Introduction

As peak-period urban travelers, we not only experience congestion, we create it. In

deciding when, where, and how to travel, we take into account the time and money costs we

will experience. However, few of us consider the costs our travel decisions impose on others

by adding to congestion. These costs are very large on some roads. On the Twin Cities' most

congested major stretch of expressway -- I-35W between I-35E and 1-494 -- we estimate that

each mile each northbound auto travels during the morning peak hour costs all other travelers

about 62t. For all morning-peak auto trips, the average cost each vehicle imposes on all others

is about 26e a mile.

This is where congestion pricing comes in. Electronic technologies exist -- indeed, are

presently in use -- that would allow tolling all 1,200-1,500 miles of congested roads in the

'Twin Cities without the enormous cost and inconvenience of toll booths and toll collectors.

The optimum northbound peak-hour toll -- the toll that would maximize the net benefits that I-

35W south of 1-494 would deliver -- is about 216 a mile in the morning, we estimate. Imposing

this toll would reduce auto travel on this stretch of road by about 25 %. Optimal tolls averaging

about 9e a mile would cut auto travel by about 12% on the entire road network. With congestion

pricing, car pools and mass transit would become more popular. Trips not requiring peak-

period departures or arrivals would be rescheduled. Businesses and schools would be pressed

by employees and parents to shift opening and closing hours away from peak periods. Trip

speeds would increase. Pressures to expand our road network would decline. Toll revenues of

$1-1.5 million a day would be generated.

Regardless of how toll revenues are used, the very well-off -- those with $80,000-plus

annual incomes -- would gain more from saving time than they would lose from paying tolls.

Largely at the opposite end of the income distribution, present mass-transit users would benefit

from the faster trips that reduced congestion would provide and from the increased service

frequency that would result from diverting auto travelers to transit. For most of us in the

middle of the income distribution, however, the direct effect of imposing congestion tolls

-1-



would be to make us worse off. Furthermore, the lower our incomes, the proportionately

worse off tolling would make us. But tolling would improve traffic flows and would force off

the road trips valued at less than their costs to society. For these reasons, toll revenues would

exceed the costs that congestion tolling would impose on travelers. Specifically, we estimate

that tolls would yield $1.50-1.75 in revenue for each dollar of costs they would impose on the

average traveler. This being the case, toll revenues should suffice to compensate fully with

cash those who lose directly from congestion pricing with substantial money left over for road

and transit improvements, fuel and real-estate tax reductions, and even LRT.

The economic analysis that underlies congestion pricing has long been part of the

economics literature; 1995 marks the 75th anniversary of recognition in this literature of its

value. In the first edition of his masterwork, The Economics of Welfare, the great British

economist, A. C. Pigou, maintained that, in producing commodities for which increasing

output requires increasingly more intense utilization of particular scarce resources, unit costs

increase with increases in aggregate output. He contended that unregulated markets would

over-invest in producing such commodities. He supported this contention with an analogy

between two industries and two roads that connect the same two towns:

Suppose there are two roads ABD and ACD both leading from A to D. If left to itself,
traffic would be so distributed that the trouble involved in driving a "representative" cart
along each of the two roads would be equal. But, in some circumstances, it would be possi-
ble, by shifting a few carts from route B to route C, greatly to lessen the trouble of driving
those still left on B. while only slightly increasing the trouble of driving along C. In these
circumstances a rightly chosen measure of differential taxation and against road B would
create an "artificial" situation superior to the "natural" one. [Pigou (1920), 194]

The situation Pigou described characterizes present-day peak-hour travel in the Twin Cities.

Shifting a modest amount of traffic from expressways to arterials would reduce the travel time

of the remaining expressway travelers by appreciably more than it would increase the travel

time of those diverted plus those already on the arterials to which traffic is diverted. A great

American economist, Frank Knight (1924), responded, in effect, that the resource misalloca-

tion which Pigou ascribed to malfunctioning "natural" market mechanisms actually resulted

from the absence of property rights in fixed assets, the two roads in this case. Pigou's "artifi-
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cial" tax would yield the same result as would ownership of roads by self-seeking individuals

in competitive markets. Taxation and ownership both produce the differential returns on in-

vestments in the two roads that is essential for utilizing them efficiently. Congestion pricing

would accomplish just this sort of efficient utilization.

The economics literature did not make much of Knight's insight until shortly after

World War II. To cite just a few post-war landmarks, Beckmann, et al. (1956) showed that the

problem of finding an equilibrium allocation of trips to a road network can be transformed into

a constrained optimization problem formally similar to (albeit much more complicated than)

the one that business firms solve in maximizing the profits they derive from their production

and sales activities or that households solve in allocating their incomes among consumption

activities. Walters (1961) cast road congestion in a framework very similar to that of the

demand and supply schedules that crowd elementary economics textbooks and did seminal

econometric work to develop relationships between traffic levels and road-user costs. Mohring

and Harwitz (1962) showed that, given constant returns to scale', simultaneous optimization of

investment in a road and of the charges for using it would yield results formally identical to

long-run equilibrium in a competitive market.

The prevailing view on this subject today can be put in these terms: In a competitively

organized gizmo industry, market forces assure that the price of gizmos equals their short-run

marginal costs -- the costs of the additional variable inputs required to produce one more

gizmo. The resulting revenues not only pay for the variable inputs gizmo production requires

but also yield accounting profits which reward those who provide the services of the fixed or

capital inputs -- e.g., buildings, machines, patented technology -- used in producing gizmos. If

these rewards exceed the costs of providing fixed input services, their owners earn "economic"

profits. That gizmo-industry accounting profits exceed capital-service costs induces current

gizmo producers and others to invest in new gizmo-production capacity. Entry continues until,

in long-run equilibrium, economic profits drop to zero, i.e., accounting profits just cover the

costs of capital services thereby ending the incentive to add new capacity.

-3-



If they were imposed, congestion tolls would play the same role for roads as quasi-rents

do for the gizmo industry; they would reward highway authorities for providing the services of

fixed inputs to the trip-production process. Suppose that a road authority simultaneously

charges optimal congestion tolls and optimizes the capacity of a road, in the sense that the last

dollar spent adding to capacity produces benefits with a present value to users of $1 in the

form of time-cost and operating-cost savings. Suppose also that the road is characterized by

constant returns to scale -- an approximately realistic assumption for urban road networks (see,

e.g., Keeler and Small (1977), Kraus (1981), and Small (1992, 94-99)). Then tolls equal to the

difference between the short-run marginal and the average-variable congestion costs of trips

would generate revenues just sufficient to cover the road's capital costs.2

The basic conceptual difference between gizmos and roads, then, is that, with gizmos,

manufacturers' sales revenues cover the costs of their fixed and variable inputs while, with

roads, cash payments to the road authority cover mainly fixed costs; the variable costs of trips

-- vehicle-operating and travel-time costs -- are the responsibility of travelers themselves who

provide at least one vital input, their own time, to the trip production process.

It would, perhaps, be useful to put this proposition in the context of Figure 1, a dia-

gram with counterparts that are standard ingredients of elementary economics texts. For either

the gizmo or the road case, the "demand" schedule indicates the number of gizmos or trips that

would be bought or taken at alternative prices3 for them. Profit-maximizing gizmo producers in

competitive markets would adjust output to equate the additional costs they incur in producing

the last unit of output in any given time period with what they can sell that unit for, an amount

over which none of them has appreciable control. This marginal-cost price -- VC in Figure 1 --

not only covers the cost (AB) of the variable inputs used in producing the last gizmo sold but

also provides an accounting profit or rent (BC) to the last unit's producer. Area BCDE in

Figure 1 equals the total rents/accounting profits earned by all gizmo producers. Again, if

these rents just equal the costs of providing the services of the industry's fixed capital equip-

ment for a time period, the industry is in long-run equilibrium; no one has an incentive to

-4-



Figure 1
Equilibrium in Manufacturing & Congestion-Priced Roads
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increase or decrease its output rate.

In the road case, the marginal-cost price of a trip consists of the value of the time and

other resources supplied by the trip taker -- AB in Figure 1 -- plus a toll (BC) equal to the cost

each traveler imposes on all other travelers by adding to the level of congestion. Area BCDE

equals total toll collections. As with gizmos, area BCDE equals the costs -- interest on the

capital invested in the road plus depreciation plus those costs of maintaining it that are not

related to its use -- of providing these services. If providing these services is subject to constant

returns to scale, an optimizing road authority would have no incentive to change its capacity;

either expansion or contraction would reduce its aggregate net benefits.

In a nutshell, then, in the long run, optimal investing and pricing in a road network has

much in common with the economist's concept of long-run equilibrium in a competitive mar-

ket. With both, price and short- and long-run marginal costs would all be equal. In the

competitive market case, revenues would cover the costs of variable inputs and would provide

a return to the industry's investors that would leave them content to maintain (but, unless

demand changes, not expand) their investments. In the road case, the variable costs of road

use are borne by users. Given constant returns to scale, marginal cost-based tolls would cover

the costs of roads and yield a normal return on the capital invested in them; congestion-based

road pricing is consistent with self-supporting road networks.

-6-



Chapter 2: Some Low-Tech Economic Theory

The Economics of Travel Behavior: We are uneasy with the way in which most statistical

analyses of travel behavior conceptualize the prices that influence it. To suggest why, consider

the following simple model of consumer income allocation and mode choice. A household gets

utility from consuming a general-purpose commodity, stuff (S), conveniently priced at $1 a

unit. They also derive utility from what happens at the ends of the T trips a week requiring t

minutes each that its members take downtown. Travel itself is unpleasant, however. The

household cannot spend more than its income on stuff and on trips which cost $F (for "Fare")

each. It wants to allocate its limited income to these two commodities in a way that maximizes

its utility, a function U = U(Stuff, Trips, travel time) or, in symbols, U = U(S, T, tT). It turns

out (see Appendix A) that the household would treat the price of a trip as the dollar outlay, F,

it requires plus the value it attaches to the time it takes, Vt. That is, the household would adjust

its consumption of the two commodities so that last trip it takes would yield the same utility as

F + Vt units of stuff. V (with dimension $/minute) is the amount of stuff the household would

be willing to give up to save an hour of travel time, i.e., the amount the household would be

willing to pay to make its round trip downtown instantaneous.

One step further: Suppose that the household can choose between two modes for a trip,

auto and bus. The bus fare, Fb, is lower than Fa, the money cost of an auto trip, but auto travel

time, ta, is lower than travel time by bus, tb. The difference between the fares for the two trips

divided by the difference between the times they take, (Fa - Fb )(t b - t ), can be interpreted as

the price of saving time by taking the fast mode. If V exceeds this price, the household uses an

auto for its trips downtown and, otherwise, the bus.

The lion's share of the three-dozen-or-so published studies of the values travelers attach

to their travel time are based on this sort of choice. Studies of mode choice in commuting

dominate this group. The study on which we rely in estimating congestion costs and tolls is

Thomas Lisco's 1967-vintage University of Chicago doctoral dissertation, The Value of

Commuters' Travel Time--A Study in Urban Transportation. With results translated into

-7-



Figure 2: Travel-Time Value v. Income
1.U

0.9

0.8

CD 0.70
Oo

. 0.6

i) 0.5

0.4E

0.3

0.2

0.1

5 10 15 20 25 30 35 40 45 50 55 60
Annual Income

present-day price levels, the Lisco finding that we regard most highly is depicted in Figure 2.

It indicates that commuters with incomes in excess of $35,000 a year value their travel time at

half their hourly equivalent wage rates, on average. For those with yearly incomes of less than

$35,000, the value of travel time as a fraction of income, VII, increases linearly from zero for

someone with no income to 50% at an income of $35,000.

Consider individuals who earn $40,000 by working 2,000 hours a year at $20 an hour.

Lisco's analysis suggests that they would, on average be willing to pay $10 an hour to save

travel time. Consider, alternatively, individuals who earn $17,500 (half of $35,000) a year --

$8.75 an hour. Lisco's analysis suggests that they would be willing to pay only $8.75/4 =

$2.19 to save an hour of travel time.

Implicit in our relying in this fashion on Lisco's findings is the assumption that travel

time is travel time. That is, we assume -- explicitly, now -- that the price of saving time at

which a traveler is indifferent between auto and bus is the same as the traveler would be

dd 0



willing to pay to save a minute of auto or transit travel time. Findings in the literature conflict

on this matter. In a cleverly designed revealed-preference study, Calfee and Winston (1995)

found that, on average, long-distance commuters would be willing to pay only about 20% of

their hourly wage rates to shift their auto trips to less congested roads on which journey times

are lower. The highest income group studied in the Calfee-Winston sample appeared, if any-

thing, to be willing to pay a smaller fraction of income to save auto travel time than did

members of somewhat lower-income groups.

Michael Beesley's (1965) classic study of Ministry of Transport employees in London

came to quite different conclusions. For a substantial fraction of Beesley's respondents, the

primary opportunity to trade money for reduced travel time involved two mass-transit services,

not mass transit and auto. Clerical Officers, the lowest-salaried group (about $1,820 a year at

prices and exchange rates in effect in the early 1960s), valued travel time for both transit/trans-

it and auto/transit trades at about 31% of their wage rates. For Executive Officers, the next

group up ($2,380, on average), the fraction was about 36% for transit/transit trades and about

43% for auto/transit trades. Finally, for a small group with yearly salaries above $6,200, the

fraction ranged between 42-52% for transit/transit trades and 45-55% for auto/transit.

Optimizing Road Capacity: This conflicting evidence points to a very serious problem: We

really know very little about what travelers are willing to pay to save travel time. The little we

do know derives almost entirely from the choices wage earners make between auto and mass

transit for commuting journeys. We know next to nothing about what wage earners are willing

to pay to save time on non-work trips. We also know next to nothing about the relationship

between the incomes of wage-earning members of a household and the amounts that its non-

wage earning members are willing to pay to save travel time. Such information is essential in

planning optimal road networks and prices for their use.

Why? Analysis summarized in Appendix A indicates that a highway authority which

can price its roads efficiently and which desires to maximize "social welfare" -- some function

of the utility levels of the households of which society is made up -- should take these
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consumer valuations of travel time at face value. That is, if the average value users of a

highway attach to their travel time is $12.50 an hour, the authority should also value travel-

time savings at $12.50 an hour in deciding how much capacity to allocate to the highway. It

should expand capacity to the point where the last dollar spent on expansion yields benefits

with a present value of $1 in savings of traveler-supplied inputs to the trip production process.

These inputs include travel time valued at S12.50 an hour.

This rule for optimizing highway capacity applies, it should quickly be

emphasized, only when roads are optimally priced. Road pricing -- worldwide -- is far from

optimal. When pricing in a market is screwed up, the rules for (constrained) optimization and

for measuring the benefits of the market's operation differ from -- and are considerably more

complicated than -- those of relevance in the world of universal price-equals-marginal-cost of

which economists are so fond. With the aid of Figure 3, let us illustrate just with optimization

rules: Suppose that supplying road services is subject to constant returns to scale and that input

costs are independent of scale. Then the long-run average-variable costs -- the costs travelers

incur directly in producing trips -- and the long-run marginal costs -- these directly borne costs

plus those that a highway authority would incur in supplying the services of highway capital --

would be horizontal lines such as LRMC and SRAVC in Figure 3. The downward-sloping line

labeled Demand indicates the number of trips that would be taken at alternative full (i.e., fare

plus time-value) prices for them. At a full price equal to LRMC, travelers would take CA trips

an hour. At that price, long-run efficiency would dictate providing that amount of capacity for

which demand, long-run marginal cost, and short-run marginal cost intersect at the same point,

A. The capacity associated with line SRMCJ does this. SRAVC,, is the short-run average

variable cost associated with this short-run marginal cost schedule -- the cost of the user-

supplied inputs for alternative travel rates given the optimal capacity level. With this average

variable cost schedule, the optimal hourly travel rate would occur only if a congestion toll of

AB is imposed on each trip.

Again, marginal-cost pricing is the rare exception for road services. Suppose, to
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simplify the exposition, that no fuel or ton-mile or tire or other excises are imposed which vary

with road use. Our impression is that, in the absence of highway-authority budget constraints,

standard highway benefit/cost analysis would call for providing a level of road capacity that

would minimize the total highway-authority plus user costs of whatever number of trips is

taken. Achieving this objective requires providing the road capacity associated with the dashed

line, SRAVC.. With this cost schedule, CG trips would be taken and the total user plus high-

way-authority costs of these trips would be a minimum, the area OCGT3. Although this equi-

librium minimizes the costs of the CG hourly trips that are taken, it also results in travelers

taking AG trips an hour that are valued at less than the full social costs of producing them.

Demand schedules tell us not only the rate at which commodities will be purchased at

alternative prices for them but also provide measures of the values consumers attach to these

purchases; that X gizmos a week would be purchased at a price of Y tells us that the purchaser

of the Xth gizmo places essentially the same value on it as on the most desirable collection of

other commodities that he or she would buy with Y dollars. The aggregate value of the CG

hourly trips that would be taken only at a price less than their cost is TAJT3; their aggregate

cost is TGT3. Cost exceeds value, therefore, by an hourly total of AGJ.

Suppose that the road which would minimize the costs of producing CG trips is not

built but, rather, a somewhat smaller one -- that associated with short-run average variable cost

SRAVC 2. With this road, the equilibrium hourly travel rate would be CF, the number of trips at

which Demand and SRAVC 2 intersect. In this equilibrium, each of the CF trips still taken

would cost DE more -- an aggregate increase of DHKE -- than if the road associated with

SRAVC3 had been built. At the same time, however, this road would result in FG fewer trips

per hour that are valued at less than the social costs of producing them. Area FGJH is the

reduction in the amount by which aggregate hourly trip values would fall short of aggregate

hourly trips costs if road SRAVC2, rather than road SRAVC 3 is built. Efficiency (subject to the

constraint that user charges which vary with road use cannot be imposed) would call for set-

tling on that road for which a small decrease in size would balance the loss from increasing
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user-borne costs (i.e., from increasing area DHKE) against the gain from discouraging trips

valued at less than their costs (i.e., from increasing area FGJH).

The proposition suggested by Figure 3 can be put in more general terms: If, for

whatever the reasons, the money component of the full price of a trip must deviate from that

required to minimize the social costs of the equilibrium travel rate, constrained efficiency

would call for a deviation in the opposite direction of the time component of the full price. A

particularly important implication of this finding: Urban roads cost much more per unit of

capacity than do rural roads. For this reason, efficient urban roads would be designed for

substantially higher volume/capacity ratios and, hence, would have substantially higher con-

gestion tolls than would efficient rural roads. If we are forced to rely on the same fuel tax to

support both road types, constrained efficiency would call for a tax somewhat greater than that

which would be optimal for rural roads taken by themselves but somewhat lower than that

which would be optimal for urban roads taken by themselves. At the same time, constrained

efficiency would call for building what are, in a sense, "inefficiently small" urban roads and

"inefficiently large" rural roads.

The Technology of Congestion: A commonly invoked rule of safe road behavior is that, to

allow sufficient time to react to unexpected events, drivers should stay three seconds behind

the vehicles they follow. If all travelers follow this rule and all would travel at 60 mph (i.e.,

would take one minute to travel a mile) on an otherwise unused expressway, there would result

the relationships between the instantaneous ratio of actual traffic volumes to "ideal" capacity

(we take it to be about 2,000 vehicles per lane-hour on an expressway) and the average (A C)

and marginal (MC) travel times per mile that are given by the solid curves in Figure 4. Curve

AC1 depicts the travel-time costs that individual travelers directly experience; curve MC1, in-

cludes these costs plus those that each vehicle operator imposes on others by adding to conges-

tion. Curve AC, illustrates a commonly observed phenomenon of urban-expressway travel:

maximum traffic flow occurs at about 30 mph. When speed is above 30 mph, a lower speed

results in an increased traffic flow. In the top, backward-bending portion of AC1 it takes more
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Figure 4
Relationships between Volume/Capacity Ratios and Travel Time
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than two minutes to travel a mile. There, speed reductions lower traffic flows. We have all

been there.

Peak-period travel does not take place at a constant rate but, rather, gradually increases

to a peak, then decreases. Someone traveling at the peak of the peak period is more likely to

experience the backward-bending portion of curve AC1 than is someone who travels at the

beginning or end of the peak. Still, both peak-of-the-peak and fringe-of-the-peak travelers do

almost always get where they are going; a peak-of-the-peak trip just takes longer. We have,

therefore, used marginal and average travel-time relationships similar to those given by the

dashed curves, AC 2 and MC2 in Figure 4 in deriving the toll estimates that are reported below.

These curves are close kin of the "BPR curve" long enshrined in the highway literature to

describe the relationship between traffic speed and traffic flow on a road.4

It was a common view among Twin Cities transportation planners of our acquaintance

that imposing congestion tolls would push people around among roads and generate additional

taxes but would not actually save any travel resources except those of travelers who are tolled

off the roads. Indeed, the manual for Tranplan, the transportation-planning package that is

most commonly used in the Twin Cities, maintains that, if each driver seeks a route which

minimizes the time required by his or her trip, an equilibrium in which no traveler is able to

find a faster route is one that minimizes total travel time.

Convincing people of this view's falsity is not easy but is essential if the benefits of

congestion pricing are to be understood. The more efficient allocation of trips to the road

network that congestion pricing would induce would be responsible for a substantial fraction of

its benefits. It will, therefore, be useful for the discussion of later sections to examine this view

carefully here by using as illustration a simple example that leads to a surprising conclusion:

carelessly chosen road "improvements" can actually worsen travel flows.5 In the hypothetical

road network illustrated in Figure 5, travelers wish to go only from node N1 to node N4 via

nodes N2, N3, or both. How they get back from N4 to N, need not concern us. Travel between

nodes N, and N4, is on some combination of the five one-way roads, l ,, ly, ly, l4, and ls that
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Figure 5: A Braess Paradox Network

I1

t2(n) =

14

ts(n) = 3n/2

N3

connect pairs of the four nodes. Travel on two roads -- 1, and l -- is subject to congestion; the

greater is the rate at which trips are made on them, the slower traffic flows. Specifically, if n

trips per hour are taken on 1, or 1s, travel time on either is 3n/2 minutes for each trip. Al-

though circuitous, the remaining three roads, 1l, l3, and l4 , are so wide that travel time on them

is independent of traffic flow -- 50 minutes on 1, and 14, 15 minutes on 13.

Suppose that 20 trips an hour are made between N, and N4. They can be made using

any of three routes 1, and 14, 12 and 15, and 1,, l3, and ls . Call these routes A, B, and C,

respectively. All travelers desire to minimize the time plus toll costs of their trips. In general

terms, an equilibrium assignment is one for which (a) taking other drivers' route choices as

given, no driver can reduce travel costs by a change in route, and (b) the demand for trips

between any pair of nodes equals the number of drivers on all routes who make that trip. When

no tolls are levied, there is a unique equilibrium assignment: all 20 trips use route C. With this

assignment, travel time is 75 minutes -- 15 minutes on link 13 and 30 minutes on each of links

1, and Is. Routes A and B require 80 minutes, so no driver wishes to change routes.

This equilibrium assignment is not optimal6 in the sense that traffic assignments exist
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that result in a cost less than 75 minutes for each trip. Specifically, 10 trips each along routes

A and B taking 65 minutes each would minimize resource costs. Without tolls, this is not an

equilibrium assignment; a single trip shifted to route C would take only 45 minutes. The

optimal assignment would be an equilibrium if link 13 is closed. This paradoxical result, due to

Braess (1968), is that, given inefficient pricing, situations can exist in which eliminating part

of a transportation network can make all travelers better off.

Closing l1 or imposing a $100 toll per trip on its use would make all N,-to-N4 travelers

better off but -- to add a new wrinkle to the system -- would seriously harm N2-to-N, travelers

whose trips impose no congestion costs on the system. Tolls could make the optimal assign-

ment an equilibrium without harming N2-to-N3 travelers. By assumption, on network links 1,

and lI, the travel-time increase each traveler imposes on all other travelers by adding to the

level of congestion equals the travel time each traveler directly experiences, 3n/2.7 Suppose

that each traveler values time at $1 a minute. With 10 travelers using each of routes A and B,

congestion tolls and direct time costs would respectively be $15 and $65 a trip on each for a

total cost of $80, $5 more than route C costs in the absence of tolls. This system's drivers

would, therefore, oppose congestion tolls unless they could be convinced that toll revenues --

$300 an hour -- would be used in ways that benefit them by more than the $5-per-trip increase

in their travel costs. Since the toll travelers pay is three times the net cost paying it imposes on

each of them, it ought to be possible to devise an allocation scheme that makes all of them

better off.

To extend these conclusions, imposing congestion tolls on urban roads would do much

more than just enhance government revenues and reduce vehicular travel. Imposing tolls would

increase the efficiency with which urban travel takes place. At present, if travelers can take

more than one route between two points, they tend to adjust their travel patterns so as to equal-

ize travel time -- the average time cost of a trip -- among the routes they use. Equalizing aver-

age costs does not, in general, equalize marginal costs, a necessary condition for minimizing

total costs. Suitably chosen congestion tolls would achieve this objective. Imposing them
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would, in general, both reduce the travel time required to take any given menu of trips and

increase tax revenues to highway authorities or state or federal governments.

The relative and absolute sizes of government and user benefits depend on a number of

factors. Two are particularly important: the greater is the current level of road congestion and

the more sensitive are changes in travel behavior to price changes, the greater will be both

total benefits and the users' share of them. "Price elasticity" is the measure of sensitivity to

price change that economists most commonly use. If the demand for gizmos has a price elas-

ticity of -1, a 1% increase in their price would lead to a 1% reduction in the rate at which they

are consumed. Several studies have estimated toll, fuel-cost, or similar dollar-cost elasticities

of demand for travel, i.e., the percentage change in the number of trips taken that would result

from a 1% change in some measure of the cost of a trip. 8 The cost measures used have includ-

ed total operating costs, fuel costs, tolls, and fuel taxes. Dollar-cost elasticities in the -0.1 to

-0.5 range have generally been found.

If, as the simple model sketched out in the first section of this chapter suggests, thefiull

price of a trip, not just its cash component, governs trip-taking decisions, full-price rather than

dollar-cost elasticity seems the more relevant concept. We have generally worked with full-

price elasticities of -0.5 and -1.0. Applying a general principle, we can write,

(Full-price elasticity)'(cash component)/(full price) = (Cash-component elasticity)

Its time component generally counts for more than half of a trip's cost. If so, our assumptions

about full-price elasticities are consistent with money-price-elasticity numbers that are half as

large.
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Chapter 3: Public Opposition to Congestion Pricing

Shortly after the Clean Air Act of 1970 was passed, Boston attempted to institute a

comprehensive package of transportation control measures. It succeeded with some. Others

proved much more difficult, particularly those dealing with area licensing and parking charges.

In writing about the opposition such proposals face from the public, politicians, and the many

institutions involved in implementing them, Howitt (1980) found public response to be

more sensitive to the distribution and visibility of the impact of the policies than to the net
benefits or costs.... What prevents the emergence of more active support for auto restraint
policies is the almost total absence of individuals or firms that might receive immediate,
direct, 'selective' benefits. The few such beneficiaries -- private taxi or transit firms, resi-
dents eager to exclude commuter parking and through traffic from their neighborhoods --
are not the base of a broad political coalition.

Referring back to Figure 1 suggests why this passage probably applies to congestion

tolls. Imposing tolls would make the average auto user worse off. Tolls would induce some

travelers not to take some trips on which, before tolls, they placed small net values. They lose

as a result. While the trips they continue to take would require less time, for the average auto

user, the sum of the time and the money costs of trips would increase.

The severity of these cost increases varies with travelers' income levels. The higher are

their incomes and, with them, travel-time values, the smaller is the toll for a trip as a fraction

of its full price. Indeed, in the Twin Cities, the reduction in travel time per mile that tolls yield

would benefit some high-income travelers more than toll payments would cost them; on the

most congested stretches of the Interstate System, we calculate that, if the incomes of the

occupants of a car aggregate to more than about $80,000 a year, tolling would benefit them

regardless of what is done with toll revenues.

Most people respond with opposition to government actions that reduce their welfare --

socially desirable though these actions may be. Their opposition may be particularly severe

when they learn that others would benefit from policies that harm them. Many of these oppo-

nents could be won over by allocating toll revenues in ways that would benefit them sufficient-

ly to offset their direct losses from tolls. To emphasize, gaining the support of a majority of

Twin Cities peak-period travelers for congestion tolls would require coupling the tolls with a
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plan that would benefit them more than the tolls would cost them. Since congestion pricing

would yield toll revenues greater than the aggregate damage tolling would impose on travelers,

it is certainly possible that such an allocation scheme could be devised. Using toll revenues for

road or, perhaps, other transportation improvements is one possibility. Using some of them to

reduce fuel and other taxes is a second. Using some to make direct cash grants to low-income

households is a third. Using some to reduce real-estate taxes is yet a fourth.

Congestion pricing has been much more widely discussed in Britain than in North

America. Here are brief economist-type arguments that respond to six reservations that, Jones

reports, are particularly prominent there followed by two arguments that he does not mention

but that have been heard in North America:

a. Congestion pricing will not work; people will still drive: People do respond to

changes in transportation prices with changes in travel behavior. Here are just a few examples

of responses to changes in these prices; many more can be cited. In 1988, the Massachusetts

Port Authority (MassPort) briefly changed its landing fee structure at Logan International from

$1.31 per thousand pounds of aircraft weight with a minimum fee of $25 to $88 plus $0.47 per

thousand pounds. Several organizations and states successfully sued MassPort claiming that

the new formula discriminated against small aircraft and was contrary to federal statute. The

US Department of Transportation made it clear that, as long as MassPort continued in its

"discriminatory" ways, it would receive no federal funds for airport capital improvements.

Still, during the brief period during which the new price schedule was in effect, the number of

commuter-aircraft flights to Logan from Burlington, VT declined from 22 to 12.

Several transit systems in the United States have experimented with surcharges and

discounts during peak- and off-peak periods respectively. The results have varied from system

to system and with characteristics of travelers and trips -- age, income, e.g., and trip length

and purpose -- but, Cevero (1990) reports, the overall fare elasticity of demand -- the percent-

age change in demand resulting from a one percent fare change -- ranges between -0.22 and

-0.33.
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Finally, we have the example of Singapore where a modest peak-period fee to enter its

Central Area together with significant increases in parking charges dramatically reduced peak-

period traffic congestion.

b. The technology is not reliable: Hong Kong's tests of an inductive-loop/transpon-

der combination achieved accuracies in the 99.9-100% range a decade ago. Since then, rapid

strides have been -- and are being -- made in a variety of technologies that could be used in

sophisticated road-pricing applications. Automatic vehicle-identification (AVI) procedures are

particularly advanced but smart-card technology that would permit in-vehicle record keeping

for prepaid road-use accounts is not far behind. Except for paper licenses, fraudulent use of

road pricing technologies is no more easy than fraudulent use of magnetically coded credit

cards. Fraud resistance is being developed rapidly for both credit cards and AVI systems.

c. Congestion pricing will invade privacy; it can provide information that would

make it possible to trace unpopular individuals' vehicles continuously: AVI technology is

somewhat -- but only somewhat -- further developed and lower cost than are technologies that

would allow in-vehicle accounting for road use. Using AVI technology is not necessarily

inconsistent with privacy; Swiss banks are quite successful in keeping secret the identities of

privacy desiring account holders. It would not be difficult to provide account numbers whose

owners are known only to themselves but whose vehicles could be identified if used when

account balances are negative.

d. Congestion pricing would inflict significant harm on the poor: That they are ill-fed,

ill-clothed, ill-housed, and, perhaps, ill-transported is really not the basic problem that poor

people have. Their fundamental problem is, rather, that they are poor. If we are genuinely

concerned with how road pricing would affect their welfare, we should give them cash or

marketable road scholarships. It would be the height of folly, however, to subsidize all of our

private-passenger-vehicle road use in the supposed interests of helping them.

e. There are boundary problems in dealing with congestion pricing, when does the peak

begin and end? In a manually policed system like that of Singapore which uses paper licenses,
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human monitors are seriously limited in the number of combinations of license size, shape and

color that they can distinguish reliably and speedily. The combination of this limitation and

cordon-line pricing can lead to appreciable temporal and spatial boundary congestion; conges-

tion around the periphery of Singapore's Central Area was so severe that its Area License

Scheme left travel times to Central Area destinations unchanged despite free-flowing traffic in

the Central Area itself. With electronic technology, however, charges can be graduated as

finely in time or space as travelers are capable of comprehending. With narrower gradations,

boundary congestion will become a smaller problem.

f. No matter what "they" say, congestion pricing is just another way to collect taxes:

The services that government provide tend to be labor intensive. With increases in living

standards, the relative costs of these services have increased. If living standards continue to

improve, therefore, government revenue requirements will continue their secular increase. If

only for this reason, the suspicion that congestion pricing is just another tax gimmick will be

difficult to dispel. It is, therefore, essential that a detailed proposal for using congestion-toll

revenues accompany any serious proposal to institute them. The greater is the number of auto

travelers who feel that proposed reductions in road-user taxes and other give-backs will make

them better off, the more likely it is that congestion pricing will be accepted.

Turning to objections to congestion pricing that have appeared in the North American

literature and have not already been touched upon, consider:

g. We have already paid for roads through fuel and other user taxes. Why should we

have to pay for them again? It is by no means certain that user fees cover road costs. Consider

the following:

Contrary to popular belief, drivers do not pay their own way through user fees. In the
United States, gasoline taxes and other user fees account for roughly 60 percent of federal,
state, and local spending on highways and roads. The remainder, $29 billion in 1989,
comes from general funds, property taxes, and other sources. Another cost, "free" parking,
has an estimated value of $85 billion per year. Additional expenses not covered by drivers
such as for police and emergency services, traffic management, and routine street mainte-
nance represent some $68 billion annually. When harder-to-quantify costs such as air pollu-
tion, traffic congestion, and road accidents are figured in, the total subsidy to drivers in the
United States soars to an estimated $300 billion a year. [MacKenzie, et al. (1992)]
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Even those who would cast these views aside as the rantings of hard core environmen-

talists cannot dispute that those who gain most from urban road expenditures -- peak-period

travelers in the main direction of traffic flow -- have paid through user taxes only a small frac-

tion of the costs of providing the benefits they have received. With important qualifications,

road expansion makes sense as long as the present value of aggregate benefits to users exceed

the costs of expansion. Peak-period users benefit much more from road expansion than do off-

peak users but pay about the same in user taxes per vehicle mile for these benefits.

h. We impose congestion on each other; why should we pay someone else for the harm

we do to ourselves? It is true that travelers pay for the congestion costs they experience. They

do not, however, pay for the congestion costs they impose on others by adding to it. Conges-

tion tolls would force them to recognize the external costs they impose by making them pay

their cash equivalent. The logical recipients of these payments is not the users affected by

congestion but, rather, the public at large whose expenditures on roads reduce the congestion

costs that all drivers experience.

Thus far in this section, we have emphasized the concerns with "efficiency" -- roughly

speaking, cost minimization -- that dominate the thinking of economists in discussing such

policies as congestion pricing. Economists tend to ignore the income redistribution to which

changes in social policy can give rise on grounds that altering the income distribution is a

"normative" issue - an issue that economists are not professionally qualified to decide but,

rather, that they must leave to politicians and "decision makers."

Economists' discussions of efficiency have a way of leaving the general public glassy

eyed; to them, it is the income distribution -- often, "What's in it for me?" -- that really mat-

ters. Distributional issues are particularly important in dealing with congestion pricing since its

immediate effect would be to make most travelers worse off. In addressing similar serious

concerns, economists are inclined to point out that increased efficiency would provide the

wherewithal to make everyone better off (or, at least, to make some person or group better off

without harming anyone else); they then leave it to politicians to decide just how to accomplish
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"making everyone better off."

Often, accomplishing the income redistribution that would make everyone better off

would require so much information as to be a practical impossibility. With road pricing,

however, the potential gains are so great -- about $1.50 of toll revenues for each $1 of direct

harm to the average traveler, we calculate -- that careful analysis of available information

(available, note, not ideally available) should make it possible to come up with one or -- better

still -- more schemes for allocating the gains from congestion pricing so that a substantial

majority of us would be made better off. Meeting this objective must be high on the list of

tasks to be accomplished if congestion pricing is not to be rejected out of hand by the public at

large. We return to this subject in Chapter 6 where we describe the direct effects of congestion

pricing on different income groups and our attempts (sadly to say, so far unsuccessful) to

devise ways to allocate toll revenues to make (almost) everyone better off.
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Chapter 4: Estimating Congestion Costs and Congestion Tolls -- Tranplan

The notion that cost-based prices are essential to efficiently allocate the limited re-

sources that society has at its disposal is ingrained in economists trained in North America and

Western Europe. If prices deviate substantially from costs, it is possible to reallocate resources

in a fashion that would make some -- perhaps many -- people better off without harming any

others. Road pricing -- world-wide, not just in the US -- is emphatically not "cost-based."

Road travel, particularly in urban areas, and most particularly during peak travel hours is

heavily subsidized. The subsidies come in part from the public at large in the form of general

revenues used to finance police and other services provided to road users and in the form of

environmental waste-disposal services for which road users don't presently pay. Subsidies also

come -- possibly in even larger part -- from users themselves in the form of congestion costs

that they impose on each other but for which they are not charged.

In the Twin Cities Metropolitan Area, metering entry at access ramps limits the fre-

quency with which peak-period expressway travel enters the backward-bending part of the

travel time-volume/capacity relationship shown in Figure 4. Time spent in long queues dis-

courages expressway use, particularly for short peak-period trips. Use of high-occupancy

vehicles (HOVs) is encouraged by allowing them to bypass queues of single-occupancy vehi-

cles (SOVs) at a growing number of entry ramps and by providing them with reserved "dia-

mond lanes" and heavily subsidized parking at the Minneapolis CBD end of one expressway.

How would the performance of the present system compare to that of a system which

collects from each vehicle -- HOV or SOV -- an amount equal to the costs it imposes on all

other vehicles by adding to the level of congestion? We began our search for an answer to this

question by working with a package of computer programs, Tranplan, that is used locally for a

variety of highway and transit forecasting projects by transportation planners at Mn/DOT, the

Metropolitan Council, and several consulting firms.

Our analysis relies on the 1990 Travel Behavior Inventory (TBI), a survey in June-

November 1990 of 9,746 households which took a total of approximately 98,000 daily trips.
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Table 1: 1990 Peak Hour Travel Conditions

a.m. Peak p.m. Peak

Trips (1,000's) 518.1 678.1
Travel Time (1,000 hours) 152.0 164.2
Total "Gap" ($1,000) 1,049.5 949.6
Vehicle Miles (1,000) 5,071.6 5,590.2

Survey trip data were carefully expanded using cordon-line counts and Census of Population

data to reflect private-passenger-vehicle travel in the entire metropolitan area on an average

1990 weekday. We limit the results reported here to those private-passenger-vehicle trips that

were on the road at some point during the morning peak travel hour, 6:45-7:45 a.m. Each trip

studied originated in one of the 1,200 traffic-analysis zones (TAZs) into which the metropoli-

tan area is divided and terminated in one of the remaining 1,199 TAZs; congestion is generally

not significant for intra-zonal trips. Table 1 contains data on 1990 peak-hour travel conditions.

The metropolitan area's road network is broken into 20,336 links which connect 7,363

nodes. These links include all roads on which more than 1,000 trips were taken on an average

weekday. Examples of links include several-block stretches of an arterial or collector street and

an expressway access ramp, HOV lane, or one-way segment between two interchanges. TBI

surveys obtain origin and destination addresses and, hence, TAZs for each trip but not the

route taken. The parts of Tranplan on which we relied most intensively rest on the assumption

that each traveler selects that route -- a series of links -- for each trip which minimizes the

trip's "impedance." Tranplan "loads" trips onto the network using a process that reaches an

equilibrium in which no traveler is able to find a route with less impedance. Average travel

time is Tranplan's default measure of impedance, but distance, a combination of time and

distance, marginal travel time, or a variety of other measures could be used.

We assume that travel time is the only cost of trips that travelers bear directly;

sensitivity analyses described in Appendix E indicate that incorporating vehicle operating costs

into the analysis would have no appreciable effect on the results we report. Tranplan's default

measure of travel time for some link, call it link i, is what its manual terms "the historic
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standard Bureau of Public Roads capacity restraint formula." Using it, the time required to

traverse link i, t., is

t = tr{1 + 0.15[T/K] 4} (1)

where T. is the rate at which vehicles travel on link i, Ki is a measure of capacity 9, and ti, is the

time required to traverse link i when no other trips are being taken on it.

If equation (1) gives travel time per trip on link i, the total travel time, rT expended by

those who travel on it during an hour can be found by multiplying (1) through by T:

T. = T t. = T. ti { + 0.15[TJKi]4} (2)

Marginal travel time -- the change in total travel time when an additional traveler is added to

the traffic stream -- can then be written

T/a T = tio {1 + 0.75[T/K,]4} (3)

The difference between equations (3) and (1) -- marginal travel time minus average travel time

on link i -- multiplied by the average value of travel time is the cost an additional traveler

imposes on all other travelers by adding to congestion on the link. Applying the Lisco

income/travel-time relationship to the TBI menu of trips leads us to a morning peak-hour value

of about $12.50 per private-passenger-vehicle hour and what we term a "gap" between

marginal and average-variable travel costs on link i of:

Gap = $12.50 -ti 0.6 -[T/K]4 = $7.50 to [T./K,]4  (4)

If the number of trips taken were independent of the price charged for them the gap

would be close to the appropriate congestion toll for link i. But imposing tolls would almost

certainly lead to reduced travel and, hence, reduced congestion. For this reason, we use the

word "toll" to refer to the difference between equations (3) and (1) only on road networks

where (a) travelers have fully adjusted to the existence of a tolling system and (b) $12.50 times

the difference between equations (3) and (1) is the actual cost a traveler imposes on other link-i

travelers by adding to the level of congestion. We use the word "gap" to refer to $12.50 times

the difference between equations (3) and (1) on road networks on which congestion tolls are

not imposed. To emphasize, the gap on link i is the cost a link-i traveler imposes on other link-
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Table 2: Distribution of Current Gaps between Traveler-Borne and Marginal Costs of
Travel During the Morning Peak Hour on the Twin Cities Road Network

All Coded Road Links Expressways Only

Gap/ Miles Vehicle Aggregate Miles of Vehicle Aggregate
Mile of Road Miles Gaps Expressway Miles Gaps
(Cents) (Dollars) (Dollars) (Dollars)

0-2.5 7,644 1,742,600 8,900 298 433,400 3,300
2.5-5.0 400 399,200 14,700 53 165,800 6,300
5.0-25 892 1,364,100 185,100 154 718,000 102,100
25-50 348 709,100 255,300 64 364,600 131,800
>50 392 939,700 992,700 74 473,700 376,700
Total 9,676 5,154,700 1,456,700 643 2,155,500 620,200

i travelers when congestion tolls are not charged on link i.

Table 2 summarizes these gaps during the morning peak hour. It indicates that, on

7,644 miles of the 9,676-mile coded road network and 298 of the 643 miles of expressway, the

cost of the congestion that each vehicle imposes on all others amounts to less than 2.5t a vehicle

mile--roughly the charge imposed by fuel taxes. At the opposite extreme, on 392 miles of all

coded links and 74 miles of expressway, gaps between the directly borne and the marginal

costs of a vehicle mile exceed 50M. The aggregate gap is nearly $1.5 million on the entire road

network and over $600,000 on its expressway component.

a) When All Congested Roads Are Tolled: Figure 6 summarizes on one very crowded

page the remaining results of our work with Tranplan. If, during the morning peak hour, the

occupants of each vehicle on the road network value their travel time at $12.50 an hour, the

average time cost drivers incur directly is 37W a vehicle mile while the "gap" between these

directly experienced costs and the full marginal costs of their trips averages 26U a vehicle mile.

Thus, on average, the time cost drivers experience during the morning peak hour account for a

bit less than 60% of the full costs of their trips to society. To emphasize, by adding to the level

of congestion, the average vehicle on the road network during the morning peak imposes

aggregate costs of 26& on all other vehicles for each mile that it travels. On the most congested

10-mile stretch of freeway, the gap is 621 a vehicle mile and on a few scattered road links, the



gap exceeds $5 a mile.

Suppose that the full-price elasticity of demand is - 1.0 -- i.e., that a 1% increase in the

full price of trips leads to a 1% reduction in the rate at which they are taken -- and that

advanced electronics could collect tolls from vehicle operators without delays or, for the

moment, capital or operating costs. It would then be efficient to impose marginal-cost tolls on

all congested roads whether they be freeways, expressways, arterials, or collectors. With

"congested" defined as involving congestion-delay costs greater than the 26 or so that fuel taxes

impose on auto travelers, in the Twin Cities, about 2,000 of a total of about 9,700 miles of

road are congested during the morning peak hour. Tolling all of these roads would reduce

traffic volumes by about 12% on average and by about 25% on the most heavily congested

stretches of freeway. On these stretches, congestion tolls would average about 211 a vehicle

mile. On the average road, tolls would be about 9W a mile.

As Figure 6 suggests, the direct effect of congestion tolls would be to make the average

road user worse off. On average, travelers would pay more for the trips they continue to take

and would no longer take some trips that formerly yielded net benefits but now are worth less

than their new, higher prices. While all travelers would benefit from faster trips, for most auto

users, toll payments would exceed the value of these time savings. Only two groups with quite

small memberships would gain from congestions pricing regardless of how toll revenues are

used. These are current mass-transit users and auto travelers with very high incomes. Mass

transit users would benefit from the more frequent service which toll-induced diversion of

travelers from auto to bus would generate and, at least on expressways, from faster travel

times. On the most congested roads, auto users with incomes greater than about $80,000 a year

would gain more from travel-time savings than they would lose in the tolls they pay.

For just the morning peak hour, total toll collections would be about $390,000 per

weekday. For the day as a whole, collections of around $1.5 million are about the right

order of magnitude. Collecting tolls from morning peak-hour travelers would impose costs on

remaining and tolled-off travelers of about $250,000 in the form of the tolls they pay less the
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Figure 7: Morning Peak "Gaps" per Mile on Twin Cities Area Limited-Access Roads

travel time savings they receive on their trips and the benefits they forego on trips that higher

full prices induce them no longer to take. Thus, during the morning peak hour, congestion

pricing would generate about $1.54 of revenue for each dollar of cost borne by travelers.

Norman Foster tells us that, in a recent visit to California's State Route 91 tollway -- the

USA's first private, congestion-priced toll road -- knowledgeable employees indicated its

collection costs to be less than 10% of its revenues. At least in principle, therefore, it should

be possible to come up with a redistribution of this loot that would make everyone better off.

Unfortunately, we have yet to devise such a scheme -- see Chapter 6.

Without costly color prints, it is difficult to summarize graphically the effects of pricing

on traffic flows in a large network. Examining its effects on limited access roads provides
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Figure 8: Morning Peak Tolls per Mile on Twin Cities Area Limited-Access Roads:
All Roads Tolled with Inelastic Trip Demand

some insights because their flows are generally high. Fortunately, the expressway network in

the TCMA is small enough to make into readable plots. Figure 7 shows the "gap" per mile on

TCMA freeways during the morning peak hour under current travel conditions. Gaps are

particularly high, often over 501 a mile, on the roads leading to the Minneapolis and St. Paul

central business districts (CBDs). Significant gaps occur on other freeways as well.

Even if aggregate demand is completely unresponsive to tolls, their equilibrium levels

would be appreciably lower than current gaps because tolls induce drivers to use the road

network more efficiently. Figure 8 shows differences per mile between the full and the directly

experienced costs of trips when demand is inelastic and all roads are tolled optimally. The

overall pattern of congestion declines somewhat, but the average difference between marginal

and directly experienced costs declines substantially -- from an average of 23.6t with no tolls to
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Figure 9: Average Dollar Loss of Consumer Surplus per Trip in Twin Cities
Minor Civil Divisions: All Roads Tolled with -0.5 Full-Price Elasticity of Demand

15.9W per mile with tolls. Differences between marginal and directly experienced travel costs fall

even more if demand is elastic. For example, if the elasticity of demand is -1.0, optimal tolls

would reduce the marginal external cost of travel on freeways to an average of 8.0 per mile.

The effect of congestion pricing on drivers varies significantly with their locations.

Figure 9 shows all minor civil divisions in the TCMA and the loss from foregone trips and

from the higher costs of trips still taken if tolls are imposed on all congested roads and the

elasticity of demand is -0.5. The losses are for trips currently taken and are assigned to each

trip's origin in the morning and its destination in the afternoon. Losses range from trivial in

some areas to over a dollar in some of the areas that are farthest from the CBDs. Other areas

that are far from the CBDs show very small losses per trip, however. Travelers in those areas
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either do not use congested roads, or there may be sampling errors in the TBI -- few trips were

taken to and from some outlying areas. Losses appear highest west of Minneapolis but are also

high in a ring of suburbs north and west of the central cities. The same general pattern of

losses occurs when other elasticities of demand are assumed, but their sizes vary greatly. For

example, when demand is inelastic, losses of over $3.00 per trip occur in some parts of the

metropolitan area.

b) When Only Limited Access Roads Are Tolled: Recognizing that even electronic toll

collection is costly leads to the conclusion that it would probably be inefficient to toll lightly

congested roads. Indeed, at present levels of congestion, when the transactions costs involved

in collecting tolls are considered, it may be optimal to toll only limited access roads. On them,

access limitations reduce substantially the number of points per mile at which vehicles must be

monitored. Also, limited access roads are usually more heavily traveled than other roads; in

the Twin Cities, 42% of peak-hour vehicle miles are driven on limited access roads which

account for less than 7% of total roadway mileage. Since a large fraction of monitoring costs is

independent of traffic levels, heavily traveled limited-access roads produce greater gross re-

turns per dollar of monitoring costs.

Under the congestion-pricing system described in this subsection, each limited-access

road is tolled at one-fourth of the gap -- again, the difference between marginal and directly

borne travel costs. With inelastic demand, this fraction turns out to be optimal for the morning

peak if tolls must be set at the same fraction of the gap on all limited-access roads and nearly

optimal for the afternoon peak hour. A 25% fraction also produces large efficiency gains when

the elasticity of demand is either -0.5 or -1.0. Such tolls may seem low, but larger tolls would

divert so much traffic onto untolled roads that efficiency gains would decline. Note that this

congestion pricing system is probably not optimal within the class of all systems which toll

only limited access roads. For example, it would generally be better to charge lower tolls on

freeways for which there are good, non-freeway substitutes and to charge higher tolls on

freeways for which no good substitutes exist.
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Table 3: Present and Toll Equilibria for Morning Peak Hour

No Tolls All Roads Tolled with Elasticity of
0.0 -0.5 -1.0

Trips (1,000s) 518.1 518.1 478.1 460.0
Travel Time (1,000 Hours) 152.0 146.7 128.0 119.9
Toll Revenue ($1,000s) 672.8 406.8 323.5
Lost Surplus ($1,000s) 620.3 313.1 218.6
Efficiency Gains ($1,000s) 52.4 93.6 104.9

Tolls only on Expressways with
Elasticity of

0.0 -0.5 -1.0

Trips (1,000s) 518.1 513.4 510.5
Travel Time (1,000 Hours) 150.6 147.7 146.0
Toll Revenue ($1,000s) 69.8 66.1 63.7
Lost Surplus ($1,000s) 55.5 39.4 31.7
Efficiency Gains ($1,000s) 14.3 26.7 32.0

Table 4: Present and Toll Equilibria for Afternoon Peak Hour

No Tolls All Roads Tolled with Elasticity of
0.0 -0.5 -1.0

Trips (1,000s) 678.1 678.1 629.7 605.9
Travel Time (1,000 Hours) 164.2 159.5 141.4 133.3
Toll Revenue ($1,000s) 599.6 383.4 310.2
Lost Surplus ($1,000s) 552.6 305.0 220.0
Efficiency Gains ($1,000s) 47.0 78.3 90.2

Tolls only on Expressways with
Elasticity of

0.0 -0.5 -1.0

Trips (1,000s) 678.1 673.1 670.0
Travel Time (1,000 Hours) 163.3 160.5 158.9
Toll Revenue ($1,000s) 61.0 57.4 55.4
Lost Surplus ($1,000s) 51.8 37.3 30.2
Efficiency Gains ($1,000s) 9.2 20.2 25.2

Tolling all roads at one-fourth of the marginal external cost of travel produces signifi-

cant efficiency gains regardless of the elasticity of demand. When demand is totally inelastic,

this system produces gains of approximately $25,000 per day. Efficiency gains increase as the

elasticity of demand for travel increases. During the a.m. peak, gains are approximately 30%

of the gains when all roads are tolled, regardless of the elasticity of demand. Gains from driv-
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ers foregoing travel are smaller because few drivers actually decide not to travel. When the

elasticity of demand is -0.5, less than 1% fewer trips are made if only freeways are tolled, but

7.7% fewer are made if all roads are tolled. Apparently, a reduction in a few trips with high

marginal external costs can produce large efficiency gains. These results are summarized in the

bottom halves of Tables 3 and 4. There may be a political advantage in tolling only limited

access roads. Such a system yields consumer losses that are only 10-15% of those when all

roads are tolled. Tolls are also much lower; the average driver would pay only 3.5t for each

freeway mile driven. In addition, toll revenue is not very sensitive to the elasticity of demand.

For elasticities in the 0 to -1 range, revenue ranges between $60,000 and $70,000 for the a.m.

peak and between $55,000 and $62,000 for the p.m. peak period.
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Chapter 5: Estimating Congestion Costs and Congestion Tolls -- Emme/2

Tranplan does not permit trips to disappear. For the morning peak, we simulated the

effect of having elastic demands by providing each origin-destination pair with a dummy link

to which we gave just enough capacity to attract the required number of trips. We then ignored

travel on these dummy links in our final tabulations. We could not do this for the afternoon

peak. Tranplan limits the number of links that can exit from any given Traffic Analysis Zone.

The number of dummy links required from zones with heavy concentrations of employment

often violates these limits.

Emme/2 is a transportation modeling package produced by Inro Consulting, a group of

computer scientists associated with the University of Montreal. It allows a richer specification

of traveler characteristics than Tranplan and also permits treating as elastic the travel demands

of one group of travelers at a time. Cost posed an initial problem; Inro charges $24,000 for the

version of Emme/2 that will handle the Twin Cities Metropolitan Area's 1,200 traffic analysis

zones. Fortunately, the Minnesota Department of Transportation (Mn/DOT) once bought two

1,200-zone packages. Not having found a use for them, it agreed to allow us to borrow them.

These negotiations completed, we quickly abandoned our (fortunately brief) attempts to do our

own programming.

Emme/2 offers two additional significant advantages. First, it has a macro-

programming language which allows us to coerce Emme/2 to recognize that people with dif-

ferent incomes and, hence, travel-time values will respond differently to any given menu of

tolls. Inability to analyze these differential responses, we felt, severely limited our ability to

deal realistically with the effects of imposing tolls only on portions of the road network. There-

fore, we limited our work with Tranplan almost entirely to the admittedly unrealistic case of

tolling all congested roads. Second, by allowing a maximum of only 24 iterations, our version

of Tranplan did not allow us to refine our estimates of equilibrium to the degree we desired.

The iterative process involved in finding an equilibrium distribution of trips on the

Twin Cities road network is time consuming. Although the 1990 Travel Behavior Inventory
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Table 5: Data on the Four Morning Peak Hour Travel Groups

Income Average Fraction Travel- Number Time Cost
Bracket Annual of All Time Value of Trips ($1,000)

Household Households ($/hour) (I,000s)
Income

< $35,000 $25,900 36.8% 5.40 104.9 161.8
$35-55,000 $44,900 28.8% 11.25 213.4 724.5
$55-75,000 $65,000 16.2% 16.25 117.4 584.7
> $75,000 $87,520 18.2% 21.88 82.3 563.7

Totals 100.0% 12.88 518.0 2,034.7

distinguished eight income classes, we have thus far collapsed them into four groups. Even

then, finding an equilibrium takes two-three days on a fast 486 DOS computer. Table 5 gives

some details on these income groups and on their travel patterns.

Tables 6-9 give different perspectives on the effects on these four income groups of

tolling all roads as well as tolling only expressways. Note from Table 6 that, if peak-hour

travel were totally inelastic, low income travelers would have the worst of all worlds. Seeking

uncongested routes to avoid tolls would result in their trips becoming so circuitous that they

would be burdened not only by tolls, but also by spending more time on the road than they

would in the absence of tolls; their time plus money costs of travel would almost double. In the

inelastic-demand case, congestion pricing would increase their travel costs by 96% as opposed

to 24% and 42% for the high-income group and all travelers respectively. With a -1.0 full-

price elasticity of demand, their surplus loss would equal 34% of the pre-toll total costs of their

trips. The corresponding fractions are 5% for the high-income group and 13% for all travelers.

If congestion pricing is to be applied only to part of a congested road network, it would be

inefficient to charge those who use its tolled portions close to the costs travelers impose on

each other. Doing so would lead to inefficiently great diversion to the network's untolled

portion. Indeed, on the Twin Cities network, setting expressway tolls equal to the costs each

user imposes on other users would divert so much traffic to untolled arterials that the aggregate

resource costs of travel on the network as a whole would be substantially greater than in the
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Time- Value
Group

Low
Medium-Low
Medium-High
High
All

Low
Medium-Low
Medium-High
High
All

Low
Medium-Low
Medium-High
High
All

Table 6: Morning Peak-Hour Travel by Four Income Groups
and Their Responses to Tolls

Trips Time Tolls
Taken Cost Paid

With No Tolls

104,994 $161,819
213,391 $724,475
117,429 $584,690
82,262 $563,737

518,076 $2,034,721

All Roads Tolled -- Inelastic Demand

104,994 $178,351 $138,395
213,391 $703,560 $384,710
117,429 $545,124 $241,240
82,262 $521,735 $175,551

518,076 $1,944,770 $939,896

All Roads Tolled -- -1 Full-Price Elasticity of Demand

80,375 $117,227 $44,956
185,544 $554,982 $171,162
107,720 $463,613 $121,520
78,511 $467,996 $96,203

452,150 $1,063,818 $433,841

Total Time
+ Toll Costs

$316,746
$1,088,270

$786,364
$697,286

$2,884,666

$162,183
$726,144
$585,133
$564,199

$1,497,659

absence of tolls. The literature on Ramsey-rule pricing provides the principles that would

provide constrained-optimal tolls that are restricted to a subset of a network's congested

roads.10 Programming these principles for Emme/2 has been difficult. As we see it, doing so

requires an equilibrium loading algorithm that stores not just link flows, as Emme/2 does, but

also route flows. Even if we could augment Emme/2 with this capacity, the number of routes

and the difficulty of imposing tolls on individual links that differ with the routes their users

follow would make this a daunting task. Thus far, we have restricted attention to setting

charges on each tolled link equal to the same fraction of the difference between that link's

marginal and average congestion costs. In the Twin Cities, aggregate benefits do not vary

greatly for fractions in the 20-40% range.

Table 7 indicates that travel-time savings partially compensate the three higher-income

groups for the tolls they pay; for them, tolls paid are appreciably greater than the surpluses
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Table 7: Effects on the Four Income Classes during the Morning Peak of
Tolling All Roads and Expressways Only

Incom
Groui

Low
Mediu
Mediu
High

Low
Mediu
Mediu
High

Low
Mediu
Mediu
High

Low
Mediu
Mediu
High

ie Elasticity: 0
Time Toll Lost
Cost Surpl

Aggregate Effects (in $1,00(

178.4 138.4 150.
im-Low 703.6 384.7 363.
im-High 545.1 241.2 201.

521.7 175.6 133.:

Per Trip Effects (in $s) i

1.32 1.4z
im-Low 1.80 1.7(
im-High 2.05 1.7;

2.13 1.6.

Aggregate Effects (in $1,000s) with Only

168.5 8.1 14.'
im-Low 718.7 45.8 40.(
im-High 571.6 36.0 23.(

548.6 27.2 12.

Per Trip Effects (in $s) with Only Ex]

0.08 0.14
lm-Low 0.21 0. 1
lm-High 0.31 0.2(

0.33 0.1.

Elasticity: -1
Time Toll

us Cost

)s) with Al Roads Tolled

9 117.2 45.0
8 555.0 171.2
7 463.6 121.5
5 468.0 96.2

with All Roads Tolled

4 0.56
0 0.92
2 1.13
2 1.23

Expressways Tolled at 25%

7 156.7 7.3
0 694.3 40.0
0 559.3 33.5
1 542.0 25.8

pressways Tolled at 25% of '

. 0.07
9 0.19
) 0.29
5 0.31

they lose. Not so for the lowest-income group, however. For them, tolls are less than lost

surplus, even in the elastic-demand case; the increased circuity of the trips tolls induce them to

take increases both the dollar and the time costs of their trips.

Obviously, tolling only expressways would shift traffic from them to the surface road

network. Surprisingly, marginal-cost congestion pricing on all congested roads would also

reduce traffic on expressways by more than on arterials. With all congested roads tolled,

expressway and non-expressway vehicle miles would respectively decline by 19% and 8% in

the elastic-demand case. With only expressways tolled at 25% of the difference between

marginal and average congestion costs, expressway vehicle miles would decline by 8% while

IS
Lost
Surplu

54.5
124.0
58.4
27.2

0.52
0.58
0.50
0.33

of "Gap"

9.3
18.2
5.8
0.0

"Gap"

0.09
0.09
0.05
0.00



Table 8: Effect of Tolling Four Income Groups During the Morning Peak
on the Time and Distance They Travel on Expressways and Other Roads and on

Aggregate Differences between Marginal and Average Congestion Costs

Time-Value
Group

Time Spent Traveling
(1,000 hours)

Expressway Other

Vehicle Miles Traveled
(1,OOOs)

Expressway Other

Aggregate Marginal less
Average Costs ($1.000s)
Expressway Other

With No Tolls

Low
Medium-Low
Medium-High
High
All

All Roads Tolled--Inelastic Demand

Low
Medium-Low
Medium-High
High
All

All Roads Tolled -- -1 Full-Price Elasticity of Demand

Low
Medium-Low
Medium-High
High
All

Only Expressways Tolled* -- Inelastic Demand

Low
Medium-Low
Medium-High
High
All

Only Expressways Tolled* - -1 Full-Price Elasticity of Demand

Low
Medium-Low
Medium-High
High
All

*Tolls on each
costs.

5.6
19.6
14.1
11.2
50.5

23.2
42.4
20.6
13.9

100.1

245
819
576
460

2,100

684
1,245

600
402

2,931

29.0
160.0
134.0
103.3
426.3

157.0
342.9
187.9
125.5
812.3

expressway link equal 25% of the difference between marginal and average trip
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10.7
23.6
14.3
10.7
59.3

19.5
41.3
21.9
15.2
97.9

423
919
512
420

2,274

572
1,214

636
437

2,859

118.1
282.8
179.3
132.4
712.6

135.5
330.5
190.5
134.2
790.7

6.6
19.3
13.4
10.2
49.5

25.4
43.4
20.5
13.9

103.2

292
830
565
436

2,123

771
1,331

626
421

3,149

35.4
143.8
112.0
84.3

375.5

103.0
240.9
129.2
91.3

564.4

4.4
15.5
11.3
9.2

40.4

17.3
34.1
17.5
12.4
81.3

208
711
512
420

1,851

552
1,111

567
397

2,627

12.4
70.7
59.1
48.6

190.7

32.6
100.5
62.4
47.6

243.1

5.7
20.1
14.0
10.8
50.6

25.4
43.7
21.2
14.3

104.6

254
854
583
456

2,147

726
1,261

606
406

2,999

32.3
183.2
144.1
108.8
468.3

183.1
367.6
196.7
131.8
879.2



Table 9: Effect of Tolling Four Income Groups
on the Distribution of Speeds at which They Travel:

Percentages of Trip Miles in Different Speed Categories

Speed Range
(Miles/Hour) Low

Income Group
Low Medium High Medium

Speed Distribution with No Congestion Tolls

1.7%
26.8%
40.0%
31.5%

100.0%

1.7%
26.5%
42.5%
29.3%

100.0%

1.9%
26.4%
43.3%
28.4%

100.0%

All Roads Tolled -- Inelastic Demand

1.4%
28.4%
36.9%
33.3%

100.0%

1.1%
21.9%
42.4%
34.6%

100.0%

1.2%
19.0%
43.2%
36.6%

100.0%

All Roads Tolled -- -1 Full-Price Elasticity of Demand

0.8%
24.4%
36.0%
38.8%

100.0%

0.6%
17.8%
39.0%
42.6%

100.0%

0.7%
15.8%
37.3%
46.2%

100.0%

Only Expressways Tolled* -- Inelastic Demand

2.3%
31.3%
36.2%
30.2%

100.0%

1.9%
24.9%
40.6%
32.6%

100.0%

2.0%
21.9%
42.3%
33.8%

100.0%

Only Expressways Tolled* -- - Full-Price Elasticity of Demand

0-15
15-30
30-45
45-60
Total

2.0%
29.9%
36.8%
31.3%

100.0%

1.8%
24.4%
40.4%
33.4%

100.0%

2.0%
21.3%
42.0%
34.7%

100.0%

1.8%
20.0%
41.9%
36.3%

100.0%

Tolls on each expressway link equal 25% of the difference between marginal and average trip costs.

arterial travel would increase by 3%.

At present, the four income groups differ little in the distribution of their travel speeds.
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0-15
15-30
30-45
45-60
Total

High

0-15
15-30
30-45
45-60
Total

1.9%
26.1%
43.6%
28.4%

100.0%

0-15
15-30
30-45
45-60
Total

1.1%
18.2%
43.9%
36.8%

100.0%

0-15
15-30
30-45
45-60
Total

0.8%
15.1%
38.5%
45.6%

100.0%

1.9%
20.6%
42.6%
34.9%

100.0%



The low-income group spends about 2.5% more of its travel miles during the morning peak

driving at 45-60 mph than do its upper-income counterparts and about 2.5% less per mile at

30-45 mph. Might this be a manifestation of reverse commuting? Congestion pricing of all

roads would result in increased proportions of miles traveled at 45-60 mph for all groups.

These increases would increase with income -- 6%, 18%, 29% and 30% for the low, medium-

low, medium-high, and high groups, respectively.

Figures 10-14 further illustrate the differences between high- and low-income travelers

in the effects congestion pricing on all congested roads would have on morning peak-hour

travel patterns. Figures 10 and 11 deal with percentage changes in freeway and expressway

travel when the full-price elasticity of demand for auto travel is, respectively, 0 and -1.

Figures 12 and 13 cover absolute changes in Interstate 394-corridor travel patterns again when

the demand elasticity is, respectively, 0 and -1. Finally, Figure 15 deals with absolute changes

in and around the Minneapolis central business district with a -1 elasticity.

All of these figures reveal much the same pattern. Low income travelers would respond

to congestion pricing with dramatic shifts away from expressways in main-flow directions and

onto neighboring arterials but with modest shifts onto expressways in reverse flow directions.

Reverse commuting? The resulting speed increases would attract modest numbers of high

income travelers onto expressways. These shifts in travel patterns would significantly increase

the average value of travel time on expressways (at least in the main direction of flow) and

decrease it on arterials. Our computations take these second-order effects on tolls into account.
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Chapter 6: Distributing Toll Revenues to Compensate for the Losses
Congestion Pricing Would Impose

The first of the Intermodal Surface Transportation Efficiency Act's congestion-pricing

demonstration grants went to the San Francisco Bay Area to help it institute time-of-day

pricing on the Oakland Bay Bridge. After appreciable research and a substantial public

relations effort that stressed the efficiency aspects of congestion pricing, the project foundered

for want of a sponsor in the state legislature for the law that will be required to alter the

bridge's toll structure. Apparently, no legislator was willing to cope with accusations of

favoring tax increases just to increase the efficiency with which transportation facilities are

used.

In May 1995, the State and Local Policy Program of the University of Minnesota's

Humphrey Institute conducted a week-long "Citizens Jury." In it, a 24-member representative

sample of the Twin Cities Metropolitan Area population was asked to render a verdict on

presentations by advocates and opponents of congestion pricing. The proponents stressed the

value of congestion pricing as a way of overcoming a shortage of funds to undertake worthy

transportation improvements. The predominant view among the jurors: Congestion isn't a

serious problem in the Twin Cities. If it becomes a problem, the most sensible way to finance

worthy investments would be to raise the gas tax.

In no place of which we have heard has a spontaneous ground swell of demand for

congestion pricing. In San Francisco and the Twin Cities, at least, claiming either enhanced

efficiency or solving a funds shortage generated little enthusiasm for the concept.

Our modest proposal: Let's sell congestion pricing by emphasizing an important

implication of its efficiency: getting something for nothing. Most taxes impose efficiency

losses; the losses those taxed incur exceed the revenues governments receive through their

imposition. Congestion pricing, though, results in efficiency gains. Our calculations suggest

that the immediate effect of congestion pricing will be to make all but a small fraction of the

population worse off. Our calculations also suggest, however, that tolling the entire road
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network would generate $1.50-$1.75 in revenue for each dollar of surplus travelers would

lose. This being the case, there ought to be a way to compensate all losers and still have a

substantial pot left over to finance reduced real-estate, fuel, and other taxes as well as

transportation projects. Thrill to the slogan,

Congestion Pricing, Everybody's Win-Win Proposition!

But there is a problem here. Givebacks should not be set up in a way that defeats the

efficiency goal at which congestion pricing is aimed. To cite an extreme example of such a

self-defeating procedure, suppose that all travelers know that they will each receive a check at

the end of a month equal to their congestion-toll payments during that month. Such a scheme

would certainly compensate all losers, but only at the price of destroying their incentives to

base their travel decisions on the full costs of their trips.

Sadly to say, we have thus far been unsuccessful in developing a scheme for

distributing toll revenues among losers in a way that would eliminate their opposition to

congestion pricing but would not appreciably diminish the efficiency of their responses to it.

We are even further from concocting a scheme that would conform to generally accepted

standards of equity and would leave an appreciable share of toll revenues for transportation

improvements and other desirable projects.

Tables 10 and 11 describe one of our failed attempts at designing a toll-revenue

distribution policy. Table 10 indicates that, in 1990, morning peak-hour auto travel was

undertaken by 327,295 drivers. Most peak-hour drivers are members of multi-driver

households; only 170,575 -- 19% -- of the metropolitan area's 875,000 households in 1990

contained peak-hour drivers. With all congested roads tolled, the aggregate daily losses to

drivers from foregone trips and trips still taken are $849,000 or $264,100 if the full-price

demand elasticity for auto trips is, respectively, 0 or - 1. Losses per driver (many take more

than one peak hour trip) and per household average $2.60 and $4.98 respectively for a 0 price

elasticity and $0.81 and $1.55 for a -1 elasticity. These losses are roughly evenly distributed

among the lower three income groups but appreciably lower for the top group. If only
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Table 10: Losses from Congestion Tolls to
Morning Peak-Hour Drivers and Households with Drivers

7-County Household income Groups: 1990

< $35k $35-55k $55-75k > $75

Morning peak-hour drivers 57,246 127,848 65,296 76,927

Households with morning
peak-hour drivers 26,114 66,709 36,977 40,775

Daily Lost Surplus During Morning Peak Hour--All Roads Tolled

Full Price Elasticity = 0

Aggregate Loss $150,900 $363,800 $201,700 $133,500
Loss/driver $2.64 $2.85 $3.09 $1.74
Loss/driving household $5.78 $5.45 $5.45 $3.27

Full Price Elasticity =-1

Aggregate Loss $54,500 $124,000 $58,400 $27,200
Loss/driver $0.95 $0.97 $0.89 $0.35
Loss/driving household $2.09 $1.86 $1.58 $0.67

Daily Lost Surplus During Morning Peak Hour--Only Expressways Tolled

Full Price Elasticity = 0

Aggregate Loss $12,800 $33,800 $17,500 $8,800
Loss/driver $0.22 $0.26 $0.27 $0.11
Loss/driving household $0.49 $0.51 $0.47 $0.22

Full Price Elasticity = -1

Aggregate Loss $9,300 $18,200 $5,800 ---
Loss/driver $0.16 $0.14 $0.09 ---
Loss/driving household $0.36 $0.27 $0.16 ---

Totals

327,295

170,575

$849,900
$2.60
$4.98

$264,100
$0.81
$1.55

$72,900
$0.22
$0.43

$33,300
$0.10
$0.20

expressways are tolled, losses are markedly lower, of course, but follow roughly the same

relative pattern.

Again, only about 20% of metropolitan-area households have members who drive

during the morning peak hour. Again, a partial or complete give-back of tolls just to them

would reduce or eliminate their incentive to take the full costs of their trips into account in

deciding when, where, and how to make them. This problem could be eliminated by providing
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Table 11: Suppose EACH Household in 7-County Metro Area Is Given the AVERAGE Loss
to Driving Households in Its Income Group. How Much Would this Cost?

How Much Would Be Left Over for Highway and Other Purposes?

7-County Household income Groups: 1990

< $35k $35-55k $55-75k > $75 Totals

Number of Households 412,122 237,901 123,152 176,670 875,833

Daily Losses per Driving Household During Morning Peak Hour

All congested roads tolled

Elasticity = 0 $5.78 $5.45 $5.45
Elasticity = -1 $2.09 $1.86 $1.58

Only expressways tolled

Elasticity = 0 $0.49 $0.51 $0.47
Elasticity = -1 $0.36 $0.27 $0.16

Daily Payments ($1,000) to Households Required to Leave

All congested roads tolled

Elasticity = 0 $2,382.1 $1,296.5 $671.1
Elasticity = -1 $861.3 $442.5 $191.6

Only expressways tolled

Elasticity = 0 $201.9 $121.3 $57.9
Elasticity = -1 $148.4 $64.2 $19.7

Peak Hour Tolls Collected

$3.27
$0.67

$0.22

All Better

$4.98
$1.55

$0.43
$0.20

Off

$577.7 $4,361.6
$176.7 $1,357.5

--- $376.6
$175.2

($1,000)

All roads tolled

Elasticity = 0
Elasticity = -1

Only express-ways tolled

Elasticity = 0
Elasticity = -1

$138.4 $384.7
$45.1 $171.2

$6.2
$5.5

$39.6
$34.6

$241.2 $175.6
$121.5 $96.2

$30.6
$28.4

$23.9
$22.7

givebacks to all households, not just those with peak hour drivers. Sadly to say, Table 11

reveals this distribution scheme to be a fiscal disaster. Depending on the assumed demand

elasticity and whether congested roads or only expressways are tolled, financing it would cost
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3-4 times toll revenue collections. We haven't yet computed the increase in fuel taxes that

would be required to cover these costs.

Further study of congestion-toll rebate schemes is a high priority for our continuing

congestion-pricing research. Among the schemes that we are currently examining are pay-

ments only to job holders and marketable "road scholarships" to low- and moderate-income

households that diminish with increases in their income. On grounds that moving school

opening hours out of peak periods is an administrative task considerably easier than instituting

congestion pricing and that high-school students with after-school burger-flipping jobs do not

contribute greatly to peak-hour road congestion, the former scheme would probably have some

combination of income, age, and number-of-hours-worked limitations on payments to individu-

al workers. We welcome suggestions for other schemes.
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Endnotes

*Post-Doctoral Fellow in Economics at the University of California at Irvine and Professor
Emeritus of Economics at the University of Minnesota, respectively. The research reported
here has largely been supported by the Minnesota Department of Transportation. It does not
necessarily subscribe to the conclusions we reach.

'That is, given a state of affairs in which a simultaneous doubling of the investment in a road
and the traffic it carries would leave unchanged the costs to a user of a trip on it.

2We ignore here paying for the road damage that heavy axle-loads do. Newbery (1989) de-
scribes plausible circumstances under which marginal-cost damage charges would cover road-
maintenance costs. Appendix A contains a simple proof of this and other assertions made in the
text. That, given constant returns to scale, congestion tolls would exactly cover capital costs
for a long-run optimal road does not necessarily mean that plowing all toll revenues back into
road improvements would be efficient. Suppose that population and travel are no longer
growing, that low-cost construction techniques have been developed to provide roads that will
last forever without maintenance, and that a long-run-optimal road network has been created.
Marginal-cost tolls would then function as a normal return on the capital society has invested
in the road network that should be used in the same way as any other non-earmarked source of
government revenue. Efficiency would not dictate either spending these revenues on highways
or eliminating congestion tolls.

3In the road case, the full price -- the value of consumer-supplied inputs plus whatever toll may
be charged -- is the relevant concept. See Section 2.

4The formulae for the solid and dashed average cost curves are, respectively, N/K = 4(1 -
t*/t)t*/t and t = 1 + (N/K)4 where N/K denotes the ratio of vehicle volume to ideal capacity
and t and t* are respectively actual travel time per mile and travel time per mile at a zero N/K
ratio.

5This example is adapted from Braess (1968).

6There is only one equilibrium assignment. To show this, let a, b, and c be the flows along
routes A, B, and C respectively. Travel times along these routes will be 3(a + c)/2 + 50 for
A, 50 + 3(b + c)/2 for B and 3(a + c)/2 + 15 + 3(b + c)/2 for C. The time along route C is
greater than that along route A only if 3(a + c)/2 + 15 + 3(b + c)/2 > 3(a + c)/2 + 50.
Rearranging terms shows that this inequality can hold only if 3(b + c)/2 > 35, but this is
impossible since b + c <20. The same reasoning applies to the comparison of travel times
between routes B and C. Thus, in equilibrium, all drivers use route C.

7If time per trip along one of the congested routes is 3n/2 minutes, total travel time per hour is
3n2/2 minutes. Differentiating with respect to n yields 6n/2 as marginal travel time per trip.

8For recent surveys, see Goodwin (1992) and Oum, et al. (1992).

9The measure of capacity implicit in equation (1) differs from that of Figure 4. In Figure 4, it
takes twice as long to travel a mile at a volume/capacity ratio of one as at a volume/capacity
ratio of zero. In equation (1), a volume/ capacity ratio of 1.6 is required for time per mile to be
double that at a volume/capacity ratio of zero.
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Endnotes (Continued)

'OThis literature derives from a classic paper by Frank Ramsey, Ramsey (1928). His problem
was to select a set of excise taxes that generate a desired level of government revenues while
minimizing the costs of the distortions to economic activity that such taxes inevitably impose.
In the simple case with which Ramsey dealt, optimality called for excises inversely proportion-
al to the elasticity of demand for the taxed commodities with the proportionality factor increas-
ing with increases in the revenue to be raised. Baumol and Bradford (1970) is an excellent
survey of this literature. Mohring (1970) deals with its applications to the peak-load problem
in general and to road pricing specifically.
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Appendix A:

Proofs of Propositions about Traveler Behavior

and the Optimal Design and Pricing of Roads
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(1) The Optimal Relationship Between Congestion Tolls and Capacity Costs: If the

production trips on a highway involves constant returns to scale, travel time per trip can be

written as a function of the volume-capacity ratio, N/K, and the hourly cost of capacity can be

written as PK Kwhere PK is the hourly price of a unit of capacity -- depreciation, mainte-

nance, and the interest that the funds invested in capacity could have earned if invested else-

where. Ignoring vehicle operating costs for simplicity and denoting the average value to vehi-

cle occupants of an hour's travel time by V, the total variable costs of the trips taken during an

hour can be written

Variable Costs = VNT = VNf(N/K) (A-l)

The short-run marginal cost of a trip is

aVC/ON = Vf(N/K) + VNf [a(N/K)/aN] = Vf(N/K) + VN/Kf (A-2)

The first term on the right of equation (A-2) is the average time cost per trip; the second is the

difference between the trip's average and marginal time costs -- the cost each vehicle in the

traffic stream imposes on the occupants of all other vehicles in the stream by slowing their

trips. To set the price of a trip equal to its marginal cost, a toll equal to this latter amount must

be charged each of the N travelers. If this were done, total toll collections would be Vf 'N2/K.

A plausible objective for a highway authority would be to select that level of capacity

for a highway that would minimize the total costs of travel on it -- the time and other costs that

users incur directly plus the cost to the authority of providing the highway's services, PK K.

More capacity means faster trips, but greater highway capital costs. The total cost of N trips

an hour on a highway is

Total Costs = VNf(N/K) + PK K (A-3)

Differentiating with respect to K, setting the result equal to zero, and rearranging terms yields

- VN2/Kf + PK = 0 (A-4)

as the condition that must be satisfied by the cost-minimizing capacity level. In words, this

equation says that the last dollar per hour spent to expand capacity should yield hourly user-

cost savings of a dollar.
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Multiplying equation (A-4) through by K and rearranging terms yields

VfN 2/K = PK (A-5)

The right-hand side of (A-5) is the hourly cost of the road's capacity. Again, from equation

(A-2), the optimal congestion toll -- the cost each vehicle imposes on the costs of all other

vehicle by adding to the level of congestion -- is VfN/K. If this toll were to be imposed on

each vehicle, total toll collections would be VfN2/K. But this is the left-hand side of (A-4)

which equals the total hourly cost of the highway. In brief, then, given constant returns to

scale, an optimally priced road that has been designed to minimize the sum of user and provid-

er costs would generate toll revenues just sufficient to cover its provider's costs. Given con-

stant returns to scale, optimally designed and priced roads would be exactly self-supporting.

(2) Traveler Behavior, the "Full Price" of Travel, and the Social Value of Travel Time:

Considering a hypothetical bus line between Here and There is perhaps the simplest way to

show how the disutility travelers incur from spending time in transit should be taken into

.account in optimizing and pricing transportation facilities. Suppose that N consumers utilize the

services of this bus line. Consumer i (i = 1,..., N) derives utility from consuming s' units per

week of a general purpose commodity, stuff, conveniently priced at $1 a unit. He also derives

utility from what happens There during each of the b~ trips per week he takes from Here to

There and back. However, he incurs disutility from the time, T' = b't, he spends traveling

where t is the number of hours required to take a trip. Travel time per trip is a function, t(B,

X), of the total number of trips taken, B = Sb', and of X, the total number of bus hours of

service provided on the route each week.

Consumer i's problem, then, is to maximize his utility, u(s',bY,rT) subject to his budget

constraint, I = s' + Fb' where F is the fare per bus round trip. Setting up the Lagrangian

expression

zi = ui(s, bi, 7') + i(Q' - s - FbV)

and differentiating with respect to s' and b1 yields

zi = ua -h' = 0 (A-6)
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S= + tt + uz b t,- F = 0 (A-7)

as first order conditions for utility maximization where subscripts refer to partial derivatives.

It seems reasonable to suppose that consumer i does not take into account the effect his trips

have on his own travel time. If so, u'i b t, can be ignored. Amending equation (A-7) to take this

assumption into account and dividing by equation (A-6) would then yield

uebl/u + t ui/ul = F (A-8)
In equation (A-8), u4r/., the ratio of the marginal disutility of travel time to the marginal utility of

dollars has the dimension dollars per hour. It therefore seems reasonable to substitute for this

ratio -V, the money cost consumer i attaches to his travel time. Doing so changes equation

(A-8) to

u'b = i/' = F + Vt (A-9)

This relationship says that consumer i will equate the ratio of the marginal utility of bus trips to

that of dollars with the fare plus the time cost of a trip, an expression that is commonly re-

ferred to as the "full price" of a trip in the economics literature.

Suppose a public-spirited bus authority wishes to maximize a function, W(u',..., u"), of the

utility functions of bus users. In doing so, it is subject to the constraint R = A + CX where R

is the weekly flow of services available from the stock of resources at society's disposal. A is

weekly consumption of dollars, Ida, and C is the number of units of resource services required

to provide the services of a bus hour. Setting up the Lagrangian expression

Z = W(ul,...,u") + )(R -A - CX) (A-10)

and differentiating with respect to s and b' yields:

Wd - = WI i - = (A-ll)

Wi(ub + ut) + W. - b t, = 0 (A-12)

as first order conditions where W. is a W/au, the "marginal welfare weight" attached to indi-

vidual i, the value society attaches to an increase in individual i's well-being. The second

equality in (A-11) follows from equation (A-6)-that is, it follows from the fact that consumer i

will adjust his consumption of dollars so that their marginal utility equals his marginal utility of
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income, i.

The authority responsible for providing bus service must take into account that consumers

will act to maximize their utility levels subject to the budget constraints with which they are

faced. This fact permits substitution of equations (A-8), (A-10), and (A-11) into equation (A-

12). On doing so, equation (A-12) can be shown to reduce to

,r(F- BVt) = 0 (A-13)

where V equals the weighted (by number of trips taken) average value of an hour of travel

time, Eb'VI/Ebi. The Lagrangian multiplier, -, can be interpreted as the welfare gain resulting

from a one unit increase in available resource services. It is presumably positive. If travel

time is valued at V dollars an hour, the total weekly time cost of trips would be T =

BV(B,X). Differentiating T with respect to B would yield an expression for the marginal time

cost of a trip

aT/aB = Vt + BVt( (A-14)

where, to repeat, subscripts refer to partial derivatives. The first term on the right of equation

(A-14) can be interpreted as the average time cost of a trip. Hence BVt, is the difference

between average and marginal time costs--the costs an additional trip imposes on all other trip

takers by increasing travel time per trip. Equation (A-13) can therefore be interpreted as saying

that, if welfare is to be maximized, the fare per trip must equal the difference between the

marginal and the average time costs of a trip; that is, the fare must equal the additional time

costs resulting from an additional trip less those time costs incurred by the trip taker himself.

This, of course, is essentially the same conclusion that we have asserted should be applied to

auto travel.

Differentiating equation (A-10) with respect to X, the number of bus hours of service

provided, and making substitutions similar to those which led from equation (A-12) to equation

(A-13) yield

- o (VBt x + C) = 0 (A-15)

This is the same result that would follow from selecting the value of X that would minimize
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VBt(B, X) + CX, the total time and dollar costs of B trips if travel time is valued at V dollars

an hour.
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Appendix B:

EMME/2 Macros for Traffic Assignments

with Four Income Groups
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This appendix describes and lists the programs and files needed by EMME/2 to deter-

mine equilibrium traffic flows when there are four types of commuters. The programs and

files can easily be adapted to handle any number of commuter types. The idea is to use diago-

nalization to find equilibrium traffic flows. First, determine the roads which high income

travelers will use if there are no other travelers. It makes sense to start with high income

travelers, because this initial loading will generally assign them to faster roads, which is where

you generally want them to end up. Second, determine the roads which the second highest

income group would use taking the roads high income travelers use as given. Continue this

process until all income groups are assigned to the network. Now one cycle has been complet-

ed. Perform additional cycles until the change in traveler behavior between cycles is small.

We found what seemed like good approximations of equilibrium after five to seven cycles. As

you perform more cycles it makes sense to perform more iterations of the equilibrium loading

algorithm for each group of travelers. We started with seven or eight iterations and worked up

to about twenty.

The main loading cycles are performed by the macro load-fd2.m (load-ed2.m in the

case of elastic demand loadings). Its main job is to call two macros for each loading within the

cycle: preasgn.m and asgn-fd.m. The macro preasgn.m calculates the amount of traffic of

other types on each link. Once these calculations are made, the macro asgn-fd.m is called to

assign the current driver type, given the amount of traffic caused by other types. More de-

tailed descriptions of these macros are given below.

PROGRAMS AND FILES FOR THE INELASTIC-DEMAND CASE

Programs used to create EMME/2 data files:

D211-IN.BAS: This Basic program converts a TRANPLAN highway network into an

EMME/2 highway network. The TRANPLAN network must be in ASCII format. The pro-

gram uses the TRANPLAN network file AM20-00.NET as input and outputs the EMME/2

highway network to D211.IN. D211.IN can be input into EMME/2 using module 2.11.

The format for each link in D211.IN is: ("a", nodel, node2, free-flow travel time, "a",
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link type, "1", volume-delay function, "0", "0", capacity). The first "a" tells EMME/2 to add

the link. The free-flow travel time is in minutes. The second "a" says the link is used by the

auto mode. The link types are: 1--metered freeway, 2--unmetered freeway, 3--metered ramp,

4--unmetered ramp, 5--divided arterial, 6--undivided arterial, 7--collector, 8--HOV, and

9--centroid connector. The volume-delay functions are: 1--freeway, 2--ramp, 3--arterial,

collector, or HOV, and 4--centroid connector. The "1" and the "0"'s are place holders. The

capacity is in autos per hour.

D311-IN.BAS: This QuickBasic program creates trips tables using data from the Travel

Behavior Inventory (TBI). Each line of the TBI data must be in the format: origin node, desti-

nation node, number of trips and travel-time value. The data must be sorted by origin node,

destination node, and travel-time value. The program uses the files TBIFILE.1, TBIFILE.2,

TBIFILE.3, and TBIFILE.4 for input and outputs to D311.IN. D311.IN contains one trip

table for each of four ranges of travel time values. D311.1N can be input into EMME/2 using

module 3.11.

Programs used to initialize the EMME/2 data bank:

DBANK-EM: This macro creates the EMME/2 data bank in which all other macros run. It

reads in the base network (D211.IN), reads in the trip tables mfOl - mf04 (D311.IN), and

reads in the volume-delay functions (D411.IN). This program also creates additional matrices

which EMME/2 needs. These matrices are: mf05 (total trips), mf06 (zero matrix), mf07

(current travel time), mf08 (travel cost with tolls and one time value), mf09-mfl0 (extra

matrices), mfll - mfl4 (travel cost for commuter types 1 to 4). The program also initializes

extra link attributes (@volal - @volau4 and sets up six scenarios: one for each commuter

type, one for when there are no tolls, and one for when there are tolls and only one commuter

type.

D201.IN: This file contains the mode table. The only mode of travel needed for the loading

is the auto mode.

D411.IN: This file contains the volume-delay functions fdOl - fd04. For functions 1 to 3, the
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volume-delay function for type i is

fdOl(volau) = fd02(volau) = fd03(volau)

= to * (1+.15*((volau+ull)/k)4 + .6*(volau+ul2)*(volau+ull) 3/k4)

where tO is free-flow travel time, k is capacity, volau is auto volume for type i, ull is the

volume of other travelers, and u12 is a weighted volume of other travelers. The term ul2

equals the sum of the volume of each of the other types of commuters times each commuter's

value for travel time divided by type i's value for travel time. For example, suppose, for each

typej, the volume is n. and the value for travel time is v.. Then, for type 1, u12 will equal (v2

n2 + v3 n3 + v4 nd) / VI.

The volume-delay function type 4 is for centroid connectors, which are not congestable

so fd04(volau) = to. The volume delay functions used to compute equilibrium when there are

four types of commuters are stored in D411-1.IN.

Files used to create equilibrium loadings:

LOAD-FD1.M: This macro performs the initial equilibrium loading for the network with four

travel time values. It completely reloads the network so it should not be used if the network is

already assigned and additional iterations are desired.

This macro calls the macros asgn-ini.m, asgn-fd.m and preasgn.m. First, asgn-ini.m

is called to set up the scenario for each commuter type for loading. Then preasg.m and asgn-

fd.m are called four times each. Preasg.m is called to calculate ull and u12 for the commuter

type to be loaded next. Then asgn-fd.m is called to load that commuter type.

This macro produces two reports. The output from the equilibrium loading module is

saved as load-l.out. In addition, the macro rptcostl.m is called. It produces a summary of

the time cost and the toll cost each commuter type experiences. Its output is saved as ucost-

1.out.

LOAD-FD2.M: This macro performs additional iterations to refine the equilibrium obtained

with load-fdl.m or previous uses of load-fd2.m. It takes one parameter for each cycle to be

performed and one extra parameter. The extra parameter is the number of cycles which have
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already been performed and it must be the first parameter. It produces the same reports for

each cycle which load-fdl.m produces.

ASGN-FD.M: This macro carries out a fixed demand equilibrium traffic assignment. It takes

two parameters, the commuter type and the number of iterations to perform. Travel costs for

commuter type i are stored in the matrix mfli.

PREASGN.M: This macro calculates weighted and unweighted additional volumes. These

calculations make drivers of one type account for congestion caused by drivers of other types.

The macro takes 8 parameters, four pairs of numbers. Each pair corresponds to one type of

commuter and the commuter's corresponding valuation for travel time. The first pair is for the

commuter type to be assigned next. The weighted and unweighted additional volumes are

stored in ull and u12, respectively.

Files used to produce reports:

RPTCOST1.M: This macro produces a summary of the time cost and toll cost of travel for

each commuter type. The time cost and the toll cost are given in hours and in dollars. This

macro takes 4 parameters: the valuation of travel time for types 1, 2, 3, and 4, respectively.

Program Listings: Here are listings of the programs and files EMME/2 needs to perform an

equilibrium assignment with four commuter types and completely inelastic demand.

The program D211.IN:

10'
20 ' Translate Tranplan Network into EMME/2 Network
30'
40 INPUT, "AM20-00.NET" FOR INPUT AS #1
50 OPEN "D211.IN" FOR OUTPUT AS #2
100 '
110 ' SKIP HEADERS
120 '
130 FOR I = 1 TO 5
140 LINE INPUT #1, H$
150 NEXT I
200'
210 ' OUTPUT NODE DATA
220 '
230 PRINT #2, "t nodes init / (a, centroid, number, coordi, coord2)"
240 CTR = 0
250 LINE INPUT #1, L$
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The program D211.IN: (Continued)

260 IF LEFT$(L$, 1) < > "N" THEN GOTO 400
270 CTR = CTR + 1
280 IF CTR < = 1200 THEN PRINT #2, "a* "; ELSE PRINT #2, "a ";
290 PRINT #2, MID$(L$, 3, 5); MID$(L$, 10, 8); MID$(L$, 21, 8)
300 GOTO 250
400'
410 ' OUTPUT LINK DATA
420'
430 PRINT #2, " "
440 PRINT #2, "t links init / (a, nl, n2, tO, mode; type, lanes; fn, ull;
u12, k)"
450 GOTO 480
460 IF EOF(1) THEN GOID 600
470 LINE INPUT #1, L$
480 IF MID$(L$, 11, 1) < > "0" THEN A$ = MID$(L$, 11, 1) ELSE A$ = "8"
490 PRINT #2, "a "; MID$(L$, 2, 9);
491 PRINT #2, USING " #.##"; VAL(MID$(L$, 18, 3)) / 100;
492 PRINT#2, " 1 a";
500 PRINT#2,A$; " 1 ";
510 IF VAL(A$) < = 2 THEN B$ = "1" ELSE IF VAL(A$) < = 4 THEN B$ = "2" ELSE
IF VAL(A$) < = 8 THEN B$ = "3" ELSE B$ = "4"
520 PRINT #2, B$; " 0 0 ";
525 IF MID$(L$, 34, 5) = " 0" THEN PRINT #2, " 99" ELSE PRINT #2,
MID$(L$, 34, 5)
530 GOTO 460
600'
610' FINISH
620'
630 CLOSE
640 BEEP: SYSTEM

The file D311-IN.BAS:

REM
REM Translate TBI Data into EMME/2 Trip tables
REM

F$ = "TBIFILE"

REM Loop To Strip Data

FORI = 1 T 4
NUM$ = RIGHT$(STR$(I), 1)
OPEN "D:\EMME2\WSTOLLS\D311\" + F$ + "." + NUM$ FOR INPUT AS #1
OPEN "D:\EMME2\WSTOLLS\D311\TEMP." + NUM$ FOR OUTPUT AS #2

DO
LINE INPUT #1, L$
GOSUB ACCEPT
IF AC = 1 THEN PRINT #2, L$

LOOP UNTIL EOF(1)
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The file D311-IN.BAS: (Continued)

CLOSE
NEXT I

REM Main Loop

OPEN "D:\EMME2\WSTOLLS\D311\" + F$ + ".IN" FOR OUTPUT AS #2
PRINT #2, "t matrices / (add, id, descr, default, descr)"
FOR I = 1 TO 4

NUM$ = RIGHT$(STR$(I), 1)
OPEN "D:\EMME2\WSTOLLS\D311\TEMP." + NUM$ FOR INPUT AS #1
PRINT #2, "a matrix =mf0" + NUM$ + " TYPE-" + NUM$ + " 0 " + F$ + "-Trips"
OLDOR = 0: OLDDEST = 0: TRIPTOT = 0

DO
INPUT #1, NEWOR, NEWDEST, TRIPFAC
TRIPS = TRIPFAC / 100
IF (NEWOR = OLDOR AND NEWDEST = OLDDEST) THEN GOSUB SAMEPAIR ELSE GOSUB

NEWPAIR
LOOP UNTIL EOF(1)

CLOSE #1
NEXT I
END

ACCEPT:
AC = 1
IF (VAL(MID$(L$, 10, 10)) = 0 OR MID$(L$, 1, 2) < > " ") THEN AC = 0
IF (VAL(MID$(L$, 2, 5)) = 0 OR VAL(MID$(L$, 13, 6)) = 0) THEN AC = 0
RETURN

SAMEPAIR:
TRIPTOT = TRIPTOT + TRIPS
IF EOF(1) THEN GOSUB PRINTOLD

RETURN

NEWPAIR:
IF OLDOR > 0 THEN GOSUB PRINTOLD
OLDOR = NEWOR: OLDDEST = NEWDEST: TRIPTOT = TRIPS
IF EOF(1) THEN GOSUB PRINTOLD
RETURN

PRINTOLD:
PRINT #2, USING " ####"; OLDOR; OLDDEST;
PRINT #2, " ";
PRINT #2, USING " #####.##"; TRIPTOT
RETURN
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The file DBANK-F.M:

6 / scenarios
1200 / centroids
7800 / nodes
20400 /links
10 / turns
10 / transit vehicles
10 / transit lines
100 / line segments
20 / matrices
10 / functions per class
100 / operators per class
100 / log book size
200 / demarcation size
100000 / extra network attributes
no / node labels
no / user data on transit line segments
'AM Network with 4 Types (Fixed Demand Loadings)' / title
yes / confirm dimensions
3 / terminal type (here Non Graphic)
4 / printer type
5 / plot file type (here GPL/GPR plotfile, color)
da / initials
1 / scenario to be created
'Type 1 Commuters' / scenario title
2.01 /##### read in mode table
1 / auto mode
2 / report to print file
q
2.11 /##### read in base network
2 / report to print file
2.41 /##### network calculations
3 / read in with batch entry
u12 / read u12
1,10 / all link types
n /no report
y / save result
q
3.11 /##### read in trip tables
2 / report to print file
4.11 /##### read in functions
2 / report in print file
3.12 /##### enter matrices interactively
1 / initialize matrices
mf05
TRIP-A
Complete Trip Table
0 / default value
1 / initialize matrices
mf06
TRIP-0
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The file DBANK-F.M: (continued)

Zero Trip Table
0 / default value
1 / initialize matrices
mf07
TRVTIM
Current Travel Cost
0 / default value
1 / initialize matrices
mf08
COST-1
Travel Cost With One Type
0 / default value
1 / initialize matrices
mf09
EX-1

0
1
mflO
EX-2

/ default value
/ initialize matrices

0 / default value
1 / initialize matr
mfl 1

.COST-1
Travel Cost for Type 1
0
1 / initialize matr
mfl2
COST-2
Travel Cost for Type 2
0
1 / initialize matr
mfl3
COST-3
Travel Cost for Type 3
0

ices

ices

ices

1 / initialize matrices
mfl4
COST-4
Travel Cost for Type 4
0
q
3.21 /##### matrix calculations
1 / matrix calculations
y / save result
mf05
n / don't change header
mfOl + mf02 + mf03 + mf04
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The file DBANK-F.M: (continued)

n
2

/ no submatrix
/ send to printer

q
4.11 /##### read in functions
2 / report to print file
2.42 / ##### Extra Attribute Manipulations
2 / create attribute
2 /link
@volal / name
Volume of other type # autos
0 / default value
2 / create attribute
2 /link
@vola2 / name
Volume of other type # autos
0 / default value
2 / create attribute
2 /link
@vola3 / name
Volume of other type # autos
0 / default value
2 / create attribute
2 /link
@vola4 / name
Old equilibrium auto volume
0 / default value
q / end
1.22 / ##### Scenario Manipulations
3 / copy scenario
1 / scenario to copy
2 / scenario to hold copy
'Type 2 Commuters' / scenario title
n / new scenario current?
3 / copy scenario
1 / scenario to copy
3 / scenario to hold copy

'Type 3 Commuters' / scenario title
n / new scenario current?
3 / copy scenario
1 / scenario to copy
4 / scenario to hold copy
'Type 4 Commuters' / scenario title
n / new scenario current?
3 / copy scenario
1 / scenario to copy
5 / scenario to hold copy
'Minimum Travel Time Loading' / scenario title
n / new scenario current?
3 / copy scenario
1 / scenario to copy
6 / scenario to hold copy
'Loading With Tolls and One Type' / scenario title
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The file DBANK-F.M: (continued)

n
q

off= 15
on =2

/ new scenario current?
/ quit
/ echo mode off
/ print main menu

The file D201.IN:

t modes init / (add, id, desc, type, plot, user (4))
aa auto 1 1 0.00 0.00 0.00 0.00

The file D411-IN:

t functions init / (add, name, expr)
a fdOl = length * (1 + .15 * ((volau+ull)/ul3)^4) +

.6 * length * (volau+ul2) * (volau+ull)^3 / ul3^4
a fd02 = length * (1 + .15 * ((volau+ull)/ul3)^4) +

.6 * length * (volau+ul2) * (volau+ull)^3 / ul3^A4
a fd03 = length * (1 + .15 * ((volau+ull)/ul3)^4) +

.6 * length * (volau+ul2) * (volau+ull)^3 / u13^4
a fd04 = length

The file LOAD-FD1.M:

~x=0
~:loop

~x+1
s= %x%
5.11 / ##### Assign Commuters
1 / fixed demand

~?q=2
2 / new assignment
1 / single class
1 / no added volumes
mf06 / zero matrix

/ no vehicle occupancy matrix
/ no additional demand matrix

mfl %x % / travel time matrix for type x
n
1 / number of iterations
0:r / relative gap stopping criteria
0:r / normalized gap stopping criteria
5.21 / ###### Auto Assignment
2 / send to printer
-?!x=4
~$loop
S<preasgn.m 4 21.875 1 5.395 2 11.245 3 16.25
~ <asgn-fd.m 4 10
S<preasgn.m 3 16.25 1 5.395 2 11.245 4 21.875
S<asgn-fd.m 3 10

B-11



The file LOAD-FD1.M: (continued)

S<preasgn.m 2 11.245 1 5.395 3 16.25 4 21.875
- <asgn-fd.m 2 10
-<preasgn.m 1 5.395 2 11.245 3 16.25 4 21.875
S<asgn-fd.m 1 10
~!move reports load-1.out
S<rptcostl.m 5.395 11.245 16.25 21.875 .25

~!move reports ucost-1.out

The files LOAD-FD2.M:

~ x= 1%%
y= %0%

~ x-1
~y-%x%
~y- 1
-%

~:loop
-x+1
- <preasgn.m 4 21.875 1 5.395 2 11.245 3 16.25
~ <asgn-fd.m 4 %1%
-<preasgn.m 3 16.25 1 5.395 2 11.245 4 21.875
S<asgn-fd.m 3 %1%
S<preasgn.m 2 11.245 1 5.395 3 16.25 4 21.875
S<asgn-fd.m 2 %1%
-<preasgn.m 1 5.395 2 11.245 3 16.25 4 21.875
S<asgn-fd.m 1 %1%
~! move reports load-% x %.out
'<rptcostl.m 5.395 11.245 16.25 21.875 .45
'! move reports ucost- %x %. out
-%
-?!x=%y%
~$loop
~:end
q

-/
-/ PERFORM A FIXED-DEMAND LOADING

-/
/ #1--Scenario
/ #2--Additional Iterations

-/
s=%1%
5.11 / ##### Assign Commuters
1 / fixed demand
~?q=2
~$reasgn
1 / single class
1 / no added volumes
mf0% 1% / trip matrix
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The file ASGN-FD.M: (Continued)

/ no vehicle occupancy matrix
/ no additional demand matrix
/ no travel time matrix

%2% / number of iterations
0:r / relative gap stopping criteria
0:r / normalized gap stopping criteria
~$start

:reasgn
1 / more iterations of old assignment
-p= 10 4 1

x= %p%
~x+%2%
%x% / maximum number of iterations
0:r / relative gap stopping criteria
0:r / normalized gap stopping criteria
~:start
5.21 / ###### Auto Assignment
2 / send to printer

The file PREASGN.M:

s=%l%
2.41 / ##### Network Calculations
1 / network calculations
y / save result
@vola4 / save in @vola4
n / don't alter description
volau

1,10

4 /no report
2 / copy attribute from another scenario
%3% / copy from scenario #
volau / use auto volume
@volal / save in @volal
n / don't alter description
1,10 / range of links to copy

2 / copy attribute from another scenario
%5% / copy from scenario #
volau / use auto volume
@vola2 / save in @vola2
n / don't alter description
1,10 / range of links to copy

2 / copy attribute from another scenario
%7% / copy from scenario #
volau / use auto volume
@vola3 / save in @vola3
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The file PREASGN.M: (continued)

n / don't alter description
1,10 / range of links to copy

1 / network calculation
y / save result
ull /save as ull
@volal + @vola2 + @vola3

1,10 / range of links

4 /no report
1 / network calculation
y / save result
u12 / save as u12
(%4% * @volal + %6% * @vola2 + %8% * @vola3)/%2%

1,10 / range of links

4 /no report
q

The file RPTCOST1.M:

s=5
x =0
2.41 / ##### Network Calculations
:loopl

'x+1
2 / copy attribute from another scenario
%x% / copy from scenario 1
volau / use auto volume
@vola%x% / save in @vola#
n / don't alter description
1,10 / range of links to copy

'?!x=4
~$loopl
1 / network calculation
y / save result
ull / save as ull
@volal + @vola2 + @vola3 + @vola4

1,10 / range of links

3 / punch
1 / network calculation
y / save result
ul2 / save as ul2
%1% * @volal + %2% * @vola2 + %3% * @vola3 + %4% * @vola4

B-14



The file RPTCOST1.M: (continued)

1,10 / range of links to copy

/ no report
/ do calculations
/ don't save result

* @volal * length * (1 + (vdf != 4) * .15 * (ull / u13)^4) / 60

4
1
n
%1%

1,10

2
2
1
n
%2%

1,10

2
2
1
n

%3%

1,10

2
2
1
n
%4%

1,10

/ summary
/ send to printer
/ do calculations
/ don't save result

* @vola3 * length * (1

/ summary
/ send to printer
/ do calculations
/ don't save result

* @vola4 * length * (1

+ (vdf != 4) * .15 * (ull / u13)^4)/ 60

+ (vdf != 4) * .15 * (ull / u13)^4) / 60

2 / summary
2 / send to printer
-x=0
~:loop3
~x+l
1 / do calculations
n / don't save result
@vola%x% * length * (1 + (vdf != 4) * .15 * (ull / ul3)^4) / 60

1,10

2
2

~?!x =4
~$loop3

-x=0
~:loop4
~x+1
1

/ summary
/ send to printer

/ do calculations
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/ summary
/ send to printer
/ do calculations
/ don't save result
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The file RPTCOST1.M: (continued)

n / don't save result
@vola%x% * (vdf ! = 4) * .6 * length * u12 * ull^3 / (u3^4 * 60)

1,10

2 / summary
2 / send to printer
'?!x=4
~$loop4
q

PROGRAMS AND FILES FOR THE ELASTIC-DEMAND CASE

This document describes and lists the programs and files needed by EMME/2 to deter-

mine equilibrium traffic flows when there are four types of commuters. The programs and

files can easily be adapted to handle any number of commuter types.

Programs used to create EMME/2 data files:

D211-IN.BAS and D311-IN.BAS : These Basic programs are the same as the files used when

demand was fixed.

Programs used to initialize the EMME/2 data bank:

DBANK-E.M: This macro creates the EMME/2 data bank in which all other macros are run.

It performs all the tasks the corresponding macro (dbank-fd.m) does when demand is inelas-

tic. In addition it initializes extra matrices for storage of inverse demand function values

(mf21-mf24). This macro also reads in the same mode table (D201.IN), base network

(D211.IN), and trip tables (D311.IN) that dbank-f.m does. The file d411.in is also read in.

Now d411.in must contain data on the demand functions and well as data on volume delay

functions.

D201.IN: This file is the same as the file used when demand was fixed.

D411-5.IN and D411-1.N: The volume-delay functions are the same as the functions when

demand is inelastic. Now that demand is elastic, the auto demand functions are also needed.

The file d411-5.in is used when the elasticity of demand for travel is -0.5 and the file d411-

1.in is used when the elasticity of demand for travel is -1.0. Demand functions are
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faOl = matl * mat2/(upqau.max..001) b where b is the elasticity of demand. Matl is the

current travel time and mat2 is the number of trips currently taken by travelers of the type to

be loaded. The travel cost is upqau. To ensure division by zero does not occur the denomina-

tor is the maximum of upqau and .001.

iles used to create equilibrium loadings:

LOAD-ED1.M : This macro performs the initial loading for the network with four travel time

values. It completely reloads the network so it should not be used if the network is already

assigned and additional iterations are desired.

This macro calls the macros asgn-fd.m, asgn-vd.m and preasgn.m. First asgn-fd.m

is called to set up the scenario of each commuter type for loading. Second preasgn.m and

asgn-fd.m are called to obtain starting values for the variable demand loading. Finally,

preasgn.m and asgn-vd.m are called four times each to do the first cycle of the variable

demand equilibrium loading. Note that preasgn.m and asgn-fd.m are the same macros that

were used when demand was fixed.

This macro produces two reports. The output from the fixed demand and variable

demand equilibrium loading modules is saved as load-l.out. In addition, the macro

rptcostl2.m is called. It produces a summary of the time cost, the toll cost, the loss to

consumer surplus, and the number of trips for each commuter type. Its output is saved as

ucost-l.out.

LOAD-ED2.M: This macro performs additional iterations to refine the equilibrium obtained

with load-edl.m or previous uses of load-ed2.m. It takes one parameter for each cycle to be

performed and one extra parameter. The extra parameter is the number of cycles which have

already been performed and it must be the first parameter. It produces the same reports for

each cycle which load-edl.m produces.

ASGN-FD.M and PREASGN.M: These macros are the same as they were when demand

was fixed.

ASGN-VD.M: This macro carries out a variable demand equilibrium traffic assignment. It
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takes two parameters: the commuter type to assign and the number of additional iterations to

perform. This macro stores demand for type i commuters in matrix mfli and inverse function

values for type i commuters in mf2i.

Files used to produce reports:

RPTCOST2.M: This macro produces a summary of the time cost and toll cost of travel for

each commuter type. This macro takes 4 parameters: the valuation of travel time for types 1,

2, 3, and 4, respectively. This macro also reports the number of trips each commuter type

takes and the loss to commuter surplus they experience.

Program Listings: Here are listings of the programs and files EMME/2 needs to perform an

equilibrium assignment with four commuter types and elastic demand.

D211-IN.BAS and D311-IN.BAS:

These files are the same as when demand is fixed.

The file DBANK-E.M:

6 / scenarios
1200 / centroids
7800 / nodes
20400 / links
10 / turns
10 / transit vehicles
10 / transit lines
100 / line segments
24 / matrices
10 / functions per class
100 / operators per class
100 / log book size
200 / demarcation size
100000 / extra network attributes
no / node labels
no / user data on transit line segments
'AM Peak Network with 4 Commuter Types' / title
yes / confirm dimensions
3 / terminal type (here Non Graphic)
4 / printer type
5 / plot file type (here GPL/GPR plotfile, color)
da / initials
1 / scenario to be created
'Type 1 Commuters' / scenario title
2.01 /##### read in mode table
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The file DBANK-E.M: (continued)

1 / auto mode
2 / report to print file
q
2.11 /##### read in base network
2 / report to print file
3.11 /##### read in matrices
2 / report to print file
3.12 /##### enter matrices interactively
1
mf05
TRIP-A
Complete Trip Table
0 / default value
1
mf06

TRIP-0
Zero Trip Table
0 / default value
1
mf07
TIME-0
Current Travel Time
0 / default value
1
mf08
COST-1
Travel Cost--One Commuter Type
0 / default value
1
mf09
TRVTIM
Travel Time Values-Temp
0 / default value
1
mflO
DFNVAL
Demand Fn Values-Temp
0 / default value
1
mfll
DMND-1
Variable Demand-1
0
1
mfl2
DMND-2
Variable Demand-2
0
1
mfl3
DMND-3
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The file DBANK-E.M: (continued)

Variable Demand-3
0
1
mfl4
DMND-4
Variable Demand-4
0
1
mfl5
EXTRA1
Extra Storage Matrix
0
1
mfl6
EXTRA2
Extra Storage Matrix

0
1
mf21
IFNV-1
Inverse Fn Values-1
0
1
mf22
IFNV-2
Inverse Fn Values-2
0
1
mf23
IFNV-3
Inverse Fn Values-3
0
1
mf24
IFNV-4
Inverse Fn Values-4
0
q
3.21 /##### matrix calculations
1 / matrix calculations
y / save result
mf05
n / don't change header
mfOl + mf02 + mf03 + mf04

n / no submatrix
2 / send to printer
q
4.11 /##### read in functions
2 / report to print file
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The file DBANK-E.M: (continued)

2.42 / ##### Extra Attribute Manipulations
2 / create attribute
2 /link
@volal / name
Volume of other type # autos
0 / default value
2 / create attribute
2 /link
@vola2 / name
Volume of other type # autos
0 / default value
2 / create attribute
2 /link
@vola3 / name
Volume of other type # autos
0 / default value
2 / create attribute
2 /link
@vola4 / name
Old equilibrium auto volume
0 / default value
q /end
1.22 / ##### Scenario Manipulations
3 / copy scenario

.1 / scenario to copy
2 / scenario to hold copy
'Type 2 Commuters' / scenario title
n / new scenario current?
3 / copy scenario
1 / scenario to copy
3 / scenario to hold copy
'Type 3 Commuters' / scenario title
n / new scenario current?
3 / copy scenario
1 / scenario to copy
4 / scenario to hold copy

'Type 4 Commuters' / scenario title
n / new scenario current?
3 / copy scenario
1 / scenario to copy
5 / scenario to hold copy

'Minimum Travel Time Loading' / scenario title
n / new scenario current?
3 / copy scenario
1 / scenario to copy
6 / scenario to hold copy

'Loading With Tolls and One Type' / scenario title
n / new scenario current?
q / quit

off= 15 / echo mode off
on =2 / print main menu
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The file D411-5.IN:

t functions init / (add, name, expr)
a fdOl = length * (1 + .15 * ((volau+ull)/ul3)^4) +

.6 * length * (volau+ul2) * (volau+ull)^3 / u13^4
a fd02 = length * (1 + .15 * ((volau+ull)/ul3)^4) +

.6 * length * (volau+ul2) * (volau+ull)^3 / ul3^4
a fd03 = length * (1 + .15 * ((volau+ull)/ul3)^4) +

.6 * length * (volau+ul2) * (volau+ull) ^3 / u13 ^4
a fd04 = length
a faOl = matl * mat2 / (upqau.max..001)**.5

The file D411-1.IN:

t functions init / (add, name, expr)
a fdOl = length * (1 + .15 * ((volau+ull)/ul3)^4) +

.6 * length * (volau+ul2) * (volau+ull)^3 / ul3^4
a fd02 = length * (1 + .15 * ((volau+ull)/ul3)^4) +

.6 * length * (volau+ul2) * (volau+ull)^3 / ul3^4
a fd03 = length * (1 + .15 * ((volau+ull)/ul3)^4) +

.6 * length * (volau+ul2) * (volau+ull) ^3 / ul3 ^4
a fd04 = length
a faOl = mati * mat2 / (upqau.max..001)

The file LOAD-ED1.M:

~ =0
~:loop

~x+1
s= %x%
5.11 / ##### Assign Commuters
1 / fixed demand

~?q=2
2 / new assignment
1 / single class
1 / no added volumes
mf06 / zero matrix

mfl %x5

/ no vehicle occupancy matrix
/ no additional demand matrix
% / travel time matrix for type x

n
1 / number of iterations
0:r / relative gap stopping criteria
0:r / normalized gap stopping criteria
5.21 / ###### Auto Assignment
2 / send to printer
'?!x=4
~$loop
S<preasgn.m 4 21.875 1 5.395 2 11.245 3 16.25
~ <asgn-fd.m 4 10
~<preasgn.m 3 16.25 1 5.395 2 11.245 4 21.875
S<asgn-fd.m 3 10
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The file LOAD-ED1.M: (continued)

S<preasgn.m 2 11.245 1 5.395 3 16.25 4 21.875
'<asgn-fd.m 2 10
-<preasgn.m 1 5.395 2 11.245 3 16.25 4 21.875
~<asgn-fd.m 1 10
~<preasgn.m 4 21.875 1 5.395 2 11.245 3 16.25
~ <asgn-vd.m 4 10
-<preasgn.m 3 16.25 1 5.395 2 11.245 4 21.875
S<asgn-vd.m 3 10
-<preasgn.m 2 11.245 1 5.395 3 16.25 4 21.875
~<asgn-vd.m 2 10
-<preasgn.m 1 5.395 2 11.245 3 16.25 4 21.875
~<asgn-vd.m 1 10
~!move reports load-1.out
-<rptcost2.m 5.395 11.245 16.25 21.875 .25
~!move reports ucost-l.out

The file LOAD-ED2.M:

~!del reports
-x=%1%
-y= %0%
~x-1
~y-%x%
-y-1~%

~:loop
~x+l
- <preasgn.m 4 21.875 1 5.395 2 11.245 3 16.25
~ <asgn-vd.m 4 %1%
~<preasgn.m 3 16.25 1 5.395 2 11.245 4 21.875
S<asgn-vd.m 3 %1%
S<preasgn.m 2 11.245 1 5.395 3 16.25 4 21.875
~<asgn-vd.m 2 %1%
~<preasgn.m 1 5.395 2 11.245 3 16.25 4 21.875
S<asgn-vd.m 1 %1%
~!move reports load-% x%.out
S<rptcost2.m 5.395 11.245 16.25 21.875 .25
! move reports ucost-% x %.out

~%
~?!x=%y%
~$loop
~:end
q
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The file ASGN-VD.M:

S=%1%
5.11 / ##### Assign Commuters
3 / variable demand
'?q=2
-$reasgn
1 / single class
1 / no additional volumes
mfl % 1% / matrix to hold variable demand
n / don't change header

1 / same function for all pairs
01 / index of function
mf0%1% / MAT1
mf07 / MAT2

mf09 / matrix to hold travel time
n / don't change header
mflO / matrix to hold demand fn values
n / don't change header
mf2 % 1% / matrix to hold inverse fn values
n / don't change header
.%2% / maximum number of iterations
0:r / stopping criteria for normalized gap
5.21 / ###### Auto Assignment
2 / send to printer
~$end
:reasgn

1 / more iterations of old assignment
-?q= 1
y / continue anyway
y / continue anyway
-p=104 1
x= %p%

~x+ %2%
%x % / maximum number of iterations
0:r / stopping criteria for normalized gap
5.21 / ###### Auto Assignment
2 / send to printer
~:end

The file RPTCOST2.M:

s=5
x =0
2.41 / ##### Network Calculations
:1loopl

Sx+1
2 / copy attribute from another scenario
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The file RPTCOST2.M: (Continued)

%x% / copy from scenario 1
volau / use auto volume
@vola%x% / save in @vola#
n / don't alter description
1,10 / range of links to copy

~?!x=4
~$loopl
1
y
ull
@volal

/ network calculation
/ save result
/ save as ull
+ @vola2 + @vola3 + @vola4

1,10 / range of links

/ no report
/ network calculation
/ save result
/ save as u12

@volal + %2% * @vola2 + %3% * @vola3 + %4% * @vola4

1,10 / range of links to copy

/ no report
/ do calculations
/ don't save result

* @volal * length * (1

/ summary
/ send to printer
/ do calculations
/ don't save result

* @vola2 * length * (1

/ summary
/ send to printer
/ do calculations
/ don't save result

* @vola3 * length * (1

+ (vdf != 4) * .15 * (ull / u13)^4)/ 60

+ (vdf != 4) * .15 * (ull / u13)^4) / 60

+ (vdf != 4) * .15 * (ull / u13)^4) / 60

/ summary
/ send to printer
/ do calculations
/ don't save result

@vola4 * length * (1 + (vdf != 4) * .15 * (ull / u13)^4) / 60

1,10
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1
y
u12
%1% *

4
1
n
%1%

1,10

2
2
1
n
%2%

1,10
2
2
1
n
%3%

1,10

2
2
1
n
%4% *



cThe file RPTCOST2.M: (Continued)

2 / summary
2 / send to printer

~x=0
~:loop2
~x+1
1 / do calculations
n / don't save result
@vola%x% * (vdf != 4) * .6 * length * u12 * ull 3 / (u13 ^4 * 60)

1,10

2 / summary
2 / send to printer
~?!x=4
~$loop2
q
-x=0
~:loop3
~x+1
3.21
1
n
mf0%x% * mf07 * (n((p= =q) + mf2%x%) - ln((p= =q) + mf07)) / 60

n

2
1
n
mfl %x%

n

2
q
-?!x=4
~$1oop3
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Appendix C:

The Traffic Assignment Model



In this appendix we describe a standard model of equilibrium traffic flows similar to, for

example, LeBlanc, Morlok, and Pierskalla [1975]. In the first part of this appendix we

assume all travelers place the same value on travel time, i.e., each traveler would be willing

to pay the same price to save one hour of travel time. We assume traffic flows are constant

throughout a period. The traffic flow along a section of road determines the time it takes

to traverse the section. Each driver attempts to minimize the full cost of the trip he or she

is making. The full cost of travel equals the resource plus toll costs of travel. Demand for

each trip is a function of its full cost. A traffic assignment specifies the number of drivers

using each route. An equilibrium traffic assignment is one in which (i) taking other drivers'

route choices as given, no driver can change routes and lower the cost of his or her trip; and

(ii) for each trip, the total number of drivers on all routes who make the trip equals the

demand for the trip. Equilibrium traffic flows exist and are unique if resource costs on each

link increase strictly with the volume of traffic using the link and if the demand function

for each trip is strictly decreasing. Table C-1 contains a summary of the symbols which are

used in Appendices C and D.

(1) The Transportation Technology: The transportation technology is specified by a fi-

nite set of nodes, AN, a finite set of links, C, and a set of routes, R. Let AN = {N 1 , N2,..., Np}.

A node represents a point at which either trips or links can originate or terminate. Let

£ = {f1,2,..., L}. A link is a one-way section of road connecting two nodes. Associated

with each link, 1, is a travel-time function, ti. A travel-time function (congestion function)

maps the volume of autos using a link during a period into the time it takes to traverse the

link. Thus, if the number of autos using link I during a period is vi 0 then the time it

takes each auto to traverse I is ti(vi).

An origin-destination pair is an ordered pair of nodes. Let W = N x N" be the

set of all possible origin-destination pairs. A trip must be made between the nodes of an

origin-destination pair. We will sometimes refer to an origin-destination pair as a trip. A

trip must be made along a route. A route is a sequence of distinct links along which travel

is feasible. The natural restriction on a sequence of links, (i,12,... , im), is that, for each
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Symbol Definition

I

ti

£

W= Nx

W = (wI, w2)

72

v

P

n

p

C(r, v, p)

CL(vp)

D,.

hA,

q

f(a)

e(p)

S(p)

K:

F;

R-

the set of nodes

the set of links

a link

the travel-time function for link I

the set of all origin-destination pairs

an origin-destination pair or a trip

the set of all routes

the set of routes along which trip w can be made

a link-flow vector

a route-flow vector

a trip-flow vector

a congestion-pricing system

the cost of using route r given v and p

the minimum cost of making trip w given v and p

the demand function for trip w

the inverse demand function for trip w

the value commuters place on travel time

the link-flow vector given the route-flow vector, a

the equilibrium link-flow vector given tolls, p

the welfare benefits of imposing tolls, p

a subset of the set of all links

the fixed cost of tolling link 1

the nonnegative orthont of Rk

Table C-l: Symbols used in Appendices C and D.
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k E {1, 2,..., m - 1}, link lk terminates at the node at which lk+1 originates. For each trip,

w = (wl, w2), let 7, be the set of all routes which originate at node wi and terminate at

node w2. For any w, 7, is finite because the sequence of links in a route must be distinct.

Since a route must consist of distinct links, a route can contain at most L links. There are

n!/(n - k)! ways in which sequences of k distinct elements can be formed from a set of n

distinct objects. This means that there can be no more than FZF L!/(L - i)! routes joining

any two nodes. Assume travel is possible between any two nodes, so that if w E W then

1Z, # 0. Let R = {rl, r 2,..., rM} be the set of routes between all pairs of nodes.

(2) Travelers: The full cost of travel along a route equals the sum of the resource costs

plus the toll costs of using all links in the route. The demand for trips between any origin-

destination pair is a function of the full cost of travel. For each w E W, let D,(c) be the

number of commuters who will travel from wi to w2 if the full cost of travel is c. In general,

travel between a pair of nodes can be made along a number of routes, and the full cost

of travel along each route may differ. We assume that commuters view all routes which

make the same trip as perfect substitutes, so they will only use routes which have the same,

minimum, full cost of travel. Because of this equivalence, it makes sense to speak of the full

cost of making a trip.

Assume time is the only resource used in travel. A commuter's valuation of travel

time is the maximum amount the commuter would be willing to pay to save one unit of

travel time. Assume the occupant(s) of each vehicle value travel time at q dollars per unit.

Each driver making a trip chooses a route which minimizes the full cost of travel. The choice

set of a commuter traveling from w1 to w2 is Z,.

Let R' be the nonnegative orthont of RK. A link-assignment vector, v, is an

element of RL+ such that, for each I E {1,2,..., L}, vi is the volume of travelers using 1. We

will sometimes refer to a link-assignment vector as a link-flow vector or simply as link flows.

Similarly, we will sometimes substitute route-flow vector or route flows for route-assignment

vector and trip-flow vector or trip flows for trip-assignment vector. A congestion-pricing

system, p, is an element of RL+ such that, for each link, I, pi is the toll on 1. Note that the
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toll on a link may not be negative. Assume that the effect of any one commuter on travel

time is negligible. We will assume that variables involving flows or prices can equal any

non-negative real number. The time frames generally used in analyzing equilibrium flows

make this assumption reasonable. During peak hours in the TCMA, for example, the flow of

travelers making any particular trip or traveling along any particular link is often over 100

vehicles per hour. A commuter making trip w, when the congestion pricing system is p and

the link-assignment vector is v, solves the problem

min E(qti(vi) + pl). (C-1)
1ErrEI7v let

(3) Equilibrium: A route-assignment vector specifies the volume of travelers flowing along

all routes, as opposed to the volume flowing along all links. A route-assignment vector, a, is

an element of R M such that, for each i E {1, 2,..., M}, ai is the volume of travelers using

route, ri. To each route-assignment vector there corresponds a unique link-flow vector. Let

f map route-assignment vectors into link-flow vectors so that, for each 1 E {1, 2,..., L} and

each route-assignment vector, a, fi(a) is the flow of traffic along 1. Formally,

fi(a) = X,(r)a (C-2)
rE7Z

where X,(r) equals one if link I is in route r and zero if I is not in r.

Define the function C so that C(r, v,p) is the full cost of travel on route r when

the link-assignment vector is v and the congestion-pricing system is p. Again, the full cost

of travel along route r is the sum of the resource plus toll costs of using all links in r. For

each origin-destination pair, w, define the function C~ so that C,(v, p) is the minimum cost

of making trip w when the link-flow vector is v and the congestion-pricing system is p. Note

that C~(v, p) is the minimum found by solving (C-1). This minimum exists because the set

of routes is finite so the problem is one of finding the minimum of a finite set of real numbers.

An equilibrium traffic assignment for the congestion-pricing system, p, is defined as

a route-assignment vector, a, such that, for all trips, w,

(i) if r E 7R and a, > 0 then C(r, f(a),p) = C*(f(a),p), and

(ii) a, = D,(C~,(f(a),p).
rE7Zw
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Part (i) of the definition states that, in equilibrium, traffic flows only along minimum cost

routes. Part (ii) states that, in equilibrium, the number of vehicles traveling along routes

between any pair of nodes equals the demand for travel between those nodes, given the full

cost of travel between them. A link-flow vector, v, is defined to be an equilibrium link-

flow vector if and only if there exists an equilibrium route-assignment vector, a, such that

v = f(a).

Beckmann [1956] showed that the problem of finding an equilibrium traffic-assignment

vector can be transformed into a constrained optimization problem. Assume that, for every

trip w E W, the demand function, D., is continuous, strictly decreasing, and differentiable.

Let W = N 2 be the number of origin-destination pairs. For each trip, w, let h" be the

inverse demand function for w. Also, assume that the travel-time function, t1 , for each link

I is continuous, strictly increasing, and differentiable. Let ii be some positive real num-

ber. Beckmann showed that under these conditions, a link-flow vector, v*, is an equilibrium

link-flow vector if and only if there exists n* E R W', such that (v*, n*) solves the problem:

min (qt (y)+pil)dy- EJ h(y))dy (C-3)
(v,n)ERfxRx lE.R C wEW E

subject to n, = a, for all w W, (C-4)
rE7Zw

v1 = fi(a) for all E £, and (C-5)

a, Ž 0 for all r E . (C-6)

It is not apparent that the two problems are equivalent. To gain some insight into

why they are, suppose there exists a solution to (C-3)-(C-6) which is interior, i.e., a solution

in which vi > 0 for all 1, n, > 0 for all w, and a, > 0 for all r. Let a, ?, and 7 be the

Lagrange multipliers for the constraints described by (C-4), (C-5), and (C-6), respectively.

The dimensions of the multiplier vectors are W, L, and M, respectively. The first order

condition for achieving an optimum for each w 6 W with respect to n, is h,(nr) = aw.

The first order condition for each I E £ with respect to vi is qtt(vt) + p' = tI. The first order

condition for each r E R7 with respect to a, is ac = ZIE, 1, where w is the origin-destination
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pair between which route r travels. Substituting the first two conditions into the last we get

h,(n,) = E qt (vi) + Pt (C-7)
lEr

when route r makes trip w. This means that the number of travelers making trip w is

consistent with the cost of travel on all of the routes along which the trip is made.

Kojima [1975] proves that a solution to the constrained optimization problem will

exist under quite general conditions. Specifically, Kojima shows that if (i) every ordered

pair of nodes is connected by a path; (ii) each link travel-time function is positive and

continuous; and (iii) all demand functions are non-negative, continuous, and bounded from

above then a solution exists. If all travel-time functions are strictly increasing and differen-

tiable and all demand functions are strictly decreasing and differentiable, the programming

problem has a strictly convex objective function. For any function g(x) let g'(x) denote

the derivative of g and for any matrix M let MT denote the transpose of M. The matrix

of second partial derivatives of the objective function specified in (C-3) with respect to v is

qIL(t' (v 1 ), t2(v 2), .. , t (vL)) where IL is the identity matrix of dimension L. The matrix of

second partials with respect to n is -Iw(h' (ni), h'(n 2 ),..., h'w(nw))T where Iw is the iden-

tity matrix of dimension W. Since each travel-time function is strictly increasing and each

inverse demand function is strictly decreasing, the matrices of second partial derivatives are

positive definite. Because the matrices are positive definite, the objective function must be

strictly convex. Since the problem also has linear constraints, if a solution exists, it is unique.

In addition to Beckmann's conditions, assume that all demand functions are bounded from

above. Then Kojima's conditions are satisfied, too. Under Beckmann's conditions and the

boundedness condition, a solution to the problem exists and the solution is unique. The

equilibrium link-flow vector, v*, is unique, but equilibrium route-flow vectors are not gener-

ally unique. The equilibrium trip-flow vector, n*, is also unique. Also, in equilibrium the

full cost of travel along each route is uniquely determined. This follows because the cost of

travel along a route depends only on the congestion-pricing system and the link-flow vector.

Because the cost of using every route is uniquely determined, in equilibrium the minimum

cost of travel between every origin-destination pair is also uniquely determined.
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We work with some demand functions that are not bounded above. Specifically,

we assume that (i)' every ordered pair of nodes in a network is connected by a path; (ii)'

each link travel-time function is continuous, strictly increasing, differentiable, and bounded

below by some e > 0; and (iii)' all demand functions are non-negative, continuous, strictly

decreasing, and differentiable. Assumption (ii)' includes the restriction that every travel-

time function is bounded below by some positive number. This assumption means that the

time it takes to traverse any link is positive, even if there are no travelers using the link. This

assumption seems reasonable. It is violated in the example of the Braess paradox network

only to simplify the problem. We use Kojima's result to show that equilibrium link flows

and trip flows exist and are unique under conditions (i)'-(iii)'. See Appendix A of Anderson

[1996].

Refraiing the problem of finding an equilibrium link-flow vector as one of find-

ing the solution to a convex programming problem provides insights into the properties of

equilibria. It also provides a potential method for solving the problem numerically. The pro-

gramming problem appears daunting, however, because the number of constraints is greater

than the number of routes. Fortunately, LeBlanc, Morlok, and Pierskalla [1975] developed an

algorithm which solves the constrained optimization problem efficiently, even on large net-

works. The problem is solved iteratively. First, start with an initial vector, (vi, nZ). Second,

given vi, find a minimum cost route between every pair of nodes. This is a time-consuming

step. Calculating the least costly paths on a network with approximately 8,000 nodes and

20,000 links takes EMME/2 almost three minutes, on a DX2 running at 66MHz. Third,

calculate the trip-flow vector, ni, which would result if the cost of travel were equal to the

costs travelers would incur along the routes obtained in the second step. Then calculate the

link-flow vector, ·i, which would result if the trips, fi, were made on the routes obtained in

step 2. Finally, obtain a new vector (v9 , n6 ) = ( g ,' + (1 - 9)i), Ont + (1 - 0)z) by choosing

8 E [0, 1] to solve the problem

min > JV (Oqiy) + p) dy - h(y) dy. (C-8)
6 E£C0 wEW

If the new vector is sufficiently close to the initial vector, then stop. Otherwise, repeat the
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steps using (v e, no) as the initial vector.

The algorithm developed by LeBlanc, et al. is an adaptation of an algorithm de-

veloped by Frank and Wolfe [1956]. The Frank and Wolfe algorithm was developed to solve

constrained optimization problems in which the number of constraints is too large to evaluate

explicitly. Frank and Wolfe show that their algorithm converges at least as fast as 1/n. No

general results on the rate of convergence of the adapted algorithm are available, however.

At each iteration of the Frank and Wolfe algorithm, a "good" direction in which to search

is found. This, combined with the fact that their objective function is quadratic, enable

them to obtain an explicit bound on the rate of convergence of their algorithm. It is not

possible to obtain a bound in the same way for the adapted algorithm. This is because, at

each iteration, the search for a new link flow vector is conducted in the direction of the link

flows which would occur if all traffic were assigned to the least costly routes, given the last

approximation of link flows. This is a "good" direction to search in that, unless the old link

flow vector was an equilibrium, the search yields a vector which provides a better solution

to the programming problem. There may be much better directions to search, however. In

particular, there is no guarantee that the algorithm is searching in a direction which is "close

to" the direction of the gradient of the objective function. No attempt is made to find a

better direction to search, because the programming problem has so many constraints that

determining a better direction would generally be extremely time-consuming. In practice,

the algorithm converges fairly rapidly. In the cases where demand is completely inelastic,

the algorithm converged within 100 iterations to a value of the objective function which

was within 0.2% of a lower bound on the problem's solution. When demand is elastic it

is not possible to calculate a lower bound on the problem's solution in the same way, but

convergence appears to occur at a similar rate.

(4) Extending to Drivers with Differing Valuations of Time: In this section we

describe how to relax the assumption that all drivers have the same valuation for travel time

and assume that each commuter is one of a finite set of types. All commuters of the same

type place the same value on travel time. Each commuter still attempts to minimize the
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direct cost of his or her trip, but now the direct cost depends on the commuter's type. Given

a congestion pricing system, there still exists a unique equilibrium. Not all equilibrium

in which each driver pays the marginal external cost of travel are optimal, however. We

numerically approximate equilibrium traffic flows in the TCMA when all roads are tolled

and when only limited access roads are tolled. We then examine the effects of pricing on

travelers from different income groups.

Each commuter is one of I types. Let = {1, 2,... ,1} be the set of types. For

each i E Z, let qi be the valuation of travel time for a commuter of type i. Commuters now

differ in the values they place on travel time and in the origin and destination of the trips

they demand. Each commuter.causes the same amount of congestion on a road, regardless

of type. Suppose that, for each link 1, the congestion function is ti, link volume is vi, and

the toll is pi. A commuter of type i, making trip w E W, solves the problem

min (q ti(vi) + pi). (c-9)
rE7 Ir

Demand for a trip is a function of the trip's full cost. For each trip, w, and for each i E Z,

let Di, be the demand for w by commuters of type i.

Equilibrium occurs when (i) each commuter making a trip does so in the least

costly way given the route choices of all other drivers, the congestion pricing system, and the

commuter's valuation of travel time and (ii) the number of commuters of each type making

each trip equals the demand for the trip, given its cost. A route assignment is now an i-tuple

of vectors, a = (a 1, a2 ... , a), where each a' is an element of RM such that a is the flow

of type i travelers along route j. Similarly, a link assignment is now an i-tuple of vectors,

v = (v 1, v2,..., vz), where each vi is an element of R L such that vf is the flow of type i

travelers along link 1. Define f to be the function which associates a link assignment with

each route assignment. This mean f(a) = (f(al),/(a2 ),..., f(a')) where the function f is

the same one defined in the previous section. For each i E I, define Ci(r, v,p) to be the

full cost of travel for a commuter of type i, on route r, when the link assignment is v and

the congestion-pricing system is p. Also, for each i E I, define C (v,p) to be the minimum

cost of making trip w, for a commuter of type i, when the link assignment is v and the
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congestion-pricing systein is p.

For each trip w and for each commuter type i, let Di, be the demand function

for w by commuters of type i. An equilibrium traffic assignment for the congestion-pricing

system p is a route assignment, a, such that, for all w E W, and for all i E I,

(i) if r E 7,, and a > 0 then Ci(r, f(a),p) = CiC(f(a),p), and

(ii) > a' = D(C(f(a),p)).

As before, part (i) of the definition states that only minimum cost routes are used and part

(ii) states that, given the cost of making a trip, the number of travelers using routes which

complete the trip equals the number of those trips demanded. Now these conditions must

hold for each type of commuter, however.

The problem of finding an equilibrium link-flow vector can be formulated as a

concave programming problem subject to linear constraints. For any congestion-pricing

system there will exist a unique vector of link-flows and trip-flows if conditions (i)'-(iii)' hold

for each type of commuter (see Fernandez and Friesz [1983]). The programming problem

is solved by using diagonalization and the method of LeBlanc, et al. Start with an initial

vector of link flows, i = (v, 'v?,..., v). Then determine equilibrium flows for commuters

of type 1, holding the link flows of all other types constant. After these equilibrium flows

v1+ are found, hold them fixed while equilibrium flows for type 2 commuters are found.

Continue until new equilibrium link flows are calculated for all types. If the new flows are

sufficiently close to the initial flows, then stop. Otherwise, repeat the process, replacing the

initial vector of flows with the new vector of flows.
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Appendix D:

Optimal Pricing



As in Appendix C, we fitst assume that all commuters place the same value on travel time.

An optimal congestion-pricing system maximizes consumer surplus plus toll revenue minus

toll collection costs. We consider two cases. In the first, each link can be tolled costlessly.

In this case, an optimal congestion pricing system exists and the link-flow vector resulting

from the system is unique. The optimal congestion-pricing system and the optimal link-flow

vector can be solved for numerically using the technique developed by LeBlanc, et al. In the

second case, there is a fixed cost of tolling a link. This cost represents the cost of installing

the equipment needed to monitor traffic flows. In this case, we do not know of an efficient

method of searching for an optimal pricing system.

(1) Pricing When Tolling is Costless: If all roads are costless to toll, an optimal

congestion-pricing system maximizes the sum of toll revenue plus the surplus that consumers

derive from making trips. Equivalently, an optimal system maximizes the sum of the value

each consumer making a trip places on it minus the aggregate value of time spent on travel.

Consider the problem of finding optimal link-flow and trip-flow vectors. Using the same

notation as in Appendix C, the social planner's problem is

maxRn I hw(y)dy - qvi t(vi) (D-10)
(wn)ERW xRI W f IEL

subject to (C-4) - (C-6).

Assume that (i)'-(iii)' hold, so that each demand function (and hence each inverse

demand function) is continuous, strictly decreasing, and differentiable, and each travel-time

function is continuous, strictly increasing, differentiable, and bounded below by some e > 0.

Note that for every link 1, d/dvi(q vi ti(vi)) equals (ti(vl) + vi t'(vl)). Thus

qvit( = q(t(y) + v t(y))dy. (D-11)
lEC IlC0

This means the social planner's problem can be rewritten as

min tf ( )+Y (y))dy- jnhw(y)dy (D-12)
(vn)ERxRY 1 0 wEW

subject to (C-4) - (C-6).
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The problem is now in the same form as Beckmann's problem. Note that since, for every

l E C, the congestion function, t1, is continuous, strictly increasing, and bounded below by

some e > 0, the function mapping each vi into q(ti(vi) + vlti(vl)) also has these properties.

Using the result from the last appendix, this means that the social planner's problem has a

unique solution. Call this solution (v*, n*).

Pricing can be used to internalize the costs of congestion externalities. Tolls can

be set so that the equilibrium link and trip flow vectors are optimal. The total time cost

that travelers on a link, 1, experience is q vi ti(vi), so the marginal social cost of travel on I is

q (ti(vg) + vi t'(vi)). The externality is internalized when all drivers pay the marginal social

cost of travel. A driver using link I already pays a time cost equal to q ti(vi), so the toll

must equal q vi t'(vi). This quantity, the marginal external cost of travel, is the increase in

travel time an additional driver causes others to experience. Define the congestion-pricing

system p" so that p7 = q v t'(v*) for each link 1. If the travel-time function on each link I

were tz(vi) + vz t'(vz), then v* would be an equilibrium link-flow vector. Note that v* is the

first component of the solution to the problem

an I(t,(y) + p;) dy - h,(y) dy (D-13)

subject to (C-4) - (C-6).

because the same marginal conditions are satisfied by the objective function in (D-3) and

the objective function in (D-2) with respect to link and trip flows. This means that v*

is an equilibrium link-flow vector for the congestion-pricing system p*. Optimal link flows

can be found by using the method of LeBlanc, et al. to solve the problem given in (D-2).

The algorithm for approximating equilibrium generally converges more slowly in this case,

because the new congestion functions increase more quickly. Then the optimal congestion-

pricing system can be found by applying the rule pf = q v7 t(v7).

(2) Pricing with Fixed Costs: The fixed costs of the equipment needed to monitor traffic

are sufficiently large that it may not be desirable to toll all roads. Assume that, for any link,

1, all users of the link must be charged the same toll, pi. If all links are not tolled, relaxing this
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constraint may allow the social planner to increase surplus. Technologically, the constraint

seems reasonable. Allowing prices to depend on the route a driver uses would mean it is

possible to monitor the driver's use of links which are not tolled. If this were technologically

feasible, however, each driver could be charged the full cost of his or her trip and the

situation would be the same as that of the previous section. Assume that conditions (i)'-(iii)'

hold so that, for each trip w, the demand function, Dw, is continuous, strictly decreasing,

and differentiable, and for each link, 1, the travel-time function, ti, is continuous, strictly

increasing, differentiable, and bounded below by some e > 0. Finally, assume it is only

feasible to place tolls on a subset, KC, of L. Define AK - {p E RL+ pi = 0 if 1i is not in KC}.

If only links in K: can be tolled, then the set of feasible congestion pricing systems is AK.

From Appendix C, we know there exists a unique equilibrium link-flow vector, v, given any

congestion-pricing system, p. Let e map congestion-pricing systems into equilibrium link-flow

vectors. Let S(p) be defined by

S(p) = ple,(p)- J ,)D,(c). (D-14)
leL: wEWe Cc;(e(O),O)

The first sum in S(p) is the toll revenue raised by the pricing system p. The second term

is the difference between the consumer surplus when tolls are p and the consumer surplus

when there are no tolls. Generally, imposing higher tolls will increase both toll revenue and

the full cost of travel. The latter will decrease the surplus that consumers derive from travel.

The social planner's problem is to choose p in AK so that S(p) is maximized. Note

that e is a continuous function of p and, for each trip w, C, is a continuous function of p. See

Section 2 of Appendix A in Anderson [1996]. This means that S is a continuous function of

p. Now assume that there exists some real number, m, such that, for each demand function,

D., if c > m then D,(c) = 0. Then raising the price on any link above m will not change

toll revenue or traffic flows, because no travelers will use a link if the toll on it is larger than

m. This means optimal prices are bounded above by m. The planner's problem is now one

of maximizing a continuous function over a compact set, so it has a solution.

Now assume that for each link I e C there is a fixed cost, Fi, of tolling I. The social
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planner's problem then becomes

max S(p)- Fi. (D-15)
KCCL,pEAAc

A solution to this problem exists because the set of all subsets of £ is finite. We

do not know of an efficient algorithm for solving this problem, however. Attention cannot

be restricted to imposing tolls that are less than the marginal external cost of travel. In the

Braess paradox network, if the fixed costs of tolling all links other than 13 are sufficiently

high, then only link 13 should be tolled, and it should be tolled above the marginal external

cost of travel on it. The marginal external cost of travel on 13 is zero, but the toll on it should

be set at p where p > $20 so that no travelers use the link. When all links are tolled the

optimization problem can be decentralized: optimal tolls are those that equate the full cost

of travel on each link with the marginal social cost of travel on that link. If some links can

not be tolled, a negative externality occurs when tolling a link diverts drivers onto untolled

links. Therefore, to find the optimal toll on a link, the planner must know the marginal

external cost of travel on all routes which use that link and on all routes to which traffic will

be diverted if the toll is raised. Determining these effects may be difficult computationally.

One problem is that the method LeBlanc, et al. use to find equilibrium flows does not store

route-assignment vectors. The method only stores link-assignment vectors because storing

route-assignment vectors would take much more memory. In addition, the problem of finding

the optimal subset of links to toll adds significantly to the complexity of the problem because

the set of all subsets of £ has 2L elements.

The problem of finding an optimal congestion pricing system is more complicated

than before because, when marginal cost pricing is used, congestion (actually cost) functions

are no longer symmetric with respect to commuter type. This is because commuters with low

valuations of time do not increase the marginal social cost of travel as much as commuters

with high valuations of time. Each commuter causes the same delay on a link for other

drivers, but marginal cost tolls depend on the types of drivers on a link. There may be

multiple equilibria in which the toll on each link equals the marginal cost of travel on that

link. The cost of making the same trip may not be the same in the different equilibria. See
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the next section for an example. In simple examples we have examined, the algorithm we

use to find an equilibrium in which all travelers pay marginal cost prices converges to the

optimal link and trip flows. We am not sure, however, if the algorithm converges to the

optimal link and trip flows when we use it to approximate equilibria for the whole TCMA.

(3) An Example of Multiple Equilibria: In this section we will present an example

which shows that there may be multiple equilibria with marginal cost pricing when there is

more than one commuter type. Suppose that there are only two nodes and two links in the

network. Let both links 1 and 2 go from node N1 to node N2 . Assume that both links have

the same congestion function, t(v) = 10 + v, which gives the travel time in minutes on each

link as a function of the number of autos using the link.

Assume that there are two commuter types and that commuters of type 1 value

travel time at $1 per minute and commuters of type 2 value travel time at $2 per minute.

Also assume that each type of commuter demands 40 trips from node N1 to node N2. Let

vI be the number of commuters of type i on link j. The total cost of travel on link j is then

v(10 + v + v ) + 2v(10+ + ). (D-16)

This is the sum of the number of commuters of each type using link j multiplied by the value

that type places on travel time multiplied by the travel time on link j.

The marginal social cost of travel on link j for a commuter type i is

i (10 + vJ + v, ) + (v + 2v]). (D-17)

The first term is the value a commuter of type i places on the time it takes to traverse link

j. The second term is the marginal external cost of travel along link j, the additional travel

time that the commuter causes others to experience.

There is an equilibrium with marginal cost pricing where v1 = v= = vo = vj = 20.

This is an equilibrium because each commuter pays $60 in tolls and it takes a commuter 50

time units to traverse either link. Every commuter is indifferent between using link 1 and

using link 2.

There is another equilibrium with marginal cost pricing where v\ = 40, v\ = 0,

S= 5, and v2 = 35. In this case, travel time on link 1 is 55 units and the toll is $50. The
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travel time on link 2 is 45 units and the toll is $70. Travelers of type 1 prefer link 1 to link 2

because it takes only 10 extra units of time, which each type 1 commuter values at $10, and

saves them $20 in tolls. Travelers of type 2 are indifferent between the two links because

link 2 saves them 10 units of time, which they value at $20, but costs them an extra $20 in

tolls. All travelers are behaving optimally, given the choices of other travelers, so this link

flow vector is also an equilibrium with marginal cost pricing.
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Appendix E:

Robustness Testing



In this appendix we present data on the robustness of our previous results with respect to

three parameters of the model. The parameters are the cost per mile of operating a vehicle,

the number of trips drivers make, and the form of the congestion function. Previously, we

had assumed that time was the only resource used in travel. In this appendix, we assume

that drivers must pay either five or ten cents per mile to operate their vehicles in addition

to the time cost they incur in travel. Previously, we used the TBI to determine the number

of trips drivers make between each origin-destination pair. In this appendix we determine

the efficiency gains which would result if drivers made either 90% or 110% of the trips they

reported in the TBI. The congestion functions we used previously were Standard Bureau of

Public Roads congestion functions. These functions have the form t(v) = to(1 + .15(v/k)4)

where v is traffic volume, to is free-flow travel time, and k is the capacity of the link. The

exponent in the function determines how congestable the link is. In this appendix we examine

the effects of assuming the exponent equals either 3.5 or 4.5.

The results presented in this appendix are for the a.m. peak hour and we assume

that demand is completely inelastic. We also assume that there is only one type of com-

muter and each commuter values travel time at $10 per hour. Given a parameterization, we

determine equilibrium traffic flows when there are no tolls. Then we compare these flows to

equilibrium flows when marginal cost pricing is used on all roads. Since there is only one type

of commuter, equilibrium flows are optimal if marginal cost pricing is used. Using marginal

cost pricing requires knowing the form of the congestion function for each link. Marginal

cost pricing will result in optimal flows reguardless of the number of trips being made on

the network and vehicles' operating costs. The road authority can set optimal tolls on a

link by adjusting them to reflect the number of travelers on the link. If the road authority

doesn't know the form of the congestion function, however, they may not be able to set tolls

optimally. Because of this, we examine two cases for each congestion function we consider.

In the first case, the road authority incorrectly thinks the exponent is 4. In the second case,

the road authority knows the value of the exponent and sets tolls accordingly. This case is

examined because the road authority may eventually gather the data to determine the value
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Table E-1: The aggregate effects of tolls for alternative parameterizations: The table

is for the a.m. peak hour when demand is completely inelastic, there is one type

of commuter, and each commuter values time at $10 per hour. All values are in

thousands of dollars. The parameters are the ratio of trips to the base case (rt), the

exponent in the congestion function (y), and the operating cost per vehicle mile (op).

When the parameterization is Y, the congestion function has exponent y, but tolls

are set as if the exponent is 4.0.

of the exponent. If the congestion function is t(v) = to(1 +.15(v/k) y) then the marginal cost

of travel on the link is t(v) = to(1 + .15(1 + y)(v/k)V). The optimal toll equals the difference

between marginal cost and average cost. If the exponent is y then the toll should equal the

value of toy(v/k)y units of time.

Table E-1 contains a summary of the results of the robustness testing. The vehicles'

operating costs have little effect on the efficiency gains of congestion pricing. Tolls result in

almost the same savings in travel time that they would result in if there were no operating

costs. Efficiency gains are slightly smaller because travelers drive further when there are
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Parameters No Tolls Tolls

rt y op Time Oper. Time Toll Oper. Gain

1.0, 4.0, $.05 1523.1 252.7 1471.4 683.0 256.0 48.4

1.0, 4.0, $.10 1523.4 504.3 1471.4 687.9 510.9 45.4

1.0, 4.0, $.00 1520.0 0 1467.2 672.8 0 52.4

0.9, 4.0, $.00 1305.9 0 1268.8 438.5 0 37.1

1.1, 4.0, $.00 1765.0 0 1699.4 1018.8 0 65.6

1.0, 3.5, $.00 1492.3 0 1448.7 554.3 0 43.6

1.0, 4.5, $.00 1555.3 0 1490.3 823.3 0 65.0

1.0, 3.5, $.00 1492.3 0 1450.5 678.8 0 41.8

1.0, 4.5, $.00 1555.3 0 1491.6 666.6 0 63.7



tolls. This is consistent with many models of urban form which predict that congestion

pricing will increase vehicle miles traveled because drivers will take more circuitous routes to

avoid congestion in the CBD. The effect in the TCMA is small, however, increasing vehicle

miles driven by only one or two percent.

For the parameterizations studied, the largest effects on efficiency gains were caused

by the changes in the number of trips taken. When the number of trips taken declined by

10%, efficiency gains fell by 29%; when they increased by 10%, efficiency gains increased by

25%. It appears that, without expansions in the road network, relatively small increases in

travel demand may make congestion pricing significantly more attractive. The 10% increase

in trips caused aggregate travel time to increase by 16%. These effects may be overstated,

however. Increasing all trips in the sample by 10% may magnify congestion problems because

the origins and destinations of the trips actually taken are spread more evenly over the TCMA

than those in the sample. This bias may be compensated for, however, if increases in travel

demand do not take place evenly throughout the metropolitan area.

The exponent in the congestion function has a significant effect on efficiency gains.

Efficiency gains would fall by 17% if the exponent were 3.5, and they would increase by 25%

if the exponent were 4.5. Fortunately, it appears that setting tolls based on an exponent of

4.0 when the actual exponent is 3.5 or 4.5 makes little difference. Pricing incorrectly leads to

efficiency gains which differ from the maximum attainable gains by only two to four percent.

Significant changes do occur in toll revenue, however when different exponents are used to

set prices. The sensitivity of revenues, but not efficiency gains, to the level of tolls means

it may be possible to charge lower (and presumably more politically popular) tolls and still

bring about large efficiency gains.
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