
Scalable Computation and Analysis of Elementary Flux

Modes in Metabolic Networks

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Dimitrije Jevremovic

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Dr. DANIEL BOLEY

May, 2013

c© Dimitrije Jevremovic 2013

ALL RIGHTS RESERVED

Acknowledgements

First and foremost, I want to thank my Ph.D. adviser Dr. Daniel Boley. It has been an

immense honor to be his Ph.D. student and have him as a mentor, colleague and collab-

orator. I am deeply grateful for his guidance, mentoring, and many hours of constructive

and exciting discussions about linear algebra, algorithm design, computational biology and

research in general. I would also like to express my gratitude to Dr. Friedrich Srienc and

Dr. Carlos P. Sosa. Dr. Srienc as a principal investigator and motivator has introduced and

approached us to the unanswered problems in the computational cellular reaction network

analysis, which ultimately lead to the work and results described in this thesis manuscript.

Dr. Sosa, acting in the capacity of an expert for the use of supercomputing resources in life

sciences, facilitated the development and testing of the software at the computing platforms

at IBM and Minnesota Supercomputing Institute.

I owe a heartfelt gratitude to my late father Radǐsa Jevremović, a professor of electrical

engineering at the time, who at an early age instilled in me the curiosity and passion for

mathematical and physical sciences. His love and passion for life will always remain a great

inspiration to me. I would unlikely have endured the nearly six years spent in graduate

school, without the support from my mother Dragoslava Jevremović who understood and

supported my decision to pursue graduate education and for that purpose move to a remote

part of the world. Julijana Mirčevski, my aunt and a retired software engineer, is a major

“culprit” for my decision to pursue graduate studies at a university in the United States

and explore the field of computational biology.

I am immensely grateful to Valerie Erickson and Dr. Charles Kath from St. Paul,

Minnesota, who have welcomed me with open hearts and enthusiasm into the Twin Cities.

Throughout the years spent in the area, Valerie and Charles have tirelessly supported me

in my endeavors and work in graduate school. I owe special thanks to many wonderful

Minnesotans who also greeted my at my arrival, eased my move into the area and made

wonderful company during many occasions in the previous years, namely Dawn Johnson,

Karen Trudeau, Kristen and Daniel Charette and many others. Finally, I am thankful to

my friend Dr. Danijela Stojanac, sister-in-law Sanja Miler-Jevremović and her spouse and

my brother Vladan Jevremović with my wonderful nephew Maksim Jevremović, and cousin

i

Dejan Mirčevski for being wonderful hosts during the holiday breaks when I visited them

at their homes in Chicago, Littlehampshire, Mountain View and Boston.

For the financial support I would like to acknowledge the Biomedical Informatics and

Computational Biology Traineeship Program at the University of Minnesota, Rochester in

2007/08 and 2008/09, National Science Foundation grant in 2009/2010 and the IBM Ph.D.

Fellowship Program in 2010/11, 2011/12 and 2012/13. In addition, I would like to thank

the Technical Committee on Parallel Processing and British Biochemical Society for the

travel grants which allowed me to travel to present my work at the two conferences in

United States and England. I would also like to thank Dr. Cong Trinh from the University

of Tennessee, Knoxville, Christopher Flynn and Dr. Pornkamol Unrean for the valuable

input, contribution and comments to the work described in this manuscript, as well as to

Dr. Mihailo Jovanović of the University of Minnesota, Twin Cities. Finally, I would like to

thank my office mates for the camaraderie, witty moments and support.

ii

Dedication

In loving memory of my late father Radǐsa Jevremović and grandfather Jovan Djenić

iii

Abstract

The full in silico reconstruction of the genome-scale cellular metabolic networks in the

recent years was enabled and supported with the sequencing of genomic and transcriptomic

data across numerous organism species, as well as with the growth of various biological

databases. Metabolic networks provide a comprehensive overview of the cellular landscape

and its phenotype prediction for the given environmental and growth conditions. Imposing

the thermodynamic and steady state constraints on the reactions and internal metabolites

of the given metabolic network, respectively, one still has a justifiable model which can be

used to study the cellular events of interest. Metabolic pathway is introduced as a biological

and mathematical concept of a subset of active reactions with a non-zero flux. In particular,

elementary flux mode is a metabolic pathway with a physiological property reflected in the

requirement for its enzymatic minimality. Elementary flux modes, as building blocks of the

metabolic network, have numerous applications in chemical engineering and biochemistry

for the study of phenotype of wild type and mutant cells. However, the large number

of elementary flux modes for even medium size metabolic networks, as well as the high

computational cost of the underlying Nullspace Algorithm, still present a challenge in the

computation and analysis.

The problem of enumerating elementary flux modes is equivalent to the one of enumerat-

ing the vertices in the degenerate polytope which still remains an open problem. Algorithm

used in such enumeration is the Double Description Method, and its adaptation in the

metabolic network analysis is the so-called Nullspace Algorithm. The Nullspace Algorithm

is studied to identify its major bottlenecks and possible improvements in design and imple-

mentation. The reduced algebraic rank test is proposed in the event when the network has

reversible reactions, and it significantly reduces the time required to check the elementarity

of the candidate elementary flux mode. In the case when the network admits reversible

metabolic pathway, a procedure is given to use the Nullspace Algorithm to compute one

of many possible minimal generating sets, itself being a minimal subset of elementary flux

modes whose linear combination can fully characterize the solution space .

Initially, parallelization of the enumeration of elementary modes was proposed in the

form of Combinatorial Parallel Nullspace Algorithm using MPI library routines for the

message-passing distributed memory environment. Due to insufficient memory scalability

and need to replicate major data structures across all the compute nodes, further steps were

undertaken to attain both memory and time scalability and be able to fit larger metabolic

networks to the algorithm. Global Arrays, the partitioned global address space library,

iv

was used to facilitate the development of the distributed-memory algorithm with a shared-

memory view of the global memory. It allowed a merge of the concept of the shared-memory

programming within a distributed-memory environment, hence allowing the computation

of nearly 70 million elementary flux modes for the 83-reaction metabolic network of the

Sacharomyces cerevisiae.

In the event of limited memory and processor resources, a splitting of work needed

to compute all elementary flux modes was needed. An earlier divide-and-conquer idea

was taken and further developed into a functional implementation. It was merged with

the Combinatorial Parallel Nullspace Algorithm to yield the Combined Parallel Nullspace

Algorithm and demonstrated reduced memory footprint on each of the subproblems.

The full set of elementary flux modes was used to enumerate multiple subsets of reactions

as candidates for knockout which would collapse the metabolic network to the subset of

desired elementary flux modes. Metabolic network design goals of (1) network flexibility and

(2) growth-coupled production of the target chemical were incorporated within the branch-

and-bound breadth-first search algorithms. Algorithms were executed on the metabolic

networks of Escherichia coli and Sacharomyces cerevisae and were compared to an earlier

exhaustive variation of the Berge’s algorithm.

Finally, a collection of ideas based on non-linear optimization methods is proposed

to model the cellular phenotype with a proper objective function and infer the efficient

subnetwork of the given metabolic network. Proposed methods are used with the goal of

inferring reactions targeted for deletion, where the residual network will contain as many

efficient elementary flux modes as possible, thus reducing the cost of running one of the

previously implemented algorithms. Optimization methods aim to model the metabolic

goals of the minimal energy consumption and enzymatic minimality using the L1-regularized

quadratic programming framework.

v

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables x

List of Figures xii

1 Introduction 1

2 Background 4

2.1 Systems Biology . 4

2.2 Metabolic Networks . 5

2.3 Constraint-Based Metabolic Network Analysis 6

2.3.1 Network Redundancies and Inconsistencies 7

2.3.2 Optimization-based Analysis Methods 8

2.3.2.1 Flux Balance Analysis . 8

2.3.2.2 MOMA and ROOM . 9

2.3.2.3 Flux Variability Analysis 10

2.3.2.4 OptKnock . 11

2.3.2.5 RobustKnock . 12

2.3.2.6 OptStrain . 12

2.3.2.7 OptReg . 13

2.3.2.8 OptGene . 14

2.3.2.9 Set-Based Evolutionary Algorithm and Simulated Annealing 14

2.3.2.10 Genetic Design through Local Search 16

2.3.2.11 Flux Scanning based on Enforced Objective Flux (FSEOF) 17

2.3.2.12 OptORF . 18

2.3.2.13 OptForce . 19

vi

2.3.2.14 SimOptStrain and BiMOMA 21

2.3.3 Pathway-based Analysis Methods . 23

2.3.3.1 Extreme Ray Enumeration and Double Description Method 23

2.3.3.2 Nullspace Algorithm . 26

2.3.3.3 Minimal Generating Set . 27

2.3.3.4 Extreme Pathways . 27

2.3.3.5 Elementary Flux Modes . 27

2.3.3.6 Minimal Cut Sets . 28

2.3.3.7 Elementary Flux Patterns 29

2.3.3.8 CEF (Control Effective Fluxes) 29

2.3.3.9 mCEF (Modified algorithm of Control Effective Fluxes) . . 30

2.3.3.10 Estimation of the Flux Distribution 31

2.3.3.11 Network Robustness and Pathway Redundancy 33

2.3.3.12 Minimal Metabolic Functionality 34

2.3.3.13 Flux Design . 34

2.3.3.14 CASOP (Computational Approach for Strain Optimization

aiming at high Productivity) 34

2.3.3.15 Weighting of elementary modes using thermodynamics . . 34

2.3.3.16 cMCS (Constrained Minimal Cut Sets) 34

2.3.3.17 Implementation of Nullspace Algorithm 35

2.4 Integrated Biological Network Analysis . 35

3 Nullspace Algorithm and its Development 37

3.1 Introduction . 37

3.2 Nullspace Algorithm . 37

3.2.1 Complexity of the Nullspace Algorithm 41

3.2.2 Serial Nullspace Algorithm Pseudocode 42

3.3 Reduced algebraic rank test . 44

3.4 Enumeration of Minimal Generating Set . 45

3.4.1 Introduction . 45

3.4.2 Theory . 47

3.4.3 Discussion . 49

3.4.4 Example . 50

3.4.4.1 Toy metabolic network . 50

3.4.4.2 Red Blood Cell metabolism 54

3.5 Conclusion . 54

vii

4 Combinatorial Parallelization of the Nullspace Algorithm 56

4.1 Introduction . 56

4.2 Parallel Nullspace Algorithm . 56

4.2.1 Load Balancing . 58

4.2.2 Computational Complexity Analysis 59

4.3 Results and Discussion . 62

4.3.1 Serial program . 62

4.3.2 Parallel program . 63

4.4 Conclusion . 66

5 Divide-and-conquer approach in elementary mode computation 67

5.1 Introduction . 67

5.2 Divide-and-conquer . 67

5.3 Combined Parallel Nullspace Algorithm . 68

5.3.1 Example . 69

5.4 Results . 74

5.4.1 Time scalability . 77

5.4.2 Memory scalability . 78

5.5 Discussion . 78

5.6 Conclusion . 78

6 Parallelization of Nullspace Algorithm using Global Arrays 80

6.1 Introduction . 80

6.2 Methods . 81

6.2.1 Global Arrays Library . 81

6.2.2 Parallel Nullspace Algorithm using Global Arrays 81

6.3 Results . 83

6.4 Conclusion and Future Work . 88

7 Rational strain design using elementary modes 89

7.1 Introduction . 89

7.2 Methods . 89

7.2.1 Metabolic design criteria . 90

7.2.2 Direct enumeration of reaction knockout subsets using elementary

flux modes . 90

7.2.3 Indirect enumeration of reaction knockouts from elementary modes . 93

7.2.4 Complexity analysis . 94

7.3 Results . 96

7.3.1 Results on Escherichia coli . 96

viii

7.3.2 Results on Saccharomyces cerevisiae 98

7.4 Discussion . 99

7.4.1 Parameterization of algorithms . 99

7.4.2 Comparison to related pathways-based methods 100

7.4.2.1 Minimal Metabolic Functionality 100

7.4.2.2 CASOP (Computational Approach for Strain Optimization

aiming at high Productivity) 100

7.4.2.3 Constrained Minimal Cut Sets 100

7.4.3 Comparison to optimization-based methods 101

7.5 Conclusion . 102

8 Use of optimization methods in cellular strain design and elementary

mode analysis 107

8.1 Introduction . 107

8.2 Cellular evolutionary objectives . 107

8.3 Enumerating efficient elementary modes using L1-regularized quadratic pro-

gramming . 108

8.3.1 Results . 110

8.4 Combined optimization-based and EFM-based enumeration of multiple knock-

out subsets . 111

8.5 Finding of optimal knockout subset using non-linear optimization 113

8.6 Conclusion . 113

9 Concluding Remarks 114

9.1 Summary of contributions . 114

9.2 Future research directions . 116

References 118

Appendix A. Metabolic Network Models 132

A.1 Escherichia coli . 132

A.2 Sacharomyces cerevisiae . 138

Appendix B. Pseudocode 143

B.1 Serial Nullspace Algorithm . 143

B.2 Global Arrays-based Parallel Nullspace Algorithm 145

ix

List of Tables

4.1 Imbalance rate of interleaved and sequential generation of candidates. . . . 59

4.2 Result of running serial Nullspace Algorithm on the central metabolic net-

work of E. coli . 63

4.3 Results for Combinatorial Parallel Nullspace Algorithm on Intel Xeon (Clover-

town) machine for E. coli metabolic networks. 64

4.4 Combinatorial Parallel Nullspace Algorithm on Intel Xeon (Clovertown) ma-

chine for S. cerevisiae metabolic network. 65

5.1 Parallel computation of EFMs on 78-reaction S. cerevisiae metabolic network

using Algorithm 4 on Intel Xeon machine 75

5.2 Parallel computation of EFMs on 78-reaction metabolic network of S. cere-

visiae using Algorithm 7 on Intel Xeon (Clovertown) machine with parti-

tioning across reactions {R89r, R74r} using 16 processors 76

5.3 Parallel computation of EFMs on 83-reaction metabolic network of S. cere-

visiae using Algorithm 7 on Sandy Bridge 64-core cluster with partitioning

across reactions {R102r–, R57, R65, R19r, R68} 77

6.1 Results of running Algorithm 9 on 78-, 80-, and 83- reactions metabolic

networks of S. cerevisiae . 84

6.2 Results of running Algorithm 8 on 78-, 80- reactions metabolic networks of

S. cerevisiae . 84

6.3 Usage data of the Global Arrays collective operations in the run of Algorithm

9 on the 83-reaction metabolic network of S. cerevisiae 84

6.4 Computation of EFMs on 83-reaction S. cerevisiae metabolic network using

Algorithms 9 and 7 Sandy Bridge extension 88

7.1 Elementary modes and yield values in 68-reaction E. coli central metabolism

network using different substrates ([1]) . 96

x

7.2 Results of applying Algorithm 10 for the case of low and high network flexibil-

ity (score criteria in equations (7.3) and (7.4)), Algorithm 11 and Algorithm

14 on 68-reaction E. coli metabolic network ([1]) using xylose (or arabinose),

galactose, manose and glucose substrates. The knockout subset of 30 reac-

tions of length 6 that is marked in a box turned out to be common to all four

substrate cases. 104

7.3 List of enumerated reaction knockout subsets as minimal length subsets found

across all four used substrates (xylose or arabinose, manose, galactose and

glucose) for the efficient ethanol production in 68-reaction E. coli network

([1]). The 30 subsets are extracted from the results presented in Table 7.2

in the case when Algorithm 10 (low flexibility) was applied. Lower table

illustrates minimal required biomass and ethanol yields as required for the

existence of growth-coupled and growth-uncoupled modes, number of modes

which remain after applying one of 30 knockouts, and minimum biomass and

ethanol yields in the residual network. 105

7.4 Elementary modes and yield values in S. cerevisiae central metabolism net-

work on glucose substrate . 105

7.5 Results of applying Algorithm 10 for the case of low and high network flexibil-

ity (score criteria in equations (7.3) and (7.4)), Algorithm 11 and Algorithm

14 on S. cerevisiae metabolic network using glucose substrate 106

7.6 Knockout strategies predicted by Algorithm 10, OptKnock and RobustKnock

on 95-reaction core E. colimetabolic network model ([2, 3]) for the production

of succinate and ethanol. Glucose uptake flux is fixed to be 10. 106

xi

List of Figures

4.1 Combinatorial Parallel Nullspace Algorithm run for (a) ALL-TO-ALL and (b)

MERGE-TREE communication and merge pattern as computed using “Calhoun”

parallel platform. 64

4.2 Combinatorial Parallel Nullspace Algorithm using MERGE-TREE communica-

tion pattern on E. coli and S. cerevisiae metabolic networks. Computation

was run on “Calhoun” parallel platform. 65

5.1 Simple metabolic network [4] . 70

6.1 Physical (VmRSS) and virtual memory (VmSize) mean usage per processor in

the run of Algorithm 8 and 9 on the 78-reaction S. cerevisiae metabolic network 85

6.2 Physical (VmRSS) and virtual memory (VmSize) mean usage per processor

in the run of Algorithms 8 and 9 on the 80-reaction S. cerevisiae metabolic

network . 85

6.3 Physical (VmRSS) and virtual memory (VmSize) mean usage per processor in

the run of Algorithm 9 on the 83-reaction S. cerevisiae metabolic network . 86

7.1 Simple metabolic network . 91

7.2 Plot of all vs. remaining modes after applying the knockout of reactions

PPP1, ANA2, FEM3, FEM7, TRA5, OPM4r on the E. coli network

grown on xylose (7.2(a)), manose (7.2(b)), galactose (7.2(c)) and glucose

(7.2(d)) substrate, respectively. 98

8.1 Computed elementary modes in residual networks for growth-coupled produc-

tion of ethanol (8.1(a),8.1(d)), acetate (8.1(b),8.1(e)) and lactate (8.1(c),8.1(f))

in a 44-reaction S. cerevisiae metabolic network. 110

8.2 Computed elementary modes in residual networks for growth-coupled produc-

tion of ethanol (8.2(a),8.2(d)), acetate (8.2(b),8.2(e)) and lactate (8.2(c),8.2(f))

in a 66-reaction E. coli metabolic network. 111

xii

Chapter 1

Introduction

Computational sciences hold a great hope to accelerate the pace of discovery in the life

sciences and thus lead to answering major questions and solving open problems. This

synergy of disciplines is required mostly due to the immense amount of biological data

which has constantly been generated in the past several decades. This acquisition of data

is facilitated with the use of the continually improving instrumentation. Computational

algorithms and robust software implementations are required to analyze this vast amount

of data and extract useful and meaningful knowledge. One of the major efforts is the

collection and archiving of the tissue data and the dissection of a biological cell. Events

in the biological cell can be studied through the network of its biochemical reactions and

molecules, which are localized in the cytoplasm, nuclei and organelles, and across the cellular

membranes. This network of transformations between the cellular molecules illustrates the

cellular metabolism. Such a network is formally known as a metabolic network and serves

as a tool to study the cellular metabolism. The constraint-based analysis of the metabolic

network disregards the need for the knowledge of the biochemical reaction kinetic parameters

and observes the reaction activities in the so-called quasi-steady state under the known

thermodynamic constraints. Under these approximations and constraints, the mathematical

modeling and the simulations produce results which align well with the experimentally

obtained data, hence justifying the use and adoption of the methodology described in this

thesis within systems biology. Phenotype of the cellular metabolic networks is often studied

using the concept of the metabolic pathway which is a set of reactions converting one

substrate metabolite into one or more product metabolites.

One particular class of metabolic pathways are the elementary flux modes which are

characterized with their enzymatic minimality. The use of elementary flux modes has many

applications in chemical engineering and biochemistry, however their enumeration for even

medium-size metabolic networks still presents a significant computational challenge. The

so-called Nullspace Algorithm is used to compute the elementary flux modes and is derived

1

from the Double Description Method, which is an algorithm used to enumerate the vertices

in degenerate polytopes.

This thesis proposes new and improved algorithms important for the study of the quasi-

steady state cellular metabolic networks such as (1) improvements in the serial Nullspace

Algorithm, (2) simple algorithmic procedure to compute the minimal generating set in a

metabolic network which admits reversible pathways, (3) combinatorial parallelization of

Nullspace Algorithm, (4) combined parallelization of the Nullspace Algorithm which in-

corporates existing divide-and-conquer paradigm, (5) parallelization of the Nullspace Algo-

rithm using partitioned global address space library known as the Global Arrays Toolkit,

(6) algorithms for the enumeration of efficient reaction knockout subsets used in efficient

cellular strain design and based on using elementary flux modes and (7) algorithms for the

enumeration of efficient elementary flux modes and finding of efficient reaction knockout

subsets for efficient cellular strain design using non-linear optimization methods.

• Chapter 2 briefly introduces the field of systems biology, further acquainting the reader

with the concept of metabolic network and the way it describes the cellular activities

from the aspect of the network of biochemical reactions. Metabolic network analysis

is then illustrated through the two families of methods, namely, optimization-based

and pathway-based methods. On of the major goals in outlining the two families

of methods is to show how they can be applied to infer the targets for the genetic

modification leading to the efficient design of cellular microorganism strains. Finally,

the chapter mentions the problem of integrated biological network analysis and whole-

cell modeling, giving a hint how metabolic network analysis may be merged with other

biological data to allow more accurate prediction of the cellular phenotype.

• Chapter 3 starts with the a more comprehensive description of the Nullspace Algo-

rithm which is mentioned first in Chapter 2 in the subsection of the pathway-based

methods and elaborates on its complexity and possible improvements. A portion of

the Nullspace Algorithm which in every iteration runs a collection of algebraic rank

tests is proposed with an improvement which significantly reduces its computational

cost. Lastly, a simple method to compute the minimal generating set in the metabolic

network which admits reversible pathways is proposed.

• In Chapter 4, a distributed-memory parallelization is proposed under the name Com-

binatorial Parallel Nullspace Algorithm. A pseudo-code of the parallelized algorithm,

accompanied with the computational complexity analysis and the results of the runs

on Escherichia coli and Sacharomyces cerevisiae networks is provided. The parallel

algorithm, while of insufficient memory scalability, reduced communicate overhead

using the merge-tree pattern.

2

• Chapter 5 formalizes the earlier proposed reverse divide-and-conquer idea in the com-

putation of elementary flux modes. This idea is taken to the next level where its

implementation is combined with the Combinatorial Parallel Nullspace Algorithm de-

scribed in Chapter 4 to result in the Combined Parallel Nullspace Algorithm which

attains smaller memory footprint and improved performance.

• Chapter 6 outlines the extension of the Combinatorial Parallel Nullspace Algorithm

using a partitioned global address space library, known as the Global Arrays Toolkit.

An implementation of Nullspace Algorithm using this library attains improved mem-

ory scalability which is demonstrated on different Sacharomyces cerevisiae network

models.

• Computed elementary flux modes are used in Chapter 7 to infer reaction knockout

targets leading to an efficient target chemical producing cell. Different algorithmic

variations are proposed which enumerate multiple possible solutions, accounting for

network flexibility, growth-coupled regime and minimal required yield.

• A set of algorithms used to study large metabolic networks which cannot be fit into

any of the algorithms described in preceding chapters are proposed in Chapter 8. Non-

linear optimization methods are used to infer reaction knockout targets and obtain

a residual metabolic network which may constitute an efficient target chemical pro-

ducing network. Alternatively, similar framework is applied to an idea of computing

as many efficient elementary flux modes as possible, where efficient modes are those

with high target chemical yield.

• Finally, concluding remarks with contributions and directions for future work are

given in Chapter 9.

3

Chapter 2

Background

2.1 Systems Biology

Systems biology [5] is an inter-disciplinary area which uses mathematical models to describe

the cellular behavior and phenomena, as well as the overall properties of the biological

systems in general. A wealth of experimentally obtained genomic, transcriptomic, proteomic

and metabolomic data can be used to model and simulate either the functioning of the entire

biological cell or just one of its segments. Mathematical concepts such as ordinary and

partial differential equations, network and graph theory concepts, linear algebraic tools,

machine learning algorithms and many others were exploited to study and analyze the

cellular systems.

Network representation is an intuitive and first-hand approach used to collect, store and

visualize the cellular data [6, 7]. Genetic and transcriptomic data which is acquired us-

ing experimental assays and techniques is illustrated using transcriptional gene regulatory

networks. With the discovery of the cellular proteome and individual protein functional

annotation, a concept of protein interaction networks is introduced to illustrate the rela-

tionships between the intracellular proteins. Signaling network illustrates how a cell senses

a stimuli in its environment and the way it responds to them [8]. The signals of the stimuli

fire a cascade of biochemical reactions which form a signaling pathway through the cell.

Finally, cellular biochemical reactions which illustrate various portions of the metabolism

are depicted using a metabolic network. A formal mathematical model which as accurately

as possible represents the cellular metabolic network can be used as a tool in pharmacology

and drug discovery, studies of host-pathogen relationship, and analysis of the capabilities

of the industrial microorganisms for the production of chemicals and biofuels [9, 10, 11].

4

2.2 Metabolic Networks

The phenotype of a biological cell can be studied by means of exploring cellular biochemical

reactions. Small chemical compounds, known as metabolites, can be ingested and secreted

across the cellular membrane by means of transport reactions. Within the cellular cyto-

plasm, nucleus and many organelles, the metabolites are being used in hundreds of inter-

connected reactions as either their substrates or products. Each single reaction converts one

group of substrate metabolites into another group of product metabolites. The amount of

metabolite used in a reaction either as the substrate or the product is expressed in the units

of moles. This collection of biochemical reactions and their interactions forms a metabolic

network. Metabolic networks [12, 13, 14] belong to a class of biological networks which allow

the representation of biochemical reactions and their relationships within a biological cell or

its compartments. A reaction with metabolites lying on the opposite side of a membrane of

the cell is considered as an external reaction. Otherwise, a reaction with all of its metabo-

lites exclusively lying within the cell boundaries is considered to be an internal reaction.

Metabolite is considered internal to the network if it is found inside the cell, otherwise it

is external in which case it is a substrate/product of an external reaction. Reaction with

metabolites on the opposite side of the cellular or organelle membrane is known as the

transport reaction. It is important to note that transport reactions are the superset of the

external reactions. The m× q stoichiometry matrix, Nm×q, is used to quantitatively repre-

sent the metabolic network with m internal metabolites and q reactions. The element in ith

row and jth column of N represents the amount in moles of the ith metabolite consumed

or produced by the jth reaction.

Each biochemical reaction is controlled or catalyzed by one or more enzymes and is

characterized by its speed of execution, known as a reaction flux rate. Flux rate values for

all the q reactions in the metabolic network are collected into a metabolic flux vector denoted

here as vq×1 . Metabolic network reactions may be reversible or irreversible, where the flux

of every irreversible reaction must be non-negative. Hence, an additional thermodynamic

constraint must be imposed on the elements of the metabolic flux vector corresponding to

the irreversible reactions as ri ≥ 0, where i ∈ irrev are indices of the irreversible reactions.

For the given stoichiometry network, the concentration of m metabolites and their change

in time can be described using a system of ordinary differential equations as in (2.1).

dCi

dt
=

q∑

j=1

Nijvj for i = 1 . . .m (2.1)

where Ci denotes the concentration of the ith metabolite in the network. The construc-

tion of the metabolic network was earlier done using the general literature and the existing

knowledge in biochemistry and physiology. Cellular enzymes and reactions are available in

5

several databases in the public domain such as KEGG (Kyoto Encyclopedia of Genes and

Genomes) [15, 16], EcoCyc [17], MetaCyc [18, 19] and HumanCyc [20]. More recently, full

comprehensive in silico reconstructions of the genome-scale metabolic networks [21] were

performed beginning from the sequenced and annotated cellular genome and complemented

with the afore mentioned biochemical and physiological data of the organism. One reposi-

tory of reconstructed genome-scale metabolic networks is the BiGG (Biochemical Genetic

and Genomic) knowledge base [22]. Metabolic network reconstructions[23] are available

for both prokaryotic and eukaryotic organisms such as Escherichia coli [24], Sacharomyces

cerevisiae [25, 26], Haemophilus influenzae [27], Helicobacter pylori [28, 29], Mycoplasma

genitalium [30], Staphylococcus aureus [31], Homo sapiens [32, 33] and many others. Data

exchange format adopted for the storage and representation of the metabolic networks is

SBML (Systems Biology Markup Language) [34, 35] which is a derivative of XML markup

language.

2.3 Constraint-Based Metabolic Network Analysis

In many applications and situations of interest, the time resolution and the interval be-

tween the observed events are such that it may be assumed that the concentration of the

metabolites internal to the metabolic network is constant in time [36, 37, 38]. In other

words, this implies that the for every internal metabolite, the amount being produced is

equal to the amount being consumed by the participating reactions. Accounting for this

and the previously mentioned thermodynamic constraints on irreversible reactions results

in a total of two constraints which can be imposed on the metabolic network as given in

the following definition.

Definition 1 (Two constraints in steady state metabolic network analysis). Given the

metabolic network with its stoichiometry matrix Nm×q, following two constraints are de-

fined:

1. quasi-steady state: Internal metabolites are not accumulating within the metabolic

network. In other words, the amount of metabolite being produced equals the amount

being consumed.

q∑

j=1

Nijvj = 0 for i = 1 . . .m (2.2)

2. thermodynamics: vi ≥ 0 if i ∈ irrev where irrev is a set of indices of irreversible

reactions.

6

These constraints are fundamental and used during the process of the reconstruction of

the genome-scale metabolic network. Once the network is reconstructed, the methods for

the analysis are again based on the constraints in definition 1. Hence, the two constraints

lay grounds for the so-called COnstraints Based Reconstruction and Analysis of metabolic

networks. In continuation, for convenience we will refer to it as the constraint-based analysis.

If the reconstructed metabolic network is available, there may be two possible approaches

for its analysis, namely (1) optimization-based and (2) pathway-based, as will be illustrated

in continuation.

2.3.1 Network Redundancies and Inconsistencies

Metabolic network may have redundant metabolites and reactions, whereby eliminating

them from the original network may significantly simplify the analysis and alleviate the

computational burden, as will be demonstrated in later sections. In the constraint-based

analysis of the metabolic networks, most of the known reduction methods are analogous to

the methods for the reduction of linear equality and inequality constraints which form part

of the linear program [39]. Known reduction techniques are given as [40]:

1. Metabolite conservation relations are related to the linear dependencies among

rows of the stoichiometry matrix. Considering these metabolite dependency relations

the network can be simplified by the removal of redundant metabolites. It suffices

to reduce the stoichiometry matrix N to a maximal linearly independent set of rows

using simple linear algebra.

2. Strictly detailed balanced reactions are those reactions which carry null flux in

any quasi-steady state the network is found. They can be identified by solving a simple

linear program or using the right nullspace matrix R of the stoichiometry matrix N .

3. Uniquely produced (consumed) metabolite is a metaboliteM which is produced

(consumed) by a single reaction vi0 , and respectively consumed (produced) by k other

reactions, namely vi1 . . . vik . Metabolite M and k + 1 reactions can be removed and

substituted with k new reactions.

4. Enzyme subset is defined as a subset of reactions with relative constant flux ratio

at any steady state. If the enzyme subset has k reactions vi1 . . . vik , then k − 1 of

them can be eliminated from the network, as their later recovery is possible if a flux

of the one remaining reaction is known. Reactions of enzyme subsets are computed

using the right nullspace matrix R of the stoichiometry matrix N .

To obtain the reduced stoichiometry network, one should iteratively apply the listed

techniques to the original stoichiometry network [41]. This is an adopted practice prior

7

to performing any analysis of metabolic network capabilities using one of the methods

described later in this chapter.

2.3.2 Optimization-based Analysis Methods

Besides the constraints imposed on the metabolic network which account for the quasi-

steady state and the reaction thermodynamics, evolutionary nature and goals of the bio-

logical cell may be included as well. It is particularly the case for the biological cells of

microorganisms, such as various bacteria and fungi, as well in some other cell types in

eukaryotes which strive to optimize the cellular growth, or in some cases energy produc-

tion (ATP). An adaptive evolutionary nature of the biological cell [42] is mathematically

modeled with the maximization of the cellular growth and its respective biomass reaction.

Biomass reaction is an artificial reaction appended to the metabolic network model and

it assures that all of the metabolites necessary for the cellular growth are present in an

experimentally determined proportions. It is important to mention that while the cellular

growth may be adopted as a valid optimization objective, some other cells such as neuronal

or hepatic cells in the human tissue may function to optimize its metabolic network flux

distribution dictated by some other biological goal. Hence, with an appropriately selected

cellular objective and under the given constraints the metabolic network can be analyzed

using various linear and non-linear optimization methods [43].

In principle, optimization methods can be used to analyze the metabolic network and

the cellular phenotype of either (1) wild-type or (2) mutant cell. In the later, mutant

cell is obtained using genetic modification techniques such as knock-out, knock-in or over-

expression of the genes which are responsible for the reactions in the metabolic network.

This translates into stricter equality and inequality constraints on the modified reactions

in the mutant cell. It is assumed that the mutant cell, following the genetic modifications,

is evolved throughout several generations striving to attain optimal i.e. maximal cellular

growth. In illustration of the methods to follow, it will be assumed that the metabolic

network is given with its stoichiometry matrix Nm×q, and the corresponding flux vector

with v = vq×1. In the case when wild-type cell flux vector is contrasted with the mutant

cell flux vector, the notation v(wt) and v(mut) will be used, respectively.

2.3.2.1 Flux Balance Analysis

The earliest method to explore the cellular behavior and phenotype was flux balance analysis

[44, 45, 46, 47, 48, 49]. Assuming that an evolutionary goal for the cellular metabolic network

is the optimization of growth, the linear program as given in (2.3) can be formulated.

8

max vbiomass

subject to N · v = 0

virrev ≥ 0

vsubstrate = 1

(2.3)

Additional constraint to the linear program is a fixed substrate uptake from the envi-

ronment (e.g. glucose). Flux balance analysis has somewhat limited power, unless more

data can be appended to the model in the form of constraints. For example, gene regulatory

network information was integrated with the metabolic network to result in the methods

such as rFBA (Regulatory FBA) [50, 51, 52], SR-FBA (Steady state Regulatory FBA)

[53], GIMME (Gene Inactivity Moderated by Metabolism and Expression) [31] and PROM

(Probabilistic Regulation of Metabolism) [54]. On the other side, MD-FBA (Metabolite

Dilution Flux Balance Analysis) [55] framework was proposed to allow the biomass opti-

mization, while accounting for the dilution of all the intermediate metabolites.

2.3.2.2 MOMA and ROOM

When a subset of reaction knockouts were performed in a cell, it was assumed that the

mutant cell would strive to minimize its overall flux distribution (v(mut)) deviation from

the flux distribution in the wild-type cell (v(wt)). Optimization procedure named MOMA

(Minimization Of Metabolic Adjustment) [56] can be applied to minimize the sum of squared

differences between the flux distributions in the wild-type and mutant metabolic networks.

This is shown in (2.4) in the formulation of the quadratic optimization problem with linear

constraints, where KO is a set of indices of deleted reactions.

min

q∑

i=1

(v(wt) − v(mut))2

subject to N · v(mut) = 0

v
(mut)
j = 0, j ∈ KO

(2.4)

Alternatively, ROOM (Regulatory On/Off Minimization)[57] framework minimizes the

number of significant changes of the fluxes in the mutant metabolic network with respect

to the wild type network. This heuristic is motivated by assumptions that (1) genetic

regulatory changes required by flux changes after the reactions are knocked out are mini-

mized by the cell in order to minimize the adaptation cost and (2) regulatory changes can

be described using Boolean on/off dynamics which assigns fixed cost to each regulatory

change irrespective of its magnitude. This leads to the formulation of mixed-integer linear

programming problem as in (2.5).

9

min

q∑

i=1

yi

subject to N · v(mut) = 0

vmin,i ≤ v(mut) ≤ vmax,i

v
(mut)
j = 0, j ∈ KO

v
(mut)
i − yi(vmax,i − v

(wt)
i,u) ≤ v

(wt)
i,u

v
(mut)
i − yi(vmin,i − v

(wt)
i,l) ≥ v

(wt)
i,l

yi ∈ {0, 1}

v
(wt)
i,u = v

(wt)
i + δ|v

(wt)
i | + ǫ

v
(wt)
i,l = v

(wt)
i − δ|v

(wt)
i | + ǫ

i ∈ {1..q} \KO

(2.5)

The flux vectors v(wt) and v(mut) are flux distributions of the wild-type and mutant

metabolic networks, respectively. Flux interval [v
(wt)
l ;v

(wt)
u] determines the local interval

around the wild-type point, which is used to establish if the reaction in mutant network

significantly deviates from its wild-type flux value. This local interval is determined using

user specified parameters δ and ǫ which in original proposal had the values 0.03 and 0.001

for the study of flux prediction. Deleted reactions are indexed by elements in subset KO.

Objective function, a sum of binary variables yi, minimizes the number of unconstrained

reaction fluxes which can significantly deviate from their corresponding flux values in the

wild-type metabolic network. This is the case if yi = 1 which leads to no additional

constraints on the flux v
(mut)
i . On the other side, if yi = 0 the reaction v

(mut)
i can not

significantly deviate from its respective wild-type value v
(wt)
i . One of the disadvantages of

this methods is the need to specify the parameters δ and ǫ.

2.3.2.3 Flux Variability Analysis

There may be multiple different flux distributions in the metabolic network which carry

the optimal value of the given cellular objective e.g. biomass. If a maximal biomass flux

is computed (v
(max)
biomass), it may then be appended as an equality constraint across multiple

linear programs which all aim to determine possible flux range of remaining reactions. This

procedure is known as FVA (Flux Variability Analysis) [58] and is shown in (2.6).

10

for i ∈ {1..q} :

max/min vi

subject to N · v = 0

vbiomass = vmax,biomass

vmin,j ≤ vj ≤ vmax,j j 6= i

(2.6)

2.3.2.4 OptKnock

Optimal production of the target chemical in a metabolic network of the wild-type microor-

ganism is usually not coupled to the cellular growth, which results in very low target yield

in such wild-type strains. One approach is to perform genetic modification by knocking out

or changing the expression range of one or more reactions in the metabolic network, thus

enforcing the coupling of the optimal biomass flux to the high target chemical production.

Once the cell is genetically modified, the mutant strain evolves throughout several gen-

erations, as through the natural selection it will counteract any genetic or environmental

perturbations by redirecting its metabolic flux to restore the optimal cellular growth [59]. If

the genetic modification was rationally selected, the optimal cellular growth will be accom-

panied by optimal or sub-optimal chemical production. The earliest method to attain this

goal was OptKnock [60, 61], a framework proposed in the form of a bi-level mixed-integer

linear programming problem, outlined in (2.7).

max
y

v
(mut)
chemical

subject to max
v

v
(mut)
biomass

subject to N · v(mut) = 0

v
(mut)
biomass ≥ γv

(wt)
max,biomass

vmin,j · yj ≤ vmut
j ≤ vmax,j · yj

yj ∈ {0, 1}
q∑

j=1

(1− yj) ≤ K

(2.7)

Parameter γ (usually =0.05-0.1) determines the required minimum flux which the biomass

reaction should carry as a fraction of the maximum possible value (v
(wt)
max,biomass) in the wild-

type strain. The bi-level mixed integer linear programming problem (2.7) can be trans-

formed into a one-level mixed-integer linear program and then solved using appropriate

solver. Basically, for the inner maximization problem its dual problem is derived, and using

11

the linear programming duality theory the values of objective functions of the two prob-

lems coincide in the optimal point. Hence, this results in a one-level mixed-integer linear

programming problem which maximizes the chemical reactions and contains an augmented

set of constraints. The number of reaction deletions is constrained with the parameter K,

where yj = 0 denotes the inactivated reaction.

2.3.2.5 RobustKnock

A major disadvantage of the OptKnock framework was the existence of competing pathways

with uncoupled production of the chemical with biomass. In other words, existence of path-

ways with maximal biomass, but very low or zero target chemical flux value was possible.

This problem was addressed in a modified version of OptKnock, named RobustKnock [62],

which aims to maximize the minimum chemical flux value when coupled to the maximal

biomass reaction flux.

max
y

min
v

v
(mut)
chemical

subject to max
v

v
(mut)
biomass

subject to N · v(mut) = 0

v
(mut)
biomass ≥ γv

(wt)
max,biomass

vmin,j · yj ≤ vmut
j ≤ vmax,j · yj

yj ∈ {0, 1}
q∑

j=1

(1− yj) ≤ K

(2.8)

Similarly as in OptKnock, the outer max-min problem searches for the reaction knock-

out subset of the size not larger than K, while the inner problem is the flux balance analysis

which optimizes biomass flux for the given knockout combination. A two-step transforma-

tion procedure is applied, where in the first step the problem in (2.8) is transformed into a

one-level max-min problem. Following, in the second step, the one-level max-min problem

is transformed into a standard mixed-integer linear programming problem.

2.3.2.6 OptStrain

Aside from performing reaction deletions, genetic modifications may also include addi-

tion e.g. knock-in of non-native reactions into the wild-type cell and its genome. An

optimization-based framework, OptStrain [63], identifies non-native candidate reactions for

addition from the precompiled database of elementally balanced reactions. Optimization

12

objective in this framework is to maximize target chemical yield and minimize the usage of

non-native reactions.

2.3.2.7 OptReg

To allow knockout, over-expression and under-expression of reactions in a metabolic net-

work, the OptReg [64] framework was proposed. For the reaction j in the network, its

allowed flux value range [vmin,j , vmax,j] can be easily determined. However, the determina-

tion of the interval [v
(wt)
min,j , v

(wt)
max,j] corresponding to the wild-type flux value range requires

experimental measurements which are appended as equality constraints to the min/max

linear programming formulation for each reaction. Once the intervals [vmin,j , vmax,j] and

[v
(wt)
min,j , v

(wt)
max,j] are determined, OptReg formulation can be given as in (2.9).

max
yKj ,yUj ,yDj

v
(mut)
chemical

subject to max
v

v
(mut)
biomass − ǫ ·

∑

j

v
(mut)
j

subject to N · v(mut) = 0

v
(mut)
biomass ≥ γv

(wt)
max,biomass

vmin,j · y
k
j ≤ v

(mut)
j ≤ vmax,j · y

k
j

v
(mut)
j ≤ [v

(wt)
min,j(1− C) + vmin,jC] · (1− ydj) + vmax,j · y

d
j

v
(mut)
j ≥ [v

(wt)
max,j(1− C) + vmax,jC] · (1− yuj) + vmin,j · y

u
j

(1− ykj) + (1− yuj) + (1− ydj) ≤ 1, ∀i ∈ {1 . . . q}

ykj ∈ {0, 1}; y
u
j ∈ {0, 1}; y

d
j ∈ {0, 1}

∑

j

(1− ykj) + (1− yuj) + (1− ydj) ≤ K

(2.9)

Regulation strength parameter C has values in interval [0; 1] and determines the fraction

of the range to which down-regulated and up-regulated flux belongs. The higher the value

of C more will the reaction deviate from its steady state value. Parameter K is the maximal

number of reactions which can be modified (deleted, up-regulated, down-regulated). Inner

problem which maximizes biomass flux has within its objective the second term which

assures that the selected solution has the minimal flux distribution sum among alternative

optimal solutions, where ǫ has a value determined through a trial-and-error process.

13

2.3.2.8 OptGene

Due to the combinatorial nature of the finding of the knockout subset which is inherent to

the frameworks such as OptKnock, as well as the NP-hardness of the mixed-integer linear

programming problem, alternative search algorithm based on the evolutionary programming

was proposed. Such is the OptGene [65] framework which optimizes proposed linear or non-

linear objective function. Algorithm can be illustrated as in the steps that follow:

• Step 1. initialization of population: Genetic algorithm starts off with a prede-

fined number of individuals, each individual having assigned a profile(chromosome)

of present and knocked-out reactions. An individual profile has an assigned vector

which indicates with binary values which reactions are present or absent.

• Step 2. scoring: Fitness score is computed for each individual using the flux dis-

tribution obtained when one of the frameworks such as FBA, MOMA or ROOM are

run. Value of fitness score, which can be linear or non-linear, is used to decide if an

individual will be rejected or retained for use in the next generation. Score can be

computed as a BPCY (Biomass-Product Coupled Yield) as in (2.10) thus supporting

the non-linear objective.

BPCY =
v
(mut)
chemical · v

(mut)
biomass

vsubstrate
(2.10)

where the substrate flux retains fixed value.

• Step 3. crossover of chromosomes: The highest scored individuals from the previous

step are selected for the crossover. The crossover method used can be one-point,

two-point or a uniform crossover.

• Step 4. mutation: Mutation corresponds to the deletion of a reaction. With a

specified mutation probability the individuals are propagated to the new population.

• Step 5. new population and termination: New population of individuals was created

from steps 3 and 4. Population may be subject to iterative execution of steps 2-5 until

an individual with desired phenotype characteristics is found.

2.3.2.9 Set-Based Evolutionary Algorithm and Simulated Annealing

Major disadvantage of the OptGene framework is that it requires to beforehand specify the

number of reaction knockouts. Introducing the set-based representation of a chromosome

of an individual allowed finding variable-size reaction knockout solutions. Two algorithms

which include this feature are SEA (Set-based Evolutionary Algorithm) and SA (Simulated

14

Annealing) [66], where the SEA is a successor to the OptGene. Both SEA and SA algorithms

have the Biomass Product-Coupled Yield (2.10) as the fitness score function which is used

to evaluate individuals for inclusion in the next generation.

Set-Based Evolutionary Algorithm is illustrated in the following itemized steps:

• Step 1. initialization of population: The population is initialized similarly as in

OptGene algorithm. Specify minimum and maximum reaction knockout set size.

• Step 2. scoring: Fitness score is assigned to each individual using the value of the

BPCY objective function. Objective function value is calculated after running FBA,

MOMA or ROOM algorithm, which are outlined in earlier subsections.

• Step 3. crossover of chromosomes: Crossover of chromosomes on selected individ-

uals is performed as in OptGene. In addition to using crossover and mutation on

the selected individuals, in order to allow the variable-sized sets of gene deletions to

compete between each other, two operators grow and shrink are introduced, which

with the probability of 5% each are being selected for the run.

• Step 4. mutation: Similarly as in OptGene, mutations (grow and shrink operators

here) are introduced in individuals with some given probability. For example, with

the probability 5% for the run of either grow or shrink mutation each, an individual

is mutated which allows the exploration of knockout sets of varying size. Grow and

shrink mutation operators randomly add or remove elements from the working reaction

knockout set.

• Step 5. new population and termination: New population of individuals was created

from Steps 3 and 4. Population may be subject to iterative execution of steps 2-5

until an individual with desired phenotype characteristics is found.

Simulated Annealing algorithm is based on the idea of exploring the solution space

and navigating towards the global optimum. Single individual chromosome is observed with

the variable-sized set of reaction knockouts. During exploration, if a solution is better it is

accepted, while worse solutions are accepted with some small probability in order to avoid

ending in a local optima. Mutation operators are defined as in Set-Based Evolutionary Al-

gorithm with the probability of 25% of applying grow and shrink operators each. Simulated

Annealing differs from Set-Based Evolutionary Algorithm in the use of fitness score function

which here corresponds to the system’s energy.

• Step 1. initialization: Input parameters such as initial (T0) and final (Tf) tempera-

ture, number of iterations performed at each temperature value (trial), and cooling

schedule are specified. Cooling schedule specifies how the temperature is decreased

15

from T0 to Tf . After each temperature decrease step, trial number of iterations are

performed. After specifying the input parameters, an initial individual with its chro-

mosome is specified.

• Step 2. mutation: Individual’s chromosome is mutated using grow and shrink oper-

ators as in the Set-Based Evolutionary Algorithm.

• Step 3. cooling: Decrease the current temperature Tn using the schedule Tn+1 = αTn

using prespecified parameter α. For the new temperature value perform a given

number of evaluations, while the difference between fitness values of the new and old

individual is represented as ∆E, change of system’s energy. Always accept a better

solution or a worse solution with the probability paccept = e−
∆E
T .

• Step 4. Repeat steps 2-3 until final temperature Tf is reached.

2.3.2.10 Genetic Design through Local Search

One workaround to attenuate the high cost of the bi-level mixed-integer linear programming

methods in the case of the increasing number of allowed genetic interventions was proposed

in the GDLS (Genetic Design through Local Search) [67] framework. It is assumed that the

algorithm starts with an initial reaction knockout set having not more than K elements.

At every algorithm iteration, each solution is modified M times by adding or removing

reactions as candidates for knockout, so that the new solution does not differ from the

previous by more than k deleted reactions. At the end of every iteration, top M solutions

are selected to be used in the next iteration.

• Step 1. Start with an initial q-vector y(0) with indicators of reaction knockouts,

where q is the number of reactions in the network. Let the initial solutions set be

Y (i) = {y(i)} where i = 0.

• Step 2. For every knockout vector ỹ ∈ Y (i), solve the bi-level optimization problem

(equation 2.11) with additional constraint given in (2.12) which denotes that sets ỹ

and y∗ should not differ by more than k knocked-out reactions, where y∗ denotes

the optimal solution found for this MILP program. The solution set of for the next

iteration may be initialized to Y (i+1) = {y∗}

16

max
yj

v
(mut)
chemical

subject to max
v

v
(mut)
biomass

subject to N · v(mut) = 0

v
(mut)
biomass ≥ γv

(wt)
max,biomass

(1− yj)vmin,j ≤ v
(mut)
j ≤ (1− yj)vmax,j , j ∈ {1..q}

q∑

j=1

yj ≤ K, yj ∈ {0, 1}

(2.11)

• Step 3. Now take the last appended element in Y (i+1) and use it as ỹ to solve the

MILP problem in (2.11) with both additional constraints (2.12) and (2.13). Newly

obtained optimal solution is y∗ and it can be added to the set Y (i+1). This will assure

that a new distinct solution is looked up which does not differ from the current one by

more than k knocked-out reactions. After running the MILP problem M − 1 times,

set Y (i+1) will have not more than Y (i) ·M elements. Top M solutions from Y (i+1)

should be retained for the next iteration.

∑

j:ỹj=0

yj +
∑

j:ỹj=1

(1− yj) ≤ k (2.12)

∑

j:ỹj=0

yj +
∑

j:ỹj=1

(1− yj) ≥ 1 (2.13)

• Step 4. Repeat the steps 2 and 3 until Y (i) = Y (i+1) or until maximal number of

iterations is reached.

2.3.2.11 Flux Scanning based on Enforced Objective Flux (FSEOF)

One strategy which rather than limit itself only to reaction deletions, also identifies the

reaction over-expression targets in the metabolic network, is proposed in the FSEOF (Flux

Scanning based on Enforced Objective Flux) [68]. Let v(init) be the flux vector obtained

when a simple FBA is solved as in (2.3) maximizing the biomass reaction. The value of

the flux of the target chemical reaction at this point is v
(init)
chemical, while maximum possible

chemical flux value is vmax,chemical as found solving an appropriate FBA problem. The

reaction amplification targets are being selected as those reactions which increase their flux

value vi without changing their direction during at least one iteration period, as the vchemical

value goes from vinitchemical to vmax
chemical in uniformly increasing steps.

17

2.3.2.12 OptORF

Up until this point and for the sake of simplicity, all of the earlier outlined methods ab-

stracted the transcriptional gene regulatory network and assumed that deletion, over- and

under- expression are applied on reactions, rather than on underlying genes. However, if the

gene regulatory network information is known and analyzed together with the metabolic net-

work, one may be able to pinpoint which genes in the genome should be modified to influence

the enzyme proteins which control the rate of reactions. OptORF is a bi-level optimization

framework [69] which extends OptKnock to incorporate the GER (gene-enzyme-reaction)

associations. Let GER be a three-dimensional array where a triplet (dj , bn, yg) consists of

binary variables representing the reaction (dj), enzyme (bn) and gene (yg). These binary

variables denote if gene g is expressed, so that the enzyme n is active inducing a non-zero

flux in the reaction j. Denote with JGER a set of indices j of reactions which appear as

triplets in GER, N(j) be a set of indices n of enzymes which are associated with reaction

j in GER, and G(n) be a set of indices of genes g which are associated with the enzyme n

in GER.

While accounting for GER associations, one may step in further to look at the metabolic

and transcription factor genes with respective sets GMET and GTF . Metabolic genes are

directly responsible for the GER associations, while the transcription factor genes influence

the gene expression of the metabolic genes. Further, let there be conditions and effectors

(activators and repressors) which influence the expression of both metabolic and transcrip-

tion factor genes. A condition for the expression of the gene m, here indicated using the

binary variable am, can be influenced by activator or repressor r, denoted here using the

binary variable xr. Sets of activators and repressors which may influence condition m for

the expression of one or more genes are denoted as RAct(m) and RRep(m), respectively.

Binary variables zg and wg denote if the gene g was deleted or over-expressed, allowing not

more than K1 deletions and K2 over-expressions in the cell. A single gene can not be both

deleted and over-expressed at the same time. OptORF framework is outlined in (2.14).

18

max v
(mut)
chemical − α

∑

g

zg − β
∑

g

wg

subject to dj ≥ bn ∀j ∈ JGER, n ∈ N(j)

dj ≤
∑

n∈N(j)

bn, ∀j ∈ JGER

yg ≥ am, ∀g ∈ GMET ∪GTF

yg ≤
∑

m∈M(g)

am, ∀g ∈ GMET ∪GTF

(1− am) ≤
∑

r∈RAct(m)

(1− xr) +
∑

r∈RRep(m)

xr, ∀m ∈M

am ≤ xr, ∀m ∈M, r ∈ RAct(m)

am ≤ (1− xr), ∀m ∈M, r ∈ RRep(m)

zg − wg = yg − y′g, ∀g ∈ GMET

zg = yg − y′, ∀g ∈ GTF

zg + wg ≤ 1, ∀g ∈ GMET

∑

g

zg ≤ K1 and
∑

g

wg ≤ K2

(bn − 1) ≥
∑

g∈G(n)

(y′g − 1), ∀n ∈ N

bn ≤ y′g, ∀m ∈M, g ∈ G(n)

xg = y′g, ∀g ∈ GTF

max v
(mut)
biomass

subject to N · v(mut) = 0

vmin,j ≤ v
(mut)
j ≤ vmax,j

v
(mut)
j = 0, if dj = 0, ∀j ∈ JGER

dj , bn, wg, zg, yg, y
′
g, am, xr ∈ {0, 1}

(2.14)

OptORF framework was applied on the integrated metabolic [70] and regulatory [71]

networks of the Escherichia coli.

2.3.2.13 OptForce

OptForce [72] is a framework which identifies reaction deletions, over- and under- expressions

in the given metabolic network (wild-type network) to obtain the mutant metabolic network

(over-producing network) which produces the target chemical metabolite with the specified

minimal amount. As this framework aims to allow not just reaction deletions, but also

19

over- and under- expressions it requires that experimental flux measurements are available

for some of the network reactions which determine the wild-type reaction flux distribution.

Main idea is to determine minimal set of reaction shifts within their flux range either in

decreasing or increasing direction, so that the flux distribution of the over-producing network

is attained. For example, if the flux range of reaction j in wild-type and over-producing

network do not overlap, a shift will be required. Sets MUSTU , MUSTL and MUSTX

contain indices of reactions which require respective interventions of over-expression, under-

expression or deletion. Due to intensive coupling among reactions, modification of flux in

one reaction may induce a change of flux in a set of other reactions. Hence, an idea of

observing pairwise sums and differences across reactions in the network lead to the formation

of MUSTUL, MUSTUU and MUSTLL sets. For example, MUSTUL contains a pair of

reactions (vi, vj) which requires either the over-expression of vi or the under-expression of

vj . Once the sets MUSTU , MUSTL, MUSTX , MUSTUL, MUSTUU and MUSTLL are

determined, the next step is to enumerate FORCE sets where a single such set contains

minimal number of reactions selected across MUST sets which meet the over-production

goal. It is possible to identify a subset of reactions in FORCE sets which will when

modified induce modifications in the remaining reactions as well. Following steps illustrate

the OptForce framework.

• Step 1. Identifying flux range of reactions for the wild-type strain. Solving 2q linear

problems given in (2.15), a range of reaction fluxes in the wild-type network can be

determined. It is assumed that it was possible to obtain experimental flux range for

the subset of reactions indexed by elements of the subset in E.

for i ∈ {1..q} :

max/min vi

subject to N · v = 0,

vbiomass ≥ γvmax,biomass

vmin,j ≤ vj ≤ vmax,j ∀j ∈ {1 . . . q} \ biomass

v
(exp)
min,j ≤ vj ≤ v

(exp)
max,j ∀j ∈ E

(2.15)

The range of fluxes obtained solving this collection of linear programs corresponds to

the wild-type strain and is used in the following step.

• Step 2. identifying flux range of reactions for the over-producing (mutant) strain..

Similarly as in previous step, 2q linear problems in (2.16) are solved to determine flux

ranges in the over-producing network for the fixed lower bound of the target chemical.

20

for i ∈ {1..q} :

max/min vi

subject to N · v = 0

vbiomass ≥ γv
(max)
biomass

vchem ≥ v
(target)
chem

vmin,j ≤ vj ≤ vmax,j ∀j ∈ {1 . . . q}

(2.16)

• Step 3. Identifying MUSTU , MUSTL and MUSTX sets of reactions. Determine

sets of reactions which have to be respectively over-expressed, under-expressed or

deleted to get closer to the flux distribution of the over-producing network.

• Step 4. Eliminate reactions in MUSTU , MUSTL and MUSTX from consideration

in higher order MUST sets. Reactions to be considered for higher order MUST sets

will exclude the reactions in the first-order sets.

• Step 5. Identifying MUSTUU , MUSTUL and MUSTLL sets of reactions. Three

distinct bi-level mixed-integer linear programming problems are proposed for each of

the three second-order MUST sets.

• Step 6. identifying the FORCE set of engineering interventions. Using appropriate

bi-level mixed-integer linear programming problem which minimizes the total number

of reaction interventions while minimizing the chemical production, under the earlier

constraint that chemical production is already pushed to the desired flux range, the

FORCE set is enumerated.

Finally, OptForce framework uses integer cut enumeration methods earlier exploited

in the multiple-gene lethality analysis [73] to enumerate multiple combinations of reaction

interventions.

2.3.2.14 SimOptStrain and BiMOMA

The proposal of the original OptStrain (subsection 2.3.2.6) framework required a prior

identification of the non-native pathway and reactions which over-produce the target chem-

ical of interest as candidates for the knock-in into the metabolic network, followed by the

optimization of the target chemical and biomass reactions in a bi-level mixed-integer lin-

ear programming problem analogous to OptKnock. This decoupling was resolved in the

SimOptStrain framework [74] where a simultaneous search for both non-native reactions

for knock-in and the native reactions for knock-out is performed. Again, as in OptStrain

21

a universal database of reactions is compiled from KEGG and MetaCyc data repositories

and is used for the selection of knock-in candidate reactions.

max
yi,zl

vchemical − α

q∑

i=1

(1− yi)− β
s∑

l=q

zl

subject to max
v

vbiomass

subject to N · v + T · w = 0

vj = 0, if yj = 0

q∑

i=1

(1− yi) ≤ K and
s∑

l=1

zl ≤ K ′

(2.17)

SimOptStrain framework is illustrated in (2.17), where binary variables yi and zl denote if

the reaction i is knocked out (yi = 0) or if non-native reaction l is added to the network

(zl = 1), respectively. Values K and K ′ denote the maximal allowed number of knock-out

and knock-in reactions in the metabolic network, while s denotes the size of the knock-in

candidate database.

One more framework was resurrected and incorporated into the bi-level mixed-integer

linear programming problem. Aimed for the reaction flux prediction in the non-evolved mu-

tant strain, MOMA was incorporated into the framework named BiMOMA [74]. BiMOMA

sets as an outer problem the optimization of the target chemical reaction, while optimizing

the inner quadratic programming problem as shown in (2.18).

max
yi

v
(mut)
chemical − α

∑

i

(1− yi)

subject to min

q∑

i=1

(v(wt) − v(mut))2

subject to N · v(mut) = 0

v
(mut)
j = 0, if yj = 0

q∑

i=1

(1− yi) ≤ K

(2.18)

An almost identical framework MOMAKnock [75] was proposed which converts the

bi-level mixed-integer quadratic programming problem into a single-level problem using

adaptive piecewise linearization strategy.

22

2.3.3 Pathway-based Analysis Methods

If one considers only the two constraints given in the definition 1, without the specifying the

cellular objective the optimization-based methods yield place to the so-called pathway-based

analysis. Pathway-based methods are capable of characterizing the entire solution space of

the possible metabolic network states without imposing the cellular objective bias. Contrary

to this, optimization based methods are guided by the cellular objective, and capable of

exploring only a portion of the entire solution space. Metabolic pathway solution space

can be confined using an algorithm for the enumeration of extreme rays in the bounded

polyhedron where the bounded polyhedron corresponds to the degenarate polytope as will

be illustrated in more details in the upcoming subsection.

2.3.3.1 Extreme Ray Enumeration and Double Description Method

The theory used to enumerate the extreme rays in the bounded polyhedral cone can be

applied to find all the metabolic network states. First, a double description pair as a funda-

mental building block for the Double Description Method will be defined. The stoichiometry

problem will then be mapped to the Double Description Method in order to demonstrate

the equivalence between the geometric concept of extreme rays and the metabolic pathways.

Definition 2 (Double Description Pair [76]). Given a d×q matrix A with full column rank

q, and a q × n matrix R, A and R form a Double Description Pair (DD pair) if and only if

{r : Ar ≥ 0} = {r : r = Rλ,λ ≥ 0} (2.19)

The DD pair is called minimal if there is no other R̃ forming a DD pair with A having fewer

than n columns.

Here, the columns of R form a set of generators for all the r that satisfy Ar ≥ 0, where

all such r are to be expressed as convex combinations of the columns of R.

Definition 3 (Admissible Ray of a Polyhedral Cone [76]). For a polyhedral cone given by

a matrix Ad×q the q × 1 vector r such that Ar ≥ 0 is called an “admissible ray”.

Definition 4 (Support Set of Admissible Ray). Elements of admissible ray r vector with

non-zero values are known as “support set”.

A subset of admissible rays which coincide with the edges of an infinite polyhedral cone

in IRq forms “extreme rays” as given in Definition 5.

Definition 5 (Extreme Ray of a Polyhedral Cone [76]). Let a polyhedral cone be given by

a matrix Ad×q with full column rank q. An admissible ray given as vector rq×1 is called

an “extreme ray” if it cannot be represented as a linear combination of other admissible

rays.

23

Following from the previous definition, given that generating matrix R is minimal, the

columns of R coincide with the extreme rays, because these are exactly the rays that cannot

be expressed as a convex combination of any other admissible rays. As a result, the R

forming a DD pair with A is unique up to ordering and scaling of the columns.

If A has rank less than q, then one can still define a minimal DD pair, but in this case,

not all of the columns of R are extreme rays and the minimal R is no longer unique. In this

case, there exists at least one ray r such that −r is also a valid ray within the cone, namely

any nonzero vector in the right nullspace of A. This corresponds to a non-pointed cone.

Theorem 1 (Extreme Ray Theorem [76]). Let Ad×q be a q-rank matrix. A q-vector r is

an extreme ray for A if and only if the rank of AZ(Ar),∗ is q − 1, where Z(Ar) is the set

of indices of the zero entries in the vector Ar, or equivalently, the nullity of AZ(Ar),∗ is 1

[the nullity is the dimension of the right nullspace]. Here, the notation AZ(v),∗ means the

matrix resulting from selecting the rows corresponding to the indices Z(v). Hence the set of

extreme rays are uniquely defined up to scale factors.

Standard Stoichiometry Problem as a Double Description Pair. The rank test

for the property of a vector being an extreme pathway depends on the close connection

between the stoichiometry problem equation (2.2) and the double description pair (Def. 2),

which is sketched here. Given an m× q stoichiometry matrix N , let

A =

N

−N

E

 (2.20)

where E = I1,...,qi,∗ consists of the first qi rows of a q × q identity matrix, corresponding

to the irreversible reactions (ρ1, . . . , ρqi), where qi is the number of irreversible reactions.

Then the stoichiometry problem is equivalent to finding a matrix R with minimal number

of columns such that

{r : Ar ≥ 0}= {r : Nr = 0, r1,...,qi ≥ 0}

= {r : r = Rλ,λ ≥ 0}.
(2.21)

In the case that A has full column rank q, R should consist of all the possible extreme

rays with respect to matrix A. In the case that all reactions are irreversible, then the set

of extreme rays corresponds to the metabolic pathways in the stoichiometric network and

is also known as the elementary flux modes as will be illustrated later.

However, if some of the reactions are reversible then the system is expanded into higher

dimensionality by splitting reversible reactions into two irreversible reactions each. In this

case the matrix E is a full identity matrix, and such expanded system can be run through

24

the Double Description Method to compute the set of extreme rays of the polyhedral cone.

The obtained extreme rays are mapped back to the original dimensionality and there they

correspond to the so-called elementary flux modes of the stoichiometric problem which will

be studied in continuation. It is important to note that in this case, in the presence of

one or more reversible reactions, the rays obtained in the elementary flux modes are not all

extreme with respect to the original polyhedral cone, and a subset of them forms minimal

generating rays i.e. extreme rays. The extreme rays in the polyhedral cone is known as

the minimal generating set in the domain of the stoichiometric problem. In section 3.4 we

will illustrate that in the event when there are as many reversible reactions to allow the

existence of the non-pointed polyhedral cone the set of extreme rays is not unique and hence

the same stands for the minimal generating set.

General Double Description Method. The algorithm to compute an R forming a

Double Description pair [DD pair] (2.19), starting with the matrix A, proceeds in a recursive

manner. Let Ak denote the matrix consisting of the first k rows of A, where the ordering of

the rows is arbitrary. Suppose Ak, Rk form a DD pair. The recursive process then proceeds

to construct a DD pair Ak+1, Rk+1, where Ak+1 is formed by appending the (k + 1)st row

of A to Ak, and Rk+1 is formed by taking all possible valid non-negative combinations of

columns of Rk. The heart of the recursive algorithm consists of specifying the details of how

Rk+1 is constructed from Rk, proving that the result indeed forms a DD pair with Ak+1,

and finding a proper way to initialize the algorithm.

Lemma 1 (DD Lemma [76]). Let Ak denote the matrix consisting of the first k rows of the

d× q matrix A. Any extreme vector with respect to Ak+1 is a non-negative combination of

at most two extreme vectors with respect to Ak.

Naive DD Algorithm. Suppose we have an initial DD pair (Ak0 , Rk0), for some

initial value of k0, the DD Lemma gives a way to compute a DD pair for the entire matrix

A.

For k = k0, . . . , d−1,

1. Form Ak+1 appending the (k+1)st row of A to Ak.

2. For every pair of columns r1, r2 of Rk (extreme vectors wrt Ak), form a non-negative

combination s = α1r1 + α2r2 such that [A · s]k+1 = 0. This is possible exactly when

[A · r1]k+1 and [A · r2]k+1 are both nonzero and have opposite signs (see remark at the

end of the proof of the DD Lemma).

3. Check that s is extreme wrt Ak+1, either by checking that rank(Ak+1, Z(s)) = q− 1, or

by checking that the set of indices Z(s) (set of indices of the zero entries in Ak+1 · s)

is not a subset of the corresponding set of zero indices for any existing column of Rk.

Discard any vectors s failing this test.

25

4. Every column r of Rk such that Ak+1r ≥ 0 is already an extreme vector wrt Ak+1.

So collect all columns r satisfying this condition, together with all vectors s found to

be extreme wrt Ak+1 in the previous step, to form Rk+1. The resulting Rk+1 forms

a DD pair with Ak+1. (Actually, if any q rows of A are linearly independent, then

Ak+1r = 0 cannot occur.)

At the end of this iteration, Rd will form a DD pair wrt A. It remains to figure out how

to initialize the iteration. In the special case of (2.20), it is easy to construct an initial DD

pair in two possible ways.

1. In the case that E block of (2.20) is a complete q×q identity matrix (i.e., all reactions

are irreversible), then we can select the rows corresponding to the E in (2.20) by using

the R = Iq×q. The initial DD pair is (E, Iq×q), and the recursive steps are used to

enforce the remaining conditions Nr ≥ 0, −Nr ≥ 0. During the recursive algorithm,

we add each row of N and the same row from −N together to enforce the condition

Nr = 0 directly. The resulting algorithm is the Canonical Basis Algorithm [77].

2. We can let the initial R be a basis for the nullspace of N , such that the first q−m rows

of R form an identity matrix. This is equivalent to setting the initial Ak0 to consist

of all of the N and −N parts of (2.20) plus the first q −m rows of the E part. The

recursive steps are used to enforce the non-negativity conditions wrt the remaining

rows of E. This initialization works even when E is not a complete identity matrix,

as long as E contains at least q −m rows from the complete identity matrix, and the

initial rank condition is still satisfied:

rank(Ak0) = rank

N

−N

Iq−m×q−m, 0

 = rank

N1 N2

−N1 −N2

Iq−m×q−m 0

 = q.

This is equivalent to the condition that the m×m submatrix N2 is non-singular. The

reactions (columns of N) may need to be permuted to meet this conditions. In terms

of the stoichiometry, this works even if there are some reversible reactions, as long as

there are at most m reversible reactions, and one can find m reactions, which must

include all the reversible reactions, such that the stoichiometry wrt those reactions is

“linearly independent.” This leads to the Nullspace Algorithm [78, 79].

As we transition between the convex analysis and the stoichiometry domain, the two

cones are distinguished as a polyhedral cone and a flux cone, respectively [80].

2.3.3.2 Nullspace Algorithm

Nullspace Algorithm [78, 40, 79] was proposed as an improvement over the less efficient

Canonical Basis Algorithm [77], both being derived from the Double Description method

26

as illustrated previously. Since the algorithm corresponds to the enumeration of vertices

in the bounded polyhedron its computational complexity [81, 82] still remains an open

problem. Regardless of the lack of proof of complexity, there were earlier efforts to estimate

the number of elementary flux modes [83] and extreme pathways [84]. In addition, related

problems to the one of computing all elementary modes were studied and establish to be

NP-hard, such as the one of enumerating elementary flux modes for which two or more

specified reactions have non-zero flux.

2.3.3.3 Minimal Generating Set

In the stoichiometry network analysis, the reversibility of reaction decides if the polyhedral

cone corresponding to the metabolic network is pointed or not. In the case of pointed

polyhedral cone, the extreme rays of the cone are known as the minimal generating set.

However, if the polyhedral cone is not pointed, the extreme rays and minimal generating set

do not coincide, and the vectors of the minimal generating set are not linearly independent.

The determination of minimal generating set for the case when the flux cone is not pointed

and admits reversible pathways is outlined in the section 3.4.

2.3.3.4 Extreme Pathways

If in the metabolic network, the internal reversible reactions are decomposed into pairs of

opposite irreversible reactions, the corresponding flux cone is augmented and the run of the

algorithm for the enumeration of extreme rays produces minimal generating set which in the

augmented space is known as extreme pathways[85]. Extreme pathways in the original flux

cone are not conically independent, unless there were no internal reversible reactions. The

augmented cone obtained from the original cone is known as EP cone (extreme pathways

cone). Extreme pathways were used in the analysis of the metabolic capabilities of the red

blood cell metabolism [86], Haemophilus influenzae and Helicobacter pylori [87, 88].

2.3.3.5 Elementary Flux Modes

Finally, elementary flux modes are computed when the original flux cone is converted into

an EM cone whereby all reversible reactions are split into pairs of opposite irreversible

reactions. The run of the Double Description Method in the EM flux cone will produce the

minimal generating set which coincides with the set of pathways known as elementary flux

modes in the original flux cone. In the original flux cone, elementary flux modes will be a

superset of extreme pathways, them being a superset of the minimal generating set. Set of

elementary flux modes is a complete set of pathways which satisfy the properties defined in

Def. 6.

27

Definition 6 (Elementary modes and minimal generating set). Let the Nm×q stoichiometry

matrix be representing m internal metabolites and q reactions connecting these metabolites.

A metabolic flux vector is a vector rqx1 of reaction rates. The vector r is said to be admissible

if it satisfies the quasi-steady state and thermodynamics constraints as given in definition 1

An admissible metabolic flux vector is said to be an elementary mode, elementary flux mode,

or elementary pathway if it in addition satisfy the condition of the genetic independence

[89, 90, 77, 91]:

1. genetic independence: there is no other admissible vector r′ (r′ 6= r and r′ 6= 0) such

that the set of indices of the non-zero elements in r′ is a strictly proper subset of set

of indices of the non-zero elements in r.

A minimal generating set is a subset of elementary flux modes which satisfies the fol-

lowing:

2. generating property: minimal generating set is a minimal subset of elementary flux

modes which generates the polyhedral cone. In other words, any admissible path can

be written as a convex combination of vectors in the minimal generating set. In the

special case when the network admits a reversible pathway, the decomposition into

minimal generating vectors may have negative coefficients thus implying the linear

combination (Section 3.4).

2.3.3.6 Minimal Cut Sets

Using the elementary flux modes, a dual concept of the minimal cut set is given in Definition

7.

Definition 7 (Minimal Cut Set [92]). Let ObjReac be the target objective reaction in a

metabolic network. A subset of reactions is a minimal cut set if after its removal from the

network there is no feasible flux distribution involving the reaction ObjReac

Minimal cut sets can be used to study the network flexibility and enumerate possible

reaction knock-outs for the purpose of efficient strain design. The concept itself was later

generalized [93] whereby a deletion task was defined through the set of elementary modes

which should be collapsed. In addition, the minimal cut set in the metabolic networks

corresponds to the concept of the minimal hitting set from graph theory. The algorithm

for the computation of the minimal cut sets from the elementary flux modes is equivalent

to the problem of hypergraph transversal Direct computation of minimal cut sets [94].

Alternatively, recently an approach was proposed where minimal cut sets are equivalent to

the elementary flux modes computed for the network which is dual to the original metabolic

network [95].

28

2.3.3.7 Elementary Flux Patterns

A less restrictive concept than the one of genetic independence in the elementary flux

modes was introduced in the elementary flux patterns (EFP)[96]. Elementary flux patterns

are defined for the subsystem of k reactions, with the respective columns being put to the

front of the stoichiometry matrix Nm×q, to facilitate the understanding of the concept. For

a set S of all elementary flux patterns, a set of indices s represents an elementary flux

pattern if a following condition is satisfied:

∄ si1 , . . . , sit :
⋃

1≤k≤t

sik = s, where i1, . . . , it ∈ {1, . . . , |S|} (2.22)

For the case when the considered subnetwork coincides with the entire network (k = n)

the elementary flux patterns correspond to the elementary flux modes, otherwise an elemen-

tary flux pattern can be contained in multiple elementary flux modes. The computation of

EFPs is accomplished by iteratively solving a mixed-integer linear program each returning

a distinct elementary flux pattern. In every iteration, an additional constraint is added to

assure that a previously unseen elementary flux pattern will be returned.

2.3.3.8 CEF (Control Effective Fluxes)

A measure of the individual reaction importance in the metabolic network, which accounts

for the network flexibility, can be derived using elementary flux modes. Control effective

flux CEFl(Sk) [97, 98] is calculated for every reaction l = 1 . . . q in the metabolic network

for the specified substrate Sk, and product reactions (e.g. biomass and target chemical).

First, efficiency for every elementary mode ei with respect to the specified substrate and

product reactions is given in equations in (2.23).

ǫi(Sk, BIO) =
eBIO
i∑q
l=1 |e

l
i|

ǫi(Sk, CHEM) =
eCHEM
i∑q
l=1 |e

l
i|

(2.23)

In the above expressions eli is used to denote the lth reaction flux value in the ith

elementary mode. Further, efficiency can be used to compute the control effective flux for

the reaction l as in equation (2.24).

CEFl(Sk) =
1

Y max
BIO/Sk

·

∑
i ǫi(Sk, BIO)|eli|∑
i ǫi(Sk, BIO)

+
1

Y max
CHEM/Sk

·

∑
i ǫi(Sk, CHEM)|eli|∑
i ǫi(Sk, CHEM)

(2.24)

29

Here Y max
BIO/Sk

and Y max
CHEM/Sk

are optimal yields for the biomass and target chemical

reactions, where the yield for the reaction l with respect to the substrate for the ith elemen-

tary mode is computed as Yi,l/Sk
=

eli

e
Sk
i

, (l = {BIO,CHEM}). To assess the validity of the

control effective flux metrics, the transcript ratio θl(S1, S2) = CEFl(S1)
CEFl(S2)

was computed for

the reaction l for the case of cellular growth on two different substrates S1 and S2. The in

silico obtained ratios were compared to the results of microarray analysis, as it was assumed

that the control effective flux will correlate with the level of mRNA for the given reaction

[98].

2.3.3.9 mCEF (Modified algorithm of Control Effective Fluxes)

In [99] control effective fluxes are utilized to compute the reaction of transcripts in wild-type

and mutant metabolic networks, in the event when reactions can be deleted, under- or over-

expressed.

ǫ
(mut)
i (Sk, BIO) =

eBIO
i · EAi∑q
l=1 |e

l
i| · ηl

ǫ
(mut)
i (Sk, CHEM) =

eCHEM
i · EAi∑q

l=1 |e
l
i| · ηl

(2.25)

where ηl = EAPl if l
th reaction is modified, otherwise if there was no change ηl = 1.

Here EAPl is the enzyme activity parameter which denotes the relative gene expression

responsible for the lth reaction of a mutant to wild-type. The term in the nominator

EAi =
∏q

j=1 gej,i where gej,i = EAPj if j-th reaction is involved in i-th EM, otherwise

gej,i = 1. Using the expression for the efficiency of elementary modes for both wild-type

and mutant networks in (2.23) and (2.25) control effective fluxes can be derived and used

to compute the transcript ratio.

mCEFl(mut) = 1
Y max
BIO/Sk

·
∑

i ǫ
(mut)
i (Sk,BIO)|eli|·ηl

∑

i ǫ
(mut)
i (Sk,BIO)

+ 1
Y max
CHEM/Sk

·
∑

i ǫ
(mut)
i (Sk,CHEM)|eli|·ηl

∑

i ǫ
(mut)
i (Sk,CHEM)

(2.26)

mCEFl(wt) = 1
Y max
BIO/Sk

·
∑

i ǫ
(wt)
i (Sk,BIO)|eli|

∑

i ǫ
(wt)
i (Sk,BIO)

+ 1
Y max
CHEM/Sk

·
∑

i ǫ
(wt)
i (Sk,CHEM)|eli|

∑

i ǫ
(wt)
i (Sk,CHEM)

(2.27)

Using the expressions for the control effective flux of the ith reaction for the wild-type

and mutant networks, the transcript ratio of the two can be computed as in (2.28).

Θi(wt,mut) =
mCEFi(mut)

mCEFi(wt)
(2.28)

30

The transcript ratio corresponds to the ratio in enzyme activity in mutant to wild-type

networks, which is exploited in the problem of estimating the flux distribution in mutant

networks when some of the reactions are deleted, over- or under- expressed, as will be shown

in the continuation.

2.3.3.10 Estimation of the Flux Distribution

Once elementary flux modes are computed, they can be used to estimate the most likely

overall reaction flux distribution. Having in mind that the overall reaction flux distribution

vector can be represented as a linear combination of the elementary flux modes, one may

obtain the weights of each elementary mode in this decomposition [100].

1. Alpha-spectrum[101] was an early effort to estimate the participation of different path-

ways in the given metabolic flux vector. For the given matrix of extreme pathways

EP and the metabolic flux vector v, the goal is to find the vector of α-weights, so

that v = α · EP . One may estimate the range of values for each αi element of the

vector, by means of solving the min /max problem as in (2.29).

min/max αi

subject to α · EP = v

0 ≤ αi ≤ 1

(2.29)

The constraining of values of α-weights can be further done by imposing the require-

ment for the minimal number of active extreme pathways in the metabolic flux vector.

It is important to mention that the concept of weight estimation can be analogously

applied to the minimal generating set or elementary flux modes.

2. Using a different paradigm, a quadratic program was proposed with an objective

function which minimizes the square of the elementary mode weights, represented by

vector w, in the overall flux distribution vector[102, 103, 104].

min

|E|∑

j=1

w2
j

subject to

|E|∑

j=1

wj · e
(j) = v

wj ≥ 0, if e(j) elementary mode is irreversible

(2.30)

3. An approach based on the maximization of the Shannon’s entropy [105, 106] was

proposed along the fractions of each elementary mode’s contribution in the uptake

flux of the given metabolic flux vector v and is illustrated in (2.31).

31

min

|E|∑

j=1

sj ln sj

subject to

|E|∑

j=1

wj · e
(j) = v

wj > 0, if e(j) mode is irreversible

sj =
wj · e

(j)
substrate

vsubstrate

(2.31)

In addition, it was earlier demonstrated that the weights are inversely correlated

with the entropy of the overall reaction corresponding to the elementary flux modes,

thereby favoring pathways with low entropy generation [107].

4. (ECF) Enzyme Control Flux [108] is used to predict the flux distribution in a mutant

network obtained after deletion, over- and under- expression of the specified reactions.

It relies on the use of enzyme activity profile and the power-law which uses the change

of enzyme activity to estimate the weights w in the elementary flux mode represen-

tation of the overall flux distribution in the mutant network. Given the coefficients

w(wt), the respective coefficients of the mutant flux distribution are found as in (2.32):

w
(mut)
j = γ · w

(wt)
j

q∏

i=1

aij (2.32)

The parameter aij is the relative enzyme activity of a mutant to wild-type for the ith

reaction in the jth elementary mode. If the ith reaction is involved in jth elementary

mode, then aij = ai, otherwise aij = 1, where ai is the enzyme activity ratio of the

mutant to wild-type for the ith reaction. Normalization factor for w(mut) is given by

γ.

If mCEF is used to compute the relative enzyme activity of a mutant to wild type for

the ith reaction [99] then the expression for w
(mut)
j may be written as:

w
(mut)
j = γ · w

(wt)
j

q∏

i=1

θi(wt,mut) (2.33)

The flux distribution in the mutant network, where E denotes the matrix of elementary

flux modes, is given in (2.34).

v(mut) = w(wt) · E (2.34)

32

5. One method to provide a valid decomposition of a given metabolic flux vector v into

as few elementary modes as possible, without having to compute the complete set of

elementary modes was proposed in [109]. A series of mixed-integer linear programs is

solved iteratively in a finite number of steps K. Algorithm starts for k = 1 by solving

the problem given in (2.35) for the given flux vector v(k) = v.

min

q∑

j=1

zj

subject to N · e = 0

ejk = sgn(v
(k)
jk

)

−Mzj ≤ ej ≤Mzj , j = 1, . . . , q

ej = 0, j ∈ {j|vj = 0}

ej ≤ 0, j ∈ {j|vj < 0}

ej ≥ 0, j ∈ {j|vj > 0}

zj ∈ {0, 1}, j = 1, . . . , q

(2.35)

where M is a large constant positive number. Once the mode e∗ is found as an

optimal solution, we set ek = e∗ and compute the weight wk, to update the flux

vector as v(k+1) = v(k) − wke
(k). If the vector v(k+1) is zero then the algorithm is

complete and the decomposition is found.

2.3.3.11 Network Robustness and Pathway Redundancy

Elementary flux modes and extreme pathways were used to study the network flexibility and

pathway redundancy [87]. One measure of the network flexibility [110] as a function of the

number of knockouts d in the metabolic network having q reactions is given in expression

(2.36).

R(d) =

(qd)∑

i=1

z(i)(
q
d

)
z

(2.36)

In the above expression z is the total number of elementary flux modes, while z(i)

denotes the number of remaining elementary flux modes after deleting d reactions for the

ith deletion combination out of all possible
(
q
d

)
choices. General network flexibility can be

averaged across all values of the metric R(d) for all possible values of d.

33

2.3.3.12 Minimal Metabolic Functionality

Minimal Metabolic Functionality [111, 1] was proposed as a metabolic network design con-

cept where the goal is to retain as few high-yielding target chemical elementary modes which

are growth-coupled by means of using as few reaction knockouts as possible. In Escherichia

coli this concept was used manually to find a reaction knockout subset for the optimization

of the production of ethanol using hexose and pentose [1], and glycerol substrates [112].

2.3.3.13 Flux Design

Flux Design [113] examines as possible over-expression or under-expression/deletion targets

those reactions which positively or negatively correlate with the chosen objective reaction,

respectively.

2.3.3.14 CASOP (Computational Approach for Strain Optimization aiming at

high Productivity)

CASOP [114, 115] is a framework based on using elementary flux modes to compute the

importance measures for reactions in the metabolic network. Importance measure of a

reaction accounts for both network flexibility and target metabolite yield, and is used to

derive reaction ratings which indicate if the observed reaction is a candidate for a knockout

or over-expression. The high network flexibility assures a metabolic network robustness

and is reflected in the number of the preserved elementary modes as alternative routes to

convert the substrate to the target metabolite.

2.3.3.15 Weighting of elementary modes using thermodynamics

An approach [116] which combines elementary flux modes, pathways thermodynamics and

genetic algorithms to elucidate a favorable reaction knockout subset for the target chemical

production coupled with growth was proposed. Thermodynamics plays a role where the

elementary flux modes with more negative Gibbs free energy are more likely to have higher

weight in the overall flux distribution. Iteratively, the population evolves using crossover

and mutation operations and for each individual a fitness function is used to evaluate the

quality of solution and if it will be retained in the next generation.

2.3.3.16 cMCS (Constrained Minimal Cut Sets)

Constrained minimal cut sets [117] are enumerated as reaction knockout subsets where some

specified minimum of the desired modes is preserved, while all the undesired i.e. inefficient

modes are collapsed. This algorithm uses a variation of an exhaustive Berge’s algorithm

originally proposed in graph theory.

34

2.3.3.17 Implementation of Nullspace Algorithm

Several implementations of the Nullspace Algorithm and its variations are available. Early

versions of METATOOL [90] initially implemented the Canonical Basis Algorithm [77]. It

was later upgraded to implement the improved Nullspace Algorithm [118] thereby reducing

the computation time. Exploiting the features of the bit-pattern trees in the generation of

candidate elementary modes and multi-core shared-memory systems Nullspace Algorithm

also has its parallel versions for the shared-memory system which is implemented in EFM-

Tool [41]. Both METATOOL and EFMTool were added as modules into GUI-based software

for the analysis of metabolic and signaling networks known as CellNetAnalyzer [119], as well

as in COPASI [120]. Finally, ExPA implements the computation of extreme pathways [121].

2.4 Integrated Biological Network Analysis

Some of the previously cited and described methods aim to incorporate heterogeneous bio-

logical networks, such as those which augment metabolic network with the gene regulatory

network or enzyme activity profile. This section will present in more detail and outline all

recent efforts in integrated biological network analysis aiming for more accurate prediction

of the cellular phenotype for the given environmental and growth conditions.

.

IOMA (Integrative Omics-Metabolic Analysis)

A framework which allows integration of proteomic and metabolomic data with genome-

scale metabolic models for the prediction of flux distribution was proposed in [122].

The framework is laid out as a quadratic programming problem which minimizes the

inconsistency between the flux predicted by the metabolic network model and the one

obtained form the metabolomic and proteomic data using Michaelis-Menten kinetics.

IOMA was compared to less comprehensive method such as FBA or earlier described

MOMA, demonstrating its superior predictive power.

iMAT (Integrative Metabolic Analysis Tool)

One effort to integrate the tissue-specific gene and protein expression data with the

genome-scale metabolic network under the assumed steady state constraints was pre-

sented in [123]. For the given tissue type, the available expression data is given in

two subsets RL and RH which contain indices of lowly expressed and highly expressed

reactions. Highly expressed reactions in RH subsume those reactions which are over-

or under-expressed, while lowly expressed are those reactions which have flux close to

zero. Given the subset RL the binary variable y+i is used denote if the ith reaction is

truly lowly expressed in the problem formulation. Similarly, for subset RH the binary

35

variables y+i and y−i denote if the reaction is highly expressed in a way of being over-

or under- expressed. Since a single highly expressed reaction can be either over- or

under- expressed, the inequality y+i + y−i ≤ 1 is imposed. Hence, the mixed-integer

linear programming problem, given the tissue-specific subsets of indices of lowly and

highly expressed reactions RL and RH is given in (2.37).

min
∑

i∈RH

y+i + y−i +
∑

i∈RL

y+i

subject to N · v = 0

vmin,i ≤≤ vmax
i , ∀i ∈ {1 . . . q}

vi + y+i (vmin,i − ǫ) ≥ vmin,i, ∀i ∈ RH

vi + y−i (vmax,i + ǫ) ≤ vmax,i, ∀i ∈ RH

vmin,i(1− y+i) ≤ vi ≤ vmax,i(1− y+i), ∀i ∈ RL and y+i ∈ {0, 1}

y+i + y−i ≤ 1 ∀i ∈ RH and y+i , y
−
i ∈ {0, 1}

(2.37)

This integration of heterogeneous omics data is implemented in the iMAT (Integrative

Metabolic Analysis Tool) tool as described in [124].

Whole cell modeling

A separate pioneering effort to integrate the regulatory FBA and the system of or-

dinary differential equations was proposed in [125]. It was later extended to a more

comprehensive cell model [126, 127, 128] using 16 cell variables as input and output

to the 28 distinct processes. Each process is described using a submodel which is

itself modeled using the most appropriate method (e.g. constraint-based modeling,

ordinary differential equations). Simulation is performed on a 1-second time scale,

where at the beginning of every 1-second interval the processes accept the values in

16 cell variables, and independently compute their output. Following, at the end of

simulation step, the computed output across all processes is used to update the 16 cell

variables. The proposed and implemented model can predict gene-expression levels,

metabolism rates, metabolite concentrations, protein levels, and cell replication times

in both wild type and single gene deletion circumstances.

36

Chapter 3

Nullspace Algorithm and its

Development

3.1 Introduction

Focusing on the pathways-based analysis of the metabolic networks, this chapter illustrates

the Nullspace Algorithm for the computation of elementary flux modes and its particuliari-

ties. Nullspace Algorithm is outlined in a modular way and respective routines are detailed

for the purpose of analyzing the algorithmic complexity and later parallelization as shown

in the subsequent chapters. A reduced algebraic rank test is proposed for the case when

reversible reactions are not split prior to running the algorithm, which can significantly

reduce the computation time. Finally, the chapter demonstrates the non-uniqueness of the

minimal generating set and its computation in the metabolic networks which admit one or

more reversible pathways.

3.2 Nullspace Algorithm

The two algorithms typically used for the computation of elementary modes are the Canon-

ical Basis Algorithm [77] and the subsequent Nullspace Algorithm [118, 78, 79, 129, 40, 119,

41]. Both algorithms are based on convex analysis and computation of the extreme rays of

a convex polyhedral cone as demonstrated earlier in subsubsection 2.3.3.1. The Nullspace

Algorithm, being the successor of the less efficient and now abandoned Canonical Basis

Algorithm, is the one presently used in the computation of elementary modes.

The Nullspace Algorithm begins by computing an initial basis for the right nullspace of

the m×q stoichiometry matrix such that the sign constraints are automatically satisfied for

the first q −m reactions. It then proceeds to form convex combination of these vectors to

impose the sign and elementarity constraints on the remaining reactions one-by-one, until

37

a complete set of elementary flux vectors are computed. In the following, we state some of

the basic properties of the Nullspace Algorithm.

Theorem 1. If Nm×q is a stoichiometry matrix with full row rank m, then the columns

may be permuted such that a basis for the right nullspace of N has the form

Kq×(q−m) =

[
I(q−m)×(q−m)

Rm×(q−m)

]
(3.1)

Proof. Apply elementary row operations (represented by the nonsingular matrix X) to the

matrix N to obtain the reduced row echelon form

Ñm×q = Xm×mNm×q =
[
−Rm×(q−m) Im×m

]
. (3.2)

The new matrix has the same nullspace, which has the form (3.1) by inspection.

Prior to finding the right nullspace matrix as in Theorem 1 the original stoichiometry

matrix is reduced using the techniques described in subsection 2.3.1 to obtain an equivalent

reduced stoichiometry matrix having a full row rank. The reduced full row rank stoichiome-

try matrix, being in the reduced row echelon form, is used to obtain the initial basis for the

right nullspace. Therefore, we shall henceforth assume that the stoichiometry matrix N has

been compressed, reduced to row echelon form, and that the columns (i.e. reactions) have

been permuted so that the row echelon form has the form (3.2). This is equivalent to finding

q−m columns which form a (q−m)× (q−m) non-singular matrix and putting them first.

We further assume that the corresponding q−m reactions are all irreversible, otherwise we

must split sufficiently many reversible reactions into pairs of irreversible reactions to make

this possible.

If Z(x) denotes the set of indices corresponding to the nonzero entries of a given vector x,

thenN∗,Z(x) will denote the submatrix ofN formed by extracting the columns corresponding

to those non-zero entries. It has been shown in [79, 130] that nullity(N∗,Z(x)) = 1 if and only

if x is elementary mode. Here nullity(A) denotes the dimension of the right nullspace of a

matrix A. During the course of the Nullspace Algorithm, we enforce the following property

on each prospective elementary vector x at each iteration k so that at the end, this property

implies that x is elementary according to Definition 6.

Theorem 2. Let the Nullspace Algorithm be in its kth iteration of execution where k =

q −m + 1, . . . , q. A vector x is an elementary flux mode with respect to reactions 1, . . . , k

corresponding to first k columns of matrix N iff

nullity(N∗,Zk
) = 1. (3.3)

where Zk is the union of the set of indices of non-zero values among first k entries of vector

x together with all indices (k + 1), . . . , q.

38

The property in equation (3.3) enforces the elementarity over the first k reactions. It

will be observed that each column of the initial basis R from equation (3.1) satisfies the

partial elementary property above for k = q − m. As a simple consequence of the above

property, a vector satisfying this condition cannot have more non-zero entries than one plus

the number of rows in N , leading to the following.

Theorem 3. Let x be a column-vector which is an elementary flux mode to the stoichiometry

matrix Nm×q i.e. Nx = 0. An upper bound on the number of non-zero elements in the vector

x is given by

|Z| ≤ m+ 1, (3.4)

where |Z| denotes the cardinality of Z.

The upper bound stated in Theorem 3 is given for the full elementary property of

Def. 6. At the kth iteration, since the entries of a prospective vector x corresponding to

indices (k + 1), . . . , q are all considered implicitly nonzero, the number of nonzeros among

the first k entries is reduced from 1+m to 1+m− (q−k). The result leads to the following

necessary condition for elementarity that can be applied very fast.

Theorem 4. Let x be a column-vector in the right nullspace matrix R of the stoichiometry

matrix Nm×q i.e. Nx = 0. Let the first k elements of the vector x have non-negative values

in the positions corresponding to irreversible reactions, and condition (3.3) is satisfied.

Denote by Z1,...,k the set of indices of nonzero elements in the subvector x1,...,k. If the

matrices are in reduced row echelon form as in Theorem 1, then

|Z1,...,k| ≤ k − q +m+ 1 (3.5)

Proof. Follows from Theorem 3.

In brief, the Nullspace algorithm is an iterative procedure which starts with a nullspace

basis as in Theorem 1. At each iteration it forms new prospective elementary modes by

pair-wise convex combinations of the partial elementary modes it has accumulated so far.

Each prospective elementary mode is tested to be elementary, first by testing the condition

of Theorem 4 and then by that of Theorem 2. The steps to execute the Nullspace algorithm

are sketched in Algorithm 1, and the way the computation is split into its essential parts is

shown in Algorithm 2.

The sketch of the Nullspace Algorithm presented omitted several improvements to the

efficiency for clarity. First, during every iteration, each new column is normalized with

respect to the 1-norm. Second, we are able to keep the matrix R(1) as a bit-valued matrix

and compress it into a matrix scaled down by a factor equal to the length of the machine

39

Algorithm 1 Nullspace Algorithm (sketch) [130].

Assume we have a stoichiometry matrix Nm×q that has full row rank m and in the form as
given in Theorem 1, compressed if needed using the methods of subsection 2.3.1. Further,
let qirrev and q − qirrev be the number of irreversible and reversible reactions, respectively.
The Nullspace Algorithm may be briefly sketched as follows:

1. Denote the initial right nullspace Rq×(q−m) (equation (3.1)) of the stoichiometry ma-
trix Nm×q as:

K =
(q−m)

{

(m)
{

[︷︸︸︷
R(1)

q−m

R(2)

]
=

[
I

R(2)

]
(3.6)

where the upper matrix of R, denoted as R(1), is an identity matrix I(q−m)×(q−m).

2. For k = (q −m), . . . , (q − 1),

(a) Generate convex combinations of all possible pairs of columns in R so as to
annihilate the (k + 1)th entry of the resulting column. Each combination is
formed using a column ii whose (k + 1)th entry is positive combined with a
column jj whose (k + 1)th entry is negative. Following the results from [40] we
may perform the operation of bit-wise logical disjunction over the column parts
belonging to matrix R(1), while performing the algebraic convex combination
over column parts in matrix R(2).

(b) Eliminate duplicate columns among those generated from R(1) in the previous
step.

(c) Apply the rank test as given in Theorem 2 to each candidate mode, discarding
those that fail the test.

(d) Append matrixR column-wise with the newly computed elementary modes which
were accepted by the rank test in the previous step.

(e) If the (k+1)th reaction is irreversible, discard those old columns whose (k+1)th

entry is negative.

In the next step, the (k+1)th row (the top row of R(2)) is moved to become the bottom
row of R(1). Following [40], R(1) can be kept only as a bit mask, so the (k + 1)th row
is converted to a bit mask (a 1 bit stands for a non-zero value).

3. When the computation is complete, matrix R(1) will be of dimension q× nems, where
the nems is the total number of elementary flux mode columns, while R(2) will be
empty. It is then necessary to recalculate the numerical values. This process has
linear complexity in the number nems of elementary modes computed [40].

40

word (32 or 64 bit). Accordingly, the compressed matrix R(1) as stored in memory has the

dimension of (q/width)× nems, where width=32 or 64.

We take advantage of the special row-echelon form of N to obtain a reduced-cost rank

test, more properly called a nullity test, given in Theorem 6. Theorem 6 gives a nullity test

over a smaller submatrix than previously used and thus reduces the cost of its computation.

This reduced nullity test decreases the size of both dimensions of the submatrix by the same

value, equal to the number of non-zero entries in the sub-vector xq−m+1,...,k.

3.2.1 Complexity of the Nullspace Algorithm

The problem of enumerating elementary flux modes is analogous to the problem of finding

vertices or extreme rays in the convex bounded polyhedron (i.e. polytope) as illustrated

earlier in the subsection 2.3.3.1. The said enumeration problem differs in its complexity

depending if the considered polytope is degenerate or non-degenerate. A non-degenerate

polytope is one where each vertex is an intersection of no more than d hyperplanes, while no

hyperplane contains d+ 1 vertices, where d is the dimensionality of the polytope. In other

words, if the point satisfies d + 1 half-space inequalities with equality the polytope is de-

generate. An algorithm for the enumeration of vertices in a non-degenerate polytope which

runs in the polynomial total time was earlier proposed, and is known as local reverse search

[131]. On the other side, for the enumeration of degenerate polytope, the double description

method was found to perform best in the event where a large number of intermediate results

is generated [76]. The complexity of the enumeration of vertices in the degenerate case still

remains an open problem [81].

It may be useful to look at the different problems surrounding the discovery of the

vertices of polytope such as (1) finding a polytope vertex (2) counting of vertices (3) enu-

meration of vertices.

Finding if a given set of variables constitutes a valid polytope vertex can be done in time

polynomial in the size of the given network using a simple rank test. Similarly, a vertex

can be found in polynomial time of the network size where it is not beforehand specified

which reactions have to be in the mode. Let T be a set of variables which should enter the

support set of the vertex. Following results were demonstrated in [132, 82].

Theorem 2 ([132]). For a given polytope and specified variable set T, enumeration of all

vertices having all variables from T in their support cannot be done in polynomial total time

unless P=NP.

The decision problem is solvable in polynomial time for ‖T‖, but is NP-complete for

‖T‖ > 1 as illustrated in the following theorem.

Theorem 3 ([132, 82]). For a given polytope and specified variables i and j, to decide if

there is a vertex having i and j in its support set is NP-complete.

41

Likewise, deciding if there is an elementary mode with at most k reactions having non-

zero flux is NP-complete as well.

Theorem 4 ([132]). For a given polytope and specified integer k, to decide if there is a

vertex with at most k variables in its support set is NP-complete.

Counting of the vertices of a bounded polytope was shown to be #P-complete [133]

which was reduced from the problem of counting perfect matchings in a bipartite graph.

A #P-complete problem belongs to the complexity class of counting problems which are

associated with a decision problem in NP. As such, an #P-complete problem is as hard as

the associated decision problem in NP.

In the case of enumeration problems where a large number of intermediate results not

entering the output is generated, as is the case in double description method, it is common to

express algorithmic complexity as a function of the size of input and output. This is known

as the polynomial total time complexity. Another related problem of the enumeration of

vertices in an unbounded polytope is NP-hard.

Theorem 5 ([81]). Enumeration of vertices in a general polyhedron is NP-hard.

Open problem: Is the enumeration of vertices in the bounded polyhedron solvable in

polynomial total time?

Degeneracy of the metabolic network solution space: Metabolic network stoi-

chiometry matrix has solutions which lie in the degenerate polytope and thus enumeration

of elementary flux modes does not have a known polynomial time algorithm. If K is the

right nullspace basis of the stoichiometry matrix N i.e. N ·K=0 and without loss of gen-

erality let all reactions be irreversible. Thus, an admissible metabolic flux vector x ≥ 0

can be written as x = λ · K for some coefficient vector λ as the right nullspace K is the

polytope generating matrix. Thus, the elements of the vector x with zero value correspond

to the polytope defining inequalities which are satisfied with equality. As evident, extreme

rays of the metabolic network polytope have more zero elements than is the dimensionality

of the space implying the degeneracy of the enumeration problem. It remains unclear how

may one compare the “levels of degeneracy” between the two metabolic network models.

3.2.2 Serial Nullspace Algorithm Pseudocode

The serial Nullspace Algorithm given in Algorithm 2 takes as input the compressed sto-

ichiometry matrix in the reduced row echelon form (Theorem 1), initial nullspace, and

the information on reaction reversibility/irreversibility. The algorithm is executed in m

iterations, each of them corresponding to one of the m remaining reactions.

Algorithm 2 is comprised of the generation of the candidate columns (Algorithm 3),

sorting (Algorithm 17) and removal of the duplicate candidate columns, numerical rank

42

Algorithm 2 [R] = NullspaceAlg(N ,R)

Input:
1: reduced stoichiometry matrix - Nm×q

2: initial nullspace matrix - Rq×(q−m) =

[
R

(bit)
(q−m)×(q−m)

R
(real)
m×(q−m)

]
=

[
I(q−m)×(q−m)

R
(real)
m×(q−m)

]

Output:

3: bit-valued matrix of elementary modes -R
((bit))
q×nems

4: for k = q −m+ 1 to q do
5:

6: ⊲ find pairs of columns which when combined form candidate columns. Algorithm 3
7: combinations ⇐ GenerateEFMCands(R)
8:

9: ⊲ remove duplicate columns by means of sorting. Algorithm 17
10: combinations ⇐ RadixSort(R(bit), combinations)
11: combinations ⇐ RemoveDuplicates(R(bit), combinations)
12:

13: ⊲ accept those candidate columns which satisfy Theorem 6. Algorithm 18
14: combinations ⇐ RankTests(N ,R, combinations)
15:

16: ⊲ expand R matrix, i.e. its R(bit) and R(real) submatrices. Algorithm 19
17: R⇐ ExpandEFM(R, combinations)
18: end for

Algorithm 3 [combinations] = GenerateEFMCands(R)

Input:

1: current nullspace matrix - Rq×nems =

[
R(bit)

R(real)

]

Output:
2: pairs of indices of columns forming candidates - combinations

3: irrev+ ⇐ {i : R
(real)
1,i > 0 & (∃j : jth reaction is irreversible, R

(bit)
j,i 6= 0)}

4: irrev- ⇐ {i : R
(real)
1,i < 0 & (∃j : jth reaction is irreversible, R

(bit)
j,i 6= 0)}

5: rev ⇐ {i : R
(real)
1,i 6= 0 & (∀j : jth reaction is reversible or R

(bit)
j,i = 0)}

6: ⊲ combine columns that can annihilate the element in the current row
7: S ⇐ {(ii, jj) : (ii, jj) ∈ (irrev+ × irrev-) ∪ ((irrev+ ∪ irrev- ∪ rev)× rev)}
8: for each (ii, jj) ∈ S do
9: form candidate column from the pair of columns indexed by (ii,jj)

10: if candidate satisfies Theorem 4, add (ii,jj) to combinations
11: end for

testing (Algorithm 18) and update of the current nullspace matrix R (R(bit) and R(real))

(Algorithm 19). In an effort to eliminate the duplicate bit-valued candidate columns we first

sort them according to their binary values and then use one scan to eliminate the duplicates.

This operation requires an efficient sorting method to reduce the cost of removing duplicate

columns. Candidate columns are sorted using a variation of radixsort algorithm [134] in

43

order to attain linear complexity. We give the outline of the radixsort over an array of

bit-valued columns in Algorithm 17.

The idea in Algorithm 17 is to sort bit-columns by first cutting all columns horizontally

into chunks of width equal to 2d (where d = 3, 4, 5, . . . ,) and in q/2d iterations sort the

columns using the idea from the radix-sort. In every iteration, columns would be sorted

according to the value in the respective chunk. Complexity of this operation is O(q
2d
·nems),

where nems is the number of candidate columns at the given iteration. With the proper

selection for width d, we may assume that the constant factor before nems is small enough

to assume linear complexity. In Algorithms 18 and 19 we also give the pseudocode of the

subroutines for rank tests and expansion of nullspace matrix in every iteration.

3.3 Reduced algebraic rank test

Theorem 6. Let the Nullspace Algorithm be in its kth iteration of execution as k ranges

over q − m + 1, . . . , q. Let Z1,...,q−m be the set of indices corresponding to non-zero en-

tries in x1,...,q−m, and let Zq−m+1,...,k be the set of indices corresponding to zero entries

in xq−m+1,...,k. A vector x is an elementary flux mode with respect to reactions 1, . . . , k

corresponding to the first k columns of matrix N iff

nullity(NZq−m+1,...,k,Z1,...,q−m
) = 1. (3.7)

Proof. The reduced rank test is derived from the reduced row echelon form of the compressed

stoichiometry matrix as is obtained in Theorem 1, which has the form ÑT =
(
N1 I

)
. We

assume without loss of generality that N = ÑT is m × q (by removing redundant rows in

advance if necessary) matrix. At the stage k of the Nullspace Algorithm, matrix N can be

further decomposed to:

N =
(
N1 I

)
=

(k−(q−m)) {

(q−k) {

︷︸︸︷
P

(q−m)︷ ︸︸ ︷
Ik−(q−m)

k−(q−m)

0

Q 0 Iq−k

 . (3.8)

As stated in Theorem 2 we must select all the columns of the stoichiometric matrix whose

indices correspond to nonzero elements among x1, . . . , xk at stage k and the first k−(q−m)

rows. According to Theorem 2 we would have that:

rank
(
P∗,Z1...q−m

Ik−(q−m),Zq−m+1...k

)
=

∣∣Z1...q−m
∣∣+
∣∣Zq−m+1...k

∣∣− 1 (3.9)

To compute the rank of the submatrix obtained in this way we have:

rank
(
P∗,Z1...q−m

Ik,Zq−m+1...k

)
= rank(PZq−m+1...k,Z1...q−m

) + rank(Ik,Zq−m+1...k
)

= rank(PZq−m+1...k,Z1...q−m
) +

∣∣Zq−m+1...k

∣∣ (3.10)

44

and from (3.9) and (3.10) we have that

rank(PZq−m+1...k,Z1...q−m
) =

∣∣Z1...q−m
∣∣− 1 (3.11)

or expressed in terms of nullity of the matrix

nullity(PZq−m+1...k,Z1...q−m
) = 1. (3.12)

3.4 Enumeration of Minimal Generating Set

3.4.1 Introduction

The solutions of the stoichiometry equation S ·x = 0, which also satisfies the non-negativity

constraints for the flux of its irreversible reactions, describe all possible metabolic states in

which the metabolic network may be found. Geometrically this solution space corresponds

to the polyhedral cone [135, 80], and it may be fully generated by means of its extreme rays

[76]. Extreme rays are conically independent set of vectors and in the convex analysis are

also known as a minimal generating set. In the stoichiometry network analysis, alongside

with the concept of the minimal generating set, stand the extreme pathways and elementary

flux modes. It is important to say that the minimal generating set, extreme pathways and

elementary flux modes are computed using the standard Double Description Method for

the enumeration of extreme rays (i) when no reversible reactions are split, (ii) only internal

reversible reactions are split, and (iii) all of the reversible reactions are split, into two

irreversible components, respectively [89, 80, 85, 136, 130]. Unlike the minimal generating

set, in the original reaction space the extreme pathways and elementary flux modes are

not necessarily conically independent which depends on the existence and number of the

reversible reactions.

In the absence of reversible reactions, the minimal generating set, extreme pathways and

elementary flux modes coincide, are uniquely defined, and correspond to the extreme rays

of the polyhedral cone. Regarding the directionality of the metabolic pathways which the

metabolic network accepts we distinguish two cases.

In the first case, if the metabolic network admits only irreversible pathways (i.e., every

pathway contains at least one irreversible reaction), then the minimal generating set is

unique, and the corresponding polyhedral cone is said to be pointed. On the other side, in the

second case, if the metabolic network admits reversible pathways, the minimal generating

set is no longer unique and the polyhedral cone is not pointed.

Regardless if the cone is pointed or not, the set of the elementary flux modes (or ex-

treme pathways) is a superset of any minimal generating set, and some of the elementary

45

flux modes (or extreme pathways) may lie in the interior of the cone. In addition, putatively

exponential hardness and high computational cost of the algorithm used to compute ele-

mentary flux modes [132, 82] is another reason to shift the attention from extreme pathways

and elementary flux modes to the minimal generating set.

Answering many questions requires the use of extreme pathways [27, 87, 101, 86, 88]

and elementary flux modes [98, 1, 112, 4, 137, 138], however there are several applications

one can answer with minimal generating sets. This situation especially arises in the case

of genome-scale metabolic networks where the computation of elementary modes is pro-

hibitively expensive [139]. Some simple structural properties may be observed, such as

whether any reversible reaction appears only in one direction or only in irreversible path-

ways, or whether some reaction appears in no pathway at all. Flux coupling analysis, a

procedure of determining dependencies between network reactions, can be accomplished

using the minimal generating set vectors [140]. Control-effective analysis of individual reac-

tions in the network was initially proposed on the basis of computed elementary flux modes

[98]. However, minimal generating sets can be used to obtain an analogous control-effective

metric, used in the regulatory network analysis and reaction importance assessment [139].

Minimal metabolic behaviors are exposed by the minimal generating set [141], but a simple

method to compute it is still needed. In large genome-scale networks, where computation

of entire minimal generating sets may be impractical, efforts have been made to compute

the K-shortest minimal generating vectors [142] (i.e., pathways involving as few reactions as

possible). This was accomplished by means of solving several linear optimization problems

and using existing methods for the computation of K-shortest elementary flux modes [143].

It was earlier established that in the metabolic network which corresponds to the pointed

cone the minimal generating set is computed using the Nullspace Algorithm after processing

all the row constraints corresponding to the irreversible reactions [79]. However, in the case

of metabolic network which admits reversible pathways, a said procedure may not yield the

correct minimal generating set.

The problem of computing the minimal generating set for the metabolic network which

admits reversible pathways is the topic of this section. An earlier analysis of the metabolic

networks with reversible pathways by means of two subnetworks, one with no reversible

pathways and one with all reversible pathways, can be found in [141]. The computation of

the unique minimal generating set for a pointed cone can be accomplished using existing

algorithms [118, 41, 144] or using the general paradigm in [130]. But this is considerably

more difficult when the cone is not pointed (i.e., there are reversible pathways). This

situation can be recognized by computing the rank of the submatrix of S consisting of the

reversible reactions [130].

The major contribution of this section is to provide a simple procedure to compute

46

the minimal generating set for a stoichiometric network which has reversible pathways.

The method is based on combining two existing algorithms: a method to compute the

minimal generating set for a pointed cone, and a method to compute a nullspace of a

matrix based on the Reduced Row Echelon Form, a classical method in linear algebra. All

this is carried out without the necessity to compute all the elementary flux modes for any

network. This section is organized as follows. Subsection 3.4.2 gives a theoretical treatment

of the representation of reversible and irreversible pathways and the decomposition of the

original metabolic network into two subnetworks. Subsection 3.4.3 outlines the algorithm

for the computation of the minimal generating set using two subnetworks. Subsection 3.4.4

uses a simple example to illustrate the method and show how the method exposes some of

the structure of the network.

3.4.2 Theory

Let S = (A,B,C) be an m×n stoichiometry matrix with the n columns (reactions) ordered

so that A consists of the irreversible reactions (of which there are ni) and B,C consists of

the reversible reactions (of which there are nr). We assume the reversible reactions (B,C)

form a matrix of rank kr and that B consists of kr columns which are independent, while

C consists of nr − kr columns. This implies that all the columns of C can be written as

linear combinations of the columns B: C = BR for some kr × (nr−kr) coefficient matrix

R. We remark that the columns of B can be found by a variety of methods such as the

Reduced Row Echelon Form (RREF) [145] where they appear as the “pivot” columns,

while the columns C appear as the “non-pivot” columns. Hence we will refer to B as the

“pivot” columns. The standard RREF algorithm scans the matrix S left-to-right extracting

independent columns B, hence the choice of pivot columns varies depending on the order

of columns (reactions) in the original S, but once the latter is fixed, the former is also.

The matrix (B,C) has a nullspace of dimension nr−kr, and a suitable basis for this

space is NR =

(
−R

I

)
. Any vector in this nullspace is a valid path for the subnetwork

(B,C) and is a reversible path. By prepending zeros, we obtain

N̂R =

0

NR

 =

0

−R

I

 ,

which we will show is a minimal basis for the set of all reversible paths in the original

network.

A column vector x is a valid path of the network represented by stoichiometry matrix

S if and only if Sx = 0 and the entries of x corresponding to irreversible reactions are non-

negative. If we split x = (xa;xb;xc) to conform with (A,B,C) (where “;” denote vertical

47

concatenation à la Matlab), then x is a valid path if and only if Axa + Bxb + Cxc = 0

and xa ≥ 0 (elementwise).

We have the following Lemmas:

Lemma 1. Any reversible pathway x for the stoichiometry matrix S = (A,B,C) split as

above can be written in terms of the minimal generating set for the reversible subnetwork

(B,C), as follows:

x ≡

xa

xb

xc

 =

0

xb

xc

 = N̂Rα ≡

0

−R

I

α

for some coefficient vector α.

Since there are no sign constraints in the subnetwork represented by (B,C), the basis

NR is the minimal generating set for all possible reversible paths. In fact any basis for

the nullspace of (B,C) would be a minimal generating set, but we choose this specific

one because each column in this basis has a minimal set of non-zeros, i.e., each is also an

elementary flux mode. In this sense, we call this a “minimal basis” or “minimal generating

set.” There is still freedom to choose any set of kr independent columns of (B,C) (reversible

reactions) to act as the basis B.

Lemma 2. Any pathway x for the stoichiometry matrix S = (A,B,C) split as above can

be written as the sum of a path involving just reactions indexing columns in A,B and a

reversible path involving just reactions indexing columns in B,C:

x =

xa

xb

xc

 =

xa

x̃b

0

+ N̂Rxc

where x̃b = xb +Rxc.

Proof.

x ≡

xa

xb

xc

 =

xa + 0

xb+Rxc − Rxc

0 + xc

 =

xa

x̃b

0

+

0

−R

I

xc.

As a valid path, x lies in the nullspace of S, and so does the term N̂Rxc, hence the remaining

term

xa

x̃b

0

must also lie in the nullspace of S and hence is a valid path. Only the component

xa is subject to sign constraints.

Theorem 5. Any pathway x for the stoichiometry matrix S = (A,B,C) split as above can

be written as the sum of a linear combination of paths in the minimal generating set M̂I for

the “pointed-cone” subnetwork represented by (A,B) together with a linear combination of

the minimal generating set N̂R for the network of reversible reactions represented by (B,C).

48

Proof. Let MI be a matrix whose columns form the minimal generating set for the subnet-

work (A,B). This network has no reversible pathways because the columns corresponding

to the reversible reactions are linearly independent, i.e., the space of valid paths for this

network is a pointed cone [80].

By Lemma 2, any path x through the entire network can be written as

x =

xa

x̃b

0

+ N̂Rxc.

Now

(
xa

x̃b

)
is a path through the subnetwork (A,B) and hence can be written in terms of

the minimal generating set for (A,B) as MIβ for some coefficient vector β. Hence we have

x = M̂Iβ + N̂Rα, with M̂I =

(
MI

0

)
,

where we have extended MI with a block of zeros so that (A,B) ·MI = (A,B,C) · M̂I .

Lemma 3. The generating set of the stoichiometry matrix (A,B,C) formed as a union

of the minimal generating sets of matrices (A,B) and (B,C) is minimal.

Proof. Assume that the minimal generating set is given by the union M̂I ∪ N̂R, and that

the given pathway x = (xa;xb;xc) can be written as x = M̂Iβ+ N̂Rα. By Lemma 2, given

pathway can be written as x =

xa

x̃b

0

+

0

−R

I

xc, which implies that the coefficients of the

vectors in N̂R in the decomposition are equal to the elements in xc, hence α = xc. Since N̂R

consists of the identity matrix in its lower part, vector x−N̂Rxc lies in the pointed polyhedral

cone corresponding to the matrix (A,B) and which has a unique minimal generating set

M̂I . Hence, the subset of minimal generating sets which is used in the decomposition in x

is unique, and therefore minimal.

3.4.3 Discussion

Theorem 5 implies that we can compute a minimal generating set for a stoichiometry matrix

S by the following procedure.

1. Collect all columns corresponding to irreversible reactions of S into matrix A.

2. Use the Reduced Row Echelon Form (RREF) (or similar method) on the matrix of

all reversible reactions to extract the matrices B and C, where B has full column

rank and C can be written as BR for some R, so that (B,C) consists of the columns

corresponding to all the reversible reactions.

49

3. Compute a basis NR as the right nullspace of matrix (B,C).

4. Compute the minimal generating set MI for the subnetwork represented by (A,B) (a

pointed cone).

5. Extending MI with a block of zeros to obtain M̂I , we obtain a minimal generating set

for all valid paths of S, namely the columns of the combined matrix (M̂I , N̂R).

This procedure allows one to compute the minimal generating set for an arbitrary network

by computing the minimal generating sets of two subnetworks, one of which is a pointed

cone and the other one having reversible pathways is a non-pointed cone. Since it is well

known that the minimal generating set of a network is almost always an order of magnitude

smaller than the set of elementary flux modes [141], this procedure allows one to compute

the minimal generating set for an arbitrary network at much less cost compared to an

algorithm based on a full set of elementary flux modes [136].

We remark that, by construction, the minimal generating set M̂I , of the subnetwork

consisting only of irreversible pathways, is essentially unique once the basis B for the space

of reversible reactions is chosen. They vary only in the combinations of reversible reactions.

The patterns of irreversible reactions in the pathways of M̂I correspond to the minimal

metabolic behaviors of [141].

However, there is quite a large freedom of choice for the minimal generating set N̂R

corresponding to the subnetwork with reversible pathways. Any basis for the nullspace of

(B,C) will do. By using the nullspace derived from the RREF, we can ensure that each

reversible pathway in N̂R is minimal (i.e., has a minimal set of non-zero entries).

3.4.4 Example

3.4.4.1 Toy metabolic network

We illustrate the method with a small example derived from [141]. We have made reactions

R6, R7 reversible in order to illustrate some structure exposed by this method.

50

Stoichiometry Matrix S:

R1r R2 R3r R4r R5r R6r R7r R8 R9r R10r R11r R12r

1 −1

1 −1 −1

1 −1 −1

S =

1 1 −1 −1

1 −1 −1

1 −1

1 −1

B A B B B B C A B C B C

m1

m2

m3

m4

m5

m6

m7

partition

Here we show the partition into which each reaction ends up after extracting the reversible

part and applying the RREF. The method consists of three steps as follows.

1. Get minimal generating set for reversible pathways subnetwork.

• Extract all columns from S corresponding to reversible reactions into matrix (B,C).

• Compute basis of right Nullspace of (B,C) using the Reduced Row Echelon Form

(RREF). The rank of the matrix (B,C) is 7, so there will be 7 pivot columns. The

dimension of the nullspace is 3, so the minimal generating set will have 3 entries.

• The pivot reactions correspond to what RREF identified as the pivot columns. The

pivot columns form a basis for the entire column space of the reversible columns of S.

The columns have been ordered so that the pivot reversible reactions are: {R1r, R3r, R4r,

R5r, R6r, R9r, R11r}. The resulting reversible minimal generating set has 3 entries labeled

R in formula (3.13) below. We remark that this minimal generating set is not unique, as

discussed further below. In the following paragraphs, we show how the choice of pivot

reversible reactions is not completely arbitrary, but depends on the particular partitioning

among all the reversible reactions.

Notice in the R columns of (3.13) how R1r is isolated, and R4r, R6r, R7r form combination

disjoint from the remaining reactions. Specifically, the first R column shows that the sum

of R6r, R7r, minus R4r is zero. No R column involves R1r. Hence R1r cannot be written

as a linear combination of any other reaction, and any one of R4r, R6r, R7r can be written

as a linear combination of the other two, but none of these four reactions can be written as

combinations of the remaining reversible reactions. This also shows that R1r is not involved

in any reversible pathway.

Regarding the irreversible reactions, there is one irreversible pathway containing just R2

and one containing just R8, hence those two correspond to the minimal metabolic behaviors

51

in the sense of [141] 1 . Since R1r only appears in the positive direction in a pathway also

with R2, one might consider R1 to be irreversible with respect to this network and the two

minimal metabolic behaviors to be {R1, R2} and {R8}.

The R columns of (3.13) is a generalized incidence matrix where two reactions are

connected by an edge if they appear in a common path. This shows the set of reversible

reactions can be partitioned into three disjoint connected subgraphs: {R1r}, {R4r, R6r,

R7r}, {R3r, R5r, R9r, R10r, R11r, R12r}, with no connections between the subgraphs.

Any pointed cone subset must have a certain number of members from each connected

subgraph, where the number of members is equal to the rank of the corresponding columns

of the stoichiometry matrix.

So any pointed cone subset in this example must include (in addition to all the irre-

versible reactions) R1r, and any 2 out of {R4r, R6r, R7r}, plus some 4 out of {R3r, R5r,

R9r, R10r, R11r, R12r} but not any combination. Varying the choice of reversible reac-

tions not only yields a different pointed cone, but also a different minimal generating set

for the reversible subnetwork. However, once the minimal generating set for the reversible

part is chosen, the rest is all uniquely determined.

2. Get minimal generating set for irreversible pathways subnetwork.

• Combine irreversible reactions with the pivot reversible reactions to form a subnetwork

with no reversible pathway (called a Pointed Cone Subset). In this example there are

2 irreversible reactions and 7 pivot reactions to form a subnetwork of 9 reactions.

• Compute minimal generating set for resulting reduced stoichiometry matrix (A,B)

(using usual Nullspace algorithm).

The pointed cone subset has 9 reactions: {R2, R8}, {R1r}, {R4r, R6r}, {R3r, R5r,

R9r, R11r} (includes all irreversible reactions plus ”pivot” reversible reactions, grouped by

partitioning of the reactions induced from above.)

Applying the Nullspace algorithm yields 2 minimal generating vectors labeled I in for-

mula (3.13).

3. Combine the above two minimal generating sets.

All 5 paths in the two computed minimal generating set for this example are combined

to represent the minimal generating set of the original metabolic network, a shown in (3.13).

1 Recall this network has been modified from that of [141] for purposes of illustration

52

I I R R R

1

1

1 1 −1 −1

−1 1 −1

−1 1 1

1 1

1

1

1

1

1

1

R1r

R2

R3r

R4r

R5r

R6r

R7r

R8

R9r

R10r

R11r

R12r

(3.13)

The label I denotes an irreversible minimal generating vector derived from the pointed cone

subnetwork (A,B), and R denotes a reversible minimal generating vector derived from the

reversible subnetwork (B,C).

This system has 21 EMs consisting of the 5 members of the minimal generating set

(3.13) plus the following 16 EMs:

R

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 2 1 1 1

1 −1 1 −1

−1 −1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1

1 1 1 1 1 1 1 1 1 1

−1 1 1 1 1 1 2

−1 1 1 1 1 1 2

1 1 1 1 1 1 2

1 1 1 1 1 1 2

R1r

R2

R3r

R4r

R5r

R6r

R7r

R8

R9r

R10r

R11r

R12r

(3.14)

The third column of (3.14) is an elementary mode for the pointed cone subset (A,B).

To see that (3.13) is indeed the minimal generating set, we express all the EMs in (3.14)

as linear combinations of the paths in (3.13):

53

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1

−1 1 1 1 1 1 2

1 1 1 1 1 1 2

(A,B)

(A,B)

(B,C)

(B,C)

(B,C)

3.4.4.2 Red Blood Cell metabolism

We can apply the algorithm to find minimal generating set for the concrete example of the

red blood cell metabolic network [86]. This is also just a simple illustration of a simple

biochemical question that can be answered with the minimal generating set: namely that

certain reversible reactions operate only in one direction. This network has 32 internal reac-

tions (17 reversible) and 19 external reactions (16 reversible), giving a total of 51 reactions

(33 reversible). The network has 6,180 elementary flux modes, but the algorithm of this

section shows only 18 of these modes form the minimal generating set (with 1 reversible).

In this example A consists of the 18 columns corresponding to the 18 irreversible reactions,

B consists of 32 columns, and C has one column. The one reversible pathway is found to

consist of reactions LD, TRA3r, TRA4r, TRA10r, TRA11r, TRA14r. A simple examination of the

minimal generating set suffices to show that the following reversible reactions appear only

in the positive direction: ALD, TPI, GAPDH, PGM, EN, LD, PGL, PRM, PNPase, TRA4r, TRA13r,

TRA16r, TRA17r, and the following only in the negative direction: TRA7r, TRA12r, TRA14r.

Supplementary MATLAB script which facilitates the computation of minimal generat-

ing set using the software for the computation of elementary flux modes is given at http://

elmocomp.sourceforge.net/mingen.zip. Software for the computation of elementary flux

modes has a command line option to perform the processing of constraints only correspond-

ing to irreversible reactions.

3.5 Conclusion

Continuing on the previous development and results in the pathway-based analysis of the

metabolic networks this chapter aims to point out the major bottlenecks of the Nullspace

Algorithm and possibilities for its improvement. First, the serial Nullspace Algorithm is

laid out and decomposed into routines so that it may later be reused in the parallelization.

Second, a reduced algebraic rank test is proposed for the case when Nullspace Algorithm

is run on a metabolic network without decomposing reversible reactions into irreversible

components. Third, an alternative and simple procedure is described which demonstrates

how to compute the minimal generating set in a metabolic network which admits reversible

metabolic pathways. The approach is based on splitting a metabolic network into two

54

http://elmocomp.sourceforge.net/mingen.zip
http://elmocomp.sourceforge.net/mingen.zip

subnetworks, one entirely reversible, and the other without reversible pathways.

55

Chapter 4

Combinatorial Parallelization of

the Nullspace Algorithm

4.1 Introduction

For the metabolic networks which after compression have the number of both metabolites

and reactions on the order of 102 − 103, the existing software is unable to complete the

computation of the elementary flux modes. Thus, in this chapter we resort to the idea

of parallelizing the Nullspace Algorithm. Section 4.2 describes the Combinatorial Parallel

Nullspace Algorithm, named due to the idea of parallelizing the portion of the algorithm

which generates the candidate elementary flux modes and which exhibits combinatorial

explosion in the amount of candidate modes which are probed for elementarity. Later,

section 4.3 shows the results of running the implementation of the Combinatorial Nullspace

Algorithm on metabolic networks of different sizes and discusses the existing problems and

limitations.

4.2 Parallel Nullspace Algorithm

We assume that the algorithm is designed for a parallel environment of P compute-nodes,

where each compute-node refers to an abstract processor, has its own memory and executes

an instance of the parallel program in the message-passing distributed memory communica-

tion environment. The compute-nodes exchange messages over an unspecified network ar-

chitecture. This parallel environment corresponds to a distributed-memory system, though

our proposed algorithm may be easily expanded into hybrid parallel implementation with

the shared-memory paradigm.

Algorithm 4 illustrates the Combinatorial Parallel Nullspace Algorithm named so as the

major idea is to parallelize the generation of the candidate elementary modes (Algorithm

56

3). The portion of the algorithm which introduces the communication among the compute-

nodes is given in line 10. We parallelize the tasks of generating candidate columns as in

Algorithm 5 and by proper load balancing attain that each participating compute-node

generates approximately the same number of candidate columns.

Algorithm 4 [R] = CombParallelNullspaceAlg(N,R)

Input:
1: reduced stoichiometry matrix - Nm×q

2: initial nullspace matrix - Rq×(q−m) =

[
R

(bit)
(q−m)×(q−m)

R
(real)
m×(q−m)

]
=

[
I(q−m)×(q−m)

R
(real)
m×(q−m)

]

Output:
3: bit-valued matrix of elementary modes - Rq×nems

4: for k = q −m+ 1 to q do
5: combinations⇐ ParallelGenerateEFMCands(R)
6: combinations⇐ RadixSortColumnModes(R(bit), combinations, width)
7: combinations⇐ UniqueColumnModes(R(bit), combinations)
8: combinations⇐ RankTests(N,R(bit), combinations)
9: ⊲ communicate columns and merge

10: combinations⇐ Communicate&Merge(R(bit), combinations)
11: R⇐ ExpandEfm(R, combinations)
12: end for

Load balancing is needed to assure that there is no serious time discrepancy among the

compute-nodes when they perform the sorting and the evaluation of numerical rank tests.

Each compute-node generates its share of candidate elementary mode columns, and filters

those which are valid elementary modes at the given iteration according to the same criteria

as in serial Nullspace Algorithm. However, different compute-nodes may generate identical

candidate elementary mode columns, and compute-nodes will have to communicate to re-

move these duplicated bit-columns. The result of communication among compute-nodes is

the complete set of elementary modes after processing the kth reaction. In a carefully de-

signed communication pattern, compute-nodes would exchange their generated elementary

modes, and each compute-node would merge the arrays of bit-columns obtained from other

compute-nodes with its local set of elementary mode columns. The disadvantage of this

approach, which we have also implemented, is in the ALL-TO-ALL merge and communication

pattern. The cost of communication among compute-nodes is negligible compared to the

total cost of the merge and elimination of duplicated elementary modes which is performed

on the compute-nodes locally. In subsection 4.2.2 we analyze the complexity and give an

improved communication algorithm for exchange of candidate elementary modes among

compute-nodes and efficient merge. Subroutines for sorting, elimination of duplicated can-

didates, and rank tests remain unmodified from the serial Nullspace Algorithm.

57

Algorithm 5 [combinations] = ParallelGenerateEFMCands(R)

Input:

1: current nullspace matrix - Rq×nems =

[
R(bit)

R(real)

]

Output:
2: pairs of indices of columns forming candidates - combinations

3: irrev+ ⇐ {i : R
(real)
1,i > 0 & (∃j : jth reaction is irreversible, R

(bit)
j,i 6= 0)}

4: irrev- ⇐ {i : R
(real)
1,i < 0 & (∃j : jth reaction is irreversible, R

(bit)
j,i 6= 0)}

5: rev ⇐ {i : R
(real)
1,i 6= 0 & (∀j : jth reaction is reversible or R

(bit)
j,i = 0)}

6: irrev p- ⇐ {i : i ∈ irrev- & i = proc id(modP)}
7: rev p⇐ {i : i ∈ rev & i = proc id(modP)}
8: S ⇐ {(ii, jj) : (ii, jj) ∈ (irrev+ × irrev p-) ∪ ((irrev+ ∪ irrev p- ∪ rev p)× rev)}
9: for each (ii, jj) ∈ S do

10: form candidate column from the pair of columns indexed by (ii,jj)
11: if candidate satisfies Theorem 4 add to combinations

12: end for

4.2.1 Load Balancing

As shown in lines 6-7 of Algorithm 5 we partition the arrays of indices of columns of

matrix irrev- and rev among the compute-nodes evenly. However, since the R(bit) bit-

matrix remains in sorted order at the beginning of each iteration, the generated candidate

elementary mode bit-columns at every compute-node may have non-uniform overall density

of non-zero entries. This imbalance would occur if we assigned to each compute-node the

contiguous range of indices from arrays irrev- and rev. If this was the case, compute-nodes

would generate the set of candidate columns of non-uniform “sparsity” and thus produce

an unequal number of candidate columns which satisfy Theorem 4. This would result in the

poor load balancing in the sections of the algorithm corresponding to the “sort & removal of

duplicated columns” and “rank tests of candidate columns”. As a solution to this problem,

we assigned to each compute-node the set of indices from both irrev- and rev which have

values congruent to the compute-node identifier modulo total number of compute-nodes P ,

as illustrated in Algorithm 5.

The comparison between “sequential” and “interleaved” generation of candidate columns

is given in Table 4.1. The imbalance rate in the two sections of algorithm across P compute-

nodes is used as a measure, as given in equation (4.1).

ImbalanceRate(task) =
max1≤i≤P T

(i)
task

min1≤j≤P T
(i)
task

(4.1)

where task corresponds to the “sort & removal of duplicated columns” or “rank tests of

candidate columns”, while T
(i)
task is the time ith compute-node spent performing the task.

58

Table 4.1: Imbalance rate of interleaved and sequential generation of candidates.

number of compute-nodes
2 4 8 16 32

sequential
sort & removal of duplicated columns 1.91 2.55 4.75 6.49 14.57

rank tests of candidate columns 2.04 2.97 5.35 10.13 34.34

interleaved
sort & removal of duplicated columns 1.00 1.03 1.03 1.08 1.10

rank tests of candidate columns 1.02 1.02 1.04 1.07 1.12

4.2.2 Computational Complexity Analysis

In order to estimate the complexity of the Combinatorial parallel Nullspace Algorithm, we

have to include the computational complexity term corresponding to the communication

among compute-nodes. We try to attain the load balanced situation where every compute-

node approximately generates the same number of elementary flux modes as described

in subsection 4.2.1. Initially, we implemented the ALL-TO-ALL broadcast communication

pattern in the environment of P compute-nodes. The network parameters given are the

latency ts and the per-word transfer time tw [146]. The per-word transfer time is inversely

proportional to the available bandwidth between the compute-nodes. Every compute-node

generates candidate elementary modes, validates that they represent admissible elementary

modes by means of the numerical rank test, and communicates them to the other compute-

nodes to eliminate the duplicate columns and merge. The elementary mode columns sent

between compute-nodes are in sorted order, and only a proper merge subroutine is needed

to eliminate duplicates. In the ALL-TO-ALL communication, every compute-node broadcasts

its local set of elementary mode columns it generated to all other compute-nodes, and each

compute-node does the same task of merging the received sorted columns and eliminates

the duplicates from it. Note that the elementary mode columns are communicated as

pairs of indices of current nullspace matrix and not as full bit-columns, for the reason of

more compactness. At the end of this communication, every compute-node will have the

same result, i.e. the complete nullspace matrix of the elementary flux modes at the end of

current iteration of the Nullspace Algorithm. For network architectures of ring, 2D-mesh,

and hypercube the cost of ALL-TO-ALL communication, if we assume that each compute-

node has to send the message of approximately the same size M , can be estimated [146].

In the case when very large messages are sent over the network, what is the case in our

algorithm, the cost may be approximated as

T all−to−all
comm (M,P) = O(twM(P − 1)), (4.2)

where M is the message length measured in units of pairs of indices being sent over the

network, and P is the number of participating compute-nodes. This approximation remains

the same, irrespective of the network architecture [146].

In order to sort the received messages, each compute-node has to merge P − 1 received

messages. In each merge, duplicates are being eliminated. Let tc be the per unit of operation

59

cost in the merge procedure. The computational cost of a single merge of two sorted arrays

of length len1 and len2, is equal to tc(len1 + len2). We can only give an upper bound on

the complexity of this merge task at a single compute-node, as follows:

T all−to−all
merge (M,P) = tc2M+tc3M+, . . . ,+tc(P−1)M = tc((P−1)P/2−1)M = O(P 2M).

(4.3)

We notice in the case of good load balancing, the product PM remains the same for the given

kth iteration as the number of compute-nodes P grows. Accordingly, we note that while the

cost of communication will remain the same, the cost of merging the received messages will

grow with P . Therefore, this would require the re-design of the communication and merge

pattern.

We may reduce the cost of merging the received messages with an alternative commu-

nication and merge pattern which corresponds to the hypercube communication. It may

be illustrated with a MERGE-TREE communication and merge, as a complete binary tree of

height logP and P leaf nodes, where P corresponds to the total number of compute-nodes.

The complete binary tree nodes at each level of the tree correspond to those compute-nodes

which are being used in the current iteration. We may equally use the term hypercube or

tree since the tree may be embedded in a logP -dimensional hypercube almost symmetri-

cally [146]. For convenience we will refer to the MERGE-TREE communication and merge in

the rest of this section. In the first phase, there will be logP iterations of unidirectional

point-to-point communication among pairs of compute-nodes on the same level of the tree.

At the kth iteration (k ∈ {1, . . . , logP}), each compute-node i such that i = 0 (mod 2k) will

receive the message from compute-node j = i+2k−1. Approximately, the size of the message

sent will be of length 2k−1M . The cost of each iteration has an upper bound equal to the

value of merging two messages of length 2k−1M , i.e. tc2
kM . At the end of the first phase,

the resulting nullspace matrix will be contained in compute-node 0. We assume that the

number of compute-nodes P is a power of two, in order to maintain a complete binary tree.

Accordingly, we assume that due to proper load balancing, prior to communication each

compute-node has precomputed approximately M elementary mode columns and needs to

distribute them to other compute-nodes for merge and elimination of duplicates. The cost

of this merge operation may be expressed as:

Tmerge−tree
merge (M,P) = tc(2M) + tc(2

2M)+, . . . ,+tc(2
kM)

= tc(2(2
k − 1)M) = tc(2(P − 1)M) = O(PM)

(4.4)

Hence, when compared to the result in equation (4.3), the cost of merging given in equation

(4.4) is reduced by the factor of P . Since the product PM is constant as P scales, the cost

of merge will remain constant as well for the particular iteration of the algorithm.

60

Algorithm 6 [combinations] = Communicate&Merge(R, combinations)

Input:

1: current nullspace matrix - Rq×nems =

[
R(bit)

R(real)

]

2: local set of pairs of column indices which generate new candidates - combinations
Output:
3: merged set of column-generating pairs of indices - combinations

4: proc id⇐ identifier of the local compute-node

5: for i = 1 to logP do
6: if proc id = 0 (mod 2i) then
7: receive columns from compute-node proc id+ 2i−1

8: merge the local set of columns with the received columns

9: else
10: send columns to compute-node proc id− 2i−1

11: end if
12: end for
13: if proc id = 0 then
14: broadcast the columns to all other compute-nodes

15: end if

Apart from estimating the cost of merge, we estimate the cost of MERGE-TREE commu-

nication across the network. In every kth iteration the cost of exchanging a message of size

2k−1M between two compute-nodes is equal to ts+tw2
k−1M [146]. The cost of ONE-TO-ALL

broadcast from the compute-node 0 after all data is merged is equal to (ts + twPM) logP ,

and thus the total communication cost may be estimated as:

Tmerge−tree
comm (M,P) =

(∑logP
k=1 ts + tw2

k−1M
)
+ (ts + twPM logP)

= ts logP + twM(2logP − 1) + ts + twMP logP

= ts(logP + 1) + tw(M(2logP − 1) +MP logP)

= ts(logP + 1) + tw(M(P − 1) +MP logP)

= tw(MP logP) +O(twMP)

(4.5)

The last approximation follows from the assumption that start up time is much smaller

than the per-word transfer time [146]. Accordingly, we conclude that the communication

cost will grow with a factor of logP , unlike in (4.2) where it remains unchanged.

However, the cost estimates just given are upper bounds. The final set of merged

columns which are broadcasted from compute-node 0 may be significantly smaller, because

a large share of duplicated elementary mode columns are eliminated before the broadcast.

In the experimental results on the computing platforms which were used to test the software,

the communication time was negligible compared to the total time required to merge and

eliminate duplicates at each compute-node, as will be shown later.

61

4.3 Results and Discussion

We present the computational times obtained with both the serial and Combinatorial Par-

allel Nullspace Algorithm. We plot the runtime the metabolic networks of the central

metabolism of Escherichia coli and S. cerevisiae using METATOOL v5.1 [90, 118], our

serial implementation ElMo-Comp and EFMTools [41]. During the run of the parallel im-

plementation we time its execution and observe the scalability as the number of compute-

nodes grows. For both serial and parallel implementation we use the Template Numerical

Toolkit [147] from the National Institute of Technology and the C++ library of linear al-

gebra functions adapted from the Java Matrix Library [148] developed by Mathworks and

NIST.

We time the results of our parallel program on the “Calhoun” computing platform of

the Minnesota Supercomputing Institute. In the following discussion, we use the terms

compute node, processor and core, to describe the hardware.

“Calhoun” has 512 Intel Xeon 5355 (Clovertown) class multi-chip modules (MCMs).

Each MCM is composed of two dies. These dies are two separate pieces of silicon con-

nected to each other and arranged on a single module. Each die has two processor cores

that share a 4 MB L2 cache. Each MCM communicates with the main memory in the

system via a 1,333 MHz front-side bus (FSB). “Calhoun” is configured to have 256 compute

nodes, 2 interactive nodes, 5 server nodes, total of 2048 cores, 4TB total main memory.

Each node within the system has two quad-core 2.66 GHz Intel Xeon (Clovertown) - class

processors and 16GB memory running at 1,333 MHz. All of the systems within Calhoun

are interconnected with a 20-gigabit non-blocking InfiniBand fabric used for interprocess

communication (IPC). The InfiniBand fabric is a high-bandwidth, low-latency network, the

intent of which is to accommodate high-speed communication for large MPI jobs. The

nodes are also interconnected with two 1-gigabit ethernet networks for administration and

file access, respectively. The parallel program was compiled with Intel C++ compiler and

OpenMPI on “Calhoun” platform.

4.3.1 Serial program

The serial program was run and timed on Intel Pentium D CPU 3GHz, dual-core, with

2GB main memory. Algorithm uses metabolic network of the central metabolism of E.

coli as input, from which five test cases are derived differing by substrate metabolites (e.g.

glycerol, glucose, xylose, etc) and reversibility of certain reactions, as shown in Table 4.2.

Table 4.2 illustrates the results of running METATOOL, our implementation ElMo-Comp,

and EFMTools. As pointed out earlier [40] and in subsection 2.3.1, the compression of the

stoichiometric matrix is important in reducing the computational cost. EFMTools and our

ElMo-Comp perform the identical iterative compression procedure of the given metabolic

62

network, while METATOOL does not. A major bottleneck of the serial program is in the

generation of candidate elementary modes described in Algorithms 3 and 5, followed to

smaller extent by the evaluation of the algebraic rank tests on submatrices corresponding

to the candidate elementary modes.

Table 4.2: Result of running serial Nullspace Algorithm on the central metabolic network of E. coli

network
substrate

Time (sec)

original1 compressed METATOOL 5.1 ElmoComp EFMTools #EFM

41× 61(19) 26× 40(12) Gluc 16 2.65 4.89 38,002

49× 64(19) 26× 41(12) Gluc, Xyl 73 11.64 14.36 92,594

50× 66(19) 27× 43(13) Gluc, Glyc, Xyl 195 39.51 49.04 188,729

50× 66(28) 29× 45(19) Gluc, Glyc, Xyl NC2 1372.77 929.94 1,224,785

1 dimensions of stoichiometry matrix; number of reversible reactions given in parentheses

2 NC (computation did not complete)

4.3.2 Parallel program

To demonstrate the improved runtime of the Combinatorial Parallel Nullspace Algorithm

(Alg. 4) when using MERGE-TREE communication pattern over the ALL-TO-ALL we use the

metabolic network of E. coli on glucose substrate which produces 38,001 elementary modes.

With the ALL-TO-ALL communication and merge implemented there was an increase in the

cost of merge proportional to the increase of the number of participating processors P , while

in the case of MERGE-TREE pattern the cost becomes negligble when run on the 61-reaction

metabolic network of E. coli using glucose substrate (Figure 4.1). This is consistent with

our theoretical prediction that the MERGE-TREE communication and merge pattern reduces

the overhead.

Further, the Combinatorial Parallel Nullspace Algorithm is run on three metabolic net-

works for E. coli from Table 4.2 having 92,594 , 188,729 and 1,224,785 elementary modes

and on one 80-reaction metabolic network of the central metabolism of S. cerevisiae.

63

1 2 4 8 16 32 64 128
number of processors

0

2

4

6

8

10

12

14

ti
m

e
 (

se
c)

(a) E. coli 41×61 (19 rev.)

1 2 4 8 16 32 64 128
number of processors

0

2

4

6

8

10

12

14

ti
m

e
 (

se
c)

(b) E. coli 41×61 (19 rev.)

Figure 4.1: Combinatorial Parallel Nullspace Algorithm run for (a) ALL-TO-ALL and (b) MERGE-TREE com-
munication and merge pattern as computed using “Calhoun” parallel platform.

Table 4.3: Results for Combinatorial Parallel Nullspace Algorithm on Intel Xeon (Clovertown) machine for

E. coli metabolic networks.

Time (sec)
#EFM

1p 2p 4p 8p 16p 32p 64p 128p

original gen. cand. 13.45 7.12 3.73 1.92 1.28 1.21 1.17 0.81 92594

49× 64(19)1 sorting . . . 0.84 0.42 0.33 0.10 0.05 0.05 0.02 0.01

compressed rank tests 2.55 1.98 1.35 0.89 0.55 0.39 0.30 0.10

26× 41(12)2 comm 0.00 0.01 0.01 0.01 0.01 0.02 0.04 0.08

merge 0.00 0.02 0.05 0.05 0.05 0.06 0.06 0.07

total 17.10 9.72 5.65 3.09 2.16 2.01 1.92 1.39

original gen. cand.. 46.99 23.86 11.95 6.39 3.73 2.37 1.32 0.73 188729

50× 66(19) sorting . . . 2.94 1.48 0.82 0.55 0.27 0.11 0.06 0.03

compressed rank tests 8.15 6.27 4.27 2.74 1.54 0.90 0.69 0.47

27× 43(13) comm 0.00 0.01 0.02 0.05 0.05 0.06 0.06 0.08

merge 0.00 0.05 0.08 0.09 0.10 0.11 0.11 0.12

total 58.90 32.35 17.71 10.31 6.57 3.91 2.31 1.63

original gen. cand 2189.32 1077.90 538.30 268.93 135.53 67.48 37.35 21.25 1224785

50× 66(28) sorting . . . 84.58 26.60 14.07 10.84 5.55 1.99 1.35 1.32

compressed rank tests 91.60 70.40 48.58 30.57 17.89 10.06 5.27 2.85

29× 45(19) comm 0. 0.06 0.14 0.3 0.27 0.28 0.31 0.4

merge 0. 0.80 1.26 1.42 1.47 1.56 1.67 1.79

total 2381.49 1185.06 609.42 318.80 166.29 86.30 50.97 36.16

1 dimensions of stoichiometry matrix of the metabolic network; number of reversible reactions given in brackets

2 dimensions of stoichiometry matrix of the reduced metabolic network

64

Table 4.4: Combinatorial Parallel Nullspace Algorithm on Intel Xeon (Clovertown) machine for S.

cerevisiae metabolic network.

Time (sec)
#EFM

8p 16p 32p 64p

original gen. cand. 32,925.95 15,748.15 8,507.20 5,443.79 13,322,495

62× 80(31) sorting 281.13 249.14 85.90 30.68

compressed rank tests 1,026.18 640.23 368.33 208.06

38× 58(20) comm 2.25 1.70 1.50 1.15

merge 32.94 47.30 37.83 23.54

total 34,339.19 16,762.73 9,055.62 5,752.75

relative CPU power ratio1 1.0 0.976 1.055 1.340

1 relative CPU power ratio = total time×number of processors
total time on 8p×8

The timing results obtained using “Calhoun” computing platform are given in the tables

4.3 and 4.4. Both tables contain the results for the more efficient MERGE-TREE communi-

cation and merge pattern. Within the tables, the metabolic networks are annotated with

the size of their original and compressed stoichiometry network accompanied with the num-

ber of reversible reactions (in the parentheses), since the core Nullspace Algorithm accepts

the compressed stoichiometric network as input. Figure 4.2(a) gives the diagram for the

parallel program over the E. coli 50×66 (28) network, while the figure 4.2(b) gives the sim-

ilar diagram for the computation from table 4.4 corresponding to 80-reaction S. cerevisiae

metabolic network.

1 2 4 8 16 32 64 128
0

1000

2000

3000

4000

5000

6000

n
u
m

b
e
r

o
f

p
ro

ce
ss

o
rs

(a) E. coli 50×66 (28 rev.)

4 8 16 32 64 128 256 512
number of processors

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

ti
m

e
 (

se
c)

(b) S. cerevisiae 62×80 (31 rev.)

Figure 4.2: Combinatorial Parallel Nullspace Algorithm using MERGE-TREE communication pattern on E.
coli and S. cerevisiae metabolic networks. Computation was run on “Calhoun” parallel platform.

Timing results in tables 4.3 for E. coli 50×66 (28 rev.) and in table 4.4 for S. cerevisiae

illustrate that the generation of candidate modes scales well with the increasing number

of used processors, while that may not be the case for evaluation of the algebraic rank

test. While we used interleaved generation of candidate modes using positive and negative

columns, it seems that there may still be space for improvement. Apparently, some of the

compute nodes end up having greater fraction of modes with many non-zeros than other

65

nodes, which implies that the rank test is evaluated on larger submatrices.

4.4 Conclusion

Combinatorial Parallel Nullspace Algorithm illustrates a distributed-memory parallelization

of the computation of elementary modes performed across the task of generating candidate

elementary flux modes. An interleaving strategy is used to assign positive and negative

columns in the nullspace matrix and try to attain good load balancing across other portions

of the Nullspace Algorithm which follow the generation of the candidate modes. Major

disadvantage of the design is the need to keep the entire nullspace matrix during the run

of the algorithm at each processor’s memory. Hence, it is needed to partition the nullspace

matrix across all the processors in the environment and maintain efficient load balancing.

One possible solution to this challenge is illustrated in Chapter 6 using Global Arrays library.

66

Chapter 5

Divide-and-conquer approach in

elementary mode computation

5.1 Introduction

An early idea in studying metabolic networks, and biological networks in general, was to

perform partitioning of the given network. Splitting network into subsystems which are

loosely connected may facilitate the analysis of the functional properties. The idea and

efforts to split the stoichiometry metabolic network to facilitate the elementary flux mode

computation did not give any concrete procedure or insight. First, if the elementary modes

are computed for every partition of the given metabolic network, it is not clear how to

glue the modes back into the original network due to the requirement for the quasi-steady

state property imposed on internal metabolites. Second, metabolic networks exhibit the

scale-free property and few metabolites in the network constitute hubs, hence it may not be

possible to split the network into several dense and loosely connected components. Despite

that, an alternative reverse partitioning approach was earlier proposed and is a theme

of this chapter. If used properly it may attain reduction in the size of utilized memory

and computation time. This chapter illustrates the work earlier published in [149] with a

correction of the number of modes reported in the original publication for the largest of the

metabolic networks which were used.

5.2 Divide-and-conquer

In [150], the authors proposed a parallelization based on the divide-and-conquer approach to

compute the complete set of the elementary flux modes. The complete set of the elementary

flux modes is partitioned across the selected subset of qsub reactions into 2qsub disjoint EFM

subsets where the zero/nonzero flux pattern of the elementary flux modes in the ith subset

67

corresponds to the binary representation of the number i, for i ∈ 0, . . . , 2qsub − 1. The

reactions for partitioning elementary flux modes have to be selected after the compression

step when the size of the original network is reduced to a smaller size, in order to avoid

having the partitioning subset consisting of correlated or null reactions.

This divide-and-conquer approach illustrated in this chapter is based on the following

theorem [150, 130].

Theorem 7. If the Nullspace Algorithm is stopped at its (q − q′)th iteration, then the set

of elementary flux modes with all the last q′ reactions having non-zero flux values coincides

with the set of columns in the current nullspace matrix having non-zero flux values in the

last q′ elements.

Proof. Assume the Nullspace Algorithm is at the (q−q′)th iteration of its run, i.e. there are

q′ rows left to be processed. If the algorithm continues its run for the remaining q′ iterations,

every new candidate column will be generated as a linear combination of previous columns

and will contain at least one zero element for reactions indexed by q − q′ + 1 to q. This is

due to the fact that the linear combination is performed as to annihilate the element of the

column corresponding to the current row (Algorithm 3). Hence, the nullspace matrix at the

end of iteration contains all elementary modes having non-zero flux in the last q′ reactions.

As a last step, one needs to reject those columns in the mentioned current nullspace matrix

which do not satisfy the irreversibility constraints.

Theorem 7 is used to incorporate the divide-and-conquer idea with the combinatorial

parallel Nullspace Algorithm (Algorithm 4), as described in the following section.

5.3 Combined Parallel Nullspace Algorithm

In Algorithm 7, we propose the incorporation of the divide-and-conquer approach in the

combinatorial parallel Nullspace Algorithm (Algorithm 4). Initially, the reaction subset size

qsub is selected and the elementary modes are computed for each of the 2qsub subsets. In lines

9 and 10 indices of reactions which should have non-zero and zero flux values are extracted

according to the binary representation of the current iteration value k. For the i-th subset,

a reduced stoichiometry matrix is formed by removing the columns corresponding to the

indices zfRows of reactions with zero flux values. This results in the reduced stoichiometry

matrix Ni (line 12), and new nullspace matrix Ri is recomputed (line 13). The rows of

the nullspace matrix Ri are reordered so that the reactions corresponding to the indices

in nzfRows are put at the bottom of the matrix (line 15). We then run the combinatorial

parallel Nullspace Algorithm (line 18) described in Algorithm 4 on the pair (Ni, Ri). Rows

corresponding to those reactions which should have zero reaction flux values are appended

back to the matrix EFMi (lines 21-25) and the iteration is complete.

68

Algorithm 7 [R] = CombParallelNullspAlg(N,R, qsub)

Input:

1: reduced stoichiometry matrix (Nm×q); initial nullspace of the form Rq×(q−m) =

[

R(1)

R(2)

]

Output:

2: matrix of elementary modes EFMq×nems

3: ⊲ Reduce initial metabolic network (N,R) to equivalent smaller network.
4: (Nred, Rred) ⇐ (N,R); EFM = [];
5: for k = 0 to 2qsub − 1 do

6: ⊲ dec2binvec - get binary representation of number as a vector
7: ⊲ nzfRows - indices of last qsub rows which must have non-zero flux
8: ⊲ zfRows - indices of last qsub rows which must have zero flux
9: nzfRows = q − qsub + find(dec2binvec(k))
10: zfRows = q − qsub + find(¬dec2binvec(k))
11: ⊲ from last qsub rows of nullspace matrix remove rows corresponding to zero reaction flux for the kth

subproblem
12: Ni = Nred;Ni(:, zfRows) = [];
13: Ri = null(Ni)
14: ⊲ reorder rows in Ri so that rows corresponding to nzfRows are at the bottom
15: Ri = ReorderRows(Ri);Ni = ReorderColumns(Ni);
16: lastRowIter := q − qsub
17: ⊲ Run parallel algorithm on the pair (Ni, Ri) until reaching iteration corresponding to lastRowIterth

row
18: EFMi = ParallelNullspAlg(Ni, Ri, Nnodes, lastRowIter)
19: ⊲ keep only those columns in EFMi which have non-zero values in the last length(nzfRows) rows
20: selectedRowInd = q − qsub + (1 : length(nzfRows))
21: EFMi = EFMi(:, all(EFMi(selectedRowInd, :)))
22: ⊲ add zero-rows to the EFMi in order to obtain the wanted subset of EFMs
23: numEmsi = size(EFMi, 2)
24: EFMi(nzfRows, :) = EFMi(selectedRowInd, :)
25: EFMi(zfRows, :) = zeros(length(zfRows), numEms)
26: EFM = [EFM EFMi]
27: end for

28: return EFM

5.3.1 Example

We now illustrate the divide-and-conquer idea on our sample metabolic network in Figure

5.1 to illustrate our Combined Parallel Nullspace Algorithm. This ‘toy’ network has five

internal metabolites (A,B,C,D,P) and nine reactions (r1, r2, r3, r4, r5, r6r, r7, r8r, r9). All but

two reactions are thermodynamically irreversible. Reversible reactions are denoted with a

trailing ‘r’.

The dotted line in Figure 5.1 marks the boundary between the interior and exterior of

the given structure, which may be an entire cell or an internal compartment (organelle).

To represent the metabolic network in an analytical way we use the stoichiometry matrix

illustrated in equation (5.1).

69

A

B

C P
r1

D

r8r

r5 r6r

r2

r9

r4

r7

r3

Bext

Aext Pext

Dext

Figure 5.1: Simple metabolic network [4]

N =

A

B

C

D

P

1

r1

−1

r2

0

r3

0

r4

−1

r5

0

r6r

0

r7

0

r8r

0

r9

0 0 0 0 1 −1 −1 −1 0

0 1 −1 0 0 1 0 0 0

0 0 1 0 0 0 0 0 −1

0 0 1 −1 0 0 2 0 0

(5.1)

Nred =

A

B

C

P

1

r1

−1

r2

0

r3

0

r4

−1

r5

0

r6r

0

r7

0

r8r

0 0 0 0 1 −1 −1 −1

0 1 −1 0 0 1 0 0

0 0 1 −1 0 0 2 0

. (5.2)

The Nullspace Algorithm begins by computing a basis for the nullspace of Nred (the

“nullspace matrix”). This is usually accomplished by reducing Nred to row echelon form

and permuting the columns so that the stoichiometric matrix takes on the form (−R(2), I).

The resulting nullspace matrix then has the form

Rredperm =

(
R(1)

R(2)

)
=

(
I

R(2)

)
=

r2

r4

r5

r7

r1

r3

r6r

r8r

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 0

0 1 0 −2

−1 1 0 −2

1 −1 1 1

(5.3)

with the rows corresponding to the identity matrix being pushed to the top. The remaining

rows are ordered by the increasing number of non-zero elements in the row [41, 40, 76], a

heuristic proven to often improve the efficiency of Nullspace Algorithm. We also reorder

the columns of Nred to to match the row order of (5.3), obtaining

70

Nredperm =

A

B

C

P

−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r6r

0

r8r

0 0 1 −1 0 0 −1 −1

1 0 0 0 0 −1 1 0

0 −1 0 2 0 1 0 0

. (5.4)

If a simple serial or combinatorial parallel Nullspace Algorithm is applied, it will produce

the elementary flux mode matrix as given in equation (5.5).

EFM =

r1

r2

r3

r4

r5

r6r

r7

r8r

r9

1 0 1 0 1 1 1 1

1 0 0 0 1 1 0 0

0 1 0 0 1 0 1 0

0 1 0 2 1 2 1 2

0 0 1 0 0 0 1 1

−1 1 0 0 0 −1 1 0

0 0 0 1 0 1 0 1

1 −1 1 −1 0 0 0 0

0 1 0 0 1 0 1 0

(5.5)

Once the initial nullspace matrix is found for the stoichiometry matrix, we consider the

four subproblems across the two reactions r6r and r8r.

• Reactions r6r, r8r should both have zero flux values. Columns corresponding to the

reactions r6r, r8r are removed from the matrix Nredperm in equation (5.4) to obtain

the matrix given in equation (5.6).

Nr00 =

A

B

C

P

−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0 0 1 −1 0 0

1 0 0 0 0 −1

0 −1 0 2 0 1

. (5.6)

The nullpace matrix corresponding to the matrix Nr00 is given as Rr00.

Rr00 =

r2

r4

r5

r7

r1

r3

2 0

0 2

−1 1

−1 1

1 1

2 0

×
1

2
. (5.7)

71

When the Nullspace Algorithm is run on the pair (Nr00, Rr00) two elementary flux

modes are obtained:

EFMr00 =

r2

r4

r5

r7

r1

r3

0 1

2 1

1 0

1 0

1 1

0 1

. (5.8)

• Reaction r6r should have zero and reaction r8r should have non-zero flux values. This

requires the removal of the column corresponding to the reaction r6r in the matrix

Nredperm to obtain matrix Nr01

Nr01 =

A

B

C

P

−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r8r

0 0 1 −1 0 0 −1

1 0 0 0 0 −1 0

0 −1 0 2 0 1 0

. (5.9)

The nullpace matrix corresponding to the matrix Nr01 is given as Rr01.

Rr01 =

r2

r4

r5

r7

r1

r3

r8r

2 0 0

0 2 0

0 0 2

−1 1 0

2 0 2

2 0 0

1 −1 2

×
1

2
. (5.10)

Running the Nullspace Algorithm until before the row corresponding to the reaction

r8r on a pair (Nr01,Kr01), and extracting those columns having non-zero flux values

for the reaction r8r we obtain two elementary flux modes:

EFMr01 =

r2

r4

r5

r7

r1

r3

r8r

0 0

2 0

0 1

1 0

0 1

0 0

−1 1

. (5.11)

72

• Reaction r6r should have non-zero and reaction r8r should have zero flux values. This

requires the removal of the column corresponding to the reaction r8r in the matrix

Nredperm to obtain matrix Nr10.

Nr10 =

A

B

C

P

−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r6r

0 0 1 −1 0 0 −1

1 0 0 0 0 −1 1

0 −1 0 2 0 1 0

. (5.12)

The nullspace matrix corresponding to the matrix Nr10 is given as Rr10.

Rr10 =

r2

r4

r5

r7

r1

r3

r6r

1 0 0

0 1 0

0 0 1

−1 1 −1

1 0 1

2 −1 2

1 −1 2

. (5.13)

Similarly, using the Nullspace Algorithm and running it until before the reaction

corresponding to the row r6r, two elementary flux modes are obtained:

EFMr10 =

r2

r4

r5

r7

r1

r3

r6r

1 0

2 1

0 1

1 0

1 1

0 1

−1 1

. (5.14)

• reactions r6r and r8r have both non-zero fluxes.

Nr11 =

A

B

C

P

−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r6r

0

r8r

0 0 1 −1 0 0 −1 −1

1 0 0 0 0 −1 1 0

0 −1 0 2 0 1 0 0

. (5.15)

73

Rr11 =

r2

r4

r5

r7

r1

r3

r6r

r8r

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 0

0 1 0 −2

−1 1 0 −2

1 −1 1 1

. (5.16)

In this last case, the Nullspace Algorithm is run on a pair of matrices (Nr11, Rr11)

until before the row corresponding to the reaction r6r, and the elementary flux modes

having non-zero values for both reactions r6r and r8r are extracted. This yields two

elementary flux modes:

EFMr11 =

r2

r4

r5

r7

r1

r3

r6r

r8r

1 0

0 1

0 0

0 0

1 0

0 1

−1 1

1 −1

. (5.17)

We see that the union of elementary flux modes obtained for all four cases coincides

with the elementary flux modes given in equation (5.5). In our combined parallel Nullspace

Algorithm, each of the four subtasks would be run independently using the Combinatorial

Parallel Nullspace Algorithm given earlier in Algorithm 4.

5.4 Results

We used the “Calhoun” and “Itasca” parallel platforms of the Minnesota Supercomputing

Institute to test our Combined Parallel Nullspace Algorithm.

“Calhoun” is an SGI Altix XE 1300 Linux cluster. The cluster consists of 256 compute

nodes, each containing two quad-core 2.66 GHz Intel Xeon “Clovertown”-class processors

sharing 16 GB of main memory. In total, “Calhoun” consists of 2048 compute cores and

4 TB of main memory. Compute node is consists of two multi-chip modules (MCMs) each

composed of two dies. These dies are two separate pieces of silicon connected to each other

and arranged on a single module. Each die has two processor cores that share a 4 MB

74

L2 cache. Each MCM communicates with the main memory in the system via a 1,333

MHz front-side bus (FSB). All of the systems within “Calhoun” are interconnected with a

20-gigabit non-blocking InfiniBand fabric used for interprocess communication (IPC). The

InfiniBand fabric is a high-bandwidth, low-latency network, the intent of which is to accom-

modate high-speed communication for large MPI jobs. The nodes are also interconnected

with two 1-gigabit ethernet networks for administration and file access, respectively.

“Itasca” platform is an HP Linux Cluster which also hosts an extension in the form of

51 Sandy Bridge blades partitioned into on three groups of 35, 8 and 8 nodes distinguished

by the amount of memory available to the single node within each of the groups which

ammounts to 64GB, 128GB and 256GB. We used 4 nodes from the second group of 8 nodes

where each node consists of 2 eight-core Sandy bridge E5-2670 processor chips (2.6 GHz).

This ammounts to the total of 64 cores and 256GB of available memory across 4 nodes.

Algorithm 7 are implemented in software which is distributed under the GNU General

Public License (GPL). Source code and documentation are freely available at the web site:

http://elmocomp.sourceforge.net/.

Table 5.1: Parallel computation of EFMs on 78-reaction S. cerevisiae metabolic network using Algorithm
4 on Intel Xeon machine

nodes 1 2 1 1 4 8 16

cores per node 1 1 4 8 4 4 4

total # cores 1 2 4 8 16 32 64

memory per core 12gb 12gb 3gb 1.5gb 3gb 3gb 3gb

gen. cand (sec) 2744.76 1383.93 688.60 349.05 179.04 95.44 46.83

rank test (sec) 112.88 77.42 52.80 33.98 20.38 12.21 8.01

communicate (sec) 0 0.06 0.09 0.18 0.17 0.19 0.18

merge (sec) 0 0.68 1.01 1.40 1.45 1.62 1.74

total time (sec) 2894.40 1490.85 761.29 404.33 208.98 115.46 61.87

Total # candidate modes: 159,599,700,951 Total # EFM: 1,515,314

We used two metabolic networks of S. cerevisiae of dimension 62 × 78 (35 × 55) and

63 × 83 (40 × 61), respectively, where values in parentheses correspond to the size of the

reduced metabolic network after elimination of redundant constraints. The list of reactions

in the 78- and 83- reaction networks is given in section A.3 of Appendix A. The 83-

reaction network accounts for growth on more than one substrate and supports aerobic

growth. In the network descriptions reversible reactions are denoted with suffix “r” and

external metabolites with suffix “ext”. Elementary flux modes were computed for the

78-reaction network using the Combinatorial Parallel Nullspace Algorithm (Algorithm 4)

and the Combined parallel Nullspace Algorithm (Algorithm 7) on Intel Xeon (Clovertown)

75

http://elmocomp.sourceforge.net/

Table 5.2: Parallel computation of EFMs on 78-reaction metabolic network of S. cerevisiae using Algorithm
7 on Intel Xeon (Clovertown) machine with partitioning across reactions {R89r, R74r} using 16 processors

subset R89rR74r R89rR74r R89rR74r R89rR74r
EFM 274,919 599,344 207,533 433,518

gen. cand
17.50 57.36 17.29 24.61

(sec)

rank test
2.96 7.18 2.34 3.78

(sec)

comm
0.05 0.10 0.05 0.10

(sec)

merge
0.16 0.44 0.11 0.36

(sec)

total time
21.97 67.77 20.79 31.07

(sec)

Cumulative total time: 141.6 secs Total # EFM: 1,515,314

Total # candidate modes: 81,714,944,316

machine. The results of the computation using Algorithm 4 are given in table 5.1, while

the results of using Algorithm 7 are given in table 5.2. In table 5.2 the row subset identifies

the subproblem in the divide-and-conquer partitioning, and the zero-flux pattern in the two

reactions R89r and R74r used (R and R denote that the reaction R has zero and non-

zero flux value in the given EFM subproblem, respectively). To compute the elementary

flux modes for the subproblems in the combined parallel Nullspace Algorithm we used 16

cores across 4 compute nodes and compared that results with the column in Table 5.1

corresponding to 16 cores. The divide-and-conquer splitting in the Algorithm 7 decreased

the number of intermediate candidate modes from 159,599,700,951 to 81,714,944,316, what

resulted in the effective reduction of the computation time from 208.98 seconds ((Table

5.1)) to 141.6 seconds.

The set of EFMs for the 83-reaction network was computed using the combined parallel

Nullspace Algorithm (Algorithm 7) on the 64 cores of the Sandy Bridge cluster earlier

described (Table 5.3). We made an estimate that using five reactions to partition the tasks

might be sufficient to compute all the modes using given hardware. Fortunately, none of the

32 tasks in that case required further splitting and the computation finished with a total of

68,868,602 elementary modes and maximum requirement for physical memory per compute

node equal to 3,708 Mbyte, as shown in Table 5.3. It was established that 12 out of 32

partitions have no elementary modes, though the cost of learning this was paid at high price

as is shown by the very large number of generated candidate modes in those partitions. As

given in Theorem 3 to decide if there is an elementary mode having non-zero (positive) flux

in the k specified reactions is NP-complete decision problem and thus it is not possible to

tell in the 12 mentioned cases if the network has no admissible modes before running the

76

Table 5.3: Parallel computation of EFMs on 83-reaction metabolic network of S. cerevisiae using Algorithm
7 on Sandy Bridge 64-core cluster with partitioning across reactions {R102r–, R57, R65, R19r, R68}

reaction partition # candidate modes # EFM time (sec)
R102r–, R57, R65, R19r , R68 45,095,637,841 1,769,187 107.503
R102r–, R57, R65, R19r , R68 2,779,842,279,941 2,829,302 1258.898
R102r–, R57, R65, R19r, R68 35,250,457,892 685,498 102.000
R102r–, R57, R65, R19r, R68 354,576,653,413 215,636 298.717
R102r–, R57, R65, R19r , R68 2,779,842,279,941 907,690 1255.549
R102r–, R57, R65, R19r , R68 407,722,024,826 0 359.379
R102r–, R57, R65, R19r, R68 354,577,418,542 733,874 353.848
R102r–, R57, R65, R19r, R68 353,223,655,207 0 357.311
R102r–, R57, R65, R19r , R68 167,684,683,474 1,640,260 213.804
R102r–, R57, R65, R19r , R68 5,679,741,563,998 9,488 3561.345
R102r–, R57, R65, R19r, R68 153,276,454,788 0 248.387
R102r–, R57, R65, R19r, R68 4,647,652,548,048 0 2996.302
R102r–, R57, R65, R19r , R68 5,679,741,563,998 14,832,898 3550.382
R102r–, R57, R65, R19r , R68 5,645,989,479,622 0 3042.295
R102r–, R57, R65, R19r, R68 4,647,652,548,048 2,196,698 3002.308
R102r–, R57, R65, R19r, R68 4,647,649,237,656 0 2823.045
R102r–, R57, R65, R19r , R68 171,942,706,750 2,909,673 212.032
R102r–, R57, R65, R19r , R68 1,575,477,661,513 4,602,462 842.725
R102r–, R57, R65, R19r, R68 137,727,557,470 1,185,538 259.513
R102r–, R57, R65, R19r, R68 1,340,527,709,376 368,820 770.213
R102r–, R57, R65, R19r , R68 1,575,477,661,513 1,498,804 834.200
R102r–, R57, R65, R19r , R68 1,561,424,250,368 0 714.985
R102r–, R57, R65, R19r, R68 1,340,527,709,376 1,265,878 774.598
R102r–, R57, R65, R19r, R68 1,360,997,901,290 0 709.914
R102r–, R57, R65, R19r , R68 648,315,168,596 2,667,756 473.371
R102r–, R57, R65, R19r , R68 21,488,036,243,452 17,414 9411.812
R102r–, R57, R65, R19r, R68 938,248,016,253 0 619.416
R102r–, R57, R65, R19r, R68 17,949,749,059,604 0 8174.077
R102r–, R57, R65, R19r , R68 21,488,036,243,452 24,753,116 9421.823
R102r–, R57, R65, R19r , R68 21,851,155,160,634 0 8625.066
R102r–, R57, R65, R19r, R68 17,949,749,059,604 3,778,610 8165.555
R102r–, R57, R65, R19r, R68 17,997,956,795,218 0 7357.128

Total: 167,754,867,391,704 68,868,602 22h:28m:18s

Nullspace Algorithm.

5.4.1 Time scalability

Computation time is proportional to the number of generated intermediate elementary

modes. Divide-and-conquer approach usually leads to the decrease of the cumulative num-

ber of intermediate modes compared to the unsplit problem, and the execution times are

proportional to these numbers of modes. It is yet unclear how to select the subset of re-

actions in divide-and-conquer that may maximally decrease the number of intermediate

77

candidate elementary flux modes.

5.4.2 Memory scalability

The combinatorial parallel Nullspace Algorithm has the disadvantage that it requires the

storage of the current nullspace matrix in the local memory across all compute nodes at

each step. Hence, until that bottleneck is removed, the combinatorial parallel Nullspace

Algorithm may only be used for problems where the current nullspace matrix may fit in

the local memory of the compute node. The divide-and-conquer feature of the combined

parallel Nullspace algorithm “fits” the larger problem to the available architecture, where

combinatorial parallel algorithm only could not be applied. However, cumulative memory

requirements for all subproblems compared to the original problem remain the same.

5.5 Discussion

The divide-and-conquer approach requires the selection of the subset of reactions which are

used in the partitioning of the computation of modes. If the size of this reaction subset is

large, the number of partitions to explore may be impractically high. The estimation of

the minimal number of reactions required to enter the partitioning subset is still performed

through manual experimentation. An automated method to select the subset and estimate

the approximate number of elementary modes across all possible tasks for a given reaction

partitioning subset would be lead to a more automated Combined Parallel Nullspace Algo-

rithm. In order to give an intuition about the computational complexity of this problem it

was earlier in subsection 3.2.1 cited that to enumerate all the elementary modes having non-

zero flux for a specific reaction is NP-hard [132, 82] and to decide if there is an elementary

mode with the non-zero flux for the specified subset of reactions is NP-complete.

5.6 Conclusion

This chapter gives an improved parallelization of the Nullspace Algorithm compared to the

Combinatorial Parallel Nullspace Algorithm (Algorithm 4) proposed in Chapter 4, in terms

of reducing memory requirements per run of task. An earlier established property of the

Nullspace Algorithm which allows the computation of modes having non-zero flux for specific

subset of reactions was used. The divide-and-conquer idea [150] was incorporated within

the Combinatorial Parallel Nullspace Algorithm to yield the Combined Parallel Nullspace

Algorithm. The combination of two algorithmic ideas may reduce the computation time by

lowering the total number of intermediate candidate elementary modes and fit the larger

problems to the available parallel architecture where previously the Combinatorial Parallel

Nullspace Algorithm failed. The efficiency of applying the divide-and-conquer approach

78

depends on the proper selection of the reactions subset used to partition the space of

elementary flux modes into disjoint subsets computed independently. Using this approach, it

was possible to complete the computation of the nearly 70 million elementary flux modes for

the 83-reaction S. cerevisiae metabolic network which has three distinct substrate reactions.

As will be shown in the following chapter, there is more space for improvement within the

parallel algorithm proposed here. First, the current nullspace matrix should not be fully

stored across all the compute nodes as is currently done in the Combinatorial Parallel

Nullspace Algorithm. The replicated data structures should be partitioned in an efficient

way across all the processors’ memories instead. Second, it would be important to propose

a strategy for the selection of the reaction subset used in the divide-and-conquer part of the

algorithm so that it generates as few intermediate elementary mode candidates as possible.

Finally, rather than partitioning the elementary flux modes across the subset of selected

reactions as proposed in this chapter, one may decide to partition the metabolic network

graph into smaller units and compute the elementary modes for each of them.

79

Chapter 6

Parallelization of Nullspace

Algorithm using Global Arrays

6.1 Introduction

As outlined earlier, major problem in the proposed parallel Nullspace Algorithms for the

distributed memory system is the need to keep the copy of entire nullspace matrix on

each compute node. Partitioned Global Addressing Space libraries and languages such

as UPC, Co-Array Fortran or Global Arrays[151, 152, 153] may hold promise to attain

the partitioning of the data structure across all the compute-nodes and allow the user

the shared-memory view of the data. Due to its easy integration and use, Global Arrays

library is used to re-implement the Combinatorial Parallel Nullspace Algorithm outlined

in Chapter 4, allowing the global view of the distributed memory, which largely facilitates

the development of the software with improved memory scalability. Rationale behind this,

is that in many cases serial algorithms have a more straightforward and easier parallel

design and implementation in a shared memory than in distributed memory systems. Using

only MPI library without relying on the Global Arrays, one may have to organize the

communication of the data into numerous MPI collective operations in order to attain

uniform partitioning of the data and accomplish good time scalability. These reasons, as

well as some other features of the Global Arrays library mentioned in continuation of this

chapter, allowed the design of an improved parallel implementation of the algorithm for the

computation of the elementary flux modes.

This chapter proposes an improved parallel Nullspace Algorithm used to compute ele-

mentary flux modes using Global Array library and try to attain good memory and time

scalability. Section 6.2 outlines the proposal for the parallel Nullspace Algorithm utiliz-

ing Global Arrays. Section 6.3 shows the results obtained for the case of Sacharomyces

cerevisiae metabolic networks, while section 6.4 lists advantages and disadvantages of the

80

approach outlining possible future work.

6.2 Methods

6.2.1 Global Arrays Library

The Global Arrays library provides a shared-memory view of the data on a distributed-

memory computing platform. It was designed to complement the message-passing model

and allows the combination of the shared-memory and distributed-memory programming

styles. The Global Arrays library allows the creation of data in the form of a global array

data structure whose portions are distributed across processors, and every processor is aware

of its “remote” and “local” parts. Elements are accessed by means of indexing only, where

each processor can access any part of the distributed data, without explicitly requesting the

cooperation with other processes. This one-sided asynchronous communication is facilitated

using the Aggregate Remote Memory Copy Interface (ARMCI) library [154]. Hence, Global

Arrays makes a distributed memory system into a virtual, shared-memory NUMA system.

The Global Arrays library provides operations for initialization and termination of the

environment, creation and destruction of arrays, one-sided communication operations, in-

terprocess synchronization, collective array operations, utility operations, mirrored arrays,

processor groups, sparse data operations and interfaces to third party software packages.

Global Arrays is designed to support use of C and Fortran-77, as well as bindings for C++

and Python.

6.2.2 Parallel Nullspace Algorithm using Global Arrays

The Nullspace Algorithm may be redesigned to utilize Global Arrays library and represent

as global arrays those data structures which were replicated across all processors in the

Combinatorial Parallel Nullspace Algorithm (Algorithm 8). To facilitate understanding of

the pseudocode outlined in this chapter, for data structure X we use the superscript notation

X(GA) to denote that it is a global array distributed across all the processors, and X(LC)

stands for ”local copy” available: data which either resides locally or has been fetched from

other processors.

Global arrays are created for bit-valued and real-valued nullspace matrices (R(GA,bit)

and R(GA,real)), arrays of indices of positive, negative and zero columns (pInd(GA), nInd(GA),

zInd(GA)) in the current nullspace matrix, and arrays of pairs of indices of columns which

generate admissible candidate modes (cPInd(GA), cNInd(GA)). Algorithm 9 gives a high

level description of the parallelization using global arrays. Given the initial nullspace

matrix, we create global arrays R
(GA,bit)
(q−m)×(q−m) and R

(GA,real)
m×(q−m) which represent bit-valued

(upper) and real-valued (lower) matrices. In every iteration step, the top row of the

81

Algorithm 8 [EFM]=CombParallelNullspaceAlg(N,R)

Input:
1: reduced stoichiometry matrix - Nm×q

2: initial nullspace matrix - Rq×(q−m) =

[
R

(bit)
(q−m)×(q−m)

R
(real)
(m)×(q−m)

]

Output:
3: matrix of elementary flux modes EFMq×nEms

4: nEms = q −m
5: for currReac = q −m+ 1 to q do

6: ⊲ current nullspace matrix is R
(currReac)
q×(nEms) =

[
R

(bit)
(currReac−1)×nEms

R
(real)
(q−currReac+1)×nEms

]

7: [pInd, nInd] = ScanRealValuedEfm(currReac,R(real))
8: [cPInd, cNInd] = ParallelGenerateEFMCands(currReac, pInd, nInd,R(bit))
9: [cPInd, cNInd] = Sort&RemoveDuplicates(currReac, cPInd, cNInd,R(bit))

10: [cPInd, cNInd] = RankTests(N, cPInd, cNInd,R(bit))
11: [cPInd, cNInd] = Communicate&Merge(cPInd, cNInd,R(bit))
12: [R(bit), R(real)] = ExpandEfm(cPInd, cNInd,R(bit), R(real))
13: nEms = size(R(real), 2)
14: end for
15: return R(bit,q)

Algorithm 9 [EFM]=NullspaceAlgParallelGA(N ,R)

Input:
1: reduced stoichiometry matrix (Nm×q);

2: initial right nullspace matrix Rq×(q−m) =

[
R

(bit)
(q−m)×(q−m)

R
(real)
(m)×(q−m)

]

Output:
3: matrix of bit-valued elementary flux modes EFMq×nEms

4: CREATE(R
(GA,bit)
(q−m)×(q−m)); initialize to R

(bit)
(q−m)×(q−m)

5: CREATE(R
(GA,real)
m×(q−m)); initialize to R

(real)
m×(q−m)

6: nEms = q −m
7: for currReac = q −m+ 1 to q do
8:

9: ⊲ for convenience we will omit the subscript from R
(GA,bit)
(currReac−1)×nEms

and

R
(GA,real)
(q−currReac+1)×nEms

10: [pInd(GA), nInd(GA), zInd(GA)] = ScanRealValuedEfmGA(currReac,R(GA,real))
11: [cPInd(LC), cNInd(LC)] = GenerateCandsGA(currReac, pInd(GA), nInd(GA), R(GA,bit))
12: [cPInd(LC), cNInd(LC)] = LocalPruneCandModesGA(cPInd(LC), cNInd(LC), R(GA,bit))
13: [cPInd(GA), cNInd(GA)] = GlobalPruneCandModesGA(currReac, cPInd(LC), cNInd(LC),

R(GA,bit))
14: [R(GA,bit), R(GA,real)] = ExpandEfmGA(R(GA,bit), R(GA,real), pInd(GA), nInd(GA), zInd(GA),

currReac, cPInd(GA), cNInd(GA))
15: end for
16: return R(GA,bit)

real-valued part of the nullspace matrix is scanned for positive, negative and zero ele-

ments (ScanRealValueEfmGA in Alg. 20) to determine indices of positive, negative and zero

nullspace matrix columns, respectively. Furthermore, the global arrays of indices of positive

82

and negative columns are used in every processor to fetch the respective columns and gen-

erate candidate columns (GenerateCandsGA in Alg. 21). The columns are, as earlier shown,

pruned for the maximal allowed number of non-zero elements. Procedure GenerateCandsGA

returns local arrays of indices of positive and negative columns in cPInd(LC), cNInd(LC)

which can then be locally pruned by eliminating those pairs of indices which generate du-

plicate candidate columns and running the algebraic rank test (LocalPruneCandModesGA

in Alg. 22). The resulting arrays of pairs of indices is then pruned globally to eliminate

those pairs of indices which generate duplicate column modes (GlobalPruneCandModesGA

in Alg. 23). The global removal of duplicates is comprised of first running parallel radix-

sort (RadixSortEFMCandsGA in Alg. 24) on the bit-columns generated by the arrays of pairs

of indices. Parallel radix-sort differs from the serial radix-sort in the portion of the algo-

rithm which uses counting sort. Counting sort is parallelized using prefix scan to determine

new positions of the local elements in the global array. For an appropriate bucket size

width=8 or 16, which is observed at every iteration, counts are stored in an array of length

2width. Sorting bit columns across width-bit portions is performed in numBits
width steps for each

numBits-bit word in a column, where numBits=32 or 64. The sorted array of pairs of in-

dices is then scanned to retain only the pairs of indices generating unique bit-column modes

(UniqueEFMCandsGA in Alg. 25). Once this is complete, the two global arrays R(GA,bit)

and R(GA,real) are scanned to eliminate negative columns, i.e. those indexed by elements

in nInd(GA), in order to enforce the irreversibility constraint. Finally, the globally pruned

and unique column modes are appended to the two global arrays R(GA,bit) and R(GA,real)

(ExpandEfmGA). Due to limited space we omit the details for ExpandEfmGA, since it takes

only a small fraction of the total execution time.

The Algorithms sketched here use the collective operations in the Global Array library,

denoted here as CREATE/DESTROY, PUT/GET and SCATTER/GATHER.

6.3 Results

Implementation was tested on HP Linux cluster with 1,091 HP ProLiant BL280c G6 blade

servers, each with two-socket, quad-core 2.8 GHz Intel Xeon X5560 “Nehalem EP” proces-

sors sharing 24 GB of system memory, with a 40-gigabit QDR InfiniBand (IB) interconnect.

The Global Array library and elementary mode software were compiled using Intel C++

compiler 12.1.2 (compatible with gcc 4.3.0) and Platform MPI 8.0 for Linux. In addition, the

Global Array library was compiled to support communication over the InfiniBand network.

Algorithms were implemented using C++ and Standard Template Library.

The HP Linux Cluster utilized was configured so that all processor cores per compute

node would have to be used during the run, hence the smallest usable processor count was

8. We decided to use 2 GB of memory per each of the 8 available processor cores. If for the

83

Table 6.1: Results of running Algorithm 9 on 78-, 80-, and 83- reactions metabolic networks of S. cerevisiae

Time (sec)
#EM # cand. EM

8p 16p 32p 64p 128p
original gen. cands. 156.277 79.067 43.514 23.98 19.293

1
,5
1
5
,3
1
5

62× 78(31) local prune . 25.193 17.051 11.224 8.381 6.991
compressed global prune 8.538 7.147 5.963 6.726 8.534 116,864,715,755
35× 54(17) append 1.056 0.755 0.519 0.400 0.385

misc 0.008 0.019 0.444 0.455 0.326
total 191.095 104.051 61.270 39.945 35.531

64p 128p 256p 512p 1024p
original gen. cands. 1348.135 740.007 455.919 499.337 1061.334

1
3
,3
2
2
,4
6
4

62× 80(31) local prune . 1316.965 979.306 819.404 742.346 679.683
compressed global prune 85.266 125.281 133.199 136.688 180.026 8,032,689,186,974
38× 57(19) append 3.292 2.570 2.505 2.663 3.522

misc 0.491 0.513 0.836 1.873 2.374
total 2754.173 1847.689 1411.869 1382.910 1926.941

512p 1024p 2048p
original gen. cands. 3177.564 2908.849 4547.499

6
8
,8
6
8
,6
0
2

63× 83(34) local prune . 2852.662 2266.930 1997.479
compressed global prune 72.552 80.616 114.432 66,144,590,373,585
40× 61(23) append 3.801 5.668 8.199

misc 0.579 1.743 1.575
total 6107.177 5263.820 6669.199

Table 6.2: Results of running Algorithm 8 on 78-, 80- reactions metabolic networks of S. cerevisiae

Time (sec)
#EM # cand. EM

8p 16p 32p 64p 128p
original gen. cands. 239.519 119.939 60.098 30.959 15.277

1
,5
1
5
,3
1
5

62× 78(31) local prune . 20.068 10.958 6.990 5.035 4.017
compressed global prune 14.711 15.725 13.344 14.202 14.392 116,864,715,755
35× 54(17) append 0.356 0.368 0.353 0.370 0.352

misc 0.076 3.874 2.100 1.134 0.699
total 274.858 150.995 83.022 51.836 34.871

64p 128p 256p 512p 1024p
original gen. cands. 2204.642 1104.309 552.119 279.801 141.765

1
3
,3
2
2
,4
6
4

62× 80(31) local prune . 761.254 588.728 484.476 443.023 423.616
compressed global prune 66.803 72.888 77.400 81.676 88.132 8,032,689,186,974
38× 57(19) append 4.053 4.095 4.512 4.818 5.071

misc 164.615 83.045 43.155 26.470 11.605
total 3201.386 1853.075 1161.666 835.791 670.190

Table 6.3: Usage data of the Global Arrays collective operations in the run of Algorithm 9 on the 83-reaction
metabolic network of S. cerevisiae

call mean value per processor 512p 1024p 2048p

of calls 7,509.07 14,600.10 28,900.05

GET # of processors per call 2.26 2.13 2.21

bytes remotely sent (MB) 142.489 131.597 126.015

of calls 7,749.42 14,829.79 29,110.74

GATHER # of processors per call 5.30 4.30 3.41

bytes remotely sent (MB) 636.339 439.076 340.712

of calls 237.48 206.75 178.95

PUT # of processors per call 1.83 1.88 1.94

bytes remotely sent (MB) 10.717 5.347 2.674

of calls 254.12 227.06 197.03

SCATTER # of processors per call 63.05 73.11 77.51

bytes remotely sent (MB) 16.292 8.141 4.066

specified number of processors and the metabolic network model, the memory requirements

per processor exceeded available memory or if it took excessively long to complete the

computation of the elementary flux modes, we decided to adopt a larger minimal processor

84

8p 16p 32p 64p 128p
number of processors

0

100

200

300

400

500

600

700

Vm
RS

S
(M
by
te
s)

Mean Physical Memory Use Per Processor (VmRSS)

Algorithm 8
Algorithm 9

8p 16p 32p 64p 128p
number of processors

0

500

1000

1500

2000

2500

3000

3500

Vm
Si
ze
 (M

by
te
s)

Mean Virtual Memory Use Per Processor (VmSize)

Figure 6.1: Physical (VmRSS) and virtual memory (VmSize) mean usage per processor in the run of Algorithm
8 and 9 on the 78-reaction S. cerevisiae metabolic network

64p 128p 256p 512p 1024p
number of processors

0

200

400

600

800

1000

1200

1400

1600

1800

Vm
RS

S
(M

by
te

s)

Mean Physical Memory Use Per Processor (VmRSS)

Algorithm 8
Algorithm 9

64p 128p 256p 512p 1024p
number of processors

0

500

1000

1500

2000

2500

3000

3500

4000

Vm
Si

ze
 (M

by
te

s)

Mean Virtual Memory Use Per Processor (VmRSS)

Figure 6.2: Physical (VmRSS) and virtual memory (VmSize) mean usage per processor in the run of Algo-
rithms 8 and 9 on the 80-reaction S. cerevisiae metabolic network

count for the run of Algorithms 2 and 3 (80- and 83- reaction networks).

The elementary flux modes were computed for the metabolic networks of the central

metabolism of S. cerevisiae supporting anaerobic (62 metabolites/78 reactions) and aerobic

(62 metabolites/80 reactions and 63 metabolites/83 reactions) growth [144, 149], and also

given in Table A.3 of Appendix A. In this chapter, we refer to these three networks by

their number of reactions as 78-, 80- and 83- reaction networks. The run of Algorithm 9

on the three networks resulted in the computation of 1,515,315, 13,322,464 and 68,868,602

elementary modes, respectively. Results of this computation using up to 2048 processors

are given in Table 6.1. In the first column of the table we report both the dimensions of

the original and the reduced stoichiometry matrix, since the Nullspace Algorithm is run

over the reduced network. To illustrate the complexity of the problem, in the last column

we cite the number of intermediate candidates generated during computation before the

pruning steps. In the rank tests (procedure LocalPruneCandModesGA), the default LU

matrix decomposition was used. However, for the 80- and 83- reaction networks, LU gave

occasional erroneous rank values, hence we resorted to the more numerically robust SVD

(Singular Value Decomposition) at a slight extra expense.

85

512p 1024p 2048p
number of processors

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
by

te
s

Mean Physical and Virtual Memory Use per Processor in the run of Algorithm 9

VmRSS
VmSize

Figure 6.3: Physical (VmRSS) and virtual memory (VmSize) mean usage per processor in the run of Algorithm
9 on the 83-reaction S. cerevisiae metabolic network

For comparison, Table 6.2 gives timing results for the execution of the Combinatorial

Parallel Nullspace Algorithm (Algorithm 8) on 78- and 80- reaction networks. Algorithm 9

consistently performs better in the case of the 78-reaction networks as the processor count

goes from 8 to 128. However, situation is different in the case of the 80- reaction network

where Algorithm 9 exhibits deteriorating time scalability compared to the Algorithm 8 as

it transitions from 256 to 512 processors. As is going to be shown in the sequel, this was

the price paid to attain an improved memory scalability achieved by using Global Arrays

in Algorithm 9.

By the design of the Nullspace Algorithm, we expect that with the increase of used

processors and well attained load balancing by means of the interleaved generation of can-

didates, the generation of candidate modes and the local pruning steps will scale down in

time and memory usage. The remaining parts of the algorithm (e.g. global pruning and

the expansion of the current nullspace matrix) may see an insignificant increase in the com-

putation time. We do observe this trend in the 78- and 80-reaction networks, except in

the cases when moving from 64 to 128 processors and 128 to 256 processors, respectively.

These expectations are less evident in the case of the 83-reaction network, as in going from

1024 to 2048 processors the time for the generation of candidate modes almost doubled,

which probably occurs due to the increased communication volume and cost. To explain

this behavior a more thorough profiling and monitoring of the communication and mem-

ory usage will need to be done. Usage data of the collective operations GET/GATHER and

PUT/SCATTER in the Global Array library was collected using the printStats() function

86

and presented in the Table 6.3. For each of the four used collective operations the table

reports the mean value per processor of the (1) number of calls performed (2) number of

processors participating in the operation (3) amount of data sent/received remotely. Prior

to analyzing the degrading scalability in the run on the 83-reaction network and during the

transition from 1024 to 2048 processors, it is important to note that the scalability of the

local pruning part of the algorithm depends on the successful scalability of the generation

of candidate modes portion. Accordingly, it is important to analyze separately the load

balancing and scalability of the GenerateCandsGA routine.

While the number of GET and GATHER calls scales up with the number of processors, the

total amount of data sent per processor using GET and GATHER does not scale down with

the same factor. On the other side, while the total amount of data sent using PUT and

SCATTER scales down with the increase of the number of processors, the number of calls of

respective operations does not scale up with the same factor. We also noticed that the share

of data used in all collective operations that is sent locally is just a very small fraction of

the total data. The deteriorating scalability of the routine GenerateCandsGA shown for the

83-reaction network is likely caused by the performance of the GET and GATHER functions

and poorly exploited locality.

To track the memory usage, we read the values of the size of the physical and virtual

memory (VmRSS and VmSize fields from the /proc/pid/status files of each of the running

processes, respectively) and plot the mean value. The two values are sampled at the end of

the last iteration of the Nullspace Algorithm. Figures 6.1 and 6.2 show the memory usage

data for the case of the 78- and 80- reaction yeast networks as sampled during the runs

of Algorithms 8 and 9. Similarly, Figure 6.3 shows the VmRSS and VmSize values for the

case of the run of Algorithm 9 on the 83-reaction yeast network, as we were unable to fit

this metabolic network model as input to the Algorithm 8. As profiled, the Global Arrays

implementation attains significantly better physical memory scalability, unlike the MPI-

only based implementation in Algorithm 8 where the scalability is negligible. The reported

virtual memory size is significantly larger in the case of the Global Arrays implementation,

but it should not be of concern since that corresponds to the heap and stack memory

reserved by the Memory Allocator of the Global Arrays library during the initialization of

the environment.

Finally, the computation of the elementary modes in the 83-reaction network using

the Global Arrays supported parallel Nullspace Algorithm is an improvement as we were

previously unable to solely use the Combinatorial Parallel Nullspace Algorithm (Algorithm

8) for its computation. Instead, the Combinatorial Parallel Nullspace Algorithm had to be

combined with the divide-and-conquer approach [149] to reduce the memory footprint and

complete the computation as shown in chapter 5. Table 6.4 compares the run of Global

87

Arrays supporte dand Combined parallel Nullspace Algorithm on 64 and 128 cores using

Sandy Bridge extension of the “Itasca” parallel platform described in section 5.4.

Table 6.4: Computation of EFMs on 83-reaction S. cerevisiae metabolic network using Algorithms 9 and
7 Sandy Bridge extension

algorithm divide-and-conquer GA-based

cores 64 128

max memory per core used (GB) 3.708 7.505

max memory per core available (GB) 16 8

cand modes 167,754,867,391,704 66,144,590,373,585

cumul. time 22 h 28 min 18 sec 3 h 21 min 47 sec

Total # EFM: 68,868,602

6.4 Conclusion and Future Work

This chapter details the proposed and implemented parallel Nullspace Algorithm for the

computation of elementary flux modes using the Global Arrays library. To the extent pos-

sible, it merges the design concepts from the earlier MPI-only based implementation, the

Combinatorial Parallel Nullspace Algorithm [144], where interleaved generation of candi-

dates yielded good time scalability and load balancing, with the capability and convenience

of the Global Arrays to uniformly partition the data across all processors. This effort was

countered by the need to communicate the large amount of data between processors which

in methods such as GET and GATHER did not scale as expected. It was possible to compute

the elementary flux modes on a large yeast metabolic network that was too large to fit in the

previous MPI-only implementation. This computation was performed using 512 processors

and yielded close to 70 million elementary flux modes.

Further efforts will be to explore third party profiling tools which may aid in the reor-

ganization of the communication between the processors, as well as to better exploit the

locality and processor adjacency, and to reduce the amount of data sent using collective

operations of the Global Arrays library. Adding to the difficulty in profiling this Global

Arrays based implementation was the existence of the intermediate ARMCI communication

layer. There is also a possibility and plan to add the feature of out-of-core computation.

88

Chapter 7

Rational strain design using

elementary modes

7.1 Introduction

This chapter builds up on the pathway-based approach used to enumerate multiple re-

action knockout subsets as illustrated in subsection 2.3.3. In section 7.2 we propose the

algorithms for direct and indirect enumeration of the efficient reaction knockout subsets

using elementary flux modes. Section 7.3 outlines the results obtained with both direct

and indirect algorithms on the metabolic networks of E. coli and S. cerevisiae. Finally,

section 7.4 compares the algorithms proposed in this chapter to some of the earlier pro-

posed pathway-based and optimization-based methods, particularly emphasizing the design

and performance when compared to the exhaustive algorithm used to compute constrained

minimal cut sets [117].

7.2 Methods

The algorithms proposed in this chapter directly or indirectly utilize elementary flux modes

to enumerate multiple reaction knockout subsets. Their use is tied to the expense of com-

puting all the elementary flux modes and as such are intended for those users who can

afford such cost and aim to fully characterize the space of possible metabolic states. The

concepts from Minimal Metabolic Functionality and CASOP frameworks are subsumed and

quantitatively represented in the proposed algorithms. The Minimal Metabolic Function-

ality procedure, which was heretofore only manually used, is presented as one variation of

the new algorithms. Prior to proposing our algorithms we outline the metabolic design

criteria in subsection 7.2.1. Enumeration of multiple reaction knockout subsets allows the

user to select the solutions which may fit best to the experimental circumstances. The

89

direct enumeration algorithm is detailed in the subsection 7.2.2, while the indirect enumer-

ation algorithm is given in the subsection 7.2.3. Algorithms are based on known graph

theory algorithms of exponential complexity, but incorporate heuristics which aim to re-

duce the search space of possible knockout subset solutions by properly tuning algorithmic

parameters.

Throughout the chapter, the yield of an elementary flux mode with respect to the target

chemical or biomass reaction is defined as the ratio of the fluxes of either target chemical

or biomass reaction versus the substrate reaction.

7.2.1 Metabolic design criteria

We summarize the two major design criteria which are later incorporated into the algo-

rithms.

Network flexibility refers to the number of alternate pathways available for the conversion

of substrate into target chemical. The Minimal Metabolic Functionality ([1]) concept aims

for a low network flexibility, with as few preserved high-yielding modes as possible. In

contrast, CASOP framework ([114]) strives to attain high network flexibility with high

target chemical yield.

Growth-coupled production refers to the high target chemical yield which is coupled to the

high biomass yield in the elementary mode or overall flux distribution. Optimization-based

methods such as OptKnock require that in all conditions the high target chemical yield

is coupled to the high biomass reaction yield. However, the design of Minimal Metabolic

Functionality requests the existence of both growth-coupled and growth-uncoupled elemen-

tary flux modes, with growth-uncoupled modes capable of producing the target chemical at

the maximum possible yield even in the absence of substrates needed for growth (ammonia

in our example). Algorithms outlined in sequel can incorporate both growth-coupled and

growth-uncoupled design features.

7.2.2 Direct enumeration of reaction knockout subsets using elementary

flux modes

We begin with some basic definitions.

Definition 8. An elementary flux mode is called efficient if the yield of the target chemical

reactions (e.g. ethanol) is not smaller than some specified minimum yield value, with

respect to the given substrate (e.g. glucose). Efficient elementary flux modes may be

growth-coupled or growth-uncoupled, where biomass yield is above or below some specified

minimum yield value.

Following the definition, we denote all the efficient elementary flux modes as EFM(eff) =

EFM
(eff)
growth ∪ EFM

(eff)
nogrowth.

90

A

B

C P
R1

D

R8r

R5 R6r

R9

R4

R7

R3

Bext

Aext Pext

DextE

R2

R11
R10

Figure 7.1: Simple metabolic network

Definition 9. Elementary flux mode is called inefficient if its target chemical reaction yield

is below the specified minimum yield value. (EFM(ineff) = EFM(all) \ EFM(eff))).

Example 1. The matrix of elementary modes (7.2) corresponds to the metabolic network

(7.1) with 6 metabolites and 11 reactions depicted in Figure 7.1. Let reaction R1 correspond

to the substrate reaction, R4 to the target chemical reaction and R9 to biomass. The

maximum possible yields for both target chemical and biomass reactions is 2.0. Let the

efficient modes be defined as having the target chemical yield of at least 50% of the maximum

possible, while efficient modes are growth coupled if the biomass yield is at least 50% of the

maximum possible. Modes M1 and M2 are not considered due to their zero substrate flux.

Accordingly, columns M7, M8, M9, M10 and M11 are the growth-coupled efficient modes,

columns M4 and M5 are growth-uncoupled efficient modes and columns M3 and M6 are the

inefficient modes.

N =

R1 R2 R3 R4 R5 R6r R7 R8r R9 R10 R11

A 1 −1 0 0 −1 0 0 0 0 −1 0
B 0 0 0 0 1 −1 −1 −1 0 0 0
C 0 1 −1 0 0 1 0 0 0 −1 0
D 0 0 1 0 0 0 0 0 −1 0 1
P 0 0 1 −1 0 0 2 0 0 0 1
E 0 0 0 0 0 0 0 0 0 2 −1

(7.1)

EFM=

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

R1 0 0 1 1 1 1 1 1 1 1 1
R2 0 0 1 1 0 0 1 0 1/2 0 0

R3 1 0 0 0 0 0 1 1 0 0 0

R4 1 2 0 2 2 0 1 1 1 1 2

R5 0 0 0 0 1 1 0 1 0 1/2 0
R6 1 0 −1 −1 0 0 0 1 0 1/2 1

R7 0 1 0 1 1 0 0 0 0 0 0

R8 −1 −1 1 0 0 1 0 0 0 0 −1
R9 1 0 0 0 0 0 1 1 1 1 2
R10 0 0 0 0 0 0 0 0 1/2 1/2 1

R11 0 0 0 0 0 0 0 0 1 1 2

(7.2)

91

Given a set of elementary flux modes, one may use a greedy algorithm to select reactions

for knockout one at a time, adding it to a partial list of reactions previously selected. To

attain low network flexibility, at each step a reaction r is added to a knockout subset based

on maximizing the number of collapsed inefficient elementary modes. Specifically, reaction

r is selected using the following score:

score(r;KO) = (1− fD) · I(EFM
(eff)
growth 6= ∅) · I(EFM

(eff)
nogrowth 6= ∅), (7.3)

where fD =
N

(eff)
growth,KO∪{r}

+N
(ineff)
KO∪{r}

N
(eff)
growth,KO+N

(ineff)
KO

is the fraction of efficient growth-coupled and inefficient

modes which remain after the addition of the candidate reaction r to the current reaction

knockout subset KO. N
(eff)
growth,KO and N

(ineff)
KO are equal to the number of efficient growth-

coupled and inefficient modes that remain after the deletion of reactions from subset KO.

Similarly, N
(eff)
growth,KO∪{r} and N

(ineff)
KO∪{r} are equal to the number of efficient growth-coupled

and inefficient modes that remain after the deletion of reactions from subset KO ∪ {r}.

The notation I(·) denotes an indicator function, equal to one if the underlying condition is

true, otherwise equal to zero. Here they are used to enforce the condition that at least one

efficient growth-coupled and efficient growth-uncoupled mode are preserved.

At the opposite extreme, to attain high network flexibility it may be decided to maximize

the number of efficient growth-coupled modes which are preserved, while collapsing as many

inefficient modes as possible. This can be modeled by the following score:

score(r;KO) = fED · (1− fID) · I(EFM
(eff)
nogrowth 6= ∅), (7.4)

where fED =
N

(eff)
growth,KO∪{r}

N
(eff)
growth,KO

and fID =
N

(ineff)
KO∪{r}

N
(ineff)
KO

are the fraction of efficient growth-coupled

and inefficient modes which remain after the addition of the candidate reaction r to the

reaction knockout subset KO. N
(eff)
growth,KO and N

(eff)
growth,KO∪{r} are equal to the number of

efficient growth-coupled modes which remain after the deletion of reactions from subsets

KO and KO ∪ {r}, respectively. Similarly, N
(ineff)
KO and N

(ineff)
KO∪{r} denote the number of

the inefficient modes which remain after the deletion of reactions in the reaction knockout

subsets KO and KO ∪ {r}, respectively.

The greedy algorithm for direct enumeration of knockouts is implemented in Algorithm

10. Enumeration is carried out with a breadth-first branch-and-bound algorithm, imple-

mented in a non-recursive manner. We construct a partial search tree with each node

representing a partial knockout subset (a set of reactions). The root node corresponds to

the empty set. Every other node has a non-empty knockout subset consisting of one reac-

tion added to the knockout subset of its parent node. At each stage in the algorithm, the

first unexpanded node is fetched. If this node’s corresponding knockout subset u collapses

all efficient modes, this knockout set is discarded. If all inefficient modes are collapsed, this

knockout set u is added to T, the collection of successful knockout subsets. Otherwise if

92

the size of the knockout set does not exceed the user set upper limit max ko length, each

possible reaction r is added to u – each possible u∪ {r} forms a child node which is put on

the queue Q for later expansion. Instead of considering all possible new reactions r, we score

each combination u ∪ {r} using (7.3) or (7.4) and examine only the top max reac cands

candidates. In this way we prune the search space to a manageable size.

In order to further control the search space, the branching factor max reac cands is

adjusted in Algorithm 10 during the search: for knockout subsets of length m, the branching

factor is limited to max reac cands/2m. In addition, the set of reactions eligible to extend a

knockout subset may be limited to the set cand reacs. For example, one may decide that

exchange reactions are ineligible and omit them from cand reacs.

Algorithm 10 [T] = direct enum ko(EFM(all), cand reacs,...)

Input:

1: EFM(all) - set of all elementary flux modes
2: cand reacs - reactions available for knockout
3: max ko length - maximal length of efficient reaction knockout subset
4: max reac cands - maximal number of candidate reactions to consider for expansion at single enumeration step
Output:

5: T - efficient reaction knockout subsets

6: (EFM
(eff)
growth,EFM

(eff)
nogrowth,EFM

(ineff)) ← EFM(all)

7: T ← ∅
8: ⊲ Q contains reaction subsets which are not efficient
9: create a queue Q

10: enqueue {∅} onto Q

11: while Q is not empty:

12: dequeue an item from Q into u

13: if u collapses all modes in EFM(ineff):

14: add u to T

15: continue

16: if u has max ko length elements:

17: continue

18: ⊲ for reactions in cand reacs \ u compute score using equations (7.3) or (7.4)
19: ⊲ and rank reactions in decreasing order of the score value
20: F ← return top max(1, max reac cands

2length(u)) ranked

21: candidates among reactions cand reacs \ u
22: (omitting those with score 0)

23: for each candidate reaction f in F :

24: enqueue u ∪ {f} onto Q

7.2.3 Indirect enumeration of reaction knockouts from elementary modes

An alternative search strategy is to first search for feasible sets of elementary modes, where

a set of modes is “feasible” if there exists a reaction knockout subset which collapses all

inefficient elementary modes leaving those in the set intact. Formally, we have:

Definition 10. A subset of efficient elementary flux modes is called feasible if there is at

least one subset of reactions which when deleted from the metabolic network will collapse

all the inefficient elementary flux modes leaving the modes in the efficient subset intact.

Definition 11. A feasible subset of efficient elementary flux modes is called maximal if

93

it cannot be expanded by adding another efficient mode and remain feasible at the same

time.

In the sequel we use the acronymMFES to denote a Maximal Feasible efficient Elementary

flux mode Subset.

It is possible to identify (Algorithm 12) feasible sets of elementary modes (MFES’s)

directly without computing minimal knockout sets. This may be useful in case it is desired

to preserve certain side-effects not included in the stoichiometric model. It also indicates

alternatives available to achieve a given yield using a knockout strategy. Once such feasible

sets have been identified, one may use Algorithm 13, a slight variation of Algorithm 10,

differing only in the contents of cand reacs and the score used to select the next candidate

reaction. The score is computed as given in (7.5), given that fID =
N

(ineff)
KO∪{r}

N
(ineff)
KO

is a fraction of

inefficient modes which remain after expanding the current knockout subset KO with the

candidate reaction r, where r ∈ cand reacs. It is combined with the requirement that the

currently considered MFES should be intact.

score(r;KO) = 1− fID (7.5)

The combined procedure is represented by Algorithm 11. As different MFESs are pro-

cessed, hashing is used to eliminate duplicate knockout subsets.

Example 1. (continued) We will illustrate the concept of feasibility and maximality of

the elementary flux mode subset. As earlier mentioned, efficient modes are columns M4,

M5, M7, M8, M9, M10, M11, while inefficient modes are M3, M6. Let the set of reactions

that can be used for knockout be cand reacs = {R2, R3, R5, R6r, R7, R8r, R10, R11}. Any

single efficient elementary flux mode by itself constitutes a feasible efficient elementary mode

subset. The subset of efficient modes comprised of columns M4, M5, M7, M8, M9, M10 is

also feasible, as there is a reaction knockout subset {R8r} which can collapse both inefficient

modes M3,M6, and leave the efficient subset intact. In addition, this subset is also maximal,

as the addition of the remaining efficient mode M11 to the subset would make it infeasible.

The feasibility and maximality may also be defined only on the efficient growth-coupled

modes, as is done in the algorithms.

7.2.4 Complexity analysis

Algorithms 10, 12 and 13 in worst case have an exponential complexity. The complexity of

the algorithms is controlled by the number of candidate reactions or candidate elementary

flux modes considered for addition at every step, as well as by the length of enumerated

94

Algorithm 11 [T]= indirect enum ko(EFM(all))

Input:

1: EFM(all) - elementary flux modes
Output:

2: T - efficient reaction knockout subsets

3: (EFM
(eff)
growth,EFM

(eff)
nogrowth,EFM

(ineff)) ← EFM(all)

4: S ← ∅; T ← ∅;

5: for every mode e ∈ EFM
(eff)
growth:

6: S← S ∪ enum mfes(e,EFM
(eff)
growth,EFM

(ineff))
7: for every MFES s ∈ S

8: T← T ∪ indirect enum ko from mfes(s,EFM(all))

Algorithm 12 [S]= enum mfes(e
(eff)
growth,EFM

(eff)
growth,EFM

(ineff), ...)

Input:

1: e
(eff)
growth - initial efficient growth-coupled elementary mode

2: EFM
(eff)
growth - set of all efficient growth-coupled elementary modes

3: EFM(ineff) - set of inefficient elementary modes
4: max mfes length - maximal length of MFES
5: max efm cands - maximal number of candidate modes to consider for expansion
Output:

6: S - maximal efficient elementary modes subsets

7: S← ∅
8: ⊲ Q contains only subsets of modes that are feasible; e

(eff)
growth is always FES;

9: create a queue Q

10: enqueue e
(eff)
growth onto Q

11: while Q is not empty:

12: dequeue an item from Q into v

13: if v has max mfes length elements:

14: add v to S

15: continue

16: index last← index of last element in v,(EFM
(eff)
growth(index last) = v(end))

17: ⊲ rank modes in EFM
(eff)
growth(index last+ 1 : end) by # of reactions remaining for knockout when each mode

is added to the subset v
18: G ← find no more than max(1, max efm cands

2length(v)
) top ranked candidate modes in

EFM
(eff)
growth(index last+ 1 : end)

19: ⊲ if there are no modes in EFM
(eff)
growth(index last+ 1 : end) that may be appended to v, then v is MFES

20: if G is empty:

21: add v to S

22: for each candidate mode g in G:

23: enqueue v ∪ {g } onto Q

Algorithm 13 [T] = indirect enum ko from mfes(mfes,EFM(all))

Input:

1: mfes - maximal feasible efficient elementary flux mode subset
2: EFM(all) - set of all elementary flux modes
Output:

3: T - efficient reaction knockout subsets

4: T ← ∅
5: cand reacs ← reactions not used in mfes and available for knockout

6: [T] = direct enum ko(EFM(all),cand reacs)

subsets. In indirect enumeration of the reaction knockout subsets, the number of reaction

candidates that is considered is reduced for each MFES as depicted in Algorithm 13.

Plots in figure 7.2 illustrate the remaining elementary modes and their position with

respect to the biomass and target chemical yield. The remaining modes seem to be lying on

95

Table 7.1: Elementary modes and yield values in 68-reaction E. coli central metabolism network using
different substrates ([1])

substrate xylose
or
arabi-
nose

manose galactose glucose

no. of modes 15,185 27,033 34,016 38,001

anaerobic growth

no. of modes (EFM(all)) 1,004 2,841 1,620 5,010

maximum ethanol
yield

1.667 2.00 2.00 2.00

maximum biomass
yield

0.0257 0.0513 0.0342 0.0513

size of EFM
(eff)
growth

1 66 124 208 176

size of EFM
(eff)
nogrowth

2 12 22 12 28
1efficient growth-coupled modes defined as having

biomass and ethanol yield at least 50% and 60% of the

maximum, respectively.

2efficient growth-uncoupled modes defined as having

ethanol yield at 100% of the maximum.

the curve which corresponds to the Pareto surface of the two-objective optimization task.

This aligns with the observations discussed in [155] that the likeliest state of the metabolic

network is at some point along the Pareto surface.

7.3 Results

We run the direct and indirect enumeration algorithms on the models of the central metabolism

of E. coli and S. cerevisiae. Elementary flux modes and their yield values are computed us-

ing the software ElMo-Comp (http://elmocomp.sourceforge.net), while they may be easily

loaded and explored from MATLAB or other scripting language. Algorithms for reaction

knockout subset enumeration are implemented in C++ and are available as ElMo-Knock

program at http://elmocomp.sourceforge.net/elmoknock.php. Program was compiled

using GNU C++ compiler tool on a Linux machine with Intel Core i7-2600 processor run-

ning at 3.40 GHz, with 8 MB cache memory and 16 GB main memory. The resulting

list of reaction knockout subsets for both E. coli and S. cerevisiae is available at http://

elmocomp.sourceforge.net/elmo_knock/ecoli_and_yeast_results.zip.

7.3.1 Results on Escherichia coli

The model of the central metabolism network of E. coli ([1]) which we used has 68 reactions

and uses pentose (xylose or arabinose) and hexose (glucose, manose, galactose) substrates.

In this chapter we observe the cases when only a single substrate is consumed at a time

– the networks are identical except for the substrate uptake reactions. In all cases of the

substrate uptake, it is assumed that the growth conditions are anaerobic, hence eliminating

96

http://elmocomp.sourceforge.net
http://elmocomp.sourceforge.net/elmoknock.php
http://elmocomp.sourceforge.net/elmo_knock/ecoli_and_yeast_results.zip
http://elmocomp.sourceforge.net/elmo_knock/ecoli_and_yeast_results.zip

from consideration elementary modes with non-zero flux in one of the reactions OPM1 and

OPM2.

Determination of the threshold values to define efficient and inefficient modes requires

prior exploration of yield values across all elementary flux modes. In order to replicate the

design earlier attained in Minimal Metabolic Functionality ([1, 112]), the efficient growth-

coupled modes are defined as having at least 50% of the maximal possible biomass yield and

60% of the maximum possible ethanol yield. Similarly, efficient growth-uncoupled modes

are defined as having maximum possible ethanol yield, regardless of the biomass yield.

Table 7.2 shows the results obtained running three algorithmic variations using four

different carbohydrate substrates in each case. Algorithms are run without constraining

the knockout subset length, and the number of enumerated reaction knockout subsets of

length 5 to 13 is given in respective table columns. Following the execution of Algorithm

10 (score equations (7.3) and (7.4) for low and high network flexibility) and Algorithm

11, the number of shared reaction knockout subsets of the same length between Algorithm

10 (low flexibility) and Algorithm 10 (high flexibility), as well as between Algorithm 10

(high flexibility) and Algorithm 11 are given. The pairwise numbers of shared knockout

subsets demonstrate the discriminatory power of each individual algorithmic variation. In

the case of indirect enumeration, time to enumerate MFES (tMFES) is orders of magnitude

smaller than the time required to enumerate efficient reaction knockout subsets (tKO). The

branching factors in enumeration of efficient reaction knockout subsets in Algorithms 10

and 11 are 32 and 16, respectively, while the branching factor for the enumeration of MFES

in Algorithm 11 is 32.

Table 7.3 shows 30 reaction knockout subsets found using Algorithm 10 for the four

substrates of xylose, manose, galactose and glucose. In this specific case, any of the 30 enu-

merated knockout subsets collapses the metabolic network into 12 elementary flux modes,

which do not necessarily coincide. We found one of the 30 solutions (PPP1, ANA2, FEM3,

FEM7, TRA5, OPM4r) to almost coincide with the solution (PPP1, ANA2, FEM2, FEM3,

FEM7, TCA10, OPM4r) given in ([1]), differing only in using TCA10 in place of the suc-

cinate transport reaction TRA5, and in the addition of FEM2. An analysis of the stoi-

chiometric model shows FEM2 is redundant in this particular knockout set. Biochemical

considerations not represented in the stoichiometric model allow one to eliminate the pro-

duction of succinate using TCA10 instead [1]. Using the stoichiometric model, elimination

of succinate production requires additional knockouts, such as TCA5 and TCA9r. Indeed,

when Algorithm 10 is applied with the exchange reactions marked ineligible for knockout

selection, one of the resulting knockouts is (PPP1, TCA5, TCA10, ANA2, FEM3, FEM7,

TCA9r, OPM4r). In other words, all the enumerated subsets contain at least one reaction

of the anapleurotic pathway (e.g. ANA2, GLB1, GLB2) and one from the tricarboxylic acid

97

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ethanol yield

B
io

m
as

s
yi

el
d

(x
 1

04)

growth on xylose substrate

EFMs before knockout
EFMs after knockout

(a)

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ethanol yield

B
io

m
as

s
yi

el
d

(x
 1

04)

growth on manose substrate

EFMs before knockout
EFMs after knockout

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ethanol yield

B
io

m
as

s
yi

el
d

(x
 1

04)

growth on galactose substrate

EFMs before knockout
EFMs after knockout

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ethanol yield

B
io

m
as

s
yi

el
d

(x
 1

04)

growth on glucose substrate

EFMs before knockout
EFMs after knockout

(d)

Figure 7.2: Plot of all vs. remaining modes after applying the knockout of reactions PPP1, ANA2, FEM3,
FEM7, TRA5, OPM4r on the E. coli network grown on xylose (7.2(a)), manose (7.2(b)), galactose (7.2(c))
and glucose (7.2(d)) substrate, respectively.

cycle.

7.3.2 Results on Saccharomyces cerevisiae

The metabolic network of anaerobic growth of S. cerevisiae on glucose was used to run the di-

rect and indirect enumeration algorithms (Table 7.4). This network has 62 metabolites and

78 reactions (Appendix A, Table A.3) with 1,515,315 elementary modes ([149]). Initially,

5 modes with zero glucose uptake flux are excluded from consideration. After exploration

of biomass and ethanol yields across all elementary flux modes, efficient growth-coupled

elementary modes are defined as having the biomass and ethanol yield of at least 64% of

maximum possible value each, while efficient growth-uncoupled modes are defined as having

100% of the maximum possible ethanol yield. This results in 15,088 efficient growth-coupled

and 6 efficient growth-uncoupled elementary modes.

The results of running Algorithms 10 (low and high network flexibility) and 11 are given

in Table 7.5. The number of reaction knockout subsets of length 3 to 11 are given in table

columns, accompanied by the number of common subsets between subsets obtained running

Algorithms 10 (low and high network flexibility), as well as Algorithms 10 (high network

98

flexibility) and 11. In all runs shown in the table, both internal and exchange reactions

were allowed to be used. All the enumerated reaction subsets include at least one exchange

reaction. The branching factor for the enumeration of reaction knockout subsets in both

variations of Algorithms 10 is 32, while the branching factor for the enumeration of MFES

and reaction knockout subsets in Algorithm 11 is 2 each. Results of executing algorithms for

the case when exchange reactions are marked ineligible for use in a knockout are available

online in the supplementary archive file. We remark that while the length of the shortest

subset which use exchange reactions is equal to 3, the length of the shortest subset when

exchange reactions cannot be used is equal to 8.

A brief interpretation of the few shortest knockout subsets obtained using three algo-

rithms can be done. Algorithm 10 with score function for low network flexibility finds one

knockout subsets with four reactions (secretion of acetate (R63), lactate(R64) and succi-

nate (R67), conversion of acetyl-CoA into ethanol and CoA (R32r)). For the case of high

network flexibility, the Algorithm 10 finds two subsets with four reactions ((i) secretion of

acetate (R63) and lactate(R64), glycerol-3-phosphate dehydrogenase (R13r), malate dehy-

drogenase (R29r) and (ii) secretion of acetate (R63), glycerol-3-phosphate dehydrogenase

(R13r), malate dehydrogenase (R29r), lactate dehydrogenase (R30r)).

When we ran the Algorithm 11 we obtained one knockout subset with three reactions

(secretion of acetate (R63), lactate (R64) and succinate (R67)), and three knockout sub-

sets with four reactions ((i) secretion of acetate (R63), lactate(R64) and succinate (R67),

α-ketoglutarate dehydrogenase complex in mitochondria (R24r), (ii) secretion of acetate

(R63), lactate(R64) and succinate (R67), Glycerol-3-phosphate dehydrogenase (R13r), (iii)

secretion of acetate (R63), lactate(R64), isocitrate lyase (R46), succinate/malate antiport

to mitochondria (R89r)).

Despite higher cost, Algorithm 11 found one solution of shorter length in the case of

the three-reaction solution, and in the case of subset with four reactions, the result in both

biomass and ethanol yield is at least as high as the ones produced using Algorithm 10.

We believe that it motivates one to further improve the Algorithm 11 and the way feasible

elementary flux mode subsets are formed, as it may allow better control to the user over

the final metabolic network design.

7.4 Discussion

7.4.1 Parameterization of algorithms

Proposed enumeration algorithms can constrain the size of the search space in several ways

such as by limiting the reactions that can be used in the knockout (cand reacs), initial

reaction knockouts prior to running the algorithms, maximal length of efficient reaction

99

knockout subset (max ko length), as well as limiting the size of the feasible elementary

flux mode subsets (max mfes length) in Algorithm 11. Similarly, both Algorithms 10 and

12, can control the size of search space by varying branching factors max reac cands and

max efm cands.

7.4.2 Comparison to related pathways-based methods

Algorithms for direct and indirect enumeration are compared to related methods which

were proposed earlier such as (a) Minimal Metabolic Functionality, (b) CASOP and (c)

constrained Minimal Cut Sets.

7.4.2.1 Minimal Metabolic Functionality

The metabolic strain design embodied in the concept of Minimal Metabolic Functionality

and previously manually used is contained and formalized in Algorithm 10 and score equa-

tion (7.3). The score equation (7.3) is proposed according to the original description of

the Minimal Metabolic Functionality. The stopping condition for the algorithm, previously

unspecified, is defined as the one of having at least one efficient growth-coupled and one

efficient growth-uncoupled mode remain each.

7.4.2.2 CASOP (Computational Approach for Strain Optimization aiming at

high Productivity)

A feature of the specific productivity described within the CASOP framework ([114]) is

implemented using the score equation (7.4) in Algorithm 10.

7.4.2.3 Constrained Minimal Cut Sets

The enumeration of the cMCS (constrained Minimal Cut Sets) ([117]) is illustrated here

using Algorithm 14 as proposed in the original work. This algorithm was run along with

algorithms 10 and 11 for comparison and results are shown in tables 7.2 and 7.5.

Algorithm 14 is parameterized with the number of efficient growth-coupled and -uncoupled

modes which should remain after knockout, specified by n
(eff)
growth and n

(eff)
nogrowth. It performs

an exhaustive enumeration of the reaction knockout subsets, which for a large number of

elementary flux modes may be a limitation, as inefficient elementary modes are sequen-

tially processed in the outer loop. The complexity of the algorithm grows significantly if

the strict equality constraint on the parameters n
(eff)
growth and n

(eff)
nogrowth is replaced with the

inequality constraint which is demonstrated in the table 7.2. In contrast, algorithms 10

and 11 proposed in this chapter are non-exhaustive and use a quantitative score to select

the next candidate reaction for knockout, and at a lesser cost stand as an alternative for

100

enumeration of a fraction of the entire solution set while still allowing the user to specify

the metabolic network criteria in the mutant cell.

Algorithm 14 [M]= enumerate cMCS(EFM(all), n
(eff)
growth, n

(eff)
nogrowth)

(based on [117])

Input:

1: EFM(all) - elementary flux modes

2: n
(eff)
growth - minimal number of growth-coupled efficient modes to retain

3: n
(eff)
nogrowth - minimal number of growth-uncoupled efficient modes to retain

Output:

4: M - collection of cMCS

5: for every mode e in EFM(ineff)

6: for every mcs in M

7: if mcs does not collapse e

8: remove mcs from T
9: for every reaction r in mode e

10: if (mcs ∪ {r} knockout leaves n
(eff)
growth and n

(eff)
nogrowth

11: modes in EFM
(eff)
growth and EFM

(eff)
nogrowth)

12: add mcs ∪ {r} to M

13: end

14: end

15: end

16: end

17: remove non-minimal cMCS from M

18: end

In addition, it was recently demonstrated ([95]) that the set of constrained minimal

cut sets for the specified target reaction subset corresponds to the elementary modes of

the dual network obtained from the original metabolic network under specified constraints.

While that approach gives an alternate view of the problem, it does not eliminate the

computational cost of computing elementary flux modes for the network which may in

some cases even be larger than the original network.

7.4.3 Comparison to optimization-based methods

Results of running enumeration algorithms proposed in this chapter are compared to the

results obtained using optimization-based methods, such as OptKnock or RobustKnock.

Both OptKnock and RobustKnock aim to attain a metabolic network design where maximal

biomass yield will be coupled to a high target chemical yield. RobustKnock is an improve-

ment over OptKnock in the way that it guarantees to raise the low bound on the target

chemical yield, avoiding low-yield competing pathways. The optimization-based methods

assume that genetic modification of the metabolic network will be followed by the adap-

tive evolution ([59, 156, 157, 158, 159]), hence the cell will function across the elementary

modes with maximal possible growth. This implies that the elementary flux modes with

lower-than-maximal biomass yield do not need to be collapsed with the reaction knockout,

as they will not be active. Reactions should be chosen for knockout only to collapse the

modes with high biomass but low target chemical yield.

In order to enable the pathway-based algorithms to mimic this behavior a few changes

101

are required. Elementary flux modes are split into (1) efficient modes (2) inefficient modes

and (3) ignored modes. Two values are given to specify the minimal acceptable yield for

(a) biomass reaction (usually 5% of the maximal possible value) and (b) target chemical

reaction (usually above 50% of the maximal possible value). Efficient modes are modes

with biomass and target chemical reaction flux values above the specified low bound value.

Inefficient modes are elementary flux modes with biomass value above the specified low

bound, and the target chemical flux value below the specified low bound. Finally, ignored

modes are those elementary flux modes with the biomass flux value below the specified input

low bound value. The goal is to find reaction knockout subsets which will collapse all the

inefficient modes, leaving some of the efficient modes intact, preferably those with as high

target chemical flux value as possible.

We will illustrate this using the core model of the Escherichia coli [2, 3] which has 72

metabolites and 95 reactions and is comprised of glycolysis, tricarboxylic acid cycle, pen-

tose phosphate pathway, glyoxylate shunt, gluconeogenesis, nitrogen metabolism, electron

transport chain. In our study, we consider the growth on glucose media and optimize the

production of the succinate and ethanol. The network itself has 100,274 elementary flux

modes. OptKnock and RobustKnock [62] were used as implemented in MATLAB running

on the top of TOMLAB CPLEX optimizer (trial version) ([160]) to solve the underlying

mixed-integer linear programming problem.

We ran OptKnock, RobustKnock and Algorithm 10 allowing not more than six reaction

knockouts. The results of this run are given in Table 7.6. To rank the quality of the knockout

subsets, one may consider the criteria of maximal biomass value, and the minimal and

maximal guaranteed flux value of the chemical exchange reaction. We compared elementary

mode based algorithm to the RobustKnock, since OptKnock cannot guarantee the lower

maximal chemical production flux. In the case of the succinate production, elementary

mode based algorithm attains equal or higher maximal chemical flux when compared to

RobustKnock, with high enough minimal guaranteed chemical flux. On the other side, in

the case of ethanol production, the elementary mode based method attains somewhat lower,

but comparable maximal chemical yield when compared to RobustKnock, which seems to

happen at the expense of higher biomass flux.

7.5 Conclusion

We propose and implement the algorithms for the enumeration of reaction knockout subsets

in metabolic networks for efficient cellular strain design. The algorithms use the elemen-

tary flux modes and perform a non-recursive constrained breadth-first search to enumerate

multiple reaction knockout subsets. The concept is demonstrated on two distinct net-

works of the central metabolism of Escherichia coli and Sacharomyces cerevisiae for the

102

growth-coupled production of ethanol, and compared to previous known pathways-based

and optimization-based methods. In particular, the proposed algorithms stand as alter-

natives to the exhaustive enumeration performed in the previously proposed algorithm for

the enumeration of constrained minimal cut sets. There may be several potential improve-

ments to the algorithms described in this chapter. First, we may explore different forms

of score functions and heuristics used to rank knockout candidate reactions for inclusion

in the knockout subset during the course of algorithm execution. Second, beside consid-

ering reaction deletion one may also consider up- or down- regulating reaction expression,

though that approach requires experimental results and knowledge of the reference wild-

type metabolic network flux distribution. Third, gene regulatory rules may be incorporated

into the implementation as one possible way of constraining the solution space.

103

Table 7.2: Results of applying Algorithm 10 for the case of low and high network flexibility (score criteria in equations (7.3) and (7.4)), Algorithm 11 and Algorithm
14 on 68-reaction E. coli metabolic network ([1]) using xylose (or arabinose), galactose, manose and glucose substrates. The knockout subset of 30 reactions of length
6 that is marked in a box turned out to be common to all four substrate cases.

algorithm # MFES
eff. reaction # of eff. reaction knockout subsets by length time (sec)

KO subsets 5 6 7 8 9 10 11-13 tMFES tKO

Alg. 10 low flexibility N\A 2,8221 20 296 797 689 470 266 284 N\A 1.4
x
y
lo
se

o
r
a
ra
b
in
es Alg. 10 high flexibility N\A 2,5981 16 129 483 1113 389 60 400 N\A 1.54

Alg. 11 1122 1,1652 10 123 383 351 190 95 13 0.02 4.28

Alg. 14 N\A 5283 0 20 144 244 120 0 0 N\A 5.41

Alg. 14 N\A 15684 20 176 624 604 144 0 0 N\A 99.72

shared (Alg. 10 low flexibility, Alg. 10 high flexibility) 16 91 96 45 8 9 164

shared (Alg. 10 high flexibility, Alg. 11) 8 66 156 161 75 20 2

m
a
n
o
se

Alg. 10 low flexibility N\A 2,531 36 300 1076 747 294 14 64 N\A 2.6

Alg. 10 high flexibility N\A 3,249 10 272 1052 887 259 89 635 N\A 13.55

Alg. 11 357 2,917 23 297 854 911 486 319 27 0.024 12.3

Alg. 14 N\A 8883 0 4 84 400 400 0 0 N\A 88.10

Alg. 14 N\A 22004 46 322 612 780 440 0 0 N\A 647.28

shared (Alg. 10 low flexibility, Alg. 10 high flexibility) 0 46 233 73 13 2 30

shared (Alg. 10 high flexibility, Alg. 11) 5 96 244 128 30 7 0

g
a
la
ct
o
se

Alg. 10 low flexibility N\A 3,010 36 278 608 607 913 382 186 N\A 1.97

Alg. 10 high flexibility N\A 1,984 20 82 224 617 492 80 433 N\A 2.56

Alg. 11 1,444 2,708 18 225 726 904 553 226 56 0.062 13.78

Alg. 14 N\A 10843 0 4 104 496 480 0 0 N\A 28.89

Alg. 14 N\A 24324 36 268 512 1040 576 0 0 N\A 447.04

shared (Alg. 10 low flexibility, Alg. 10 high flexibility) 20 24 24 10 15 0 66

shared (Alg. 10 high flexibility, Alg. 11) 10 29 98 148 66 0 58

g
lu
co

se

Alg. 10 low flexibility N\A 2,281 0 30 431 808 633 207 172 N\A 5.46

Alg. 10 high flexibility N\A 2,712 0 21 227 537 691 392 795 N\A 7.17

Alg. 11 359 2,907 0 44 429 776 698 527 433 0.005 33.43

Alg. 14 N\A 19923 0 60 428 784 720 0 0 N\A 266.54

Alg. 14 N\A 27224 0 106 676 1180 760 0 0 N\A 2082.75

shared (Alg. 10 low flexibility, Alg. 10 high flexibility) 0 0 18 2 0 0 34

shared (Alg. 10 high flexibility, Alg. 11) 0 12 67 59 6 0 0
1branching factor (max reac cands) value for enumeration of reaction knockout subsets is 32

2branching factor (max efm cands) value is 32 for maximal feasible elementary mode subset enumeration and 16 for efficient reaction

knockout subset enumeration

3 algorithm is run fixing the parameters n
(eff)
growth =8 and n

(eff)
nogrowth =4

4 algorithm is run for n
(eff)
growth >0 and n

(eff)
nogrowth >0

104

Table 7.3: List of enumerated reaction knockout subsets as minimal length subsets found across all four
used substrates (xylose or arabinose, manose, galactose and glucose) for the efficient ethanol production in
68-reaction E. coli network ([1]). The 30 subsets are extracted from the results presented in Table 7.2 in the
case when Algorithm 10 (low flexibility) was applied. Lower table illustrates minimal required biomass and
ethanol yields as required for the existence of growth-coupled and growth-uncoupled modes, number of modes
which remain after applying one of 30 knockouts, and minimum biomass and ethanol yields in the residual
network.

REACTION KNOCKOUT SUBSETS

PPP1 TCA5 GLB1 FEM3 TRA2 TCA9r PPP2 TCA5 GLB1 FEM3 TRA2 TCA9r

PPP1 TCA5 GLB2 FEM3 TRA2 TCA9r PPP2 TCA5 GLB2 FEM3 TRA2 TCA9r

PPP1 TCA7 ANA2 FEM3 TRA2 TRA5 PPP2 TCA7 ANA2 FEM3 TRA2 TRA5

PPP1 TCA7 FEM3 TRA2 TRA5 TCA9r PPP2 TCA7 FEM3 TRA2 TRA5 TCA9r

PPP1 GLB1 FEM3 TRA2 TCA6r TCA9r PPP2 GLB1 FEM3 TRA2 TCA6r TCA9r

PPP1 GLB2 FEM3 TRA2 TCA6r TCA9r PPP2 GLB2 FEM3 TRA2 TCA6r TCA9r

PPP1 ANA2 FEM3 FEM7 TRA5 OPM4r PPP2 ANA2 FEM3 FEM7 TRA5 OPM4r

PPP1 ANA2 FEM3 FEM8 TRA5 OPM4r PPP2 ANA2 FEM3 FEM8 TRA5 OPM4r

PPP1 ANA2 FEM3 TRA2 TRA5 TCA8r PPP2 ANA2 FEM3 TRA2 TRA5 TCA8r

PPP1 ANA2 FEM3 TRA2 TRA5 TCA9r PPP2 ANA2 FEM3 TRA2 TRA5 TCA9r

PPP1 ANA2 FEM3 TRA2 TRA5 OPM4r PPP2 ANA2 FEM3 TRA2 TRA5 OPM4r

PPP1 FEM3 FEM7 TRA5 TCA9r OPM4r PPP2 FEM3 FEM7 TRA5 TCA9r OPM4r

PPP1 FEM3 FEM8 TRA5 TCA9r OPM4r PPP2 FEM3 FEM8 TRA5 TCA9r OPM4r

PPP1 FEM3 TRA2 TRA5 TCA8r TCA9r PPP2 FEM3 TRA2 TRA5 TCA8r TCA9r

PPP1 FEM3 TRA2 TRA5 TCA9r OPM4r PPP2 FEM3 TRA2 TRA5 TCA9r OPM4r

Xyl (or
Ara)

Man Gal Gluc

min biomass 50%

growth-coupled min ethanol 60%

modes # of modes satisfying constraints 66 124 208 176

of modes remaining after knockout 4 4 4 4

min biomass after knockout 51% 77% 58% 77%

min ethanol after knockout 88% 70% 85% 70%

min biomass 0%

growth-uncoupled min ethanol 100%

modes # of modes satisfying constraints 12 22 12 28

of modes remaining after knockout 8 8 8 8

min biomass after knockout 0% 0% 0% 0%

min ethanol after knockout 100% 100% 100% 100%

Table 7.4: Elementary modes and yield values in S. cerevisiae central metabolism network on glucose
substrate

total # of modes (EFM(all)) 1,515,315

maximum ethanol yield 2.00

maximum biomass yield 0.0355

size of EFM
(eff)
growth

1 15,088

size of EFM
(eff)
nogrowth

2 6
1efficient growth-coupled modes defined as having

biomass and ethanol yield at least 64% of the maxi-

mum each.

2efficient growth-uncoupled modes defined as having

ethanol yield at least 100% of the maximum.

105

Table 7.5: Results of applying Algorithm 10 for the case of low and high network flexibility (score criteria in
equations (7.3) and (7.4)), Algorithm 11 and Algorithm 14 on S. cerevisiae metabolic network using glucose
substrate

algorithm # MFES
eff. KO # of eff. reaction knockout subsets by length time (sec)

subsets 3 4 5 6 7 8 ≥9 tMFES tKO

Alg. 10 LF N\A 6,3203 0 1 36 342 1507 2317 1239 N\A 32.26

Alg. 10 HF N\A 3,0323 0 2 74 745 1444 345 284 N\A 249.23

Alg. 11 15,0884 2,9544 1 3 20 90 115 89 76 89.95 2380.64

Alg. 14 N\A 85 2 6 0 0 0 0 0 0 685.56

shared (Alg. 10 LF, Alg. 10 HF) 0 0 0 0 0 0 0

shared(Alg. 10 LF, Alg. 11) 0 0 0 2 6 10 18
1LF - low network flexibility

2HF - high network flexibility

3branching factor (max reac cands) value for enumeration of reaction knockout subsets is 32

4branching factor (max efm cands) value for Alg. 11 is 2 for maximal feasible elementary mode subset enumeration and 2 for efficient

reaction knockout subset enumeration

5 algorithm is run for n
(eff)
growth >0 and n

(eff)
nogrowth >0 and maximum knockout length 4

Table 7.6: Knockout strategies predicted by Algorithm 10, OptKnock and RobustKnock on 95-reaction core
E. coli metabolic network model ([2, 3]) for the production of succinate and ethanol. Glucose uptake flux is
fixed to be 10.

Chem. KO size Method Knockout Subset Max. Bio Min. Chem Max. Chem.
Succ - Wild-Type - 0.9166 0 0

2 Alg. 1 CO2t, PGI 0.2766 9.449 9.449
OptKnock CO2t, PGI 0.2766 9.449 9.449
RobustKnock CO2t, PGI 0.2766 9.449 9.449

3 Alg. 1 CO2t, EX ac, PGI 0.2528 9.497 11.169
OptKnock CO2t, EX ac, PGI 0.2528 9.497 11.169
RobustKnock CO2t, PFL, PGI 0.2195 10.622 10.622

4 Alg. 1 EX pyr, FORti, CO2t, PGI 0.1252 12.193 12.193
OptKnock CO2t, EX ac, PGI 0.2528 9.497 11.169
RobustKnock ACK, CO2t, PFL, PGI 0.2195 10.622 10.622

5 Alg. 1 EX lac D, FORti, THD2, ACALD, EX o2 0.1095 10.156 12.778
OptKnock CO2t, PFL, PGI, THD2 0.2195 10.622 10.622
RobustKnock CO2t, EX ac, PGI 0.2528 9.497 11.169

6 Alg. 1 EX lac D, GLUSy, PFL, THD2, ACALD, EX o2 0.1095 10.156 12.778
OptKnock CO2t, EX ac, PGI 0.2528 9.497 11.169
RobustKnock AKGt2, CO2t, GND, ME2, PFL, THD2 0.2304 12.549 12.549

Etoh - Wild-Type - 0.9166 0 0
2 Alg. 1 EX h2o, PGI 0.3264 11.703 11.761

OptKnock EX for, EX o2 0.2709 14.8621 14.8621
RobustKnock FORti, O2t 0.2709 14.862 14.862

3 Alg. 1 CYTBD, ATPS4, MDH 0.2867 14.149 15.327
OptKnock ACK, O2t, PYK 0.2072 16.071 16.851
RobustKnock ACK, CYTBD, PYK 0.2072 16.071 16.851

4 Alg. 1 CYTBD, ATPS4, G6PDH2, MDH 0.2598 16.052 16.052
OptKnock ACK, ATPS4, PYK, SUCOAS 0.1620 0 17.538
RobustKnock FRD7, O2t, PTA, PYK 0.2072 16.851 16.851

5 Alg. 1 AKGDH, GND, ATPS4r, EX o2, MDH 0.2598 16.052 16.052
OptKnock ATPS4, EX ac, GLUDy, PYK, SUCOAS 0.1494 0 17.729
RobustKnock ACK, FRD7, GLUDy, O2t, PYK 0.1933 17.062 17.062

6 Alg. 1 AKGDH, ATPM, GND, ATPS4, EX o2, MDH 0.2598 16.052 16.052
OptKnock AKGDH, ATPS4, GLUDy, PFL, PTA, PYK 0.1494 0 17.729
RobustKnock CYTBD, FUM, G6PDH2, ME2, PTA, PYK 0.1852 17.185 17.185

106

Chapter 8

Use of optimization methods in

cellular strain design and

elementary mode analysis

8.1 Introduction

As illustrated in previous chapters, the computation of all the elementary flux modes still

presents an unsurmountable challenge when metabolic networks comprising of several hun-

dred reactions are used. In the event when the cost of computing dozens of millions of

elementary flux modes can be afforded, it remains still unclear how to distinguish modes

and their relative contributions to the functioning of the cell and overall reaction of the ex-

ternal metabolites. This chapter proposes an idea of using optimization methods to reduce

the original network to a smaller one, which would be used to either compute elementary

flux modes or use some of the enumeration algorithms presented in chapter 7. The ratio-

nale behind the proposed optimization framework is to infer the likely inactive reactions

the residual efficient metabolic subnetwork. In the subsequent sections several approaches

will be illustrated which are based on solving a regularized non-linear convex optimization

problem. Beforehand, it would be useful to put a reminder of the earlier work surrounding

the possible evolutionary goals of a biological cell and existing hypotheses.

8.2 Cellular evolutionary objectives

Several possible notions of cellular objective among wild-type and mutant cells exist. It

was earlier established and experimentally matched in several cases that the cell of a mi-

croorganism such as E. coli aims to improve its fitness by maximizing the cellular growth

i.e. flux of the biomass reaction. This lead to the case of the secretion of possible cellular

107

by-products usually being uncoupled from growth and at very low levels. Genetic modifica-

tions in the cell were used to enforce the growth-coupled production of the desired chemical

by-product assuring that flux in it never goes below specified level.

Contrary to this goal, other authors have established that the maximal growth objective

is valid only in the event of limited nutrient supply, while in the contrary case the cell aims

to function on the Pareto surface of optimal ATP and biomass production [155], as well as

1-norm of the metabolic flux vector. In [107, 161], using elementary flux modes and the

assumption that the cell will function at the state of maximal entropy production, authors

demonstrated both experimentally and theoretically that the cell will function with the

weight of elementary modes proportional to the logarithm of the elementary mode reaction

entropy.

8.3 Enumerating efficient elementary modes using

L1-regularized quadratic programming

An end user may be interested in being able to compute as many efficient elementary flux

modes as possible, where efficiency of a mode is defined in terms of its high target chemical

reaction yield. Rather than running the Nullspace Algorithm on the original network, if it

were possible to infer the subnetwork which contains as many efficient modes as possible it

might significantly lower the computational cost.

Lets assume that the metabolic network is given with its stoichiometry matrix Nm×q and

that the consumption of substrate reaction vsubst is fixed to unit value. Using flux balance

analysis, let the flux vector v(wt) correspond the the wild-type network with maximum

possible biomass for fixed substrate uptake. Further, let the goal be that as many efficient

target chemical producing modes should be computed which we request by imposing an

inequality constraint vchem ≥ α · v
(wt,max)
chem for some specified threshold parameter α. From

this point, the greatest challenge is to propose an objective function which mimics the

desired cellular behavior as closely as possible.

Assume that an objective is proposed incorporating the terms which model the (1)

“kinetic energy” of the metabolic network and (2) number of active reactions. Given the

flux vector v, the objective function may be represented as
∑q

i=1 v
2
i + λ‖v‖1, i.e. in a

L1-regularized quadratic programming form. With the properly chosen value for λ this

function aims to minimize the spread of the flux across the network while at the same

time minimizing the number of active reactions. In addition, we may want to account for

the wild-type flux distribution vector v(wt) which models the cell with maximum biomass

production. The quadratic term in the objective function
∑q

i=1 v
2
i may be substituted

for
∑q

i=1(vi − v
(wt)
i)2 to model the earlier evolutionary assumption adopted in the MOMA

108

framework (subsection 2.3.2.2). Main assumption in this approach is that the solution of

the proposed L1-regularized quadratic program should be indicative of the possible role of

reactions according to their flux values and zero/non-zero pattern.

The proposed non-linear program is illustrated in equation (8.1) as:

min
v

q∑

i=1

(vi − wi)
2 + λ‖v‖1

subject to N · v = 0,

vchem ≥ α · v
(wt,max)
chem

vchem ≥ β · v
(wt)
bio

vsubst = 1

(8.1)

Further, a procedure to enumerate as many efficient modes as possible is illustrated in

the following algorithmic steps:

1. For the given metabolic network, stoichiometric matrix and the minimal flux value of

the target chemical solve the non-linear problem in (8.1)

2. From the original network remove those reactions which have zero or near-zero flux in

the solution flux vector obtained in the previous step resulting in the residual network

NR.

3. Compute elementary modes EFMNR
for the residual network NR. Extract desired

efficient modes for further exploration.

109

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ethanol yield

B
io

m
as

s
yi

el
d

(x
 1

03

423 resid. EFM/ 1661 orig. EFM

KO size: 5

(a) Ethanol

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Acetate yield

B
io

m
as

s
yi

el
d

(x
 1

03

797 resid. EFM/ 1661 orig. EFM

KO size: 1

(b) Acetate

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lactate yield

B
io

m
as

s
yi

el
d

(x
 1

03

619 resid. EFM/ 1661 orig. EFM

KO size: 2

(c) Lactate

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ethanol yield

F
ra

ct
io

n
of

 e
ff.

 m
od

es
 in

 r
es

id
ua

l n
et

w
or

k

(d) Ethanol

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Acetate yield

F
ra

ct
io

n
of

 e
ff.

 m
od

es
 in

 r
es

id
ua

l n
et

w
or

k

(e) Acetate

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lactate yield

F
ra

ct
io

n
of

 e
ff.

 m
od

es
 in

 r
es

id
ua

l n
et

w
or

k

(f) Lactate

Figure 8.1: Computed elementary modes in residual networks for growth-coupled production of ethanol

(8.1(a),8.1(d)), acetate (8.1(b),8.1(e)) and lactate (8.1(c),8.1(f)) in a 44-reaction S. cerevisiae metabolic

network.

8.3.1 Results

Using the 44-reaction metabolic network of the recombinant S. cerevisiae earlier used in [162]

and given in Appendix A, Table A.4, the procedure outlined in the previous subsection is

executed for different target chemicals such as ethanol, acetate and lactate.

110

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ethanol yield

B
io

m
as

s
yi

el
d

(x
 1

01)

42954 resid. EFM/ 188729 orig. EFM

KO size: 3

(a) Ethanol (b) Acetate

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Lactate yield

B
io

m
as

s
yi

el
d

(x
 1

01)

42954 resid. EFM/ 188729 orig. EFM

KO size: 3

(c) Lactate

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Ethanol yield

F
ra

ct
io

n
of

 e
ff.

 m
od

es
 in

 r
es

id
ua

l n
et

w
or

k

(d) Ethanol

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Acetate yield

F
ra

ct
io

n
of

 e
ff.

 m
od

es
 in

 r
es

id
ua

l n
et

w
or

k

(e) Acetate

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Lactate yield

F
ra

ct
io

n
of

 e
ff.

 m
od

es
 in

 r
es

id
ua

l n
et

w
or

k

(f) Lactate

Figure 8.2: Computed elementary modes in residual networks for growth-coupled production of ethanol

(8.2(a),8.2(d)), acetate (8.2(b),8.2(e)) and lactate (8.2(c),8.2(f)) in a 66-reaction E. coli metabolic network.

The results of the run are shown in Figure 8.1. The union red dots correspond to the

elementary flux modes in the residual network, while the union of blue and red dots com-

prises all of the elementary flux modes of the original metabolic netwokr prior to knocking

out the reactions which were inferred as targets for deletion using the framework described

in (8.1).

Similarly, Figure 8.2 shows the result of the run of the same framework on the 66-

reaction E. coli network which uses three different substrates of glucose, xylose and glycerol

(Appendix A, Table A.1) and supports the production of ethanol, acetate or lactate.

8.4 Combined optimization-based and EFM-based enumer-

ation of multiple knockout subsets

The L1-regularized quadratic program formulation may be used to infer the few most likely

candidate reactions for knockout and continue on to execution of one of the algorithms

for the enumeration of multiple reaction knockout subsets using algorithms proposed in

Chapter 7. This idea may be illustrated in the following steps:

111

Algorithm 15 Combined optimization- and EFM-based finding of reaction knockout subset

Input:
1: stoichiometry matrix - Nm×q

2: substrates, biomass and target chemical reactions - subst, bio and chem
Output:
3: reaction knockout set - knockoutSet
4: maximal size of knockout set - maxSizeKO

5: availReacs ⇐ list of reactions available for knockout
6: Let v(wt) be the flux vector in the wild-type cell in the conditions of maximal biomass

production.
7: Initialize knockoutSet← ∅
8: while length(knockoutSet) < sizeKO(opt) do
9: Let objFunc(KO) for some knockout set KO be a minimal value of objective func-

tion optimized in:

min
v

q∑

i=1

v2i + λ‖v‖1

subject to N · v = 0,

vchem ≥ α · vmax
chem

vchem ≥ β · v
(wt,max)
bio

vsubst = 1

vj = 0 for j ∈ KO

(8.2)

10: Find reaction r ∈ availReacs such that objFunc(knockoutSet)-
objFunc(knockoutSet ∪ r) is maximal.

11: Expand the current knockout subset as: knockoutSet ← knockoutSet ∪ {r} and
availReacs← availReacs \ {r}.

12: end while
13: From original network remove reactions in knockoutSet and compute all elementary

flux modes.
14: Run one of the earlier proposed algorithms in Chapter 7 for enumeration of multiple

reaction knockout subsets of length not larger than sizeKO(efm) = maxSizeKO −
sizeKO(opt).

15: Append knockoutSet to each subset obtained in the previous step and return all of
them as result.

112

8.5 Finding of optimal knockout subset using non-linear op-

timization

Rather than resorting to computing any of the elementary flux modes, one may decide to

solely rely on using a non-linear objective function and solve it iteratively to enumerate an

optimal reaction knockout subset whose collapse will assure optimal growth-coupled target

chemical production. As illustrated in subsections 2.3.2.2, 2.3.2.8 and 2.3.2.14, non-linear

objectives were used in MOMA [56] and BiMOMA [74] (e.g. MOMAKnock in [75]) in the

form of a quadratic program, and in OptGene’s biomass-product coupled yield. The novelty

here is the inclusion of the L1 regularization term which accounts for the minimization of

the kind proposed in [155].

Algorithm 16 Iterative optimization-based finding of reaction knockout subset

Input:
1: stoichiometry matrix - Nm×q

2: substrates, biomass and target chemical reactions - subst, bio and chem
Output:
3: reaction knockout set - knockoutSet
4: maximal size of knockout set - maxSizeKO

5: availReacs ⇐ list of reactions available for knockout
6: Let v(wt) be the flux vector in the wild-type cell in the conditions of maximal biomass

production.
7: Initialize knockoutSet← ∅
8: while length(knockoutSet) < maxSizeKO do
9: Let objFunc(KO) for some knockout set KO be defined as in Algorithm 15, line 9

10: Find reaction r ∈ availReacs such that objFunc(knockoutSet)-
objFunc(knockoutSet ∪ r) is maximal.

11: Expand the current knockout subset as: knockoutSet ← knockoutSet ∪ {r} and
availReacs← availReacs{r}.

12: end while
13: return knockoutSet

8.6 Conclusion

There is still insufficient intuition surrounding the problem of using the non-linear optimiza-

tion methods to model the cellular phenotype as proposed in this chapter. Nevertheless,

this chapter may serve as a base for future research work and exploration. One may need

to account for the more comprehensive domain knowledge in biophysics, biochemistry and

computational learning.

113

Chapter 9

Concluding Remarks

9.1 Summary of contributions

The preceding chapters of this thesis treat the problem of computational analysis of the

steady state cellular metabolic networks from the aspect of metabolic pathways. Elementary

flux modes, the metabolic pathways which also meet the requirement of the enzymatic

minimality, are used as major constituents for the study of the cellar phenotype. The

software implementations of the algorithms presented in the thesis and the accompanying

data sets are available at http://elmocomp.sourceforge.net. Major contributions of this

thesis are listed as:

Theoretical development and improvement of the Nullspace Algorithm

Chapter 3 brings several theoretical treatments and considerations of the Nullspace

Algorithm used in the computation of elementary flux modes. First, the Nullspace

Algorithm is decomposed into subroutines and analyzed for its later use in parallel

computing of both elementary flux modes and the minimal generating set. Second, the

reduced algebraic rank test is proposed which brings cost reductions in the Nullspace

Algrotihms when run on the metabolic networks without previous splitting of re-

versible reactions. The said rank test is run against the submatrix smaller than the

one previously used for every candidate elementary flux mode during the course of

executing Nullspace Algorithm. Third, a simple method for the computation of the

minimal generating set in the metabolic networks which admit the reversible path-

way is given. The minimal generating set is a minimal subset of elementary flux

modes which describes the polyhedral cone corresponding to the solution space of the

stoichiometric problem.

Parallelization of the Nullspace Algorithm

Combinatorial Parallel Nullspace Algorithm is the first parallelization of the Nullspace

114

http://elmocomp.sourceforge.net

Algorithm targeted for the distributed-memory system, as illustrated in capter 4. It

uses the MPI library of communication routines to perform task partitioning, while

still exhibits insufficient memory scalability due to replicating major data structure

across all compute nodes. To assure load balancing, an interleaved parallel generation

of candidate elementary flux modes is performed across the so-called positive and

negative candidate columns.

As a second step in the effort to efficient parallel run of the Nullspace Algorithm

and improvement of the memory scalability the divide-and-conquer idea was incor-

porated. chapter 5 incorporates the Combinatorial Nullspace Algorithm with the

divide-and-conquer approach across a selected subset of partitioning reactions. This

has a potential to reduce the cumulative memory footprint and computation time,

and therefore fit larger metabolic networks into the Nullspace Algorithm. However,

as major challenge remains how to optimally choose the set of partitioning reactions

in order to assure that the amount of memory used and execution time are minimal.

In order to improve the memory scalability within the Combinatorial Parallel Nullspace

Algorith, chapter 6 describes the use of the Global Arrays library of partitioned global

address paradigm which provides the shared-memory view of the distributed-memory

data and significantly reduces the time required for the development and implemen-

tation of the parallel algorithms. Using the Global Arrays the data structures which

were previously replicated across all compute nodes were now instead partitioned

to attain improved memory scalability. The Global Arrays library runs on the top

of the MPI library and uses its routines for one-sided asynchronous communication

underneath.

Design of algorithms for efficient cellular design using elementary flux modes

In chapter 7, elementary flux modes are used in the enumeration of multiple reaction

knockout subsets which can collapse the cellular metabolic network to the subnetwork

which attains desired metabolic goals of the elevated production of the target chemical

coupled with the cellular biomass growth, assuring either low or high network flexibil-

ity. Proposed algorithms use the quantitative score which models the cellular design

goals and perform the branch-and-bound search. The proposed algorithms are com-

pared to the existing methods, particularly to the variation of the Berge’s algorithm

used for the enumeration of constrained minimal cut sets.

Analysis of metabolic networks using non-linear optimization methods

Finally, chapter 8 proposes a collection of algorithms based on L1-regularized non-

linear optimization (e.g. quadratic programming) which can be used to reduce the

original metabolic network to the efficent subnetwork. Such reduced subnetwork can

115

then be used to (1) compute efficient elementary flux modes and (2) infer remaining

reaction knockout targets with or without computing elementary flux modes. In the

first case, the optimization framework is used to infer which reactions are less likely

to be active in the efficient elementary flux modes, where efficiency is defined by high

target chemical reaction yield. This allows the computation of the large fraction of the

elementary flux modes which may later be used in the cellular design. Second case may

allow the run of some of the mixed-inteera linear programming frameworks described

in chapter 2 or the algorithms for enumeration of multiple reaction knockout subsets

given in chapter 7. Major goal of this chapter was to model the cellular phenotype

using a non-linear objective function with existing linear constraints accounting for

known cellular constraints and goals.

9.2 Future research directions

Considering the previous body of research and undertaken work, future actions may consist

of several directions. Some of the major ideas may be outlined as:

Improvement of the Global Arrays based Nullspace algorithm

While the Global Arrays parallelization of the Nullspace algorithm allowed the com-

putation of the network with nearly 70 million elementary modes with demonstrated

improved performance, it still suffers from deteriorating scalability. This will require

the design of strategy for more comprehensive profiling, especially at points where

collective communication calls are performed. Another point of improvement will be

to add the feature for out-of-core computation by means of being able to efficiently

store and retrieve the data on the disk. Finally, we experienced imprecision issues

during the evaluation of the matrix rank on larger metabolic networks where SVD

decomposition reported accurate value, while the LU decomposition failed. While

SVD may be more accurate, its run exhibits higher computational cost and one may

look into a strateg for combined use of LU and SVD matrix decomposition routines.

Divide-and-conquer strategies in elementary mode computation

Continuing on the implementation of the Combined Parallel Nullspace Algorithm, one

may look at deciding how to optimally select a subset of reactions which will assure

good time and memory load balancing. It is not clear yet how this may be attained,

but one approach may be to try to estimate the number of modes in which a given

reaction may be active.

Characterization of elementary flux modes

Elementary flux modes are still largely indistinguishable and their categorization and

116

characterization into groups by relative importance and contribution to the phenotype

may be an interesting area for further research. This may help to better understand

which elementary modes should be retained in the final cellular design and which

should be collapsed.

Modeling of the cellular behavior using optimization methods

Understanding the cellular behavior across different growth and environment condi-

tions may lead to proposing a more comprehensive cellular objective function which

would model the phenotype more accurately. The methods proposed in the thesis and

which use non-linear optimization require considerable improvement and experimen-

tation.

Application of algorithm for enumeration of vertices in degenerate polytope

Algorithm for the enumeration of vertices in the degenerate polytope found its ap-

plication in bioinformatics. One may still continue looking for the application of

this algorithm in other problem domains such as computer networks, social network

analysis, etc.

117

References

[1] C.T. Trinh, P. Unrean, and F. Srienc. A minimal Escherichia coli cell for most ef-

ficient ethanol production from hexoses and pentoses. Applied and Environmental

Microbiology, 74(12):3634–3643, 2008.

[2] B.Ø. Palsson. Systems Biology : Properties of Reconstructed Networks. Cambridge

University Press, 2006.

[3] J. Schellenberger, R. Que, R.M.T. Fleming, I. Thiele, J.D. Orth, A.M. Feist, D.C.

Zielinski, A. Bordbar, N.E. Lewis, S. Rahmanian, J. Kang, D.R. Hyduke, and B.O.

Palsson. Quantitative prediction of cellular metabolism with constraint-based models:

the cobra toolbox v2.0. Nature Protocols, 6(12901307), 2011.

[4] C.T. Trinh, A. Wlaschin, and F. Srienc. Elementary mode analysis: a useful metabolic

pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol. Biotech-

nol, 22(5):813–826, 2009.

[5] E. Klipp, W. Liebermeister, C. Wierling, A. Kowald, H. Lehrach, and R. Herwig.

Systems Biology. John Wiley and Sons, first edition, 2009.

[6] L. Barabasi and Z.N. Oltvai. Network biology: Understanding the cell’s functional

organization. Nature Reviews Genetics, 5(2):101–113, 2004.

[7] M. Buchanan, G. Caldarelli, P. De Los Rios, F. Rao, and M. Vendruscolo. Networks

in Cell Biology. Cambridge University Press, first edition, 2010.

[8] D.R. Hyduke and B.Ø. Palsson. Towards genome-scale signalling-network reconstruc-

tions. Nature Reviews Genetics, 11:297–307, 2010.

[9] M. Papini, M. Salazar, and J. Nielsen. Systems biology of industrial microorganisms.

Journal of Biomedicine and Biotechnology, 2010, 2010. Article ID 518743.

[10] C. Dellomonaco, F. Fava, and R. Gonzalez. The path to next generation biofuels:

successes and challenges in the era of synthetic biology. Microbial Cell Factories,

9(3), 2010.

118

[11] T.M. Mata, A.A. Martins, and N.S. Caetano. Microalgae for biodiesel production and

other applications: A review. Renewable and Sustainable Energy Reviews, 14:217–232,

2010.

[12] C.H. Schilling, S. Schuster, B.Ø. Palsson, and R. Heinrich. Metabolic pathway anal-

ysis: Basic concepts and scientific applications in the post-genomic era. Biotechnol.

Prog., 15:296–303, 1999.

[13] V. Lacroix, L. Cottret, P. Thebault, and M. Sagot. An introduction to metabolic

network analysis and their structural analysis. IEEE/ACM Transactions on Compu-

tational Biology and Bioinformatics, 5(4):594–617, 2008.

[14] L.F. de Figueiredo, A. Podhorski, A. Rubio, C. Kaleta, J.E. Beasley, S. Schuster, and

F.J. Planes. Computing the shortest elementary flux modes in genome-scale metabolic

networks. Bioinformatics, 25(23):3158–3165, 2009.

[15] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes.

Nucleic Acids Research, 28:27–30, 2012.

[16] M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and M. Tanabe. KEGG for integration

and interpretation of large-scale molecular datasets. Nucleic Acids Research, 40:D109–

D114, 2012.

[17] I.M. Keseler et al. EcoCyc: a comprehensive database of Escherichia coli biology.

Nucleic Acids Research, 39:D583–590, 2011.

[18] R. Caspi, H. Foerster, C. A. Fulcher, R. Hopkinson, H. Ingraham, P. Kaipa, M. Krum-

menacker, S. Paley, J. Pick, S. Y. Rhee, C. Tissier, P. Zhang, and P. D. Karp. Meta-

Cyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids

Research, 34:511–516, 2006.

[19] R. Caspi et al. The MetaCyc database of metabolic pathways and enzymes and the

BioCyc collection of pathway/genome databases. Nucleic Acids Research, 36:623–631,

2008.

[20] M.L. Green D. Kaiser M. Krummenacker P. Romero, J. Wagg and P.D. Karp. Compu-

tational prediction of human metabolic pathways from the complete human genome.

Genome Biology, 6(1), 2004.

[21] M. Covert, C.H. Schilling, I. Famili, J.S. Edwards, I.I. Goryanin, E. Selkov, and B.Ø.

Palsson. Metabolic modeling of microbial strains in sillico. Trends in Biochemical

Sciences, 26(3):179–186, 2001.

119

[22] J. Schellenberger, J.O. Park, T.M. Conrad, and B.Ø. Palsson. BiGG: a biochemical

genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC

Bioinformatics, 11(213), 2010.

[23] I. Thiele and B.Ø. Palsson. A protocol for generating a high-quality genome-scale

metabolic reconstruction. Nature Protocols, 5(1):93–121, 2010.

[24] A.M. Feist, M.J. Herrg̊ard, I. Thiele, J.L. Reed, and B.Ø. Palsson. Reconstruction

of biochemical networks in microorganisms. Nature Reviews Microbiology, 7:129–143,

2009.

[25] J. Förster, I. Famili, P. Fu, and B Palsson. Genome-scale reconstruction of the Sac-

charomyces cerevisiae metabolic network. Genome Research, 13:644–653, 2003.

[26] N.C. Duarte, M.J. Herrg̊ard, and B.Ø. Palsson. Reconstruction and validation of

Saccharomyces cerevisiae iND750, a fully compartmentalized genomescale metabolic

model. Genome Research, 14(7):1298–309, 2004.

[27] C. H. Schilling and B.Ø. Palsson. Assessment of the Metabolic Capabilities of

Haemophilus Influenzae Rd through a Genome-scale Pathway Analysis. Journal of

Theoretical Biology, 203(3):249–283, 2000.

[28] C.H. Schilling, M.W. Covert, I. Famili, G.M. Church, J.S. Edwards, and B.Ø. Palsson.

Genome-scale metabolic model of helicobacter pylori 26695. Journal of Bacteriology,

184(16):4582–4593, 2002.

[29] I. Thiele, T.D. Vo, N.D. Price, and B.Ø. Palsson. Expanded metabolic reconstruction

of helicobacter pylori (iit341 gsm/gpr): an in silico genome-scale characterization

of single- and double-deletion mutants. Journal of Bacteriology, 187(16):5818–5830,

2005.

[30] P. Suthers, M. Dasika, V. Kumar, G. Denisov, J. Glass, and C. Maranas. A genome-

scale metabolic reconstruction of Mycoplasma genitalium iPS189. PLoS Computa-

tional Biology, 5(2), 2009.

[31] S.A. Becker and B.Ø. Palsson. Genome-scale reconstruction of the metabolic network

in staphylococcus aureus n315: an initial draft to the two-dimensional annotation.

BMC Microbiology, 5, 2005.

[32] N. C. Duarte, S. A. Becker, N. Jamshidi, I. Thiele, M. L. Mo, T. D. Vo, R. Srivas,

and B. Ø. Palsson. Global reconstruction of the human metabolic network based on

genomic and bibliomic data. Proceedings of the National Academy of Sciences of the

USA, 104(6):1777–1782, 2007.

120

[33] I. Thiele et al. A community-driven global reconstruction of human metabolism.

Nature Biotechnology, 31(5):419425, 2013.

[34] B.J. Bornstein, S.M. Keating, A. Jouraku, and M. Hucka. Libsbml: An api library

for sbml. Bioinformatics, 24(6):880–881, 2008.

[35] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, and the rest

of the SBML Forum. The systems biology markup language (sbml): a medium for rep-

resentation and exchange of biochemical network model. Bioinformatics, 19(4):524–

531, 2003.

[36] B. Clarke. Stoichiometric network analysis. Cell Biophysics, 12:237–53, 1988.

[37] M.W. Covert, I. Famili, and B. Palsson. Identifying constraints that govern cell be-

havior: A key to converting conceptual to computational models in biology? Biotech-

nology and Bioengineering, 84(7):309–325, 2003.

[38] J.M. Park, T.Y. Kim, and S.Y. Lee. Constraints-based genome-scale metabolic simu-

lation for systems metabolic engineering. Biotechnology Advances, 27:979–988, 2009.

[39] D. G. Luenberger. Linear and nonlinear programming. Springer, second edition, 2003.

[40] J. Gagneur and S. Klamt. Computation of elementary modes: a unifying framework

and the new binary approach. BMC Bioinformatics, 5(175), 2004.

[41] M. Terzer and J. Stelling. Large Scale computation of elementary flux modes with

bit pattern trees. Bioinformatics, 2008.

[42] A.M. Feist and B.Ø. Palsson. The biomass objective function. Current Opinion in

Microbiology, 13:344–349, 2010.

[43] A. R. Zomorrodi, P. F. Suthers, S. Ranganathan, and C. D. Maranas. Mathematical

optimization applications in metabolic networks. Metabolic Engineering, 12:672–686,

2012.

[44] A. Varma and B.Ø. Palsson. Metabolic Flux Balancing: Basic Concepts, Scientific

and Practical Use. Nature Biotechnology, 12:994–998, 1994.

[45] C.H. Schilling, J. S. Edwards, and B.Ø. Palsson. Towards metabolic phenomics:

Analysis of genomic data using flux balances. Biotechnol. Prog., 15(3):288–295, 1999.

[46] K.J. Kauffman, P. Prakasha, and J.S. Edwards. Advances in flux balance analysis.

Current Opinion in Biotechnology, 14(5):491–496, 2003.

121

[47] J.M. Lee, E.P. Gianchandani, and J.A. Papin. Flux balance analysis in the era of

metabolomics. Briefings in Bioinformatics, 7(2):140–150, 2006.

[48] K. Raman and N. Chandra. Flux balance analysis of biological systems: applications

and challenges. Briefings in Bioinformatics, 10(4):435–449, 2009.

[49] J.D. Orth, I. Thiele, and B.Ø. Palsson. What is flux balance analysis? Nature

Biotechnology, 28(3):245248, 2010.

[50] M.W. Covert, C.H. Schilling, and B.Ø. Palsson. Regulation of gene expression in flux

balance models of metabolism. J. theor. Biol., 213:73–88, 2001.

[51] M. Covert and B. Palsson. Transcriptional regulation in constraints-based metabolic

models of escherichia coli. The Journal of Biological Chemistry, 27:28058–28064, 2002.

[52] M. Covert and B. Palsson. Constraints-based models: Regulation of gene expres-

sion reduces the steady-state solution space. The Journal of Biological Chemistry,

(221):309–325, 2003.

[53] T. Shlomi, Y. Eisenberg, R. Sharan, and E. Ruppin. A genome-scale computational

study of the interplay between transcriptional regulation and metabolism. Molecular

Systems Biology, 3(101), 2007.

[54] S. Chandrasekarana and N. D. Price. Probabilistic integrative modeling of genome-

scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuber-

culosis. Proceedings of the National Academy of Sciences of the USA, 107(41):17845–

17850, 2010.

[55] T. Benyamini, O. Folger, E. Ruppin, and T. Shlomi. Flux balance analysis accounting

for metabolite dilution. Genome Biology, 11(4), 2010.

[56] D. Segrè, D. Vitkup, and G.M. Church*. Analysis of optimality in natural and per-

turbed metabolic networks. Proceedings of the National Academy of Sciences USA,

99(29):15112–15117, 2002.

[57] T. Shlomi, O. Berkman, and E. Ruppin. Regulatory on/off minimization of metabolic

flux changes after genetic perturbations. Proceedings of the National Academy of

Sciences of the United States of America, 102(21):7695–7700, 2005.

[58] R. Mahadevan and C.H. Schilling. The effects of alternate optimal solutions in

constraint-based genome-scale metabolic models. Metabolic Engineering, 5(4):264–

276, 2003.

122

[59] R.U. Ibarra, J.S. Edwards, and B.O. Palsson. Escherichia coli k-12 undergoes adaptive

evolution to achieve in silico predicted optimal growth. Nature, 420:186–189, 2002.

[60] A.P. Burgard, P. Pharkya, and C.D. Maranas. OptKnock: a bilevel programming

framework for identifying gene knockout strategies for microbial strain optimization.

Biotechnology and Bioengineering, 84(6):647–657, 2003.

[61] P. Pharkya, A.P. Burgard, and C.D. Maranas. Exploring the overproduction of amino

acids using the bilevel optimization framework OptKnock. Biotechnology and Bioengi-

neering, 84(7):887–99, 2003.

[62] N. Tepper and T. Shlomi. Predicting metabolic engineering knockout strategies for

chemical production: accounting for competing pathways. Bioinformatics, 26(4):536–

543, 2009.

[63] P. Pharkya, A.P.Burgard, and C.D. Maranas. OptStrain: A computational framework

for redesign of microbial production systems. Genome Research, 14(11):2367–2376,

2004.

[64] P. Pharkya and C.D. Maranas. An optimization framework for identifying reaction ac-

tivation/inhibition or elimination candidates for overproduction in microbial systems.

Metabolic Engineering, 6(8):1–13, 2006.

[65] K.R. Patil, I. Rocha, J. Forster, and J. Nielsen. Evolutionary programming as a

platform for in silico metabolic engineering. BMC Bioinformatics, 6(1):308, 2005.

[66] M.Rocha, P. Maia, R. Mendes, J.P. Pinto, E.C. Ferreira, J. Nielsen, K.R. Patil, and

I. Rocha. Natural computation meta-heuristics for the in silico optimization of mi-

crobial strains. BMC Bioinformatics, 9, 2008.

[67] D.S. Lun, G. Rockwell, N.J. Guido, M. Baym, J.A. Kelner, B. Berger, J.E. Galagan,

and G.M. Church. Large-scale identification of genetic design strategies using local

search. Molecular Systems Biology, 5(296), 2009.

[68] H.S. Choi, S.Y. Lee, T.Y. Kim, and H.M. Woo. In Silico Identification of Gene Ampli-

fication Targets for Improvement of Lycopene Production. Applied and Environmental

Microbiology, 76(10):3097–3105, 2010.

[69] J. Kim and J. Reed. OptORF: Optimal metabolic and regulatory perturbations for

metabolic engineering of microbial strains. BMC Systems Biology, 4(53):53–71, 2010.

[70] J.L. Reed, T.D. Vo, C.H. Schilling, and B.Ø. Palsson. An expanded genome-scale

model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology, 4(9):435–443,

2003.

123

[71] M.W. Covert, E.M. Knight, J.L. Reed, M.J. Herrgard, and B. Palsson. Integrating

high-throughput and computational data elucidates bacterial. Nature, (429):92–96,

2004.

[72] S. Ranganathan, P.F. Suthers, and C.D. Maranas. Optforce: An optimization pro-

cedure for identifying all genetic manipulations leading to targeted overproductions.

PLoS Comput Biol, 6(4), 2010.

[73] P. Suthers, A. Zomorrodi, and C. Maranas. Genome-scale gene/reaction essentiality

and synthetic lethality analysis. Molecular Systems Biology, 5(301), 2009.

[74] J. Kim, J. Reed, and Christos T. Maravelias. Large-Scale Bi-Level Strain Design

Approaches and Mixed-Integer Programming Solution Techniques. PLoS ONE, 6(9),

2011.

[75] S. Ren, B. Zeng, and X. Qian. Adaptive bi-level programming for optimal gene

knockouts for targeted overproduction under phenotypic constraints. Proceedings

of Eleventh Asia Pacific Bioinformatics Conference (APBC 2013): Bioinformatics,

14(Suppl. 2), 2013.

[76] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler,

and I. Manoussakis, editors, Combinatorics and Computer Science, pages 91–111.

Springer, 1996. Also tech. report, Mathematics, ETH, 1995.

[77] S. Schuster, C. Hilgetag, J.H. Woods, and D.A. Fell. Reaction routes in biochemical

reaction systems: Algebraic properties, validated calculation procedure and example

from nucleotide metabolism. Mathematical Biology, 45(2):153–181, 2002.

[78] C. Wagner. Nullspace approach to determine the elementary modes of chemical reac-

tion systems. J. Phys. Chem., 108(7):2425–2431, 2004.

[79] R. Urbanczik and C. Wagner. An improved algorithm for stoichiometric network

analysis: theory and applications. Bioinformatics, 21(7):1203–1210, 2005.

[80] C. Wagner and R. Urbanczik. The geometry of the flux cone of a metabolic network.

Biophysics Journal, 89(6):3837–3845, 2005.

[81] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all

vertices of a polyhedron is hard. Discrete Comput Geom, 39:174–190, 2008.

[82] V. Acuña, A. Marchetti-Spaccamela, M. Sagot, and L. Stougie. A note on the com-

plexity of finding and enumerating elementary modes. Biosystems, 99(3):210–214,

2010.

124

[83] S. Klamt and J. Stelling. Combinatorial complexity of pathway analysis in metabolic

networks. Molecular Biology Reports, 29(1-2):233–236, 2002.

[84] M. Yeung, Ines Thiele, and B.Ø. Palsson. Estimation of the number of extreme

pathways for metabolic networks. BMC Bioinformatics, 8(363), 2007.

[85] C. H. Schilling, D. Letscher, and B.Ø. Palsson. Theory for the systemic definition of

metabolic pathways and their use in interpreting metabolic function from a pathway-

oriented perspective. Journal of Theoretical Biology, 203(3):229–248, 2000.

[86] S. Wiback and B.Ø. Palsson. Extreme pathway analysis of human red blood cell

metabolism. Biophysics Journal, 83(2):808–818, 2002.

[87] J.A. Papin, N.D. Price, J.S. Edwards, and B.Ø. Palsson. The Genome-Scale Metabolic

Extreme Pathway Structure in Haemophilus influenzae Shows Significant Network

Redundancy. Journal of Theoretical Biology, 215:67–82, 2002.

[88] N.D. Price, J.A. Papin, and B.Ø. Palsson. Determination of redundancy and systems

properties of the metabolic network of helicobacter pylori using genome-scale extreme

pathway analysis. Genome Research, 12:760–769, 2002.

[89] S. Schuster and C. Hilgetag. On elementary flux modes in biochemical reaction sys-

tems at steady state. Journal of Biological Systems, 2(2):165–182, 1994.

[90] T. Pfeiffer, I. Sanchez-Valdenebro, J.C. Nuno, F. Montero, and S. Schuster. META-

TOOL: for studying metabolic networks. Bioinformatics, 15(3):251–257, 1999.

[91] S. Klamt and J. Stelling. Two approaches for metabolic pathway analysis? Trends

in Biotechnology, 21(2):64–69, 2003.

[92] S. Klamt and E. Gilles. Minimal cut sets in biochemical reaction networks. Bioinfor-

matics, 20(2):226–234, 2004.

[93] S. Klamt. Generalized concept of minimal cut sets in biochemical networks. Biosys-

tems, 83(2-3):233–247, 2006.

[94] U. Haus, S. Klamt, and T. Stephen. Computing knock-out strategies in metabolic

networks. Journal of Computational Biology, 15(3):259–268, 2008.

[95] K. Ballerstein, A. von Kamp, S. Klamt, and U. Haus. Minimal cut sets in a metabolic

network are elementary modes in a dual network. Bioinformatics, 28(3):381–387,

2012.

125

[96] C. Kaleta, L. F. de Figueiredo, and S. Schuster. Can the whole be less than the sum

of its parts? pathway analysis in genome-scale metabolic networks using elementary

flux patterns. Genome Research, 19:1872–1883, 2009.

[97] J. Cakir, B. Kirdar, Z.I. Onsan, K.O. Ulgen, and J. Nielsen. Effect of carbon source

perturbations on transcriptional regulation of metabolic fluxes in saccharomyces cere-

visiae. BMC Systems Biology, 1(18), 2007.

[98] J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster, and E. D. Gilles. Metabolic

network structure determines key aspects of functionality and regulation. Nature,

420(6912):190–193, 2002.

[99] Q.Zhao and H.Kurata. Genetic modification of flux for flux prediction of mutants.

Bioinformatics, 25(13):1702–1708, 2009.

[100] M.A. Orman, F. Berthiaume, I.P. Androulakis, and M.G. Ierapetritou. Pathway

analysis of liver metabolism under stressed condition. Journal of Theoretical Biology,

272(1):131–140, 2011.

[101] S.J. Wiback, R. Mahadevan, and B.Ø. Palsson. Reconstructing metabolic flux vectors

form extreme pathways: defining the alpha-spectrum. Journal of Theoretical Biology,

224(3):313–324, 2003.

[102] M.G. Poolman, K.V. Venkatesh, M.K. Pidcock, and D.A. Fell. A method for the deter-

mination of flux in elementary modes, and its application to lactobacillus rhamnosus.

Biotechnology and Bioengineering, 88(5):601–612, 2004.

[103] J.M. Schwartz and M. Kanehisa. A quadratic programming approach for decomposing

steady-state metabolic flux distributions onto elementary modes. Bioinformatics,

21(2):204–205, 2005.

[104] J. Schwartz and M. Kanehisa. Quantitative elementary mode analysis of metabolic

pathways: the example of yeast glycolysis. BMC Bioinformatics, 7(186), 2006.

[105] Q.Zhao and H. Kurata. Maximum entropy decomposition of flux distribution at steady

state to elementary modes. Journal of Bioscience and Bioengineering, 107(1):84–89,

2009.

[106] Q. Zhao and H. Kurata. Use of maximum entropy principle with lagrange multipli-

ers extends the feasibility of elementary mode analysis. Journal of Bioscience and

Bioengineering, 110(2):254–261, 2010.

126

[107] A.P. Wlaschin, C.T. Trinh, R. Carlsson, and F. Srienc. The fractional contributions

of elementary modes to the metabolism of escherichia coli and their estimation from

reaction entropies. Metabolic Engineering, 8:338–352, 2006.

[108] H. Kurata, Q. Zhao, R. Okuda, and K. Shimizu. Integration of enzyme activities into

metabolic flux distributions by elementary mode analysis. BMC Systems Biology,

1(31), 2007.

[109] K. Ip, C. Colijn, and D.S. Lun. Analysis of complex metabolic behavior through

pathway decomposition. BMC Systems Biology, 5(11), 2011.

[110] J. Behre, T. Wilhelm, A. von Kamp, E. Ruppin, and S. Schuster. Structural robustness

of metabolic networks with respect to multiple knockouts. Journal of Theoretical

Biology, 252(3):433–441, 2008.

[111] C.T. Trinh, R. Carlson, A. Wlaschin, and F. Srienc. Design, construction and perfor-

mance of the most efficient biomass producing e. coli bacterium. Metabolic Engineer-

ing, 8(6):628–638, 2006.

[112] C.T. Trinh and F. Srienc. Metabolic engineering of escherichia coli for efficient con-

version of glycerol to ethanol. Applied and Environmental Microbiology, 75(21):6696–

6705, 2009.

[113] G. Melzer, M.E. Esfandabadi, E. Franco-Lara, and C. Wittmann. Flux design: In sil-

ico design of cell factories based on correlation of pathway fluxes to desired properties.

BMC Systems Biology, 3:120–135, 2009.

[114] O. Hädicke and S. Klamt. CASOP: A computational approach for strain optimization

aiming at high productivity. Journal of Biotechnology, 147(2):88–101, 2010.

[115] K. Bohl, L.F. de Figueiredo, O. Hädicke, S. Klamt, C. Kost, S. Schuster, and

C. Kaleta. CASOP GS: Computing intervention strategies targeted at production

improvement in genome-scale metabolic networks. Proceedings of the 25th German

Conference on Bioinformatics, pages 71–80, 2010.

[116] B.A. Boghigian, H. Shi, K. Lee, and B.A. Pfeifer. Utilizing elementary mode analysis,

pathway thermodynamics, and a genetic algorithm for metabolic flux determination

and optimal metabolic network design. BMC Systems Biology, 4, 2010.

[117] O. Hädicke and S. Klamt. Computing complex metabolic intervention strategies using

constrained minimal cut sets. Metabolic Engineering, 13(2):204–213, 2011.

[118] von Kamp, A., and S. Schuster. Metatool 5.0: fast and flexible elementary modes

analysis. Bioinformatics, 22(15):1930–1931, 2006.

127

[119] S. Klamt, J. Saez-Rodriguez, and E. D. Gilles. Structural and functional analysis of

cellular networks with CellNetAnalyzer. BMC Systems Biology, 1(2), 2007.

[120] S. Hoops, S. Sahle R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu,

P. Mendes, and U. Kummer. COPASI a COmplex PAthway SImulator. Bioin-

formatics, 22(24):3067–3074, 2006.

[121] S. Bell and B.Ø. Palsson. Expa: Program for calculating extreme pathways in bio-

chemical reaction networks. Bioinformatics, 21(8):1739–1740, 2005.

[122] K. Yizhak, T. Benyamini, W. Liebermeister, and E. Ruppin. Integrating quanti-

tative proteomics and metabolomics with a genome-scale metabolic network model.

Bioinformatics, 26(12):255–260, 2010.

[123] T. Shlomi, M.N. Cabili, M.J. Herrgard, B.O. Palsson, and E. Ruppin. Network-based

prediction of human tissue-specific metabolism. Nature Biotechnology, 26(9), 2008.

[124] H. Zur, E. Ruppin, and T. Shlomi. imat: an integrative metabolic analysis tool.

Bioinformatics, 26(24):3140–3142, 2010.

[125] M.W. Covert, N. Xiao, T.J. Chen, and J.R. Karr. Integrating metabolic, transcrip-

tional regulatory and signal transduction models in escherichia coli. Bioinfrmatics,

24(18):2044–2050, 2008.

[126] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B. Bolival

Jr., N. Assad-Garcia, J. I. Glass, and M. W. Covert. A Whole-Cell Computational

Model Predicts Phenotype from Genotype. Cell, 150(2):389–401, 2012.

[127] J. Gunawardena. Sillicon dreams of cells into symbols. Nature Biotechnology,

30(9):838–840, 2012.

[128] M. Isalan. A cell in a computer. Nature, 488:40–41, 2012.

[129] S. Klamt, J. Stelling, M. Ginkel, and E.D. Gilles. FluxAnalyzer: Exploring struc-

ture, pathways, and flux distributions in metabolic networks on interactive flux maps.

Bioinformatics, 19(2):261–269, 2003.

[130] D. Jevremovic, C.T. Trinh, F. Srienc, and D. Boley. On algebraic properties of extreme

pathways in metabolic networks. Journal of Computational Biology, 17(2):107–119,

2010.

[131] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration

of arrangements and polyhedra. Discrete Computational Geometry, 8(1):295–313,

1992.

128

[132] V. Acuña, F. Chierichetti, V. Lacroix, A. Marchetti-Spaccamela, M. Sagot, and

L. Stougie. Modes and cuts in metabolic networks: Complexity and algorithms.

BioSystems, 95(1):51–60, 2009.

[133] M.E. Dyer. The Complexity of Vertex Enumeration Methods. Mathematics of Oper-

ations Research, 8(3):381–402, 1983.

[134] T. H. Corment, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.

The MIT Press, 2nd edition, 2001.

[135] A. Schrijver. Theory of linear and integer programming. Wiley, 1988.

[136] F. Llaneras and J. Pico. Which metabolic pathways generate and characterize the

flux space? a comparison among elementary modes, extreme pathways and minimal

generators. J of Biomedicine and Biotechnology, 2010, 2010. Article ID 753904.

[137] S. Pérès, F. Vallée, M. Beurton-Aimar, and J.P. Mazat. ACoM: A classication method

for elementary ux modes based on motif nding. Biosystems, 103:410–419, 2011.

[138] C.M. Flynn, K.A. Hunt, J.A. Gralnick, and F. Srienc. Construction and elementary

mode analysis of a metabolic model for Shewanella oneidensis MR-1. Biosystems,

107(2):120–128, 2012.

[139] A. Larhlimi. New Concepts and Tools in Constraint-based Analysis of Metabolic Net-

works. PhD thesis, Freie Universität, Berlin, July 2008.

[140] A. Larhlimi and A. Bockmayr. A new approach to flux coupling analysis of metabolic

networks. In Computational Life Sciences II, volume 4216 of Lecture Notes in Com-

puter Science, pages 205–215. Springer Berlin / Heidelberg, 2006.

[141] A. Larhlimi and A. Bockmayr. A new constraint-based description of the steady-state

flux cone of metabolic networks. Discrete Applied Mathematics, 157(10):2257–2266,

2009.

[142] A. Rezola, L.F. de Figueiredo, M. Brock, J. Pey, A. Podhorski, C. Wittmann, S. Schus-

ter, A. Bockmayr, and F. J. Planes. Exploring metabolic pathways in genome-scale

networks via generating flux modes. Bioinformatics, 27(4):534–540, 2011.

[143] L. F. de Figueiredo, A. Podhorski, A. Rubio, C. Kaleta, J. Beasley, S. Schuster,

and F. J. Planes. Computing the shortest elementary flux modes in genome-scale

metabolic networks. Bioinformatics, 25(23):3158–3165, 2009.

[144] D. Jevremovic, C. T. Trinh, F. Srienc, C. Sosa, and D. Boley. Parallelization of

nullspace algorithm for the computation of elementary flux modes. Parallel Computing

Journal, 37(6-7):261–278, 2011.

129

[145] David Lay. Linear Algebra and Its Applications. Addison Wesley, 4 edition, 2012.

[146] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel Computing.

Addison-Wesley, 2nd edition, 2003.

[147] Template Numerical Toolkit. http://math.nist.gov/tnt/.

[148] Java Matrix Library. http://math.nist.gov/javanumerics/jama.

[149] D. Jevremovic, D. Boley, and C. Sosa. Divide-and-conquer approach to the parallel

computation of elementary flux modes in metabolic networks. In IEEE International

Symposium on Parallel and Distributed Processing Workshops and PhD Forum, pages

502–511, 2011.

[150] S. Klamt, J. Gagneur, and A. von Kamp. Algorithmic approaches for computing

elementary modes in large biochemical reaction networks. Systems Biology, IEE Pro-

ceedings, 152(4):249–255, 2005.

[151] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Apra. Ad-

vances, Applications and Performance of the Global Arrays Shared Memory Program-

ming Toolkit. International Journal of High Performance Computing Applications,

20(2):203–231, 2006.

[152] Global arrays webpage. http://www.emsl.pnl.gov/docs/global/. Accessed:

03/04/2012.

[153] M. Krishnan, B. Palmer, A. Vishnu, S. Krishnamoorthy, J. Daily, and D. Chavarria.

The Global Arrays User Manual, November 2011.

[154] J. Nieplocha and V. Tipparaju and M. Krishnan and D. Panda. High Performance Re-

mote Memory Access Comunications: The ARMCI Approach. International Journal

of High Performance Computing and Applications, 20(2), 2006.

[155] R. Schuetz, N. Zamboni, M. Zampieri, M. Heinemann, and U. Sauer. Multidimensional

Optimality of Microbial Metabolism. Science, 336(6081):601–604, 2012.

[156] S.S. Fong, J.Y. Marciniak, and B.O. Palsson. Description and interpretation of

adaptive evolution of escherichia coli k-12 mg1655 by using a genome-scale in silico

metabolic model. Journal of Bacteriology, 185(21):6400–6408, 2003.

[157] S.S. Fong and B.O. Palsson. Metabolic genedeletion strains of escherichia coli evolve

to computationally predicted growth phenotypes. Nature Genetics, 36:1056–1058,

2004.

130

http://math.nist.gov/tnt/
http://math.nist.gov/javanumerics/jama
http://www.emsl.pnl.gov/docs/global/

[158] S.S. Fong, A.P. Burgard, C.D. Herring, E.M. Knight, F.R. Blattner, C.D. Maranas,

and B.O. Palsson. In silico design and adaptive evolution of escherichia coli for pro-

duction of lactic acid. Biotechnology and Bioengineering, 91(5):643648, 2005.

[159] T.M. Conrad, N.E. Lewis, and B.O. Palsson. Microbial laboratory evolution in the

era of genome-scale science. Molecular Systems Biology, 7:509, 2011.

[160] K. Holmström, A. O. Göran, and M. M. Edvall. User’s Guide for TOMLAB 7, May

2010.

[161] F. Srienc and P. Unrean. A statistical thermodynamical interpretation of metabolism.

Entropy, 12(8):1921–1935, 2010.

[162] R. Carlson, D. Fell, and F. Srienc. Metabolic pathway analysis of a recombinant

yeast for rational strain development. Biotechnology and bioengineering, 79(2):121–

134, 2002.

131

Appendix A

Metabolic Network Models

Metabolites in the metabolic networks listed here have compartmentalized metabolites.

For notation, the metabolite name is followed by a bracketed single letter such as GAL[e],

denoting the extracellular galactose. Mitochondrial, extracellular and cytosol compartments

are denoted as [m], [e] and [c], respectively. Cytosol metabolites are given without the

notation in brackets as the default metabolite location.

A.1 Escherichia coli

Table A.1: Central metabolism of Escherichia coli [1]

(reactions which are present when xylose is used as substrate)

XY L1 : XYLO + ATP =⇒ XYLU + ADP

XY L2 : XYLU =⇒ X5P

(reactions which are present when manose is used as substrate)

MAN1 : MAN[e] + ATP =⇒ MAN6P + ADP

MAN2 : MAN6P =⇒ F6P

(reactions which are present when galactose is used as substrate)

GAL1 : GAL + ATP =⇒ G6P + ADP

TRA9 : GAL[e] + ATP =⇒ GAL + ADP

(reactions which are present when glucose is used as substrate)

GG1 : GLC[e] + PEP =⇒ G6P + PYR

(reactions which are present when glycerol is used as substrate)

GLY CER1 : GLYCEROL[e] + ATP =⇒ GLY3P + ADP

GLY CER2 : GLY3P + NAD =⇒ DHAP + NADH

(reactions which are common for all substrates)

GG2r : G6P ⇐⇒ F6P

GG3 : F6P + ATP =⇒ F16BP + ADP

132

GG4 : F16BP =⇒ F6P

GG5r : F16BP ⇐⇒ DHAP + GA3P

GG6r : GA3P ⇐⇒ DHAP

GG7r : GA3P + NAD ⇐⇒ 3PGP + NADH

GG8r : 3PGP + ADP ⇐⇒ 3PG + ATP

GG9r : 3PG ⇐⇒ 2PG

GG10r : 2PG ⇐⇒ PEP

GG11 : PEP + ADP =⇒ PYR + ATP

GG12 : PYR + ATP =⇒ PEP + AMP

GG13 : PYR + CoASH + NAD =⇒ ACoA + CO2 + NADH

PPP1 : G6P + NADP =⇒ GL6P + NADPH

PPP2 : GL6P =⇒ 6PG

PPP3 : 6PG + NADP =⇒ R5P + CO2 + NADPH

PPP4r : R5P ⇐⇒ X5P

PPP5r : R5P ⇐⇒ RIBO5P

PPP6r : RIBO5P + X5P ⇐⇒ S7P + GA3P

PPP7r : GA3P + S7P ⇐⇒ ERY4P + F6P

PPP8r : ERY4P + X5P ⇐⇒ GA3P + F6P

TCA1 : OAA + ACoA =⇒ CIT + CoASH

TCA2r : CIT ⇐⇒ CACO

TCA3r : CACO ⇐⇒ ICIT

TCA4 : ICIT + NADP =⇒ AKG + CO2 + NADPH

TCA5 : AKG + NAD + CoASH =⇒ NADH + SCoA + CO2

TCA6r : SCoA + ADP ⇐⇒ SUCC + ATP + CoASH

TCA7 : SUCC + Q =⇒ FUM + QH2

TCA8r : FUM ⇐⇒ MAL

TCA9r : MAL + NAD ⇐⇒ OAA + NADH

TCA10 : FUM + QH2 =⇒ SUCC + Q

GLB1 : ICIT =⇒ GLYOXY + SUCC

GLB2 : GLYOXY + ACoA =⇒ MAL + CoASH

ANA1 : PEP + CO2 =⇒ OAA

ANA2 : MAL + NAD =⇒ PYR + CO2 + NADH

ANA3 : OAA + ATP =⇒ PEP + ADP + CO2

FEM1 : PYR + CoASH =⇒ ACoA + FOR

FEM2 : PYR + Q =⇒ ACE + CO2 + QH2

FEM3 : PYR + NADH =⇒ LAC + NAD

FEM4 : FOR =⇒ CO2 + H2[e]

133

FEM5 : ACoA + NADH =⇒ ACA + NAD + CoASH

FEM6 : ACA + NADH =⇒ ETOH + NAD

FEM7 : ACoA =⇒ ACP + CoASH

FEM8 : ACP + ADP =⇒ ACE + ATP

FEM9 : PYR =⇒ ACA + CO2

EDP1 : 6PG =⇒ KDPG

EDP2 : KDPG =⇒ PYR + GA3P

BIO : 49 G6P + 17 F6P + 860 RIBO5P + 1426 AKG + 2355 OAA + 512

ERY4P + 960 PEP + 3920 PYR + 1642 3PG + 31 GA3P + 1207

ACoA + 40680 ATP + 4079 NAD + 18320 NADPH + 12502 NH3 =⇒

BIOMASS + 1207 CoASH + 40680 ADP + 4079 NADH + 18320 NADP

OPM1 : NADH + 2 ADP + O2[e] =⇒ NAD + 2 ATP

OPM2 : QH2 + ADP + O2[e] =⇒ Q + ATP

OPM3 : ATP =⇒ ADP + ATP base

OPM4r : NADH + Q ⇐⇒ NAD + QH2

TRA1 : ETOH =⇒ ETOH[e]

TRA2 : ACE =⇒ ACE[e]

TRA3 : NH3[e] =⇒ NH3

TRA4 : LAC =⇒ LAC[e]

TRA5 : SUCC =⇒ SUCC[e]

TRA6 : FOR =⇒ FOR[e]

TRA7 : CO2 =⇒ CO2[e]

TRA8 : XYLO[e] + ATP =⇒ XYLO + ADP

FC1r : NAD + NADPH ⇐⇒ NADP + NADH

FC2 : AMP + ATP =⇒ 2 ADP

134

Table A.2: Core metabolic network of Escherichia coli [2, 3]

(Glycolysis/Gluconeogenesis)

ENO : 2PG ⇐⇒ H2O + PEP

FBA : FDP ⇐⇒ DHAP + G3P

FBP : FDP + H2O =⇒ F6P + Pi

GAPD : G3P + NAD + Pi ⇐⇒ 13DPG + H + NADH

PDH : COA + NAD + PYR =⇒ ACCOA + CO2 + NADH

PFK : ATP + F6P =⇒ ADP + FDP + H

PGI : G6P ⇐⇒ F6P

PGK : 3PG + ATP ⇐⇒ 13DPG + ADP

PGM : 2PG ⇐⇒ 3PG

PPS : ATP + H2O + PYR =⇒ AMP + 2 H + PEP + Pi

PY K : ADP + H + PEP ⇐⇒ ATP + PYR

TPI : DHAP ⇐⇒ G3P

G6PDH2 : G6P + NADP ⇐⇒ 6PGL + H + NADPH

(Pentose Phosphate pathway)

GND : 6PGC + NADP =⇒ CO2 + NADPH + RU5P D

PGL : 6PGL + H2O =⇒ 6PGC + H

RPE : RU5P D ⇐⇒ XU5P D

RPI : R5P ⇐⇒ RU5P D

TALA : G3P + S7P ⇐⇒ E4P + F6P

TKT1 : R5P + XU5P D ⇐⇒ G3P + S7P

TKT2 : E4P + XU5P D ⇐⇒ F6P + G3P

(Oxidative Phosphorylation)

ADK1 : AMP + ATP ⇐⇒ 2 ADP

ATPM : ATP + H2O =⇒ ADP + H + Pi

ATPS4 : ADP + 4 H[e] + Pi ⇐⇒ ATP + H2O + 3 H

CY TBD : 4 H + 1 O2 + 2 Q8H2 =⇒ 2 H2O + 4 H[e] + 2 Q8

NADH16 : 4 H + NADH + Q8 =⇒ 3 H[e] + NAD + Q8H2

NADTRHD : NAD + NADPH =⇒ NADH + NADP

THD2 : 2 H[e] + NADH + NADP =⇒ 2 H + NAD + NADPH

(Pyruvate metabolism)

ACK : AC + ATP ⇐⇒ ACTP + ADP

ACALD : ACALD + COA + NAD ⇐⇒ ACCOA + H + NADH

ALCD2x : ETOH + NAD ⇐⇒ ACALD + H + NADH

LDH D : LAC D + NAD ⇐⇒ H + NADH + PYR

PFL : COA + PYR =⇒ ACCOA + FOR

135

PTA : ACCOA + Pi ⇐⇒ ACTP + COA

(Anaplerotic reactions)

ICL : ICIT =⇒ GLX + SUCC

MALS : ACCOA + GLX + H2O =⇒ COA + H + MAL L

ME1 : MAL L + NAD =⇒ CO2 + NADH + PYR

ME2 : MAL L + NADP =⇒ CO2 + NADPH + PYR

PPC : CO2 + H2O + PEP =⇒ H + OAA + Pi

PPCK : ATP + OAA =⇒ ADP + CO2 + PEP

(TCA cycle)

ICDHy : ICIT + NADP ⇐⇒ AKG + CO2 + NADPH

CS : ACCOA + H2O + OAA =⇒ CIT + COA + H

FUM : FUM + H2O =⇒ MAL L

MDH : MAL L + NAD ⇐⇒ H + NADH + OAA

SUCDi : Q8 + SUCC =⇒ FUM + q8h2

AKGDH : AKG + COA + NAD =⇒ CO2 + NADH + SUCCOA

SUCOAS : ATP + COA + SUCC ⇐⇒ ADP + Pi + SUCCOA

FRD7 : FUM + q8h2 =⇒ q8 + SUCC

ACONTa : CIT ⇐⇒ ACON C + H2O

ACONTb : ACON C + H2O ⇐⇒ ICIT

(Transport reactions)

GLCpts : GLC D[e] + PEP =⇒ G6P + PYR

MALt2 2 : 2 H[e] + MAL L[e] =⇒ 2 H + MAL L

H2Ot : H2O[e] ⇐⇒ H2O

GLUt2 : GLU L[e] + H[e] ⇐⇒ GLU L + H

NH4t : NH4[e] ⇐⇒ NH4

O2t : O2[e] ⇐⇒ O2

FORt2 : FOR[e] + H[e] =⇒ FOR + H

FORti : FOR =⇒ FOR[e]

ACALDt : ACALD[e] ⇐⇒ ACALD

ACt2 : AC[e] + H[e] ⇐⇒ AC + H

AKGt2 : AKG[e] + H[e] ⇐⇒ AKG + H

CO2t : CO2[e] ⇐⇒ CO2

D LACt2 : H[e] + LAC D[e] ⇐⇒ H + LAC D

ETOHt2 : ETOH[e] + H[e] ⇐⇒ ETOH + H

FUMt2 2 : FUM[e] + 2 H[e] =⇒ FUM + 2 H

PIt2 : H[e] + Pi[e] ⇐⇒ H + Pi

PY Rt2 : H[e] + PYR[e] ⇐⇒ H + PYR

136

SUCCt2 2 : 2 H[e] + SUCC[e] =⇒ 2 H + SUCC

SUCCt3 : H[e] + SUCC =⇒ H + SUCC[e]

FRUpts2 : FRU[e] + PEP =⇒ F6P + PYR

EX GLC : GLC D[e] ⇐⇒ GLC D[b]

EX GLN–L : GLN L[e] ⇐⇒ GLN L[b]

EX GLU–L : GLU L[e] ⇐⇒ GLU L[b]

EX H : H[e] ⇐⇒ H2O[b]

EX H2O : H2O[e] ⇐⇒ H[b]

EX LAC–D : LAC D[e] ⇐⇒ LAC D[b]

EX MAL–L : MAL L[e] ⇐⇒ MAL L[b]

EX NH4 : NH4[e] ⇐⇒ NH4[b]

EX O2 : O2[e] ⇐⇒ O2[b]

EX Pi : Pi[e] ⇐⇒ Pi[b]

EX PY R : PYR[e] ⇐⇒ PYR[b]

EX SUCC : SUCC[e] ⇐⇒ SUCC[b]

EX AC : AC e ⇐⇒ AC[b]

EX ACALD : ACALD[e] ⇐⇒ ACALD[b]

EX AKG : AKG[e] ⇐⇒ AKG[b]

EX CO2 : CO2[e] ⇐⇒ CO2[b]

EX ETOH : ETOH[e] ⇐⇒ ETOH[b]

EX FOR : FOR[e] ⇐⇒ FOR[b]

EX FRU : FRU[e] ⇐⇒ FRU[b]

EX FUM : FUM[e] ⇐⇒ FUM[b]

(amino acid biosynthesis)

GLNS : ATP + GLU L + NH4 =⇒ ADP + GLN L + H + Pi

GLNabc : ATP + GLN L[e] + H2O =⇒ ADP + GLN L + H + Pi

GLUDy : GLU L + H2O + NADP ⇐⇒ AKG + H + NADPH + NH4

GLUN : GLN L + H2O =⇒ GLU L + NH4

GLUSy : AKG + GLN L + H + NADPH =⇒ 2 GLU L + NADP

(Cell growth)

BIO : 14960 3PG + 37478 ACCOA + 598100 ATP + 3610 E4P + 709 F6P

+ 1290 G3P + 2050 G6P + 2557 GLN L + 49414 GLU L + 598100

H2O + 35470 NAD + 130279 NADPH + 17867 OAA + 5191 PEP +

28328 PYR + 8977 R5P =⇒ 598100 ADP + 41182 AKG + 37478 COA

+ 598100 H + 35470 NADH + 130279 NADP + 598100 Pi

137

A.2 Sacharomyces cerevisiae

Table A.3 illustrates the central metabolic network where, the 80-reaction network extends

the 78-reaction network, while the 83-reaction network extends the 80-reaction network,

respectively. Lists of irreversible and reversible reaction are given separately in the anaerobic

78-reaction network, while the extra reactions and modifications are listed at the end of the

table.

Table A.3: Central metabolism of S. cerevisiae [149]

S. cerevisiae metabolic network I with 62 metabolites and 78 reactions:

the irreversible reactions.

R4 : F6P + ATP =⇒ FDP + ADP

R5 : FDP =⇒ F6P

R9 : PYR + ATP =⇒ PEP + ADP

R10 : PEP + ADP =⇒ PYR + ATP

R12 : GL3P + FAD[m] =⇒ DHAP + FADH[m]

R26 : GL3P =⇒ GLY

R15 : G6P + 2 NADP =⇒ 2 NADPH + CO2 + RL5P

R21 : ACCOA + OA =⇒ COA + CIT

R23 : ICIT + NADP =⇒ CO2 + NADPH + AKG

R24 : AKG[m] + NAD[m] + COA[m] =⇒ CO2 + NADH[m] + SUCCOA[m]

R27 : FUM + FADH =⇒ SUCC + FAD

R33 : PYR + COA =⇒ ACCOA + FOR

R37 : PYR + ATP + CO2 =⇒ ADP + OA

R38 : PYR =⇒ ACEADH + CO2

R40 : ACEADH + NADH =⇒ ETOH + NAD

R41 : ACEADH + NADP =⇒ AC + NADPH

R42 : OA + ATP =⇒ PEP + CO2 + ADP

R43 : PEP + CO2 =⇒ OA

R46 : ICIT =⇒ GLX + SUCC

R47 : ACCOA + GLX =⇒ COA + MAL

R53 : ACEADH + NAD =⇒ AC + NADH

R54 : ATP =⇒ ADP

R58 : NADH + NAD[m] =⇒ NAD + NADH[m]

R59 : NH3[e] =⇒ NH3

R60 : GLY =⇒ GLY[e]

R62 : GLC[e] + PEP =⇒ G6P + PYR

R63 : AC =⇒ AC[e]

138

R64 : LAC =⇒ LAC[e]

R65 : FOR =⇒ FOR[e]

R66 : ETOH =⇒ ETOH[e]

R67 : SUCC =⇒ SUCC[e]

R68 : O2[e] =⇒ O2

R69 : CO2 =⇒ CO2[e]

R70 : 7437 G6P + 611 G3P + 437 R5P + 130 E4P + 500 PEP + 2060 PYR

+ 45 ACCOA[m] + 362 ACCOA + 733 AKG + 1232 OA + 1158 NAD

+ 434 NAD[m] + 6413 NADPH + 1568 NADPH[m] + 40141 ATP +

5587 NH3 =⇒ 1000 BIO + 247 CO2 + 45 COA[m] + 362 COA + 1158

NADH + 434 NADH[m] + 6413 NADP + 1568 NADP[m] + 40141 ADP

R72 : PYR[m] + COA[m] + NAD[m] =⇒ ACCOA[m] + NADH[m] + CO2

R73 : OA[m] + ACCOA[m] =⇒ CIT[m] + COA[m]

R75 : ICIT[m] + NAD[m] =⇒ AKG[m] + NADH[m] + CO2

R76 : ICIT[m] + NADP[m] =⇒ AKG[m] + NADPH[m] + CO2

R77 : ICIT + NADP =⇒ AKG + NADPH + CO2

R82 : MAL[m] + NADP[m] =⇒ PYR[m] + NADPH[m] + CO2

R85 : ETOH[m] + COA[m] + 2 ATP[m] + 2 NAD[m] =⇒ ACCOA[m] + 2

ADP[m] + 2 NADH[m]

R86 : ACEADH[m] + NAD[m] =⇒ AC[m] + NADH[m]

R87 : ACEADH[m] + NADP[m] =⇒ AC[m] + NADPH[m]

R93 : ADP + ATP[m] =⇒ ADP[m] + ATP

R98 : FUM[m] + SUCC =⇒ SUCC[m] + FUM

R100 : SUCC =⇒ SUCC[m]

R101 : AKG + MAL[m] =⇒ AKG[m] + MAL

139

S. cerevisiae metabolic network I with 62 metabolites and 78 reactions:

the reversible reactions

R3r : G6P ⇐⇒ F6P

R6r : FDP ⇐⇒ G3P + DHAP

R7r : G3P ⇐⇒ DHAP

R8r : G3P + NAD + ADP ⇐⇒ PEP + ATP + NADH

R13r : DHAP + NADH ⇐⇒ GL3P + NAD

R16r : RL5P ⇐⇒ R5P

R17r : RL5P ⇐⇒ X5P

R18r : R5P + X5P ⇐⇒ G3P + S7P

R19r : X5P + E4P ⇐⇒ F6P + G3P

R20r : G3P + S7P ⇐⇒ E4P + F6P

R22r : CIT ⇐⇒ ICIT

R25r : SUCCOA[m] + ADP[m] ⇐⇒ ATP[m] + COA[m] + SUCC[m]

R28r : FUM ⇐⇒ MAL

R29r : MAL + NAD ⇐⇒ NADH + OA

R30r : PYR + NADH ⇐⇒ NAD + LAC

R32r : ACCOA + 2 NADH ⇐⇒ ETOH + 2 NAD + COA

R36r : ATP + AC + COA ⇐⇒ ADP + ACCOA

R74r : CIT[m] ⇐⇒ ICIT[m]

R78r : ACEADH[m] + NADH[m] ⇐⇒ ETOH[m] + NAD[m]

R79r : SUCC[m] + FAD[m] ⇐⇒ FUM[m] + FADH[m]

R80r : FUM[m] ⇐⇒ MAL[m]

R81r : MAL[m] + NAD[m] ⇐⇒ OA[m] + NADH[m]

R88r : CIT + MAL[m] ⇐⇒ CIT[m] + MAL

R89r : MAL + SUCC[m] ⇐⇒ MAL[m] + SUCC

R90r : CIT + ICIT[m] ⇐⇒ CIT[m] + ICIT

R92r : AC[m] ⇐⇒ AC

R94r : PYR =⇒ PYR[m]

R95r : ETOH =⇒ ETOH[m]

R96r : MAL[m] =⇒ MAL

R97r : ACCOA[m] =⇒ ACCOA

R102r : OA ⇐⇒ OA[m]

S. cerevisiae metabolic network II with 62 metabolites and 80 reactions:

added to network I.

R56 : 24 ADP + 20 NADH[m] + 10 O2 =⇒ 24 ATP + 20 NAD[m]

R57 : 24 ADP + 20 FADH + 10 O2 =⇒ 24 ATP + 20 FAD

140

S. cerevisiaemetabolic network III with 63 metabolites and 83 reactions:

differences from network I and II.

additional internal metabolite:

GLC

added reactions:

R1 : GLC + ATP =⇒ G6P + ADP

R14 : GLY + ATP =⇒ GL3P + ADP

R56 : 24 ADP + 20 NADH[m] + 10 O2 =⇒ 24 ATP + 20 NAD[m]

R57 : 24 ADP + 20 FADH + 10 O2 =⇒ 24 ATP + 20 FAD

R61 : GLC[e] =⇒ GLC

reactions made reversible:

R54r : ATP ⇐⇒ ADP

R60r : GLY ⇐⇒ GLY[e]

R63r : AC ⇐⇒ AC[e]

modified reaction:

R62 : GLC + PEP =⇒ G6P + PYR

Table A.4: Recombinant metabolic network of S. cerevisiae [162]

R1 : GLU[e] + PEP =⇒ GLU6P + PYR

R2r : GLU6P ⇐⇒ FRU6P

R3 : FRU6P + ATP =⇒ FRUBISP + ADP

R4 : FRUBISP =⇒ FRU6P

R5r : FRUBISP ⇐⇒ DHAP + GA3P

R6r : GA3P ⇐⇒ DHAP

R7r : GA3P + ADP + NAD ⇐⇒ PG + ATP + NADH

R8r : PG ⇐⇒ PEP

R9 : PEP + ADP =⇒ PYR + ATP

RR9 : PYR + 2 ATP =⇒ PEP + 2 ADP

R10 : GLU6P + 2 NAD =⇒ RIBULOSE5P + 2 NADH + CO2

R11r : RIBULOSE5P ⇐⇒ XYL5P

R12r : RIBULOSE5P ⇐⇒ RIBOSE5P

R13r : RIBOSE5P + XYL5P ⇐⇒ SED7P + GA3P

R14r : GA3P + SED7P ⇐⇒ ERYTH4P + FRU6P

R15r : ERYTH4P + XYL5P ⇐⇒ GA3P + FRU6P

R20 : PYR + CoASH =⇒ ACETYLCoA + FORMATE

141

R21 : PYR + NAD + CoASH =⇒ ACETYLCoA + CO2 + NADH

R22 : OXALO + ACETYLCoA =⇒ CITRATE + CoASH

R23r : CITRATE ⇐⇒ ISOCIT

R24 : ISOCIT + NAD =⇒ AKG + NADH + CO2

R25 : AKG + NAD + CoASH =⇒ NADH + SUCCCoA + CO2

R26r : SUCCCoA + ADP ⇐⇒ SUCC + ATP + CoASH

R27r : SUCC + FAD ⇐⇒ FUMARATE + FADH

R28r : FUMARATE ⇐⇒ MALATE

R29r : MALATE + NAD ⇐⇒ OXALO + NADH

R40 : PEP + CO2 =⇒ OXALO

R41 : MALATE + NAD =⇒ PYR + NADH + CO2

R42 : OXALO + ATP =⇒ PEP + ADP + CO2

R53r : PYR + NADH ⇐⇒ LACTATE + NAD

R54r : ACETYLCoA + 2 NADH ⇐⇒ ETOH + 2 NAD + CoASH

R55 : ACETYLCoA + ADP =⇒ ACETATE + CoASH + ATP

R70 : 4 GLU6P + 46 RIBOSE5P + 31 ERYTH4P + 156 PEP + 237 PYR + 72

ACETYLCoA + 86 AKG + 139 OXALO + 2921 ATP + 856 NADH + 731

NH3 =⇒ BIOMASS + 72 CoASH + 2921 ADP + 856 NAD + 35 CO2

R80 : NADH + 2 ADP + OXY[e] =⇒ NAD + 2 ATP

R81 : FADH + ADP + OXY[e] =⇒ FAD + ATP

R82 : ATP =⇒ ADP + ATPmain

R83 : NADH + FAD =⇒ NAD + FADH

R90 : ETOH =⇒ ETOH[e]

R91 : ACETATE =⇒ ACETATE[e]

R93 : NH3[e] =⇒ NH3

R94 : LACTATE =⇒ LACTATE[e]

R95 : SUCC =⇒ SUCC[e]

R96 : FORMATE =⇒ FORMATE[e]

R97r : CO2 ⇐⇒ CO2[e]

142

Appendix B

Pseudocode

B.1 Serial Nullspace Algorithm

Algorithm 17 [combinations] = RadixSortEFMCands(R(bit), combinations, width)

Input:
1: bit pattern matrix used to generate new candidates - R(bit)

2: pairs of column indices which generate new candidates - combinations
3: width of the sequence of bits over which elementary radix sort is performed - width

Output:
4: reordered pairs of indices so that corresponding columns are sorted - combinations

5: r ⇐ size(R(bit), 1)
6: col length⇐ number of machine words in r bits
7: for i = 1 to col length do
8: factor ⇐ r

width ⊲ number of sequences of length width in current word
9: for j = 1 to factor do

10: counting ⇐ zeros(1, 2width)
11: for k = 1 to length(combinations) do
12: (ii, jj)⇐ combinationsk

13: aa⇐ R
(bit)
∗,ii or R

(bit)
∗,jj

14: aa⇐ (aa shl j · width) and (2width − 1)
15: countingaa ⇐ countingaa + 1
16: end for
17: for k = 1 to 2width do
18: countingk ⇐ countingk + countingk−1
19: end for
20: for k = length(combinations) downto 1 do
21: (ii, jj)⇐ combinations(k)

22: aa⇐ R
(bit)
∗,ii or R

(bit)
∗,jj

23: aa⇐ (aa shl j · width) and 2width − 1

143

Algorithm 17 (continued)

24: combinations sorted[countingaa − 1]⇐ combinationsk
25: countingaa ⇐ countingaa − 1
26: end for
27: combinations⇐ combinations sorted
28: end for
29: end for

Algorithm 18 [combinations] = RankTests(N,R, combinations)

Input:
1: reduced stoichiometry matrix - Nm×q

2: initial nullspace matrix - Rq×(q−m) =

[
R(bit)

R(real)

]

3: array of pairs of column-generating indices - combinations
Output:
4: array column-generating pairs valid elementary modes -combinations)

5: k ⇐ size(R(bit), 1)
6: for each (ii, jj) ∈ combinations do

7: x1×k ⇐ R
(bit)
∗,ii or R

(bit)
∗,jj

8: aa⇐ indices of non-zero entries in x1...q−m
9: bb⇐ indices of zero entries in xq−m+1...k

10: ⊲ if Theorem 6 is not satisfied reject candidate
11: if NULLITY(Nbb,aa) 6= 1 then
12: combinations⇐ combinations \ (ii, jj)
13: end if
14: end for

Algorithm 19 [R] = ExpandEfm(R, combinations)

Input:

1: current nullspace matrix - Rq×(q−m) =

[
R(bit)

R(real)

]

2: array of column-generating pairs of indices - combinations
Output:
3: updated nullspace matrix - R

4: k ⇐ size(R(bit), 1)
5: eps⇐ 10−10

6: for each (ii, jj) ∈ combinations do

7: xk×1 ⇐ R
(bit)
∗,ii or R

(bit)
∗,jj

8: y(q−r)×1 ⇐ linear combination of R
(real)
∗,ii and R

(real)
∗,jj so that y1 = 0

144

Algorithm 19 (continued)

9: y(fabs(y) < eps) ⇐ 0 ⊲ for simplicity we omit the check if improperly adopted
tolerance assigns zero value erroneously

10: y ⇐ y/‖y‖1
11: end for
12: R(bit) ⇐ [R(bit) x]
13: R(real) ⇐ [R(real) y]
14: if kth reaction is irreversible then
15: delete from R columns with negative elements in current row

16: end if

B.2 Global Arrays-based Parallel Nullspace Algorithm

Algorithm 20 [pInd(GA), nInd(GA), zInd(GA)] = ScanRealValueEfmGA(currReac,R(GA,real))

Input:
1: currently processed reaction-row - currReac

2: global array of real-valued part of current right nullspace matrix - R
(GA,real)
(q−currReac+1)×nEms

Output:
3: global arrays of indices of positive, negative and zero columns - pInd(GA), nInd(GA), zInd(GA)

4: at processor procId:
5: numLocalCols = min((procId+ 1) · nEms

P
, nEms)-procId · nEms

P

6: R(LC,real) = GET(R(GA,real),procId · nEms
P

. . . procId · nEms
P

+ numLocalCols)

7: scan first row in R(LC,real) to generate indices pInd(LC), nInd(LC) and zInd(LC)

8: for k = 1 to numLocalCols
9: if R(LC,real)[1, k] > 0

10: pInd(LC) = pInd(LC) ∪ {procId · nEms
P

+ k}

11: elsif R(LC,real)[1, k] < 0
12: nInd(LC) = nInd(LC) ∪ {procId · nEms

P
+ k}

13: else
14: zInd(LC) = zInd(LC) ∪ {procId · nEms

P
+ k}

15: end
16: end
17: [prefixPInd]=MPI PREFIX SUM(length(pInd(LC))
18: [prefixNInd]=MPI PREFIX SUM(length(nInd(LC))
19: [prefixZInd]=MPI PREFIX SUM(length(zInd(LC))
20: if procId == P − 1
21: totalPInd = prefixPInd, totalNInd = prefixNInd, totalZInd = prefixZInd
22: end
23: broadcast values totalPInd, totalNInd and totalZInd from processor P − 1
24: ⊲ create global arrays of positive, negative and zero columns of length totalPInd ,

totalNInd and totalZInd
25: pInd(GA)=CREATE(totalPInd),nInd(GA)=CREATE(totalNInd),zInd(GA)=CREATE(totalZInd)
26: PUT(pInd(GA), pInd(LC)), PUT(nInd(GA), nInd(LC)), PUT(zInd(GA), zInd(LC))
27:

28: return [pInd(GA), nInd(GA), zInd(GA)]

145

Algorithm 21 [cPInd(LC), cNInd(LC)] = GenerateCandsGA(currReac, pInd(GA), nInd(GA),
R(GA,bit))

Input:
1: currently processed reaction-row - currReac
2: global arrays of indices of positive and negative columns - pInd(GA), nInd(GA)

3: global array of bit-valued part of current right nullspace matrix - R(GA,bit)

Output:
4: local candidate mode column pairs of indices - cPInd(LC), cNInd(LC)

5: at processor procId:

6: numPosCols = min((procId + 1) · length(pInd(GA))
P

, length(pInd(GA)))-procId ·
length(pInd(GA))

P

7: pIndInd = numPosCols indices to elements in pInd(GA)

8: pInd(LC) = GATHER(pInd(GA), pIndInd)
9: posCols(LC,bit) = GATHER(R(GA,bit), pInd(LC))

10: for it = 0 to P − 1

11: numNegCols = min(it · length(nInd
(GA))

P
, length(nInd(GA)))-it · length(nInd

(GA))
P

12: nInd(LC) = GET(nInd(GA), it · length(nInd
(GA))

P
. . . it · length(nInd

(GA))
P

+ numNegCols)

13: negCols(LC,bit) = GATHER(R(GA,bit), nInd(LC))
14: for s = 1 to length(pInd(LC))
15: for t = 1 to length(nInd(LC))
16: candColumn = posCols(LC,bit)[s] bit-OR negCols(LC,bit)[t]
17: if (candColumn is admissible)
18: cPInd(LC).add(pInd(LC)[s])
19: cNInd(LC).add(nInd(LC)[t])
20: end
21: end
22: end
23: end
24: return [cPInd(LC), cNInd(LC)]

Algorithm 22 [cPInd(LC), cNInd(LC)] = LocalPruneCandModesGA(cPInd(LC), cNInd(LC),
R(GA,bit))

Input:
1: local pairs of indices of accepted column modes - cPInd(LC), cNInd(LC)

2: global array of bit-valued part of current right nullspace matrix - R(GA,bit)

Output:
3: array of pairs of indices of accepted unique column modes cPInd(LC), cNInd(LC)

4: at node procId:
5: sort local pairs of indices (cPInd(LC), cNInd(LC)) which generate candidate columns

using serial radix-sort
6: remove pairs of indices in (cPInd(LC), cNInd(LC)) which generate duplicate candidate

columns in single scan

146

Algorithm 23 [cPInd(GA), cNInd(GA)]=GlobalPruneCandModesGA(currReac, cPInd(LC),
cNInd(LC), R(GA,bit))

Input:
1: currently processed reaction-row - currReac
2: global arrays of indices of positive and negative columns - cPInd(LC), cNInd(LC)

3: global array of bit-valued part of current right nullspace matrix - R(GA,bit)

Output:
4: local candidate mode column pairs of indices - cPInd(GA), cNInd(GA)

5: at processor procId:
6: ⊲ do prefix scan to find number of all candidate mode pairs of indices
7: [prefixNumPairs]=MPI PREFIX SUM(length(cPInd(LC)))
8: if procId == P − 1
9: totalNumPairs = prefixNumPairs

10: end
11: broadcast value totalNumPairs from processor P − 1
12: cPInd(GA)=CREATE(totalNumPairs), cNInd(GA)=CREATE(totalNumPairs)
13: PUT(cPInd(GA), cPInd(LC)), PUT(cNInd(GA), cNInd(LC))
14: [cPInd(GA), cNInd(GA)]=RadixSortEFMCandsGA(currReac, cPInd(GA), cNInd(GA), R(GA,bit))
15: [cPInd(GA), cNInd(GA)]=UniqueEFMCandsGA(currReac, cPInd(GA), cNInd(GA), R(GA,bit))
16: return (cPInd(GA), cNInd(GA))

Algorithm 24 [cPInd(GA), cNInd(GA)] = RadixSortEFMCandsGA(currReac, cPInd(GA),
cNInd(GA), R(GA,bit))

Input:
1: index of currently processed reaction-row - currReac
2: global arrays of pairs of indices of accepted column modes - cPInd(GA),cNInd(GA)

3: bit-valued part of current nullspace matrix as Global Array - R(GA,bit)

Output:
4: sorted global arrays of pairs of indices of accepted column modes - cPInd(GA), cNInd(GA)

5: at processor procId:

6: numLocalCols = min(procId· length(cPInd(GA))
P

, length(cPInd(GA)))-procId· length(cPInd(GA))
P

7: numBits = 32-bit or 64-bit, width = 8 or 16
8: for i = 1 to currReac

numBits

9: for j = 1 to numBits
width

10: cPInd(LC) = GET(cPInd(GA), procId · length(cPInd(GA))
P

. . . procId · length(cPInd(GA))
P

+
numLocalCols)

11: cNInd(LC) = GET(cNInd(GA), procId · length(cNInd(GA))
P

. . . procId · length(cNInd(GA))
P

+
numLocalCols)

12: R(bit,LC) = bit-OR columns in R(GA,bit) indexed by cPInd(LC) and cNInd(LC)

13: counting=scan bit interval of length width in columns of R(bit,LC) and increment
respective elements of counting array

14: [prefixCount]=MPI PREFIX SUM(counting)
15: if procId == P − 1
16: totalPrefixCount=prefixCount
17: end
18: broadcast array totalPrefixCount from processor P − 1
19: shift elements in array totalPrefixCount[1 . . . K] one position to the right

147

Algorithm 24 (continued)

20: totalPrefixCount[k]=0
21: for k = 2 to K
22: totalPrefixCount[k]=totalPrefixCount[k − 1]+totalPrefixCount[k]
23: end
24: ⊲ determine new position of local column indices in the global array
25: for k = 1 to numLocalColumns
26: bitV al = width-bit sequence at position j × width in ith word
27: columnIndPosition[k]=totalPrefixCount[bitV al]+prefixCount[bitV al]
28: end
29: ⊲ scatter indices in cPInd(LC) and cNInd(LC) into proper positions in re-

spective global arrays
30: SCATTER(cPInd(GA),columnIndPosition,cPInd(LC))
31: SCATTER(cNInd(GA),columnIndPosition,cNInd(LC))
32: end
33: end
34:

35: return [cPInd(GA), cNInd(GA)]

Algorithm 25 [cPInd(GA), cNInd(GA)] = UniqueEFMCandsGA(currReac, cPInd(GA),
cNInd(GA), R(GA,bit))

Input:
1: index of currently processed reaction-row - currReac
2: global arrays of pairs of indices of accepted column modes - cPInd(GA), cNInd(GA)

3: global array of bit-valued part of current nullspace matrix - R(GA,bit)

Output:
4: global arrays of pairs of indices generating unique accepted modes - cPInd(GA), cNInd(GA)

5: at node procId:

6: numLocalCols = min(procId · length(cPInd(GA))
P

, length(cPInd(GA)))-procId ·
length(cPInd(GA))

P

7: fetch length(cPInd(GA))
P

elements from both index arrays

8: cPInd(LC) = GET(cPInd(GA), procId · length(cPInd(GA))
P

. . . procId · length(cPInd(GA))
P

+
numLocalCols)

9: cNInd(LC) = GET(cNInd(GA), procId · length(cNInd(GA))
P

. . . procId · length(cNInd(GA))
P

+
numLocalCols)

10: scan the candidate columns which are formed by columns indexed using pairs from
(cPInd(LC), cNInd(LC))

11: (uniqPosInd(LC),uniqNegInd(LC)) = unique(cPInd(LC),cNInd(LC))
12: [uniqCnt]=MPI PREFIX SUM(length(uniqPosInd(LC)))
13: broadcast value uniqCnt from processor P − 1
14: DESTROY(cPInd(GA)), DESTROY(cNInd(GA))
15: cPInd(GA)= CREATE(uniqCnt), cNInd(GA)=CREATE(uniqCnt)
16: PUT(uniqPosInd(LC),cPInd(GA)),PUT(uniqNegInd(LC),cNInd(GA))
17:

18: return [cPInd(GA), cNInd(GA)]

148

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	Systems Biology
	Metabolic Networks
	Constraint-Based Metabolic Network Analysis
	Network Redundancies and Inconsistencies
	Optimization-based Analysis Methods
	Flux Balance Analysis
	MOMA and ROOM
	Flux Variability Analysis
	OptKnock
	RobustKnock
	OptStrain
	OptReg
	OptGene
	Set-Based Evolutionary Algorithm and Simulated Annealing
	Genetic Design through Local Search
	Flux Scanning based on Enforced Objective Flux (FSEOF)
	OptORF
	OptForce
	SimOptStrain and BiMOMA

	Pathway-based Analysis Methods
	Extreme Ray Enumeration and Double Description Method
	Nullspace Algorithm
	Minimal Generating Set
	Extreme Pathways
	Elementary Flux Modes
	Minimal Cut Sets
	Elementary Flux Patterns
	CEF (Control Effective Fluxes)
	mCEF (Modified algorithm of Control Effective Fluxes)
	Estimation of the Flux Distribution
	Network Robustness and Pathway Redundancy
	Minimal Metabolic Functionality
	Flux Design
	CASOP (Computational Approach for Strain Optimization aiming at high Productivity)
	Weighting of elementary modes using thermodynamics
	cMCS (Constrained Minimal Cut Sets)
	Implementation of Nullspace Algorithm

	Integrated Biological Network Analysis

	Nullspace Algorithm and its Development
	Introduction
	Nullspace Algorithm
	Complexity of the Nullspace Algorithm
	Serial Nullspace Algorithm Pseudocode

	Reduced algebraic rank test
	Enumeration of Minimal Generating Set
	Introduction
	Theory
	Discussion
	Example
	Toy metabolic network
	Red Blood Cell metabolism

	Conclusion

	Combinatorial Parallelization of the Nullspace Algorithm
	Introduction
	Parallel Nullspace Algorithm
	Load Balancing
	Computational Complexity Analysis

	Results and Discussion
	Serial program
	Parallel program

	Conclusion

	Divide-and-conquer approach in elementary mode computation
	Introduction
	Divide-and-conquer
	Combined Parallel Nullspace Algorithm
	Example

	Results
	Time scalability
	Memory scalability

	Discussion
	Conclusion

	Parallelization of Nullspace Algorithm using Global Arrays
	Introduction
	Methods
	Global Arrays Library
	Parallel Nullspace Algorithm using Global Arrays

	Results
	Conclusion and Future Work

	Rational strain design using elementary modes
	Introduction
	Methods
	Metabolic design criteria
	Direct enumeration of reaction knockout subsets using elementary flux modes
	Indirect enumeration of reaction knockouts from elementary modes
	Complexity analysis

	Results
	Results on Escherichia coli
	Results on Saccharomyces cerevisiae

	Discussion
	Parameterization of algorithms
	Comparison to related pathways-based methods
	Minimal Metabolic Functionality
	CASOP (Computational Approach for Strain Optimization aiming at high Productivity)
	Constrained Minimal Cut Sets

	Comparison to optimization-based methods

	Conclusion

	Use of optimization methods in cellular strain design and elementary mode analysis
	Introduction
	Cellular evolutionary objectives
	Enumerating efficient elementary modes using L1-regularized quadratic programming
	Results

	Combined optimization-based and EFM-based enumeration of multiple knockout subsets
	Finding of optimal knockout subset using non-linear optimization
	Conclusion

	Concluding Remarks
	Summary of contributions
	Future research directions

	References
	 Appendix A. Metabolic Network Models
	Escherichia coli
	Sacharomyces cerevisiae

	 Appendix B. Pseudocode
	Serial Nullspace Algorithm
	Global Arrays-based Parallel Nullspace Algorithm

