Sponsors

University of Minnesota
College of Veterinary Medicine
College of Food, Agricultural and Natural Resource Sciences
Extension Service
Swine Center

The 2009 Allen D. Leman conference proceedings book is made possible by the generous support of IDEXX.

We also thank the following sponsors:
AgStar Financial Services
Alpharma Inc.
American Association of Swine Veterinarians
Applied Biosystems
Bayer Animal Health
Boehringer-Ingelheim Vetmedica, Inc.
Elanco Animal Health
Fort Dodge Animal Health
IDEXX
Invervet/Schering-Plough Animal Health
National Pork Board
Newsham Choice Genetics
Novartis Animal Health US, Inc.
Pfizer Animal Health
PIC
PigCHAMP
PRRS CAP2

Formatting
Tina Smith

CD-ROM
David Brown

Logo Design
Ruth Cronje, and Jan Swanson;
based on the original design by Dr. Robert Dunlop

The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, or sexual orientation.
Oregano essential oil in gestation and lactation diets improves sow and piglet performance

Martha A Mellencamp¹, Robert Evelsizer¹, Ron Dvorak¹, Jim Hedges¹, Malcolm Motram², David Cadogan²

¹Ralco Nutrition, Inc, Marshall, MN; ²Feedworks, Romsey, Victoria, Australia

Introduction
Oregano essential oil (OEO) is a phytogenic feed additive with a spicy, aromatic flavor that stimulates appetite and promotes feed intake. Phytogenic feed additives, including OEO, are being studied because of their well-documented antibacterial, antifungal and antioxidant activities and their ability to support a healthy gut microflora (1). Recent studies showed that OEO increased sow feed intake and was associated with improved sow and piglet productivity (2, 3). The aim of this experiment was to investigate the effects of OEO in gestation and sow lactation diets on sow and litter performance.

Materials and Methods
Three hundred and nine pregnant PIC gilts and sows were enrolled in the study: control: 146 (95 sows, 51 gilts) and experimental: 162 (109 sows, 53 gilts). Gestation and lactation diets were the farm’s usual medication-free diets ± OEO (0.5 lb/ton Regano®, Ralco Nutrition, Inc). Gilts received OEO-supplemented diet for the final 30 days of gestation and during lactation. Sows were offered OEO-supplemented diet when they entered the farrowing house 5–7 days before farrowing. Lactation diet was given ad libitum and was offered 3 times per day. The average lactation length was 18.8 days: 19.5 days for the sows and 17.2 days for the gilts. Reproductive and litter performance parameters were measured through lactation.

Results
Results showed significantly increased number born alive (P=0.047) in the OEO group, which was most pronounced in gilts. An interaction between mummies and parity (P=0.062) was observed: control gilts had a higher level of mummies (0.44%) than OEO-gilts (0.24%). For sows, mummies were slightly higher for OEO-sows than control sows (not significant). There were no other treatment effects for stillbirths or mummies, although sows had higher stillbirths.

Although previous studies showed OEO supplementation increased sow feed intake, this was not observed in the current study. However, feed intakes averaged a very healthy 7.64 kg/day (16.8 lb) for sows and 6.84 kg/day (15.1 lb) for gilts in the control group. This is in the high range for this PIC genotype.

OEO-fed sows had significantly reduced number of scouring litters (P=0.008). Litters from control sows were 3.5 times more likely to scour (95% CI, 1.58 to 7.80) than those from OEO group. Preweaning mortality was not different between the treatment groups. The OEO group had significantly increased (P=0.026) number of pigs weaned (+0.29 pigs/litter for sows and +0.61 pigs/litter for gilts), and weaning weight was increased by 0.33 lb for OEO-fed sows (P=0.035) compared with controls.

Discussion
This study confirmed prior studies showing that OEO significantly reduced the number of scouring litters and improved litter growth rate, resulting in higher weaning weight. These results suggest that OEO improved the health of the litter and/or increased milk production. OEO did not reduce overall preweaning mortality; however, this can be confounded by overlays and other non-gut health problems. University of Minnesota research (3) showed that inclusion of OEO in sow gestation and lactation diets increased number of piglets born alive, increased litter birth weight and improved average daily gain of piglets. The authors suggested higher growth performance of piglets was attributed to the higher quality colostrum from OEO-sows.

References