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Executive Summary

As cities grow and change, transitions among types of land use are among the most visible out-
comes. Vacant land at the urban fringe is converted to urban uses, such as housing, retail and office
space. Abandoned central city parcels become candidates for redevelopment toward different uses
and/or intensities. Major transportation corridors become magnets for clusters of activity. But how
and why does land use in cities organize the way it does?

The answers are surprisingly complex, and recent efforts to try to model and forecast many
of the elements of metropolitan regions, including land use, largely reflect this complexity. These
models treat land use outcomes as a function of the interactions between transportation networks
and urban land markets, with some even attempting to model flows within the urban economy.
Decisions about the location and intensity of urban land use typically involve some measure of
accessibility as the moderating influence that ties together the various processes at work within
metropolitan regions.

Efforts to model urban land use change at a greater level of detail have inevitably resulted
in models that are resource intensive (in terms of data collection, operation and maintenance)
and more difficult to interpret. In this study, we attempt to recast the process of modeling and
forecasting land use change in simpler terms. We introduce some models that strip the process of
land use change down to a few basic principles and then test the models using data for the Twin
Cities from 1958 to 2005.

Three types of models are employed to attempt to reproduce patterns of land use change over
the period from 1958 to 2005. The first type of model is called a Markov Chain model, and operates
on the basic principle that land use at the next time period is solely a function of current land use.
Transitions between land use types are embodied in a matrix of transition probabilities that are
based on actual observed land use change between two time periods. If we assume that this set of
transition probabilities remains constant over time, it can be used to forecast several periods into
the future.

The second type of land use change model is an empirical model that attempts to identify
the determinants of land use change over time. We begin with the concept of the Markov Chain
model, using current land use as a predictor, then add several variables relating to neighboring land
use, proximity to highways and regional accessibility. The functional form of the model is that
of a logistic regression model, where the outcome (cell-level land use) is discrete and the model
predicts the probability of transition to each outcome.

The third model is a Cellular Automata-Markov Chain (CA-MC) model. This model extends
the framework of the Markov Chain model to include the effects of neighboring land use. Again,
the concept of a transition matrix is used to define probabilities of change between land use types.
The difference in this case is that initial states are defined not only by land use in a cell, but also



by the two most common land use types in neighboring cells. This additional feature makes the
number of possible types of transitions much larger, since each initial state is defined by three
factors (land use in a central cell and two neighboring land uses).

A unique data set is created in this study to test the predictions of the various models. Building
on a parcel-level data set furnished by the Metropolitan Council, the regional planning agency
for the seven core counties of the Twin Cities metropolitan area, we create a new, cell-level data
set that divides parcels into 75 meter by 75 meter square cells that are classified according to the
predominant land use type in the cell. Following the original classification of the land use data,
10 land use classes are defined. The original parcel-level data were available going back as far as
1984, but were supplemented with additional land use data in the form of hard-copy maps of land
use. These maps, once digitized, provide data for the years 1958, 1968 and 1978. In all, the data
cover the period from 1958 to 2005 and were collected at 10 different points in time.

Our method of validating our models of land use change is to use the historical land use data
to forecast land use for later years in the data set, a process commonly known as backcasting.
Once validated, the models are used to forecast cell-level land use a few decades into the future.
Our forecasts were made for two different study areas. One study area comprises most of the
metropolitan region and corresponds to the 1958 boundaries of the region. The other is a much
smaller section of the northwestern part of the region, corresponding to a corridor along State
Highway 610, a recently-built, four-lane freeway. Since this corridor is still growing and contains
much land that remains unimproved, it provides an opportunity to forecast land use change in
response to a major, new link in the transportation network.

Results of the modeling efforts indicate none of the models presented are able to fully reproduce
patterns of land use change over time. The Markov Chain model, because of its probabilistic
nature, tends to produce more dispersed and mixed patterns of land use than actually occur. Adding
the influence of neighboring land uses to form the CA-MC model reduces some of this error, but
still leaves a significant number of cells incorrectly predicted. The logistic regression model does a
better job of predicting the spatial clustering of different types of land use, particularly commercial
and industrial land uses, but tends to overconcentrate some land uses (e.g. residential) and does
permit as much mixing of land uses, as is observed in many of the older parts of the region.

While the models of land use change introduced here have somewhat limited predictive power,
especially in the longer term, they do contain some desirable features. Their structure is simple
and transparent, as are the assumptions that underlie them, which makes easier the task of tracing
the source of land use change over time. This makes them ideal for certain sketch planning appli-
cations. Also, their simple structure allows them to be extended rather easily and to incorporate
new features of urban growth processes to add complexity and realism to the models.



Chapter 1

Introduction

As cities grow and change, transitions among types of land use are among the most visible out-
comes. Vacant land at the urban fringe is converted to urban uses, such as housing, retail and office
space. Abandoned central city parcels become candidates for redevelopment toward different uses
and/or intensities. Major transportation corridors become magnets for clusters of activity. But how
and why does land use in cities organize the way it does?

The answers are surprisingly complex, and recent efforts to try to model and forecast many
of the elements of metropolitan regions, including land use, largely reflect this complexity. These
models treat land use outcomes as a function of the interactions between transportation networks
and urban land markets, with some even attempting to model flows within the urban economy.
Decisions about the location and intensity of urban land use typically involve some measure of
accessibility as the moderating influence that ties together the various processes at work within
metropolitan regions.

Efforts to model urban land use change at a greater level of detail have inevitably resulted
in models that are resource intensive (in terms of data collection, operation and maintenance)
and more difficult to interpret. In this study, we attempt to recast the process of modeling and
forecasting land use change in simpler terms. We introduce some models that strip the process of
land use change down to a few basic principles and then test the models using data for the Twin
Cities from 1958 to 2005.

The models introduced in this study rely heavily on one or more of the following principles.
First, land use change is treated as a stochastic process, that is, there is some inherent randomness to
the process of land use change. All models are abstractions and necessarily involve some degree of
error that their predictions cannot account for. This is especially true in the case of land use models,
where the process that the model attempts to replicate is exceedingly complex. Second, land use
change is a slow process, and there is a great deal of inertia for existing land uses. This is especially
true of developed areas, where an existing stock of buildings represents a formidable impediment
to rapid change. Hence, over relatively short periods, parcels are likely to remain in the same land
use. Third, land use at a particular location is strongly influenced by neighboring land uses. This
influence should be especially strong in the case of residential land, where certain other land uses
(e.g. industrial) may be viewed as incompatible. Thus, we would expect residential neighborhoods
to remain residential over significant amounts of time. Fourth, land use is responsive to proximity
to transportation networks and the accessibility they provide. Locations that become served by
new transportation links or otherwise see their accessibility increase become likely candidates for

1



land use transition. We would particularly expect to see this in the case of vacant land.
The remainder of this report is laid out in the following sections. The next section provides a

brief introduction to many of the current and previous approaches to modeling land use change,
with an emphasis on models that integrate land use with transportation networks. The following
section introduces each of the three models that will be applied in this study and describes their
relevant methodological aspects. The fourth section briefly describes the cell-level land use data
set that is used in the modeling exercises. The fifth section describes the application and validation
of the land use models using historical data for the Twin Cities. The sixth section describes some
simulations of land use change using the validated models to predict land use change in future
years, both for the region as a whole and for a specific study area along State Highway 610 in the
northwestern part of the Twin Cities region. Lastly, the paper concludes by observing the strengths
and weaknesses of the three models and commenting on their appropriateness for planning appli-
cations.
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Chapter 2

Models of Land Use and Transportation
Change

Currently, there are a number of operational models that have been developed to simulate the
relationship between transportation networks and patterns of land use. Here we will give a brief
overview of some of the modeling frameworks that help to distinguish different types of models.
A more thorough treatment of this topic is provided in an appendix at the end of this report.

2.1 Chronology of Model Development
The history of simulation models of transportation and land use is dated back to the late 1950s
(Batty, 1979). While models of regional travel demand had been established as far back as the
early 1950s and some early experiments with transportation and land use models were carried out
in the following years, it wasn’t until the early 1960s that the first operational land use simulation
model was built. The Model of Metropolis developed by Lowry (1964) is widely considered to
be the first operational simulation model of urban land use. Lowry’s model was the first of a
generation of models based on theories of spatial interaction, including the gravity model that was
popular in quantitative geography at the time. Models based on a spatial interaction framework
continued to be developed through the early to mid-1980s, when they became largely replaced by
models grounded in random utility theory and econometric methods.

Figure 2-1 describes this process and gives an approximate timeline for the adoption of vari-
ous modeling frameworks within transportation and land use research. Several of the models that
follow an econometric framework continue to be used today, although some, like the UrbanSim
simulation system (Waddell, 2002b; Waddell et al., 2003) are being redeveloped within a microsim-
ulation design. The broad class of transportation and land use models that could fall under the title
of ‘microsimulation’ began to be developed in the early 1990s, in parallel with major improve-
ments in computational power that allowed for their operation. These included prototype models
of activity-based travel, cell-based models land use change and the introduction of multi-agent
models for urban simulation. More recently, some researchers have begun to devote effort to de-
veloping comprehensive urban microsimulation models that fully reflect the dynamics of changes
in the population and the urban environment within which they make choices.
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2.2 Spatial Interaction Models
The earliest class of land use and transportation simulation models are a set of highly aggregate
models based on principles of spatial interaction that were popular in the regional science and
quantitative geography fields in the 1950s and 1960s. There were many different formulations of
this type of model, though most revolved around variations of the gravity model, an adaptation
from Newtonian physics. The derivation of the gravity model from principles of entropy maxi-
mization (Wilson, 1967, 1970) was a major accomplishment and formed the basis for many of the
allocation mechanisms within spatial interaction models. A general form of the gravity model can
be expressed as:

Tij = AiBjOiDj exp(−βcij) (2.1)

where Tij represents trips (or other measures of interaction) between two zones, Oi represents
origins at zone i, Dj represents destinations to zone j, and Ai and Bj are balancing factors to
ensure that total origins equal total destinations. The exponential term in the model is used to
capture the effect of decreasing interaction as a function of travel cost, including travel time.

As mentioned previously, the first operational land use simulation model was the model devel-
oped by Lowry (1964) for the Pittsburgh region. This model has great importance, since many of
the other land use and transportation models that follow a spatial interaction framework have sim-
ilar structures. A detailed review of this model and its variations are provided in Horowitz (2004).
Table 2-1 provides a list of some of the more well-known operational models based on a spatial
interaction framework.
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2.3 Econometric Approaches
One of the major shortcomings of the aggregate spatial interaction models was the absence or use
of inappropriate theory to describe the behavior captured in the model. Developments in the use of
random utility theory to describe choices among discrete alternatives, such as the choice of travel
mode, provided the impetus for a new generation of models based on the study of disaggregate
behavior. When it was shown that discrete choice models could be applied to problems such as
residential location (Lerman, 1976; McFadden, 1978), researchers began to look for ways to model
the interrelated choices individuals made in terms of location and travel behavior.

Land use and transportation models that follow econometric frameworks can be thought of as
comprising two types of models: regional economic models and land market models. In these
two types of simulation models the economic model and the land market model each form the
core of a simulation system that includes the prediction of transportation flows. Both types tend to
have improved representation of land markets that include endogenously-determined (determined
within the model) prices and market clearing mechanisms. A summary of these models and their
characteristics are provided in Table 2-2.

2.4 Disaggregate and Microsimulation Models
Since the late 1980s, advances in computing power and efficiency of data storage have allowed re-
searchers to begin to build models that address many of the shortcomings associated with previous
large-scale modeling efforts and represent important change processes in cities with the detail they
require. Examples of these include activity-based models of travel behavior, multi-agent models
of urban land use and transportation, and cell-based models of urban land use. The common con-
ceptual underpinning of each of these models is that they attempt to represent processes of change
from the bottom up, that is, they account for the behavior of individual agents in space and/or time,
along with interactions between agents. The use of the term microsimulation can be applied to
each of these types of models, though it requires some definition. As defined by Miller (2003),
microsimulation relates to “a method or approach (rather than a model per se) for exercising a
disaggregate model over time.” All of the types of models identified above are what would be con-
sidered disaggregate models and all have a significant temporal element. Microsimulation methods
are particularly effective for modeling systems that are dynamic and complex, which urban systems
invariably are. A sample of some of these models is provided in Table 2-3.
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Models of transportation and land use change have evolved significantly since their early ap-
plications more than four decades ago. In the search to design models that capture the recursive
relationship between transportation and land use, there has been a general trend toward the disag-
gregation of the representation of people and space. Newer models represent in greater detail the
dynamics of the transportation-land use change process. Experiments with bottom-up approaches
to modeling urban systems, especially those that recognize the interactions between agents, provide
an alternative means for understanding their complexity. Yet, the ability to forecast these processes
for policy applications remains an important goal. Most of the newer generation of microsimula-
tion models are designed with the objective of making them more policy sensitive. Unfortunately,
few of them have yet reached a point where they can be fairly evaluated on this criterion, and the
older operational models still raise important questions about the utility of such complex tools.

Thus, at present we will turn our attention to simpler models that attempt to recreate processes
of land use change at the microscopic level using a few basic principles. In the next section,
the models to be applied in the present study will be introduced, along with their methodological
underpinnings. The following sections will demonstrate the application of these models to land
use in the Twin Cities metropolitan region.

10



Chapter 3

Methodology

The preceding review of models of land use and transportation change gives an indication of how
land use is typically treated in operational models used for planning purposes. There has been a
general trend toward the disaggregation of land use units from zones that comply with the types of
units employed in travel demand analysis models to much-smaller units that more closely approx-
imate neighborhood or even individual land parcels. It is this more disaggregate type of unit that
we will employ in the present analysis. The data set used for this study will be discussed in more
detail in the next section, but for now attention will be turned to the three types of land use models
employed in this study. They are Markov Chain models, Logistic Regression models and Markov
Chain-Cellular Automata models. The formulation of each model will be discussed, along with its
method of application.

3.1 Markov Chain Model
The basic premise of the Markov chain model is that land use at some point in the future (t + 1)
can be determined as a function of current land use (t), or mathematically,

Xt+1 = f(Xt) (3.1)

where Xt+1 represents the land use at time t+1 and Xt represents land use at time t. The structure
of the Markov chain model as applied to land use change involves a vector (nt) with dimension
mX1 (where m represents the number of states, in this case land use classes) describing the dis-
tribution of land use among current states and an mXm matrix of transition probabilities (P) that
governs the probability of transition between each pair of land uses, i and j. The model can then
be written as a difference equation in matrix form (Baker, 1989)

nt+1 = Pnt (3.2)

where nt+1 is another mX1 column vector describing the distribution of land use at time t + 1.
Since the transitions are probabilities, it follows that:

m∑
j=1

pij = 1 i = 1, 2, ...m (3.3)
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meaning simply that the rows of the transition matrix must sum to 1. Maximum likelihood esti-
mates of the transition probabilities can be obtained as (Anderson and Goodman, 1957):

p̂ij = nij

/
J∑

j=1
nij

(3.4)

where pij is the probability of transition between i and j, J is the number of columns in the
transition matrix, and nij denotes the number of transitions from i to j. These values can all be
obtained empirically.

To test the validity of the Markov Chain model, a useful first step is to test the null hypothesis
that land use at one point in time, t + 1, is statistically independent of land use at the preceding
time period, t. This test can be conducted using standard contingency table techniques for cross-
classified categorical data. The expected values for each cell indicating the number of transitions
between i and j can be compared with the actual number of transitions to compute the test statistic,
Pearson’s chi-square, which is distributed χ2 with (M − 1)2 degrees of freedom, where M indi-
cates the number of land use classes (in this case 10). Under the hypothesis of independence, the
expected number of transitions in each cell of the transition matrix (m̂ij) can be calculated by:

m̂ij = ni+n+j (3.5)

where ni+ denotes the marginal total of transitions for the ith row of the transition matrix and n+j

denotes the marginal total for the jth column of the transition matrix.
Using these expected values, the test statistic (K2) then takes the form:

K2 =
I∑

i=1

J∑
j

(nij − m̂ij)
2

m̂ij

(3.6)

The test statistic is typically given the notation K2 instead of X2 to differentiate it from its dis-
tribution, which is chi-square. The null hypothesis of independence is almost universally rejected,
indicating some level of dependency between successive land use states.

Stationarity is another important property of Markov chains, particularly as it applies to the
transition probability matrix. This property is critical for applications in which a Markov chain
model is to be used for forecasting. The transition probability matrix (P) is assumed to remain
constant in successive periods, meaning that at any future period t + k, the matrix of cell transi-
tions can be obtained by multiplying the vector of current land uses, nt by the transition probability
matrix P, raised to the kth power (Pk) In most forecasting applications, the transition probability
matrix is assumed to remain constant through successive time periods, and is seldom tested em-
pirically. This study follows the work of Bourne (1971), who compared transition matrices for
successive periods using simple correlations between cells of the matrix. By expressing the ele-
ments of one matrix (Pt+1,t+2) as a function of another (Pt,t+1), one can provide a rough check
for stationarity by determining whether the correlation between matrix elements is significantly
different from a value of one.

In order to use the Markov Chain model for prediction, an additional stochastic element is
added. Since the transition probabilities represent estimates of the likelihood of conversion from
one land use state at time t to one of 10 other states at time t + 1, a mechanism is added to
introduce randomness to the model and its predictions of future states. Since each row of the

12



transition probability matrix sums to one, predictions of future land use states are obtained by
drawing a pseudo-random number between zero and one, rounded to four digits. If the number
falls within the probability space allocated to a particular land use state according to the transition
matrix, then that state is chosen for conversion. This process is repeated for each land use cell in
the data set. Predicted land uses can then be compared to actual observed land uses to summarize
the accuracy of the model’s predictions.

3.2 Regression Modeling
In addition to the Markov chain technique, one could also formulate the problem of predicting land
use change using a variant of the classical regression model. In this case, the objective would be to
find a set of covariates that serve as reliable predictors of land use change, using the land use cells
as units of analysis. Various factors relating to neighboring land uses, existing or previous land
uses in a given cell, and position relative to transportation networks could be incorporated into the
specification of the model.

The model used to predict land use change treats land uses as a set of discrete states, which
conforms well to the notion of land use classes as qualitative variables. The logistic regression
model is an adaptation of the linear regression model which allows the dependent variable to be
specified as a discrete, rather than continuous outcome. The model predicts the probability of a
given outcome, conditional upon the presence of a set of attributes. We can consider the various
land uses as constituting J separate outcomes. The outcomes can then be related to the attributes
(xi) by a linear predictor of the form:

y =Xβ (3.7)

The linear predictor is analogous to the utility function commonly employed in econometric
choice modeling. If the individual land use cells are each denoted with the subscript i, then for a
specific land use type j, the probability that the observed outcome (yi) will be equal to j is given
by the expression:

P (yi = j) =
exp(Xiβj)

1 +
∑J

j exp(Xiβj)
(3.8)

where Xi is a vector of explanatory variables (attributes) for land use cell i, βj is a vector of
unknown parameters to be estimated, typically by the method of maximum likelihood, and J
denotes the set of all outcomes/land use types.

In estimating models of land use change, several land uses will be dropped from the analysis. In
particular, parks, public land uses, airports, railways and cells covered by water will be excluded.
These land uses are considered to either be fixed in nature or relatively unresponsive to land market
forces that drive much of the change observed in the remaining land uses. This narrows the set of
possible outcomes from ten land uses to five. Furthermore, in each model, one category of the
dependent variable must be designated as a comparison category. This category is then omitted
from the analysis. The parameter estimates are interpreted as relative risk ratios, which are the
exponentiated beta coefficients. These ratios represent the change in the odds of being in the
dependent variable category versus the comparison category associated with a one unit change in
the independent variable.
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Since we are interested in predicting the change in land use states over time, the models to be
estimated will employ a dynamic specification. That is, we are interested in predicting land use
in cell i at time t (Lit) using observations on several variables at a previous time period (t − 1).
The set of variables that are defined as covariates relate to a cell’s previous land use and that of
its neighboring land uses, the presence of a highway network in the cell and its neighbors, and the
accessibility of the cell at time t− 1. The variables are formally defined as follows:

• Li,t represents land use in cell i at time t

• Li,t−1 represents land use in cell i at time t− 1

• Lj,t−1 represents the number of neighboring cells in the adjacent Moore neighborhood in
land use j at time t − 1. This variable is defined for residential, commercial, industrial and
vacant land uses and is denoted, respectively, as (LR, LC , LI , and LV ).

• Ai,t−1 represents the regional accessibility to employment in cell i at time t−1. The measure
is extracted from the larger transportation analysis zone within which cell i is located.

• Ni,t−1 is a dummy variable representing the presence/absence of land classified as ’high-
way’ in cell i at time t− 1, and serves as a measure of proximity to transportation networks
which might be expected to influence the land use in i at time t. The ’highway’ classification
is applied to roads and adjacent highway-related land along state trunk highways and fed-
eral primary and secondary highways (Interstate and U.S. highway system) in the National
Highway System.

• Nj,t−1 represents the number of neighboring cells containing land classified as ’highway’ at
time t− 1.

The resulting model is then written in general form, relating land use at time t to the above vari-
ables:

Li,t = f (Li,t−1,Lj,t−1, Ai,t−1, Ni,t−1, Nj,t−1) (3.9)

This expression represents the probability of observing a particular land use in cell i at time t,
given the set of covariates. The covariates represent the inputs to the linear predictor in (8), which
are in turn used to predict the probabilities from (9).

Hypotheses can be stated regarding the expected effects of the variables introduced above. The
variable Li,t−1 is expected to increase the probability of observing the same land use in i at time
t. The variables representing land use in adjacent cells, Lj,t−1, are expected to increase the prob-
ability of transition of land use in cell i to the predominant land use in the neighborhood (j). The
accessibility to employment at time t−1 variable is expected to increase the likelihood of transition
to residential land use at t. Finally, the two variables representing the presence of highway-related
land in cell i and its neighborhood (j) are expected to increase the likelihood of transition to in-
dustrial or commercial uses, which might be expected to benefit more from proximity to highway
networks.
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3.3 Markov Chain-Cellular Automata (MC-CA) Modeling
The original Markov chain modeling approach had the desirable property that its structure is quite
simple, yet retains the qualities of a stochastic representation of land use. In the logistic regression
formulation of the land use change phenomenon, neighboring land uses were added to give the
model additional explanatory power. If we combine this treatment of neighboring cells with the
original structure of the Markov Chain model, it becomes possible to consider a model where the
effects of neighboring cells can be incorporated directly into the transition probabilities specified
in the Markov Chain model. The resulting model is referred to here as a Markov Chain-Cellular
Automata model, since it combines the probabilistic elements of a Markov Chain (MC) with the
neighborhood effects that are the hallmark of most models based on the cellular automata (CA)
modeling framework.

The structure of the MCCA model is fundamentally similar to that of the original Markov Chain
model, as are the assumptions that underlie its application. The information about neighboring land
uses is contained in the definition of the cell states. Each cell state is comprised of a land use type,
along with the two most predominant land uses in the neighboring cells (Moore neighborhood).
“Highway” is defined as a separate land use, as in the Markov Chain model, since it is hypothesized
to have an effect on other land uses, particularly as a neighbor. A cell state can then be defined by
referring to the land use in a cell and its two most prevalent neighbors. For example, a state could
define a cell as having Commercial land use with primarily Commercial and Industrial neighbors,
denoted as CCI .

Enumerating the possible outcomes from this model requires considering each of the combi-
nations of current land use and neighboring land uses. With 10 land use types defined there are
102 = 100 unique combinations of neighboring land uses for each initial land use in a cell, defin-
ing 103 = 1, 000 initial cell states. With 10 possible land uses as outcomes, there are a total of
104 = 10, 000 possible state transitions in the model, each of which has an observed probability of
conversion (though many of these observed probabilities will be zero).

The model is run in a similar fashion to the Markov Chain model, with quasi-random numbers
being drawn to simulate the process of cell transition during the period t, t + 1, according to the
probabilities specified for each state. The predictions of land use in each cell at t + 1 can then
be compared to actual observed outcomes to evaluate the model’s accuracy. It is expected that
the MCCA model should offer some improvement over the predictions of the basic Markov Chain
model.
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Chapter 4

Data

The land use data employed in this study build from a previous set of land use data used by
Levinson and Chen (2005) in an earlier study of the Twin Cities. The expanded data set comprises
a time series with observations for the years 1958, 1968, 1978, 1984, 1990, 1997, 2000 and 2005.
Land use data for years prior to 1984 were manually digitized from paper copies of land use maps
stored at the John R. Borchert Map Library at the University of Minnesota. Data for selected
years from 1984 to 2005 were obtained from the Metropolitan Council, the Twin Cities’ regional
planning agency and designated metropolitan planning organization (MPO), which maintains a
parcel-level land use inventory for the region that is updated every few years.

The parcel-level land use data was converted to a raster format and rectified to reduce geomet-
ric distortion. Some error remains due to the manual digitization process and the lower level of
accuracy associated with earlier mapmaking processes. Differences in classification schemes for
land use across years were addressed by adopting a common set of 10 generalized land use classes.
These land use classes, along with their adopted abbreviations, include:

• Airports (AIRPOR)

• Commercial (COMM)

• Highway (HWY)

• Industrial (INDUST)

• Parks (PARKS)

• Public (PUBLIC)

• Railroads (RAILWA)

• Residential (RES)

• Vacant (VAC)

• Water (WATER)
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The data set covers a large portion of the core seven counties of the Twin Cities region. Some
portions of the region could not be covered due to a need to limit the analysis to the part of the
region for which common land use data sets could be acquired for each year. The portions left
out of the study area are comprised mostly of low-density residential and non-urban uses, which
would likely be classified as vacant under the present scheme. The resulting study area covers
approximately 3,426 square kilometers (1,322 square miles). The study area is partitioned into a
grid of 75-meter by 75-meter cells, a spatial resolution much finer than the 188-meter square cells
used in Levinson and Chen’s study, leading to a roughly tenfold increase in the number of land
use cells in the study area. This produces a data set containing over 610,000 cells. Each cell is
assigned a land use class according to its predominant land use. Figure 4-1 presents a summary of
trends among the land use classes from 1958 to 2005.

Virtually all land use classes have increased over this period, with the greatest increase in land
use registered by the residential category. This growth has largely come at the expense of vacant
(including agricultural) land, as the region has been able to accommodate growth over the years
via outward expansion.
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Chapter 5

Model Application and Validation

With a better knowledge of the model structures and data set in hand, we can now apply the models
to the Twin Cities and validate their performance using historical data for the region. The first
model to be applied will be Markov chain model, followed by the logistic regression and Markov
chain-Cellular Automata models.

5.1 Markov Chain Model
The Markov chain model was applied to the Twin Cities land use data in order to test whether the
land use dynamics observed could be described by a Markov process, and to provide forecasts of
future land use patterns. Results are described in terms of the test for independence, examination of
the stationarity of the transition probability matrices, accuracy of predictions made using historical
data to backcast land use in successive years, and forecasts of land use decades into the future.

In describing the Markov chain model, it was noted that an elementary test for Markovian
models involves the hypothesis of independence between successive time steps. Using the matrix
of transitions for the period 1968 to 1978, the observed and expected cell frequencies can be
applied to construct the test statistic (K2). The matrices of observed and expected cell frequencies
are shown in Tables 5-1 and 5-2.

The K2 statistic can be compared to a χ2 distribution with (10-1)2 = 81 degrees of freedom.
With a critical region of α = 0.05, values of the test statistic less than approximately 100 would
indicate that land uses in 1978 were independent of those in 1968.

With a computed K2 of roughly 2.75 x 106, this is clearly not the case. Again, it should be
noted that in the case of Markov chain models of land use, the hypothesis of independence is nearly
always rejected. Historical dependence in land use is a strong force, as is indicated by the primacy
of the diagonal elements of the observed transition matrix.
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Table 5-3: Summary of transition probability regressions from Markov Chain model

95% C.I.
Y X Adj. R2 β Lower Upper

1968-78 1958-68 0.977 0.98 0.95 1.01
1978-90 1958-68 0.943 0.948 0.902 0.995

1990-2000 1958-68 0.962 1.029 0.988 1.07

Another way to examine the validity of the Markov chain framework is to test the stability
or stationarity of the transition matrix. As described in an earlier section, one way to do so is to
observe the correlation between the elements of matrices describing the transition probabilities.
By regressing the matrix elements of a subsequent time period on a base period, it is possible to
determine whether (and how far) the correlations between the two matrices deviate. The matrix of
transition probabilities for the period from 1958 to 1968 will serve as a base period, since this is the
earliest transition period for which data is available. Table 5-3 shows the results of three successive
transition probability matrices being regressed on the original 1958 to 1968 matrix. The X and Y
variables denote the response and predictor variables in the regression. The fit of the equation is
summarized with the adjusted R2 value.

The value of the slope coefficient (β) is indicated, along with the lower and upper bounds of a
95% confidence interval for the mean value. In two of the three cases the 95% confidence interval
includes the value of one, and in the third case the upper bound falls just short of one. While these
results do not provide entirely conclusive evidence on whether the transition matrix is stationary,
they offer some confidence that dramatic changes in transition probabilities are not occurring over
time. Moreover, even a lack of stationarity need not preclude the use of Markov models. As
(Baker, 1989) has noted, stationarity can be assumed as a heuristic device for scenario generation
using Markov chains.

It is possible to evaluate how well the Markov chain model predicts land use change by using
the historical time series to produce “backcasts” of land use for previous points in time. For
example, the 1958 to 1968 transition probability matrix can be used as a base to predict forward
in roughly 10-year increments to the years 1978, 1990 and 2000. Due to the different sources
of data and data-generating processes noted for the years before and after 1984, we can provide
“control” forecasts for the newer data using the 1984 to 1990 transition probability matrix as a
base year matrix. These forecasts are provided for the years 1997 and 2005. Again, the land use
conversion process in the model is governed by a random number generation procedure that draws
values that correspond to the transition probabilities in the matrix for each initial land use state.
Forecasts covering more than 10 years use the predicted land use distribution from 10 years prior
as inputs to the forecast (e.g. forecast land use for 1990 is used as an input, along with the 1958-
1968 probability matrix, for a forecast to the year 2000). This links the forecasts forward through
successive time steps and preserves the Markovian principle that future states are only influenced
by the present state. Summaries of the accuracy of the forecasts are provided in Table 5-4.

As the results indicate, the accuracy of forecasts made using the 1958 to 1968 matrix of tran-
sition probabilities declines sharply over time. While all long-term forecasts can be expected to
decline in accuracy the further they are asked to predict, there is a notable decline between the
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Table 5-4: Forecast accuracy of Markov Chain model using historical time series data

Base year matrix Forecast Year % Correct
1958-1968 1978 70.0
1958-1968 1990 55.2
1958-1968 2000 47.8
1984-1990 1997 84.4
1984-1990 2005 78.5

forecast years 1978 and 1990. This period coincides with the use of different sources of land use
data which may not be entirely consistent and which may introduce additional inaccuracy to the
forecast. The monotonic decline in accuracy also indicates that errors in forecasts from previous
periods are fed forward into subsequent predictions. On the other hand, the forecasts made using
a more recent transition matrix (1984 to 1990) as an input show a higher degree of accuracy and a
more moderate decline over the second time step. This may be a result of more consistent data as
well as a shorter transition period (6 to 8 years).

Lastly, we are interested in using the Markov chain model to predict land use patterns several
periods into the future. The most recent land use data are available for the years 1997, 2000 and
2005, indicating that the 1997 to 2005 period most closely matches the 10-year transition periods
used throughout this study. Thus, a 1997 to 2005 transition probability matrix can be constructed
and used for forecasting in 8-year increments. This matrix is reproduced below in Table 5-5.

The 1997 to 2005 matrix is used to forecast forward through three time steps, yielding land use
forecasts for the years 2013, 2021 and 2029. These forecasts are shown below in Table 5-6, along
with the land use distribution in 2005, the base year.
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Table 5-6: Land use forecasts for 2005 through 2029 from Markov Chain model

Prediction
Land use 2005 2013 2021 2029 Change (2005-29) Change (%)
Residential 195,934 210,008 220,686 228,227 32,293 16.5%
Commercial 20,296 22,188 23,162 23,663 3,367 16.6%
Industrial 24,503 25,570 26,150 26,060 1,557 6.4%
Public 18,820 16,106 14,064 12,437 -6,383 -33.9%
Parks 74,251 86,485 97,245 106,497 32,246 43.4%
Vacant 200,837 167,865 141,224 120,643 -80,194 -39.9%
Highway 16,635 19,984 23,006 25,867 9,232 55.5%
Railway 1,505 1,578 1,642 1,702 197 13.1%
Airport 4,047 4,139 4,212 4,277 230 5.7%
Water 54,160 57,065 59,597 61,615 7,455 13.8%
Total 610,988 610,988 610,988 610,988

Table 5-6 shows the land use distribution in each forecast year, along with the absolute and
percentage changes through each time step. The land use forecasts for each period appear to
be sensitive to abrupt, discontinuous changes that occur during the 1997 to 2005 period and are
reflected in the transition matrix. The most notable effect is the prediction of a major decline in
airport land. While there appears to have been a small decline from 1997 to 2005, this trend is
projected out in each of the forecast periods, leading to a predicted decline of 44 percent from
2005 to 2029. This is unlikely in a growing metropolitan area that anticipates continued growth
in air travel in the coming decades. The same can be said of the trend in land used for highways,
which is projected by the model to grow by roughly 46 percent. It would be useful to attempt to
decompose this predicted growth by class of highway. Interstate and state trunk highway networks
are already in place and are not likely to experience sharp increases in the near future, yet county
highway networks, which tend to be more robust, may see substantial growth in newly-developing
parts of the region. The model also predicts a major increase in residential land use, mostly at the
expense of vacant land. This largely reflects the effects of the real estate boom of the late 1990s
and early 2000s in the Twin Cities. Due to this reliance on past trends, the model will probably
overpredict the demand for residential land use in the 2005 to 2013 period. Once new data become
available, this observation can be tested.

5.2 Logistic Regression Model

While the Markov chain model provides a simple, intuitive, but effective approach to land use
transition, we would like to know a bit more about some of the factors that influence land use
change. If some of these factors can be readily identified, then it will be possible to provide
predictions of future land use states given some knowledge about past and present states. That is
the purpose of the logistic regression modeling method.

As was discussed in section 3.2, the specification for the land use change regressions attempts to
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Table 5-7: Predicted land use change, 1958–1968 from logistic regression model

Land Use Actual 1968 Predicted 1968 Difference Percent
Commercial 7,995 7,560 -435 -5.4%
Industrial 12,436 12,292 -144 -1.2%
Other 110,842 107,312 -3,530 -3.2%
Residential 97,326 97,094 -232 -0.2%
Vacant 378,337 382,678 4,341 1.1%

Table 5-8: Accuracy of logistic regression land use model predictions, 1968–2000

Prediction Year Percent Correct
1968 95.4%
1978 80.8%
1990 78.8%
2000 83.3%

retain some of the information from the Markov chain model by including the previous land use in
a cell as a predictor of current land use. The model expands on the basic Markov chain structure by
introducing neighboring land use as an additional influence. Not only does this provide additional
explanatory power, but it also helps to reduce some of the random spatial scattering of land use
cells observed in the Markov chain model.

From the available land use data, logistic regression models were estimated for each period of
(roughly) 10 years from 1958 to 2000. These estimated models were used to validate the basic
structure of the land use change model, permitting further exploration of future land use change by
forecasting cell-level land use with the parameters from the estimated 1990-2000 model.

The first model is fit to data for 1958 and used to predict land use in 1968. Table 5-7 indicates
that the predictions for this period are quite good. For each of the five land use types identified
(residential, commercial, industrial, vacant and other), the predictions are within about five percent
of the actual cell counts. For four of the land use types, the predictions are slightly below the
actual counts, while only vacant land was overpredicted. Table 5-8 indicates that across land use
categories, the model’s predictions were strikingly accurate, with over 95 percent of land use cells
predicted correctly. Maps of the predicted land use cells, along with the actual land use in 1968
are provided in Figures 5-1 and 5-2.
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Table 5-9: Estimated regression model of land use change,
1958–1968

Variable Coefficient S.E. t
Residential Residentialt−1 1.98 0.04 50.49

Commercialt−1 2.00 0.13 15.75
Industrialt−1 2.55 0.11 24.18
Vacantt−1 2.10 0.04 54.05
Residentialneighbor,t−1 1.73 0.01 162.13
Commercialneighbor,t−1 0.81 0.02 35.60
Industrialneighbor,t−1 0.76 0.02 34.30
Vacantneighbor,t−1 0.76 0.01 93.09
Roadt−1 -2.16 0.07 -29.57
Roadneighbor,t−1 0.17 0.02 10.94
Constant -8.47 0.06 -151.87

Commercial Residentialt−1 2.66 0.13 19.76
Commercialt−1 2.20 0.16 13.51
Industrialt−1 3.07 0.19 16.03
Vacantt−1 2.77 0.13 20.96
Residentialneighbor,t−1 0.88 0.02 39.61
Commercialneighbor,t−1 2.37 0.03 76.80
Industrialneighbor,t−1 0.88 0.04 22.75
Vacantneighbor,t−1 0.71 0.02 32.88
Roadt−1 -1.91 0.14 -13.64
Roadneighbor,t−1 0.25 0.03 8.22
Constant -10.91 0.17 -63.59

Industrial Residentialt−1 3.05 0.12 26.05
Commercialt−1 3.11 0.20 15.53
Industrialt−1 3.68 0.12 30.62
Vacantt−1 3.14 0.10 31.49
Residentialneighbor,t−1 0.74 0.02 34.12
Commercialneighbor,t−1 0.81 0.04 20.12
Industrialneighbor,t−1 2.23 0.03 85.41
Vacantneighbor,t−1 0.75 0.02 42.87
Road t−1 -1.90 0.13 -14.16
Roadneighbor,t−1 0.26 0.03 9.02
Constant -10.88 0.14 -75.89

Vacant Residentialt−1 2.85 0.05 56.08
Commercialt−1 2.65 0.16 16.65
Industrialt−1 3.88 0.10 40.15
Vacantt−1 4.19 0.03 137.92
Residentialneighbor,t−1 0.77 0.01 90.51
Commercialneighbor,t−1 0.70 0.02 29.46
Industrialneighbor,t−1 0.83 0.02 44.36

Continued on next page
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Variable Coefficient S.E. t
Vacantneighbor,t−1 1.37 0.01 219.46
Roadt−1 -1.92 0.06 -32.87
Roadneighbor,t−1 0.18 0.01 13.74
Constant -8.98 0.05 -198.71

N = 606,936; Likelihood ratio = 1,096,275.39; Log likelihood = -80,250.94; ρ2 = 0.87

Table 5-9 provides the parameter estimates and model fit. The ‘other’ land use class is treated
as the reference category in the model and sets of alternative-specific parameters are estimated
for each of the remaining four land use classes. The model fit summary includes the values of
the likelihood ratio, log-likelihood and ρ2 statistics. The ρ2 statistic is a goodness-of-fit measure
analogous to the R2 statistic in basic linear regression. Table 12 indicates that the value of this
statistic is 0.87, meaning this model has fairly strong explanatory power.

Individual parameter estimates are also provided in Table 5-9 with model coefficients, standard
errors and asymptotic t-statistics. Significance level indicators are omitted from the table since
nearly all parameters are statistically significant at the p < 0.01 level. This and the rather high
level of model goodness-of-fit are both at least in part a function of the extremely large sample
size.

The effects of neighboring land uses on the probability of converting to residential land use in
a subsequent time period are all positive relative to the ‘other’ category, though the effect of having
residential as an initial state is more than twice as strong as any other state, indicating a resistance
to change. Having roadway-related land uses in at least part of a cell has a markedly negative effect
on the probability of transition to residential, though having roads in a neighboring cell appears to
have the opposite effect.

Commercial and industrial land uses have somewhat similar characteristics in that each tends
to be associated with the presence of roads in neighboring cells, though not in the immediate one.
This is indicates that roadway access is an important component for both land uses. Also, commer-
cial and industrial land uses tend to stay in areas where they are surrounded by similar land uses.
Finally, vacant land tends to remain vacant when surrounded by like cells. Interestingly though,
having industrial land in a cell at the previous time period also exerts a fairly strong influence on the
probability of vacancy in the next (1968). Perhaps this was evidence of the intra-urban migration
of manufacturing firms during the 1960s.

The second model estimated land uses in 1978 given observations on the 1968 variables. While
not as accurate as the previous model, this model was able to accurately predict land use for over
80 percent of cells, as is indicated in Table 5-8. The resulting ρ2 statistic was 0.44, lower than the
1958-68 model, but still notable for a cross-sectional data set.

Tables 5-10 and 5-11 provide the parameter estimates and the predicted and actual land use in
1978 by land use class. The predictions for 1978 again appear to underestimate each class of land
use except for vacant and agricultural land. In particular, commercial and industrial land uses are
sharply underpredicted, by 55 and 37 percent, respectively. The maps in Figures 5-3 and 5-4 show
why this is so. The model seems to produce contiguous swaths of residential land, which tend to
dominate local clusters of commercial and industrial activity. Commercial land uses along arterial
streets and highways are masked by the expansion of adjacent residential neighborhoods. Major
industrial areas in the central cities are also underpredicted, along with isolated industrial parks
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in suburban locations. The latter show up primarily as vacant or agricultural land. Residential
land, while underpredicted as a whole, covers a disproportionate share of the central portions of
the region, while failing to reflect the full extent of the urbanized fringe.

Table 5-10: Estimated logistic regression model of land use
change, 1968–1978

Dependent Independent Coefficient S.E. t
Residential Residentialt−1 2.03 0.03 67.95

Commercialt−1 2.27 0.07 32.09
Industrialt−1 2.45 0.07 32.91
Vacantt−1 1.96 0.03 66.46
Residentialneighbor,t−1 0.47 0.00 98.46
Commercialneighbor,t−1 0.27 0.01 21.07
Industrialneighbor,t−1 0.07 0.01 5.69
Vacantneighbor,t−1 0.19 0.00 42.73
Roadt−1 -1.13 0.04 -26.32
Roadneighbor,t−1 -0.03 0.01 -3.63
Constant -3.44 0.02 -190.54

Commercial Residentialt−1 2.31 0.07 34.28
Commercialt−1 2.19 0.09 24.56
Industrialt−1 2.70 0.10 26.22
Vacantt−1 2.46 0.07 35.80
Residentialneighbor,t−1 0.30 0.01 30.32
Commercialneighbor,t−1 0.81 0.01 55.00
Industrialneighbor,t−1 0.39 0.02 23.51
Vacantneighbor,t−1 0.09 0.01 8.73
Roadt−1 -1.02 0.07 -15.23
Roadneighbor,t−1 0.19 0.01 14.80
Constant -5.45 0.05 -117.06

Industrial Residentialt−1 2.72 0.07 37.22
Commercialt−1 2.77 0.11 24.59
Industrialt−1 2.93 0.08 36.70
Vacantt−1 2.80 0.06 44.45
Residentialneighbor,t−1 0.07 0.01 6.27
Commercialneighbor,t−1 0.37 0.02 19.29
Industrialneighbor,t−1 0.75 0.01 59.08
Vacantneighbor,t−1 0.14 0.01 16.14
Roadt−1 -1.17 0.07 -16.46
Roadneighbor,t−1 0.15 0.01 11.84
Constant -5.35 0.04 -119.18

Vacant Residentialt−1 1.81 0.03 56.08
Commercialt−1 2.00 0.08 24.21
Industrialt−1 2.37 0.07 36.04

Continued on next page
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Dependent Independent Coefficient S.E. t
Vacantt−1 2.86 0.02 136.15
Residentialneighbor,t−1 -0.03 0.01 -6.06
Commercialneighbor,t−1 -0.02 0.02 -1.43
Industrialneighbor,t−1 0.08 0.01 6.84
Vacantneighbor,t−1 0.30 0.00 90.67
Roadt−1 -0.98 0.03 -28.76
Roadneighbor,t−1 0.01 0.01 1.45
Constant -2.51 0.01 -199.33

N = 606,936; Likelihood ratio = 612,286.63; Log likelihood = -390,214.38; ρ2 = 0.44

Table 5-11: Predicted land use change, 1968–1978 (logistic regression)

Land Use Actual 1978 Predicted 1978 Difference Percent
Commercial 12,718 5,706 -7,012 -55.1%
Industrial 16,917 10,578 -6,339 -37.5%
Other 133,059 112,136 -20,923 -15.7%
Residential 107,716 99,691 -8,025 -7.5%
Vacant 336,526 378,825 42,299 12.6%

The model parameter estimates, listed in Table 5-10, look similar to those estimated for the
1958-68 period. For each type of land use, the pre-existing, neighboring land uses continue to exert
the strongest influence on land use change. The presence of roadway-related land in a cell has an
almost uniformly negative influence on the probability of conversion to residential, commercial,
industrial or vacant land relative to land uses in the ‘other’ category, while roads in neighboring
cells have a modestly positive influence.

The 1978 to 1990 model produces results similar to the one estimated from the 1968-78 data.
Just under 79 percent of cells in the data set are predicted correctly, with a ρ2 value of 0.48 for
the model (Table 5-12), but again the commercial and industrial land uses are severely underpre-
dicted. Table 5-13 shows that over this period, not only are the commercial and industrial land
uses underpredicted by more than 30 percent, but that residential cells are underpredicted by 22
percent. Again, the model predicts too little conversion to urban land uses (residential, commercial,
industrial and others) and too much land remaining vacant or in agriculture.

Table 5-12: Estimated regression model of land use change,
1978–1990

Dependent Independent Coefficient S.E. t
Residential Residentialt−1 1.26 0.02 54.25

Commercialt−1 1.30 0.06 23.38
Industrialt−1 1.62 0.06 25.50
Vacantt−1 1.04 0.02 46.67

Continued on next page
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Dependent Independent Coefficient S.E. t
Residentialneighbor,t−1 0.71 0.00 163.28
Commercialneighbor,t−1 0.38 0.01 39.04
Industrialneighbor,t−1 0.21 0.01 18.72
Vacantneighbor,t−1 0.36 0.00 102.43
Roadt−1 -1.24 0.04 -32.65
Roadneighbor,t−1 0.02 0.01 2.65
Constant -3.15 0.01 -229.98

Commercial Land use (t-1)
Residentialt−1 1.74 0.06 29.95
Commercialt−1 2.01 0.07 29.03
Industrialt−1 2.16 0.09 24.81
Vacantt−1 1.75 0.05 33.49
Residentialneighbor,t−1 0.32 0.01 33.08
Commercialneighbor,t−1 0.80 0.01 67.84
Industrialneighbor,t−1 0.52 0.01 35.55
Vacantneighbor,t−1 0.25 0.01 31.90
Road dummy (t-1) -0.92 0.06 -16.00
Roadneighbor,t−1 0.36 0.01 31.65
Constant -5.44 0.04 -140.70

Industrial Residentialt−1 1.59 0.06 26.27
Commercialt−1 1.67 0.09 18.55
Industrialt−1 1.84 0.06 29.22
Vacantt−1 1.43 0.04 32.06
Residentialneighbor,t−1 0.10 0.01 9.16
Commercialneighbor,t−1 0.38 0.02 24.53
Industrialneighbor,t−1 0.92 0.01 85.02
Vacantneighbor,t−1 0.28 0.01 41.50
Road dummy (t-1) -1.02 0.06 -16.45
Roadneighbor,t−1 0.19 0.01 15.74
Constant -4.74 0.03 -157.02

Vacant Residentialt−1 0.62 0.03 19.31
Commercialt−1 0.88 0.07 11.85
Industrialt−1 1.31 0.06 20.34
Vacant 1.93 0.02 92.91
Residentialneighbor,t−1 0.32 0.01 59.34
Commercialneighbor,t−1 0.22 0.01 17.50
Industrialneighbor,t−1 0.34 0.01 31.47
Vacantneighbor,t−1 0.59 0.00 170.02
Road dummy (t-1) -1.00 0.03 -28.62
Roadneighbor,t−1 0.16 0.01 21.29
Constant -3.81 0.02 -225.80

N = 606,936; Likelihood ratio = 727,785.39; Log likelihood= -402,268.62; ρ2 = 0.48
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Table 5-13: Predicted land use change, 1978–1990 (logistic regression)

Land Use Actual 1978 Predicted 1978 Difference Percent
Commercial 14,132 7,714 -6,418 -45.4%
Industrial 22,939 15,907 -7,032 -30.7%
Other 142,282 132,214 -10,068 -7.1%
Residential 158,132 123,416 -34,716 -22.0%
Vacant 269,451 327,685 58,234 21.6%

Figures 5-5 and 5-6 show the spatial distribution of these predictions. The patterns strongly re-
semble those predicted for the previous decade. The predicted 1990 land use pattern again deviates
from the actual pattern of land use in that the region is portrayed as more densely and contiguously
developed. Land devoted to residential uses is predicted to be more centralized and less integrated
with other land uses. Clusters of commercial and industrial land use are underestimated in terms of
their spatial extent, not only in more central locations, but also especially along suburban highway
corridors, such as Interstate 494.

The last regression model to be estimated for the region with available data covers the period
from 1990 to 2000. In addition to the variables entered in the first three models, a separate variable
is introduced to test for effects of access to regional employment on land use transition. Our
hypothesis, stated previously, held that increases in accessibility to employment would increase
the probability of transition to residential land use during the subsequent time period.
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Table 5-14: Estimated regression model of land use change,
1990–2000

Variable Coefficient S.E. t
Residential Residentialt−1 4.64 0.03 169.55

Commercialt−1 2.57 0.06 42.70
Industrialt−1 2.53 0.07 35.20
Vacantt−1 2.47 0.03 84.49
Residentialneighbor,t−1 0.59 0.00 118.40
Commercialneighbor,t−1 0.18 0.01 14.95
Industrialneighbor,t−1 0.11 0.01 8.64
Vacantneighbor,t−1 0.30 0.00 64.28
Roadt−1 -0.98 0.05 -20.61
Road neighbor neighbor,t−1 -0.11 0.01 -11.32
Accessibility (104)t−1 0.01 0.00 2.80
Constant -4.66 0.03 -173.57

Commercial Residentialt−1 2.88 0.06 48.04
Commercialt−1 4.55 0.06 74.27
Industrialt−1 3.64 0.08 47.95
Vacant 2.46 0.06 43.63
Residentialneighbor,t−1 0.22 0.01 23.33
Commercialneighbor,t−1 0.75 0.01 63.19
Industrialneighbor,t−1 0.44 0.01 34.73
Vacantneighbor,t−1 0.21 0.01 24.70
Roadt−1 -1.14 0.06 -18.51
Roadneighbor,t−1 0.22 0.01 18.32
Accessibility (104)t−1 1.22 0.03 32.82
Constant -6.43 0.05 -128.04

Industrial Residentialt−1 1.95 0.08 25.69
Commercialt−1 3.28 0.07 44.81
Industrialt−1 4.12 0.06 65.11
Vacant 2.21 0.05 40.88
Residentialneighbor,t−1 0.01 0.01 0.98
Commercialneighbor,t−1 0.47 0.01 34.23
Industrialneighbor,t−1 0.65 0.01 61.55
Vacantneighbor,t−1 0.22 0.01 27.02
Roadt−1 -1.14 0.07 -17.11
Roadneighbor,t−1 0.10 0.01 8.11
Accessibility (104)t−1 0.11 0.00 14.36
Constant -5.51 0.04 -130.81

Vacant Residentialt−1 2.11 0.03 65.17
Commercialt−1 1.65 0.07 24.00
Industrialt−1 2.20 0.06 38.72
Vacant 2.80 0.02 112.15

Continued on next page
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Variable Coefficient S.E. t
Residentialneighbor,t−1 0.20 0.01 40.53
Commercialneighbor,t−1 0.19 0.01 15.28
Industrialneighbor,t−1 0.49 0.01 52.57
Vacantneighbor,t−1 0.35 0.00 87.96
Road dummy (t-1) -0.92 0.04 -23.85
Roadneighbor,t−1 0.01 0.01 1.20
Accessibility (104)t−1 -0.58 0.00 -103.04
Constant -2.36 0.02 -129.51

N = 606,936; Likelihood ratio = 944,398.68; Log likelihood = -326,876.65; ρ2 = 0.59
The parameter estimates in Table 5-14 seem to bear this out. The effect is positive and sig-

nificant, though it is difficult to determine from the table entry. Due to the units of accessibility
being measured on a different scale than the other variables, the associated coefficient appears
comparatively small, with a value of 0.00000806. However, given the large range of values that
this variable takes in the data set (from 661 to over 55,000), its practical significance is on par
with the remaining variables. Within the range of values identified, the accessibility variable could
add between 0.005 to 0.44 units to the linear predictor for the residential alternative. In addition
to residential land, the accessibility variable increases the probability of transition to commercial
and industrial land uses, relative to the ‘other’ category. However, with respect to vacant land, the
accessibility coefficient takes a negative sign. This is to be expected, since land that is vacant (or
more importantly, agricultural) is less likely to be in a highly accessible location.

The remaining variables are again found to have the expected signs and magnitudes. For each
land use, a cell is most likely remain in its same state during the next time period. Also, cells
are increasingly likely to transition to land uses that were the predominant neighbors in the prior
time period. Having roadway-related land in a cell reduces the probability of transition to that cell
relative to the reference category, though having roads in a neighboring cell appears to have the
opposite effect, albeit on a smaller scale.

The overall fit of the model appears to be moderately improved by the inclusion of the acces-
sibility variable. Table 5-14 reports a ρ2 value of 0.59 for the model, with land use in roughly
83 percent of cells being predicted correctly. Table 5-15 reveals that the model’s predictions have
the same downward bias for residential, commercial, industrial and ‘other’ land uses, but that the
effect is somewhat attenuated relative to earlier modeled periods. Vacant and agricultural land are
overpredicted by 19 percent, accounting for the difference.

The spatial patterns of predicted and actual land use, shown in Figures 5-7 and 5-8, reveal a
familiar set of results. Residential land is underpredicted by the model and more centrally con-
centrated than the actual pattern of residential land. Commercial and industrial land, while less
inaccurately predicted than in previous models (both in quantity and in spatial scope), are still
underrepresented along certain highway corridors and in outlying suburban areas.
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5.3 Markov Chain-Cellular Automata Model
The previous sections have outlined the validation and application of models of land use change
based on probabilistic transitions between states (Markov chain) and on the influence of several
neighbor characteristics, particularly neighboring land uses (logistic regression). This section in-
troduces the Markov Chain-Cellular Automata (MCCA) model, which combines elements of both
approaches.

As identified in Section 3.3, the MCCA model builds on the basic structure of the Markov chain
model, with a transition matrix of land use change probabilities serving as the focal point. In our
model, the two most common neighboring land uses surrounding a cell, along with its current land
use, define a state. The addition of the neighboring land uses helps to define more homogeneous
neighborhoods of certain land use types, particularly residential use, which are more resistant to
change. The outcome of this process is demonstrated through application of the MCCA model to
backcast previous land use change and to predict future land use to the year 2030.

The first historical forecast (backcast) for which we have results is the prediction of 1978
land use using a transition matrix estimated from 1958 and 1968 data. Table 5-16 presents the
totals of predicted and actual land use by land use type. Many of the land use types are predicted
within 10 percent of their actual values, with the exceptions being highways, parks, and public
land. Highways and parks are overpredicted by more than 30 percent, while public lands exceeded
predicted levels by more than 40 percent. Residential land use is predicted at slightly higher levels
than what was actually observed, and this was largely offset by an underprediction of vacant and
agricultural land. Table 5-17, which evaluates the overall accuracy of the model predictions in
terms of the percentage of cells correctly predicted, indicates that just under 79 percent of cells
were accurately identified. Comparing the maps in Figures 5-9 and 5-10, which depict predicted
and actual land use in 1978, the most noticeable differences are the underprediction of commercial
land uses along major transportation corridors and of industrial land at major industrial sites, as
well as the preponderance of predicted vacant and agricultural land.
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Table 5-15: Predicted land use change, 1990–2000 (logistic regression)

Land Use Actual 2000 Predicted 2000 Difference Percent
Commercial 18,779 13,949 -4,830 -25.7%
Industrial 23,777 21,248 -2,529 -10.6%
Other 160,646 145,022 -15,624 -9.7%
Residential 186,347 168,030 -18,317 -9.8%
Vacant 217,387 258,687 41,300 19.0%

Table 5-16: Predicted land use change, 1968–1978 (MCCA Model)

Land Use Predicted 1978 Actual 1978 Difference Percent
Airport 4,735 4,845 -110 -2.3%
Commercial 11,915 12,718 -803 -6.3%
Highway 17,348 12,860 4,488 34.9%
Industrial 15,733 16,917 -1,184 -7.0%
Parks 55,278 41,750 13,528 32.4%
Public 10,661 18,575 -7,914 -42.6%
Railway 2,260 2,228 32 1.4%
Residential 117,419 107,716 9,703 9.0%
Vacant 318,835 336,526 -17,691 -5.3%
Water 52,752 52,801 -49 -0.1%

Table 5-17: Accuracy of MCCA land use model predictions, 1978–2000

Prediction Year Percent Correct
1978 78.9
1990 66.4
2000 68.1
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The next historical forecast uses the 1968 to 1978 matrix of land use change to predict land
use in 1990. This represents a 12-year period rather than 10 years, however land use data were
not available in 1988. The 12-year transition period is considered a reasonable approximation.
Table 5-18 breaks down the totals of land use change by type. Of interest, there appears to be
greater variation in land use change than in the previous period, with several land uses exceeding
their forecast levels by 40 percent or more. However, several of these land uses (e.g. airport,
commercial, highway) represent only a small share of total land use in the region. The major
exception appears to be vacant land, which is underpredicted by more than 20 percent. The maps
in Figures 5-11 and 5-12 show that not only was the spatial extent of residential land growth
underpredicted, but also its organization into contiguous residential neighborhoods. Public and
industrial land are predicted more consistently during this period, though the decentralization of
industrial sites is not fully capture by the model. Overall, about two-thirds of land use cells in the
region were accurately predicted.
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Table 5-18: Predicted land use change, 1978–1990 (MCCA Model)

Land Use Predicted 1990 Actual 1990 Difference Percent
Airport 7,287 5,068 2,219 43.8%
Commercial 19,627 14,132 5,495 38.9%
Highway 24,692 12,730 11,962 94.0%
Industrial 21,719 22,939 -1,220 -5.3%
Parks 89,886 53,760 36,126 67.2%
Public 18,754 19,679 -925 -4.7%
Railway 2,404 1,496 908 60.7%
Residential 155,591 158,132 -2,541 -1.6%
Vacant 214,224 269,451 -55,227 -20.5%
Water 52,752 49,549 3,203 6.5%

The last period for which a backcast was conducted was from 1990 to 2000. Over this period
there was a large increase in new residential land, partly coinciding with the housing boom of
the late 1990s. This change had major implications for regional land use. The MCCA model
responded by adding roughly 20,000 cells of residential land to the region during this period, even
though this about five percent below actual observed residential land use. The underforecast of
vacant land seems to suggest that prediction errors often arise (at least in part) in miscalculating
the amount of land at the urban fringe that is converted to housing. Table 5-19 shows that the
prediction error in the MCCA model appears to be compounded over several prediction periods.
There appears to be a lack of stability in certain types of land uses over time. Growth in Highway,
airport and park lands in the 1950s and 1960s did not carry over at the same rate to the 1990s.
This seems reasonable, as the infrastructure building booms associated with the early growth in
air travel and the development of urban highway networks took place largely during the postwar
period, but have not kept pace during more recent decades. Figures 5-13 and 5-14 display maps of
predicted and actual changes. While the dispersion of land use in the MCCA model is among the
most prominent contrasts, there is also substantial variation in the prediction of residential land at
the urban fringe.

Using the transition matrix that was estimated for data from 1990 and 2000, the MCCA model
can be applied to forecast land use change during the coming decades. Here we apply the model to
forecast land use in 10-year time steps from 2000 to 2030. Table 5-20 provides a summary of the
land use forecasts, in both absolute and percentage terms with the actual land use distribution in
2000 serving as a control point. Park land use is forecast to grow most rapidly, increasing by over
90 percent between 2000 and 2030. However, in absolute terms, residential land use accounts for
most of the growth, with commerical and highway uses growing by smaller amounts. Industrial
land use is predicted to grow over this period, though only very slowly, while vacant land is forecast
to decline by more than 35 percent, representing a loss in vacant land between 2000 and 2030 that
is equivalent to more than one-seventh of the land in the entire study area. The dynamics of these
changes are shown in the series of maps listed as Figures 5-15, 5-16 and 5-17.
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Table 5-19: Predicted land use change, 1990–2000 (MCCA Model)

Land Use Predicted 2000 Actual 2000 Difference Percent
Airport 10,016 4,616 5,400 117.0%
Commercial 23,131 18,779 4,352 23.2%
Highway 31,124 14,849 16,275 109.6%
Industrial 24,102 23,777 325 1.4%
Parks 123,222 68,565 54,657 79.7%
Public 25,245 18,322 6,923 37.8%
Railway 2,636 1,523 1,113 73.1%
Residential 177,809 186,347 -8,538 -4.6%
Vacant 136,899 217,387 -80,488 -37.0%
Water 52,752 52,771 -19 0.0%

Table 5-20: Forecast land use change, 2000–2030 (MCCA Model)

Land use 2000 2010 2020 2030 Change 2000-2030 Change (%)
Residential 186,347 205,658 224,234 237,125 50,778 27.2%
Commercial 18,779 21,894 24,993 26,984 8,205 43.7%
Industrial 23,777 22,871 23,256 22,179 -1,598 -6.7%
Public 18,322 17,089 16,851 16,625 -1,697 -9.3%
Parks 68,565 87,348 109,936 131,793 63,228 92.2%
Vacant 217,387 171,517 119,887 78,093 -139,294 -64.1%
Highway 14,849 17,824 21,347 24,684 9,835 66.2%
Railway 1,523 1,594 1,689 1,789 266 17.5%
Airport 4,616 4,852 5,086 5,320 704 15.3%
Water 52,771 56,289 59,657 62,344 9,573 18.1%
Total 548,026 544,201 540,504 537,483 -10,543 -1.9%
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Chapter 6

Policy Simulation

In the process of applying and validating the models of land use change we dealt with a large study
area covering much of the core seven counties of the Twin Cities region. The results described in
the previous section are averaged out across different parts of the region, some of which have little
in common (e.g. developed central city parcels and vacant agricultural land at the urban fringe). It
would be helpful to test the sensitivity of the models by applying them to a part of the region that
is experiencing relatively strong growth, and where important improvements to the transportation
network are occurring.

We do so by applying the models to a part of the region near Minnesota State Highway 610, a
new four-lane, limited-access highway in the northern Minneapolis suburbs of Brooklyn Park and
Maple Grove. The highway is currently being built in sections (the first having been completed
in the late 1990s), with the last 5 mile (8 km) stretch between U.S. Highway 169 and Interstate
94 awaiting completion. A corridor is defined for the Highway 610 by including all land within
two miles (3.2 km) of the highway. This area still has a significant amount of vacant land, some of
which local officials expect to see developed following the highway’s construction. The models are
applied to forecast land use change, as was done in the previous section, assuming the completion
of the last section of highway.

6.1 Markov Chain Model

The base case for analysis of land use change in the Highway 610 corridor is the Markov Chain
model. Unlike the other two models, the MC model does not incorporate any neighbor effects.
Hence, any effects of the new highway construction will primarily appear as land being converted
to highway uses. Land use growth or decline in other classes will reflect growth occurring during
the 1997-2005 period, during which growth in the corridor began to respond to the availability of
part of the new Highway 610 link.

This application of the MC model will also differ from the region-wide application in that it
will incorporate absorbing states. These are defined as land use classes that can receive additional
growth from other land use classes, but from which no new transitions will originate. Highways
and railroads, given their rather fixed nature, will be considered as absorbing states, along with
water and park lands (airports are absent from this study area). This modification should provide
for more consistency in the transition matrices, by eliminating the possibility of some transitions
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Table 6-1: Forecast land use change in Highway 610 Corridor, 2005-2029 (MC Model)

Land use 2005 2013 2021 2029 Change 2005-2029 Change (%)
Residential 8,705 9,611 10,220 10,599 1,894 21.8%
Commercial 719 839 869 891 172 23.9%
Industrial 1,396 1,695 1,876 1,985 589 42.2%
Public 802 772 761 716 -86 -10.7%
Parks 3,802 4,122 4,343 4,531 729 19.2%
Vacant 7,156 5,133 3,761 2,857 -4,299 -60.1%
Highway 1,012 1,359 1,646 1,857 845 83.5%
Railway 55 55 56 56 1 1.8%
Water 991 1,052 1,106 1,146 155 15.6%
Total 24,638 24,638 24,638 24,638 0 0

that merely represent coding or other types of classification error. It also provides for a more
orderly representation of land use in the corridor, reducing some of the random scattering that
generally appears in the output of the MC model.

Forecasts are made in eight-year increments to the year 2029, based on the estimated transition
matrix for the period 1997-2005. Results of the forecasts are summarized in Table 6-1, which
displays the land use distribution in each of the forecast years, along with the absolute and relative
changes during the entire forecast period. Maps showing land use in the corridor at each of the
forecast years are contained in Figures 6-1, 6-2 and 6-3. The MC model predicts a continuation
of strong residential land use growth in the Corridor. According to the MC forecasts, by 2029
more than two-fifths of the land in the corridor could be consumed by residential uses. Significant
growth is also forecast for industrial uses, which already comprise about five percent of land use
in the corridor. The large growth in Highway land mostly reflects the major construction activity
during the first phase of Highway 610 during the late 1990s, and is carried forward into future
periods. Much of the growth in the corridor is forecast to occur on previously vacant land, as the
amount of vacant land forecast for 2029 is less than half of its actual total in 2005.

Figures 6-1 through 6-3 indicate that the model predicts much of the growth to occur on vacant
land in the northwestern and central parts of the corridor, along Highway 610 and Interstate 94.
The random nature of the MC model, lack of neighbor effects and high probability of transition
from vacant to other states largely explains the high degree of mixing of different land uses in
new growth areas. Commercial and industrial land uses appear to be complements, as some of the
commercial growth is forecast to occur within the bounds of formerly exclusive industrial sites.
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Table 6-2: Forecast land use change in Highway 610 Corridor, 2000-2030 (logistic regression)

Land use 2000 2010 2020 2030 Change 2000-2030 Change (%)
Residential 8,089 8,332 8,421 8,460 371 4.6%
Commercial 661 747 787 817 156 23.6%
Industrial 1,169 1,136 1,120 1,118 -51 -4.4%
Vacant 8,382 8,003 7,817 7,704 -678 -8.1%
Other 6,337 6,420 6,493 6,539 202 3.2%
Total 24,638 24,638 24,638 24,638 0 0.0%

6.2 Logistic Regression Model
In order to predict land use change for the Highway 610 corridor using the logistic regression
framework, a separate model was fitted to the land use data representing the corridor for the period
1990 to 2000. This model was used to forecast in 10-year increments between 2000 and 2030.
Since land use was the only type of variable that could be reliably forecast for future periods, other
variables were held at their 2000 values. This accounts for the more modest forecasts of change
shown in Table 6-2. Among the five land use classes listed, only commercial land use was forecast
to grow by more than 10 percent between 2000 and 2030. Residential land is forecast to grow by
less than five percent. However, even this modest increase is enough to make residential land use
account for more than one-third of the land in the corridor by 2030. Industrial land use is forecast
to decline slightly by 2030.

As with the other forecasts, most growth is expected to occur at the expense of vacant land.
Figures 6-4 through 6-6 show maps of land use in the corridor in 2010, 2020 and 2030. Much of
the residential growth appears to take place along the western edge of the corridor, west of I-94,
and in the central sections of the corridor near Highway 610. Commercial nodes expand from their
previous locations near the major highways. Overall, the contiguous sections of different land uses
are well preserved by the regression model.
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Table 6-3: Forecast land use change in Highway 610 Corridor, 2000-2030 (MCCA Model)

Land use 2005 2013 2021 2029 Change 2005-2029 Change (%)
Residential 8,705 9636 10,293 10,706 2,001 23.0%
Commercial 719 849 939 957 238 33.1%
Industrial 1,396 1679 1,934 2,072 676 48.4%
Public 802 779 742 666 -136 -17.0%
Parks 3,802 4171 4,533 4,808 1,006 26.5%
Vacant 7,156 5032 3,274 2,101 -5,055 -70.6%
Highway 1,012 1405 1,795 2,166 1,154 114.0%
Railway 55 56 59 66 11 20.0%
Airport 0 0 0 0 0 0.0%
Water 991 1031 1,069 1,096 105 10.6%
Total 24,638 24,638 24,638 24,638 0 0

6.3 Markov Chain-Cellular Automata Model
The Markov Chain-Cellular Automata (MCCA) model is the third model to be applied to simulate
land use change in the corridor. For the purpose of forecasting, all ten land use classes are defined,
with five of them (highways, railways, airports, parks and water) defined as absorbing states (they
can expand but not contract). The aggregate forecasts of land use change in the Highway 610
corridor using the MCCA model are somewhat similar to those produced by the Markov Chain
model, as is shown in Table 6-3. Residential land use growth of around 20 percent is forecast
for the corridor, while commercial growth exceeds 30 percent. Highway-related land is again
forecast to grow rapidly in the corridor, more than doubling in coverage. An educated guess
would suggest that this prediction is probably too high, given that conversion of land to highway
uses will probably slow considerably following the completion of Highway 610. The MCCA
and MC models both predict significant growth in industrial uses, in contrast to the prediction
of decline by the logistic regression model. The growth in cells classified as water most likely
reflect classification errors in the land use data set between 1997 and 2005, the period for which a
transition matrix was estimated for the study area.

The pattern of growth implied by the MCCA model forecasts are depicted in Figures 6-7
through 6-9. Similar to the Markov Chain model, much of the new growth is accommodated in the
large tracts of vacant land in northern Maple Grove and Brooklyn Park. There is still a high degree
of mixing of land uses, but new growth appears to be more concentrated in the MCCA model, both
near existing clusters and along major transportation corridors. The MCCA model seems to be
capable of preserving existing, contiguous tracts of residential and park land, but seems to perform
less well at sorting out future land use growth on formerly vacant or agricultural land. Additional
information about spatial location, proximity to urban infrastructure and other constraints might
be needed to better handle land conversion at the urban fringe.
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Chapter 7

Conclusion

In this study we have formulated and applied a set of cellular models for tracking and predict-
ing urban land use change. Each of the models retains a relatively simple structure, but is able
to incorporate important elements of land use change processes, such as historical dependence,
stochasticity, and neighbor effects. Using a uniquely fine-grained, cell-level land use data set as
an input, these models were validated at the regional level, then applied in the context of a high-
growth suburban environment near a new highway corridor. Each of the models showed certain
strengths, but also some limitations as practical planning tools.

The Markov Chain model represents the most basic formulation of the land use change process.
While it does a reasonable job of forecasting aggregate levels of land use change, its lack of spatial
relationships and detail make its results less policy-sensitive and more difficult to interpret.

Some of these problems are alleviated by incorporating neighbor effects into the model design.
The logistic regression model of land use change took account of both previous land use states
and states of neighboring cells, in addition to other important factors such as proximity to highway
networks and level of accessibility. As we saw, models specified with only these variables were
able to produce reasonably accurate forecasts of past land use change. The ability to forecast
these policy variables well into the future makes using this model as a forecasting tool difficult,
however. Also, the land use patterns predicted by the regression model tended to be too centralized
and contiguous, particularly in the case of residential development. This characteristic makes
predicting low-density residential growth at the urban fringe difficult.

The Markov Chain-Cellular Automata Model combined the features of the previous two models
to provide a projection model that incorporates spatial detail. The more refined definition of land
use states, including neighboring land uses, allows for a better organization of space than the
Markov Chain model. Despite this advantage, it did not seem to predict much more accurately
than the basic MC structure. The MCCA model is also more difficult to apply at smaller scales,
since using a larger number of land use classes can imply very large sets of possible transitions,
and lower probabilities for each type of transition.

The design of the cell-based models is such that they can remain relatively simple and transpar-
ent, like the models described in this study. This is an important feature, since it allows the effects
of different scenarios to be traced rather easily. However, this simplicity does present a tradeoff.
The cell-based models described in this study are essentially projection models, and lack a strong
theoretical structure. The individual cells are treated as agents, which makes the establishment of
behavioral principles difficult.
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While cellular models may not be the best available tools for testing theories about the behavior
of actors in the land development process, they may hold more value in simple sketch planning ap-
plications. Models like the MCCA model can be built upon to provide greater realism, such as the
inclusion of land use intensity in defining states, while trading this additional realism off against
data collection and computational costs. Also, since cellular models generally are developed from
assumptions about self-organizing behavior, they can provide an interesting counterfactual or con-
trol forecast for forecasts based on strong assumptions about responses to established land use
plans. In this way, they should be seen as complementary tools to existing land use planning
methods, as opposed to complete replacements.
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Appendix A

A Review of Models of Land Use and
Transportation Change



A-1 Introduction
Models are the basic tool of analysis for planners working in the fields of transportation and land
use forecasting. Current practice in these fields generally accepts the notion of some type of
reciprocal relationship between transportation and land use. For more than four decades now,
urban researchers have sought to formalize this relationship using mathematical, statistical and
logical methods, and to produce models capable of predicting changes to transportation and land
use systems as the result of policy measures.

This paper reviews some of the important theoretical frameworks adopted by researchers to rep-
resent the complex relationship between transportation and land use. Each framework has guided
the development of a number of different operational models, that is, models that have been applied
using data from real-world metropolitan regions. Several of these models are described in some de-
tail to illustrate how each modeling framework is used to represent the processes of urban change1.
Before turning to the models however, some background is provided on the transportation-land use
relationship and the chronological development of transportation and land use modeling.

The first two modeling frameworks to be discussed are those based on aggregate models of
spatial interaction and econometric models. These two modeling frameworks provide the vast ma-
jority of current operational models that are used in planning practice. We might refer to these first
two frameworks as “top-down” modeling frameworks, since they specify the interaction between
transportation networks and location as a set of aggregate relationships based on the behavior of a
representative individual, usually the mean calculated from a representative sample of the popula-
tion. The third class of models to be introduced falls under the general category of microsimulation
models. These models cover a number of different approaches to representing the dynamics of land
use change and travel behavior, but generally share the common focus of attempting to disaggre-
gate the population and to simulate changes from the “bottom up”, redefining the nature of actors
in the model. Models of activity-based travel are discussed here, along with multi-agent models
and cell-based models, a special type of multi-agent model that offers an alternative mechanism
for representing the dynamics of land use change. Some examples of prototype urban models that
are being developed entirely within a microsimulation framework are described. The later sections
of the paper review some of the common criticisms directed toward land use and transportation
models and note how these criticisms have (or have not) been addressed in the most recent gen-
eration of models. Some outstanding issues are discussed and suggestions offered as to important
future research directions. A concluding section follows with some general remarks on the state of
transportation and land use modeling and its relationship to planning as a discipline.

A-2 The Transportation-Land Use Relationship
Transportation networks and the spatial patterns of land use they serve are assumed to mutually
influence each other over time. Changes to transportation networks, such as the construction of a
new link or expansion of an existing one, eventually influence the location of investment in land,
which in turn influences the demand for travel to and from a particular location. This relationship

1Reviews that cover a large number of models, including some that have seen less commercial application, are
provided in recent papers by Timmermans (2003) and Wegener (1994, 2004). Chang (2006) also provides a review of
models based on mathematical programming formulations, which are not discussed here.
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is sometimes referred to as the transportation-land use “link” or “cycle”, emphasizing a feedback
relationship (Kelly, 1994). The mediating factor in determining changes in the location of activities
and the demand for travel is accessibility, which measures the situation of a location relative to
other activities or opportunities (work, shopping, etc.) distributed in space. Changes in relative
accessibility are measured indirectly when researchers attempt to identify the influence of new
infrastructure, such as a highway link or transit station, on local land markets. In these cases,
accessibility is usually approximated by some measure of access to the transportation network,
such as travel time or distance (Ryan, 1999). Generally, the degree of land market impact is related
to the impact of the new transportation link on regional accessibility, and so is roughly proportional
to the increase in speeds (and reduction in travel time) permitted by the new link (Cervero, 1984).

In order to operationalize the transportation-land use relationship within models of transporta-
tion and land use, measures of accessibility are incorporated in determining the location of ac-
tivities. It is typically assumed that households wish to locate in areas with higher accessibilities
to opportunities such as employment or shopping, while firms are assumed to locate in areas with
higher accessibility to labor markets, perhaps stratified by occupational type. In models where land
and floor space markets are considered explicitly, these accessibility factors can be important deter-
minants of price. Since most models of transportation and land use contain a land use component
that is integrated with, or at least loosely coupled with, a travel demand model containing a network
assignment component, congested network travel times can be fed into the calculation of accessi-
bility, thus providing a measure of the impact of congestion on regional accessibility and activity
location. In order to simulate these changes within models of metropolitan regions, the region is
typically broken down into a set of small geographic zones, similar (or in many cases identical) to
the set of zones used for regional travel forecasting. Accessibility is typically calculated from each
zone to all other zones in the region via the regional transportation network. Changes to the travel
network that alter zone-to-zone travel times thus impact the relative accessibility of a location.

A-3 Chronology of Model Development
The history of simulation models of transportation and land use is dated back to the late 1950s
(Batty, 1979). While models of regional travel demand had been established as far back as the
early 1950s and some early experiments with transportation and land use models were carried out
in the following years, it wasn’t until the early 1960s that the first operational land use simulation
model was built. The Model of Metropolis developed by Lowry (1964) is widely considered to
be the first operational simulation model of urban land use. Lowry’s model was the first of a
generation of models based on theories of spatial interaction, including the gravity model that was
popular in quantitative geography at the time. Models based on a spatial interaction framework
continued to be developed through the early to mid-1980s, when they became largely replaced by
models grounded in random utility theory and econometric methods.

Figure 2-1 from the text describes this process and gives an approximate timeline for the adop-
tion of various modeling frameworks within transportation and land use research. Several of the
models that follow an econometric framework continue to be used today, although some, like the
UrbanSim simulation system (Waddell, 2002b; Waddell et al., 2003) are being redeveloped within
a microsimulation design. The broad class of transportation and land use models that could fall
under the title of ‘microsimulation’ began to be developed in the early 1990s, in parallel with
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major improvements in computational power that allowed for their operation. These included pro-
totype models of activity-based travel, cell-based models land use change and the introduction of
multi-agent models for urban simulation. More recently, some researchers have begun to devote
effort to developing comprehensive urban microsimulation models that fully reflect the dynamics
of changes in the population and the urban environment within which they make choices.

A-4 Spatial Interaction Models
The earliest class of land use and transportation simulation models are a set of highly aggregate
models based on principles of spatial interaction that were popular in the regional science and
quantitative geography fields in the 1950s and 1960s. There were many different formulations of
this type of model, though most revolved around variations of the gravity model, an adaptation
from Newtonian physics. The derivation of the gravity model from principles of entropy maxi-
mization (Wilson, 1967, 1970) was a major accomplishment and formed the basis for many of the
allocation mechanisms within spatial interaction models. A general form of the gravity model can
be expressed as:

Tij = AiBjOiDj exp(−βcij) (A.1)

where Tij represents trips (or other measures of interaction) between two zones, Oi represents
origins at zone i, Dj represents destinations to zone j, and Ai and Bj are balancing factors to
ensure that total origins equal total destinations. The exponential term in the model is used to
capture the effect of decreasing interaction as a function of travel cost, including travel time.

As mentioned previously, the first operational land use simulation model was the model de-
veloped by Lowry (1964) for the Pittsburgh region. This model has great importance, since many
of the other land use and transportation models that follow a spatial interaction framework have
similar structures. A detailed review of this model and its variations are provided in Horowitz
(2004).

The Lowry Model and Derivatives

The land use model developed by Lowry was a spatial interaction model designed to simulate
patterns of residential and service location in the Pittsburgh, Pennsylvania region. The impetus
for building the model was to be able to simulate the effects of urban renewal and slum clearance
programs on the distribution of activities within the region. The model borrowed from economic
base theory, which divides a region’s employment into basic and non-basic services. Basic indus-
tries are assumed to export much of their product outside the region, generating additional income
which can then support additional non-basic services. Non-basic industries then serve households
(e.g. retail activities) and other industries within the region.

Lowry’s model assumed that the location of basic industries was fixed. This required an initial
allocation of basic employment to zones within the region. Households were then allocated to
zones from the initial basic employment locations, using a function similar to the deterrence
function used in the trip distribution step of most trip-based travel forecasting models (Horowitz,
2004):
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f (tij) = exp (−βtij) (A.2)

where f (tij) is a deterrence function value representing the inverse of the likelihood of workers
working in zone i and living in zone j, and tij is a measure of the disutility of travel between zones,
typically defined as travel time, and −β represents the marginal disutility per unit of time. This
functional form implicitly assumes that workers choose to locate near their workplace and that
only one household member is employed outside the home. Lowry chose to define this measure
of disutility as the airline distance between zones. He did this partially because of the difficulty of
generating matrices of trips between zones using the travel models that existed at the time, but also
because he noted a high degree of correlation between observed airline and network distances in
his study region (Lowry, 1964). Using the deterrence function described above, f (tij), the number
of workers working in zone i and living in zone j (defined here as Tij) could be calculated by using
a modified expression that included a value of attractiveness for each residential zone (wj):

Tij =
eiwjf (tij)∑
j
wjf (tij)

(A.3)

where ei is the employment in zone i. The residential attractiveness measure as used in this
formulation simply relates to the amount of land available for residential development in a particu-
lar zone. Deleting the variable for zonal employment in the above expression yields an expression
for the probability of residing in a zone given a fixed workplace location that is very similar to the
probability expression in the multinomial logit model. This relationship is important, since it is
used extensively in transportation and land use models that derive from random utility theory, as
will be discussed in the next section.

The process of worker/household allocation is followed by a similar process in which the loca-
tions of non-basic industries serving households and other (basic) industries are allocated assuming
fixed locations for these quantities. Once these activities have been allocated, it is possible to cou-
ple the land use model with a conventional, trip-based travel forecasting model to produce a set of
network flows. These new flows and travel times can be used to modify the deterrence function
and produce a new allocation of households and non-basic employment.

Several models extended the basic Lowry framework in new directions. Table 2-1 lists some of
these models along with their distinguishing features. For example, the Time Oriented Metropoli-
tan Model (TOMM) described by Crecine (1964) disaggregated the population into socio-economic
groups in order to improve the model’s representation. It also differed from the Lowry model in that
only some of the non-basic activities in a region would be reallocated between model iterations,
reflecting a certain degree of inertia in location. Garin (1966) recast the original Lowry model
by proposing a matrix representation for the model’s components and substituting a production-
constrained, gravity-type interaction model as the basis for allocation. Garin’s version also allo-
cated all activities at each iteration, an improvement over Lowry’s formulation since it improved
the coupling between allocation and generation (Timmermans, 2003). Another land use model
designed by Goldner (1971) allocated activities according to an intervening opportunity model, a
special case of the gravity model (Wilson, 1971). The design of the model also sought to improve
realism by using different dispersion parameters for each of the nine counties of the San Francisco
Bay area, where it was calibrated and tested.
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ITLUP/METROPILUS

Building on the Lowry-Garin framework, Putman (1974, 1983) developed the Integrated Trans-
portation and Land Use Package (ITLUP), widely considered to be the first fully operational
transportation-land use modeling software package. ITLUP has been applied in over a dozen
locations within the U.S., and has been calibrated over 40 times (Hunt et al., 2005). Designed
in the mold of the Lowry model, ITLUP initially contained a land use model that was similar to
Goldner’s PLUM model. ITLUP offered a network representation that allowed for the incorpo-
ration of congested travel times in the distribution of activities. At the core of ITLUP were two
allocation submodels: a household allocation submodel called DRAM, and an employment alloca-
tion submodel, EMPAL. Trip generation and distribution functions for the travel forecasting model
are developed within DRAM, simultaneously with household location, while mode choice and trip
assignment are handled with separate submodels. Travel times from runs of the travel model are
fed forward to calculate new activity distributions.

More recently, the ITLUP model framework has been updated to incorporate modifications to
some of its submodels and new data and visualization tools (Putman, 2001). The new package,
called METROPILUS, is housed within a geographic information system (GIS) environment that
permits improved visualization of output. Other important features of METROPILUS include mul-
tivariate, multiparametric attractiveness functions that include lag terms to better capture location
dynamics. The addition of zonal constraints can limit allocation of activities to zones where land
is not available. Land supply in the model is managed by a land supply function that translates the
location demands from employers and households from DRAM and EMPAL into land uses and
intensities.

LILT and IRPUD

Two other spatial interaction-based models merit attention, since they have been extensively ap-
plied and tested. The first is the Leeds Integrated Land Use (LILT) model, developed by Mackett
(1983, 1991). LILT combines a Lowry-type land use model with a conventional, four-step travel
model. Forecasts of change in population are allocated to zones according to accessibility func-
tions derived from work trips and zonal attractiveness functions. Other salient features of LILT
include the ability to handle demolition, changing occupancy rates and vacancies, and a car owner-
ship submodel, which estimates vehicle ownership as a function of network travel times and costs
(Timmermans, 2003).

The IRPUD model (Wegener, 1982) was developed by Wegener and colleagues at the Univer-
sity of Dortmund in Germany. IRPUD is quite complex and contains seven interlinked submodels
of aging, firm relocation, residential and non-residential construction, rehabilitation and demoli-
tion, change of job, change of residence and car ownership/travel demand. IRPUD is somewhat
unusual in that it contains a microsimulation model of land use, in which land uses are allowed to
change through aging. Another desirable feature of IRPUD’s design is that it allows different sub-
models to take place at different spatial scales (intra-regional location takes places at a meso-scopic
scale, while land development takes places at a micro/tract level). These features are emulated in
some of the newer, emerging urban microsimulation models.

The first generation of land use and integrated transportation and land use models based on
spatial interaction formulations produced a multitude of models that were tested and applied in

A-5



numerous settings. Some models, such as the METROPILUS planning support system package,
continue the legacy of these models to the present. However, very few examples of this type of
model framework remain. The shortcomings of these models were numerous: most were static
equilibrium models incapable of capturing the dynamics of urban systems, none of models actu-
ally represented land markets with explicit prices, zones were highly aggregate and lacked spatial
detail, and the models were inadequately supported by theory. Inadequate theory may have also
been a reason that many of the models forecasted so poorly. There were many high-profile failures
in terms of using the models for policy analysis purposes (Batty, 1979). Some of these were seized
upon by Lee (1973) in a critique which highlighted some of the mistakes of the first generation of
models. Lee characterized them as being too complicated, overly aggregate, data hungry, wrong-
headed, extraordinarily complicated, too mechanical and expensive. Many of these criticisms
informed the next generation of models, which took their cue from developments in econometric
modeling based on random utility theory.

A-5 Econometric Approaches
As noted previously, one of the major shortcomings of the aggregate spatial interaction models
was the absence or use of inappropriate theory to describe the behavior captured in the model.
Developments in the use of random utility theory to describe choices among discrete alternatives,
such as the choice of travel mode, provided the impetus for a new generation of models based
on the study of disaggregate behavior. When it was shown that discrete choice models could be
applied to problems such as residential location (Lerman, 1976; McFadden, 1978), researchers
began to look for ways to model the interrelated choices individuals made in terms of location and
travel behavior.

Land use and transportation models that follow econometric frameworks can be thought of as
comprising two types of models: regional economic models and land market models. In these
two types of simulation models the economic model and the land market model each form the
core of a simulation system that includes the prediction of transportation flows. Both types tend to
have improved representation of land markets that include endogenously-determined (determined
within the model) prices and market clearing mechanisms. A summary of these models and their
characteristics are provided in Table 2-2.

Regional Economic Models
Two of the most important and widely-used transportation and land use models grounded in econo-
metric modeling approaches, MEPLAN and TRANUS, are largely built around a core of a regional
economic model. MEPLAN (Echenique, 2004; Echenique et al., 1990) is a model that began as
a more simple model of urban stock and activity (Echenique et al., 1969) and expanded into a
more comprehensive urban simulation model. Similar to other types of models, MEPLAN has a
zone-based structure. In contrast to spatial interaction models though, the activities in zones are
determined by a spatial input-output model which predicts trade flows by sector between zones of
a region, driving the demand for space. Production and consumption are linked in the spatial input-
output model, replacing the trip generation and distribution steps in trip-based travel forecasting
models. The trade flows are converted to demand for commercial and passenger traffic through the
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application of scaling constants. The generated traffic is then fed into models of mode and route
choice. Congestion and travel times from the transportation model are then fed back into the land
use and economic model, yielding time-lagged measures of accessibility, which affect location
choice. The structure of MEPLAN, including its spatial economic model, makes it appropriate for
modeling not only at an intraurban scale but also at an interurban scale. It has been used in
a variety of major applications, including modeling the regional impacts of the Channel Tunnel
between England and France (Rohr and Williams, 1994).

The TRANUS model (Barra, 1989) is similar to MEPLAN in that it incorporates a spatial
input-output model as the basis of its generation and allocation of activities. The regional econ-
omy is disaggregated into sectors, with the demand for each zone and sector generated and then
allocated to production zones and sectors via a multinomial logit model. A land supply model is
also available to simulate the behavior of developers, who choose where to build (new land vs.
existing sites), what type of space to build, and at what density. This choice process is governed
by explicit prices or rents for new or replacement stock, demolition and building costs. Another
unique feature of TRANUS is its relatively advanced trip-based travel forecasting model. Similar
to MEPLAN, flows of traffic between zones are generated from input-output matrices. Personal
travel is estimated by time of day by mode as a function of cost. Trips are assigned to the network
according to distinct mode-path combinations. Accessibility is calculated as a logsum composite
utility measure from the mode choice model and input directly to the land use model to generate a
new set of spatial flows.

A third model system that takes as its centerpiece a regional economic model is the PECAS
system (Production, Exchange, and Consumption Allocation System), developed by Hunt and
Abraham (2005). PECAS is a generalization of the spatial input-output modeling approach used
in MEPLAN and TRANUS. The model system is based on a quasi-dynamic equilibrium structure
with flows of exchanges, including goods, services and labor, from production to consumption
based on technical coefficients. Flows of exchanges from production to zones of exchange and
from exchange zones to consumption are based on nested logit models that take into account ex-
change prices and transport disutilties. Similar to other spatial input-output models, trade flows
are converted to transport demands and loaded onto networks in order to calculate congested travel
times (disutilities). Exchange prices for space drive changes in available space, simulating devel-
oper actions. The model system is run in one-year time steps, with travel disutilities and changes
in space in a given year influencing the flows of exchanges in the next year (Hunt and Abraham,
2005).

PECAS now features activity-based travel modules, as well as microsimulations of land devel-
opment, with land parcels as the unit of analysis. While PECAS is run at the scale of a metropolitan
region, it can, like other input-output models, be adapted to larger-scale applications. Recent ver-
sions of the model system have been applied in statewide models of land use and transportation for
Ohio and Oregon, as well as metropolitan-level applications in Sacramento, CA and Calgary and
Edmonton, Alberta, Canada.

Land Market Models
Improved land market representation is a distinguishing characteristic of many of the econometric
approaches to transportation and land use models. In fact, several them have at their core mar-
kets for residential and commercial real estate, with transportation models linked into the overall
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model structure. Some of these models, such as those developed by Anas (1982, 1984), seized on
theoretical advances in linking the related strands of gravity-based models with those based on the
multinomial logit specification (Anas, 1983; Williams, 1977).

Anas and colleages developed a series models (Anas, 1982, 1998; Anas and Arnott, 1994)
designed to simulate the effects of transportation improvements on land markets and overall so-
cial welfare. The first such model, CATLAS, emphasizes a discrete choice framework to describe
both the supply and demand sides of the housing market. The supply side of the model con-
tains vacancy-occupancy, construction and demolition submodels that respond to factors such as
construction costs, land prices, taxes and operating costs, and expected future resale values. De-
velopers are assumed to be profit maximizers, and so select the location and type of construction
to maximize profit. The demand side of the model takes a nested logit choice model form, assum-
ing that households have a fixed workplace location and choose a residential location and travel
mode to maximize their utility. Only two workplace locations are considered in the model (CBD
and non-CBD), though commuters have a variety of modes available (auto, bus, heavy rail and
commuter rail), depending on their residential location. The model is calibrated with Census data
and can predict changes in mode splits, house prices and rents, demolitions, and new construc-
tion activity (Anas, 1987). The economic evaluation component of the model estimates changes
in economic welfare due to changes in modal utility arising from investment in different modes.
The changes in utility are captured in an inclusive value (logsum) accessibility measure and are
capitalized into housing prices or rents.

The original CATLAS framework was modified in an enhanced model called METROSIM
(Anas and Arnott, 1994), designed for the New York City metropolitan region. METROSIM in-
corporated a dynamic model of metropolitan housing markets (Anas and Arnott, 1994), along with
a model of commercial floor space markets. The full modeling system combined models of em-
ployment, residential and commercial real estate, vacant land, households, work and non-work
travel and traffic assignment, which was absent in the CATLAS system. A recent extension of
this system is the NYMTC-LUM model (Anas, 1998), a simplification of METROSIM designed
to facilitate the evaluation of changes in transit policies for the New York City transit system. The
model is slightly refined, adding a local labor market submodel and using very small zones to
better model transit and auto network flows. The combined model determines housing prices and
floor space rents endogenously (within the model), and uses modal utilities from the mode choice
model as accessibility inputs to the land use model.

A similar framework was adopted by Simmonds (1999) in developing DELTA, a land use
model designed to form the basis of a dynamic model system of land use and transportation in-
teraction. The model system is divided into processes which represent spaces and those which
represent activities. Processes dealing with activities include household formation and dissolution,
employment growth or decline, location and property markets and the employment status of indi-
viduals. Processes representing the change in spaces predict the quantity and quality of floor space
available. The model system is designed to be run over a series of short steps of no more than one
or two years, and was originally coupled with START, a transportation model developed for the
city of Leeds, UK . A distinguishing feature of DELTA is that attempts to add a quality variable
to the prediction of location choices. In the case of residential location, the quality variable relates
to local income and vacancy rates. Hence, the quality of development can change over time. The
DELTA model has seen several applications in the UK and parts of Western Europe and is currently
being developed as a microsimulation model system.
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An alternative framework for modeling land markets in transportation and land use models was
provided by Martinez (1992, 1996), who built an integrated model called MUSSA for the city of
Santiago, Chile. MUSSA adopted a modified version of the ”bid-rent” framework for land markets,
first articulated by Ellickson (1981). The ”bid-choice” framework used by Martinez combines bid-
rent and discrete choice approaches to land markets by dealing simultaneously with both sides
of an auction in a bi-level framework. The MUSSA system provides an equilibrium model of
building stock supply and demand, where buyers maximize their surplus, sellers maximize price,
and builders maximize profits. Building stock prices are then endogenously determined in the
model.

The MUSSA system also includes a rather sophisticated four-step travel forecasting model
that is linked to the land use component. The travel model features a detailed transit network
representation and the ability to forecast demand for 11 separate alternatives, including road, transit
and mixed modes. The combined transportation and land use models are referred to as 5-LUT
(indicating a 5-step forecasting procedure), and are able to provide equilibrated forecasts of land
use and travel demand. A notable feature of MUSSA is that the model uses smaller-than-average
zones as units of analysis in order to achieve a higher level of spatial disaggregation. Likewise,
there is an effort to disaggregate the treatment of households within the model, with the Santiago
application containing 65 different household types. This is an important step in the development
of transportation and land use models, and one that is being replicated in the current generation of
transportation and land use models based on microsimulation techniques, as will be discussed in
the following section.

Another transportation and land use simulation model that adopts this highly disaggregate
structure is the UrbanSim model developed by Waddell and colleagues (Waddell, 2000, 2002b).
Like MUSSA, UrbanSim is primarily a model of land markets, though extensions have been con-
sidered to add an activity-based travel forecasting model (Waddell, 2002a), as well as an environ-
mental analysis module (Waddell and Borning, 2004). Like MUSSA, UrbanSim initially contained
a highly disaggregated household treatment, with 111 distinct household types identified in an early
calibration of the model (Waddell, 2000). Demographic transition in population and household for-
mation are microsimulated within a separate submodel. Residential mobility of households is char-
acterized by a two-stage process in which households decide whether to search and then whether
to move. Location choice of households and firms are represented by a multinomial logit model
considering all zones in the region within the choice set. While UrbanSim makes extensive use
of econometric models in its structure, predictions are based on Monte Carlo simulation methods,
indicating that it also has the characteristics of a microsimulation model system.

UrbanSim’s structure is also unusual in that it operates in disequilibrium from year to year,
with no general equilibrium in land markets assumed at the end of a time step, though market
clearing does occur at the transportation analysis zone (TAZ) level. This feature sets it apart from
all of the preceding models that incorporate land markets, which are typically static within each
time step of a simulation. Researchers in the field of urban modeling have previously commented
on the importance of modeling different elements of urban systems at the time scales in which
they operate (Miller, 2003; Wegener, 1994). Since urban areas do not really ever reach a general
equilibrium in land and travel markets, this disequilibrium structure will likely be adopted in many
future attempts to model land markets.

UrbanSim’s model of land markets also estimates supply at the parcel level, using parcel
databases within a GIS. Demand for housing and floor space are calculated at the TAZ level in the
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original version of the model, though subsequent versions are attempting to reconcile the spatial
scale of the supply-demand relationship. Land markets are simulated using the bid-choice frame-
work, similar to the MUSSA model (Waddell, 2000). Land prices are estimated from hedonic
regressions containing building unit and neighborhood characteristics, and regional accessibility
to work and shopping. The neighborhood characteristics are determined by partitioning the region
into 150 by 150 meter grid cells, each containing information about neighborhood composition
and nearby land uses.

Further work on UrbanSim is focusing on converting it to a comprehensive microsimulation
modeling system (Waddell et al., 2003). Many of the elements of the original model lent them-
selves to this treatment, including the high level of household type disaggregation and demographic
transition submodel. The land market simulation is already highly disaggregated and requires only
further refinement of developer behavior. The structure of the model system suggests that modified
transportation sub-models, such as an activity-based travel model, could be coupled with the other
elements in the model system. Long-term goals of the project include developing the software ar-
chitecture to support an agent-based simulation version of the modeling system and the exploration
of new model structures.

The experience with the generation of transportation and land use models based on economet-
ric frameworks has been valuable and addressed one of the most pointed criticisms of the previous
generation of spatial interaction models, that of lack of theory. The use of random utility theory and
advancements in discrete choice modeling of individual behavior have allowed for the inclusion of
economic evaluation components in several of the models, as well as improved accessibility mea-
sures based on utility functions. Also, the introduction of model systems built around a regional
economic model allowed for the inclusion of commercial travel in forecasts and the general treat-
ment of travel as a derived demand. Despite these advancements, many of the econometric models
retained a number of problems left over from the previous generation of models. For example,
most of the models remained highly aggregate, despite the use of disaggregate calibration meth-
ods. This became one source of bias in the model forecasts. Also, with the exception of UrbanSim,
all of the models were essentially static in nature. Their structure forced them to reach a general
equilibrium between each time step in the model; this was especially true of the models focusing
on land markets. Furthermore, little advancement was made in the transportation component of
the model. Most models continued to use trip-based, four-step forecasting procedures, where all
submodels except mode choice were run at an aggregate level. Much of the current research into
microsimulation methods is attempting to address this issue, along with other pressing research
questions in the design of comprehensive simulation models of transportation and land use.

A-6 Disaggregate and Microsimulation Models
Since the late 1980s, advances in computing power and efficiency of data storage have allowed re-
searchers to begin to build models that address many of the shortcomings associated with previous
large-scale modeling efforts and represent important change processes in cities with the detail they
require. Examples of these include activity-based models of travel behavior, multi-agent models
of urban land use and transportation, and cell-based models of urban land use. The common con-
ceptual underpinning of each of these models is that they attempt to represent processes of change
from the bottom up, that is, they account for the behavior of individual agents in space and/or time,
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along with interactions between agents. The use of the term microsimulation can be applied to
each of these types of models, though it requires some definition. As defined by Miller (2003),
microsimulation relates to ”a method or approach (rather than a model per se) for exercising a
disaggregate model over time.” All of the types of models identified above are what would be con-
sidered disaggregate models and all have a significant temporal element. Microsimulation methods
are particularly effective for modeling systems that are dynamic and complex, which urban systems
invariably are.

Activity-Based Travel Models
The literature on activity-based approaches to travel analysis is quite extensive and dates to the
1970s. Thus, a comprehensive review of this literature is not possible here. Instead, the focus will
be on covering a few of the models that have been tested using real-world data at least once. The
interested reader is directed to papers by Axhausen and Gärling (1992), Ettema and Timmermans
(1997), McNally (2000), Vovsha et al. (2005), and the collection of papers in the August 1996 issue
of the journal Transportation, which describes the early results of research work funded through
TMIP.

Research into the foundations of travel behavior dating back to the 1970s has identified many
shortcomings in the use of sequential, trip-based travel demand forecasting models (Chapin, 1974;
Hägerstrand, 1970). However, there was little incentive until this time to attempt to recast travel
forecasting procedures. Oil crises during the 1970s precipitated research into various energy use
reduction strategies, including demand management measures and transportation system manage-
ment techniques. It was then that the inability of existing forecasting models, which were mostly
static and aggregate, to predict behavioral responses to such policy measures became apparent
(McNally, 2000).

A combination of factors brought about a resurgence in interest in reconceptualizing travel be-
havior for modeling purposes during the 1990s. The completion of the interstate system and the
difficulty of expanding existing urban road networks led many regional planning organizations to
emphasize preservation and management of transportation systems through such policies as flexi-
ble working hours, travel information provision, traffic flow improvements and diversion of some
travel to alternate modes. The potential changes in travel behavior implied by these types poli-
cies cannot be forecast using existing methods, since trip-based models separate travel decisions
from their broader context of activity participation and temporal constraints. At the same time, im-
provements in computing power and the use of geographic information systems have allowed for
the formalization and testing of models that previously only existed at conceptual or limited em-
pirical levels. Support from the Federal Highway Administration in the form of the Travel Model
Improvement Program (TMIP), which attempted to improve the state of practice in transportation
modeling and facilitate development of a new generation of travel demand models, has also had a
significant impact.

The first demonstration of an operational model of activity-based travel preceded the TMIP,
and was conducted by Recker et al. (1986a,b). The STARCHILD model was developed to investi-
gate dynamic ridesharing, but was designed for research purposes only and required collection of
data that is still not commonly available (McNally, 2000). Models of activity chains and travel be-
havior were coupled with a mesoscopic traffic simulation in work by Axhausen (1990). Pendyala
et al. (1997) developed an activity-based simulation model capable of predicting activity schedul-
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ing changes in response to transportation control measures. They demonstrate their model with an
application to evaluate the impacts of control measures in the Washington, D.C. metropolitan re-
gion. Activity-based forecasting models incorporating GIS applications have also been developed
by McNally (1998). Bowman and Ben-Akiva (2001) structured a model of activity participation
within a nested logit framework to predict travel tours (clusters of chained trips). Their model was
calibrated using travel survey data from the Boston region. A model system developed by Arentze
and Timmermans (2004) attempts to simulate learning behavior by agents within the context of
activity scheduling and travel behavior. Perhaps the most ambitious effort to date in the U.S. has
been the research program associated with the TRANSIMS modeling system, which is designed
to combine an activity-based forecasting model with a region-wide traffic microsimulation system
(Barrett, 1995).

Activity-based models are necessarily disaggregate and attempt to simulate travel behavior
within the limits of time and space. Due to spatial and temporal interdependencies, this process
cannot be modeled within a framework that treats trips as independent and generates trips at an
aggregate level. An alternative, agent-based approach is typically adopted in formal travel fore-
casting applications. This focus on the behavior of individual agents and addition of temporal
elements makes activity-based travel models a natural complement to microsimulation models of
transportation and land use that focus on the activity of agents at an individual or household level.

Agent-Based Microsimulation Models
The state-of-the art in transportation and land use modeling is defined by current research efforts
aimed at building comprehensive microsimulation systems of urban areas, with representation at
the level of individual agents (persons, households, firms, etc.) and simulations of the behavior of
the entire population of interest. The advantages of adopting such a modeling approach for urban
systems are many (Miller, 2003):

• Urban systems are dynamic, with a significant time element and components changing at
different temporal scales

• The behavior of these systems is complex, with interacting agents, complex decision-making
processes, and significant probabilistic elements

• Closed-form mathematical and statistical representations of urban systems often introduce
large amounts of bias and lead to poor forecasts

The seeds of comprehensive microsimulation models had been sown in a number of earlier
models, where one or more elements of the system were governed by a microsimluation process.
For example, Wegener’s IRPUD model contained microsimulations of population and building
stock. Mackett (1990)’s MASTER model simulated location choices and travel decisions, and
MUSSA and UrbanSim disaggregated households at a level sufficient to operate them in a static
microsimulation format, where a representative sample is used within a microanalytic framework
for short-run applications. However, for long-term forecasts, which most transportation and land
use models are designed for, the population must be synthesized or updated to represent the dy-
namics of individuals and the environments within which they make choices.
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An overview of some of the comprehensive microsimulation systems currently under develop-
ment are presented in Table 2-3. The UrbanSim system was the only simulation model to transition
from a static simulation format to a dynamic microsimuation model. As noted previously, the orig-
inal version of UrbanSim contained a number of microsimulation submodels within its structure,
thus eliminating the need for as radical a redesign as would be needed for many of the static,
equilibrium models.

The ILUMASS simulation system (Moeckel et al., 2003; Strauch et al., 2003), being devel-
oped by a research team at the University of Dortmund, builds on the experience of Wegener and
others with the IRPUD model in the 1980s. The design of ILUMASS embeds a microscopic dy-
namic simulation model of urban traffic flows within a comprehensive model system incorporating
changes in land use and building stock.

The microsimulation modules of ILUMASS include models of demographic change, house-
hold formation, firm lifecycles, residential and non-residential construction, labor mobility in a
regional labor market, and residential mobility in a regional housing market. These modules are
linked with models of daily activity participation and travel, as well as goods movement. The
activity-travel module uses data collected via a hand-held survey instrument. This innovation in
data collection allows for near-real-time information on activity and travel behavior, obviating the
need for respondents to recall their activities later on. The GIS component of ILUMASS combines
raster-based and vector-based representations, allowing for the advantages spatial disaggregation
in land use representation and efficient network algorithms for the transportation network model.

The ILUTE model (Salvani and Miller, 2005), being developed by researchers at a number of
Canadian universities, chiefly the University of Toronto, represents the most complete microsim-
ulation model to date. The product of a long-term effort to design an ’ideal’ simulation model
of transportation and land use, ILUTE centers around a behavioral core consisting of four inter-
related components: land use, location choice, auto ownership and activity/travel patterns. The
model system is highly integrated with feedback mechanisms whereby higher-level (longer-term)
decisions, such as residential mobility, affect lower-level (shorter-term) decisions, such as activity
participation and travel. ILUTE is not based on a single modeling technique (e.g. random utility),
but rather uses a variety of modeling approaches to represent the behavior of agents in the model,
such as state transition models, random utility models, computational rule-based models, learning
models, and hybrids of previous approaches.

ILUTE’s treatment of land markets explicitly assumes a constant disequilibrium framework, in-
dicating that a particular house could be on the market for several months without selling, since no
market clearing is assumed. The time steps in the model are brought down to the level of months,
rather than years, to provide greater temporal detail. The disequilibrium framework and absence
of market clearing also means that projects with extended construction periods (e.g. greater than
one year) can be accommodated. The housing market submodel within ILUTE assumes a three-
step process to describe residential mobility, involving a mobility decision, a search process, and
bidding and search termination.

The transportation component of ILUTE is quite sophisticated and includes submodels for au-
tomobile transactions and activity scheduling. The activity scheduling submodels characterizes ac-
tivities as occurring in time and space, with various scheduling dependencies to represent temporal
constraints (Roorda et al., 2005). Future plans include adding a network model, which is needed to
provide travel times and costs by mode, along with a formal model of activity participation. Like
most comprehensive microsimulation models, ILUTE is still in the process of calibrating some of
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the submodels in the system, and has yet to be used in a full forecasting application, though the
travel demand component has been applied in a policy simulation (Roorda and Miller, 2006).

Another agent-based simulation model that merits attention is the Ramblas model (Veldhuisen
et al., 2000, 2005). While it is not as comprehensive as the other models described here, Ramblas is
designed to simulate the effects of land use and transportation planning policies, with an emphasis
on the prediction of activity participation and traffic flows. An unusual aspect of Ramblas is that
it is designed to simulate the effects of policies on the entire Dutch population (estimation at
over 16 million). The model also distinguishes itself by being entirely rule-based, rather than
adopting a formal theoretical framework to guide the behavior of agents. These aspects of the
model derive from its stated purpose of being a practical planning tool to assess the impact of
various transportation and land use scenarios.

Ramblas is run by selecting households, stratified according to size and structure. Individuals
are classified according to one of 24 population segments, defined on the basis of age, gender, ed-
ucation and employment status. An activity agenda and transportation mode are drawn at random,
with seven activity types available. Destinations are randomly drawn from a choice set, sometimes
delimited by a given action space or distance constraint. Origin-destination pairs are generated
from the activity and mode allocations and traffic flows are then microsimulated, calculating travel
times via a speed-flow method. Output from the microsimulation of traffic is used to forecast
changes in land use, dwelling stock and road construction.

Cellular Models
The representation of land use in integrated models of transportation and land use change has
been one of the less satisfactory elements of these models (Chang, 2006). Until recently, land use
had generally been represented by zones that served as convenient areal units for the location of
activities, and coincided with zonal designations for transportation models. Models that provide
greater simplicity and a clearer representation of the dynamics of land use change using cell-based
representations of regions have emerged within the past two decades as an increasingly attractive
land use modeling alternative.

Cell-based models, and particularly those based on cellular automata (CA) theory, arise from
the application of complexity theory to cities (Batty, 1997, 2005). Complexity theory concep-
tualizes systems, such as urban systems, as being too complex to synthesize using closed-form,
predetermined mathematical representation. Rather, these systems arise from the collective inter-
action and self-organization of large numbers of individual agents which generate the observed
macro-level states (Benenson, 1998). Cell-based models of land use can range from simple state
transition models in which cells change states (land uses) according to some observed probability,
to the more general form of CA, in which cell states are also a function of states in neighbor-
ing cells. CA models can be seen as extension of agent-based microsimulation models, in which
individual cells are the agents, rather than persons or households.

CA models generally require four basic elements: a lattice of regular spaces or cells, a set of
allowed states, neighborhoods that are defined by the lattice, and a set of transition rules govern-
ing the evolution of individual cells in the system. Many CA models also add a fifth, temporal
element. CA models are basically deterministic, rule-based models, using ”if-then-else” logical
statements to build their transition rules, though stochastic elements can be added to transition
rules using probabilistic expressions and random number generation. Other types of modifications
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to CA models intended to introduce complexity include changes to the structure and dimension
of the lattice of cells, expansion of allowable cell states, expanded neighborhood definitions to
include action at a distance, and changes to temporal elements, such as Markov chains Torrens and
O’Sullivan (2001).

A precursor to many of the contemporary cellular models being used to describe the dynamics
of urban systems is the model of self-forming neighborhoods presented by Schelling (1978). As
part of a larger exposition of self-organizing principles, Schelling demonstrated how ”individually
motivated” forms of segregation could arise through the interaction of many agents (households)
pursuing their own objectives. Preferences for individuals of a different race, income, or any other
form of social stratification were shown to lead to highly segregated outcomes under a variety of
initial conditions and preference structures.

The compatibility of CA models with GIS, remote sensing data and associated visualiza-
tion capabilities make them particularly suitable for land use modeling applications (Torrens and
O’Sullivan, 2001). It is here that they have received the most attention. One example is the model
of urban land use developed by Clarke et al. (1997) to estimate the regional impact of urbanization
on the San Francisco Bay Area’s climate. This model is an example of a self-modifying CA, in
which the CA can adapt to the circumstances it generates. Clarke and Gaydos (1998) applied the
same model to the Baltimore-Washington region to generate long-term urban growth predictions.
Jantz et al. (2004) also studied growth in the Baltimore-Washington region using CA, with the ob-
jective of simulating the effects of different patterns of land use on the Chesapeake Bay watershed.
Levinson and Chen (2005) describe the development of a Markov Chain model of land use change
for the Minneapolis-St. Paul region. Their model adopts the discrete-time version of a Markov
Chain and predicts the evolution of transportation networks and land use patterns over the period
from 1958 to 1990. A next step for this model would be to add neighbor effects, which would
move it to a CA-Markov Chain framework.

Other applications of CA include simulating land use density conditions, as in the model de-
veloped by Yeh and Li (2002). Their model incorporates a density gradient in the simulation of
urban development for different urban forms. The transition rules of their model specify a density,
obtained from a distance-decay function, to be applied to cells as they are converted to developed
cells. Kii and Doi (2005) provide a similar application to demonstrate the effects of compact city
form and mixed land use on total trip length, energy consumption and social welfare in Takamatsu,
Japan. The model they present, MALUT, is a multi-agent model of transportation and land use,
where a CA model of land use is coupled with a microsimulation model of travel. Accessibility
can be incorporated into a CA model of land use change, as demonstrated by Ottensmann (2005)’s
LUCI2 model. LUCI2 was designed to predict employment and land conversion change over a 44-
county region of Central Indiana, consisting of eight separate metropolitan statistical areas. The
model found access to employment to be an important determinant of residential development and
density.

CA models appear to be growing more complex. Their many applications reflect the relative
ease and flexibility with which they can be modified to describe processes of change. CA models
are not without their weaknesses, though. Their simplicity, which is one of their most desirable at-
tributes, is also a significant limitation. In most cases, they are inappropriate for modeling systems
with complex interactions. For example, processes like land development represent the interaction
between human and physical systems, but CA models cannot capture both. Also, CA models are
not designed to be forecasting tools. Since they are calibrated on historical data and lack a strong
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behavioral interpretation, most forecasts have little meaning. Rather, CA are better suited to ide-
alized principles of cities and urban design applications than large-scale simulations or strategic
planning (Batty, 1997).

A-7 Resolved and Ongoing Modeling Issues

Old Issues
The models currently being developed to describe change in transportation and land use systems
look very different than those that existed a few decades ago. One might question then, to what
extent these newer models have overcome the deficiencies of earlier generations of models, such
as the criticisms lodged against the first generation of spatial interaction-based simulation models.

Reflecting on the earlier experience, some modelers claimed in the early 1990s that advances
in computer processing power and data storage would obviate many of the problems identified by
Lee (1973) in his critique of the early modeling experience (Harris, 1994). While these advances
have undoubtedly reduced some of the costs of building, operating and maintaining transportation
and land use models, concomitant expansions in the scope of these models, as exemplified by the
current generation of urban micrsosimulation models, ensures they will continue to be a resource-
intensive effort. These models also remain highly complex, with many interacting submodels.
Calibration is still a daunting task, even for models that are available as commercial packages. Data
requirements are still large, especially for dynamic models that require synthesis of a population
or continual updating of a sample.

It must also be recognized though, that a number of problems identified with earlier models
have been, at least partially, resolved. Most microsimulation models are no longer static, and can
simulate changes in transportation network performance and land use through time. Nearly all
models now are able to model land markets with explicit prices and the ability to simulate the
behavior of various agents in the land development process. The level of aggregation of agents is
being reduced, especially in comprehensive microsimulation models. The size of zones in most
models is now much smaller, and should continue to decrease as computing power permits, though
spatial detail in many models could certainly improve. Perhaps most importantly, the theoretical
basis of models has improved, especially in ongoing efforts to reconceptualize the relationship
between individual activity patterns and travel choices for travel demand forecasting.

New Directions
The development of advanced models of transportation and land use change brings about opportu-
nities for exploring some important topics related to the models themselves and their representation
of real-world urban regions. The following are some issues worthy of more attention.

The Use of Theory Some researchers question the continuing use of broad theoretical frame-
works to guide agent behavior in model systems. Timmermans (2003) points to the use of random
utility theory to describe a wide range of spatial choices in many models. Noting that utility is a
concept that must be built up over several repetitive choice situations, he questions the applicabil-
ity this concept to rare decisions such as mobility and residential location. Also, it is questionable
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whether discrete choice methods and random utility theory are applicable to entities such as firms,
which comprise collective choice situations, as opposed to individual agents. Models like Ram-
blas and ILUTE, which use rule-based or hybrid modeling approaches, suggest that tailoring the
right tool to each model component can overcome this issue. Timmermans also noted that most
models are consumers of theory rather than producers, indicating that model development ought to
coincide with the process of theory development.

Forecast Accuracy Recent studies that have sought to explore the propagation of uncertainty
through transportation and land use models (Clay and Johnston, 2006; Krishnamurthy and Kock-
elman, 2003; Pradhan and Kockelman, 2002) have identified a continuing trend of large variation
in output from these models. Presumably, the addition of better model dynamics and disaggrega-
tion of population groups within microsimulation models will reduce some of the bias present in
earlier, more aggregate models. However, long-term forecasting models of many types necessarily
retain significant amounts of irreducible uncertainty, and the lack of available forecasting results
from applications of newer models leaves some room for concern.

Treatment of Supply Side In most forecasting applications the supply side of transportation, as
represented by the extent and capacity of networks, is held fixed or treated as a policy variable.
The limited available evidence on the evolution of networks over time (Levinson and Yerra, 2006;
Yamins et al., 2003; Yerra and Levinson, 2005; Zhang and Levinson, 2007) suggests that scenarios
such as alternative ownership regimes and their impact on transportation-land use systems are a
topic worthy of exploration with more comprehensive models.

Agglomeration Effects Previous reviews of operational models of transportation and land use
(Berechman and Small, 1988) identified the absence of agglomerative effects as a major weakness
of the land use component of these models. Recent work using multi-agent systems (Arentze and
Timmermans, 2003) suggests that modeling this effect is possible, and it is deserving of further
exploration.

Person-Based Accessibility Since accessibility is still seen as an important component of loca-
tion choice in transportation and land use models, especially for residential location, it makes sense
to pursue measures of accessibility that recognize the importance of treating travel behavior as a
process constrained in time and space, as is reflected in activity-based travel models. Examples
have been provided in work by Kwan and Weber (2003) and Miller (2005).

Future work in these key areas holds some promise to improve the validity of land use and
transportation models. Many of the suggested actions can, and in some cases have, been incorpo-
rated into existing models. Recent versions of UrbanSim have attempted to simulate agglomeration
effects by including a variable in the utility expression for firm location choice reflecting the exis-
tence of employment in the same industry. As a proxy for agglomeration effects, this feature should
improve location choice models by providing a complement to traditional accessibility measures
as determinants of employment location.

Incorporation of person-based accessibility measures also seems feasible, and has been demon-
strated by Dong et al. (2006) in an application of activity-based accessibility using an activity-based
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travel modeling system developed by Bowman and Ben-Akiva (2001). While this approach rep-
resents a definite improvement to the modeling of travel demand, it is unclear whether the use
of activity-based measures of accessibility will greatly affect longer-term location decisions as
currently structured within land use models.

Explicit treatment of the supply side in transportation models would also improve their capac-
ity to reflect the dynamics of land use and network growth. In a previous application, Levinson
and Karamalaputi (2003) demonstrated how factors such as existing traffic demand, demographic
characteristics, and present network conditions could be used to predict network expansion. In-
corporation of a separate sub-model within current operational models seems a viable and useful
alternative to treating the supply side of transportation systems as fixed.

Perhaps the most important line of inquiry for future work in land use and transportation model-
ing relates to understanding the accuracy and level of uncertainty inherent in existing and proposed
operational models. As indicated, some of this work has already begun. Future work may continue
to use simulation methods, such as Monte Carlo or Latin Hypercube sampling (Hess et al., 2006)
in order to relate changes in inputs and model parameters to various model outputs. The outcome
of this line of work will provide important feedback to model users about the acceptability of
forecasts based on current operational model systems.

A-8 Conclusion
Models of transportation and land use change have evolved significantly since their early appli-
cations more than four decades ago. In the search to design models that capture the recursive
relationship between transportation and land use, there has been a general trend toward the disag-
gregation of the representation of people and space. Newer models represent in greater detail the
dynamics of the transportation-land use change process. Experiments with bottom-up approaches
to modeling urban systems, especially those that recognize the interactions between agents, pro-
vide an alternative means for understanding their complexity. Yet, the ability to forecast these
processes for policy applications remains and important goal. Most of the newer generation of
microsimulation models are designed with the objective of making them more policy sensitive.
Unfortunately, few of them have yet reached a point where they can be fairly evaluated on this
criterion, and the older operational models still raise important questions about the utility of such
complex tools.

One must be more circumspect though, in evaluating the transportation and land use modeling
experience more generally. In reflecting on the experience with the first generation of models
nearly three decades ago, Batty (1979) noted that models should be evaluated in terms of their
contribution to both science and design (i.e. policy). Many of the earliest models were failures on
both accounts, though there has arguably been some success on the science side since then.

Models continue to represent an important means of testing theories and developing knowledge
about the behavior of urban systems. For example, land use and transportation models have em-
phasized the role of accessibility in location choices from their earliest origins. They have provided
a method for formally and quantitatively understanding this link and its effects on urban structure.
Another contribution that modeling efforts have made has been to treat cities has living, dynamic
systems. While virtually all operational models include some type of feedback effect, the increas-
ing inclusion of dynamic effects in the form of lagged responses to transportation network or land
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use changes has increased the realism and applicability of many models. Further, recent modeling
efforts are beginning to incorporate principles of self-organization in representing urban growth
and change. Agent-based and microsimulation models demonstrate the importance of individual
action, as opposed to top-down decision-making, in representing dynamics of urban growth and
change. Recent microsimulation models such as UrbanSim have been able to capture unique spa-
tial effects, such as neighborhood effects, in residential location choices. Agglomeration effects in
firm location choice have also been added to reflect concentrations of an industry type in specific
locations.

Another observation by Batty related to the status of planning as a science. He argued that
planning was (at the time) an ‘immature’ science, marked by poor theoretical development, con-
tinuing controversy about methods and results, and the tendency to follow ‘fashions.’ In many
respects this is true of the field today, as in the continuing controversy over the influence of land
use patterns on travel behavior. Batty suggested that this status may be inherent to planning, which
is considered a ’policy’ science, and hence subject to the dictates of short-term policy needs, albeit
at the expense of long-term theory development. This trend continues to the present and will likely
do so in the future, as the needs for policy-oriented analysis (design) work continue to dominate
planning practice. He noted though, that periodic reflection and critical review by those engaged
in research can be seen as a sign of maturity. There has been much of this in the field of trans-
portation and land use modeling, as in the related field of travel demand analysis (see, for example
Pas (1990)). Continued reflection, along with a commitment to developing models that reflect the
relevant theoretical constructs of the behavior or system being studied, are seen then as the most
promising paths toward developing transportation and land use modeling toward a more ’mature’
state and building more practically useful tools.
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