Effects of Rapamycin on Dia2 in S. cerevisiae

Peter W. Newhouse IX and Deanna Koepp
University of Minnesota, College of Biological Sciences

Background
- Dia2
 - F-box protein with role in S-phase checkpoint regulation.
 - Loss leads to chromosomal damage.
 - Found at rDNA loci
- Tor1
 - Protein kinase with role in regulating cell growth & division.
 - Inhibited by rapamycin
 - Loss leads to chromosomal damage.
 - Found at rDNA loci
- Dia2Δ – Tor1Δ Mutant
 - Lacks function of Dia2 and Tor1.
 - Synthetic phenotype: more severe chromosomal damage.
- Hypothesis
 - Dia2 and Tor1 are functionally related, and act in similar pathways to control cell division and genomic stability.

Methods
- Western Blotting
 - Decrease in Dia2 abundance was associated with rapamycin treatment.
 - PGK loading control confirmed that the same quantity of protein was loaded from each sample.
 - Performed with G1-arrested cells to control for variation in Dia2 levels, since rapamycin inhibits S phase progression.

Results
- Western Blotting
 - Following cyclohexamide treatment, Dia2 levels decreased more rapidly in rapamycin-treated cells.
 - Performed with G1-arrested cells.

Discussion
- Conclusions
 - The Tor1 inhibitor rapamycin reduces Dia2 abundance and increases the rate of Dia2 degradation.
 - This investigation provides further evidence of a functional relationship between Dia2 and Tor1.
- Future Directions
 - Further studies of Dia2’s pathway will be necessary, both to better understand Dia2 itself and to investigate its relationship with Tor1.
 - Investigate whether Tor1 influences transcriptional regulation of Dia2 by use of reverse transcription PCR.

Background Diagram:
- Tor1
- Dia2
- Cell cycle regulation
- Genomic stability

Figure 1. Dia2 abundance is decreased in the presence of rapamycin. Top: Dia2 protein is less abundant in rapamycin-treated cells compared to untreated cells. As a negative control, cells with untagged Dia2 do not show any 9Myc-Dia2 protein. Bottom: Pgk1 as a loading control. All samples contained similar levels of Pgk1.

Figure 2. Dia2 degradation observed to be accelerated in rapamycin-treated cells. Following cyclohexamide exposure, Dia2 levels decrease in both samples. This loss appears to occur more rapidly in the rapamycin-treated cells. PGK served as a loading control.

Bibliography

Acknowledgments
The author is grateful to the members of the Koepp lab, especially Dong-Hwan Kim and Chi Meng Fong, for their advice and assistance in this project. This work was funded by ROI grant #GM076663 from the National Institutes of Health.