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ABSTRACT

We investigate models for the dynamical behavior of mechanical systems that dissipate energy
as time ¢t increases. We focus on models whose underlying potential energy functions do not attain
a minimuin, possessing minimizing sequences with finer and finer structure that converge weakly
to non-minimizing states. In model 1 the evolution is governed by a nonlinear partial differential
equation closely related to that of one-dimensional viscoelasticity, the underlying static problem
being of mixed type. In model 2 the equation of motion is an integro-partial differential equation
that is obtained from that in model 1 by an averaging of the nonlinear term; the corresponding

potential energy is nonlocal.

After establishing global existence and uniqueness results, we consider the long time behavior
of the systems. We find that the two systems differ dramatically. In model 1, for no solution does
the energy tend to its global minimum as ¢ — oo. In model 2, however, a large dense set of solutions
realize global minimizing sequences; in this case we are able to characterize, asymptotically, how
energy escapes to infinity in wavenumber space in a manner which depends upon the smoothness
of initial data. We also briefly discuss a third model which shares the stationary solutions of the

second but is a gradient dynamical system.

The models were designed to provide insight into the dynamical development of finer and finer
microstructure that is observed in certain material phase transformations. They are also of interest
as examples of strongly dissipative, infinite-dimensional dynamical systems with infinitely many
unstable “modes”, the asymptotic fate of solutions exhibiting in the case of model 2 an extreme

sensitivity with respect to the initial data.
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1. INTRODUCTION

The purpose of this paper is two-fold: to introduce simple mathematical models which display the
dynamical development of “fine structure” and to exhibit strongly dissipative evolution equations which do

not possess inertial manifolds or even finite dimensional attracting sets.

In connection with the first question, Ball and James [1987] have suggested that minimizing sequences
may play a role in modelling the fine structure sometimes observed in phase transitions. A simple and

classical example of a functional which possesses such a minimizing sequence is provided by

I(u) = /0” [i(ui 1)+ ";‘2] dz, (1.1)

where u : [0, 7] — R and u(0) = u(r) = 0 (cf. Young [1980]). By considering the sequence u*(z) = k~'6(kz),

where 6 is the m—periodic function with

N ™

T, 0<z<
"(‘”):{w—x, 1<z

, (1.2)

it is easily seen that the infimum of I subject to the boundary conditions (more precisely, in the Sobolev

space Wy*(0,7)) is zero. In fact, since uf = %1 ae.,

an’

a x
I(uk) = m‘/o 02(2)(113 = W

(1.3)

However, the minimum is not attained, since the conflicting requirements v, = 1 a.e. and u = 0 cannot
be met. Note that every minimizing sequence, in particular u*, tends weakly to zero in I'l"()l"‘(O, 7), but that
zero is not a minimizer. Ball and James [1987] suggested that incompatibility at boundaries between regions
of a material in different phases could be overcome by two variants of one of the phases assuming a structure
in which bands of each variant are finely interspersed. Such a spatial arrangement would correspond to an
element of a minimizing sequence for the total elastic energy: in the (simplified) example above the two
variants correspond to u; = +1 and u; = —1. We will enlarge on this remark in Section 7. Despite an
expanding literature on the variational formulation of this problem, little is known of the dynamics by which
such a fine mixture might be created or evolve. The models treated in this paper, while not directly derived
from the underlying physical problem, are designed to provide insight into this question.
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The second area on which our examples shed light is that of the structure of attracting sets for infinite
dimensional, dissipative, evolution equations. In several examples in which an associated linearized problem
has a spectrum of stable eigenvalues separated by suitable gaps, it is known that finite dimensional attracting
sets and even inertial manifolds exist. (cf. Constantin et al. [1988], Temam [1988], Doering et al. [1988]).
An inertial manifold is a smooth, finite dimensional submanifold of the phase space, invariant under the
(semi-) flow, which attracts all solutions at an asymptotically exponential rate as t — +oc0. In such cases the
long time behaviour is governed by a finite dimensional dynamical system, a set of “determining modes”,
regardless of the initial data. In contrast, the present examples show that strong dissipation can coexist with
an infinite set of unstable modes and that energy can cascade to arbitrarily high wavenumber as ¢ — +o0,
but, consistent with energy decay, no periodic or other recurrent motions exist. Whether arbitrarily fine
structure is realized or not de'pends on the form of the equation: we exhibit one example, based on the local
energy function (1.1), whose solutions do not minimize energy dynamically, and two examples for which
most solutions do in fact dynamically explore minimizing sequences. These latter share a feature of the
Becker-Déring cluster equations studied by Ball et al. [1986], Ball and Carr [1988], and Slemrod [1988], who
proved that mass asymptotically escapes to infinite clusters for initial data possessing supercritical density.
As discussed in these papers, it is ;ln open problem for the Becker-Doring equations to understand the
detai‘ls of how increasingly larger clusters develop. In one of our examples we are able to give an analogous
description, showing how energy moves through the wavenumber spectrum as t — 20, and how the initial

data strongly influences the dynamical development of solutions.

The contents of this paper are as follows. In Section 2 we describe the model equations and obtain some
basic results on energy decay, stationary solutions and linearized stability. Section 3 contains existence and
uniqueness results for the first two models. In Section 4 we begin to address the asymptotic behavior of
solutions. We show that solutions of the “local” model do not minimize energy, whereas almost all solutions
of the other models do so. A detailed study of how this occurs for one of the models is carried out in
Section 5. Numerical simulations which illustrate these results are presented in Section 6 and concluding

comments are given in Section 7.

Throughout the paper ||f|| = (fy |f(z)I® dz)!/? and (f,g) = [, f(2)3(z) dz denote the L? norm and

inner product of (complex valued) functions defined on the domain 0 < z < 7. {f, g} denotes the ordered
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pair of functions f,g. For s =1,2,..., 1 < p < oo, W*F = W*P(0,7) denotes the usual Sobolev space of
functions whose derivatives of all orders m < s belong to LP(0, 7). I'VOI’P denotes the space of WP functions
whose continuous representatives vanish at ¢ = 0,7. We write H* = W*2, H} = W,® and denote the
associated norms || ||, and || -]|;. We also use H* for noninteger values of s. If I C IR is an interval, we write
CT(1,C®) for the space of r—times continuously differentiable maps from I into the space C* = C* ([0, 7r]) of
s—times continuously differentiable functions on [0, 7]. We write C° as C. For more details see Adams [1975]
or Yoshida [1980]. The basic tools used are existence and uniqueness results of Henry [1981] for abstract
evolution equations with the modified definition of solutions due to Miklavéi¢ [1985], and stable, unstable
and center manifold results for PDE and ODE (cf. Carr [1981]). Some of the results of this paper were

announced in Ball [1990], where additional background material and references may also be found.

2. THE MODEL EQUATIONS: PRELIMINARY ANALYSIS.

Here we introduce three model equations. While the first has some mechanical relevance, all three, and
especially the latter two, are presented mainly as mathematically tractable models which exhibit features

relevant to the physics of fine structure.

2.1 Three Models

Model 1 is based on the potential energy (1.1), mentioned earlier. The associated total energy (kinetic

plus potential) is
1 1 o
Bufuud = gllud?+ [ 32 - 12 dz + Sllul? (21)
0

and the evolution equation and boundary conditions are given by
U = (ug = uz + Puz): — au, (2.2a)

u(0,t) = u(w,t) = 0. (2.2b)

The additional term Pu..; in (2.2a) represents viscoelastic damping. The specific choice of the function
g

fo’r $(u? = 1)?dz = [ Vi(uz)dz is not crucial. One can pick any two well potential V;, with a corre-

sponding, non-monotone, cubic-like stress-strain function o(u;) = V{(u;), and obtain similar results. This
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model crudely represents the behavior of a one-dimensional nonlinear viscoelastic continuum, bonded, with

“strength” a, to a rigid substrate.

In model 2, which is rather more tractable, we replace the local nonlinear term u2u,, in (2.2a) by the

spatially averaged term ||uz||*us-, obtaining a non-local model with total energy

Eofu,u) = glluell + 3 (luell” = 17 + Sl (23)

and evolution equation
ug = (||uzl|® = 1) uzs — ou + Buzs, (2.4a)
u(0,t) = u(7,t) = 0. (2.4b)

Model 3 is obtained simply by replacing the second time derivative in (2.4a) by a first derivative, to

yield the pseudo parabolic equation

Uy = (||u,||2 - 1)“” — au + Bz, (2.5)

which has the same stationary solutions as (2.4), but whose diagonal structure permits a complete charac-

terization of the asymptotic behavior of solutions.

We concentrate on the first and second of these models. We are able to give a fairly complete analysis

of model 2, but several open questions remain regarding model 1.

Assuming that solutions exist and are sufficiently smooth, facts to be established in Section 3, a straight-
forward calculation reveals that the energy functions (2.1) and (2.3), differentiated along solutions of (2.2)

and (2.4) respectively, both satisfy

dE;
= —Bluml. (26;)
For model 3, we define a (purely potential) energy
1 s .  «a .
Esfu] = 2 (lJu:ll* = 1)* + Zlu|f? (2.7)

and compute, integrating by parts,
dE;

S22 = (luall® = 1 o) + o, w0)

- ( [(”u,”z ~1)tge — au] : u,) (2.8)
= —[udll® = Blluzdl*.

It
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Thus, in all three models the energy Ej is a Liapunov function: that is, Ej is nonincreasing along solutions

(and strictly decreasing provided ||uz¢|| (or ||uzt|| and [|u:]]) # 0). Since we also have the lower bounds
E; >0, j=1,2,3, (2.9)

we expect that solutions will in some sense approach stationary states or equilibria given by the boundary

value problems
(u3 —uz); —eu=0, u(0)=u(r)=0; (2.10)
(|luzl)? = Duge —au =0, u(0)=u(x)=0, (2.11)

in models 1 and 2, 3 respectively. We now turn to a study of those equilibria.

2.2 Equilibrium States.

Rewriting (2.10) as a system
Uy = v,
au (2.12)
32 -1’

we easily obtain the phase portrait of Figure 1, with solutions lying on the level sets of the first integral

Vr =

(obtained by multiplying (2.10) by u, and integrating):
—_— - Tu = const. (2.13)

There are singularities along the lines v = #1/v/3. The solutions of (2.10) of interest to us are obtained by

fitting together segments of orbits in the range 1/\/§ < v < 2/V/3 with appropriate jump conditions. Let

i(z) be such a solution and denote the L> and 1W!'* norms of u by

ess sup

”u”CO = z€ [0’ 7(']

lu(@), el = llulloo + [luzloo-

We recall that @ € Wol’1 is a strong relative minimizer of the potential energy

Viu] = /J V(u, uz) dz, (2.14)

where V(u,u;) e

T(ui-1)7%+ °T“2, if for some ¢ > 0, V[#] < V[u] for all u € W;''(0,7) satisfying
lu — @llo < €. In contrast, & is a weak relative minizer if V([i] < V[u] for all u € 1W31(0,7) satisfying
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Figure 1 Phase portrait of (2.12)

llu = 4ll1,0 < €. Moreover, if @ is a weak relative minimizer then (cf. Cesari [1983, p. 61f.]) the weak

Euler-Lagrange equation

oy
Ou,

(@, )(z) = /0 g_‘:(a,a,)(s)ds + const. (2.15)

holds; in particular, :Tv, is continuous at jumps in u,, providing the condition we need to piece orbit segments
together. Conversely, if & € W,'* is a solution of (2.15) such that |u,| lies in a closed subset of (1/V3,2/V3)
for a.e. x, then @ is a weak relative minimizer. This follows simply from a Taylor expansion with remainder,

noting that (0*V/du2)(i,i,) > v > 0 a.e. for some 7.

Using this we can easily construct uncountably many weak relative minimizers for (2.14), with o(u;) =
u3 — u, continuous at Jumps. There can be arbitrarily many jumps in uz, located with complete freedom
apart from the minimal constraint that the trajectory begin at z = 0 on the line u = 0 and end at z = 7 on

u = 0 to satisfy the boundary conditions.

We remark that there are no strong relative minimizers of V. That # = 0 is not a strong relative
minimizer follows by considering the minimizing sequence u* discussed in the introduction. On the other
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hand, if @ # 0 let zo be a point where |%| is maximized. Assuming without loss of generality that @(zo) > 0,

it is easily proved that for € > 0 and sufficiently small the function i, defined by
e (z) = min[i(z), @(zo) — €+ |z — zo|]

belongs to W,'!, satisfies V(i) < V(i), and lime_g ||@ie — ii/|oo = O (see Figure 2).

N 4 z
0 Lo \ . \/ ™
Perturbation

Figure 2 A small || - || perturbation lowers V(u).

;
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When a = 0 the phase portrait of Figure 1 degenerates into horizontal lines. Then any solution for
which v = u; = £1 a.e. is an absolute minimizer, while any solution for which 1/v/3 < |v| < 2V/3 is a
weak relative minimizer. All these are exponentially stable in an appropriate norm, as shown by Pego [1987,

Theorem 4.1]. We obtain a similar exponential stability result for a # 0, below.

In contrast to the uncountable continuum of equilibria satisfying (2.10), equations (2.4) and (2.5) have
only countable sets of equilibria. This is easily seen directly from (2.4a), or, as we now do, by expanding

u(z,t) in the orthonormal Fourier series

ad 2
(z,1) = .(t),/- inkz, (2.16)
u(z glak 71_s

and projecting (2.4a) onto each basis function in turn to obtain the infinite set of ordinary differential

equations:
@ oo
ak+ﬂk2dk+k2<7c—2-—l+2j2a;’>ak=0, k=12,... (2.17)
ji=1

for the coefficients a;. Here (') denotes d()/dt. In addition to the trivial solution ax = 0,Vk or u = 0 o u(f,

the equilibria of (2.17) are easily seen to occur in pairs

1-—, a;=0, j#k, (2.18)



for all k such that k2 > «. That no “mixed-mode” equilibria exist is clear from the requirement that, from -

(2.4a), any non-trivial equilibrium is an eigenfunction of d?>/dz?, or, in terms of the representation (2.16):

2 9 a
> i =1-13 (2.19)

for any a; # 0. Reconstructing the functions from (2.18) via (2.16), we have the countable set of equilibria

1 /2 @
+ _— - —_ —_—— 1 > — Y
F =5V o (l kz) sinkz, k=K, K+1,... (2.20)

where K = K () = min[k : k2 — a > 0]. We observe that, since
g = %[
Baluii, 0] = 33 [1 21:2] (2.21)

approaches the lower bound 0 as k — oo, {uf, 0}72 k is a minimizing sequence for this functional. The same
conclusions hold for equation (2.5), since it only differs in the dynamical term. The analog of (2.17) in this

case is the first order equation

: k? @ 2
ak:1+ﬁﬂ(l_k2_22]%>%' (222
2.3 Linear Stability

We now obtain the first results suggestive of the types of asymp(otic behavior that might be expected:

we consider the equations linearized about the equilibria described above.

We first consider models 2 and 3, since the analysis is elementary. Linearizing (2.4a) at the trivial

solution ug = 0 we find the eigenfunctions {sin !z} and eigenvalues

_ m?( 4(12—a))
M= —11,/1+—2—
2 . pr ‘ (2.23)

~—ﬁ12—%+0(1l2), -;—+0(712-)asl—»oo.

Linearization about the nontrivial states uf(x)(k"’ > «) gives the equation

Vit = (”uki,tllz - l)vx: + Q(U:L't,z" vr)u:kk'::,t - av + ﬁvxzty

(2.24)
v(0,t) = v(m,t) =0,
and, using (2.20) and the fact that
"2
“u:kb,r”2 = /; p (1 - %) cos’krdr=1- L%’ (2.25)



(2.24) becomes
a 4k a T .
Vit = Ve — — (1 — F) (/0 vy cos kz dl) sinkz — av + Bvzzy, (2.26)

which has the eigenfunctions {sinlz} and eigenvalues
B2 da [ 1 1
Lol - 1Lk
o\ 1l E) ) #k
B2 8 @
el —_—_— —_— | = k.
: ( 1+,4/1 ﬁm(l 12)>’ k

Clearly all of these equilibria are unstable, each one having a countable set of positive eigenvalues corre-

(2.27)

sponding to the positive square roots in (2.23) and, for I > k&, in (2.27). As | — oo for fixed k, the eigenvalues

o5 (@ w () + ()
3 w1+ 77m)) +o ),
+

so that every equilibrium uj is exponentially unstable, albeit increasingly weakly, since the positive eigen-

of (2.27) take the forms

(2.28)

values accumulate on a/Bk? from below as | — co and a/Bk* — 0% as k — co.

In the case of model 3, a similar computation yields

-«

A\ = e (2.29)

for the trivial solution and (12 = k)

a(l*-k°

L Gt N
TR+ BB ? (2.30)
3, — -2(1? - @) — '
T+ T

for the equilibria u¥(k? > a). The eigenfunctions are again {sinlz}. These equilibria are also all exponen-

tially unstable.

These results suggest that typical solutions will not approach any of the equilibria as t — +00, since

éach equilibrium has a non-empty unstable manifold. In Sections 3 and 4 we prove that this is, indeed, the

case.

Model 1, unfortunately, does not permit such a detailed analysis; instead we have an exponential stability

result for solutions linearized about states @(z) satisfying

o'(i;) =322 -1>00>0 ae. (2.31)
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and subject to perturbations which do not move or introduce new discontinuities in u;. However, this result
is best stated in terms of the transformed variables used in our existence and uniqueness theorems, and so

we defer it until the end of the next section.

3. EXISTENCE AND UNIQUENESS

The primary purpose of this section is to prove the global existence, uniqueness and regularity of

solutions for model 1 and 2. For model 1, consider the equations

u = (o(uz) + Buz) '~ au, u(0,t) = u(w,t) =0, (3.1a,b)

with initial data

u(z,0) = uo(z), u(z,0)=u(z), O<z<m (3.1¢)
DEFINITION. Let T > 0. By a solution of (3.1) on [0,T), we mean a pair

{u,v} € C([0,T), H} x L*)NC*((0,T), H} x L?)

with supgcicr ||uz(,t)|leo < C(T), which satisfies {u,v} = {uo,u1} att =0, and fort > 0,
u=v, v =(0(uz)+Pvs): — au,

taking z-derivatives in the sense of distributions on (0, 7).

THEOREM 3.1 Global ezistence and uniqueness for model 1.
(a) (Strong Solutions). Suppose ug € I/Vol’w,ul € L2 Then for any T > 0, a unique solution of (3.1)
on [0,T) ezists. This solution is a “strong solution” in the sense that il also satisfies

{w,u} € C([0,00), Wg™ x L*) N C}((0,0), W5 x C)

and

uy € C((0,00),C), o(uz)+ ﬂu,; € C((0,00),C"),
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while the equation (3.1a) holds pointwise for allt > 0, for a.e. x. Furthermore, we have

sup |lu(-,1)|[1,0 < 00, sup |lus(:,t)]|1,00 <00 forall T> 0,
>0 t>r

and the energy identity (2.61) holds fort > 0.

(b) (Classical Solutions). Suppose ug € C?,u; € H* for some s > %, and uo(0) = ug(r) = 0 = u1(0) =

uy(m). Then the solution from part (a) also satisfies
{u,u} € C([0,00),C? x C)N C((0,0),C? x C),
and (3.1a) holds for allt >0, 0 < z < .
For model 2, consider the equations
u = ((|Jue]® = Dus + Buse)s — au,  u(0,t) = u(w,t) =0 (3.2a,b)

with initial data

u(z,0) = up(z), wu(z,0)=u(z), O0<z<m. (3.2¢)

The definition of solution is as above for (3.1), but the restriction on [Ju,(+,?)||c is dropped.

THEOREM 3.2 Global ezistence and uniqueness for model 2.

(a) Suppose ug € H}, uy € L?. Then for any T > 0, a unigue solution of (3.2) on [0,T) ezists. The

solution also satisfies {u,u;} € C*((0,00), H} x C) and
ur € C((0,00),C),  (lluzl® = Duz + fust € C((0,00),CY),

and equation (3.2a) holds pointwise for allt > 0, for a.e. z. Moreover, for t > 0 the map {ug,u;} —
{u(t),us(t)} is smooth on H} x L2. The energy Ey of (2.3) is continuous for t > 0 and continuously

differentiable fort > 0, (2.65) holds fort > 0 and fort > 0 we have

Ex(t) - Ex(0) = —B ] use(s)][? ds. (3.3)

(b) Suppose ug € Wh, uy € L%, Then the unique solution to (3.2) of part (a) also satisfies {u,u;} €

C([0,00), Wg'™® x L?) N C*((0,00), Wy x C).
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3.1 Preparatory Transformations

Both proofs use a transformed equation, as in Pego [1987]. We define new variables p(z,t), ¢(z.1), where

T 1 T F
p(z,t) = / w(s,t)ds — —/ / w(s,t)dsde, ¢ = Pu;—p,
0 m™Jo Jo

(3.4)

observing that p, = u; and that p and ¢ have zero mean. Let B denote the solution operator for the

Neumann problem Bw = U, where

e

sz:w—l/ wdz for O<z<m

0

U:(0,:) = Ug(m,-) =0, /Udz:O,
. 0

namely

T pry 1 x rT ry
U:// wdzdy——/ // wdz dydz,
0Jo T Jo Jo Jo

or
U = | " Ge,)uly, ) dy,

where the Green’s function is

G _ _2%(1:2+y2)_§) <y,
(.y) = z—-(z24+y?) - % <z
2x y 30 Y :

Equations (3.1) and (3.2) then transform to
Dt = ﬁpr: +}-j((p+Q)/ﬂ))

q = - Fi((p+9)/B),

where the F; are, respectively

Fi(w) = o(w) - %/0' o(w)ydzr — aBw

for (3.1) and

Fa(w) = (lwll* - )w - aBw

for (3.2). In both cases the boundary conditions become

pz(0,1) = pz(m,t) = 0.

12
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Note that, unlike Model 1 with a = 0 (Pego [1987], eqn (2.9)), the ¢ equations are not ODEs for each
z € (0,7): they involve non-local integral “coupling” terms. However, most of the techniques of Pego’s

paper carry over for these problems.

In both cases we will treat (3.6;-3.8) as an abstract parabolic equation on a Banach space X, of the

form

2+ Az = fj(2), (3-95),

where z = {p,q}, Az = {—BAp,0} and f;(z) = F;((p + ¢)/B){1, -1}, j = 1,2 respectively. Here A
denotes the Laplacian. The space X will differ for each case. As in Pego [1987], we appeal to results of

Henry [1981].

3.2 Proof of Theorem 3.1

The uniqueness of a solution of (3.1) on [0,T) may be proved in a standard fashion, by subtracting two
solutions, obtaining energy estimates, and applying Gronwall’s inequality. We omit the details. Regarding
global existence, we first consider the simpler case of classical solutions. Thus, for part (b) we take X =
L2 x C!, where L2 = {w € L?| f; wdz = 0} and C} = {w € C'|f; wdz = 0} are spaces of functions
having zero mean. Since D((—A)7) C C} for ¥ > 3/4, f1 is smooth from X? = D((-A)%) x C! to X for
3/4 < 6 < 1. Also, A is a sectorial operator (Henry [1981], Section 1.3). Now ug € C?and u; € H*,s > 1/2,
so, via (3.4), the initial data {p(z,0), q(z,0)} lie in some such X® and thus Henry’s Theorems 3.3.3 and

3.5.2 yield a local solution for some T" > 0 with
2€C([0,T),X*) nC*((0,T),X") nC((0,T), D(A))
for all ¥ < 1. This corresponds to a solution of (3.6,-8) with

p€ C(10,7),C1) N C!((0,1),C2) NC((0,T), 1),

g€ C([0,7),C;) NC*((0,T),Ca),
and, via u = f: ((p+ q)/ﬂ) dz and uy = pri:

{v,u} € C([0,T),C* x C) n C*((0,T),C*x C), wuy€C((0,T),C).
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In view of these local results, E; € C'((0,T),R) and the energy identity (2.6,) holds on (0,T). In

terms of {p, ¢}, the energy function is
T p2 o 2
Er[p, ] =/ 5 +Vi((p+a)/B) + §<B((p+q)/ﬁ)) dz, (3.10)
0 S
where V;(w) = $(w? — 1)2. To obtain global existence, it will suffice to show that

Iplloo + llglleo < C independent of ¢, T, , (3.11)

for then we may estimate
111(2)llx < K(1+]lz]lxe)

and appeal to Henry [1981], Corollary 3.3.5.

Now since E) is non-increasing, bounds on the initial data and the form of V; imply that each component

of (3.10) is uniformly bounded. Poincaré’s inequality then yields

Ipllee < C1, | B((P+9)/B)|, < Cu, (3.12)

and, using the fact that |o(w)| < Vi(w) + Co, it follows that

/0" o(uz)dz

< Cs. (3.13)

From (3.61) we have

¢ =—o((p+9)/B) + e (3.14)

where ey = L [T o((p+q)/B8) dz — aB((p+ q)/B) and |le1]jeo + ||Plloo < Cs, for some C; independent of T.

We now interpret (3.14) as a classical ODE holding at each z € [0, 7] so as to obtain pointwise information
about ¢. For this purpose p and ¢ are taken as the unique representatives of the solution that are continuous
in z and t, supplied by the Sobolev imbedding Theorem. From o(w) = w® — w we see that, for each

z € [0,7], q(z,t)q:(z,1) < 0 for g(z,t) sufficiently large. Thus for all z, the ODE (3.14) considered at z has

a compact, positively invariant interval and so, for some Cs,

llglleo < Cs. (3.15)

Picking C = max[C),Cs) we have (3.11) and so global existence follows. This concludes the proof of part
(b)-
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To prove part (a) we set X = L2 x L™, with initial values in X/? = H} x L. Henry’s results yield a

strong local solution of (3.6,-8) with

pe C((0,T), H) nC((0,T),C") N C((0,T), W™),

g€ C([0,T),L®)NC*((0,T), L>),

and hence

{u,u,} € C([0,T), Wg'™ x L*) N C*((0,T), Wy"™ x C)).
From (3.6;) and (3.7;) it now follows that
1 "
o(uz) + fuge = ;/ o(uz)dz + aBu, + p; € C((0,T),C).
0

The energy identity (2.6;) holds as before, as do the a priori bounds (3.12)-(3.13). To obtain the analog
of (3.15) we use the fact that p,e; € C*((0,T), W»*). The local solution g(t) lies in an equivalence class
of essentially bounded measurable functions. Fixing any ¢, € (0,T), we can pick any pointwise-bounded
representative ¢ € q(to) and solve (3.14) for every z in [0, 7] to obtain a unique bounded ¢*(z,t), with
q*(z,t0) = qg(z), that is C! in ¢ for each z (on a neighborhood of ¢y that may depend on z), but not
necessarily C° in z. Again ¢*(z,t)q; (z,t) < O for large ¢*(z, ) implying that tszufo lg*(z,t)] < C, for some C
independent of z,t, and T, and therefore that ¢*(z,-) € C'([to, T), R) with ||¢*||cc < C. Finally, considering
p as given, ¢ is a unique solution of an initial value problem for (3.14) considered as‘an ODE in L*, so

q=(-,t) € q(¢) for all t € [to,T); hence (3.15) holds and global existence follows. This concludes the proof of

part (a). o
3.3 Proof of Theorem 3.2

In this case, for part (a) we pick X = L2 x L2, with L2 = {w € L?| [ wdr = 0} as before. Again A4 is
a sectorial operator. The initial values {ug,u;} € H} x L? correspond to {p,q} € Hl x L2 (H! = H'NL2)
and it may be verified that H} x L? = X'/2 = D((A4)'/®) C X and f2 : X'/? — X can be seen to be smooth

(see (3.72)). Henry’s Theorems 3.3.3 and 3.5.2 then yield a local solution:

ze€C([0,T),X"*)nC'((0,T),X") nC((0,T), D(4)),
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for all y < 1, with X7 = D((=A)) x L2. Moreover, for ¥ > 3/4 we have the inclusion C! D D((=A)"). In
terms of {p, ¢}, this implies that
p€C([0,T), H) nC*((0,T),C")nC((0,T), H?),

(3.16)
g€ C([0,T), L) nC'((0,T),L2),
and using u, = p;, u= [, ((p+ ¢)/B) dz, we have
we C(0,7), H3) nCH(0,T), HY),
u € C([0,T),L*) nC*((0,T),C)nC((0,T),H").
To obtain global existence we again examine the energy, which is, in terms of {p, ¢}
Bolp,al = 3lleel + 3 (I + /81 1) + 5] (Bl + 0/9) || (317)
' 2" 4 2 z ’

In view of (3.16), E, € C([0,T),R) N C*((0,T),R) and so the energy identities (2.62) and (3.3) hold for

t < T. Once more from this and Poincaré’s inequality it follows that

el <C, gl £C, (3.18)

for some C independent of 7. Note that the bound on ¢ is immediate in this case, due to the “simpler”
form of E,. We conclude that the solution z = {p, ¢} remains bounded in X!/? independent of t and T and
hence, via Henry [1981; 3.3.5], that it exists globally in time. Smooth dependence on initial data follows

from Henry [1981; 3.4.6]. Uniqueness is proved as in Theorem 3.1. This concludes part (a).

For part (b), we take X = L2 x LS with initial values in X'}/2, corresponding to the hypotheses on
{ug, u1}. As before, A is sectorial and f; : XY/2 . X is smooth. Henry’s Theorems 3.3.3 and 3.5.2 yield a

local solution

zec(0,7), X)) nC*((0,T), X)) nC((0,T), D(A))
for all ¥ < 1, with X7 = D((-A)") x L. Taking v > 3/4 as in part (a), we have local existence on [0, T)
for some T < oo with
peC(0,T), H) N CH((0,7),C1) N C((0,T), H?),
¢€C([0.7),LF) nCH((0,T), L),

or
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u e C([0,T), W) nC((0,T), W),
u € C([0,T), L2) N C*((0,T),C) N C((0,T), HY),

uz € C((0,T),LY).

Now f, takes bounded sets in X/? to bounded sets in X and so, from Henry [1981; 3.3.5], solutions
will either exist for all time or blow up in the L* norm in finite time. From part (a) of the theorem ||pl|;
is bounded for all time and so the latter alternative is equivalent to ||¢||oc — oo in finite time. That this is
impossible follows from the study of the second component of (3.6,) viewed as an ODE in ¢ at each z. As

in the proof of Theorem 3.1.(b) we have that

e = (1= |juz|*)g/B + €2, (3.19)

where e = (1 — “u:cllz)p/ﬁ - aB((p + Q)/ﬁ) with p,e2 € ct ((OrT)‘ Hl) and (1 - ”urll?) €C! ((O,T), R)

As before, a non-increasing E, together with Poincaré’s inequality yields

[Plloo + 11 = lluz )] + llezlleo < C, (3.20)

for some C independent of T. Fixing any tg € (0,7) we can once again pick any pointwise-bounded
representative ¢5 € ¢(to) and solve (3.19) for every z in [0, 7] to obtain a unique bounded ¢*(z,t) on a
neighborhood of to with ¢*(z,t0) = g¢g(z). From the form of (3.19), (3.20) and Gronwall’s inequality it
follows that for no z can ¢*(z,t) blow up in finite time, hence ¢*(z, -) € C*([to, T), R). From the uniqueness
of ¢ in L*, ¢7(t) € q(t) for all t € [to,T), hence ||q(t)]|cc cannot blow up in finite time, implying global

existence. This completes the proof of part (b). 8]

3.4 Linear Stability for Model 1

As promised in Section 2.3, we now give a linearization result for equation (2.2). It is more convenient
to state it in terms of the transformed system (3.6,-8). It is a modest generalization of Theorem 4.1 of Pego

[1987], but now we have a simpler proof.

THEOREM 3.3 Linear Stability for Model 1
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Suppose i(z) is a stationary solution of (2.2) with possibly discontinuous strain, satisfying
o'(fi;) =3u2 - 1> 00> 0 ae.

Then, for any 8§ < min[o,/B,B/2] there exists Co > 0, such that a unique solution {p,q} of (3.61)-(3.8)

exists globally fort > 0 and satisfies

POl < Coe™[Ip(Oll1,  lla(t) — Biizlloo < Coe™*|jq(0) - Bz ||oo,

provided that ||p(0)||, and ||g(0) — Bis||le are sufficiently small and [ p(z,0)dz =0 = f; ¢(z,0)dz.

Remark: Note that we require that the strain perturbation (¢ — i) be small in the L* norm. This
implies that new strain discontinuities cannot be introduced and it corresponds to the notion of a weak
relative minimizer (Section 2.3). This stability result is difficult to interpret physically, since the class of

permissible perturbations is restricted. However, see Section 4.4 below.

Proof: As in the proof of Theorem 3.1 we employ the abstract form (3.91) of (3.6;-8) with X = L2 x LY.
Appealing to Theorem 5.1.1. of Henry [1981], it suffices to show that the spectrum of the linear operator

A — B lies in {) € C|ReX > 6}, where B is the linearization of f;

Bi(p,q) = (o'(iz)w — %/; o'(i;)wdz — aBw) {1, -1}, (3.21)

7

with w = (p+ q)/B.

We first show that no eigenvélue of A — B, satisfies Rel < §. Suppose that A is such an eigenvalue with
eigenfunction z = {p,q}. Then both real and imaginary parts of p lie in H? and the eigenvalue problem

(A — By)z = Xz for the linearized equation (from 3.6,) yields
—Bpzr — o' (Uz)w + -}r_/ot (i )wdz + c Bw = Ap, (3.22a)
o' (i )w — % /01 o' (iz)wdz — aBw = Aq. (3.22b)
Thus A(p+ ¢)/B8 = Aw = —p;., and since Bpy; = p (see (3.5)), we have, from (3.22a)

(V2 + a)p+ (A — 0" (ii))pes + / o' (it )pzs dz = 0. (3.23)
T Jo
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Now let A = a + 7b, multiply (3.23) by py» (p denotes complex conjugate) and integrate to obtain
/ {—(a2 — 5% 4 2iab + a)lps|* + (aﬂ +ibB — J'(ﬂr(z))) |pn|2}d.7: = 0. (3.24)
0

Note that the final term in (3.23) does not appear in (3.24) because we work in L2 and [ prrdz =

—% 0” wdr = f0" Drz dz = 0. Taking real and imaginary parts, this yields
—(a® = b + a)|lp:|* + / (aB - o'(z))lpzs|® dx = 0, (3.25a)
0 .

b{—2a||pz|[* + Bllp=z|[*} = 0. (3.25b)

If b = 0, then clearly a > (min [J’(ur(r))]>/ﬂ = 0y/B, from (3.25a), while if b # 0, Poincaré’s inequality

and (3.25b) imply that a > 8/2. Thus ReX > min[o¢/8,8/2], as claimed.

We next show that the essential spectrum (i.e. the spectrum with discrete eigenvalues of finite multi-
plicity deleted) also lies in {A € C|ReX > 6}. We split A — B; = A — B — Bs with
— a1 -
Ba(p,0) = o'(i)(§) {1,-1)
— (o'@) () =L [ (a)wdz - a -
Bs(p,q) = (o (ux)(ﬁ) 7(/0 o'(iz)wde QBw) {1,-1}

with w = (p+q) /B, as before. The resolvent of A— B may be explicitly characterized for ReA < min(oo/8, 3)

as

a_ [ 4B —(A+8L)7H BN =o' /8)!
(A—A'*'BQ) —[ ( 0 (/\—U,/ﬁ)—l ]

Since Bj is bounded in p and compact in ¢ and (A 4+ BA)~! is compact, it follows that B3z(A — A + Ba)~!
is compact. Thus A — By — Bj is a relatively compact perturbation of A — B, and has the same essential

spectrum as A — B, contained in {/\ € C |ReX > min[oo/0, ﬁ]} n]

4. ASYMPTOTIC BEHAVIOR

In this section we obtain several results which partially characterize the asymptotic behavior of all

solutions of the three model equations.

4.1 Model 1 does not Minimize Energy

Pego [1987, Theorem 5.4] showed that an equation similar to (2.2), with o = 0 and boundary conditions
(0(uz) + Pugs)(m,t) = P replacing u(w,t) = 0, exhibited convergence to equilibria having discontinuous
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strain; moreover, he showed that, if the (smooth) initial strain data o z(z) has “near discontinuities” at
T1,Z2,... then these “sharpen up” and do not move much (Pego [1987, Theorem 6.1]). When a # 0 the
energy Ej[u] contains the displacement term £|[u||? and one naturally asks if this can promote the creation
of new discontinuities not present in the initial data. In particular, do “typical” solutions realize global

minimizing sequences? The latter behavior is excluded by the following result.

THEOREM J.1 There is no solution of (2.2) which minimizes energy globally ast — oo, i.e. there is no

solution such that Ey(t) — 0 as t — oo.

Proof: Again we work with the transformed equation (3.6;)-(3.8). Assume that some (global) solution

{p, q} of (3.61)-(3.8) satisfies lim;—.oo E1(p,¢) =0, cf. (3.10). Then

”Pr”:Z —0, |lu|]—0, and u,= % — £1 in measure (4.1)

as t — oo and hence, via Poincaré’s inequality and the facts that [ pdz = [ Buzdz =0, (Bus): = u,

Iplloc = 0, [I1B((P+9)/B)llec — 0. (4.2)

By Theorem 3.1(a), uz(+,1) is bounded in L®, and so o(u;) is bounded in L®. Since by (4.1), o(u;) — 0 in

measure, it follows from the bounded convergence theorem that

1 [T (p+qy .
;r-/o G(T)dl—>0ast—»oo. (4.3)

As in the proof of Theorem 3.1(a), we take ¢*(z,t) to be a classical solution of (3.14) with ¢*(-,t) € ¢(t)

for t > tg > 0. The results (4.2) and (4.3) above imply that, for each z,
p(z,t) — 0 and e;(z,t) — 0 as t — oo, (4.4)

and so, from (3.14) viewed as an “asymptotically autonomous” ODE, ¢*(z,t) converges for each z € (0, 7)

as t — oo (cf. Pego [1987], Lemma 5.5). In fact let

g— = liminf ¢"(z,t), ¢4+ = limsupgq”(z,t). (4.5)
t—090 t—o00

Then for any go € (¢-,¢4) there exist sequences tii — 00 as i — oo with q‘(z,t?:) = ¢o and %gq; (x,tjh) > 0.
From (3.14) we see that o(go/8) = 0. But o is not constant on any nontrivial interval and so g0 = q_ =
9+ = lim— o ¢7(2,1).
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Finally, since ¢*(z,t) converges as t — oo, by (4.4) so does u(z,t). But from the boundedness of u, in

L* and (4.1ii), it follows that

lim uz(z,1) =0 ae.
t—o0
This contradicts (4.1iii). O

Remarks: 1. Theorems 3.3 and 4.1 suggest that every solution of (2.2) converges to some stationary
solution as t — oo, but we have been unable to prove this. If this is true, one would further expect that,
for generic initial data, the limiting stationary solution is a weak relative minimizer; recall that there are

uncountably many such minimizers (see section 2.2).

2. Following the arguments of Pego [1987, Section 5], one can show that ||pz||* — 0 for any

solution, so that, for large , ¢ approximately satisfies

w=o/8)+ % [ oa/8)ds +aBup (46)

This is an interesting equation in its own right. One can ask if almost all solutions of (4.6) (or of (2.2) or

(3.61)) converge to a stationary state oo, p = 0 with ¢'(¢eo) > 0 a.e., as the linearization result of Theorem

3.3 suggests. Do “new” discontinuities appear in ¢7 See Section 4.4, below.

4.2 Almost all solutions of Model 2 do minimize energy

We first obtain a dichotomy which implies that solutions behave either in a “finite dimensional” fashion,
essentially involving only a finite set of Fourier modes, or that all Fourier modes are active and energy

cascades out to infinity in wavenumber space. We then show that almost all initial data lead to the latter

behavior.

PROPOSITION 4.2 Let {u,u;} € X = H} x L? solve (2.4). Then ast — 400, either {u,u;} — {uf,,O}

strongly in X for some equilibrium uf of (2.20) and Es(t) — %= [1 - 2—%7], or

|lw]] = 0, u—0 weakly in Hg,

lluz]| — 1 and Ea(t) — 0.
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Proof: We first recall the uniform bounds established in the proof of Theorem 3.2, based-on the fact

that Es[u(-,t)] is non-increasing in ¢ and increases in ||u.|| for ||uz|| > 1, namely
[|lull, l|uzl, llut]] < C (determined by initial data). 4.7
Since (3.3) holds and E; is bounded below (2.9b) we also have

/Ooo lluze|2(1) dt < oo, (4.8)

and, via Poincaré’s inequality
[ee]
[ e < oo, (49)
0 .
and hence, for any r > 0,
t+T1
. 2
tl_lglo/t lJue]|*(s) ds = 0. (4.10)
Also, (2.62) and the lower bound E» > 0 imply that Es(t) approaches a limit, say E,, as { — +c0.

The proof follows from three lemmas which characterize the asymptotic behavior of u; and ||u.||* and

which we prove later. Throughout 7 > 0 is fixed.
LEMMA 4.3 (i) u, 220 as t = co; (i) limy—eo(us, u) = 0.

LEMMA {4

lim ||uz|? =0.
t—00 t

LEMMA 4.5

t+T1 . t41
i { [ el = rlucli 0 f = 0 ana i { | I (s)ds = rulf(0} = o,

The proof is based on various manipulations of the energy identity, which are justified in view of

Theorem 3.2. We first compute

d ﬂ o o 2 o def
2 L) + Slluell®} = Hudl® + (ue, w) + Bue, uze) = ludl® = lluell* + lluell® = allul* = F(1),  (4.11)
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using the evolution equation (2.2a) and integration by parts. From (2.3), we have
A T 1
F(O) = 2l|u]]” = Sllue|l” = 2E2(8) + 5, (4.12)
and so, integrating (4.11) we obtain, for any fixed 7 > 0
. t4T7 Y 1 4 1
(e + SluelPHER = [ (2P(6) = lluel(s) = 2B2(9) + 3} ds. (4.13)
t
Taking the limit ¢ — co and using (4.10) and Lemmas 4.3-4.5 and the fact that Ey(t) — Fo, yields
t471
T 4 . 1
0= 3 Jim [fuel[*(2) +2 Jim, / (Boo - 7) ds,

or
Jim luz]|® = V1 — 4Ew. ‘ (4.14)

On the other hand, integrating (4.11) without using (4.12) and taking the limit once more yields

t+T1
0= tim [ (el = el + el - o} s) s,
t

or, with (4.10), (4.14) and Lemma 4.5,

ar lim lull?(t) = 7(V1 = 4B — 1 + 4E,). (4.15)

Consequently, from the definition of E2 in (2.3), we have

Eeo = Jim Bu(t) = 5 lim [ludl* + § (VT = 45 ~ 1 (¢1—4E‘—1+4Em)1

a
which implies that

[ue]|(t) — 0 as t — oo. (4.16)

It remains to describe the behavior corresponding to different limits Eo,. To do this we turn to the
Galerkin projection (2.17). Since a; = (u,sin kz), Theorem 3.2 implies that a; is C! for t > 0 and C? for
t > 0 and that (2.17) holds for all ¢ > 0. Moreover Z: .57 a = |luz]|]* = V1 = 4Ew, and so the system

(2.17) is asymptotic to the infinite set of uncoupled linear ODEs, each one having the form

G + Bk%ag + k2 (——1+\/1—4E Jar=0, k=12,... (4.17)
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and having only the equilibrium {ay,ar} = {0,0} provided that

o a
Eeo # ~5z (1= 352): (4.18)
Now since ||ul|? = 7% af, ||u||? = Y77 @} are uniformly bounded by (4.7), each {a, ax} remains bounded

for all t. A standard result for asymptotically autonomous ODEs implies that, for fixed k, the w-limit set
of the kth equation in (2.17) is invariant for the limiting autonomous equation (4.17), cf. Ball [1978 Section
4]. But provided (4.18) holds the only such invariant set is {ai,ar} = {0,0}. Hence {ax(t),ar(t)} — 0 and

thus
Jimn [ul() = 0. (4.19)

In that case, from (2.3) again we find that:

Ew = %(\/1 “4Bw - 1) = Ee = +% or 0. (4.20)

The first case corresponds to convergence to the trivial solution u¥ and, via (4.14), we have ||u,]] — 0 so

that u — 0 strongly in H}. In the second case, from (4.14) and (4.15)
lim [luf%(0) = 1 and lim [Ju’(1) = 0. (4.21)
This, together with (4.16), establishes the second alternative of the proposition.

To deal with the remaining cases of convergence to a nontrivial equilibrium, suppose (4.18) is violated

and Fo = ._,%(1 - 5‘—;7) for some k > 1. Then, by the previous argument a; — 0 for all j # & and hence

(u - ak(t)\/g sink:c) 0. (4.22)

2 2 .
Thus ||u — ak(t)\/gsin ka:n — 0 and ||u]|? - ”ak(t)\/gsin L:L" — 0 as t — oo. However, from (4.15) we
see that
1-4E, —144FE 1 a
2 _, ) © - (1-=
lull? — X ==(1-5)
and so that
1 a

and we have strong convergence in H{ to one of the equilibria u¥, k > 1 of (2.20). This, with (4.16) and
the case Eo = +1 of (4:20) concludes the proof of the first alternative. o
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Proof of Lemma 4.3: Pick ¢ € Cg° with ||¢]| = Ko and let f(t) = (u,, 6)>. Then, by the Schwarz

inequality and (4.9)
/ f(t)dt g/ K3|ju|* dt < oco. (4.24)
0 0

However,

d . ‘
I 2, ) e 8) = 210, 0) ([l = Dt — 0+ fue], )

= 2(ue, 6)((1 = [Jue|*)(uz, é2) — a(u, é) + Blur, ¢:2))
and so, by (4.7)

|% < 2CKo(|1 = C*|CK, + aCKo + BCK>)

where ||¢2]| = K1, ||¢zz|| = Ko. Thus |f] is bounded and f is uniformly continuous on 0 < t < oo and so

f(t) — 0 ast — oo, in view of (4.24).
L, ) )
Next suppose u; —£ 0 as t — o0, so that there is a sequence t; — co and a ¥ € L” such that, for some ¢
[(ue, ¥)(t;) 2 € >0, Vj.
If we pick ¢ € C§° with |¢ — ¢| < €/2C a.e., then, since (u¢, ¥)(t;) = (ur, #)(t;) + (ur, 3 — ¢)(¢;) we have
A2 oS

which yields a contradiction, for f(t;) — 0 as j — co. This establishes (i); (ii) follows since u is bounded in

H} and thus relatively compact in L2. O

Proof of Lemma 4./ Using the Schwarz inequality twice, we have
” t+7
)

t+-rd Y t+7
= [ el ds = [ 2ue ue(s) ds
t S t
t+7 t471
<2 [ luelllusl()ds <2 [ Clusdits)ds
t t
t+71 R 1/2
< Qcﬁ(/ el ®ds)
1

But the last term approaches zero as t — oo, in view of (4.8). 8]

Proof of Lemma 4.5 As above, we compute

|/ 7 uell*(s) ds - rllu 0] = | /tth{lluru“(s) = Ilurli*(t)} ds|
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= |/t‘+f{/ts Ed;Hur][‘l(,.) d,.}ds‘ _ |/t‘+f{/ts Al |2 () (uz, e )(7) dr}ds
SﬂfHJ{[CﬂW“W”¢}“|S“frfwﬁwnmwdr

R t+7 Y 1/2
<a0% ([ fund )
t

The first statement follows from the observation that f:“ [|uze]|® dr — 0 as t — oo, as in Lemma 4.4. The

proof of the second statement follows in a similar fashion, considering

V,m{/t’ %IIUIIQ(r) dr}ds|

as t — oo and using the fact that (u,u;) — 0, from Lemma 4.3. 0

Remark: The use of Lemmas 4.3-4.5 in establishing (4.14) and (4.16) can be avoided by appeal to the
first conclusion of Proposition 4.11, below. But since the proof of the latter is considerably more difficult,

we include the elementary arguments above.

Proposition 4.2 establishes a dichotomy. It is easy to exhibit solutions which realize the first alternative.
From the Galerkin representation (2.17) of the evolution equation it is clear that each 2N-dimensional
subspace of the form Xy C X = H} x L? with Xy = {{u,v}|{u,v} = Z;?’:l{aj,bj}sinjz} is invariant.
Suppose that we select initial data containing only a finite set of Fourier modes, so that a;(0) = a;(0) =0

for all j > N and A
_No\/?. ,_Nl\/5-. .
u(%(r) = Xl:ak —sin kz, u(z)= ;ak —sin kz, - (4.25)
then the solution {u,u;} will remain in Xy for all £ > 0. Now X'y contains a finite collection of equilibria;
specifically all those uf with indices satisfying Va < k < N (cf. (2.20)), along with the trivial solution
.ug. Examination of the eigenvalues and eigenfunctions of (2.23-27) reveals that, restricted to Xy, the pair
of equilibria ui‘, having “lowest energy” are linearly stable, provided a < N? and they exist. All other
equilibria have unstable manifolds which intersect X in non-empty sets, unless @ > N2, in which case
the unique equilibrium uy = 0 in X is stable in that subspace. (A center manifold calculation, cf. Henry
[1981], Chapter 6, covers the cases a = N2.) We conclude that almost all initial data satisfying (4.25)
will approach uf, if « < N? and ug if @ > N?. Thus the first alternative essentially corresponds to finite
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dimensional behavior, in which the initial data lies in the stable manifold of an equilibrium contained in

some Xy , N < oco.

It is tempting to argue that, since typical initial data contains arbitrarily high Fourier wavenumbers,
almost all solutions will contain “unstable” Fourier components and hence realize the second alternative.

That this is indeed the case is the content of the next result.

THEOREM 4.6 Let X = H} x L®. Then X is the disjoint union of two dense sets Ay, Aa, of first and

second category respectively, such that:
(i) if {uo,u1} € Ay, then {u,u,} — ¢ strongly in X, for some ¢ = {uf,0} or {uy,0};

(ii) if {uo,u1} € Aa, then limy_ oo Eqfu,u,] = 0.

Before proving this theorem, we need a little notation. Let T'(t) : X — X, X = HJ x L?, be the solution
operator given by Theorem 3.2:
{u(®),w(t)} = T(t){uo, w1}

Let ¢ € X denote one of the equilibria of (2.20) and let
W (¢)={veX ‘T(t)l/) — ¢ as t — oo strongly in X}

denote its stable manifold. We will show that 1V*(¢) is a set of first category in .X. Hence the union of

stable manifolds of all equilibria is a set of first category in X, from which, tbgether with Proposition 4.2,

the theorem will follow.

Recall that a set of first category is a countable union of nowhere dense sets. This result therefore
implies that, apart from a meager set of initial data, solutions approach no equilibrium and do indeed
minimize energy, realizing the second alternative of Proposition 4.2. As in the discussion above, we use
the fact that T'(t) has the explicitly known finite dimensional invariant subspaces Xy = {{u,v}|{u,v} =
Z?,:l{aj,bj} sin jz}, so that ¥ € X if and only if T(t)¥ € Xn. The eigenvalue computations of (2.23-27)
show that ¢ = {uf,O} is linearly unstable in Xy for N > k(> \/a) and ¢ = {0,0} is linearly unstable in
Xn for N > y/a. The fact that the union of the stable manifolds forms a set of first category will follow

from:
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LEMMA 4.7 For any ¢ and N sufficiently large, W*(¢) N X'y is of first category in Xn.

Proof: Xx is finite dimensional and so we may invoke the center-stable manifold theorem (Pliss [1964],
Kelley [1967], Carr [1981]) to construct a locally invariant manifold W3 () in An, containing ¢, such that
if ¥ € W*(¢) N X, then for t sufficiently large, T(t)¥ € Ierv’s(d)). But bécause X is finite dimensional
and ¢ is linearly unstable in X, we may choose "V;\v's(¢) to be closed and nowhere dense. Now

Wi @) N AN = | Tm)™' Wi ()
m>0
and since T(im) is a homeomorphism on Ny, T(m)~' W} (¢) is also closed and nowhere dense for each m

and consequently 1*(¢) N Xy is of first category, as claimed. O

Proof of Theorem 4.6 Let Bg be a closed ball containing ¢ in its interior. By may be chosen so small
that ¢ is the only equilibrium point in Bp (since equilibria are isolated), and ||uz|| < 1 for u € By (using

(2.25)). Define

"I”s((ﬁ,BO) — {¢ = BO ‘ T(t)‘(ll e BO for all t > 0}

By continuous dependence, this set is clearly closed, and by Proposition 4.2, it follows that W*(¢, Bg) C
W*(¢), so that 1V*(¢, Bg) defines a local stable manifold for ¢, and
Wi (¢) = | T(m)~'1V*(¢, Bo)
m>1

is the union of closed sets. We claim that for each m, T(m)~!'IV*(¢, By) is nowhere dense. Suppose instead
that this set contains some open ball B. Since |Jy_, X is dense in X, we may choose N as large as desired
so that BN.Xy is an open nonempty set in Xy. But then BNXy is contained in W*(¢)N Xy, contradicting
Lemma 4.7. This establishes the claim and 1V*(¢) is a set of first category because Upr>1 T(m) ™ W*(¢, Bo)
is the countable union of nowhere dense sets. Taking the countable union of stable manifolds of all equilibria
{uki,O} delivers the desired set Ay of the theorem. That A, is dense follows from the density of U¥_, X'n.

The properties of Aa, the complement of A, follow directly. ]

This is a striking result. Arbitrary initial data in .\ can be approximated as closely as we wish by data
in A; or A,, but the asymptotic behavior of the resulting solutions differs utterly in the strong topology. The

numerical simulations of Section 6, which can of course only realize data in A;, nonetheless illustrate this
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fact in their .suggestion of a “crossover time” after which a solution started in A, settles towards a classical
equilibrium, while one started arbitrarily close but in As continues to explore a minimizing sequence. The

asymptotics of this process are derived in Section 5.

4.3 Model 3 also Develops Fine Structure

Equation (2.5) shares many features of the second model, equation (2.4), including, as we have seen, its
countable set of unstable equilibria. While we have not included detailed existence and uniqueness results
for this pseudo-parabolic problem, since our main concern is with “mechanical” systems having an inertial
driving term wy, it is perhaps of interest to consider its asymptotic behavior. For a related “local” problem,

see Novick-Cohen and Pego [1989].

Inverting the operator I — $(8%/9z?), equation (2.5) with boundary conditions (2.4b) can be written as

a’l
22

B = ullfuell” = 1)+ (T = B) " u((luslf = 1) = aB), (4.26)

and considered as an ODE on H{. It may be shown that solutions are smooth in t and exist globally for
t > 0, so that the identity (2.8) makes sense for the energy I3 of (2.7). As (2.29-30) show, the equilibria
are all linearly unstable and the Galerkin projection (2.22) reveals that each N-dimensional subspace Xy =
span{sin jz ;V:l C H§ is invariant under the flow generated by (4.26). Since the dynamics of each individual
mode is now one dimensional, the characterization of U;?zl Xn, which is dense in H{, is somewhat simpler

than for Model 2. Specifically, we have

THEOREM 4.8 Consider equation (2.5) with initial data u(z,0) = up:

a) Suppose up can be ezpressed as a finite Fourier sine series

N

ug = Zaj sinjr, awn #0, (4.27)
j=1

then, if N> < a, u(z,t) — 0 strongly in H} while if N* > o, u(z,t) — u¥ ifay > 0 oray < 0 respectively.
b) For any initial data with infinitely many nonzero Fourier coefficients, u(z,t) — 0 weakly in H} and

minimizes energy as it does so.

Proof: The eigenvalue calculations of (2.29)-(2.30) and the observations regarding the Galerkin projec-
tion (2.22) show that each subspace Xy = span{sin Jr};v:l is invariant and equal to the tangent space of

29



the stable manifolds of u}; and uj, the equilibria of (2.20). Thus Xy contains the entire stable manifolds -
of uf. From (2.22) we see that no coefficient a;(t) can change sign, for if a; = 0 then a; = 0; hence these

manifolds are explicitly given by

N
Uy = Zaj sin jo with 4+ a, > 0}. (4.28)
j=1

I/Vs(uf\:,) = {uo

Otherwise, from (2.29),ifa < 1 W(0) =@ and, if 0 < N? < a < (N +1)%, w=0is the only equilibrium in

Xw, so W?*(0) = Xn. This proves part (a).

For part (b) we proceed as in the proof of Proposition 4.2, observing that, from the energy E3 (2.7) and

the identity (2.8):

E5(t) = Eo as t — o0 (4.29)

and
el + [ Gl + Bl )9 ds < € (4.30)
0

for some C' determined by the initial data. From (2.8) one concludes that 5~ {||u]|> + Blluz||*}(s) < oo;
the fact that, since we have an evolution equation in H{, ||w]|> and ||uz||*> have bounded time derivatives,

therefore implies that

eI + luze (D)l — 0 as ¢ — oo. (4.31)

However, we compute

d 1 2
(I + 2l = () + B 020

= (u, [(HUIH? - 1)urr —au + ﬁzt”,D — B(u,urse)
(4.32)
—(lluzll® = Dllue|? — afjulf?

1 1
== —2E3(t) - =||u|®
5 3(t) = S lluzll*,

and this quantity must approach zero as t — 400 in view of (4.31). Thus 0 < E, < % and

luz)])> = /1 - 4Es and —||ut)||2 -(\/ —4E, — 1+4E) (4.33)

as t — oo, the latter from examination of Fj3, equation (2.7).
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From the Galerkin projection (2.22) and the hypothesis that there are infinitely many nonzero qj

satislying
(- - VTR
lim - = =
t—oo aj(t) I

(4.34)

. . . ‘ 2 . .
and since a; remains bounded for each j (|Jul|* = 3 aj), we must have VT —4Eo, > 1 - 7 for infinitely

many j. Hence Eo, = 0 and [[u]|> — 0, |[uz]|* — 1 as ¢ — +oc. This concludes the proof of part (b). 0

Remarks: Lquation (2.5) written as

9] o _
([ — ﬂm) ug = (Jlug]]” = Duer — au : (4.35)

is a gradient dynamical system for the energy

1

9 2 « 2 ‘
Eal] = 5 (leell” = 1) + Sl (4.36)
in X' = II} equipped with the inner product
(u,v) = (u,v) + Bug, vy). (4.37)

”»

Novick-Cohen and Pego [1990] have considered a rclated “local” gradient system of the form

uy = A(f(u) + vuy) (4.38)

with nonmonotonic f and shown that global minimization typically fails to occur in this case.
4.4 Jumps do not Move

Theorem 3.3 shows that equilibrium solutions of Model 1 having discontinuous strain can be exponen-
tially (dynamically) stable in an appropriate norm, while Theorem 4.1 shows that the final equilibrium state
of a typical process governed by this model never minimizes energy globally. There are several open ques-
tions (cf. the Remarks of Section 4.1). Theorem 4.10 below gives a little more information. In particular, it
implies that jumps in the initial data for u, cannot disappear or move in finite time,vnor can new jumps be

created in finite time.

Since we only have u; € L*® from Theorems 3.1-2 and we want to use the ODE for ¢ much as in the
global existence proofs, we need to define a notion of pointwise continuity for an L function. We do this

in terms of bounded representatives of such functions.
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Deﬁnilibn 4.9 Tor any f € L™ we will call f7 a bounded representative of f if f is a pointwise-defined
and bounded measurable function belonging to the equivalence class f. Let f € L®([0, 7], R). We will
call f essentially continuous at the point xg € [0, @] if there exists a bounded representative f* € f that is
continuous at xg and we will call it essenlially discontinuous at xo € [0, 7] if it is not essentially continuous

there.

Much as in Pego [1987], we can use the ODE interpretation of the ¢ component of the solution to show

that essential discontinuitics present in ¢(o) (i.e. uz) for any tg > 0 cannot be created or destroyed in finite

ositive time and so are unable to migrate into a region of essential continuity in wz. This is an interesting
p ) 5

characteristic of an ODE coupled to a parabolic PDE (cf. Iloff and Smoller [1985]).

THEOREDM 4.10 Persistence of Strain Disconlinuities: Lel {u,u} be a strong solution lo (2.2) or (2.4) with
initial data {vo,uy} € IVh* x L2, Then, if for any lg > 0, 20 is « point of essential continuily of ur(to), it
will remain so for allt > to. Likewise, if xg is a point of essential discontinuily of uz(to), it will remain so

for allt > tq.

Proof: Theorems 3.1(a) and 3.2(b) guarantee the existence of a unique solution

{w,u} € C([0,00), Wy x L) N C*((0, 00), Wy x C)
or
{p,a} € C*((0,00), H;) x C*((0,00), L)

for equations (2.2) and (2.4) respectively. As in the proofs of 3.1(a) and 3.2(b) we write the evolution of the
g component as an ODE in the forms

g =~ ((p+9)/B8)+es (3.14)
and

g = (1= |luzl*)g/B + e (3.19)

with e; and ez as before. We know that e;,es and p € Cl((O,oo),C) and that ¢ € Cl((O,oo),L°°). Since
Bur = p+gqand p € H] for t > 0, it follows that a point of essential continuity" (resp. discontinuity) of
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uz (t > 0) corresponds to a point of essential continuity (resp. discontinuity) of g. For any t¢ > 0, let
g4 € q(to) be a bounded representative of ¢(to). As before, let ¢*(z,t) denote the unique solution at each
z of the respective ODE satisfying ¢*(z,%0) = ¢*(fo). As was shown in the global existence proofs, ¢*(z,1)
is bounded for all ¢ > ¢t and by uniqueness of ¢ in L* we must have that ¢*(-,¢) € ¢(t) for all t > ¢o. To
prove the theorem, we therefore only need to show that, if x4 is a point of continuity (or discontinuity) of
q¢, then it must remain so for all t > ¢,. Now assume that g§ is continuous at xo,~i.e. for any sequence
z, — zo, ¢3(zn) — ¢§(z) as n — oco. Viewing z as a parameter on which solutions of the ODE depend, it
follows from continuous dependence of the solution on initial data and parameters that ¢*(z,,t) — ¢*(z,t)

as n — oo for any t > to. Therefore ¢*(z,t) cannot develop a discontinuity at (zo,t) for ¢t > ;.

On the other hand, if ¢ is discontinuous at zo and we assume that for some t; > to, ¢*(z,t1) is
continuous at zg, then running the ODE backwards leads to a violation of continuous dependence on z of

the data at ¢, ylelding a contradiction and completing the proof. O

4.5 Decay of strain rates for Model 2

In Section 5 it will be useful to have more information regarding the asymptotic behavior of the strain

rate and its time derivative for weak solutions of Model 2:
PROPOSITION 4.11 Suppose {u,u;} is a weak solution of (2.4) as given by Theorem 3.2a. Then as
t — oo we have

llugell = 0 and  [Juzu|| — 0.

Proof. From the transformation (3.4) used in the proof of Theorem 3.2a, Bu,; = p, + ¢:, so it suffices
to show that |||, [|z:t]| — 0 as t — oo, where z = (p,q). Recall (3.92): z; + Az = f2(z) where f, is smooth
on X = L2 x L2. Since the solution z is globally bounded in X/ for t > 0, f,(2) is globally bounded and

we may apply Lemma 4.3 of Pego [1987] to obtain, for t > 0, o = 3,

llze(t + 1)]| < c(uz(t)lla + Ozlils)lu Fa(z(t + 5)) H) <C. (4.39)

Now, Corollary 3.4.6 of Henry [1981] implies that z is smooth in ¢ for ¢ > 0, with z € C*® ((0,00),X) and
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that Z = z; satisfies, for t > 0,
Zy+ AZ = g(2)Z, (4.40)
where, with fw =p+¢={1,1} -z and W = {1,1} - Z,
9(2)Z = [(Hw”2 —-1)W — aBW + 2w/0,r w(a:)W(a:)d.t] {1,-1}.

Since ||z||, ||2:|| € C for t > 1, we obtain the estimate, for 1 <t <'s,

loGz) 2@ - s(:()2(5)|| < (Bl =51+ 20 - 23],
where K(t) = sup,»¢||2:(s)||. We may therefore apply Lemma A.3 of Pego [1987] to equation (4.40), with

a = 0, to conclude that for t > 1,
12t + D)l < CUZO + KO+ sup [126+9)]) S CK). (441)

This bound implies that ¢ + |[uz||®> is Lipschitz for 2 < t < oo and hence that |luz|| — 0, since

J5° lluze(t)]|2 dt < co. This yields the first claim of the proposition.

Now, we have B||uz¢|| = ||pt + g¢:|| — 0. Proposition 4.2 implies that ||f2(z)|]| — 0 as t — oo (cf. 3.72),
which yields ||g:|| — 0 using (3.62). Hence as t — oo, we have ||Z;|| — 0, so K(t) — 0 and (4.41) implies

that ||z]| — 0. But Buze = {1,1} - Z¢, so the proposition is proved. o

5. ASYMPTOTICS OF MODEL 2: ENERGY TRANSPORT TO HIGH WAVENUMBERS

Theorem 4.6 establishes that almost all solutions of equation (2.4) do minimize energy. We now wish
to investigate in more detail how this occurs. As the second alternative of Proposition 4.2 is realized, and
[lul]] = 0, ||uz]] — 1, what do solutions look like? How does the fine structure, which evidently must result,
develop from and depend on the initial data? At what rate does the process of refinement proceed? In this
and the next section we attempt answers to such questions. Our main result is most conveniently stated in

terms of the Galerkin projection written for the Fourier components by = ka; of the strain,

= 2
Uy = kZ::Ibk\/;coskz, (5.1)

specifically:



5.1 Modal Dynamics of Model 2

" THEOREM 5.1 Assume that the second alternative of Proposition 4.2 holds and pick anyv > 0 and K < oo.

Then there ezists T = T(v, K, a, B) < 0o such that, for allt > T and k < K the solutions of (5.2) satisfy
oo
|{bk,ck}(t)| < v and Il—Zbﬂgu?. (5.3)
1

Moreover, for all k # 1 with k,1 > K and t > T, the modal ratio pg; = by /b; salisfies

5 (-2 ) mate-)

pri(t) = e pi(T) (5.4)

where px1(s) = s(1+ O(1/K?) + O(1*/k*K?)).

This result shows that any specific Fourier mode §; eventually dies and it describes how energy escapes
to k = co. In fact, for k > | > K, equation (5.4) shows that high modes grow exponentially at the expense
of low modes and, since each b remains bounded, this implies that every mode eventually decays at an

exponential rate. We will use this to determine the asymptotic fates of various sorts of initial data.

The proof of Theorem 5.1 is rather long, so to illustrate the main idea we first give a formal derivation
of the linear ODE from which (5.4) is derived. Since |[u|> = T5°(b3/k?) and ||u,||> = 5°(c}/k?) — 0
(equations (4.19), (4.16)) we conclude that, after sufficient time has elapsed Ibk(t)l and Ick(t)l are small for
low k and the behavior of (5.2) is dominated by the high mode equations, ¥ > K. In this situation, each
pair of equations forms a singularly perturbed system and since [Juz||* = "7 ¢2 — 0 by Proposition 4.11,

we conclude that, as t — oo,

Ccr = %(1 — % - Zb?)bk + 1:1—20(1), (55)

i.e. solutions rapidly approach and thereafter lie within a boundary layer near a slow manifold. Replacing c;

in the first component of (5.2) by (5.5) and ignoring the error term, we formally obtain the reduced equations

; 1 [64 2 . » - -
bkzﬁ(l—F—E:bj)bk, k=K K+1,... (5.6)
Now let pr; = b1 /b; and compute

= buby — biby _ (1_ f‘-’_zl’;)bkbl - (1_ %_Zb?>blbk _

a
b7 Bb; B
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which yields (5.4), with ug (s) = s.

Before justifying this calculation, we observe that (5.6) can also be formally derived by ignoring uy; in

(2.4) or, alternatively, by considering the asymptotic equation

q = —Fa2((p+49)/8)

from (3.6;) and using the fact that ||p]| — 0. Note that, in the limit, ¢ = fu; = ,Gz:bk\/gcos kz.
We also observe that, integrating (5.6) yields b (t) = bk(O)e“"/ﬁkj/D(t), where
. ! 2
D(t)? = exp (2/0 G-I+ ij(s))ds)
= Do bj(0)%e A S b (1)°,
If we suppose that [juz||> = Y b;(t)2 — 1 as t — oo (cf. Proposition 4.2), then

bk(o)e—at/ﬁk’

bi(t) ~ (3 b;(0)2e-2a1/67%)3

(5.8)

A heuristic description of the evolution suggested by (5.8) is that components of the solution with wavenum-
bers k < O(V/t) are rapidly suppressed, while components with k > /f are synchronously amplified so as
to normalize the solution so that ||uz|| = 1. This suggests that the dynamics is sensitive to the initial data,
in a manner reminiscent of the chaotic dynamics in the standard shift map on the space of semi-infinite

sequences. This strong influence of initial data will be investigated further in section 5.2.
The main tool in the proof of Theorem 5.1 is

PROPOSITION 5.2 Let 0 < €, 6; € 1, 62 > 6, and v2 > 91 > 0 be real parameters and consider the

singularly perturbed linear problem
u="v

| (5.9)
V= -;(a(t)u — b(t)v),

where Ia(t)l < 6, |(1(t)| < b2, y1 < b(t) € ¥2 and ‘i)(i)l < 72 for all't. Then (5.9) possesses a global,

normally hyperbolic slow manifold v = h(t,c)u with h satisfying

s(h+ h*) = a(t) = b(t)h (5.10a)
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and
h(t,€) = a(t)/b(t) + O(eb2/7}) + O(eb172/73) (5.10b)
fort > T = O(eln(1/eés)). Moreover, if w(t) solves the reduced system
W= h(te)w (5.11)

and {u(t),v(t)} solves (5.9), then there ezist constants C,c > 0 such that

H{u(t),v(®)} - {w(t), h(t,)w(t)}| < Ce=He. (5.12)

Proof: The proposition is essentially a special case of the global center manifold theorem of Fenichel
[1979, Theorem 9.1], f. Carr [1981, Section 2.7], but since we need sharper estimates on h(t,e) we sketch

the proof. Let t = €7, so that dir() def () = €(’) and (5.9) becomes, after adding a trivial component:

v =¢ev, v =a(t)u—b(t),
} (5.13)

For € = 0 the linearization of (5.13) has the matrix

0 0 0 0
a(t) —b(t) a(t)u— bty 0
0 0 0 0
0 0 0 0

and the (global) manifold v = a(t)u/b(t) is filled with equilibria, each of which has an eigenvector (0, 1,0, 0)T
with eigenvalue —b(t) > —v;. The usual center manifold theorem ensures existence of a local manifold
v = g(u,t,€) tangent tou =t = ¢ = 0 at (0,0,0,0) and Fenichel’s results show that the manifold is, in fact,

globally defined in u and t.
For our system, linear in u,v, we may take g(u,t,£) = h(t,e)u. To see this and derive (5.10a,b), we
differentiate v = hu with respect to 7 and substitute from (5.13):

h N
v = B_ht,u + a_e’u + hu' = ehu + hev

ot O¢ (5.14a)
=¢e(h + h*)u.

The second component of (5.13) gives

v =au—bv=(a-bh)u (5.14b)
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and equating (5.14a,b) gives (5.10a). To obtain (5.10b) we integrate (5.10a):

iz+—b(ei)h:@—h2

to yield

t
h(t) = e~ BO/ep(0) 4 ¢~ B/ / B0 (%s) — 13(s)) ds, (5.15)
0

where
t
nt <BO) = [ Hrydr <yt
. 0

Now the integrand of (5.15) may be written as

5s) (Bsyye (a(s) - eh%s))

€ b(s)

and integration by parts employed to yield

2 2 t

_ —B(t)/e _a(0) —eh®(0)1 | a(t) —eh*(t) _ —B(t)/z/ B(s)/e p d 1
h(t) = e [h(@) 50) ] + 5 e X (e, s) ds, (5.16)

where

_ ((a—2chh) b(a —eh?)

F(E,S) - ( b - b2 )(S)

To estimate terms in (5.16) we first observe that, since

a—bh
€

h=

— B2, (5.17)

with |a| < 6, b > 71, the interval (—K161/71, K161/71) is positively invariant for (5.17) provided that

K1 > 14 O(eé1/v3). Thus, if |h(0)| < K161/71, |h(t)] < K161/71, for all t > 0. Furthermore, from (5.17)

: K6, K262
leh| = |a — bh — €h?| < 6 + 72—t + e =i L
n T

and so, using |a| < &, |a| < 64, |b], |b| < 72 and b > v, F(e,s) can be estimated by

K8, K6, K282 _K2s?
6o+ 2 " (51 + 72 o +€‘—1TL_“ ) 4 7'.3(51 +c—LrL7‘ ) < 62K 5 N 51721{3

I‘F EVS l S 2
(€. ) 2! 7 g2 7i

for some Ky = 1+ O(61/71). We therefore have, for the third term in (5.16):

t
l/ e~ (BO-B&) /e pe o) ds
0

62Ko  b7a K b (Yer)fedr
S( a \_+ 17__’A3)/ . f.b( Vedr 4o
7T Y1 0
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< (22 Gela) [ om-nre go < £ (5,0 + 6”°K3 1—emtley, (5.18)
= - a2
h! 71 0 71 :

Now (5.18) and the fact that |eh?(¢)/b(t)| < eK%63/+3 imply that, if we pick t ~ €1In(1/£62) large enough so

that the first term in (5.16) is O(d;) we have the estimate

h(t) = ; 1 0(e8a/7?) + O(eb172/ 1Y), (5.10b)

a(t
b(t
as claimed.

Finally, exponential attraction of solutions towards v = g(¢,£)u follows from the fact that when ¢ = 0

the manifold v = %{%u attracts solutions at the rate 7; in the “fast” time 7, cf. Fenichel [1979]. 0

Proof of Theorem 5.1 Since ||u||* = 37" af = 3°7° 364; — 0 and |ju* = X7a? = 7 ;i— — 0 and

lluz|l> = 37763 — 1 as t — oo we may pick T (v, K) large enough so that ||u||?, ||u/||> < v2/2K? for t > T,

in which case

o o L) = b:) c3 k?l/2
GO =8 + ek < B3 (F+ ) < o <07
1
for k < K. Possibly by taking T larger, we can also guarantee that |1 — 3"1° b7| < v®. This proves the first

claim (5.3) and enables us to focus on the modal equations (5.2) for k > K.

.We shall derive an exact second order equation for the modal ratio pi;. Computing

. biby — biby
el =~
i

and using

by = %[(1 - Lﬁ -Zb;-?)bk —Bk/k'"']

from (5.2), we obtain

pri = %(Il:' - -leg)Pu + ﬂib,?(%f—l - %) (5.19)
Differentiating bx = b;pr; we may express
bibi = bibipit + 2bibiprr + b7 pri
= biby + 201biprt + b7 B
and rewrite the final term of (5.19) so that (5.19) becomes
ﬂ—i_gﬁkz +(1+ ﬁi_lglza,)"’“ - %(Li - 5)(a+ I;—:)pu = 0. (5.20)



We will use Proposition 5.2 first to bound I%{-I and I%fl and then again to determine the asymptotics of
(5.20). Consider the equations

b,:c,

é,:ﬂ[(l—%—Zb})b,—ﬂq], I=K+1,K+2,...

and take T'(a, K) large enough so that |(1 — ||u:||*)| = |1 - £ b}| < % and I%(E bf)l = |2(uz, uz)| <

(5.21)

2||uz|| ||uze]] < 7, for some large K. The latter is possible since ||uz:|| — 0 as t — co, by Proposition 4.11.
Then (5.21) satisfies the hypotheses of Proposition 5.2 for each I > K, with ¢ = 1/12, §; = 3 = 2a/K? and

71 = 72 = B and, after sufficient time (O(1/!%)) has elapsed, we have, from (5.10b) and (5.11)

b[ aC1
3 = 0.0 < 22+ 0teta/n?) < 55+ O(5s) < g3 (5.22)
for some C. Also, differentiating 61 = hb;, we have
by = hby + hby = (h + h?)by,
or
b iR _a(t) - b(t)h b(t)h (5.23)
b
so that, from (5.10a,b)
bi| _ O(ebava/v?)  oCy
—| < =
b | - € BK?’ (5.24)
for some Cy > 0.
We can now write (5.20) as
per + k2 [b(t)pr — a(t)prt] =0, k,I> K, (5.25a)
where
‘ aCl 2 b, C
and
(1 1 by (1 1 1
= (=) (a+ ) =a(f- L) (Ho( ) (5250
so that

a(t)| < aCs|

(5.25d)
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. . i d (b
for some C; > 0. To obtain bounds on the time derivatives we first observe that Ib(t)l = %|3 (#)I and

S .
I%(%)Iz z_i I' ;1?2 (2;(;:'12)2 < 2K

from (5.22) and (5.24). Thus, for (5.25a)

: aC4
lb(t)| < PREKT (5.25€)

for some C4. Finally, from (5.25¢) |a| = |(71, - Flf) i(-:*)l and, from the equation of motion (5.21)

| I |—12[1__ ibf) ]|<1 Zbc,+ﬁdt()

so that, using the a priori bound on |}_ b; b | = l(u,, u,t)l and that on 5 (;L) derived above, we have

‘ -—=l= 5.25f
el < (1~ ) (77 + 553) < aCs(1- 2)/]( : (5.251)
for some Cs. Thus (5.25a) satisfies the hypotheses of Proposition 5.2 with ¢ = 1/k2, 6, = aC;;ITl; - -k%l, by =

aC5|1 - ;-,| 1 = B — aCy/Bk2K? and 72 = B + a(Cy + Ca)/BEK?2.

We conclude from Proposition 5.2 that the solution py(t) of (5.25a) is close in the sense of (5.12) to

that of the reduced equation

prr = h(t,k,Dpri, (5.26)
where ) ( )
al & - & (1+O 1 )
onn -2 ;o(ﬁ,)w +0( gl - wl) +o (Bl - 2.
or
h(t,k,l):%(%—%)( +0(L21;,2)+0(%)). (5.27)

Integration of (5.26-7) yields the final statement (5.4) of the Theorem. Note that throughout the proof of
Theorem 5.1, the constants C; depend only on o and 8 but that the time T" which must elapse before the

various a priori estimates hold also depends on K and v. o
5.2 Influence of Initial Data on Modal Dynamics.

In view of Theorem 5.1, for any v > 0 and K < oo we may pick T(«a, 8, v, K) large enough so that

(5.28)



Thus, from the definition of pi;(t), we have

(1) D phi(t) = D bi(t) = 1+ O(V*K)

K+1 K+1
and so, from (5.4) .
2 (;‘;-;‘7) brea(t=T)

B(t) = (1+007K)) | 3 plu(Te
K+1

(5.29)

for t > T. Writing s =t — T and recalling that pg(s) = s(l + O(A—I;) + O(p’%-;)), we may split terms

in the sum of (5.29) to obtain

(1+ O K) BT ™ (1+0(3:)

s g2y 3 (170 ) o i) )+ ()
K+1%k

b(s+T)=

(14 O K)) B (T)e (1+0())

et GO CE)
+

or
B(T)e %

+T) = 5 g KT

(5.30)

where, if T is taken large enough so that v and 1/K? are small, we have D as close as we wish to
o —3as
Deo = Y bi(T)e 7™
K+1
for all I for which O(I2/k*K?) < CI1?/K* is small. This permits us to explore the behavior of the “modal
energy” b7(t) over a (finite) range of wavenumbers starting at K and ending at, say, K?/C. In fact, since
D, decays monotonically with s (or t), the wavenumber spectrum b7(t) is maximized for fixed t > T at

Imax(t) satisfying

d /. —zas/m’) _
a(b, (T)e =0
or
_ __BBH(T)
s=t-T= 2abi(T) (5.31)

We give two examples. Suppose first that the initial data is analytic, and more specifically that at time
T the coefficients b; satisfy
bi(T) = Ae™ (5.32)
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for some A, ¢ > 0. Substitution of (5.32) into (5.31) yields

Imax(s + T) = (%’ci)l/a. (5.33)

. 3
Thus, as t — oo the peak of the energy in wavenumber space moves out to k = 0o at the rate ("CT)II and,
since 3 1° b? — 1, the area under the modal energy curve b7 vs. k converges to 1: see Figure 3. We next ask

how this “bump” behaves in wavenumber space as ¢ — oc; does it concentrate or spread out? To answer .

this we compute the half power bandwidth B(t) =l — I; where I}, satisfy

-2as 1 =2as
2 7 = (=b? e
B (T)e s = (Qb, (T)es )|1=1m.,(:)' (5.34)
b
l
Figure 3 Evolution of modal energies.
Substituting (5.32)-(5.33) into (5.34), we have
R Ry
or, after some rearrangement
1 as\ /3 as
13 _{ = 1/3 =23 (2 2 — =0.
(201n2+(2 +2 )(ﬂc) £ 5. =0 (5.35)

To estimate the two relevant roots l,, l; of (5.35) we let { = l,ax + m and expand about the peak and neglect

terms of O(m?3). Solution of the resulting quadratic equation in m yields

1/2
2(2In2(3s) 2
B(S + t) - Ia — Ib X mg—my = (35%)1/33_ %>ln 2) ~ 2(1[’3162>1/ (YQﬁCYCS)l/G)
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for large s = t — T. Thus, while the peak Inax(t) moves to infinity at the rate

2a(t — T))ll3 N (£)1/3’

Imex(t) = ( Bc c

the bandwidth spreads like

In2 /2 /8
B@) ~ 2( 3o lmasl) | ~ 75

For the second example, suppose that
u(T)=Al"",

so that u is C™~1. In this case (5.31) yields

lmax(s + T) = (%s-)”2

and, from (5.34) and (5.37-8), the half power points are given by

g 1BV
1=%Te a0 _2(205) e ",

Letting
By
—=1(3) " =1+1,
(5.39) becomes
In
1+L)?= T2+1—2ln(l+L)

and expanding in a Taylor series and including terms up to O(L?) we obtain

In 2

This leads to

B(s +T) = Lo — Iy = bma(La — L) ~ (222) V(22

—) (&
We conclude that the peak moves out at the rate
2a(t — T)\ /2 ty1/2
o) = (22) "~ (1)

,Br. r

and spreads out like

21ln2\1/2 13
B(t)z( - ) Imax(t) ~ =
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(5.38)
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(5.42a)
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Now Theorem 5.1 gives asymptotic results for t > T sufficiently large and the modal ratio estimate
(5.4) contains the awkward term pj ;(t), which we can only control for [ contained in some band (KX, K2/C).
Specific results such as (5.36a,b) and (5.42a,b) must therefore be interpreted with caré. However, noting
that 1/k? decreases quickly, we might expect that we need only wait for the first few modes to decay before
the asymptotic results become quite accurate. During this period the higher modes, which start very close to
zero, will not have time to adjust much, for the unstable eigenvalues of the trivial solution in those directions
are uniformly bounded (cf. 2.23). We can therefore hope that the modal energy evolution results of this
section will provide a reasonable indication of how specific initial data develops; i.e. we can effectively take

T = 0. In the next section we describe numerical results which show that this hope appears to be justified.

6. NUMERICAL RESULTS

We now describe some numerical experiments that seem to validate the estimates obtained for the
nonlocal problem. These indicate good agreement with (5.36) and (5.42) which describe the manner in

which the modal energy organizes and subsequently crawls out to the higher Fourier modes.

As our numerical model we investigate the 2/NV-dimensional truncated system

bkzck

& :kz[((l_:_z) _Ebf)bk —ﬂck], k=1,...,N, (N*>a) ©D

obtained from the Galerkin projection (5.2) by ignoring the behavior of modes higher than N. This corre-
sponds to restricting solutions of the nonlocal problem (2.5) to lie in the invariant 2N -dimensional subspace
X~ = {{u,w} € H} x L? | (u,sinkz) = (u,sinkz) =0 Vk > N}. As was shown in Section 4, the only
stable solutions in this subspace are the two high mode equilibria {u,u,} = {u,iv, 0}. Solutions with initial
data in Xy and with the Nth mode {by,cn} initially present eventually end up with all the energy in this
mode, in fact u(z,t) — £/ 2(1 — #%) sin Nz and ||y, || = 1 —a/N? > 1 as t — oo, so that by choosing
N large enough, we can come arbitrarily close to minimizing the energy E». Nevertheless, the asymptotic
shape of the solution changes remarkably when components of the initial data with wavenumbers greater
than N are absent. To illustrate the effect of this truncation, let u(t) be a solution of the nonlocal problem
with u(0) contained in the set A, of Theorem 4.6 and let un(t) € Xy be the solution corresponding to the
initial data un(0) € Xy C A; obtained by removal of all modes higher than the Nth. We assume u(0) (and
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therefore also ux(0)) to be close to the slow manifold. In the numerical experiments we chose ||uz(0)|] ~ 1

and 4;(0) ~ 0 to ensure this.

The numerical simulations can be characterized as follows. After an initial time that is short compared
to the rate of change in ||u.||, the kth mode of both solutions lies within a layer of thickness ~ 5 of the slow
manifold. The power spectrum k — b2 is concentrated in the low wavenumber range, with almost no energy
yet present in the higher modes. Evolution on the slow manifold now causes the modal energy to crawl out
to the higher wave numbers, broadening its bandwidth as it goes. Both u and un can in this process sustain
coherent spatial structures that are slowly refining with time. For uy this continues for a time interval
dependent on the inital degree of smoothness and the size 2N of the finite dimensional approximation.
When the active band in the power spectrum of un reaches the high mode ceiling, the delicate modal
balance responsible for the coherent spatial structures is destroyed, and as all the energy accumulates in
the highest mode, more and more of the finite (sin Nz) oscillations characteristic of the stable equilibria
uﬁ develop in the solution. In contrast, after this “cross—over” time, the corresponding infinite dimensional
solution u continues to evolve as the modal bump crawls out to still higher wavenumbers, allowing arbitrarily

fine structures to develop.

T + k

Figure 4 Development of the spectrum b(t).

It is the close correspondence between u and un before the cross-over time that motivates studying (6.1)
to gain insight into the asymptotic behavior of solutions starting in As. The system (6.1) of 2N ODEs is
quite stiff and was numerically integrated using the backwards differentiation algorithm DDEBDF from the

SLATEC library using IBM Fortran double precision. When integrating more than 100 modes for times in
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excess of 10,000 time units we found it profitable to use the vector facilities of the IBM3090 supercomputer
of the Cornell National Supercomputer Facility. The spatial solution was reconstructed by performing a Fast
Fourier Transform on the modal data. In Figure 4 we show the evolution of the modal energy of (6.1) using
40 modes with the parameter values a = 1, B =1, b(0) = Ce™* and ¢;(0) = 0. Note how after a short
transition time the energy b? is concentrated in the lower modes, but that the lowest modes have decayed
essentially to zero. Following this, energy slowly moves out to the higher wavenumbers, spreading as it does

so, and finally all the energy accumulates in the 40th mode.

The next example displays in Figure 5 the formation of fine structure as well as sensitive dependence on
initial conditions characteristic of the truly infinite dimensional problem. Using 100 modes, with a = % and
B =1, the initial data b;(0) = (A/k?)sin %" was chosen to display how C! initial data can sharpen up and
display a localized structure (here at z = %) that refines until the active band in the power spectrum starts
accumulating in the highest mode. Already at ¢t = 5000 one can observe the fine oscillations (characteristic of
the high mode equilibria) superimposed on the infinite dimensional solution. As in the previous example, the
low modes quickly decay and the b;’s evolve within an envelope which sweeps out to the higher wavenumbers.
For non-smooth initial data the active band in modal space quickly reaches the highest modes, requiring
high dimensional (and extremely stiff) systems to resolve the large—timé behavior of the infinite dimensional
problem. Figure 5a also clearly shows the sensitive dependence on initial conditions that is characteristic of
the truly infinite dimensional nonlocal problem. Initially, the higher modes are almost unnoticeably small,

yet after sufficient time has elapsed these modes become active and, since we started close to the slow

manifold, even preserve their sign at ¢ = 0 (cf. Section 4.3).

In Figure 6 we see the finite dimensional version of the “persistence of strain discontinuities” property
of the nonlocal problem. Here N = 200, a = 1, 8 =1 and we take b;(0) = ASi%k, ¢x(0) = 0, approximating

a plecewise constant “strain” u; at t = 0 with a jump in u; at z = 1.
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Figure 7. Asymptotic escape of energy for analytic initial data.

(@) lmax vs. t; (b) B vs. t.

In Section 5.2 we described by means of two examples how the smoothness of the initial data influences
the manner in which the modal energy moves out to the higher wave numbers. We now test the estimates
(5.36) and (5.42) concerning the peak lnax and the half power bandwidth B of the power spectrum corre-
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Figure 8. Asymptotic escape of energy for C"~! initial data. (a)

Imax vs. t, (b) B vs. t.

sponding to analytic and C" initial data. The values lnax and B are computed by assuming b7 to depend
smoothly on the parameter k € [0, N]. For initial data of the form cx(0) = 0 and bx(0) ~ =% or k=", we
found it useful to approximate the function k + b3 (t) by C;exp[Cak + C3/k>]kC+, where the C; are deter-
mined by a least-squares fit over the “active” modes. This approximation, inspired by crude asymptotics
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based on the balance
au x~ ﬂu:::t (62)

of linear terms in (2.4), proved to be quite accurate. For the choice a = 1, B =1 and times as large as

50,000 s, C3 remained within .01% of the theoretical value "f,‘", while Cy and C4 remained within .01%

of their initial values, providing the finite dimensional version of the preservation of the initial degree of

smoothness.
Initial Conditions Asymptotic Estimates Numerical Results
c=1 Inlnax = 0+ 0.333331Int¢ Inlmax = 0.00122 4+ 0.33333Int
A =2.5276
InB =0+0.16667Int In B = —0.02152 + 0.16517Int
c=0.3 Inlpnax = 0.40132 + 0.33333 In't Inlpmax = 0.40124 4+ 0.333371nt
A =0.90671 '
In B = 0.80265 + 0.16667 Int In B = 0.80158 + 0.163401n ¢
¢=0.1 Inlpayx = 0.76753 + 0.33333Int Inlpnax = 0.76729 + 0.33337In ¢
A =0.47053
In B = 1.53531 + 0.16667Int In B =1.57386 + 0.15997In'¢
Table 1

Using a 100 mode approximation, o = %, B = 1 and modelling analytic initial data by b/(0) = Ae™,
c(0) = 0 with ¢ = 1, 0.3, and 0.1, we found remarkable agreement with (5.36). Choosing A such that
Zb?(O) ~ 1 ensures that we start close to the slow manifold and hence can take T =~ 0 in (5.36) to give
Imax(t) ~ (%)1/3 and B(t) ~ t%/c%. The numerical results are summarized in Table 1 and Figure 7. Note
that natural logarithms have been used. Similarly, using a 200 mode approximation, a = %, B =1 and
modelling C™~1 init.ial data by b(0) = Al™", ¢;(0) = 0 with r = 1,2, and 3, we found remarkable agreement
with (5.42) which predicts in this case that Ia.x(2) ~ (%)1/2 and B(t) ~ t2/r. When r is fixed, a sharper
estimate for B = I, — [, may be obtained by setting § = ";—75- in (5.39) and numerically solving the resulting

nonlinear relation

oenr= (1) 0 e

to obtain I, and l;. We compare our numerical results against these slightly sharper estimates for r =
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1, 2, and 3. A is once again chosen so as to start close to the slow manifold and be able to take T ~ 0 in

(5.39) and (5.42). The numerical results are summarized in Table 2 and Figure 8.

Initial Conditions Asymptotic Estimates “Numerical Results

r=1 Inlpax = 0+ 0.500001nt Inlpax = 0.00100 + 0.49988 In t
A =0.78029 :

In B = 0.38204 + 0.500001n ¢ In B = 0.38318 + 0.49987 In ¢
r=2 In lpnax = —0.34657 + 0.50000In ¢ Inlnax = —0.33983 + 0.499221nt
A =0.96122

In B = —0.42218 + 0.50000Int In B = —0.41533 + 0.49921 In ¢t
r=3 Inlpax = —0.54931 + 0.50000Int Inlpax = —0.53668 + 0.49855In ¢
A =10.99144

In B = —0.86391 + 0.500001Int InB = -0.85108 + 0.49853 In ¢

Table 2

7. CONCLUSIONS AND PHYSICAL IMPLICATIONS

As explained in the introduction, the models discussed in this paper were designed to provide insight
into the dynamics of the formation of microstructure in crystals. Specifically, the local model (2.2) is related
to a theory of martensitic transformations in single crystals described by Ball and James [1987, 1990]. This
theory is based on a free energy ¥(F,0) defined on the domain {(F,6) € M®*® x R : det F > 0}. Here
M3%3 is the set of 3 x 3 matrices and 8 is the temperature which, for the purpose of this discussion, we fix
at a value below the transformation temperature. We write ¢(F) = 9(F,0). Deformations of the crystal
are described by mappings y: Q@ — R?, Q C IR3, lying in the Sobolev space W11 (; ]Ra). The mappings y
are required to be invertible, but we ignore this here; see Ball and James [1990] for details. The conditions
of frame-indifference and symmetry imply that ¢ is not rank—one convex and in fact there are matrices

F+, F~ € M3*3 with the properties

Ft—F =a@mn; .
(7.1)
¢(F*) = ¢(F~) < $(F), VF €dom ¢.
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def
Let Fy = AF+ 4 (1 — A\)F- for some A € (0,1). For a crystal subject to the linear displacement boundary

conditions y(z) = Fyz, z € 89, the total energy is

/n¢(Dy(z)) dz, yeA={ye W' (Q;R?)|y=Fz, 2€9Q)}. (7.2)

Alternatively, we can impose the boundary conditions in a weakened form and consider the energy

/n[é(Dy(z)) +p|y(z) - F,\le] dz, (7.3)

with g2 > 0. The energy (7.3) can also be thought of as that of a thin crystal plate glued to a rigid foundation

with u representing the bond stiffness.

It turns out (Ball and James [1990]) that with free energies appropriate to a cubic-to-tetragonal trans-
formation, neither the minimum of (7.2) nor that of (7.3) is attained. If we put y(z) = F~z+1 (u(z:n)+z-n)a,
let A =7 and assume @ = {z € R*:0< z-n <7, |z x n> < 771} then, setting z = z - n, the energy (7.3)
becomes

/; [V1 (u,(z)) + au(x)z] dz, (7.4)

where a = %pla|? and V; is a double—well energy with strict minima at u, = +1. Note that (7.4) is of
precisely the same form as the potential part of our total energy E;. If {u*} is a minimizing sequence for

the energy I of equation (1.1) then
1 v
y"(z):F'z+§(u"(z.n)+z~n)a (7.5)
provides a minimizing sequence for (7.3). In fact in the cubic-to-tetragonal case such sequences are compre-

hensive in the sense that the deformation gradient of any other minimizing sequence for (7.2) or (7.3) has

the same Young measure as that for Dy*.

Model 2 seems not so closely related to an energy of physical interest, although free energies for fer-
romagnetic materials are both nonlocal and do exhibit nonattainment for some crystal symmetries (James

and Kinderlehrer [1990]).

In both models 1 and 2 the parameter a represents a bond strength or boundary constraint: as «o
increases, the displacements u(z) are penalized more severely. This feature appears explicitly in analysis of

the equation linearized at the trivial solution:

Uy = —Ugy — U + B, (76)
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which, in common with the nonlocal model 2, has the eigenvalues:

A2 [ a2 -
,\=7(—1¢ 1+%), 1=1,2,.... (1.7)

(equation (2.23)). We note that, for | < \/a, these pairs of eigenvalues have negative real parts, so that, for
L < \/a < L+1, the trivial solutions of both models 1 and 2 are locally exponentially stable to perturbations
in the directions of the first L eigenfunctions {sinl/z}£ . In fact for model 2 it.is clear that the nontrivial
equilibria |

1 /2 ay .
Uf = :h; ;(1 - p) sin kI, (78)

of equation (2.20) only exist for k > y/a, and all perturbation components of the form {sinlz, | < \/a}, decay
exponentially. (Recall the structure of the invariant subspaces Xy = {{u,v} | {u,v} = Ej-vzl{aj, b;}sin jz}.)

Thus large o acts to establish a minimum degree of fineness (O(y/a)) in model 2.

The same conclusion holds for model 1, as the following argument demonstrates. Observe that, under

the transformation

(u,v,z) (%v %) (7.9)

the equilibrium equation (2.12) and integral (2.13) respectively become

Ug = v
u
U= g (7.10)
“and
2 2 2
3% - 22- — u? = const. (7.11)

Thus, if u(?) is an admissible equilibrium for & = 1 with the minimum possible number of jumpson 0 < z < 7
consistent with the requirement that 715 < v < 725, then for any solution u(®) = \/Eu(l)(v’”;) with o < 1
the number of jumps must be of O(y/@). On the phase plane of Figure 1, the effect of (7.9) is to shrink
the u coordinate and restrict the sectors between the unbounded components of the separatrices in which

admissible trajectories lie.

In simple semilinear systems possessing Liapunov (energy) functions such as the Chafee-Infante [1974]
problem:
U = ugz + f(u) (eg. f(u) =u-1u?), (7.12)
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or the damped nonlinear wave equation:

Ut = Ugp — Pu, + f(u)) (713)

one expects typical solutions to approach a stationary solution corresponding to a local minimum of energy.
The traditional proof of this begins by establishing precompactness of positive orbits, cf. Ball [1990]. In
the present case precompactness fails in general for models 2 and 3, while for model 1 it is an open ques-
tion. However, all three models are strongly dissipative with energy decreasing monotonically on solutions,

excluding any chaotic or even time periodic motions.

As we have seen, the fate of solutions differs radically from model to model, and in all cases is dramat-
icélly influenced by the initial data. In model 1, no solution minimizes energy and so, while a determines a
minimum degree of fineness and there is no limit to the maximum possible fineness, in practice typical solu-
tions appear to approach equilibria with only finitely many jumps in strain u; and these asymptotic states
seem to be closely related to the initial data. In fact the results of Theorem 4.10 prevent the motion of strain
discontinuities and formation of new ones in finite time. A physical interpretation of the nonminimization
result is that the kinetic energy

1 1
glluell® = Slip-|I* | (7.14)

is used up so quickly, due to the smoothing action of the parabolic part of (3.6,), that after a short time has
elapsed, insufficient additional energy is present to form new jumps. To form such jumps, and hence further
reduce E[u,u;], would require a temporary increase in the local potential energy density (u2 — 1) + a%i
as u,(z) passes through zero on some set of positive measure. The rapid decrease in total kinetic energy
acts to prevent this. If a similar phenomenon occured for realistic dynamical models of crystals, this could
provide a mechanism for limiting fineness additional to effects such as surface energy. For a discussion of
this, see Ball and James [1990]. In model 2, in contrast, almost all solutions do minimize energy. Here the
nonlocal nonlinear term allows new zeroes to appear in u, without appreciable kinetic energy expenditure.
However, our asymptotic results show that the rate at which and manner in which the “modal strain energy”

of ||uz||? escapes to arbitrarily high Fourier wavenumbers is controlled by the smoothness of the initial data.

This rather delicate influence of initial data — a sensitive dependence very different from that familiar
in chaotic dynamical systems — is of possible relevance in relation to “dynamic relaxation” methods for
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determining équilibrium states of nonlinear elastic continua with non-convex strain energies. For example,
in Silling [1988a,b;1989)], the equilibrium equations for anti-plane shear cracks and screw dislocations in two
dimensional continua were supplemented by the addition of inertia and dissipation terms ( -@%; p(x)%’;‘,‘-

and initial value problems solved numerically and allowed to run until %—H was less than some prescribed

value at every mesh point. A variety of two phase equilibria were obtained and analyzed statistically in the

light of energy stability considerations such as those of Section 2.2.

If, as in the present models, initial data can so acutely affect either the fineness of the resulting equilibria
or the rate at which fine structure develops, then such a dynamical process run for finite times from specific
(sets of) initial data might yield results of doubtful statistical significance. Of course, if the underlying
physical mechanism displays sensitive dependence (on initial defects and grain boundaries, for example),
then this type of behavior may reflect the true situation. In this respect we particularly wish to point out
that in our models the velocities u;, both in L* and in L2, decay quickly to extremely low levels. While in
model 1 this does appear to signal the “lock-in” of strain discontinuities (and thus cessation of computation
might give reasonable approximations of equilibria), in model 2 refinement continues on the extremely slow

time scales such as k ~ t1/3 or ¢t1/2 in Fourier wavenumber space.
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