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Abstract 

The use of acronyms and abbreviations is increasing profoundly in the clinical domain in 

large part due to the greater adoption of electronic health record (EHR) systems and 

increased electronic documentation within healthcare. A single acronym or abbreviation 

may have multiple different meanings or senses. Comprehending the proper meaning of 

an acronym or abbreviation using automated machine techniques, known as word sense 

disambiguation (WSD), in clinical notes is an essential step for medical natural language 

processing (NLP) systems. While acronym and abbreviation WSD from the biomedical 

literature is an active area of investigation, little research has been done on this topic with 

clinical documents. 

The purpose of this dissertation is to develop automatic WSD tools for clinical acronyms 

and abbreviations. A key step toward this end is to build a comprehensive clinical sense 

inventory based upon the integration of available biomedical resources and upon senses 

from a large corpus of clinical notes. Another complementary task is the performance 

maximization of machine learning (ML) algorithms. This includes the development of 

optimal feature sets for WSD and the exploration of minimum “adequate” sample size for 

training classifiers. These automatic WSD technologies extend to the complementary 

problem of symbol disambiguation in clinical texts. Lastly, the anticipated future work 

will be in developing quality improvement of automatic WSD tools including sense 

amelioration utilizing biomedical knowledge. 
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Chapter 1 INTRODUCTION 

1.1 Significance 

 Under time restraints that most clinicians experience in the clinical environment, 

compressed expressions, mainly acronyms and abbreviations, are widely utilized1-4. 

These compressed expressions are an efficient and conventional method of 

communication within clinical documents and are used daily extensively. In addition to 

traditional use, the need to understand and deal with these expressions is becoming more 

important because of the widespread adoption of electronic health record (EHR) systems 

and greater numbers of electronic clinical notes for documentation and communication in 

clinical care. 

 The widespread use of acronyms and abbreviations in clinical texts demands 

appropriate sense resolution among associated multiple meanings/senses for effective 

document utilization and for patient safety in clinical care5, 6. Correspondingly, automated 

resolution of the correct concept7, or sense of an acronym or abbreviation, in the given 

text is considered a specialized type of word sense disambiguation (WSD)8. 

Accomplishing automatic medical natural language processing (NLP) requires acronym 

and abbreviation WSD automation to effectively utilize these documents for automated 

purposes2, 4, 9. While a human can properly comprehend what something means given 

approximately five words including an acronym or abbreviation in the center position, 

machine automation for interpreting specific senses within the document context 

continues to be a major challenge for automated medical NLP systems7, 10. 

 One of the major inherent difficulties of clinical WSD problem is the informal 
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nature of clinical documentation and lack of formal structure to clinical notes1, 3, 11. For 

instance, clinical notes contain short telegraphic phrases and include structured reporting, 

resulting in a variety of data types within the clinical notes. Because of the powerful 

freedom of expression that the text provides, clinical notes continue to remain important 

for communication. These notes are, however, created in error-prone, time-constrained 

conditions with rare formalization. Typographical errors are also common due to (1) the 

lack of adequate spell checking/correction11 and (2) misinterpretation between clinicians 

who may dictate meaning and the transcriptionists who must interpret what has been said.  

 In addition, because of the strict privacy issues of patient confidentiality, use of 

clinical documents for research is a substantial ongoing and extrinsic hurdle. Most 

clinical notes are produced outside of nationwide standards or agreements for document 

sharing. The Health Insurance Portability and Accountability Act (HIPAA), in particular, 

makes it difficult to access or share clinical documents for research not only from a single 

institution but also inter-institutionally12.  

 Because of the challenges associated with the WSD problem including document 

access and the informal nature of clinical text, there is no comprehensive, open-source 

clinical sense inventory for clinical acronyms and abbreviations. Instead, there are a few 

small sets of unstandardized acronyms and abbreviations some of which contain sense 

inventories. Hence, to date, there has been minimal research about resources, techniques 

and tools, and other practical considerations for resolving ambiguous acronyms and 

abbreviations in clinical domains11, 12.  

 



 

 3 

1.2 Background 

 To perform WSD of clinical acronyms and abbreviations automatically, it is 

necessary to look at other overlapping multi-disciplinary fields including biomedical NLP 

and general English computational linguistics. 

  

1.2.1 Available sense Inventories in biomedicine 

 The central basic assumption of biomedical sense inventories is that the short and 

long form of the acronym or abbreviation occurs closely with or without parentheses in a 

document3. For example, “comprehensive metabolic panel (CMP)” fulfills this 

assumption. One of the seminal works using this was the development of a character-

mapping algorithm by Schwartz and Hearst13. Here, the authors identified pairs of SF and 

LF by matching characters between the short form and first characters of the long form. It 

is a simple heuristic algorithm but has very good performance. SaRAD14, ARGH15, 

ALICE16 are also rule-based methods and databases building upon this using slightly 

different rules and approaches within the biomedical domain.  

 Machine learning (ML) algorithms, which will be discussed in section 1.2.3 in 

detail, have also been employed for biomedical acronym and abbreviation sense 

inventory creation. For example, Chang et al. created the Stanford biomedical 

abbreviation server17. It is based on using the longest common subsequence (LCS) 

algorithm18 with a supervised logistic regression as a relevance evaluator for the short 

and long form pairs. From these techniques, they were able to discover 64,242 pairs of 

acronym and abbreviation SF and LF from 2004 MEDLINE abstracts. In the clinical 
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domain, Xu et al. focused on 12 clinical acronyms and abbreviations from a corpus of 

16,949 admission notes to study the “Annotation Cost” and the “Sense Completeness” for 

building sense inventories19. The authors created a sense inventory using the Expectation 

Maximization clustering ML algorithm with the minimum manual annotation.  

 Statistical approaches can be also used to create sense inventories. In biomedicine, 

Liu and Friedman filtered irrelevant short and long forms using a collocation-based 

approach after detecting the parenthetical expressions in biomedical documents20. 

Collocation is the adjacent word collection near an item of interest. From this, 381,126 

pairs of acronyms and abbreviations were identified. A well-known biomedical sense 

inventory, Another Database of Abbreviations in MEDLINE (ADAM)21, is based on 

rules of length ratio and empirical cut-off values to filter out insignificant pairs. This 

approach was applied to titles and abstracts from 2006 MEDLINE, and 59,403 pairs of 

short and long forms were identified.  

 There are several additional biomedical acronym and abbreviation sets. The 

MEDLINE Abbreviation collection by Liu et al. examined 35 three character acronyms 

and abbreviations from abstracts of MEDLINE citations22. It utilizes the medical 

ontology, The Unified Medical Language System (UMLS)23, by a supervised ML 

method. As a clinical sense set, one of few collections is the Mayo Clinic acronym and 

abbreviation set. This consists of physician-annotation of 16 acronyms and abbreviations 

resulting in 141 pairs based upon a subset of 17 million clinical notes.  
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1.2.2 Features used with machine learning and other automated approaches 

 To discuss different classes of potential features, it is necessary to examine related 

research in WSD within the fields of biomedical NLP, computational linguistics, 

statistics, and the clinical domains. These can be categorized as domain knowledge-

based, linguistic, statistical, and general document features24. Unique or combined 

features are used for inputs in ML algorithms. Finding the optimal feature sets and 

consisdering the strengths and weaknesses of each individual feature type is a critical 

cornerstone to achieving high performance of ML techniques for these tasks24, 25. 

 

1.2.2.1 Domain knowledge‐based features 

 The Unified Medical Language System (UMLS) and the Systematized 

Nomenclature of Medicine Clinical Terms (SNOMED CT)26, distributed by the National 

Library of Medicine (NLM) with the later maintained by IHSDO, are well-known 

medical terminology resources and extensively used by the medical NLP community. 

Medical domain knowledge-based features extracted from these resources are reasonable 

for use with clinical NLP tasks because clinical documents are based upon applications of 

medical knowledge.  

 Domain knowledge-based features are powerful since the UMLS offers not only 

term identification but also complementary information such as semantic relationships, 

semantic types, and semantic groups7, 12, 27-29. SNOMED CT may have better potential 

compared to many other resources since it is a clinical reference terminology30. Since 

concepts between the biomedical and clinical domain overlap31, utilizing either resource 
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with automatic NLP tools is reasonable, as well. Therefore, automatic tools for the 

UMLS, such as the Specialist Lexicon32 or MetaMap33, can be readily implemented for 

term normalization, stemming, and semantic grouping in the clinical domain33, 34.  

 On the other hand, use of available biomedical domain resources may increase the 

false positive or false negative rate when applying these resources to the clinical domain9, 

particularly because terms in clinical terminologies are covered in variable ways in the 

UMLS3, 12, 31. One study of the 2009 UMLS version demonstrated low coverage of 

clinical terms, estimated at approximately 35%3. Moreover, the UMLS has noise, 

inconsistencies, and vague concepts because of the complicated and large accumulated 

biomedical knowledge that results in uneven hierarchical structures9, 29, 34-36. As a result, 

ongoing, additional curative work is essential4, 31, 37. 

 Several representative studies have used domain knowledge-based features for 

WSD using unambiguous synonyms38 or using the hierarchical relationship in the 

UMLS22. For instance, McInnes et al. utilized UMLS Concept Unique Identifiers (CUIs) 

for disambiguation with a supervised ML algorithm39. CUIs are the biomedical concepts 

of the UMLS. Leroy and Rindflesh used UMLS semantic types and relationships in the 

UMLS semantic network to apply supervised ML techniques for WSD tasks28. MetaMap 

can generate this semantic information and CUI automatically. However, semantic 

information as a feature for ML has limitations compared to CUI because of its lower 

granularity, and may have inconsistent results since any term may belong to multiple 

semantic types or have inconsistencies in the UMLS28, 29. 

 Another type of medical resource, namely medical dictionaries, such as Stedman’s 
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or Dorland’s, can be useful resources because they define the term with associated 

semantic descriptions in a well-distinguished way with high accuracy. These resources 

have been historically less utilized for automatic medical NLP. One of the reasons is 

because of copyright issues. These resources also mix terms from the basic science and 

the clinical domain, which may result in additional non-applicable mappings or senses. 

Furthermore, while there can sometimes be rapid changes in clinical language terms, 

these resources may not always be updated, which can potentially be problematic.  

 While medical dictionaries for automated WSD have not been used to date in 

medical field, in general English, Lesk described an algorithm40 using dictionary 

definitions for general English WSD using WordNet41. WordNet is available as an 

electronic open-source tool from the general English domain. This algorithm uses the 

definition of the target term compares words from the ambiguous target term in the text. 

This algorithm then assigns the maximum match as the assigned sense. An analogous 

application of this technique may have potential in the clinical domain, but has not been 

applied to date.   

 

1.2.2.2 Linguistic features 

 Humans are inclined to use similar words to describe a particular concept when 

communicating. Linguistic features use these patterns in human natural languages 

including semantics and syntactics. These features can provide general contextual 

information that differs from medical-specific information. The most common 

representative linguistic feature is a part of speech (POS), which lends syntactic 
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information of the given sentence. UMLS Specialist Lexicon32, MaxEnt POS tagger42, or 

Stanford POS tagger43 are medically applied automatic POS tools. 

 Linguistic features also have ambiguities25, 44. For one, linguistic tools are not 

always developed for clinical terminology. Therefore, medical term usage, especially 

acronyms and abbreviations, may be limited. Also, these tools may assume grammar 

consistent with standard English and may result in poor performance of these automatic 

linguistic tools24, 45. This assumption may result in errors when there are fragmented 

sentences in clinical notes.  

 Mohammad and Petersen examined the effect of lexical and syntactic features, then 

showed POS and other parsed features have potential to improve performances of 

disambiguous tasks for general English44. In line with the findings of Mohammad and 

Petersen, Coden et al. found POS was the major contributor for concept disambiguation 

with Mayo clinical notes46. 

 

1.2.2.3 Statistical features 

 Statistical features are based on the analysis of the given clinical corpus using 

statistical models. Statistical features offer domain-independent information and differ 

from linguistic features through the application of various statistical theories, 

technologies and tools. Word frequency, N-grams, Term Frequency–Inverse Document 

Frequency (TFIDF), window size/distance, word position/orientation, and information 

content are representative statistical features. TFIDF is a measure which reflects the 

importance of a word or term in a particular corpus47. Information content may have an 
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advantage to deal with skewed distributions of acronyms and abbreviations because it 

represents the mathematical quantity of information as entropy in a probability space8. 

Surrounding word collections around the target term that are disordered, are called Bag of 

Words (BOW). These are another powerful statistical feature12, 25, 48 since humans tend to 

describe a particular concept with relatively similar words.  

 One disadvantage of these approaches is that it is difficult to identify various rare 

cases or senses because statistical features are based on fitting with statistical models. 

Moreover, use of more features may increase bias as the parameters of the statistical 

models by causing overfitting. Decisions on the cut-off point for frequency or window 

size are examples of additional bias. In the case of N-gram models, complex statistical 

models are constructed with various parameters using surrounding words within a given 

corpus. Lastly, the position or orientation feature of words may be used but may have 

problems when sentences are fragmented in clinical notes. 

 Ng and Lee showed the most contributing feature for their disambiguation of 

general English text simulation was collocation49. Joshi et al. also utilized collocation for 

general English disambiguation with high accuracy with a supervised ML algorithm25. In 

another study, Liu et al. combined BOW, orientation, distance, and collocations to solve 

word disambiguation with general English and biomedical documents48. They found that 

using a larger sized window provided more information to distinguish senses of 

abbreviations in the medical domain, which has not been found in the general English 

domain48. In another study, Pakhomov generated the training data for supervised 

maximum entropy models that was used to resolve six ambiguous acronyms and 
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abbreviations from Mayo Clinic patient notes8.  

 

1.2.2.4 General document features 

 General document features use general discourse structural information. In other 

words, general document features take into account cognitive flows and structures that 

have evolved in real clinical environments. For example, the type of the medical 

document, medical specialty, and structural position/orientation within clinical notes may 

influence the performance of these tools for clinical WSD8, 19, 24, 50. Among general 

document features, title or section information may be helpful when aggregating clinical 

notes.  

 However, clinical structural adaptation can occur because defining the structure 

itself is a somewhat subjective/biased issue. Furthermore, there is no guarantee that 

clinical notes use the same structural format not only among note types but also among 

EHR systems. These technologies require additional rules and technologies with domain-

specific information to create the title or section database24, 50. Maintaining rules and 

databases coherently represents extra effort for management of these systems24, 50. 

 Since title or section information is a distinct clinical feature, there are limited cases 

that it has been used. Xu et al. utilized title or section information for sense inventory 

creation by a clustering ML algorithm19. Denny et al. proposed an algorithm to categorize 

labeled and unlabeled titles/sections in history and physical examination notes with high 

accuracy50. This algorithm did not involve WSD per se, but the work shows the potential 

to use title or section information for NLP tasks. 
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1.2.2.5 Feature selection 

 NLP researchers believe that there is no single absolute best feature12, 48, even if 

several representative features are critical for acronym and abbreviation 

disambiguation25. Pattern generalization is also challenging because of the already 

described informal nature of clinical acronyms and abbreviations. Xu et al. addressed 

these challenges by compounding several factors including the training sample size, the 

sense distribution of individual acronyms or abbreviations, and the degree of difficulty to 

distinguish sense meaning51. Generally, harmonic feature combinations without 

overfitting prevent skewed results and offer better performance than single feature sets44. 

With respect to general English terms, features of acronyms and abbreviations with a 

wider window appear to achieve better performance in the biomedical domain48 because 

the medical terminology provides more specific contextual information compared to 

general English, where the larger window may dilute and provide extraneous 

information.  

 

1.2.3 Machine learning techniques 

 Supervised ML algorithms are trained with annotated samples7. Supervised ML 

methods show high performance when they have enough training samples. However, it is 

well known that these algorithms suffer from the knowledge acquisition bottleneck. In 

other words, tremendous efforts, cost, and time are essential to obtain manually annotated 

samples by experts19. On the other hand, unsupervised ML techniques (“clustering”) 

generate a model distinguishing the difference and similarity of groups of samples to one 
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another. Therefore, these algorithms do not need annotated senses7; as a result, they often 

have low accuracy and performance as the “learning” is not specified to the solution. 

Semi-supervised ML algorithms combine the advantages of supervised and unsupervised 

ML algorithms. In particular, these methods use minimal annotation during training and 

then apply unsupervised “clustering” methods to unlabeled instances. A representative 

example is Xu’s semi-supervised approach to build sense inventories of abbreviations19.  

 The degree of difficulty of WSD is inversely related to the degree of “Well-

separatedness” of senses51 to one another, which is defined as having large semantic 

differences between senses, and which may result in different usage in clinical notes. It 

has been shown that only a few dozen of well-separated samples are required during the 

training phase to achieve high supervised ML performance48. Moreover, well-separated 

senses tend to have low error rates for supervised algorithms51.  

 Finding generalized conclusions about all clinical acronyms and abbreviations 

using ML algorithms may overall be difficult. To date, no absolutely superior ML 

algorithm has been identified to resolve ambiguous acronyms and abbreviations25, 48. 

However, in general, supervised ML methods are extensively used in WSD tasks12, 24 

because of expected high performance. Naïve Bayesian (NB) and Support Vector 

Machine (SVM) as supervised ML algorithms are commonly used because of their stable 

performance. 
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1.3 Specific aims, including statement of hypothesis 

 The overall goal of this body of work is to explore and expand automatic WSD 

tools for acronyms and abbreviations in the clinical domain to create new knowledge for 

medical NLP. To fulfill this goal, several elements have to be addressed. Figure 1.1 

provides an overview of how these essential factors tie together in the development of 

automatic WSD tools. WSD tools need four basic inputs: preprocessed clinical 

documents, comprehensive clinical sense inventory(ies), optimal feature selection, and 

effective ML technologies. Therefore, a multi-faced approach is proposed. 

 

 

Figure 1.1 Overview of automatic WSD tools in clinical texts 
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 First, the “Clinical Sense Inventory” (Figure 1.1) is the task of generating a clinical 

sense inventory. For this task, clinical acronyms and abbreviations from the corpus are 

harmonized with biomedical resources. Since a considerable amount of acronyms and 

abbreviations in the clinical fields overlap with the biomedical fields3, taking advantage 

of available biomedical resources and technologies may be a significant aid in building a 

clinical sense inventory with limited overhead.  

 Optimal feature selection focuses on identifying promising features that maximize 

the performance of ML algorithms for WSD tools. Promising features are discussed in 

detail in section 1.2.2 and depicted as the “Features” (Figure 1.1). Since unnecessary 

information deteriorates ML algorithm performance, these algorithms often require a 

careful adjustment to both heterogeneous and homogeneous features. This portion of the 

work also requires a careful examination and comparison of ML algorithms to identify 

which have adequate performance, represented as the “Comparison performance of ML 

algorithms” (Figure 1.1). Furthermore, a minimum training sample size is needed for 

optimal performance.  

 With the “Refining processes” (Figure 1.1), it is anticipated that the quality of 

automatic wsd tools can be improved by examining related ares such as sense 

harmonization and combining utilizing biomedical resources37 is anticipated and needed. 

With these refinements, WSD for clinical acronyms and abbreviations will be 

investigated at a deep level. However, this “Refining processes” is out of the scope of this 

dissertation. Another relevant issue, extension of symbol disambiguation is an area of 

investigation (“Further Applications”, Figure 1.1) utilizing studies and technologies of 
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WSD for clinical acronym and abbreviation. 

 This dissertation presents three major topics corresponding to elements of 

automatic WSD tools (Figure 1.1). After the introduction and the rationale for sense 

disambiguation (acronym, abbreviation, and symbol) and automatic WSD tools in clinical 

documents in Chapter 1, these three topics are discussed in Chapter 2, 3, and 4.  

 A comprehensive sense inventory for acronyms and abbreviations52 is generated 

and summarized in Chapter 2. This chapter accords with the “Clinical Sense Inventory” 

module in overview of automatic WSD tools. Senses of acronyms and abbreviations in 

clinical notes were manually annotated and lexically or semantically aligned with long 

forms of UMLS, ADAM, and Stedman’s Dictionary.  

 In Chapter 3, this study investigates with selective 50 acronyms and abbreviations 

from the comprehensive sense inventory in Chapter 2, (1) optimization of the BoW 

window size and orientation with regard to the feature selection with various ML 

algorithms (2) determination of the minimum training sample size for ML algorithms24. 

These investigations are corresponding to the “Features” and “Comparison Performance 

of ML algorithms” module in Figure 1.1.  

 Based on the studies in Chapter 2 and 3, WSD technologies are then extended to 

automatic non-alphanumeric symbol resolution53 in clinical notes in Chapter 4. Similar to 

Chapter 2, annotated senses of four common symbols (‘+’, ‘–‘, ‘/’, and ‘#’) in clinical 

notes are compared with senses from linguistic literatures, medical literature, and 

Stedman’s dictionary. Using analogous principles to Chapter 3, extracted features for 

symbols are utilized with various classifiers to perform symbol sense disambiguation as 
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well. Studies in Chapter 4 conform to the “Further applications” box in Figure 1.1. 

Lastly, results of these three studies in Chapter 2, 3, and 4 and suggested future directions 

are presented in Chapter 5.  
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Chapter 2  A COMPREHENSIVE SENSE INVENTORY FOR CLINICAL 

ABBREVIATIONS AND ACRONYMS USING BIOMEDICAL, 

BIOMEDICAL LITERATURE, AND MEDICAL DICTIONARY 

RESOURCES1 

Sungrim Moon1, Serguei Pakhomov1,2, Nathan Liu3, James O. Ryan1, Genevieve B. 

Melton1,3  

1Institute for Health Informatics; 2College of Pharmacy; 3Department of Surgery 

University of Minnesota, Minneapolis, MN, USA  

 

Objectives: To create a comprehensive sense inventory of abbreviations and acronyms 

from clinical texts. 

Design: The most frequently occurring abbreviations and acronyms from 604,944 

dictated clinical notes were used to create a clinical sense inventory. Senses of each 

abbreviation and acronym were manually annotated from 500 random instances and 

lexically matched with long forms within the Unified Medical Language System (UMLS 

Version 2011AB), Another Database of Abbreviations in Medline (ADAM), and 

Stedman’s Dictionary, Medical Abbreviations, Acronyms & Symbols, 4th edition 

(Stedman’s). Redundant long forms were merged after they were lexically normalized 
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using Lexical Variant Generation (LVG). 

Results: The clinical sense inventory was found to have skewed sense distributions, 

practice-specific senses, and incorrect uses. Of 440 abbreviations and acronyms analyzed 

in this study, long forms for 949 were identified in clinical notes. This set was mapped to 

17,359, 5,233, and 4,879 long forms in UMLS, ADAM, and Stedman’s respectively. 

After merging long forms, only 2.3% matched across all medical resources. The UMLS, 

ADAM, and Stedman’s covered 5.7%, 8.4%, and 11% of the merged clinical long forms 

respectively. The sense inventory of clinical abbreviations and acronyms and de-

identified datasets generated from this study are available for public use at 

http://purl.umn.edu/137703 (website). 

Conclusion: Clinical sense inventories of abbreviations and acronyms created using 

biomedical, biomedical literature, and medical dictionary resources demonstrate 

challenges with term coverage and resource integration. Further work is needed to help 

with standardizing acronyms and abbreviations in clinical care and biomedicine to 

facilitate automated processes such as text-mining and information extraction.  

 

2.1 Introduction 

 Abbreviations and acronyms in biomedical and clinical documents are pervasive, 

and their use is expanding rapidly1-3, 8, 51. With the accelerated adoption of electronic 

health record (EHR) systems and proliferation of clinical texts, there is an increasing 

need to deal with abbreviations and acronyms and to utilize electronic clinical documents 

for automated processes. In addition to electronic clinical notes that are traditionally 
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created by dictation and transcription, many clinical notes are now created at the point of 

care where clinicians type, dictate using voice recognition software, enter notes using a 

semi-structured or templated document entry system, or use a hybrid of several of these 

approaches. This often results in the use of shortened word forms that often have multiple 

meanings and may present a challenge for subsequent automated information extraction 

from notes and also may potentially result in patient safety issues5, 6, 54.  

 Sense inventories of abbreviations and acronyms are important and considered an 

essential component for automated natural language processing (NLP) systems. 

Abbreviation and acronym sense resolution, a special case of word sense disambiguation 

(WSD)7, 9, 27, is most effectively achieved based on the presence of a consistent and 

complete sense inventory. Compiling sense inventories is a challenge, however, since 

they are labor intensive and work to date in the clinical domain is somewhat limited 

resulting in limited availability of clinical sense inventories.  

 Although abbreviation and acronym sense inventories have been studied 

extensively for biomedical texts specifically within the biomedical literature, relatively 

little research has been devoted to the creation of a sense inventory of abbreviations and 

acronyms within clinical notes19, 25. With biomedical literature14-17, 21, 22, typically the first 

instance of a short form for the abbreviation or acronym occurs with the long form as a 

parenthetical expression or vice-versa (e.g., “mucosal ulcerative colitis (MUC)”)13. In 

contrast, clinical notes are informal in nature and the association of long form and short 

form in clinical text is rarely observed19, 51. Moreover, the development of any 

abbreviation and acronym sense inventory from clinical texts is hindered by issues of 
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patient confidentiality and privacy that make sharing and using clinical notes for research 

purposes difficult2, 12. Not surprisingly, there are currently only small clinical sense 

inventory datasets of abbreviations and acronyms available (e.g., datasets by Xu et al.19 

or the Mayo Clinic25).  

 The goal of this work is to create and release for public use a comprehensive 

clinical sense inventory of clinical acronyms and abbreviations, harmonized with a 

medical dictionary Stedman’s Medical Abbreviations, Acronyms & Symbols, 4th edition 

(Stedman’s)55; the Unified Medical Language System (UMLS)56; and an acronym and 

abbreviation sense inventory from biomedical literature, Another Database of 

Abbreviations in Medline (ADAM)21 From this work, we sought to understand different 

usages of clinical abbreviations and acronyms and the relative coverage and degree of 

overlap across these resources.  

  

2.2 Background 

2.2.1 UMLS 

 The UMLS is distributed through the National Library of Medicine as a set of 

medical terminology resources organized by concepts. In addition to providing a resource 

for identification of medical terms, the UMLS provides ontological information for 

concepts based upon an “is-a” hierarchy, includes lexical variants for concepts, has 

source terminology mappings, and other types of relationships between concepts (e.g., 

“treats”)12, 27, 28. While the UMLS is a natural resource for mapping senses of clinical 

abbreviations and acronyms, the UMLS has previously been shown to have limited 



 

 21 

coverage of acronyms and abbreviations39 although some work has shown improved 

coverage for a subset of acronyms. For example, Xu et al.3 in 2007 found that the UMLS 

only covered approximately 35% of the abbreviations and acronyms that the authors 

examined in the clinical domain. Similarly, Liu et al.4 reported coverage of 66% of 

examined abbreviations and acronyms with less than 6 characters in the clinical domain 

by the UMLS.  

 There are a number of relational files and tools available to access and utilize the 

UMLS. For example, the National Library of Medicine provides the Specialist Lexicon32 

(including the LRABR file) and a part of the Specialist Lexicon tool, Lexical Variant 

Generation (LVG)57, which allows for term normalization and stemming in the 

distribution of MetaMap33. Moreover, MetaMap, which was used in this study, is a 

software application developed to map text to corresponding biomedical concept(s) 

indexed with the UMLS concept unique identifier (CUI) and its associated UMLS 

semantic type (the UMLS semantic type of each concept).  

 

2.2.2 ADAM 

 A number of rule-based and statistically generated sense inventories have been 

created using the assumption that the short form and the long form of an abbreviation or 

acronym are collocated when first introduced in biomedical literature documents (e.g., 

SaRAD14, ARCH15, and ALICE16). Among them, ADAM is a representative acronym 

and abbreviation biomedical sense inventory resource generated from titles and abstracts 

via 2006 MEDLINE21. ADAM contains 59,403 pairs of short and long forms as a 

database for B-terms projected after filtering out insignificantly connected pairs based on 
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length ratio rules and empiric cut-off values. ADAM also provides the term frequency of 

different terms along with other statistical information to illustrate usage of each 

abbreviation or acronym within the biomedical literature. ADAM does, however, contain 

a significant level of redundancy between different long form expressions owing to the 

lack of work to perform either syntactic or semantic normalization between different 

expressions.  

 

2.2.3 Medical dictionaries 

 Medical dictionaries such as Stedman’s and Dorland’s are currently not available as 

part of the UMLS and thus tend to be underutilized in the development of biomedical and 

clinical NLP work. These dictionaries may, however, provide an important adjunctive 

resource for clinical sense inventories because medical dictionaries are used commonly 

within the clinical domain and have a large amount of information about biomedical and 

clinical terms represented in texts. The definitions of terms in these resources can also be 

potentially used to constrain semantic information for related tasks such as word sense 

disambiguation58. On the other hand, potential issues with medical dictionaries include 

copyright restrictions, the comparative slowness of these resources to adopt new clinical 

terms, and the hybrid nature of these resources, which contain both clinical as well as 

basic science terms. 
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2.3 Method 

Clinical documents from four hospitals in the University of Minnesota-affiliated 

Fairview Health Services, including the University of Minnesota Medical Center and 

other Fairview metropolitan hospitals in the Twin Cities, from 2004 to 2008 in our 

clinical document data repository were used for this study. The corpus contains primarily 

verbally dictated and transcribed notes stored in electronic format. These 604,944 clinical 

notes include admission notes, operative reports, consultation notes, and discharge 

summaries. 

 

2.3.1 Identification of significant abbreviations and acronyms 

 To select meaningful and common abbreviations and acronyms, a set of heuristic 

rules were applied. Potential abbreviations and acronyms were identified when the word 

token consisted of capital letters or numbers, with or without symbols (period, comma, 

colon, or semicolon) using regular expressions. Combinations of symbols in front or in 

back of the targeted word token were accepted as a potential abbreviation or acronym. If 

the token of interest was part of document formatting (e.g., header, footer, or 

transcription formatting), it was excluded. Heuristic rules were applied to clinical notes to 

detect the section information for the abbreviation or acronym. Only candidate 

abbreviations or acronyms with a frequency of over 500 in the corpus were included 

resulting in 440 abbreviations and acronyms. The surrounding text for each of the 500 

instances was also extracted and included in the inventory. The instance consisted of 12 

previous-word tokens and 12 post-word tokens centering the targeted abbreviation and 
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acronym. A set of twelve word tokens was selected based upon previous work in general 

English showing that this is more than sufficient for manual annotation10.  

 

2.3.2 Identification of possible long forms from various medical areas 

 All 220,000 instances for the 440 abbreviations and acronyms were given to two 

clinical experts for manual annotation of their clinical sense. Annotated long forms were 

then standardized with long forms of Stedman’s Medical Abbreviations, Acronyms & 

Symbols, 4th edition (Stedman’s). We choose Stedman’s among Medical dictionaries 

because this was available electronically and had a resource specific for abbreviations 

and acronyms. At this stage, formatting errors were eliminated and replaced by additional 

samples focusing the clinical sense inventory upon the overall sense distributions of our 

corpus. For example, “1. Atrial fibrillation. 2. C3. omfort cares…”, ‘C3’ is not a valid 

abbreviation or acronym but rather a formatting mistake. The inter-rater reliability of the 

annotated senses was reported with percentage agreement and with the Kappa statistic 

with a third clinical expert who examined 11,000 random samples (25 per abbreviation or 

acronym – 5% of the total).  
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Figure 2.1 Collect long forms from the UMLS 
 

 

 Figure 2.1 provides an overview of how potential long forms in the UMLS were 

obtained for each of the acronyms and abbreviations. As a first step, each short form of a 

given clinical abbreviation or acronym was mapped using the Metathesaurus file 

MRCONSO.RRF (UMLS 2011AB) to determine the corresponding long form(s), CUI(s) 

and English term type(s) (shaded box in figure and arrow). Second, the given clinical 

short forms were mapped using the LRABR file to extract pairs of short forms and long 

forms mapped in the UMLS. These long forms from the LRABR file (the UMLS 

Specialist Lexicon) were re-mapped to MRCONSO.RRF to get CUI(s) and English term 

type(s) (dotted line). Third, all identified long forms from the first and second steps were 

merged based on short forms (“Merging process based on Short Form”). Fourth, collected 

CUIs and long forms were remapped (dotted line) to MRCONSO.RRF one more time to 

detect any missing variants of the long forms/information in the UMLS. The result of this 

process is represented as “Re-evaluated & Extracted UMLS file” in Figure 2.1. 

 Short forms of abbreviations and acronyms in the clinical domain were directly 
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mapped to short forms of ADAM since ADAM has paired representations of short forms 

and long forms of abbreviations and acronyms. Additionally, we included the coverage 

and usage frequency of individual long forms from ADAM so as to include information 

about the relative usages within the biomedical literature.  

 Finally, for each short form, all long forms associated with a targeted clinical 

abbreviation or acronyms were extracted from Stedman’s. All bracketed expressions in 

the dictionary were reviewed to select all possible inflected forms. For example, “TEE” 

had an original representation as “transesophageal echocardiograph(y) (echocardiogram)” 

in Stedman’s. For this, “echocardiogram” and “echocardiography” were kept because 

they have similar meanings to “echocardiograph”. As a result, we had three expressions 

for “TEE”: “transesophageal echocardiogram”, “transesophageal echocardiograph” and 

“transesophageal echocardiography”.  

 

2.3.3 Normalization process and analysis of the sense inventory  

 The initial sense inventory for the source clinical abbreviations and acronyms was 

systematically compared to each of the resources (UMLS, ADAM, Stedman’s) to identify 

similarities and differences. Figure 2.2 provides an overview of the mapping processes 

for all acquired long forms from various medical resources. A two-step process was used 

to merge long forms by applying a lexical step followed by a semantic merging step.  

 Before the two-step process, all previously obtained long forms were used as inputs 

into MetaMap. Concept Unique Identifiers (CUIs) produced by MetaMap as final 

mappings were included only if they had a score of 1,000 (highest score/confidence) to 
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ensure exact mapping of given long forms. MetaMap term processing option (-z) was 

used to obtain exact matching when MetaMap processed long forms. The “-z” term 

processing option makes it so that MetaMap deals with the individual chunk of strings as 

a single phrase/unit (rather than a sentence or a full text). Therefore, MetaMap processes 

inputs without applying the split process, which helps to obtain suitable mappings for the 

vocabulary terms. Each identified long form has a relevant set of CUI(s) (from 

MRCONSO and MetaMap) that was included in the inventory. 
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Figure 2.2 Merging process of long forms 
Extracted UMLS file = result from Figure 1, UMLS = The Unified Medical Language 
System, ADAM = Another Database of Abbreviations in Medline, Stedman’s = 
Stedman’s Medical Abbreviations, Acronyms & Symbols, CUI = Concept Unique 
Identifier 
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 Lexical merging of long forms was first performed to find exact matches of lexical 

forms of each acronym’s long form in various medical resources. Only long forms with 

the same lexical representations to each other were used to create the “Master file” as 

shown in Figure 2.2. Following this, LVG normalization with individual long forms was 

used to remove simple variations of lexical representations. Examples of these simple 

variations of lexical representations include plural expressions, word orders differences, 

existence of stop words (e.g., “and”, “the”, “of”), and variation in punctuation and other 

symbols. Long forms with exactly the same normalization through LVG were then 

merged as one concept. 

 Following lexical matching, semantic mapping was performed based on CUIs 

between long forms to enhance the quality of sense inventory. Only perfect mappings 

based on CUIs from UMLS were taken into consideration. In other words, if any set of 

CUIs for given long form have an overlap of 100% to the set of CUIs for another long 

form, the two long forms were regarded as the same concept/meaning but had the 

different lexical representations. These semantically equivalent long forms were mapped 

into as one representation in our “Refined Master file” as shown in Figure 2.2. 

 

2.4 Result 

2.4.1 Characteristics of clinical sense inventory 

 Within the overall clinical corpus of 604, 944 notes, 440 common abbreviations and 

acronyms with 949 long forms were found occurring with a frequency of 500 of more 

instances in the corpus. For inter-rater reliability, the percent agreement was on average 
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99% and the Kappa statistic was on average 0.97 between annotators. Among acronyms 

and abbreviations, GTT (80%, 0.25), SI (84%, 0.30), GT (84%, 0.30), US (76%, 0.35), 

NP (88%, 0.36), INH (88%, 0.47), ES (92%, 0.48), PCA (92%, 0.48), AP (96%, 0.49), 

and DP (96%, 0.49) had fair to high percent agreement and low Kappa statistic 

respectively. 

 

Table 2.1 Kappa statistic in clinical corpus 
Range of value of Kappa Number of abbreviations and acronyms 
0.90 – 1.00 398 
0.80 – 0.90 16 
0.70 – 0.80 10 
0.60 – 0.70 6 
Less than 0.60 10 
Total 440 
 

Table 2.2 Sense distributions in clinical corpus 
Ratio of majority sense Number of abbreviations and acronyms 
99 – 100% 323 
95 – 99%  42 
90 – 95% 14 
80 – 90% 21 
70 – 80% 11 
60 – 70% 8 
50 – 60% 14 
Less than 50% 7 
Total  440 
 

 The great majority of abbreviations and acronyms in the clinical sense inventory 

had skewed distributions for meanings. Overall, 276 of 440 (62.7%) of abbreviations and 

acronyms had only a single sense (long form). This majority sense prevalence was 

significantly different in comparison to the distributions seen in the biomedical literature. 

Table 2.2 shows the frequency distribution of the clinical senses sorted according to the 
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baseline majority sense rate. Of all cases, 83% of had one dominant majority sense using 

a conservative ratio of >95% as the definition of a dominant majority. The clinical sense 

inventory contained several institution-specific terms with senses that were not 

generalizable to the greater clinical domain. For example, in Table 2.3, the acronym 

“FUTS” is a short form for “Fairview University Transitional Services.” Another similar 

example, “FSH” in the dataset was often used (46%) to represent “Fairview Southdale 

Hospital.” 

     

Table 2.3 Sense of FUTS and FSH 
Abbreviation Sense Number of instance Coverage 
FUTS Fairview University Transitional Services 500 1.00 

follicle-stimulating hormone 265 0.53 
Fairview Southdale Hospital 231 0.46 FSH 
fascioscapulohumeral muscular dystrophy 4 0.01 

  

 Overall, 335 cases of misuse of acronyms were observed in corpus used to create 

the clinical sense inventory. For example, the text in one instance stated: “…PAC pump 

for anesthesia…” which should have been “PCA (patient-controlled analgesia)” rather 

than “PAC”. In another example: “The patient is on Biaxin for mycobacterium AVM 

intracellular infection”. Here, “AVM” was misunderstood and should have been the word 

“avium” and should have been a word, the mistake occurring in the context of dictation 

and transcription. Most frequently in our dataset, we observed mistaken use of “BMP” 

which should have been “BNP” 36 times, “BNP” which should have been “BMP” 18 

times, “DT” which should have been “DP” 23 times, and PM which should have been 

“PMR” 74 times.  

 An additional 306 errors were observed. An example of a mistake with unclear 
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meaning includes the following: “His factor 2 SA was 14 on admission and factor 12 SA 

was 62.” We represented these unsure cases as “unsure sense” in our clinical document 

repository. Sometimes, the detected abbreviation or acronym was a part of word phrase 

that together had a particular meaning. For example, “Mucolytics and EC PAP device.” 

“EC PAP” should be corrected as “ EZ PAP” but “EZ” itself has no meaning without 

“PAP”. 

 

2.4.2 Comparison among different resources 

Figure 2.3 represents the coverage among resources. Looking only at those long 

forms with an exact match of lexical forms, among 24,853 total senses (long forms) of 

440 abbreviations and acronyms, 224 total were matched exactly between all resources. 

For example, the abbreviation ABG had a single sense “arterial blood gas” with the CUI 

“C0150411”. All sources (UMLS, ADAM, and Stedman’s) had the long form “arterial 

blood gas”. Some long forms represented several preferred CUIs, like AVM had the 

sense “arteriovenous malformation” with two associated CUIs: “C0003857” and 

“C0334533”. Overall, these exact and completely matched long forms for all medical 

resources represented only 0.9% of long forms in the dataset (224 of 24,853 long forms). 

The low rate of matching long forms across all resources was improved after the 

processing and merging of long forms. 24,853 initial total long forms were merged into 

17,096 long forms after performing LVG normalization (Figure 2.2). At this stage, exact 

and complete match of long forms for all resources increased to 1.7% (296 of 17,096 

long forms). After we applied semantic matching for equivalent CUIs, the exact match 
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rate increased to 2.3% (302 of 13,386 long forms).  

 

 

Figure 2.3 The coverage among resources 
Master file and Refined Master file = result from Figure 2, UMLS = The Unified Medical 
Language System, ADAM = Another Database of Abbreviations in Medline, Stedman’s 
= Stedman’s Medical Abbreviations, Acronyms & Symbols 

 

After the three-phrase merge process, clinical long forms covered 50.9% (382 of 

751 long forms) of the UMLS, 54.9% (412 of 751 long forms) of ADAM, and 70.6% 

(530 of 751 long forms) in Stedman’s. When looking at the coverage relative to the 

clinical sense inventory, the coverage of UMLS, ADAM and Stedman’s was 5.7% (382 

of 6,668), 8.4% (412 of 4,897), and 11% (530 of 4,839) respectively of long forms in the 

clinical sense inventory.  

We also observed that the use of abbreviations was different between the clinical 

and biomedical domain, specifically when comparing the clinical sense inventory with 

ADAM. For example, ODT is used (100%) for “orally disintegrating tablet” in our 

clinical sense inventory but in the biomedical literature, ODT is used (100%) for 
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“Oculodynamic Test”. Similarly, FEN means (100%) for “fluids, electrolytes, nutrition” 

for in clinical domain, but it is mainly used (68.1%) for “fenfluramine”(C0015827) in 

biomedical literature. We found different usage by domain (100% dominantly used in 

clinical sense inventory but less than 50% in ADAM) with 33 acronyms and 

abbreviations. 

We observed that some clinical senses have did not correspond to long forms 

within any of the resources. Among 949 long forms in the clinical sense inventory, 190 

had no coverage in any of the three resources using exact matches of lexical forms. This 

was reduced through LVG normalization and semantic matching, which reduced the 

number of unmatched long forms to 178. Table 2.4 gives some examples of long forms 

among the four resources. 
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Table 2.4 Sense comparisons between the clinical sense inventory and other 
resources 

 
UMLS = The Unified Medical Language System, ADAM = Another Database of 
Abbreviations in Medline, CSI = Clinical Sense Inventory, Stedman’s = Stedman’s 
Medical Abbreviations, Acronyms & Symbols, CUI = Concept Unique Identifier, UMLS 
SOURCE = Source information in the UMLS, MetaMap CUI = CUI produced by 
running MetaMap 
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2.5 Discussion 

This study provides and evaluates a comprehensive sense inventory for clinical 

abbreviations and acronyms and compares and contrasts the long forms and short forms 

amongst three resources: UMLS, ADAM and Stedman’s. The clinical sense inventory 

had overall highly skewed sense distributions, some local or practice-specific senses, and 

a number of erroneous instances. Our analysis of the 440 most common abbreviations 

and acronyms from clinical notes demonstrated that many long forms were not perfectly 

matched even after conducting lexical mappings and semantic comparisons. Despite 

some of the challenges and limitations encountered in the process of creating the sense 

inventory, we believe that the resultant resource from this study currently represents the 

largest and most comprehensive sense inventory of clinical acronyms and abbreviations. 

This resource is publically available to support the research of the greater NLP and 

biomedical health informatics community. 

 We observed that vocabulary resources used in this study had uneven granularity 

of sense distributions as compared to each other. This created challenges in the 

normalization process of the inventory’s long forms. For example, ADAM and the 

UMLS distinguished “total knee arthroplasty” and “total knee arthroscopy”. In contrast, 

Stedman’s collapses these two concepts in a single sense: “total knee arthroplasty 

(arthroscopy)”. Because this combined sense is not suitable for obtaining CUIs with 

MetaMap and has two semantic meanings, this was separated into two expressions for 

our study. 
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 Another challenge encountered with the sense inventory was that of ambiguous 

abbreviations or acronyms within the text. For example, “Imdur SA 60 mg p.o. q.d.” 

“SA” can be either “slow acting” or “sustained action”, which has a similar sense but 

different long form expansions. The occurrence of two meaningful senses repeatedly 

occurring was prominent in a few abbreviations/acronyms. These ambiguous senses were 

observed 373 times with “SA” (“slow acting” or “sustained action”), 121 times with 

“OP”(“oblique presentation” or “occiput posterior”) and 105 times with 

“MP”(“metatarsophalangeal” or “metacarpophalangeal”) in the 500 samples of those 

particular abbreviations/acronyms. We also observed some ambiguity associated with 

senses related to levels. For example, abbreviation “C3” has one representative sense 

“cervical (level) 3”. Here “level” can be interpreted one of several meanings such as 

“nerve”, “dermatome”, “vertebrae” or “disc” depend on surrounding words.  

 Another issue with term normalization across resources was the degree of 

redundancy of long form terms, particularly the significant degree of redundancy in 

ADAM amongst its different long forms, where all distinct lexical forms remained 

separated. Additional steps are required to further reduce the redundancy of long form 

senses prior to mapping to ADAM long forms to other resources. While some work has 

been done to merge synonymous variants of the long forms37, our sense inventory only 

utilized strict and exact matching processes.  

 The assumption used in biomedical literature and general English is generally that 

there is only one sense per discourse per abbreviation/acronym. This assumption stems 

from NLP work in general English word sense disambiguation59. We found this to be an 
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invalid assumption for clinical documents. In some instances, even the assumption of one 

sense per sentence does not hold in clinical discourse making the problem of word sense 

ambiguity resolution more challenging in this domain. We found several examples where 

two senses for an acronym/abbreviation were observed within a single sentence such as: 

“Postop MRI recently showed increase T2 signal from C2 through T2 level.” Here, the 

first “T2” means “T2 (MRI phase)” but the second “T2” means “thoracic vertebra 2”. We 

did find, however, that most instances of “T2 (MRI phase)” appeared in the section, 

“PROCEDURE”, and the sense “thoracic vertebra 2” appeared mostly in the section 

“HISTORY OF PRESENT ILLNESS”, indicating that the section may be helpful for 

determining the sense of an abbreviation/acronym in a clinical discourse. The section 

information will not be helpful in all cases, however. 

 One observation that has been made previously3, 4 and confirmed by our study is 

that the UMLS is limited as a resource for mapping short forms with long forms. The 

LRABR file in the UMLS contains overall 57,704 pairs of short and long forms. Of the 

949 long forms, 190 in the clinical sense inventory were missing in the UMLS. This fact 

demonstrates challenges. With Stedman’s and ADAM, there was less coverage of long 

forms although some other areas of coverage not afford by the UMLS, pointing to the 

complementary nature of these resources. 

 Our study has several additional limitations. After performing exact lexical 

matching, the techniques used for normalization of senses were dependent upon the 

automated tools we used (i.e., MetaMap and LVG), which may introduce additional 

errors in the normalization process. Because our sense inventory was built based upon 
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only 500 random samples that were extracted and manually annotated, these samples may 

not be completely representative of the entire corpus. It is also possible that these samples 

exclude additional minority senses. In future work, we plan to utilize semi-automated 

methods as previously described19 to enrich our sense inventory, concentrating our effort 

on abbreviations/acronyms without a single dominant sense. Nevertheless, this study and 

the its associated resultant sense inventory represents a significant contribution and 

resource for others to use in the clinical NLP domain. The de-identified dataset of 

acronyms and abbreviations (those with dominant sense <95%) and sense inventories are 

publically available at http://purl.umn.edu/137703 (website). 

 

2.6 Conclusion 

 Although abbreviations and acronyms in clinical text are used widely in clinical 

documentation, relatively little work has focused upon building a comprehensive clinical 

sense inventory for abbreviations and acronyms for the purposes of NLP research and 

dissemination to the wider scientific community. We created a clinical sense inventory 

with 440 common abbreviations and acronyms and compared the senses with the UMLS, 

ADAM, and Stedman’s. From this, we were able to examine the information within and 

perform a gap analysis of these clinical acronyms and abbreviations among diverse 

resources. 
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Chapter 3 AUTOMATED DISAMBIGUATION OF ACRONYMS AND 

ABBREVIATIONS IN CLINICAL TEXTS: WINDOW AND TRAINING 

SIZE CONSIDERATIONS2 

Sungrim Moon, MS1, Serguei Pakhomov, PhD1,2, Genevieve B. Melton, MD, MA1,3  

1Institute for Health Informatics, 2College of Pharmacy, 3Department of Surgery 

University of Minnesota, Minneapolis, MN 

 

 Acronyms and abbreviations within electronic clinical texts are widespread and 

often associated with multiple senses. Automated acronym sense disambiguation (WSD), 

a task of assigning the context-appropriate sense to ambiguous clinical acronyms and 

abbreviations, represents an active problem for medical natural language processing 

(NLP) systems. In this paper, fifty clinical acronyms and abbreviations with 500 samples 

each were studied using supervised machine-learning techniques (Support Vector 

Machines (SVM), Naïve Bayes (NB), and Decision Trees (DT)) to optimize the window 

size and orientation and determine the minimum training sample size needed for optimal 

performance. Our analysis of window size and orientation showed best performance 

using a larger left-sided and smaller right-sided window. To achieve an accuracy of over 

90%, the minimum required training sample size was approximately 125 samples for 

SVM classifiers with inverted cross-validation. These findings support future work in 
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clinical acronym and abbreviation WSD and require validation with other clinical texts. 

 

3.1 Introduction 

 Acronyms and abbreviations within clinical texts are widespread, and their use 

continues to increase1, 3, 12. Several reasons for this ongoing growth include adoption of 

electronic health record (EHR) systems with increased volume of electronic clinical notes 

accompanied by the wide usage of acronyms and abbreviations3, the time-constrained 

nature of clinical medicine encouraging the use of shortened word forms, and a 

longstanding tradition of commonly using acronyms and abbreviations in clinical 

documentation1. The process of understanding the precise meaning of a given acronym or 

abbreviation in texts is one of several key functions of automated medical natural 

language processing (NLP) systems9 and is a special case of word sense disambiguation 

(WSD)2. Automatic meaning discrimination by a machine is a complex task that is 

critical to accessing information encoded in clinical task7, 10. Improved acronym and 

abbreviation WSD methods can therefore enhance automated utilization of clinical texts 

to support diverse applications that rely on NLP.  

 Acronyms and abbreviations each have a short form (the acronym or abbreviation) 

and a long form (the expansion of the acronym or abbreviation). In clinical documents, 

the expanded long form is rarely proximal to the short form of the acronym or 

abbreviation3, 19 because clinical texts rarely conform to the formalism of enclosing the 

long form in parentheses after the first mention of the abbreviation, as is customary in 

scientific literature13. This lack of the formalism is one of the significant barriers 
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associated with using clinical texts for NLP research, which has resulted in limited data 

resources for research. Because of this informality and the shortage of the available 

resources/research, while researchers have explored the use of supervised machine 

learning (ML) approaches for acronym and abbreviation WSD2, 12, 25, some of the related 

issues with optimal window size and orientation and with training sample size 

minimization to reduce the associated cost and time to manually annotate training corpora 

remain open12, 25.  

 In this paper, we have three objectives: (1) to understand and validate the relative 

value of different features to automatically disambiguate senses of 50 clinical acronyms 

and abbreviations; (2) to determine the optimal window size and orientation for obtaining 

features for acronym and abbreviation sense disambiguation; and (3) to estimate 

minimum sufficient training sample size for good performance in the inverted cross-

validation settings using supervised learning approaches.  

 

3.2 Background 

3.2.1 Broad classes of features for WSD 

 Types of predictive features from clinical notes can be grouped into domain 

knowledge-based, linguistic, statistical, and general document features. These features 

utilize techniques developed in the biomedical NLP and computational linguistics 

domains. Optimal feature selection for WSD therefore requires a comprehensive 

understanding of the strengths and weaknesses of each feature type to maximize valuable 

information used for feature sets as input into ML algorithms.  
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 Because clinical notes are based upon medical knowledge, biomedical and clinical 

domain resources can serve as the knowledge base to enhance clinical WSD algorithms. 

In particular, the Unified Medical Language System (UMLS)23 and the Systematized 

Nomenclature of Medicine-Clinical Terms (SNOMED CT)26 are terminology resources 

in the biomedical and clinical domains respectively. These resources are used by the 

medical NLP community not only because they provide knowledge sources for 

identification of medical terms, but also because they offer semantic information and 

ontological relationships9, 12 that may be used to compute semantic similarity measures 

between concepts that can subsequently serve as features for ML58. On the other hand, 

while medical terminologies have face-validity of concept coverage, the curation and 

quality of these resources are variable for different subject domains and must be 

considered in any error analysis involving the use of these resources31. Automatic tools 

for the UMLS have been used with success in biomedical WSD research. For example, 

MetaMap automatically maps terms in texts to biomedical concepts of the UMLS33. 

McInnes et al.39 showed that Concept Unique Identifiers (CUIs) generated by MetaMap 

to biomedical concepts of the UMLS to be good features for general WSD using 

supervised ML algorithms in the biomedical domain. Leroy and Rindflesch28, 60 examined 

semantic types and groups with MetaMap. These ontology features produced high 

variability in accuracy of supervised ML algorithms, because these features rely on 

complicated hierarchical semantic knowledge representation and have low granularity34.  

 Linguistic features are based upon patterns of human natural languages and are 

applicable to clinical notes that result from human communication in the clinical domain. 
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These features represent characteristics of language in general and reflect structural 

properties of a particular language that are independent of the medical domain. 

Automatic tools, like the Stanford part-of-speech (POS) tagger43 or MedPOST61, have 

been trained on general English and biomedical discourse, respectively. However, these 

tools may not always perform well with clinical texts due to frequent deviations from the 

standard English sentence structure45. The most common linguistic feature set used in 

WSD is POS information, which indicates the syntactic category of a given word as it is 

used within a sentence. Mohammad and Peterson44 utilized lexical and syntactic features 

to improve performance of supervised classifiers for general English WSD.  

 Statistical features utilize distribution and co-occurrence of features of a given 

corpus. Because humans often describe ideas with similar words, these features are 

powerful and supported through well-established statistical theories, technologies, and 

tools. However, one of the weaknesses of these approaches is the difficulty of detecting 

rare cases or minor senses. In contrast, parameters of statistical models can increase bias 

through overfitting. Bag-of-words (BoW) is the simplest example of using the frequency 

of lexical items surrounding the ambiguous word as a predictive statistical feature62. 

Despite its apparent simplicity and a number of limitations, BoW approach has been 

demonstrated in previous studies to provide high quality information for many WSD 

tasks12, 25. Joshi et al.25 explored BoW and term frequency applying supervised 

approaches to improve accuracy of ML algorithms. Liu et al.48 investigated diverse 

feature sets including BoW with 15 biomedical abbreviations with supervised ML 

algorithms. In this later study, the authors show that BoW or BoW with a few word-based 
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features (corresponding orientation within a three word windows with three nearest two-

word collocations) produce the best performance for abbreviation disambiguation.  

 Finally, general document features include information related to the global 

discourse structure (e.g., document title or section headings). Document characteristics 

may be indicative of a type of the medical document or clinical sub-specialty and may 

help narrow down a particular rule set for a particular NLP task50. Discourse information 

therefore incorporates idiosyncrasies of clinical documentation into predictive features 

for WSD. For instance, Xu et al.19 used in part section information to build 12 sense 

inventories from a repository of admission notes through semi-supervised ML methods. 

One limitation of this class of features is that clinical notes do not always use the same 

structural format for the same note type, even within the same hospital system or same 

EHR system. This set of features may also require significant domain knowledge and 

development of specific rules based upon context, also resulting in a large overhead and 

lower scalability50.  

 

3.2.2 Feature selection considerations 

 Even though researchers have used diverse approaches for WSD, limited studies in 

the clinical domain make optimal feature sets, optimal window size and orientation, and 

training sample size optimization an open question12, 25. Major findings in the literature 

include the following:  

• Harmonic feature combinations without overfitting results in high performance of 

supervised ML algorithms12, 25. 
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• BoW has good performance for disambiguation and simple implementation 

compared to other single features25. 

• Wider window sizes (entire abstract) surrounding the ambiguous target word 

provide better performance for WSD within biomedical text25, 39 compared to 

general English text48. 

• UMLS CUI as a feature has better accuracy than UMLS semantic type 

information39.  

 

 To obtain optimal “learning”, supervised ML algorithms are required to have 

enough training samples. Liu et al.48 found supervised classifiers require at least “a few 

dozens of instances” for each sense. Xu et al.51 scrutinized “required sense size,” and 

found that increasing the training sample size tends to diminish the error rate if senses are 

well separated semantically. They also found that a well-separated sense distribution did 

not affect performance and error rate corresponds to the similarity of senses, and the 

major classifier performs competitively if the distribution of the majority sense is more 

than 90%. 

 

3.3 Methods 

3.3.1 Data sets 

 Clinical notes from Fairview Health Services 2004 to 2008 from four metropolitan 

hospitals in the Twin Cities were used from our research repository. These 604,944 notes 

were created primarily from voice dictation and transcription with the option of manual 
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editing and included admission notes, inpatient consult notes, operative notes, and 

discharge summaries. 

 The 440 most frequently used clinical acronyms and abbreviations were identified 

using a hybrid heuristic rule-based and statistically-based technique. Potential acronyms 

and abbreviations were chosen if they consisted of capital letters with or without numbers 

and symbols (periods, comma, colon, or semicolon) and occurred over 500 times in the 

corpus. For each acronym or abbreviation, 500 random occurrences of the acronym and 

abbreviation were selected within the corpus, along with the surrounding previous and 

subsequent 12 word tokens and presented to two physicians to manually annotate for the 

senses of the potential acronyms or abbreviations. These 500 occurrences could 

potentially be extracted from the same discourse if the target acronym or abbreviation 

was repeated within the discourse. We selected 24 surrounding words as a conservative 

set of surrounding text, since previous work has demonstrated that humans can properly 

comprehend meaning given approximately five words including an acronym or 

abbreviation in the center position10. The inter-annotator agreement of the annotated 

sense was reported as Kappa with an overlap of 11,000 instances. Percentage agreement 

was 92.40% and Kappa statistic was 0.84 overall indicating a reasonable inter-rater 

agreement. These manual annotations were used as the gold standard.  

 Among 440 data sets, 50 acronyms and abbreviations were used for this study. We 

considered those acronyms and abbreviations with a majority sense less than or equal to 

95%, then selected the same number of sets according to their majority sense ratio. Table 

3.1 shows the 50 acronyms and abbreviations according to their major dominant sense 
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rates. Table 3.2 summarizes the senses of acronyms and abbreviations and their coverage 

in the 500 samples. For example, ‘CVA’ has two different senses “cerebrovascular 

accident” (278 samples, 55.6% - majority sense) and “costovertebral angle” (222 

samples, 44.4%).  

  

Table 3.1 Distributions of annotated senses of selected clinical acronyms and 
abbreviations 
Rate of majority sense Number  Acronyms and abbreviations 
90 – 95% 5 BAL, CVS, DIP, IM, OTC 
85 – 90% 5 C&S, CEA, CVP, ER, FISH 
80 – 85% 5 ASA, MSSA, PE, SBP, T4 
75 – 80% 6 AVR, CA, CTA, IR, NAD, RA 
70 – 75% 4 AV, PDA, SA, SMA 
65 – 70% 5 AB, BK, DT, LE, RT 
60 – 65% 3 IVF, MR, OP 
55 – 60% 5 CVA, DC, DM, PCP, VBG 
50 – 55% 5 C4, CDI, PAC, PR, T3 
45 – 50% 2 C3, T2 
Less than 45% 5 AC, IT, MP, PA, T1 
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Table 3.2 Annotated senses for selected acronyms and abbreviations in clinical 
corpus 
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3.3.2 Features 

 For this study, the following features were included and defined as follows: 

• Window size is the number of word tokens on each side of the given acronym or 

abbreviation. Window size was varied as follows: ±3, 5, 10, 15, 20, 25, 30, 35, 40, 

45, 50, 55, 60 words, entire section, and entire document levels. The sentence level 

was not analyzed separately in our experiments because of the lack of formal 

sentence structure within clinical notes. On average, the number of word tokens per 

document section was 67.97 and for a given note was 391. The window size of 3 

means that three previous word tokens, the given acronym or abbreviation, and 

three post word tokens were included in the window. Windows were also examined 

asymmetrically (e,g., more context on the left of the acronym than on the right) to 

understand the relative value of the left and right-sided information. 

• Bag-of-words (BoW) uses each unique word as a feature in a non-weighted vector, 

not considering word order. Taking into account frequency and form (i.e. stems) of 

words, Lexical Variant Generation (LVG)63 normalization tool distributed with 

MetaMap was used to normalize the 1,000 most frequent words. We limited 

normalization to the most frequent items in order to speed up the processing for a 

large number of experiments conducted in this study. We recognize, however, that 

normalization of lower frequency words may be of further but likely marginal 

benefit. We also experimented with BoW both with and without stop words47 to 

further reduce the feature space. 

• Concept Unique Identifiers (CUIs) were generated from MetaMap. Unique or 

multiple CUIs were obtained by putting the phrase of a given window size 
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including the acronym or abbreviation into MetaMap. Metamap also generates a 

score for each potential mapped CUI with a maximum score of 1000 (high 

likelihood of a positive match). Score cutoffs were varied in our analysis as shown 

in the Results section.  

• Semantic types were generated from each of the CUI mappings. The feature set 

consisted of unique or multiple semantic types generated by putting the selected 

phrase within a given window size including the acronym or abbreviation into 

MetaMap. Semantic type groups were also used, aggregating into the pre-defined 

15 groups proposed by McCray et al.29 

• Position information in clinical notes was defined as the relative position of the 

acronym at the section level and document level. Positions were calculated 

relatively as the location of the target abbreviations over total words of each level. 

• Section information from clinical notes is a local contextual feature. We extracted 

the relevant section information for the given sample as the closest previous section 

header to the target acronym or abbreviation. Four heuristic conditions were used to 

detect section information for the given acronym or abbreviation: (1) the previous 

line is an empty line or other line return symbol only; (2) the position of phrase 

starts at the beginning of a line; (3) the section indicator symbol “:”; and (4) words 

from the beginning to the section indicator symbol in the line are written in upper 

case characters. A physician merged sections tags manually because of the 

variability in expression for sections names in clinical notes. 

• Word level POS tags were generated using the Stanford POS tagger. POS tags were 
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collected by putting the word chunk with a given word window size including the 

acronym or abbreviation into the Stanford POS tagger. 

 

3.3.3 Algorithms and evaluation 

 Three fully supervised classification algorithms (Naïve Bayes, Support Vector 

Machines, and Decision Tree) were implemented with different window sizes using the 

10-fold cross-validation setting in Weka (NaiveBayes, LibSVM, and J48 with the default 

settings), respectively. Window sizes and orientations were also varied to include 

different numbers of left or right word tokens to find optimal window orientation. 

Accuracy was reported for system performance with 10-fold cross-validation. Baseline 

performance was considered to be the majority sense, which helped in evaluating the 

performance of our ML algorithms. BoW without LVG or stopwords was used for these 

simulations as a representative baseline methodology. 

 
Table 3.3 Setting parameters of various cross-validation per acronym or 
abbreviation 

Inverted cross-validation Cross-validation  
100 50  25  20  10  5  4 2  5 10 

Number of 
training samples 5 10 20 25 50 100 125 250 400 450 

Number of 
testing samples 495 490 480 475 450 400 375 250 100 50 

Number of 
simulations 100 50 25 20 10 5 4 2 5 10 

 

 To explore minimum training sample sizes for acronyms and abbreviations we used 

inverted cross-validation (ICV). With IVC, various size sub-sets of samples of the 

acronym or abbreviation were used one time for testing by ICV and the results for sub-
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sets were averaged to assess performance. ICV is a useful approach for estimating the 

minimum number of samples required to reach stable performance at a desired accuracy 

level. Because the average number of senses of selected acronyms and abbreviations was 

4.72, we used ICV with 100 and lower number of iterations. Table 3.3 illustrates training 

and testing sample sizes with various ICV or cross-validation for each evaluation. For 

inverted cross-validation, the average accuracy of simulations was reported for the 

system performance. 

 

3.4 Results 

 When aggregating the performance, particularly overall accuracy for 50 acronyms 

and abbreviations, there were several general findings. From the perspective of 

classifiers, similar performance was achieved regardless of the classifier type with 10-

fold cross-validation. However, SVM classifiers tended to show slightly better 

performance compared to NB classifiers, and NB classifiers tended to show better 

performances compared to DT classifiers. With respect to individual features, most 

features contain better information relative to the baseline majority sense. Among them, 

BoW features showed better but not statistically different performance compared to other 

features. As a second best feature, CUI demonstrated better performance than UMLS 

semantic type with grouping when using the threshold score 900 from MetaMap for a 

match compared to 1,000. 

 Increasing window size was found to have a tendency to improve performance at 

the lower but not the higher end of the window size range. Moreover, entire section and 
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document-size windows showed further deterioration in performance. In contrast, larger 

window sizes for POS tag features tended to initially decrease performance at lower sizes 

and then increase performance at larger sizes. The best window size for classifier 

performance was found to vary with individual features and classifiers. Using SVM 

classifiers, the best window size with a symmetric window for BoW was 40 (left 40 and 

right 40 words) and for CUI features with MetaMap was 45 words. Taking out simple 

English stopwords resulted in better performance when the window size was larger than 

20 words in our dataset using NB classifiers. However, removal of stopwords was not 

helpful for symmetric windows smaller than 20.  

 As a single feature, section information alone resulted only in an accuracy of 80%. 

However, it contributed additional information to other single or combined features. 

Compared to CUI or semantic type features, the combination of sections with CUI or 

semantic type features improved the ML performance. Although the combination of 

sections with BoW features did not perform significantly better than BoW features, this 

combination still gave enough information to make it the best combination of features 

from the feature types examined.  

 Because BoW resulted in best performance, we investigated information contained 

in each window of BoW using only one side of window. We utilized BoW along with the 

SVM machine learning algorithms.  

  

 

 



 

 55 

 Figure 3.1 contains a graphical representation of performance with a symmetric 

window and with windows containing only words on the right or left side. The figure 

shows that the left word window of the target acronym or abbreviation contains more 

information for WSD compared to the right word window. The use of both sides of word 

windows offers better discriminating information than the left side alone. 

 

 

Figure 3.1 Accuracy depending on different sides of word window for BoW with 
SVM classifiers 
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 The summarized result using SVM classifiers with an expanding left window BoW 

is shown in Table 3.4 with acronyms and abbreviations separated by majority sense 

ratios. Table 3.4 illustrates a tendency of acronyms and abbreviations with low majority 

ratios to require a wider left window for best performance. However, if the majority ratio 

of acronyms and abbreviations is higher (over 80%), it paradoxically performed best with 

the entire document (left of the target acronym or abbreviation). When this was repeated 

with the right window, we observed that the maximum performance with the right 

window was achieved with the use of the entire right document window regardless of the 

majority sense ratio. 

 
 
Table 3.4 Depending on left word window, sub-aggregated accuracies of grouping 
by majority sense ratios of abbreviations 
Left BoW 
using SVM 

<0.5 
(7 acronyms) 

0.5< & < 0.6 
(10 acronyms) 

0.6<&<0.7 
(8 acronyms) 

0.7<&<0.8 
(10 acronyms) 

0.8<&<0.9 
(10 acronyms) 

0.9<&<0.95 
(5 acronyms) 

3 71.49 81.94 85.75 86.06 92.26 93.92 
5 73.51 85.76 88.48 88.28 93.76 94.20 
10 77.17 88.28 90.88 89.54 94.44 95.60 
15 77.09 89.30 91.03 90.32 94.52 95.44 
20 76.51 89.44 90.90 90.48 94.76 95.56 
25 76.94 89.82 91.43 90.48 94.70 95.92 
30 77.00 90.00 91.40 91.14 94.68 96.16 
35 77.06 89.94 91.75 91.32 94.12 96.24 
40 76.94 89.80 91.80 90.90 94.38 96.40 
45 77.09 89.90 91.43 90.82 94.64 96.40 
50 76.89 90.22 91.48 90.86 94.44 96.00 
55 77.43 90.00 91.60 90.78 94.38 96.20 
60 76.94 90.00 91.38 90.90 94.18 96.28 
Section 76.91 89.40 90.75 90.50 94.36 96.44 
Document 77.14 88.84 90.58 89.04 95.04 97.80 
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 Figure 3.2 shows accuracy trends for a fixed left window size (40) and an 

increasing right word window size (X-axis) with different majority sense distributions. In 

general, good performance is reached with a smaller size right window. The best 

performance of BoW is 92.88% (over all 50 acronyms and abbreviations) with 40 left 

side window and 23 right side window. 

  

 

Figure 3.2 Accuracy depending on varying right word window with left 40 word 
window (Majority ratio = majority sense ration in groups of acronyms and 
abbreviations) 
 

 Figure 3.3 is the aggregated accuracy of 50 abbreviations with both sides of the 

word windows equal to 40 when using SVM classifiers with BoW with various inverted 

or standard cross-validation settings. Increasing the training sample size increases the 
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accuracy for disambiguation as expected. Our findings demonstrate that 2, 5 and 10-fold 

cross-validations show similar performance. Furthermore, increasing the sample size with 

ICV shows increasing performance when comparing the gradated performance between 

100 ICV and 4 ICV. As shown in Figure 3.3, for a desired accuracy to over 90%, the 

minimum sample number is 125 (4 ICV) when using SVM classifiers, and approximately 

250 (2 CV) when using NB classifiers over the aggregated 50 acronyms and 

abbreviations. Therefore, when there is little information about majority sense 

distributions of acronyms and abbreviations, at least 125 training samples is a reasonable 

baseline required for acronym and abbreviation WSD classification with the SVM 

classifier. 

  

 

Figure 3.3 Accuracy depending on CV (size of training sample) 
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Table 3.5 Comparision among classifiers split by majority sense ratio using NB and 
SVM 

SVM classifier 
Inverted cross-validation Cross-validation Majority ratio 

100 50 25 20 10 5 4 2 5 10 
<0.50 

(7 acronyms) 42.33 53.31 64.79 67.75 73.99 77.94 79.63 82.66 82.74 83.94 
0.50< & <0.60 
(10 acronyms) 60.07 70.76 80.27 82.83 86.76 89.36 89.98 91.12 92.84 92.80 
0.60< & <0.70 
(8 acronyms) 68.34 75.77 83.24 84.66 88.83 91.20 91.58 93.03 93.15 93.28 

0.70< & <0.80 
(10 acronyms) 74.80 79.34 83.38 84.44 87.86 90.12 90.37 92.40 92.14 92.26 
0.80< & <0.90 
(10 acronyms) 84.00 87.16 89.23 89.99 92.57 94.63 95.31 96.36 96.74 96.84 
0.90< & <0.95 
(5 acronyms) 91.72 92.44 92.90 93.02 93.88 94.99 95.83 97.36 97.04 97.00 

 

NB classifier 
Inverted cross-validation Cross-validation Majority ratio 

100 50 25 20 10 5 4 2 5 10 
<0.50 

(7 acronyms) 39.23 52.09 62.64 65.48 72.17 76.17 78.01 79.83 80.29 81.17 
0.50< & <0.60 
(10 acronyms) 53.52 69.17 78.17 80.94 85.56 88.62 89.24 90.14 92.12 92.20 
0.60< & <0.70 
(8 acronyms) 60.35 71.83 79.55 81.53 87.15 89.68 90.28 92.35 92.83 93.15 

0.70< & <0.80 
(10 acronyms) 67.23 76.02 81.35 82.92 87.35 89.96 90.25 91.62 92.06 92.12 
0.80< & <0.90 
(10 acronyms) 79.91 85.07 87.88 88.64 91.28 93.42 93.95 94.96 95.14 95.22 
0.90< & <0.95 
(5 acronyms) 81.83 88.99 91.12 91.72 93.45 94.43 95.27 94.04 93.52 93.32 

 

 Table 3.5 summarizes the accuracy of SVM and NB when grouping acronyms and 

abbreviations according to the majority sense ratios. The highlighted cells are the first 

points with over 90% aggregated accuracy across inverse cross validation settings. Here, 

acronyms and abbreviations with high majority sense ratios tend to require fewer samples 

than acronyms and abbreviations with low majority sense ratios to achieve a threshold of 

90% accuracy. In terms of classifiers, SVM and NB classifiers demonstrated better and 

more stable performance over the DT classifier. SVM had better performance than the 
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NB classifier to classify senses of the acronyms and abbreviations when it has fewer 

samples. 

 

3.5  Discussion  

 This study provides important insights into the area of clinical acronym and 

abbreviation WSD. Our main finding is that the left side of words in a window around the 

target acronym or abbreviation provides better information for disambiguation than the 

right side of the window. Therefore, an asymmetrical window larger on the left and 

smaller on the right maintains performance and allows for a smaller feature space and a 

more efficient computational process. This phenomenon coincides with the process of 

sense discrimination by human annotators. When annotators classify senses of acronyms 

and abbreviations, they mainly focus on the left side of target token. Interestingly, 

humans require a very small number of tokens for the right window (about 5 words) 

compared to our automated methods (about 20 word window). One factor that could 

partially account for this discrepancy is that there may be information lost in the pre-

processing steps for features (i.e., lexical normalization and selection of 1,000 frequent 

words). Another main finding of this study was the observation that a size of around 125 

samples with SVM classifiers may be effective as a baseline threshold for training. 

However, it is important to note that in cases of acronyms and abbreviations with less 

than 50% majority sense ratios, all accuracies were lower than 90% even in 10-fold 

cross-validation settings, which warrants future study into the enriching datasets with rare 

sense distributions associated with acronyms and abbreviations with these distribution 
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patterns. 

 We extracted the most frequently used 440 acronyms and abbreviations with a cut-

off frequency of 500 occurrences from a large corpus consisting of various types of 

clinical notes and annotated these with experts. To examine questions about training 

sample size, we carefully selected the acronyms and abbreviations according to the 

majority sense ratio. While it is possible that these findings are specific to the corpus of 

text that we used, these results are still helpful to identify representative trends in 

acronym and abbreviation sense disambiguation in the clinical domain. The large size of 

the dataset (50 acronyms) is also helpful in elucidating the amount of variability that 

exists in WSD of acronyms in clinical texts. Some of the parameters are slightly different 

in these experiments compared to previous studies, several findings from this study on 

acronym and abbreviation WSD in clinical notes are consistent with several other 

previous studies12, 25, 48, 51 of word, acronyms, and abbreviation sense disambiguation in 

biomedical literature and clinical notes. (i.e., the BoW feature is a powerful feature and 

SVM algorithm has good performance for WSD). The defining contribution of this work 

was its use of a large set of clinical acronyms and abbreviations and the examination of 

both window orientation and size as well as looking at the question about minimum 

training sample numbers with a systematic approach. 

 The combination of using all features dropped performance in our results. A 

possible explanation is the presence of duplicative or conflicting information between 

different features (especially POS tag feature) with larger window sizes (up to document 

level). Another possible reason is that CUIs and semantic features may contain noise 
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from inaccuracies in MetaMap, which was used for CUI mapping. There is also a 

tendency for clinical texts to contain incomplete sentences and other poorly-formed text. 

Furthermore, windows for WSD tasks are typically based on centering acronyms and 

abbreviations in our experience and also sometimes do not maintain full sentences for the 

Stanford POS tagger or using by MetaMap. As such, the Stanford POS tagger or 

MetaMap may generate incorrect POS tags or concepts from any partial sentence phrase, 

which may deteriorate the overall ML performance. Lastly, the Stanford POS tagger may 

not be optimized for dealing with clinical notes because it is trained and designed for 

general English. 

It is important to note that this is another example where MetaMap may need future 

optimization as a core of the UMLS. Because the tool was not developed for the clinical 

domain, it may suffer in performance for certain clinical tasks. According to Savova et 

al.12, 20% of pertinent ambiguous terms overlapping between biomedical and clinical 

domains possess more senses in the clinical domain than the biomedical domain. Xu et 

al.3 also found that terms in clinical corpora have low coverage in UMLS. Therefore, we 

may miss CUI and semantic information in the clinical domains. We also attempted to 

enhance semantic information by adding semantic grouping information of McCray et al. 

but found that this did not significantly improve the performance because one of the 

semantic groups dominates (48.8%): “Chemicals & Drugs”. Furthermore, some groups 

such as “Genes & Molecular Sequences”, “Geographic Areas”, “Occupations”, etc, are 

proportionally too small (only 0.1%). 

 Certain limitations are important to note with this study in its interpretation. The 
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main limitation is that the features utilized here are based on words and are mostly 

dependent upon one another. In other words, CUI or semantic information from 

MetaMap contains overlapped information with BoW. Therefore, performance using 

BoW features shows similar performance using the combination of knowledge features 

(BoW+CUI+Semantic information). Another issue is that there is no systematic 

management implemented for the number of features in this study. The average number 

of features per instance was 849 for BoW, 2,427 for CUI, and 134 for semantic 

information when we fix the word window size to 40 symmetrically. In other words, 

MetaMap features may offer insufficient information for the machine to learn compared 

to BoW features. There is also the important issue of dealing with rare senses, which drop 

the system performance significantly and require specific methodologies to address 

adequately. We did not eliminate these rare senses in this experiment in order to reflect 

the difficulty of this task with clinical notes, and all rare senses, as well as typographical 

and other errors in the samples were included in this experiment. 

 Future work is needed to determine if our methods and findings are scalable for 

other clinical note corpora. We used a heuristic approach to detect section information 

which may require modification for other documents, as over 25,000 lexically unique 

section headers were found in this document repository. Finally, although we assumed 

that there was “one sense per-discourse”, this may not apply throughout an entire clinical 

document19 when considering section information, which is an issue that we plan to 

explore further. 
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3.6 Conclusion 

 In this study we investigated a large group of clinical acronyms and abbreviations 

from our clinical notes corpus to understand issues related to practical clinical acronym 

and abbreviation WSD. Using 50 clinical acronyms and abbreviations with a majority 

sense < 95%, we found BoW to be an efficient feature set. When looking at window 

orientation and size, a symmetric window of ~40 words was found to have good 

performance with the left side of the window providing more valuable information 

compared to the right side. Our experiments also demonstrate that an SVM classifier with 

at minimum 125 training samples was needed to achieve at least 90% accuracy for 

clinical WSD tasks. These findings provide important insight into the application of 

clinical acronym and abbreviation WSD in clinical NLP system modules. 
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Chapter 4 AUTOMATED NON‐ALPHANUMERIC SYMBOL 

RESOLUTION IN CLINICAL TEXTS3 

Sungrim Moon, MS1, Serguei Pakhomov, PhD1,2, James Ryan3, Genevieve B. Melton, 

MD1,4 

1Institute for Health Informatics, 2College of Pharmacy, 3College of Liberal Arts, 

4Department of Surgery 

University of Minnesota, Minneapolis, MN 

  

 Although clinical texts contain many symbols, relatively little attention has been 

given to symbol resolution by medical natural language processing (NLP) researchers. 

Interpreting the meaning of symbols may be viewed as a special case of Word Sense 

Disambiguation (WSD). One thousand instances of four common non-alphanumeric 

symbols (‘+’, ‘–’, ‘/’, and ‘#’) were randomly extracted from a clinical document 

repository and annotated by experts. The symbols and their surrounding context, in 

addition to bag-of-Words (BoW), and heuristic rules were evaluated as features for the 

following classifiers: Naïve Bayes, Support Vector Machine, and Decision Tree, using 

10-fold cross-validation. Accuracies for ‘+’, ‘–’, ‘/’, and ‘#’ were 80.11%, 80.22%, 

90.44%, and 95.00% respectively, with Naïve Bayes. While symbol context contributed 

the most, BoW was also helpful for disambiguation of some symbols. Symbol 

                                                 
3 This research was supported by the American Surgical Association Foundation 
Fellowship, the University of Minnesota Institute for Health Informatics Seed Grant, and 
by the National Library of Medicine (#R01 LM009623-01). We would like to thank 
Fairview Health Services for ongoing support of this research. 
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disambiguation with supervised techniques can be implemented with reasonable accuracy 

as a module for medical NLP systems. 

 

4.1 Introduction 

 Clinicians frequently use a wide range of shorthand expressions to maximize 

efficient communication in not only expressing linguistic meanings but also in 

representing medical information1. In addition to large numbers of abbreviations and 

acronyms, a number of symbols are utilized as condensed meaning-bearing units in free-

text clinical notes. Like words, acronyms, and abbreviations, these symbols, which 

consist mostly of non-alphanumeric characters, often have ambiguous senses. Symbol 

disambiguation may be considered an analogous problem to automatic word sense 

disambiguation (WSD). Since the antecedent or pre-processing Natural Language 

Processing (NLP) module can potentially deteriorate the quality of downstream 

processing functions of automatic NLP systems64-66, proper resolution of symbols is 

necessary to ascertain the meaning of symbols and preempt errors in automated medical 

NLP systems.  

 Neither the medical NLP nor computational linguistics literature has focused upon 

symbol resolution to any large extent. In the biomedical domain, researchers have 

investigated disambiguation of gene symbols from biomedical text. In one such study, 

gene symbol disambiguation was performed with the goal of identifying biomedical 

entities67. Computational linguists, in contrast, have been mainly interested in the 

meaning of words themselves and have largely ignored non-alphanumeric symbols 
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outside of dealing with the task of sentence splitting.  

 In one analogous study that focused on symbol resolution in Chinese text, Hwang et 

al. examined resolution of three non-alphanumeric symbols (‘/’, ‘:’, and ‘–’) in the 

Academic Sinica Balance Corpus (ASBC), which consists of Mandarin and English 

symbols68. They found seven senses for symbol ‘/’, five senses for ‘:’, and seven senses 

for ‘–’. They set up a rule-based multi-layer decision classifier (MLDC) utilizing applied 

linguistic knowledge with a statistical voting schema and used words surrounding the 

target words (bag-of-words, BoW) with statistical probabilities as features. This two-

layer model was expanded into a three-layer model using preference scoring based on the 

location of characters/words69. While this approach may be effective in some cases, rule-

based classification with linguistic knowledge can serve as a bottleneck in maintaining 

automatic resolution systems because language is always changing and these rules must 

be maintained depending on characteristics of the corpus. Even if the MLDC used by 

these authors focused upon symbol disambiguation, this is at best an analogous 

application to English clinical note disambiguation. These results may not be directly 

transferrable to clinical notes because of the structural difference between English and 

Mandarin, and because of contextual difference between general documents and clinical 

notes. For example, English word tokens are separated by whitespace, but Mandarin 

word tokens are not.  

 For this pilot study, we selected four symbols (‘+’, ‘–’, ‘/’, and ‘#’) and conducted a 

set of experiments for automated symbol sense disambiguation using clinical notes. We 

investigated symbol senses using the literature and annotations of a moderate-sized 
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corpus, and then performed automated symbol disambiguation using three supervised 

machine-learning classification algorithms: Naïve Bayes, Support Vector Machine, and 

Decision Tree classifiers).  

 

4.2 Method 

4.2.1 Symbol sense inventory 

 An initial sense inventory for the target symbols (‘+’, ‘–’, ‘/’, and ‘#’) was created 

from several reference resources. From the field of computational linguistics, we utilized 

two textbooks: Speech and Language Processing and Foundations of Statistical Natural 

Language Processing47, 70. We also identified several medical references with symbol 

senses including a medical dictionary (Stedman’s Medical Abbreviations, Acronyms & 

Symbols55), medical terminological reference (Medical Terminology and references of 

approved symbols19, 26, 71), and references from the clinical literature (Abbreviations and 

acronyms in healthcare5).  

 The symbol sense inventory was then refined to remove unclear senses and add 

missing senses identified by a clinician (GM), and two linguists (JR and SP). “Literature 

sense” represents this initial sense inventory for the target symbols. 
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4.2.2 Experimental samples and document corpus 

 The document corpus for this study consisted of electronic clinical notes from 

University of Minnesota-affiliated Fairview Health Services (consisting of four 

metropolitan hospitals in the Twin Cities), containing admission notes, discharge 

summaries, operative reports, and consultation notes created between 2004 and 2008.  

 For non-alphanumeric symbols of interest (‘+’, ‘–’, ‘/’, and ‘#’), a target instance of 

a symbol was defined as the presence of the symbol character within a target token. For 

the purposes of this pilot, the symbols from institution-specific formatting and various 

section/headers were excluded. For each symbol, 1,000 instances within the corpus were 

randomly selected for manual annotation.  

 

4.2.3 Reference standard 

 Using the General Architecture for Text Engineering (GATE) toolkit72, each of the 

1,000 target symbol instances was marked up within each document to clarify and 

streamline the process of annotating each target symbol. This was particularly important, 

as multiple instances of potential symbols may exist within a given text or a given target 

word token. Although studies have demonstrated that most individuals can interpret the 

proper meaning of a word with a window size of five7, 10, we provided the entire 

document during annotation of symbols to ensure adequate context.  

 Our reference standard was created by two annotators with expertise in medicine 

and linguistics respectively. Because ‘+’ had several medicine-specific meanings, the 

annotator for this set was a physician. Since meanings of the other four symbols were less 
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medically-specific, a linguist (JR) annotated these samples. Whenever the linguist or 

physician had questions as to the sense of a symbol, these examples were presented and 

adjudicated with the assistance of two of the authors with linguistics and medical 

expertise respectively (SP and GM). “Clinical Corpus Sense” represents this empirically-

derived clinical sense inventory for the target symbols. Separately, a second annotator 

examined 200 random samples (50 per symbol) to establish inter-rater reliability of these 

annotations with percent agreement and Kappa statistic.  

 

4.2.4 Automated system development and evaluation  

 We created an initial set of features based on the BoW approach to feature 

extraction and word-form information within the target and surrounding word tokens. 

These were compared to the majority sense distribution as the baseline. Three fully 

supervised classification algorithms were applied to these feature sets in a 10 fold cross-

validation setting. These algorithms are Naïve Bayes (NB), Support Vector Machine 

(SVM), and Decision Tree (DT) implemented with NaïveBayes, LibSVM, and J48 using 

Weka software73. We separated 100 random samples from our 1,000 instances of each 

symbol to determine additional heuristic rules associated with word-form information. 

After developing the system on 100 random instances, then we evaluated the 900 

instances using a 10 fold cross-validation setting on these samples for our result. We 

report accuracy, recall, precision, and f-measure of our system performance.  
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4.2.4.1 Basic features 

 Basic features used as inputs for the three classifiers were: 

• Target word token w containing the symbol. 

• Prefix and postfix of symbol within the targeted word token w. 

• Previous word tokens w-n, target word token w, and post one word token w+n 

without stemming (BoW with window size n). We explored the optimal window 

by varying its size and the effect on performance.  

 In the example: “….erythema. DTRs are diminished at 1+/4+ in the upper and 

lower extremities….”, if the first ‘+’ symbol (bolded) is the target symbol, the target 

word token w is “1+/4+”, the prefix is “1”, the postfix is “/4+”. BoW with window size 1 

is {at, 1+/4+, in} and BoW with window size 2 is {diminished, at, 1+/4+, in, the}.  

 Beside basic features, we experimented with stop word removal with BoW using a 

standard list of 57 English stop words47. With our previous example, stop word removal 

with BoW window size 1 is {diminished, 1+/4+, upper}, and the set of BoW with 

window size 2 and without stop words is {DTRs, diminished, 1+/4+, upper, lower}. 

 

4.2.4.2 Heuristic features 

 We tested heuristic rules as additional features. Heuristic rules were developed to 

identify word-form representations of the target word token w or surrounding word 

tokens (w-n and w+n). 100 random instances from 1,000 were separated for each symbol 

to develop heuristic rules. Utilizing regular expressions, heuristic rules applied to the 

target word token w or surrounding word tokens. These were added as additional features 
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to our classifiers. 

Table 4.1 Senses for symbols 
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Table 4.2 Definition, examples and numbers of symbol senses in clinical 
documents
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4.3 Results 

 Table 4.1 compares literature senses from reference sources and the experimental 

clinical corpus senses in our repository for each symbol. This comparison is organized in 

the alphabetical order of literature senses. Depending upon the domain, a different set of 

senses was identified. Table 4.2 depicts the sense, its definition, an example, and the 

distribution of senses within the corpus. Table 4.2 is ordered based on the sense 

distribution of each symbol within the clinical corpus. When developing our module, we 

introduced heuristic rules for this pilot as depicted in Table 4.3. 

 
Table 4.3 Heuristic rules used as additional features to classifier 
Symbol Regular expression  Description of form Applied sense 

m/̂ [1-3]\+/  1+, 2+, 3+  pulse, edema, reflex, excess 
m/̂ \+[1-3]/  +1, +2, +3 pulse, edema, reflex, excess 
m/̂ [1-9]?[0-9]\+[0-
9]\W?$/  one or two digits for weeks with both side of ‘+’  pregnancy dating + 

m/̂ [1-9][0-9]\+\W?$/  two digits for years/weeks with previous side of 
‘+’ excess 

m/̂ [1-9][0-9]\-/  two digits with previous side of ‘–’   
m/̂ .+\-[1-9][0-9]$/  two digits with post side of ‘–’   
m/̂ [a-zA-Z]?\-[a-zA-Z]?$/  two alphabetic words with both side of ‘–’ compound, lexical hyphen – 
m/̂ [a-zA-Z]?\-[a-zA-Z]\-
[a-zA-Z]?$/  three alphabetic words with both side of two ‘–’ quotative 

m/̂ (1[0-9][0-9])\/((1?[0-
9][0-9])\W?)$/)  two or three digits with both side of ‘/’ over(e.g., blood pressure) 

m/̂ ([a-zA-Z]+)\/([a-zA-
Z]+)\W?$/  two alphabetic words with both side of ‘/’ either meaning / 

m/̂ [0-9]\/([0-9])\W?$/  two digits with both side of ‘/’ of 
m/̂ \#1[0-5]\W*\.*\W*$/ 
or m/̂ \#[1-9]\W*\.*\W*$/)  one or two digits for days with post side of ‘#’ number 

# m/̂ \#[1-
4][0|5]\W*\.*\W*$/  two digits for quantity with post side of ‘#’ quantity 

 
Table 4.4 Frequency in total corpus and inter-rate agreement of symbols 
Symbol Frequency Proportion agreement (%) Kappa statistic 

+   118,283 100 1.00 
– 4,821,029  88  0.86 
/ 4,785,691  96 0.95 
#   721,655  90 0.72 
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 Within the overall corpus of 604,944 notes, the frequency of ‘+’, ‘–’, ‘/’, and ‘#’ are 

represented in Table 4.4. For inter-rater reliability, 50 random samples were annotated by 

a second annotator. Proportion agreement and Kappa statistic of each symbol in Table 4.4 

indicates respectively reasonable inter-rater agreement even if it is conducted in a small 

size of samples. 

 
Table 4.5 Performance of Naive Bayes, Support Vector Machine, and Decision Tree 
classifiers 

Naïve Bayes 
Precision 
Sensitivity 
F-measure 

Support Vector Machine 
Precision 
Sensitivity 
F-measure 

Decision Tree 
Precision 
Sensitivity 
F-measure 

Symbol Feature Acc* Pre* Sen* F-m* Acc* Pre* Sen* F-m* Acc* Pre* Sen* F-m* 
Majority 0.29 0.08 0.29 0.13 0.29 0.08 0.29 0.13 0.29 0.08 0.29 0.13 
Target token 0.47 0.52 0.47 0.41 0.52 0.47 0.52 0.47 0.49 0.49 0.49 0.45 
Target token, Prefix/postfix 0.54 0.51 0.54 0.48 0.54 0.50 0.54 0.48 0.49 0.49 0.49 0.45 
Target token, BoW (size = 1) 
 

0.68 0.66 0.68 0.63 0.41 0.56 0.41 0.36 0.65 0.67 0.65 0.62 
Target token, BoW (size = 2) 0.77 0.74 0.77 0.74 0.32 0.57 0.32 0.20 0.66 0.67 0.66 0.63 
Target token, BoW (size = 3) 
 

0.79 0.75 0.79 0.76 0.30 0.37 0.30 0.15 0.65 0.67 0.65 0.63 
Target token, BoW (size = 4) 0.80 0.78 0.80 0.78 0.29 0.22 0.29 0.13 0.65 0.67 0.65 0.62 

+ 

Target token, BoW (size = 5) 
 

0.80 0.78 0.80 0.78 0.29 0.22 0.29 0.13 0.65 0.67 0.65 0.63 
Majority 0.25 0.06 0.25 0.10 0.25 0.06 0.25 0.10 0.25 0.06 0.25 0.10 
Target token 0.62 0.73 0.62 0.61 0.63 0.68 0.63 0.62 0.63 0.79 0.63 0.63 
Target token, Prefix/postfix 0.80 0.80 0.80 0.79 0.66 0.79 0.66 0.67 0.63 0.79 0.63 0.63 

_ 

Target token, BoW (size = 1), Prefix/postfix 0.77 0.77 0.77 0.76 0.32 0.65 0.32 0.24  0.63 0.79 0.63 0.63 
Majority 0.51 0.26 0.51 0.34 0.51 0.26 0.51 0.34 0.51 0.26 0.51 0.34 
Target token 0.57 0.49 0.57 0.46 0.61 0.64 0.61 0.55 0.51 0.26 0.51 0.34 
Target token, Prefix/postfix 0.84 0.86 0.84 0.83 0.64 0.75 0.64 0.57 0.75 0.81 0.75 0.71 
Target token, BoW (size = 1), Prefix/postfix 0.90 0.89 0.90 0.90 0.54 0.60 0.54 0.40 0.72 0.66 0.72 0.62 

/ 

Target token, BoW (size = 2), Prefix/postfix 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.72 0.66 0.72 0.66 
Majority 0.85 0.72 0.85 0.78 0.85 0.72 0.85 0.78 0.85 0.72 0.85 0.78 
Target token 0.95 0.94 0.95 0.94 0.94 0.93 0.94 0.93 0.95 0.94 0.95 0.94 
Target token, Prefix/postfix 0.92 0.92 0.92 0.92 0.94 0.92 0.94 0.93 0.96 0.94 0.96 0.95 

# 

Target token, BoW (size = 1) 0.94 0.95 0.94 0.95 0.86 0.86 0.86 0.80 0.95 0.95 0.95 0.94 
Acc = Accuracy, Pre = Precision, Sen = Sensitivity, F-m = F-measure 
 

 When we applied three supervised machine-learning algorithms with our feature 

sets, NB classifier had the most stable overall performance compared to both SVM and 

DT classifier. We tested removal of stop words; however, there was no performance 

improvement. We also added heuristic rules as described in Table 4.3, but there is no 

significant change in algorithm performance either. Our results with respect to the 
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accuracy, recall, precision, and f-measure with the NB, SVM, and DT classifiers using 

the basic feature set alone and with BoW are summarized in Table 4.5. These results are 

based on 900 test samples considering all separated senses in Table 4.2. Maximum 

accuracy for symbol ‘+’ was 80.11%, symbol ‘–’ - 80.22%, symbol ‘/’ - 90.44%, and 

symbol ‘#’ - 95.00% with the NB classifier. For ‘+’ and ‘/’, using BoW as features 

provided improved performance with the NB classifier (Table 4.5), but the optimal 

window size was different for each symbol. For ‘–’, BoW did not contribute additional 

information for symbol disambiguation. For ‘#’, the target symbol alone was the 

dominant feature of importance. 

 

4.4 Discussion 

 We examined non-alphanumeric symbol disambiguation, an under-studied pre-

processing NLP function in the clinical domain. To gain a more thorough understanding 

of symbol sense ambiguity, we performed a survey of the literature and generated an 

empiric sense inventory, which helped to refine the overall inventory. Symbol 

disambiguation appears to perform well with simple sets of features but requires different 

combinations of features for individual symbols. In each case, a relatively small set of 

features based on the symbol and its context were effective, indicating that this is a 

relatively simpler task than sense disambiguation for words, acronyms and abbreviations. 

Despite the relative simplicity of the task, it has been largely ignored in the clinical NLP 

literature but constitutes an important problem for NLP of clinical documentation. For 

example, being able to determine the context appropriate meanings of symbols can 
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contribute to improved named entity recognition and classification.  

 While the surrounding context, including words beyond the target token, were 

expected to be important, we found that in the cases of ‘#’ and ‘–’, words beyond the 

target word w were unnecessary. In fact, for ‘#’, the target word w alone was sufficient 

for excellent performance. In contrast, senses related to ‘+’ required surrounding context 

(optimized with window size 4) for optimal performance. One of the main reasons for 

these differences is that symbol resolution is affected by the number of senses in the 

sense inventory and proportion of the majority sense of each symbol. In the previous 

example, the ‘#’ symbol has fewer senses and has higher proportion of the dominant 

sense (only 4 senses and the majority sense prevalence is 85%) compared to ‘+’ symbol 

with has 15 possible senses with well-balanced distributions. For ‘–’ symbol, it only 

required isolated and condensed token information (pre and postfix features) to determine 

the right meaning. Another potential reason is the degree of semantic relatedness among 

senses in a given symbol. For example, ‘#’ symbol has 4 senses that are all closely related 

with the concept ‘number’. Thus, disambiguation of the ‘#’ symbol results in better 

performance compared to ‘–’ symbol, which had a variety of concepts such as ‘minus’ or 

several lexical expressions (e.g., lexical hyphens, compound pre-modifier).   

 We also expected heuristic rules to contribute positively to system performance but 

found that they were not helpful in our experiment. These rules could be helpful for 

enumerated items such as dates or telephone numbers where training sets may not be 

sufficient to capture the large number of possible combinations. We speculate that this 

did not change performance much since both of these items were low-incidence. Also, 
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some rules are language and format-specific. For example, the form of date with symbol 

‘–’ can be different according to location. The sequence of date, month, and year are 

opposite in Europe/Asia compared with the United States. Because of these limitations 

and perhaps some overlap with our general form-based features (thereby not being 

independent of our heuristic rules), heuristic features did not contribute significantly to 

system performance.  

 With the ‘+’ symbol, we discovered that there were a number of senses that were 

specific to subspecialties or occurred less often, which we combined into a single 

annotation called “uncommon rating”. In contrast, common ratings such as that for edema 

or reflexes were separated out as separate senses. For example, the sense ‘effusion of a 

joint’ (e.g., “Left knee has a 2+ effusion…”) or ‘prostate size’ (e.g., “His is prostate is 1 

to 2+ enlarged…”) are standard but occur with low frequency. If we group less common 

senses into a single annotation, the performance of automatic symbol resolution module 

improves. In this study, we grouped these less common senses into one sense. If we 

extend this, all kinds of senses such as pulse, strength, reflexes, edema, and uncommon 

ratings for symbol ‘+’ can be grouped together. As expected, with this aggregate set of 

senses, the accuracy of NB classifier was 88.89%, up from 81.56% when more common 

ratings were separated from the less common ratings. Because these sense grouping 

decisions can be somewhat arbitrary or tailored to the purpose of the NLP module, 

concrete agreement between annotators and a clear understanding of the goals of the 

particular symbol disambiguation NLP module’s scope are essential.  

 Another issue is that some senses share the same BoW or the same form of the 
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target token. In the symbol ‘–’ set, for example, “follow-up”, “well-nourished” and 

“seizure-like” can be a lexical hyphen and/or a compound-premodifier. For example, “He 

arrived on time for his follow-up” and “His symptoms were seizure-like”, these ‘–’ 

instances are categorized as lexical hyphens, while “We scheduled his follow-up 

appointment” and “He experienced seizure-like symptoms” are considered to be both 

lexical hyphens and compound pre-modifier hyphens. These shared forms between 

senses may create difficulties with disambiguation and may require additional syntactic 

information such as part-of-speech and syntactic phrase category. The distinction 

between lexical hyphens and compound pre-modifier hyphens is probably too small to be 

of practical importance in an NLP system; however, in this exploratory study we chose 

separate annotations for these entities that may be collapsed. 

 Our research demonstrates that non-alphanumeric symbol disambiguation is 

feasible, with good performance on clinical text using standard form-based rules. These 

rules require some calibration for each symbol type with respect to window size for 

individual symbols. Since the set of non-alphanumeric symbols is finite (vs. words and 

acronyms), development of fully supervised disambiguation classifiers is likely to be the 

most effective and accurate approach. We plan to extend this module to other symbols, 

including alphabetic symbols, such as ‘x’, as well as additional non-alphanumeric 

symbols, with the goal of utilizing these techniques within a pre-processing module for 

down-stream information extraction functions from clinical text. 
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4.5 Conclusion 

 Although symbols, primarily non-alphanumeric characters, are used widely to 

convey a variety of meanings in clinical discourse, symbol resolution has been less 

studied by the linguistics and medical NLP communities. Symbol resolution can be 

viewed as a specific type of WSD, as well as a basic module for automatic medical NLP 

systems. In this paper, we examined four symbols (‘+’, ‘–’, ‘/’, and ‘#’) to detect clinical 

symbol senses and to contrast with senses attested in the literature. We found that while 

supervised machine learning approaches with form-based features to be effective, 

calibration of features for disambiguation may be needed for system optimization with 

individual symbols. 
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Chapter 5 SUMMARY AND FUTURE DIRECTION 

 This body of work addresses several important challenges with clinical acronym 

and abbreviation WSD and extends this work to symbol disambiguation by building a 

sense inventory and exploring symbol WSD in clinical texts. Overall, 1) the 

comprehensive sense inventory for clinical acronyms and abbreviations is built based on 

manual annotation and typical biomedical resources, 2) the window size and orientation 

for an optimal feature set, and the estimated minimum training sample number are 

investigated, and 3) the feasibility of automated symbol resolution as an extended clinical 

WSD is demonstrated. 

 A comprehensive clinical sense inventory for 440 acronyms and abbreviations is 

mapped via long forms from UMLS, ADAM, and Stedman’s. This sense inventory 

addresses a current need and identifies particular characteristics of clinical senses such as 

skewed sense distributions, practice-specific senses, and incorrect uses. Also, other 

medical resources cover clinical senses with very low ratios such as the 178 long forms 

that had no coverage in any biomedical resource even after lexical and semantic mapping 

processes. With de-identified sentence datasets, this comprehensive clinical sense 

inventory is the current largest resource for WSD of clinical acronyms and abbreviations. 

 To achieve efficient automatic sense resolution, optimized window and orientation 

of feature sets, and estimated size for training using 50 selective clinical acronyms and 

abbreviations is studied. With a systematic approach, our study shows the left side of the 

window offers valuable information compared to the right side. Moreover, unlike 

biomedical literature, around 40 windows of BoW show better ML performance rather 
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than wider windows such as a section or document window. When considering training 

ML algorithms, the minimum of 125 training samples are needed to achieve an accuracy 

of over 90%. These findings provide important clues as to how to improve clinical WSD 

tasks. 

 Basic technologies of WSD tools will be directly extended and applied to symbol 

disambiguation in clinical notes. The symbol senses disambiguation is the first attempt in 

medical domains, even if determination of appropriate meanings of symbols is an 

essential task for clinical NLP. The symbol sense inventory (59 senses for four symbols) 

is built based on manual annotation in clinical notes and compared to senses in various 

reference resources in computational linguistics, medical literature, and Stedman’s. In 

experiments, automated symbol resolution demonstrates the feasibilities (average 

accuracy is 86.44%) utilizing common feature sets (BoW with word form information) 

with supervised ML of clinical WSD for acronyms and abbreviations.  

 Future experiments will focus on deeper topics for WSD tools. To improve the 

quality of automated WSD tools, refinements such as sense inventory integration37 with 

biomedical resources and technologies, generalizations of insightful findings for clinical 

WSD for acronyms, abbreviations, and symbols utilizing other inter-institutional study, 

and investigation to demonstrate unsuitability of one-sense per-discourse in clinical WSD 

domains will be extensively studied.  

 Finally, additional topics connected with deeper issues for WSD tools are also 

necessary to achieve the optimal performance for clinical WSD. Identification of optimal 

feature sets to minimize overlapping information, new or rare sense detection utilizing 
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semantic information, similarity measurements between senses as a tool for aiding WSD, 

and utilization of unsupervised ML algorithms instead of supervised ML algorithms 

should be investigated. Also, increased awareness of safety risk issues surrounding the 

use of acronyms and abbreviations can be made based upon this work and observations. 

 Findings and resources created from this thesis will also be useful not only for the 

medical NLP community but also for the overall medical and biomedical fields. Medical 

NLP researchers who have had difficulties dealing with a lack of clinical resources can 

utilize this publically available de-identified sentence dataset of 

acronyms/abbreviations/symbols to evaluate their algorithms/methods. Although these 

resources are not designed specifically for this purpose, biomedical researchers or general 

medical physicians might also use our inventories and datasets as a reference to 

understand usages of acronyms/abbreviations/symbols within clinical notes.  
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APPENDICES  

Appendices generated from Chapter 2 are available at http://purl.umn.edu/137703 

(website) 

• The sense inventory of clinical abbreviations and acronyms (two versions)  

• De-identified sentence datasets 

• README (two versions) 

Appendices generated from Chapter 4 are available at http://purl.umn.edu/137704 

(website) 

• De-identified sentence datasets 

• README 

 

 

 


