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Abstract

A discrete search strategy is presented to determine optimal aircraft trajectories which

can be unconstrained or regulated to follow current Air Traffic Control (ATC) pro-

cedures. The heuristic based Astar (A*) search algorithm has been selected for its

efficiency and its inherent ability to handle numerous constraints as a discrete method.

A point-mass aircraft model is assumed to accurately simulate commercial aircraft

dynamics for the provided trajectories. The two dimensional space and the states

of aircraft have been divided into discrete pieces. To show the effectiveness of the

algorithm, two-dimensional vertical and horizontal profile are simulated. Simula-

tion results compare optimal trajectories that range from unconstrained to those

that completely adhere to strict ATC procedures. Those trajectories following ATC

procedures follow a segmented flight pattern where each segment follows specified ob-

jectives, terminating when certain criteria has been met. Trajectories are optimized

for a combination of time and fuel with an emphasis on reducing fuel consumption.
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Chapter 1

Introduction

The determination of optimal aircraft trajectories has been of considerable interest to

aircraft dynamicists for almost 50 years. Efforts were put in trying to minimize fuel,

time and more recently emissions and noise. Looking at the growth of commercial

airlines historically and the current trends it only points towards a tremendous in-

crease in air traffic in the next decade or so. It is expected that the commercial fleet

will double in the next 20 years. All of these mean that we need new ways to keep

track of in flight aircraft to monitor flights in and out of airports. Building bigger

airports and increasing runways is way to deal with the air traffic congestion but does

not address the issue of saving fuel, reducing noise and emissions. In fact, noise and

emissions remain a saturation point for enlarging airports. Continuous descent ap-

proach was designed specifically designed for noise abatement during aircraft arrivals.

During tests conducted for CDA approaches at Louseville airport, it was also found

that the procedure allowed fuel savings of about 400-500lbs per flight [1].

The most significant growth has been that of the ever increasing fuel prices (Fig-

ure 1.1). For the amount of fuel airline industry consumes, the fuel price is a huge

factor affecting their growth and profits. Airliners are now looking for every odd pos-

sible way to reduce fuel consumptions. Singapore Airlines has implemented digital

1



Chapter 1. Introduction 2

Figure 1.1: Fuel prices over the years

versions of its in-flight magazines in a bid to reduce fuel costs [2]. Cathay Pacific

strips paint off some planes (paint can weigh 440 lbs on a 747) [3]. Southwest uses

Pratt & Whitney’s EcoPower for its systematic engine wash program for Boeing 737-

700 series aircraft in order to increase engine efficiency and save fuel [4]. Irrespective

of how effective these ways turn out to be, it only goes to show how desperate airlines

are to reduce weight in order to save up on fuel. This is where a flight trajectory

optimization with emphasis on fuel becomes really important. The existing flight

planning techniques work in a way which is convenient to use but are clearly sub-

optimal. A vertical profile for the flight and cruise flight are planned independent of

each other. By very nature of this technique the planning is not globally optimal.

Combined with all of the Air Traffic regulations/restrictions and other constraints

in place, what we get is an inefficient flight path. Hence, there is a urgent need to

develop an efficient method to come up with an optimal flight path.
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1.1 Problem Statement

The aim of this work is to develop a very efficient and flexible numerical method to de-

termine an optimal flight trajectory which is realistic for commercial flights. It should

be able to solve different types of optimization problem (like the 2-Dimensional level

flight, 2-Dimensional vertical profile planning and a complete 3-Dimensional flight

trajectory optimization problem). To have a realistic flight planning process one has

to incorporate all of the constraints imposed on a flight. The most basic and obvious

constraint is to model the flight dynamics and performance. Air traffic control en-

forces constraints for a commercial flight, to follow certain flight procedures specially

during takeoff and landing. There could be possible set of waypoints to be followed

during a flight or certain restricted airspace to be avoided. And one also places restric-

tions on certain flight maneuvers to keep in mind of passenger comforts. An efficient

flight planning algorithm is expected to handle any or all of these constraints while

solving for a flight path. Also for an efficient flight planning process it is of utmost

importance to be able to incorporate weather, mainly the latest available wind models.

The solution obtained has to efficient and reliable. Currently the flight planning

procedure involves two steps. First the vertical profile of the flight is obtained via a

2 Dimensional optimization and then the level flight optimization problem is solved

separately. Even though the level flight portion of the flight is the major part of the

entire flight duration, by its very nature this is a sub-optimal solution. It is highly

desirable to have one consistent solution and a process where one can do a complete 3

Dimensional flight trajectory optimization, where the 2 Dimensional level flight and

vertical profile just becomes a special case of the solution obtained.
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1.2 Key Contributions

It is aimed to show that graph method implementation for commercial aircraft tra-

jectory optimization can be effectively used to solve various problem formulations.

There is no difference in implementation of 2-D vertical, horizontal flight profile or

the full 3-D model. Initial guess does not play any part in the solution structure

and the method always yields an absolute minimum, which means convergence is

guaranteed. If the algorithm does not find a solution then it is safe to assume that a

solution does not exist. The method can accommodate as many constraints as needed

without increasing the runtime (the runtime may actually decrease as the number of

constraints increases). In addition, the wind model to be incorporated can be any

linear or non-linear function or in fact does not even have to be continuous. A very

general wind field can be used without any simplifications. Numerical simulations are

presented for two cases: horizontal flight planning and vertical profile planning.

1.3 Outline

The thesis is organized in the following way:

• Chapter 2 briefly describes flight planning process and commercial flight proce-

dures.

• Chapter 3 provides a history of previous relevant work and literature survey.

• Chapter 4 describes the equations of motion for an aircraft using the point mass

model for trajectory optimization.

• Chapter 5 describes formally the problem statement we attempt to solve and

describes in details the solution strategy used.
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• Chapter 6 presents the results of all the simulations performed for horizontal

and vertical flight optimization.

• Chapter 7 concludes the thesis with discussions and future work recommenda-

tion.



Chapter 2

Flight Planning

The process of producing a flight plan to describe the trajectory of a proposed flight

is called flight planning. It basically involves coming with an estimate of amount

of fuel required for the flight and the trajectory of flight, describing the route to

be taken to reach the destination safely, which complies with the air traffic control

procedures/regulations. Commercial airlines would wish to plan the trajectory in

such a way that it would minimize a certain cost index.

The procedure of coming up with a flight plan is highly dependent on a lot of fac-

tors and is very problem specific. It depends on specific origin-destination pair, type

of aircraft being used and weather forecast. Flight planning requires accurate weather

forecasts so that fuel consumption calculations can account for the fuel consumption

effects of head or tail winds and air temperature. Producing an optimal flight plan

even for a given origin-destination pair, a specific aircraft and initial weight, is never

a one time process. The air temperature affects the efficiency/fuel consumption of

aircraft engines. The wind may provide a head or tail wind component which in

turn will increase or decrease the fuel consumption by increasing or decreasing the

air distance to be flown. Hence, accurately updated weather forecast plays a crucial

role in coming up with an optimal trajectory.

Furthermore, it is required as per safety procedures to carry fuel beyond the

6



2.1. Commercial flight procedures 7

minimum needed to fly to the specified destination. Under the supervision of air

traffic control, aircraft flying in controlled airspace must follow predetermined routes

known as airways, even if such routes are not as economical as a more direct flight.

Within these airways, aircraft must maintain flight levels, specified altitudes usually

separated vertically by 1000 or 2000 feet, depending on the route being flown and

the direction of travel. When aircraft with only two engines are flying long distances

across oceans, deserts, or other areas with no airports, they have to satisfy extra

safety rules to ensure that such aircraft can reach some emergency airport if one

engine fails. Rate of fuel burn depends on ambient temperature, aircraft speed, and

aircraft altitude, none of which are entirely predictable. Rate of fuel burn also depends

on airplane weight, which changes as fuel is burned.

Coming up with an accurate optimized flight plan for commercial airlines is by

itself a big industry. Producing an accurate optimized flight plan requires a large num-

ber of calculations (millions), so commercial flight planning systems make extensive

use of computers . Some commercial airlines have their own internal flight planning

system, while others employ the services of external planners. While developing a

software tool to plan flight trajectory, it is necessary to incorporate commercial flight

procedures followed. They add in a lot more constraints to the flight path. These are

discussed in the folloring section.

2.1 Commercial flight procedures

In a realistic commerical aircraft flight, the complete trajectory is broken into series of

flight segments, mainly broken into phases as shown in figure Figure 2.1. Each of these

phases in turn include several flight segments, where each segment can be defined by

control objectives and termination conditions designed to be flyable. Mathematically,

each flight segment can be described by two constant control variables selected from
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Figure 2.1: Complete trajectory for an aircraft from takeoff to landing

among engine thrust setting, Mach number or calibrated airspeed, and altitude rate

or flight path angle [5]. Furthermore airline specifications often combine a number

of segments in a specified order to form certain profiles. A lateral profile can be de-

fined for an aircraft flying level and turning at constant bank angle using waypoints.

Aircraft take off and descent is divided into a sequence of segments defining a ver-

tical profile. Each vertical flight segment is defined by choosing exactly two control

objectives, at most one from each category. This either explicitly or implicitly de-

fines how the aircraft pitch and thrust are controlled. For example, choosing constant

Mach and idle thrust defines a descent segment that control speed using aircraft pitch.

2.1.1 Lateral profile

Lateral profile of a flight usually describes the level flight portion. The aircraft makes

turns at a constant bank angle. A lateral profile is usually described by a sequence of
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waypoints (Area Navigation (RNAV)). Most waypoints are classified as compulsory

reporting points, i.e. the pilot (or the onboard flight management system) reports the

aircraft position to air traffic control as the aircraft passes a waypoint. There are two

main types of waypoints. A named waypoint appears on aviation charts with a known

latitude and longitude. Such waypoints over land often have an associated radio

beacon so that pilots can more easily check where they are. Useful named waypoints

are always on one or more airways. A geographic waypoint is a temporary position

used in a flight plan, usually in an area where there are no named waypoints, e.g.

most oceans in the southern hemisphere. Air traffic control require that geographic

waypoints have latitudes and longitudes which are a whole number of degrees.

2.1.2 Vertical profile - SID & STAR

After take-off an aircraft follows a Departure Procedure (SID or Standard Instrument

Departure) which defines a pathway from an airport runway to a waypoint on an

airway, so that an aircraft can join the airway system in a controlled manner. Most

of the climb portion of a flight will take place on the SID. Although a SID will keep

aircraft away from terrain, it is optimized for ATC route of flight and will not always

provide the lowest climb gradient. It strikes a balance between terrain and obstacle

avoidance, noise abatement (if necessary) and airspace management considerations

Before landing an aircraft follows an Arrival Procedure (STAR or Standard Ter-

minal Arrival Route) which defines a pathway from a waypoint on an airway to an

airport runway, so that aircraft can leave the airway system in a controlled man-

ner. STAR usually covers the phase of a flight that lies between the top of descent

from cruise or en-route flight and the final approach to a runway for landing. Nor-

mally that final approach starts at the so-called Initial approach Fix (IAF). A typical

STAR consists of a set of starting points, called transitions, and a description of

routes (typically via waypoints) from each of these transitions to a point close to the
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Figure 2.2: Descent profile for a commercial aircraft

destination airport. There the aircraft can join an instrument approach (IAP) or will

be vectored for a final approach by the APP control. Not all airports have published

STARs. However, most relatively large or not easily accessible (for example, in the

mountainous area) airports do. Sometimes several airports in the same area share

a single STAR; in such case, aircraft destined for any of the airports in such group

follow the same arrival route up until reaching the final waypoint, after which they

join approaches for their respective destination airports.

2.1.3 Conventional descent approach

With the conventional aircraft descent, an aircraft would be given clearance by the

air traffic control from the bottom level of the holding stack (normally an altitude of

6000 to 7000 feet) to descend to an altitude of typically 3000 feet. The aircraft would

then fly level for several miles before intersecting the final 3 degree glidepath to the

runway. During this period of level flight, the pilot would need to apply additional

engine power to maintain constant speed.

As an example, a certain type of descent profile is described. A conventional
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No. Segment Type Integration Variables Constant Controls Capture variables

1 Cruise s ḣ = 0, M s
2 Constant Deceleration s, V h M = Md

3 Constant Mach s, h M = Md Vcas = Vcasd
4 Constant Vcas s, h Vcas = Vcasd h = 10,000 ft
5 Level Deceleration s, V h = 10,000 ft M,Vcasors

Table 2.1: Flight Segments in a Descent Profile

Figure 2.3: Comparison between a conventional approach and CDA at the London
Heathrow Airport

descent profile can be described by a series of segments. Each segment ends and

next segment begins when a certain scalar condition is met. These conditions are

called capture or termination conditions [5]. In general, these can be either distance,

speed, altitude, time etc. A nominal descent trajectory pattern is shown in the figure

Figure 2.2. The first segment is the constant Mach Mc and constant altitude hc

segment until the cruise reduction point (CSR, the beginning of the last segment of

the cruise phase) is reached.
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2.1.4 Continuous Descent Approach

In contrast to a conventional descent approach, when a continuous descent approach

(CDA) is flown, the aircraft stays higher for longer, descending continuously from

the level of the bottom stack (or higher if possible) and avoiding any level segments

of flight prior to intercepting the 3 degree glidepath (figure Figure 2.3). Such an

approach would require significantly less engine thrust than prolonged level flight,

hence a significant fuel savings can be expected for the final arrival phase of the

flight. Less engine thrust also means lesser emissions and because the aircraft flying

a CDA is higher above the ground for a longer period of time, the noise impact on

the ground is reduced in certain areas under the approach path.

In a flight demonstration test, conducted by Boeing and MIT at the Louseville

aiport, such a procedure was shown to reduce the peak level noise at several locations

in the city and also showed a fuel savings of 400-500 lb [1]. However, widespread

implementation of these procedures has been limited by the capabilities of both air

traffic controllers and air traffic control (ATC) automation. For example, because it is

difficult to predict the future position of an aircraft when its speed varies significantly,

air traffic controllers typically instruct all aircraft to fly a staged approach, where at

each stage the aircraft maintain a common altitude and speed. Whereas this greatly

reduces the complexity of the tasks the controllers must perform, it also limits the

options available to procedure designers. Most of the flight tests were conducted at

very low traffic times to ease the controllers separation surveillance effort.



Chapter 3

Review of the Literature

Proposed in 1931, the Zermelo’s Navigation Problem was the first posed optimal

control problem posed [6]. The problem was to find an an optimal path for a boat

navigating in a water body in presence of water curents and wind. Without con-

sidering any current or wind or any such external force, the optimal control is to

follow a straight line segment from origin to destination. But otherwise, the optimal

path is in general never the line joining origin and destination. The same problem

was formulated for an aircraft and calculus of variation aproach was used to solve it

assuming a flat earth. Bryson and Ho. later developed a solution techinque called

neighbouring optimal control (NOC) to come up with a solution for Zermelo’s prob-

lem [7]. The technique of neighboring optimal control (NOC) produces time-varying

feedback control that minimizes a performance index to second order for perturba-

tions from a nominal optimal path. This technique was later extended to handle

cases of parameter change in the system dynamic model [8]. This extension is used

to develop an algorithm for optimizing horizontal aircraft trajectories in general wind

fields using time-varying linear feedback gains. The minimum-time problem for an

airplane traveling horizontally between two points in a variable wind field (a type of

Zermelo problem) was used to illustrate the above technique. The NOC solution was

derived analytically for the case where the wind field was modeled as a constant wind

13
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shear in the cross-track direction.

Jardin and Bryson further extended the neighboring optimal control (NOC) tech-

nique for computing minimum-time paths through general wind fields by modeling

winds along a nominally straight-line path as additional system states [9]. This

advancement, referred to as Neighboring Optimal Wind Routing (NOWR), allowed

the neighboring optimal control gain solution to be parameterized for different wind

conditions and different origin/destination pairs. The winds were modeled at an ar-

bitrary number of discrete points along the nominal great-circle route so that gains

are computed for the wind perturbations at each point. Gains are computed once

offline and then applied to a wide variety of trajectories between different locations

at different altitudes and at different flight speeds. Jardin further demonstrated how

to apply the solution to flights on the sphere through coordinate rotations and nor-

malizations and presented analytical solutions for the neighboring optimal gains. In

2010, Jardin and Bryson described two methods to solve a minimum time flight path

at high altitude in presence of strong horizontal winds [10]. The first method was

using nonlinear feedback (dynamic programming) solutions for minimum-time flight

paths. A Zermelo Problem for arbitrary winds was extended from a flat earth model

to a spherical earth model as a two-state problem (latitude and longitude) with one

control (heading angle). The second method is based on an analytical neighboring

optimal control solution that computes neighboring optimal heading commands as a

function of the winds along a nominal flight path.

Most of the work mentioned above deals with the cruise portion of the flight.

Some of them even assume constant speed throughout the flight. The cruise flight

being the major portion of a flight, this has indeed been research topic with most of

the works done in flight trajectory optimization, beginning with a series of papers by
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Zagalsky et al.,[11] Schultz and Zagalsky [12], Speyer [13] and [14], and Schultz [15].

In Ref. [11] the authors examined the long-range optimal aircraft cruise problem with

the energy-range model. Speyer in 1976 [14] proved using second-order variational

analysis and a frequency-domain version of the classical Jacobi (conjugate point) op-

timality condition that the steady-state cruise for a long time span is non-optimal

with respect to fuel economy. In 1989 P.K.Menon [16] analyzed the long range cruise

problem using point mass and an energy model and showed that the steady state

cruise exists as central member along with several other oscillatory extremals. There

has been a constant mention in the literature about fuel efficiency of periodic flights

- [17], [18] and [19].

Although not as significant as the cruise portion, the climb and the descent por-

tion of the flight has also been studied and optimal strategies were proposed. In 1975,

A. Chakravarty in 1983 introduced the concept of an optimal cruise descent [20]. Op-

timal results were compared with the conventional strategies of constant Mach, Vcas

and flight path angle descent segments. The effects of wind on cost of delay was

also discussed. In [21], representative minimum-fuel flight paths of various types are

computed for a commercial jet transport close to the terminal area. [22] studies the

characteristics of optimum fixed-range trajectories whose structure is constrained to

climb, steady cruise, and descent segments by using optimal control theory.

In 2002, Clarke et al. designed and flight-tested a Continuous Descent Approach

(CDA or also known as OPD - optimized descent approach) procedure for UPS-

operated Boeing B767-300 aircraft at the end of the nightly UPS arrival bank at

Louisville International Airport [23]. This was mainly designed as a noise abatement

procedure and it was shown to reduce the A-weighted peak noise level at seven loca-

tions along the flight path by 3.9 to 6.5 dBA. The CDA procedure was also shown
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to reduce the flight time in the terminal area of the Boeing B767-300 aircraft used

in the test by up to 100 seconds relative to the nominal approach procedure, and

the corresponding fuel burn by up to 500 pounds [23]. However, widespread imple-

mentation of CDA has been limited by the capabilities of both air traffic controllers

and air traffic control (ATC) automation. Because it is difficult to predict the future

position of an aircraft when its speed varies significantly, air traffic controllers typ-

ically instruct all aircraft to fly a staged approach, where at each stage the aircraft

maintain a common altitude and speed. A lot of variations of CDA have also been

studied. A tailored arrival was designed to accommodate CDA under constrained

airspace [24]. A tailored arrival creates a four dimensional continuous descent from

cruise altitude to the runway. Demonstrations of oceanic arrivals at San Francisco

(SFO) have successfully demonstrated significant fuel savings. Since 2002, significant

research has gone into studying practical implementations of CDA, its variations and

comparisons with current procedures and its efficiency - [25], [26], [27], [28], [29] and

[30].

Most trajectory optimization schemes use calculus of variation or optimal control

theory which are continuous time methods. Discrete methods were also used as early

as 1950’s. Dixon Speas formed a small company to serve clients in the airline industry

[]. One of his services was to plan minimum-time paths for flights over the Atlantic

Ocean. His engineers used discrete dynamic programming, dividing the path into 15

to 20 regions and using high altitude wind data from weather balloons. In the 1970s,

Lou Reinkins at Lockheed started a flight planning service for airlines and private

aircraft for flights in the United States. Starting in the 1980s, Jeppesen JetPlan did

the same thing for the airlines and private pilots and included international flights.

Due to large runtime and memory management issues, discrete search strategies have

seldom been used to plan aircraft trajectories. Discrete algorithms have mainly been
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used in robotics and UAV path planning in presence of obstacles. In [31], Sellier

discusses the use of discrete search methods for real time flight path optimization. It

also presents discrepancies and inefficiencies of the cost index concept which is still

currently in use in the most advanced flight management systems. Mixed integer

linear programs have also been used to solve for real time trajectory planning for

UAV’s [32] and for trajectory planning with collision avoidance [33]. Iris Yang and

Yiyuan in [34] present a discrete search strategy potential real-time generations of

four-dimensional trajectories for a single autonomous aerospace vehicle amid known

obstacles and conflicts.

There are surplus examples to show the popularity of use of discrete methods like

Dijkstra’s algorithm or dynamic programming in the context of UAV’s. But they

have rarely been used to plan commercial aircraft trajectories. In this work, we plan

to show the effectiveness and flexibility of A* algorithm in incorporating the large

number of trajectory constraints placed on a commercial aircraft by the air traffic

regulations.



Chapter 4

Equations of Motion

4.1 Three Dimensional point mass model

Point mass equations of motion on a flat non-rotating earth are typically adequate to

model subsonic commercial flight for trajectory planning purposes. A constant gravity

model is assumed along with atmosphere being modelled using International Standard

Atmosphere. In addition, the aircraft is assumed to fly in an atmospheric wind field

comprising of all three components that are functions of x, y, h cooridnates. This

paper discusses trajectory planning for three different cases: a full three dimensional

flight plan, two dimensional horizontal flight profile and a two dimensional vertical

flight profile. Equations of motion for a three dimensional point mass model are listed

below [35]. Aircraft states is defined by airspeed V , heading angle ψ, air relative flight

path angle γ, mass of the aircraft, mass of the aricraft m and (location) x, y and h

coordinates. The control variables used here are Thrust T , bank angle µ and lift

coefficient CL.

X̄ = [V ψ γ x y h m]T (4.1)

18
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u = [T φ CL]T (4.2)

In reality, there is a dynamics involved with how the control parameters varies and

they have a response time typically on the order of a few seconds. Since we are looking

at commercial flight trajectories which last on the order of hours, it is safe to assume

that the control variables can be changed instantenously and hence we neglect any

dynamics involved with control variables.

mV̇ = T −D−mg sin γ −mẆx cos γ sinψ−mẆy cos γ cosψ−mẆh sin γ (4.3)

mV cos γψ̇ = L sinφ−mẆx cosψ +mẆy sinψ (4.4)

mV γ̇ = L cosφ−mg cos γ+mẆx sin γ sinψ+mẆy sin γ cosψ−mẆh cos γ (4.5)

ẋ = V cos γ sinψ +Wx (4.6)

ẏ = V cos γ cosψ +Wy (4.7)
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ḣ = V sin γ +Wh (4.8)

Where Ẇx, Ẇy, Ẇh are the wind acceleration term along the XYH axes.

4.2 Vertical profile: point mass model

The above equations capture full 3-Dimensional point mass model for an aircraft.

Starting from these set of equations we can arrive at the simplified 2-Dimensional

vertical and horizontal flight equations. The following set of equations capture vertical

flight trajectory where the lateral route is given. Aircraft state is defined by airspeed

V and air relative flight path angle γ. Location of an aircraft is specified by its

distance from destination s and the altitude h. The controls are speed V and the

flight path angle γ.

mV̇ = T −D −mg sin γ −mẆs cos γ −mẆh sin γ (4.9)

mV cos γ = L−mg cos γ +mẆs sin γ −mẆh cos γ (4.10)

ṡ = V cos γ +Ws (4.11)

ḣ = V sin γ +Wh (4.12)
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4.3 Two Dimensional horizontal flight: point mass

model

Assuming a horizontal level flight at a certain altitude, the following set of equations

represent a 2-Dimensional horizontal flight. Aircraft state is defined by airspeed V

and heading angle ψ with controls as V and bank angle φ. Location of an aircraft is

specified by its x and y coordinates.

mV̇ = T −D −mẆx sinψ −mẆy cosψ (4.13)

mV ψ̇ = L sinφ−mẆx cosψ +mẆy sinψ (4.14)

L cosφ = mg (4.15)

ẋ = V sinψ +Wx (4.16)

ẏ = V cosψ +Wy (4.17)

The rate at which fuel burnt is assumed to be proportional to the thrust specific fuel

consumption (tsfc) of the engine. And the CL and CD values are calculated for a level
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flight using the lift, drag, and Mach equations:

ṁf = −tsfc
g
T (4.18)

L =
1

2
ρV 2SCL (4.19)

D =
1

2
ρV 2S(CD0 +KC2

L) (4.20)

M =
V

a
(4.21)

CD0 = CD0 (M) (4.22)

K = K (M) (4.23)

The performance index or the cost function that is being optimized is chosen to be a

linear combination of time and mass of fuel spent.

Cost = Ctt+ Cfmf (4.24)
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Air Traffic Controller and pilots often use variables such as Mach number, calibrated

airspeed and pressure altitude to specify flight trajectories. The expression for cali-

brated airspeed is given next:

Vcas =
√

5asl

( p

psl

[(
V 2

5a2
+ 1

)7/2

− 1

]
+ 1

)2/7

− 1

1/2

(4.25)



Chapter 5

Problem Statement and Solution
Strategy

5.1 Problem Statement

The flight planning problem is to determine the flight trajectory variables from an

initially specified state to a final specified state while satisfying all the constraints

and minimizing the performance index.

As mentioned earlier, constraints can be of various types. There are interior path

constraints, which specifies one or more waypoints the aircraft has to flyover. While

the location of the waypoint is specified, the state may or may not be. Additional

constraints also include certain unusable airspace, like a no fly zone or region of high

turbulence or bad weather, which is to be avoided. Air traffic control has certain

procedures to be followed for take off and landing which are broken into segments

with one or more state variables being constant and have certain capture conditions

(to determine when the switch to next segment is made) which were discussed in

a previous section. And at last we have restrictions on certain state variables (or

rate of change of state variables) which account for the passenger comfort level for a

commercial flight. These constraints are mathematically formulated for specific cases

24
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in the numerical simulations section.

While solving such a problem, the solution is expected to be numerically efficient

& flexible and of course satisfies all the given constraints. A methodology is needed

which can solve a wide range of problems which includes take off and landing proce-

dure’s.

5.2 Optimization Technique

The trajectory optimization problem can be solved using continuous or discrete meth-

ods. There are four general methods to solve an optimization problem.

• Parametric optimization involves minimization of a certain performance in-

dex which is a function of certain parameters subject to certain constraints.

These parameters can take on any real values or integers or a combination of

both. Solutions techniques are well known and include approaches like com-

binatorial optimization, linear and non-linear programming and mixed integer

programing.

• Continuous time optimal control problem deals with problem with min-

imization of performance indexes which are functionals of state and control

variables constrained by certain dynamic equations and other constraints. Cal-

culus of variation, Pontryagin’s minimum principle and dynamic programming

can be used to describe theoretical necessary and sufficient conditions for a min-

imum to exist which lead to a bunch of ordinary or partial differential equations

which can be solved to obtain a solution. Such problems can also be converted

to a parameter optimization problem by the use of methods like collocation
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technique and pseudo spectral methods.

• Discrete time optimal control problem seeks to determine a sequence of

optimal control values at certain discrete times by minimizing a performance

index. Control values to be solved for are finite in number. Although this is

a discrete time framework, the states can assume continuous values at these

discrete time values.

• Discrete search technique poses the problem of optimization as a discrete

time and discrete state problem, meaning, the states can assume certain discrete

values only which are finite in number. This essentially converts the problem to

a shortest path search problem which can be solved using graph search methods

like Dijkstra’s algorithm, A* and Dynamic programming.

In general, in a continuous framework, the system state values can take infinitely

possible values and hence the trajectory generated is smooth and continuous. But an

optimal solution obtained may not be a globally optimal and could depend on the

initial guess. Convergence of such a solution is not guaranteed and its complexity

only increases with more constraints.

A discrete search method by its very nature is suboptimal. But within the frame-

work of discrete search, the solution obtained is globally optimal. The solution ob-

tained will not be smooth and hence may be not directly flyable. In addition the

performance index has to satisfy the property of being additive. But such a method

has its own significant advantages which is exploited in this paper. A discrete method

described in rough words is an optimized brute force search for an optimal trajectory

over a large, but finite number of possibilities. All the states are discretized and take

only certain values. The search for a optimal trajectory is over a finite number of

system variables, and hence it guarantees the completeness of the search. In other
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words, if the method does not find a solution then it can be concluded that there

does not exist one. There exists a theoretical guarantee of convergence to an optimal

solution. But the most important aspect of a discrete framework is that it has the

capability of implementing a large numbers of constraints quite easily. In fact, larger

the number of constraints lesser is the number of possible solutions and hence easier

the problem becomes to solve.

For the problem considered here, the solution strategy is expected to handle all

kinds of constraints and should be able to incorporate all of the restrictions imposed

by air traffic control. Keeping this in mind, we chose attempt to solve this problem

by using a discrete search technique.

5.3 Shortest path routing problem

A graph refers to a collection of vertices (or nodes) and a collection of edges that

connect pairs of vertices. Graphs are often used to model networks in which one travels

from one point to another. As a result, a basic algorithm problem is to determine the

shortest path between nodes in a graph. This is more popularly known as shortest

path routing problem. Formally put, the problem of shortest path routing problem

is the problem of finding a path between two vertices (or nodes) such that the sum

of weights of its constituent edges is minimized. It is also called single pair-shortest

path problem, as opposed to single-source shortest path problem, single-destination

shortest path problem and all-pairs shortest path problem, which deal with multiple

source or destinations.

Graphs are simple to define, we just take a collection of things and join them by

edges. The maps of routes served by airline carrier naturally form a graph: airports

are the nodes and there is edge between two airports if there exists a direct flight

between the tow airports. A rail or road network, collection of computers connected
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via a communication network, the world wide web and a social network are few of

the many examples which can also be modeled as a graph. In all of the examples

stated so far the the nodes and edges physically exist. A shortest path between a

given source-destination pair along a road network can be physically modeled as a

graph by using any intersection of roads as nodes and roads themselves as edges along

which we travel. Shortest path algorithms have also applied in aerospace engineering,

specially finding optimal paths in a known terrain with obstacles for unmanned aerial

vehicles [34].

The theory and solutions for shortest path problem is quite old and is very mature.

The well known algorithms for solving this problem are:

• Dijkstra’s algorithm: solves the single-pair, single-source, and single-destination

shortest path problems.

• Bellman-Ford algorithm: solves the single source problem if edge weights may

be negative.

• A* search algorithm: solves for single pair shortest path using heuristics to try

to speed up the search.

• Floyd-Warshall algorithm: solves all pairs shortest paths.

• Johnson’s algorithm: solves all pairs shortest paths, and may be faster than

Floyd-Warshall on sparse graphs.

• Perturbation theory: finds (at worst) the locally shortest path.

The problem under consideration here is to find an optimal path between two

specific nodes for an aircraft, which is a single-pair shortest path problem with non-

negative edge weights. For such a formulation, A* search algorithm seems the best

applicable method. To understand how an A* algorithm works, we first explain the

working of Dijkstra’s algorithm and extend that to A*.
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Figure 5.1: Snapshot of execution of Dijkstra’s algorithm

5.3.1 Dijkstra’s Algorithm

A simple greedy algorithm to solve single-source shortest-paths problem called Di-

jkstra’s algorithm was conceived by a Dutch computer scientist Edsger Dijkstra in

1956 and was first published in 1959 [36]. For a given source vertex in the graph,

the algorithm finds the path with lowest cost (i.e. the shortest path) between that

vertex and every other vertex. It can also be used for finding costs of shortest paths

from a single vertex to a single destination vertex by stopping the algorithm once

the shortest path to the destination vertex has been determined. For example, if the

vertices of the graph represent cities and edge path costs represent driving distances

between pairs of cities connected by a direct road, Dijkstra’s algorithm can be used

to find the shortest route between one city and all other cities.

Dijkstras algorithm works by visiting vertices in the graph starting with the ob-

jects starting point. It then repeatedly examines the closest not-yet-examined vertex,

adding its vertices to the set of vertices to be examined. it expands outwards from

the starting point until it reaches the goal. Dijkstras algorithm is guaranteed to find
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Dijkstra’s Algorithm (G, l)

Let S be the set of explored nodes

For each u ∈ S, store a distance d(u)

Initially S = {s} and d(s) = 0

While S 6= V

Select a node v ∈ S with at least one edge from S for which

d
′
(v) = mine=(u,v):u∈S d(u) + le is as small as possible

Add v to S and define d(v) = d
′
(v)

End While

Table 5.1: Dijkstra’s Algorithm pseudo code

a shortest path from the starting point to the goal, as long as none of the edges have a

negative cost. In the following diagram, the pink square is the starting point, the blue

square is the goal, and the teal areas show what areas Dijkstras algorithm scanned.

The lightest teal areas are those farthest from the starting point, and thus form the

frontier of exploration Figure 5.2.

The pseudo code for Dijkstra’s algorithm is given in table [37]. The algorithm

maintains a set S of vertices u for which the shortest path from the source s has been

determined; which is the ’explored’ part of the graph. Initially S = {s}, and d(s) = 0

(d being the cost function). Now for every node v ∈ V − S, the shortest path is

determined that can be constructed by traveling along a path through the explored

part S to some u ∈ S, followed by the single edge (u, v). That is, a node v ∈ V − S

is chosen for which the quantity

d
′
(v) = mine=(u,v):u∈S d(u) + le (5.1)
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is minimized, and d(v) is defined to be d
′
(v).

5.3.2 Performance and runtime

An upper bound of the running time of Dijkstra’s algorithm on a graph with edges

E and vertices V can be expressed as a function of |E| and |V | using Big-O notation.

For any implementation of set Q the running time is O(|E|.dkQ+|V |.emQ), where dkQ

and emQ are times needed to perform decrease key and extract minimum operations

in set Q, respectively. The simplest implementation of the Dijkstra’s algorithm stores

vertices of set Q in an ordinary linked list or array, and extract minimum from Q

is simply a linear search through all vertices in Q. In this case, the running time

is O(|V |2 + |E|) = O(|V |2). For sparse graphs, that is, graphs with far fewer than

O(|V |2) edges, Dijkstra’s algorithm can be implemented more efficiently by storing

the graph in the form of adjacency lists and using a binary heap, pairing heap, or

Fibonacci heap as a priority queue to implement extracting minimum efficiently. With

a binary heap, the algorithm requires O((|E|+ |V |) log |V |) time (which is dominated

by O(|E| log |V |), assuming the graph is connected), and the Fibonacci heap improves

this to O(|E|+ |V | log |V |).

5.3.3 A* shortest path algorithm

A* is chosen as the discrete search method we would use to solve trajectory optimiza-

tion problem. A* is a shortest path graph search algorithm. It works in a very similar

way as Dijkstra’s algorithm but in addition, what makes A* an optimized search is

that it uses a heuristic cost function to guide itself to the goal. The actual cost asso-

ciated with a given node, say Nc, is the cost of moving from source to this node and

the heuristic is an approximate estimate of moving from node Nc to the goal. The

successor point is chosen by minimizing the sum of the actual cost plus the heuristic
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cost, which reduces the burden of searching through unnecessary nodes. The heuristic

can be used to control the behavior of A*. If the heuristic is set to be equal to zero

the A* algorithm behaves exactly like Dijkstra’s algorithm and essentially ends up

searching through all possible points before reaching the goal (in essence, Dijkstra’s

algorithm is the worst case runtime scenario for A* implementation). If the heuristic

is less than or equal to the optimal cost of moving from current node to goal then

it searches through less number of nodes before reaching the goal. If it is exactly

equal to the optimal cost then the algorithm searches through only the nodes along

the optimal path. Hence, the closer the heuristic is to the optimal cost the faster the

algorithm is. Care should taken that heuristic should not overestimate the optimal

cost or else the resulting trajectory might turn out be a suboptimal path. If, g(N)

defined as the cost of traveling from source to the node N and h(N) is the heuristic

estimated cost of traveling from node n to goal, each time through the main loop, A*

examines the vertex n that has the lowest f(N) = g(N)+h(N). The proper choice of

a heuristic function can effectively reduce the amount of work the algorithm does and

critically effects the convergence rate. The heuristic is so chosen such that it does not

overestimate the optimal cost and should be zero at the goal. The time term of the

heuristic is chosen as the shortest time to reach goal from the current location, which

is flying and along the line joining current node and the goal at maximum speed. No

Heuristic for fuel was used and was assumed to be zero. More complicated Heuristics

can be modeled to improve the runtime of the algorithm. It is to be noted that as

long as the heuristic does not overestimate the optimal cost the choice of heuristic

does not affect the solution generated, it only affects the runtime of the algorithm.

Figure 5.3 shows the search space of A* while solving the same problem which was

solved by using Dijkstra’s algorithm (Figure 5.2). It can be clearly seen that A*

searches over much fewer nodes than Dijkstra’s making it an optimized search.
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Figure 5.2: Working of Dijkstra’s algorithm

Figure 5.3: Working of A* algorithm
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5.4 A* applied to flight trajectory optimization

When trying to find a shortest path for an aircraft between two given points in space,

the first step is to build a graph. Consider a simple case where a robot moves along

the ground in a two dimensional space. The only states of the system is its x and y

coordinates. Therefore to build a graph, the x−y space is broken into discrete values

by forming a grid. Any possible combination to x and y forms a node or vertex of

the graph.

The three dimensional space is divided into uniform or non-uniform grids. Every

grid point, modeled as a node in the graph, specifies a certain state value. Set of

neighboring nodes of node in space is defined as a reachable set of that node, which

consist of all the immediate neighbor nodes. Edges of the graph are defined between

every node and its neighbors.

On similar lines, to find an optimal trajectory for an aircraft between two spec-

ified locations, the states are divided into discrete points and modeled as a graph

with nodes and edges. A basic x, y, h coordinate system is used where y axis points

to the north and x axis points towards the east. The three other aircraft states are

V (or equivalently M), ψ & γ representing the velocity (or Mach number), head-

ing and flight path angle respectively (heading angle is measured clockwise from the

north). The aircraft state is broken into discrete values, forming a six dimensional

grid system. Which means, every node in space is associated with a specific x, y and

h coordinate and aircraft state M , ψ and γ at that point (Note that two nodes can

have same location in the space but are different in the sense that they are associated

with different states).
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x = xi i ∈ [1, Nx] (5.2)

y = yj j ∈ [1, Ny] (5.3)

h = hk k ∈ [1, Nh] (5.4)

M = Ml l ∈ [1, NM ] (5.5)

ψ = ψm m ∈ [1, Nψ] (5.6)

γ = γn n ∈ [1, Nγ] (5.7)

If N represents a node then:

Nijklmn,p = (xijklmn,p, yijklmn,p, hijklmn,p,Mijk,l, ψijklmn,p, γijklmn,p : tijklmn,p) (5.8)
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where: tijklmn,p is minimum time of arrival at that node.

5.4.1 Generation of successor nodes

To allow for sufficient freedom in trajectory generations, successor points are chosen

from neighboring grid points in all directions. If N c
ijklmn,p represents the current

node, then the set of neighboring points with depth nd around N c
ijklmn,p define the

immediate reachable set R of node N :

R[N s
ijklmn,p] = [Ni′j′k′l′m′n′,p′ : −nd ≤ (i− i′), (j − j′), (k − k′) ≤ nd] (5.9)

n(R) =
[
(2nd + 1)3 − 1

]
NMNψNγ (5.10)

where nd (named as search depth) is an integer parameter that defines the range of

the neighborhood of current node and Equation (5.10) gives the number of elements

in this set for a three dimensional case. From the set of neighboring nodes around

the current node, successor nodes are chosen such that they are outside any region of

avoidance, line segments joining the current node and successor node are not in region

of avoidance and also satisfy all the constraints of trajectory and aircraft dynamics.

The factor nd along with the grid sizes ∆x, ∆y and ∆h determines the discrete values

of heading and flight path angle the aircraft can take Figure 5.4. As an example, let

nd = 1, and ∆x = ∆y for a horizontal flight problem. Heading angle varies from zero

to 2π (measured clockwise from north) and for nd = 1, it is easy to see that the set R

has eight nodes (figure Figure 5.4a). Hence set of discrete values of heading angle has

the elements defined in equation (5.11). Similarly if nd = 2 (figure Figure 5.4b),the
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(a) Reachable set R for nd = 1: n(R) = 8 (b) Reachable set R for nd = 2: n(R) = 24

Figure 5.4: Spatially reachable set of nodes Ns from the current node Nc for a two-
dimensional case

reachable set has twenty four nodes in it and heading angle set is given in equation

(5.12). It is easy to understand that number of elements in the set of reachable nodes

R increases by factor proportional to n3
d for a three dimensional case. Although a

higher value of nd gives more finer divisions of ψ and hence more accuracy, it increases

the runtime of the algorithm quite significantly.

nd = 1 : ψm ∈ {
mπ

4
∀ m = [0, 7]} (5.11)

nd = 2; ψm ∈ {
mπ

8
∀ m = [0, 15]} (5.12)

5.4.2 Calculating cost between two nodes

To calculate the weight of an edge is to find the cost of moving from completely

specified state to another. Since the initial and final aircraft states are completely

known, it becomes a simple two point boundary value problem. If the discrete values

of state are very finely divided, to make the calculation slightly easier, it is assumed
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that the states vary linearly with distance between the nodes and time of arrival at

a node is calculated by integrating inverse of ground speed along the distance.

The total velocity (ground speed):

V̄ =
ds

dt
= (V cos γ sinψ+Wx)̂i+ (V cos γ cosψ+Wy)ĵ + (V sin γ+Wh)k̂ (5.13)

Time taken to move a distance L:

∆t =

L∫
0

1√
(V cos γ sinψ +Wx)2 + (V cos γ cosψ +Wy)2 + (V sin γ +Wh)2

ds (5.14)

Using the assumption that states and wind vary linearly as a function of distance

between nodes, ∆t is calculated using a simple Euler integration method.The second

term of the cost function is the fuel consumption and is calculated using equation

(4.18), where the thrust specific fuel consumption is assumed to be constant for the

specified engine. The thrust required is calculated by using the state dynamic equa-

tion (4.3). The cost function is then implemented as a combination of time and fuel,

where weights can be adjusted to shift the emphasis between time to fuel.

An error that incurs in such an approximation is explained as follows. Consider

a two dimensional level flight where an aircraft is flying from current node Nc =

[xc, yc, Vc, ψc], to a successor nodeNs = [xs, ys, Vs, ψs] as shown in the figure Figure 5.5.

If we were to assume that the state ψ and V varies linearly with distance between

nodes and since the aircraft’s initial heading is not directly towards Ns, does not

follow the line joining Nc and Ns, instead takes a curvilinear path (dotted line in

figure Figure 5.5) and ends at Ns′ , where the node Ns′ = [xs′ 6= xs, ys′ 6= ys, Vs, ψs].

The difference between the two coordinates of Ns and Ns′ might not be too large

between two neighboring nodes, but over the course of the entire flight over on order
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Figure 5.5: Error in position due to approximation

of hundreds of nodes, this error adds up and will end up being significantly large.

Although the nodes were initialized at a fixed location, an easy way of getting rid of

this error completely is to think of the nodes as not being rigidly located in space.

Instead, every node is defined using fixed state (heading and speed) but the coordi-

nates depend on its predecessor node. It means to say once we have calculated xs′

and ys′ , we now assign the node Ns with these new coordinates. So, when we are

calculating the successor of Ns we begin at coordinates xs′ and ys′ instead of xs and ys.

5.5 Constraints

5.5.1 Bounds on States

Physically, the control parameters are used to change state values are thrust, bank

angle and lift coefficient. But while finding an optimal trajectory problem using A*,

we are searching over nodes with fixed state values. So, the bounds of controls need to

translated to bounds on states. The aerodynamics of the wing results in a maximum

lift coefficient (Equation (5.17)). The maximum and minimum speeds of an aircraft
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depend on the divergence Mach number and stall limits (safety factor of 20 % taken

into account) respectively (equations (5.23), (5.24)). For passenger comforts, the rate

of descent and ascent are limited, which translate to a limit on the flight path angle

(equation (5.25)). Air Traffic Control regulations specify that the calibrated airspeed

for altitudes below 10,000 ft has to be less than 250 knots.

Tmin ≤ T ≤ Tmax (5.15)

−φmax ≤ φ ≤ φmax (5.16)

0 ≤ CL ≤ CLmax (5.17)

Equation (5.9) gives us the list of immediate neighboring nodes which are defined as

nodes present in the vicinity of the current node. Nodes which do not satisfy the

dynamic constraints of the aircraft and other limitations are eliminated from this set.

If Nc and Ns are current and successor nodes respectively with,

Nc = {xc yc, hc Mc ψc γc} (5.18)

Ns = {xs ys, hs Ms ψs γs} (5.19)
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then, the successor node is chosen such that Ns satisfies the following criteria:

Vs − Vc
∆s

≤ 1

mVc
(Tmaxc −Dc −mcg sin γc) (5.20)

Vs − Vc
∆s

≥ 1

mVc
(Tminc −Dc −mcg sin γc) (5.21)

|ψs − ψc|
∆s

≤ 1

mV 2
c cos γc

L sinφmax (5.22)

Vs ≥ 1.2Vstall = 1.2

√
2mg

ρSCLmax

(5.23)

Ms ≤Mmax (5.24)

−3◦ ≤ γs ≤ 8◦ (5.25)

Vcas ≤ 250 knots ∀h ≤ 10, 000ft (5.26)
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5.5.2 Obstacles: No fly zone

Handling a no fly zone or a region of unusable airspace is the easiest to implement

in A*. A no fly zone in space can be defined by the use of any geometric shape

or a combination of shapes using x, y and h coordinates. Any node or line joining

two nodes which lies in this region is marked as an obstacle and is never considered

for evaluation by A*, thereby completely avoiding this specified region. This type

of implementation reduces the number of nodes to be considered for evaluation by

A*, and hence can only improve runtime, thus making it easy and very effective way.

Numerical simulations are provided to show the implementation of no fly zones.

5.5.3 ATC regulation

Air traffic control regulations require that any aircraft flying below 10,000 ft has to

fly with a calibrated airspeed less than 250 knots. The easiest way of handling this

constraint is by marking every node below 10,000ft with calibrated airspeed above 250

knots as an obstacle (or equivalent to an obstacle) and hence A* completely ignores

any such node.

5.5.4 Vertical profile segments

Landing and take off procedures defined by air traffic control regulations are broken

up into segments in order to emulate manual pilot procedure and create a simple

set of rules which can be issued to pilots. Hence a trajectory can be described as

a series of segments. Each flight segment can be described by two having a certain

state held constant. There are three types of variables which can be held constant:

engine control (idle or maximum thrust), speed (Vcas or M) and vertical rate (altitude

rate or inertial flight path angle). The values of the constant variables are specified

to be within constraints of ATC as well as performance limits of the aircraft. As an
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example, consider the descent profile shown in figure Figure 2.2. It has a sequence

of segments beginning with constant altitude, followed by constant Mach number Md

and constant calibrated airspeed Vcasd . The end of every segment is defined by a

capture condition. A capture condition occurs when a non-constant variable reaches

some specific value. The connecting order of the segments in a trajectory defines the

capture variables used. To simplify things, in this thesis, the interval of of occurrence

of a segment is specified by distance s. Hence a trajectory profile is specified by

sequence of segments which are in turn specified by variable s and the variable to be

held constant in that segment.

Given a profile, trajectory optimization means finding the optimal values of cap-

ture variables or the value of the variable being held constant in a every segment.

The main reason of choosing A* search algorithm to solve trajectory optimization is

its ability to handle these types of profile constraints. Incorporating flight profiles

in A* is explained as follows: A* is a search algorithm which searches over discrete

values of state.

Consider a simple climb profile shown in Figure 6.4. Each segment has a different

variable that is held constant (h, M and Vcas). The set of variables that define a

segment are the ones that are discretized to form vertices or nodes of the graph. For

each segment, the variables held constant is the variable which is broken into discrete

values. That is, the set of variables that define a constant Mach segment is given

by: (s, h, M and γ), whereas the variables that define a constant Vcas segment is (s,

h, Vcas and γ). And within a segment edges are placed only between nodes which

have the same value of the variable that defines the segment. This ensures that the

solution returned by the shortest path algorithm always follows the profile specified

and satisfies all of the segment constrains.



Chapter 6

Numerical Simulations

6.1 Performance Model

A generic commercial aircraft with the following specifications has been used to obtain

numerical results.

W0 = 10, 000 lbs (6.1)

W0

S
= 120

lb

ft2
(6.2)

Tmax,sl = 0.25W0 lbs (6.3)

Tmax =
ρ

ρsl
Tmax,sl lbs (6.4)
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tsfc = 0.725
lb

lb.hr
(6.5)

The Thrust specific fuel consumption is assumed to be independent of altitude and

speed. The drag polar is expressed in terms of parasite drag coefficient and induced

lift coefficient which in turn as assumed to be functions of Mach number [38] only

(equations (6.6)-(6.9)).

CD = CD0 (M) +K (M)C2
L (6.6)

CD0 =

 0.0123 0 < M < M1

0.0123− 0.0057z2 + 0.158z3 − 0.911z4 + 1.6178z5 M1 < M < Mmax

(6.7)

K =

 0.06056 0 < M < M1

0.06056− 0.0707z2 + 1.6097z3 − 4.843z4 + 6.4154z5 M1 < M < Mmax

(6.8)

CLmax =

 1.8000 0 < M < M1

1.8000 + 11.7z2 − 317z3 + 1432.7z4 − 2018.8z5 M1 < M < Mmax

(6.9)
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where z = M −M1 and M1 = 0.55.

Numerous simualtions are performed to show all the different features of the al-

gorithm.

6.2 Horizontal flight planning

All of the level flight simulations were performed on a map with 100 x 100 nodes

at an altitude of 8000m. The spacings along east and north directions were 1500m.

Airspeed was broken into 30 discrete points between the maximum and minimum

values given by (5.23) and (5.24) respectively. The parameter nd was chosen as 2,

which meant there were 16 different heading values (5.12).

6.2.1 A* v/s Dijkstra’s algorithm: Reduction in computa-

tional time

The Figure 6.1 shows the result of level flight optimization using A* and Dijkstra’s

algorithm. The two dimensional discrete grid points, the POD, POA, and the trajec-

tory are shown. The grid points are shown in light green and the nodes evaluated by

the algorithm are shown in darker green. The final solution of both the algorithms

are exactly the same but it is easy to note that the number of nodes evaluated by

A* (Figure 6.1a) is far less than that by Dijkstra’s (Figure 6.1b). This is because

Dijkstra’s algorithm has no heuristic and hence, it has no sense of direction. It ends

up searching almost entire search space until it reaches the destination. A* on the

other hand is much faster because it always tries to move towards the goal rather

than search through all directions.

There are other effective ways to reduce runtime while continuing to use Dijkstra’s
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algorithm. If we can identify with certainty, a reduced search space for the algorithm

to search over, then we avoid visiting nodes outside this search space because the

optimal solution is guaranteed to be within that search space. This has been demon-

strated in the Figure 6.1c. The search space is now an elliptic region rather than a

square. The ellipse is built such that the source and goal nodes are the foci, and the

eccentricity of the ellipse is determined by the aircraft turn radius in order to accom-

modate the initial and final heading constraints. Even though Dijkstra’s algorithm

does search through almost all of the nodes before terminating, the runtime is still

much lesser than that of the case of a square grid (Figure 6.1b).

6.2.2 Various Initial and terminal constraints on states

This section of results demonstrates the capability of the algorithm in handling the

initial and final constraints on states. Trajectories were found between the same POD

and POA for various combinations of initial and final constraints. The accuracy and

runtime of the algorithm depends on the grid sizing and selection of parameter search

depth ns. Figure 6.2 shows three trajectories, each with different initial and terminal

constraints.

Another important feature of the algorithm is demonstrated in Figure 6.3, which

shows the level flight trajectories for various initial and terminal constraints in pres-

ence of no-fly zone or a region of avoidance.
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(a) A* algorithm search space (b) Dijkstra’s algorithm search space

(c) Dijkstra’s algorithm using an elliptical search
space

Figure 6.1: Minimum time paths for a horizontal level flight using A*, Dijkstra’s:
Vi = 240m/s, ψi = 45o &Vf = 240m/s, ψf = 45o
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(a) Minimum time path

(b) Airspeed (c) Heading angle

(d) Non-dimensional thrust (e) Mass of aircraft

Figure 6.2: Minimum time paths for various initial and terminal conditions
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Figure 6.3: Minimum time paths in presence of a no-fly-zone/obstacle

6.3 Vertical profile flight planning

The vertical profile optimization was studied in three phases: climb, descent and full

trajectory. Finding an optimal climb or descent profile does not necessarily translate

to an optimal trajectory. But the reason it is studied separately is because they ATC

regulates most part of the climb and descent of an aircraft (in and out of an airport).

These ATC regulations are modeled physically as trajectory constraints, which can

be of various types. These are listed below:

• Bounds on trajectory variables

• Initial and terminal constraints

• Avoiding certain airspace or altitude band

• Altitude-speed constraints (ATC regulation limits the speed of an aircraft to

less than 250 knots for all altitude below 10000 ft)

• Climb and descent pattern (segmented flight profile)

For each of the phases, we demonstrate the capability of the algorithm in handling

various types of constraints. Unless specified otherwise, the discretization of state-
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Figure 6.4: A typical climb profile in the air traffic system

space used in all of the vertical profile optimization algorithms are:

Nm = 35, ∆s = 1400, ∆h = 72, Ct = 0.2, Cf = 2, ns = 2 (6.10)

6.3.1 Climb phase optimization

Here the optimization problem is to find an optimal climb path from ground to a

specified altitude (usually the cruise altitude). Three different climb profiles are

considered for optimization which are summarized below. The results of optimization

of these profiles is shown in Figure 6.7.

• The first one is an unconstrained optimization (shown in red) which means, the

ATC does not impose any restrictions on the trajectory of the aircraft.

• The second one shown in black, has an altitude-speed constraint imposed. Prac-

tically, this is a standard ATC imposed restriction which limits the calibrated

airspeed of an aircraft to 250 knots below 10,000 ft.

• The third one is a typical climb profile followed by the air traffic system in

a regulated airspace. It is described in the Figure 6.4. The aircraft here is
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constrained to follow a particular specified sequence of segments. That is, the

parameters s1, s2 and s3 are specified and the trajectory variables which describe

each segment are the parameters of optimization, i.e, γ1,h2, Vcas3 and M4. Each

segment of the profile has a different trajectory variable held constant and the

discretization of the state is done accordingly as explained in an earlier section.

The results clearly show that an unconstrained trajectory is the one which is

minimum time and minimum fuel among all the three profiles. Whereas the segmented

profile is the one that is worst performer. This goes without saying that the more

constraints you place the worse the performance. The optimal parameters that define

the segment of this profile are: h2 = 3600m, Vcas3 = 335.3Knots and M3 = 0.6775.

6.3.2 Descent phase optimization

Two types of descent profiles are considered for simulation purposes. Figure 6.5 shows

a typical descent pattern of an aircraft in the air traffic system. This follows a similar

pattern as the climb profile. The second type of descent is completely unconstrained.

And as observed in the climb phase, getting rid of the structured descent profile and

making an unconstrained descent leads to significant amount of fuel and time savings

(Figure 6.8).

6.3.3 Full trajectory optimization

A complete trajectory involves a climb, cruise and descent. Earlier section provides

the details of various types of profiles we can have for climb and descent. There are

three common practices for a cruise too. These include - constant altitude, cruise

climb and step climb. All of them are performed at constant speed. The constant al-

titude cruise and the step climb cruise are most commonly used in practice. A cruise

climb is more fuel efficient but is not used in practice because of ATC regulations (an
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Figure 6.5: A typical descent profile in the air traffic system

aircraft constantly changing altitude is difficult to keep track of and hence, it harder

for the ATC to ensure separation between aircrafts).

As in the case of climb and descent, we optimize three different types of vertical

flight profiles for a full trajectory. The first type is a completely unconstrained tra-

jectory optimization. No ATC rules are imposed and the aircraft is free to take and

descend without any procedures. The result of the optimization is shown in Fig-

ure 6.6. As it can be seen from the figure, the climb and descent occur at a constant

rate and the cruise portion is a repeated step climb. This is ideally a cruise climb,

but since the optimization technique used here is a discrete state-space version, we

see a discrete version of cruise climb.

The next two profiles we consider are more realistic with respect to air traffic

control point of view. The constraints imposed on the two profiles are mentioned

below:
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(a) Altitude profile (b) Mach number

Figure 6.6: Full vertical profile optimization for unconstrained trajectory

• Unconstrained: No ATC regulations imposed.

• Altitude - speed constraint: The calibrated airspeed below altitudes of 10000ft

has to be less than 250knots.

• Apart from the above altitude-speed constraint, the climb and descent profile

has to follow a certain structure which are similar to what was mentioned in

the climb and descent phase analysis. The cruise is restricted to be a constant

altitude phase.

The results of the optimization are shown in Figure 6.9.



6.3. Vertical profile flight planning 55

(a) Altitude

(b) Air speed (c) Mach number

(d) Calibrated air speed (e) Non dimensional thrust

(f) Lift coefficient (g) Aircraft mass

Figure 6.7: optimal climb trajectories
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(a) Altitude

(b) Air speed (c) Mach number

(d) Calibrated air speed (e) Non dimensional thrust

(f) Lift coefficient (g) Aircraft mass

Figure 6.8: Optimal descent trajectories
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(a) Altitude

(b) Air speed (c) Mach number

(d) Calibrated air speed (e) Non dimensional thrust

(f) Lift coefficient (g) Aircraft mass

Figure 6.9: Complete trajectory optimization
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Conclusion and Discussion

7.1 Concluding remarks

This works shows how discrete search techniques can be used to effectively used to

find optimal trajectories for commercial airlines in the current air traffic system. Such

a technique can be used to compare different types of profiles that aircrafts fly. A

realistic wind model can be used in such a simulation. We have shown that a discrete

search has significant advantages which easily over weigh the issues of runtime and

computational memory required and it can be used as a very effective method to be

considered for future flight planning methodologies.

7.2 Recommendations for future work

On the same lines as implementation of two dimensional case, a full three dimensional

trajectory optimization can be performed. This will complete the algorithm and it

will result in a true optimization methodology. Wind models have to implemented in

both the two and three dimensional cases to model more realistic flight optimization.

A statistical analysis with several wind models can be performed to determine the

sensitivity of the algorithm.

58
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In addition, there are several ways in which one can significantly improve the run-

time. Fuel heuristics can be used to increase the speed of A* search. An approximate

optimal flight profile always consists of climb, cruise and a descent segment. The grid

points can be generated in such a way as to remove all grid points which for sure do

not lie in regions of climb, cruise or descent. Dijkstra’s and A* can be implemented

using parallel computing techniques [39] which will reduce the runtime by quite a

significant amount. The use of Fibonacci heaps rather than a conventional binary

heap is also reported to be more efficient [40] .
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