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Abstract

Efficient time series similarity search is a fundamental operation for data exploration

and analysis. While previous work has focused on indexing progressively larger datasets

and has proposed data structures with efficient exact search algorithms, we motivate the

need for approximate query methods that can be used in interactive exploration and as

fast data analysis subroutines on large spatiotemporal datasets. This thesis formulates

a simple approximate range query problem for time series data, and proposes a method

that aims to quickly access a small number of high-quality results of the exact search

resultset. We formulate an anytime framework, giving the user flexibility to return query

results in arbitrary cost, where larger runtime incrementally improves search results. We

propose an evaluation strategy on each query framework when the false dismissal class

is very large relative to the query resultset and investigate the performance of indexing

novel classes of time series subsequences.
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Chapter 1

Introduction

Time series data is ubiquitous in contemporary scientific and commercial domains. His-

torical transaction data and item purchase histories help private firms forecast demand

and personalize recommendation systems, while massive scientific data measures biolog-

ical, astronomical, and ecological functions in different natural systems. The problem

of time series similarity search aims to efficiently access time series data that is suf-

ficiently ‘similar’ to a query time series object. Use cases for similarity search within

earth science domains include grouping and characterizing phenology of vegetation, and

studying the extent of change in ecosystems over time [16, 30].

For very large datasets, an exhaustive scan of the data is computationally pro-

hibitive. Previous work in scalable time series indexing [8, 31] has overcome this by

producing data structures which reduce comparisons to a small set of candidate data

objects by a sub-linear search. The development of these data structures has used

two broad strategies. One family exploits dimensionality reduction techniques to con-

struct a projected data space which can be indexed by a spatial access method such

as R-tree [4, 10, 19, 20]; the prototypical example is Generalized Multimedia Indexing

(GEMINI) [15]. The second family exploits coarse time series representations to split

the data space, which is indexable due to hierarchical fidelity of the approximation to

the original data [11, 13, 37]. Both strategies are used to efficiently answer two ba-

sic queries defined relative to a specified distance measure: (1) the k-nearest neighbor

search (k-NN), which returns the k time series objects of least distance to the query,
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and (2) the exact range search, which, given a range threshold, returns all time se-

ries objects within this distance to the query. Most previous work has focused on the

exact search problem because these methods provide guarantees on completeness and

correctness.
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Figure 1.1: (Left) The earth imagery with red and blue points indicating time series
location centroids, (Right) The time series for the red and blue locations. The dashed
line at t = 90 denotes the time step where the temporal dynamics of the two time series
diverge in similarity.

In some situations, exact queries are not relevant when a complete resultset is not

necessary or is relatively expensive to find. For example, our motivation relates to a

collaborative earth science research platform. Users should be able to launch interactive

queries from an interface, and arbitrarily refine or loosen similarity constraints of the

resultset. The user may only require the approximate prevalence of a particular time

series pattern in a spatial region, and only expects the typical resultset is sufficiently

large and of high quality. A second use case aims to build a ‘null’ distribution relative

to a novel query segment, capturing the natural variation of the majority class in a

spatial region. In this case, ‘k’ in a k-NN query may be so large as to cause poor

performance with ‘best-so-far’ pruning strategies. We formulate the problem of approx-

imate range query, which returns only a small portion of high quality results within a

particular distance range γ, in much less time than exact search. In contrast to exact

query methods, this method does not guarantee either (1) that the k-nearest neighbors

are returned (for any k), nor (2) that the query has guarantees on recall, meaning it
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returns an arbitrary portion of possible query results within the range. However, the

proposed method experimentally provides sufficiently large resultsets with guarantees

on similarity. While previous work has proposed the approximate query as subroutine to

building an exact resultset [37], we formulate the problem as a stand-alone objective to

be rigorously evaluated, and extend a previously proposed data structure to be queried

on a specified range threshold.

In this work we build a time series indexing data structure for efficient, approximate

range queries. We introduce the following contributions:

1. A simple formulation of the fast range query problem

2. An approximate range query method which returns high quality, partial resultsets

relative to the exact range query

3. An evaluation methodology measuring the quality of query resultsets relative to

the exact range query, in the presence of many false dismissals

4. An exploration of spatiotemporal earth science datasets using querying, and anal-

ysis illustrating challenges for query performance across different classes of time

series segments

5. The proposal and analysis of a flexible searching paradigm which allows the user

to spend an arbitrary computation cost to return a result

Section 1.1 gives a review of specific related work extended in this paper. Chapters 2

and 3 propose and evaluate an approximate range query paradigm focused on retrieving

a small number of high-quality results on an interactive time scale, evaluating against a

base approximate query and an exhaustive linear scan. Chapters 4 and 5 propose and

evaluate an anytime query paradigm which has preference to rare time series sequences in

the dataset. Section 6 outlines the limitations of our work and possible future directions.

All defined symbols in this paper are summarized in Table 1.1.

1.1 Background

In this section, we outline related work in the areas of time series representations,

distance measures, and similarity search indexing. We summarize in greater detail the
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work we extend, so that our extension is sufficiently understandable.

1.1.1 Distance Measures and Time Series Representations

Time series distance measures are methods used to calculate the ‘similarity’ of two

time series objects. Figure 1.1 (Right) illustrates that intuitively we might consider

that the blue and red segments before the change event (t = 90) are more similar

than the segments after the change event. This is captured by the Minkowski distance:

d(T, S) = (

|T |∑
i=1

|Si − T i|p)
1
p , where p = 1 defines the ‘Manhattan’ distance and p = 2

defines the ‘Euclidean’ distance. The choice of a particular distance measure corresponds

to the assumptions of what time series characteristics constitute similarity. Lhermitte

et al. [28] demonstrate that distance measures are differentially sensitive to scaling,

shifting, or changes in shape of time series sequences.

Standard distance measures include Manhattan, Euclidean, correlation, and dy-

namic time warping (DTW) [6]. DTW in particular has been extensively used [3, 7,

21, 33, 35] and exhibits more flexibility for many data mining tasks [13, 14]. Research

on dynamic time warping has focused on optimization using path constraints through

the time warping matrix [18, 23, 26] or finding fast approximations of the time-warped

distance [23, 36, 40].

Data access methods and data mining problems often rely on transformations of

raw data to representations using approximations which can be quickly compared by

exploiting bounding properties of a particular distance measure (e.g., Euclidean [25, 37]);

common representations use discrete Fourier transforms [15], wavelets [10], piecewise

linear approximation [22, 24], and piecewise aggregate approximation [39].

This initial work uses a simple distance measure of mean of Manhattan distance,

because it is efficient to compute, the bounding of numerous data representations under

this measure are straightforward, and it is less sensitive to outlier values than higher

order Lp distances. In this work, the mean is used only for interpretability of distances.

Non-lockstep measures such as DTW are computed on order O(n2) and thus are often

approximated, and not as clearly applicable for the data structure in this work.
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1.1.2 Time Series Indexing

Shieh and Keogh [37] propose using Symbolic Aggregate Approximation (SAX) rep-

resentation [29] to index time series data for similarity search. We give a simplified

overview of the building phase and structure of the index. The authors build an index

tree which represents the data with a larger number of bits as the representation associ-

ated with that object is moved downward in the tree by split operations. Internal nodes

yield search paths through the tree and leaf nodes store time series data. The authors

use an equal-frequency discretization of k bins over the data space to create an alphabet

of k symbols (referred to as cardinality k, where k are powers of two, k = 2l). This

representation is encoded by the function W (S, k). The time series is thus transformed

into a sequence of l-bit (k-cardinality) symbols, whk (the h-th symbol encoding of S,

with cardinality k). Using W , each time series object is encoded at a base cardinality

(C1) and grouped in nodes of common base encodings at the top of the tree (e.g. a node

for each unique binary encoding given all time series objects, with 2|S| possible nodes).

For building the tree downward, there are exactly two symbols produced at a higher

cardinality by ‘promoting’ a particular symbol (from l bits to l + 1 bits). This can be

thought of as evenly bisecting the range of values represented by wk in the original data

space. The authors use this property to promote a particular time step t from the 2l-th

to the 2l+1-th cardinality and split the grouped time series on the two possible encodings

of wt
2l+1 . The authors use a naive round-robin splitting policy and provide a threshold,

α, serving as a stopping condition so that for every leaf L, |L| ≤ α. An exact 1-NN

search is defined on the index, using best-so-far pruning. However, the authors report

only non-interactive runtimes under 1-NN exact search (e.g. 5.8 minutes on datasets

of comparable size to our evaluation).

Camerra et al. [8] extend the indexing of SAX representations of time series data.

This method focuses on improving index build time to make feasible indexing on the

order of a billion time series objects. Though these studies focus on producing index

structures for progressively larger time series datasets, they do not focus on improving

index performance for dataset sizes already surpassed. These methods provide no as-

surance of similarity for leaf nodes and have no mechanism for improving similarity in

leaf nodes at the cost of further computation.

Previous work in similarity search aimed at spatiotemporal earth science datasets
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has focused on exploiting the intrinsically spatial character of this time series data.

Zhang et al. [41] propose a data structure designed on smooth fields with high spatial

autocorrelation. In the presence of spatial heterogeneity as expressed in other datasets

such as vegetation index (see Figure 1.1), the tree depth grows very large, and search

resultsets are scattered across many small nodes requiring an exact search to traverse

many branches. In contrast, our method groups spatially-distant segments with common

SAX representations, and uses auxiliary spatial indexing to impose spatial constraints in

spatially-oriented time series datasets. A family of object-based hierarchical grouping

has sought to spatially segment data according to spatially-contiguous similarity at

varying similarity thresholds, without building a search index [27]. These methods are

also sensitive to spatial heterogeneity, which may produce fragmented groupings when

similar time series are found non-contiguously in space.
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Table 1.1: Table of notation definitions. Where applicable, subscripts denote cardinality
and superscripts denote dimensionality (time-step).
Symbol Definition

D The global dataset of size m×n×d, where m×n constitute 2-dimensional
space with time series objects each of length d.

Q,S, T Time series objects, Q,S ∈ D where S = (S1, S2, ..., Sk, ..., S|S|), Sk the
k-th observation in S and |S| the length of S. S is an arbitrary time series
object, and S 6= T , Q is a query time series object

Sk:l The time series subsequence on S: (Sk, ..., Sl), l > k

d(S, T ) The distance calculation for objects S, T , d(S, T ) ≥ 0. Reported in mean

of L1: d(T, S) = Mean(
∑
|Si − T i|), i = 1...|T |

dp(D) The pairwise distance calculated over the collection of time series objects.

R The resultset following the execution of a query using Q.

R∗ The exhaustive resultset using Q, relative to distance threshold γ, R∗ =
{∀S ∈ D : d(Q,S) ≤ γ}.

N i
k, N

j
k , Lk Nodes N,L ∈ I at depth k, N i

k, N
j
k distinct, i.e. i 6= j. L denotes only leaf

nodes.

|L| The number of time series objects contained within leaf L, (note the over-
loading of this operator).

C, c C, the cardinality expansion list for use in SAX indexing, associated with
index I, e.g. C = (21, 22, ..., 26); c, a cardinality vector indexing into C,
c1, ..., ck, ..., c|S| where 1 ≤ ck ≤ |C|

W (S, c) The SAX representation of time series S where W k is Sk approximated in
cardinality Cck (Or: interpret W as a |C| × |S| symbolization matrix of S
which c indexes into)

wik The i-th symbol (or ‘word’) in a symbolized sequence, at cardinality k.

|wk| The range size in the unsymbolized space encompassed by symbol wk, e.g.
for a uniformly distributed data space, D with range [0, 1], |12| = 0.5,
|22| = 0.5

bw, bp, gm bw = mean(|wci |), i = 1...|S|, bp = max(dp(N.data())) the word
range sum (WRS) bound and pairwise bound on Node N ; gm =
median(dp(N.data())) the guidance on Node N .

Z(S) The z-normalized time series of S: Z(S) = Sk−µS
σS

, for k = 1, ..., |S|



Chapter 2

Approximate Search: Methods

2.1 Approximate Search

In previous work on approximate search, ‘approximate’ has meant to provide an error

term or probability related to the approximate nearest neighbor result or the range

boundary [5, 17, 32]. A well-performing method of these problem formulations aims to

reduce these error terms. This is not suitable for the case where there may be many

false dismissals, because error terms primarily evaluate the quality of the positive class

irrespective of the false dismissals, and thus varies by the density of the distance-to-

query values. Instead, we are interested in the relative quality of results against the

false dismissal class, and a simple problem formulation which focuses on this purpose.

We define the approximate range query on Q and distance threshold γ to be R ⊆ R∗,

where R∗ is the exact search resultset on Q and threshold γ.

An approximate search method proposed in Shieh and Keogh [37] follows the basic

‘promotion’ sequence given in Section 1.1, where the authors encode a query Q at

the base cardinality and following the sequence until a leaf node is reached. This

leaf constitutes the resultset. Though we use this method as a base search approach

for comparison, it must be stressed that this method does not directly answer the

approximate range query because the results may be arbitrarily dissimilar.

This approximate search method has a sensitivity to the splitting parameter α.

Depending on the size and characteristics of the dataset, after the splitting phase using

a large α, a node may be ‘under-split’, meaning the more natural splitting can be at

8



9

a higher cardinality (yielding dissimilar groupings within a node). Similarly, a small α

‘over-splits’ the data, yielding small resultsets and increased number of false dismissals

since ‘cousin’ nodes at the same depth in the tree may be very similar and the search

only returns a single node amongst these. Finding a natural α by experimentation is a

poor strategy as the index build time is very large, and would only improve intra-node

similarity in the average case, while some classes may remain unnaturally split. We

address this issue by allowing α to be arbitrarily small and recovering the ‘over-split’

result using an approximate range query, where the traversal stopping condition is given

by the desired range. This method yields higher performance, in terms of reduced false

dismissals, with minor overhead cost.

Problem Definition 1 (Approximate Range Search on I)

Input : Query time series Q, distance threshold γ, query index structure I

Output : Result set of time series data R

Where: max(d(R, Q)) ≤ γ

2.2 Bounds on Query Index Structure

Our strategy to fulfill this search is that during the splitting phase, we store at each

node the upper bound of the distance of any two time series objects of the node’s

SAX representation. This bound can then be used as a stopping condition in traversal.

A SAX-encoded time series object S is some sequence of words at differing cardinal-

ities, S = (wc1 , ..., wc|S|). We can define a bound on the Manhattan distances at a

node N as a sum of the ‘range’ of each word (comparing the maximum and minimum

possible unsymbolized data values encompassed by that word). Therefore we have

bw = Mean(|wci |), i = 1...|S|, where we call bw the word range sum (WRS) bound

on node N . This bounding holds as an upper bound for any child node and further

descendants, bw ≥ bw(N.children) because |wi
2l
| = 2|wi

2l+1 |.
If we assume that a query is a subsequence in the indexed data space, we can improve

the tightness of this bounding. In this case, the pairwise distance bound on Node N

is bp = max(dp(N.data)). This holds because Q ∈ N.data. In many use cases this

may be a practical assumption, and assures no false positives are incurred. However,

this bounding has limited scalability because the pairwise runtime is O(|N |2), and is
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infeasible for large |N |.
We introduce a threshold κ, under which bp is feasible. For nodes where |N | ≤ κ we

do this pairwise computation, otherwise we approximate it with bw. If the bw is loose

compared to bp, the search stopping condition using the WRS bound will be met deeper

in the tree, potentially incurring more false dismissals. This threshold can practically

be set by the maximum targeted resultset size, (i.e. κ = 1000, κ > |R|). This gives

the user flexibility to expend greater computational cost of the pairwise computation

on larger nodes, yielding a tighter bound higher in the tree and more accurate stopping

criteria earlier in the traversal.

The above bounding methods can be used to ensure that no false-positives are

incurred. However, even in the case of using the tighter bp, the bounding may be

loose, requiring a large range threshold γ to be used in searching. To mitigate this,

we define a median ‘guidance’ on the intra-node distance, which can be used as a finer

threshold in searching. Though many of the elements in the resultset are considered

false-positives relative to this guidance, it gives a more intuitive interpretation on the

expected similarity of results. Where |N | > κ, the guidance is defined as gm = bw
2 , using

the WRS bound above. Otherwise, we define the guidance as gm = median(dp(N.data)).

Note we use differing notation to stress that gm is not a bound. For clarity, we summarize

these strategies with the relation: gm ≤ bp ≤ bw.
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Figure 2.1: Distribution generated by bp responses (Left) and gm responses (right) over
20,000 queries following the promotion sequence to the leaf (i.e. base approximate
search).
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Figure 2.1 reports the distribution of bp and gm by traversing to the leaf on an input

query. We observe that for z-normalized values, dissimilarity over 0.4 units degrades in

practical use, yielding poor matching of the temporal dynamics of the query. Given this

interpretation, the distribution of gm responses (with median = 0.4011) would ensure

that half the queries are practically useful, while the bounding bp provides undesired

stopping thresholds for nearly 90% of the data. For simplicity, we omit results using bw

because in our context bp serves as a valid lower bound for it.

Given the above assurances on intra-node distance, we can provide an algorithm for

the Approximate Range Search problem on the iSAX search index (Algorithm 1).

Algorithm 1: Approximate Range Search

Input: Query time series Q, stopping threshold γ, time series similarity index
structure I with intra-node distance assurance.

Output: Resultset of time series data R
nodeStack = Stack();1

N = I.get([cbase,W (Q, cbase)]);2

while ¬N.isleaf&N.bound ≥ γ do3

i = diffIdx(N.child.key,N.key);4

cnew = node.key.c;5

cinew+ = 1;6

N = I.get([cnew,W (Q, cnew)]);7

end8

if N.isleaf then R = N.data else9

nodeStack.push(N.children.key);10

while ¬nodeStack.empty() do11

N = I.get(nodeStack.pop());12

if N.isleaf then R.concat(N.data) else nodeStack.push(N.children)13

end14

end15

This method traverses the tree until either the γ similarity threshold is reached, or a

leaf is found. To begin, it retrieves the node N at base cardinality, (line 2), and traverses

until the stopping threshold γ is satisfied, (line 3; this node ‘bound’ can also be gm). If

a node is an interior node, it can recover the split index by comparing its cardinality

vector to that of its children (line 4). It then promotes this time step and looks up the

new key-string in the hash data structure until a satisfying node is reached (lines 5-7;
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returns an empty resultset if the node is a leaf and does not satisfy γ). If the satisfying

node N is a leaf, the method returns its data (line 9), otherwise it concatenates all

node data of the subtree under N (lines 10-14). Using this method we can see that

a smaller leaf size α does not increase false dismissals, it will only require more steps

to concatenate split nodes (lines 10-14). Note that the situation can arise where the

method returns an empty set, while positive results at range γ exist elsewhere in the

tree.
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Figure 2.2: (Left) A query time series segment (black) and the average signed distance-
to-query of the resultset, per time step, with specified stopping threshold on the bound-
ing: γ = 0.57 and γ = 0.2659 for magenta and blue distances, respectively. (Right) The
bp (red) and gm (black) values at each node in the traversal, with magenta and blue
thresholds indicated. The abrupt decrease in bounding, near depth = 35 corresponds
to changing from bw to bp according to the κ threshold.

We summarize this section by illustrating an example search. Figure 2.2 (left) com-

pares an example query Q in black against the average signed distances of the query

to the resultset, per time step. We plot: Q + ε+, Q + ε− to show the average dis-

tance incurred per time step. The magenta and blue lines indicate the distances at

stopping condition γ = 0.57 and γ = 0.2659, respectively. These γ values are chosen

because they compare the resultset after the drop in the bounding, with the bound-

ing at the leaf (maximum depth). So, we see that the query is under-estimated by

R at the beginning of Q, and over-estimated near the center of Q, and generally the

distances-to-query at γ = 0.57 are larger. Note that though these bounds were used, the

maximum distance between the query and resultset may be lower: max(d(Q,R)) ≤ bp.
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For example, max(d(Q,R)) = 0.45, max(d(Q,R)) = 0.26 for the respective thresholds.

Figure 2.2 (right) shows the decreasing bound and guidance gm as the tree is traversed.

For Algorithm 1, γ can be interpreted as the value on the y-axis where traversal stops,

intersecting bp or gm. At a particular depth, those elements where gm < d(Q,R) ≤ bp

constitute the false positives when using gm as the traversal stopping condition.



Chapter 3

Approximate Search:

Performance and Evaluation

We present three evaluations on the proposed indexing framework. First, we compare

the distribution of bp, gm, and final depth of searches over each dataset. This shows the

fraction of data that we can expect to have search results of desired quality. Second,

our evaluation takes into account that perhaps many false dismissals occur (often by

orders of magnitude relative to the resultset) for a particular stopping threshold γ;

our evaluation methodology provides a detailed comparison of the relative quality of

the resultset against the set of false dismissals. Third, we show that we return larger

resultsets than the base query method. Combining the three, we can conclude that for

a class of queries, our method is more flexible and yields larger resultsets of high quality

elements than in previous work.

3.1 Data and Preprocessing

For evaluation, we index an Enhanced Vegetation Index (EVI) product (MOD13A2)

from NASA’s Earth Observation System (EOS) [1] moderate resolution imaging spec-

troradiometer (MODIS) instrument. The dataset is freely distributed through the Land

Processes Distributed Active Archive Center (LP DAAC) [2]. This dataset is a surrogate

for the ‘greenness’ observed globally on the earth’s surface, and is generated from daily

observations processed to regular 16-day scenes (with an annual period p = 23), with

14
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approximately 1-km spatial resolution. The dataset can be thought of as a data cube,

with scenes of m×n pixels, stacked at a height of d. A particular location on earth has

a time series of d historical observations. We adapt the piecewise aggregate approxima-

tion (PAA) [24] for fixed-length periodic data, so that k equal-length segments of length

l are produced on each period. This method ensures values are consistently aggregated

along annual boundaries. If the period p is not divisible by k, we aggregate the k-1

segments in the expected way. For the kth segment, we overlap it appropriately with

the previous segment so it is of length l. We informally observe that l = 2 and l = 3

is effective to reduces some fragmentation in the SAX grouping introduced by noise or

boundary issues, without significant degradation in time series dynamics.

We index the z-normalized time series to provide a consistent way to define query

range thresholds for time series with high or low average vegetation response. Z-

normalization is used only to provide a more principled evaluation; indexing without

z-normalization differentiates similar shapes at different mean values. We use a splitting

threshold α = 20, and analyze spatial ‘tiles’ defined on many MODIS data products

across three scenes of two tiles each. We informally call these three scenes ‘California,’

‘Brazil,’ and ‘Zimbabwe,’ respectively, though the data is neither complete, nor con-

tained within, each political boundary. We choose these scenes to illustrate the spatial

heterogeneity of the data, which makes a ‘global’ indexing non-trivial. Each scene con-

tains 2400×1200 time series objects. We index 2-year overlapping subsequences starting

with the first complete year of data, 2001, and generate further subsequences by shifting

at steps of a year (i.e., 2001:2003, 2002:2004,...,2008:2010, 2009:2011), yielding 28.8M

time series segments of length 46 for each scene.

3.1.1 Querysets and Runtime Analysis

We present a brief runtime analysis comparing the base, proposed, and exhaustive linear-

scan search methods. Presenting a large analysis of false dismissals is non-trivial because

the exact search is executed with relatively large runtime, even on only 30M time series

segments. We therefore cannot build a queryset of all subsequences generated on each

scene (though our index could complete the approximate search in large but tractable

time). We generate a simple test to show the overhead cost of the aggregation step in

the proposed approximate range search. We execute 40 searches, ensuring |R| > α in
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the proposed search method, meaning that resultset aggregation has occurred within

each approximate search. The total cumulative runtime for the base and proposed

methods is 3.47 seconds and 11.13 seconds, respectively; we have generated a single

subsequence dataset to do an in-memory, single matrix-wise similarity computation in

MATLAB, at 732.8 seconds, (averages are 0.08, 0.27, and 18.3 seconds per search). This

linear scan runtime is internally optimized in MATLAB; implementing the linear scan

with a conventional loop yields 925 seconds average per search. In experimentation,

the aggregation step for arbitrarily small α still yields queries on interactive time scales

(e.g. < 1 second).

Due to the limitations of the exact search runtime, we generate three randomly

sampled query subsets from each scene at a size of 10K and 20K two-year subsequences.

We have verified that results are sufficiently consistent across repeated random samples.

For brevity, when reporting results, these querysets will be referred to by scene letter

and number. For example, B1, Z2 identify Brazil and Zimbabwe, respectively. For

simplicity, the query source and searched scene will always match, so these querysets

also identify the scene for each result.

3.2 Results

3.2.1 Bounding and Depth
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Figure 3.1: Distribution of pairwise distance bound bp responses (Left), and pairwise
median guidance gm responses (Right) on Z2.
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Figure 2.1 reports the distribution of bp (Left) and gm (Right) on B2. Comparatively,

Figure 3.1 illustrates that searches on Z2 report much better (lower) bp and gm. The

median of each distribution of gm responses across queries B2 and Z2 are 0.4, and

0.24, respectively. These results are summarized in Table 3.1 (rows 1 and 7). Figure

3.2 shows that the depth distributions of B2 (left) and Z2 (right) differ dramatically.

On B2, many traversals are only at a nominal depth (< 5). This means grouping

often occurs on binary SAX representations in Brazil, yielding poor similarity. We can

use this analysis to hypothesize on the relative heterogeneity or noise characteristics

between scenes, or the effectiveness of pre-processing such as aggregation or time series

smoothing. Whatever the cause, Brazil intuitively seems a ‘harder’ scene to search than

Zimbabwe. This is consistent with our experience with data quality of tropical regions

in vegetation index datasets.
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Figure 3.2: Distribution of depth responses for base search method (to leaf), on queryset
B2 (Left), and Z2 (Right).

Figure 3.3 (Left) further shows this intuition by plotting the decreasing node sizes of

base nodes (i.e. binary, k = 21) across each scene on logarithmic scales. The top-ranked

node in Zimbabwe contains over 1M time series segments. This means that over 1M

time series segments map to the same binary encoding. The top-100 largest nodes all

contain more than 100K segments. Because of the structure of the tree, common time

series segments which share a base encoding are more likely to be grouped with higher

granularity after index construction. Using α = 20, the number of time series segments

in ‘unsplit’ and singleton nodes in Brazil is 4.12M in comparison to 247K in Zimbabwe.
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Figure 3.3: (Left) Comparison of decreasing node sizes across scenes on logarithmic
scales. (Right) The cumulative fraction of data in the top-k largest nodes.

Figure 3.3 (Right) gives an alternate perspective of these distributions, plotting the

cumulative fraction of the top k nodes to the complete dataset. For the top 1000 nodes,

approximately 20%, 50% and 90% of data is contained within these nodes for Brazil,

California, and Zimbabwe, respectively.

3.2.2 Rank depth test
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Figure 3.4: A comparison of the size of satisfied rank depth test results (|R| > 50 for
specified γ) compared with the size of the exhaustive resultset, |R∗|, showing values of
|R|
|R∗| for C2, γ = 0.19 (Left) and γ = 0.31 (Right). The results in R∗ not in R correspond
to false dismissals.
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We show that a traditional analysis of false dismissal rate is not suitable in our

context because the upper bound is often not tight and not characteristic of the quality

of relevant grouped sequences. If we extend an envelope of 0.4 around the query, the

number of false dismissals is large. Figure 3.4 (Left) illustrates the relative size of the

resultset |R|, compared to the size of the resultset from the linear scan |R∗|, reporting
|R|
|R∗| . Satisfiability is given by γ = 0.19 with a resultset size |R| > 50. This criteria

yield 191 hits on C2. Yet the false dismissals are massive, with the median quotient

of 0.0119, resulting in false dismissals on the order of thousands. We find this order

of false dismissals is typical across scenes. In our use-case we would not be interested

in retrieving such a large search resultset, therefore, false dismissals are not a good

measure of our method since we would be most interested in obtaining a lesser number

of highest quality results.

The nature of grouping on exact SAX subsequence representation is a stronger con-

straint to be satisfied than a fixed distance threshold calculated cumulatively across the

sequence. The cardinality promotion operation fixes a progressively smaller envelope

around each observation of a time series pattern in order to be assigned a particular word

wik, at time step i. In contrast, a distance-to-query of 0.4 does not impose constraints on

any particular distance per observation (i.e. |Qi−T i| < ε, for i = 1...|S|), only that their

sum is below the threshold:
∑

i |Qi − T i| < γ. The grouping by SAX representation

implicitly imposes the constraint Qi ∈ wik, bounding the distance at every observation.

This motivates the hypothesis that grouping by exact matching of SAX subsequences

(with sufficient frequency) will yield, on average, higher quality results relative to the

false dismissal set, which may satisfy the distance threshold but are not similar to the

query at each time step.

We test this hypothesis by comparing the distance ranking of each result in R within

the exhaustive resultset R∗. The rank depth test is defined on each resultset of sufficient

size (|R| > 50) satisfying the given γ. Given each S in R, we return the percentile

at which d(Q,S) exists in the distance list of the exhaustive resultset R∗ satisfying

γ, d(Q,R∗), where lower is better. This measure is invariant to the relative size of

resultsets, however we note that this test is only suitable when |R| << |R∗|. When

|R| = |R∗|, the rank depth is a permutation of the original rank ordering, with median

0.5. Figure 3.5 (Left) aggregates all true positive rank depth responses across 546
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Figure 3.5: Rank depth test on Z2 showing aggregate search responses of using stopping
condition γ = 0.2 for gm (Left), and γ = 0.3 for bp (Right). Each count corresponds to
a time series subsequence object.
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Figure 3.6: Frequency of medians of rank depth test on Z2. One count corresponds to
a search resultset, (lower is better).

resultsets at γ = 0.2, using gm. Figure 3.5 (Right) reports the same over 46 hits at

γ = 0.3, using bp. We see that the rank depth results using bp are relatively better.

This is surprising, because we expect bp to be loose, while gm by definition is set to the

center of the pairwise distance distribution. Yet the bounded stopping condition allows

for relatively fewer, higher quality hits.

There is a limitation to this analysis; perhaps in Figure 3.5 (Left) we observe the

result of a small number of very large, high quality resultsets while the typical search

returns poor results (i.e. there is a skew hidden in the aggregation of resultsets). Figure



21

3.6 shows the median rank depth per resultset. In the case that there is no favor

to the approximate search compared to the exhaustive method, we should observe a

distribution around 0.5 (a random sampling of rankings). We see that the median rank

depth per resultset is 0.17. We interpret this to mean that relatively high quality results

are returned at these γ thresholds; however, we note that few results are found in the

top |R| elements of R∗. Across all scenes, we observe that the median recall of top-|R|
results of R∗ is under 20%. This can be explained by the low-recall problem setting

given the strictness of the grouping criterion: only one dissimilar observation is required

in order for a pair of sequences to have different SAX representations.

0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31
0

1000

2000

3000

4000

5000

6000

7000

γ

H
its

Rank depth hits vs. γ

 

 

Zimbabwe

California

Brazil

0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Median rank depth vs. γ

γ

M
ed

ia
n 

ra
nk

 d
ep

th

 

 

Zimbabwe

California

Brazil

Figure 3.7: (Left) The number of hits for rank depth test while varying γ. (Right) The
median rank depth across scenes with varying γ, and hits > 10 (to ensure a reliable
median). The few plotted points for Z2 are due to the sharp rise in hits.

Comparison over γ values

Figure 3.7 shows the rank depth results across each scene as γ increases. Figure 3.7

(Left) shows the number of hits which satisfy the specified γ and |R| > 50. We see

that Zimbabwe has over 15% of queries satisfied at γ = 0.23, while California has

roughly the same number of hits at γ = 0.29. Figure 3.7 (Right) shows that California

and Brazil increase in performance as γ increases and the quality of the exhaustive

resultset is loosened. Therefore even queries at higher gm can perform well relative to

exhaustive queries at that range. Figure 3.4 (Right) shows the distribution of relative

size of resultsets and false dismissals at an increased γ = 0.31. We see the quotient
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of size difference has decreased from 0.0119 to 0.0020, yielding false dismissals on the

order of tens of thousands. This demonstrates the effectiveness of the SAX constraint

in producing high-quality results, while the distance threshold-based method degrades

in relative quality quicker over increased γ.
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Figure 3.8: The increase in size from the base resultset Rb to proposed approximate
search resultset Rs, measured as |Rs|−|Rb|

|Rb| for stopping condition γ = 0.4, using bp on

B2 (Left), and with γ = 0.3, using bp on Z2 (Right).

3.2.3 Resultset size increase

Figure 3.8 compares the size of the base approximate search resultset Rb, and the

proposed approximate range query resultset Rs using |Rs|−|Rb|
|Rb| with stopping threshold

γ = 0.4 and γ = 0.3, on B2 (Left) and Z2 (Right). In this case, no false positives

are within either resultset, and Rb ⊆ Rs. Therefore, the difference in size, |Rs| − |Rb|
constitutes false dismissals in Rb. The median increase is 0.55, 0.62, over 152 and 1233

hits, respectively. The relative increase using gm is larger: 3.64, and 2.35, at γ = 0.3,

γ = 0.2 respectively. Because the base search resultset size is bounded by α, and

resultset sizes of the proposed search method are consistent for larger α at a fixed γ.

Therefore, this measure necessarily increases as α decreases. Our previous measures:

depth, bp, gm also necessarily improve on increased α, balancing the desired quality of

results with given computational resources.
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Figure 3.9: Example time series subsequences exhibiting and gradual change in temporal
dynamics (Left), abrupt change in temporal dynamics (Right).

Searching for rare time series segments

In the above analysis, we used querysets of randomly selected subsequences from each

scene. However, in many use cases, users have a specific rare class of subsequence

to study that may not be represented in that sample. Previous work has focused on

time series exhibiting a change in temporal dynamics [9, 16, 30] as shown in Figure 1.1

(red time series), and Figure 3.9. In the EVI dataset, these segments are rare because

generally they require human intervention or natural events, such as fire or flood, which

affect a relatively small area of earth. We construct a queryset for the persistent delta

algorithm (PD) [9] (Figure 3.9 (Left)) and the Vegetation-Independent Delta algorithm

(VID) [30] (Figure 3.9 (Right)). For PD, we choose the 5000 top-ranked time series

objects according to total vegetation loss over a duration of between 2 and 3 years.

For V ID we take the top-ranked 0.5% of time series objects in Brazil and California,

and top 0.2% in Zimbabwe (because changes are less prevalent in this scene). For

each algorithm, we create a two-year segment starting from January where the first

‘changed’ observation occurred according to the algorithm. Though these methods are

not flawless and incur their own false positives, on visual inspection each queryset is

intuitively skewed to relevant, rare subsequences corresponding to land-cover changes.

Table 3.1 shows that in every scene, the median gm of search responses increases,

and median depth decreases for the PD and V ID querysets. We also see that relatively

few queries satisfy criteria for the rank depth test. Above, we saw that the bounding
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Table 3.1: Summary of evaluations across different scenes. The suffixes ‘V’, ‘P’ refer to
querysets assembled from change detection algorithms in [9, 30]. ‘-’ entries denote no
satisfying search of the test on the dataset.

Descriptor Distance & depth Medians Rank depth - Medians Resultset relative size
Row Data γ Hits gm Depth Hits Min Median Max Hits Median

1 B2 0.20 11162 0.40 6 2 0.18 0.25 0.33 30 0.52
2 BP 0.20 2687 0.41 5 - - - - 1 1.72
3 BV 0.20 8585 0.46 5 - - - - - -
4 C2 0.20 16675 0.32 14 311 0.03 0.19 0.53 1167 3.21
5 CP 0.20 3232 0.39 6 118 0.05 0.18 0.49 332 4.74
6 CV 0.20 10155 0.35 9 66 0.08 0.35 0.64 1084 14.20
7 Z2 0.20 18511 0.24 27 546 0.03 0.17 0.47 2697 2.35
8 ZP 0.20 3596 0.31 14 9 0.07 0.16 0.32 91 1.88
9 ZV 0.20 2679 0.36 5 - - - - 78 0.34

Table 3.2: Evaluation results on Brazil scene over increasing γ threshold
Descriptor Distance & depth Medians Rank depth - Medians Resultset relative size

Row Data γ Hits gm Depth Hits Min Median Max Hits Median
1 B2 0.21 11162 0.40 6 3 0.14 0.36 0.38 40 0.78
2 B2 0.23 11162 0.40 6 12 0.09 0.27 0.44 100 1.11
3 B2 0.25 11162 0.40 6 28 0.03 0.20 0.36 228 1.35
4 B2 0.27 11162 0.40 6 89 0.02 0.17 0.45 514 1.83
5 B2 0.29 11162 0.40 6 277 0.01 0.16 0.49 1056 2.90

Table 3.3: Evaluation results on California scene over increasing γ threshold
Descriptor Distance & depth Medians Rank depth - Medians Resultset relative size

Row Data γ Hits gm Depth Hits Min Median Max Hits Median
1 C2 0.21 16675 0.32 14 480 0.00 0.19 0.69 1552 3.61
2 C2 0.23 16675 0.32 14 902 0.00 0.16 0.71 2450 4.70
3 C2 0.25 16675 0.32 14 1479 0.01 0.15 0.69 3615 5.45
4 C2 0.27 16675 0.32 14 2101 0.00 0.14 0.64 4892 5.70
5 C2 0.29 16675 0.32 14 2955 0.00 0.13 0.69 6243 6.93

distribution of Zimbabwe tended lower than Brazil significantly. But comparing the ZV

queryset with Z2 (rows 7, 9), we see that it is now more similar to B2 (row 1) in terms

of median gm and depth. This demonstrates scope for work in indexing for rare classes

of interest in heterogeneous datasets.
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Table 3.4: Evaluation results on Zimbabwe scene over increasing γ threshold
Descriptor Distance & depth Medians Rank depth - Medians Resultset relative size

Row Data γ Hits gm Depth Hits Min Median Max Hits Median
1 Z2 0.21 18511 0.24 27 782 0.03 0.21 0.49 4320 3.50
2 Z2 0.23 18511 0.24 27 3187 0.02 0.21 0.59 7917 7.61
3 Z2 0.25 18511 0.24 27 6503 0.01 0.19 0.66 11044 13.80



Chapter 4

Anytime Framework: Methods

In Chapter 3, we demonstrated that a single approximate search traversal performs

poorly on querysets of rare time series subsequences, relative to a randomly selected

queryset. This is because rare sequences are grouped higher in the index tree structure,

on coarser approximations. We also showed that an approximate query of this nature

can be executed in very little time relative to an exact search (0.1 seconds, compared

with 18 seconds).

This large difference in runtime, and often poor quality of results of a single traversal

is a natural motivation for an anytime framework for executing similarity queries. An

anytime framework describes a class of methods which allow the user to arbitrarily

halt execution. While not halted by the user, this solution monotonically improves in

quality, converging to the exact solution in some tractable time. Xu et al. [38] proposes

a method for anytime k-nearest neighbor search and in Chapter 5 we adapt portions of

the authors’ evaluation methodology for an anytime range query on the proposed data

structure.

The presented data structure has an intuitive anytime interpretation. Given the

set of base nodes, and a lower-bounding pruning strategy using the distance-to-query,

for each base node, an anytime method calculates the bounded distance and traverses

into the node if necessary. If the node is a leaf and has not been pruned, the distance

computation is performed on the data and satisfying results are included in the resultset.

At any time we can terminate and return the current resultset.

Shieh and Keogh [37] presents a lower-bounding between a time series and the SAX

26
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encoding representing the time series segments in a node. We simplify this formulation,

and provide its interpretation under the mean L1 norm. Let Bu(wi), Bl(w
i) be the upper

and lower discretization bounds on SAX word wi (i.e. the maximum and minimum

possible value mapped to wi). The lower bound of distance between time series T , and

words w1...|S| is Mean(LB(T,w)) where:

LB(T,wi) =

0 Bl(w
i) ≤ T i < Bu(wi)

Min(|Bu(wi)− T i|, |Bl(wi)− T i|) otherwise

We define the anytime exact range query on the search index I as:

Algorithm 2: Anytime Range Search

Input: Query time series Q, Base node keys B, similarity threshold γ, runtime
limit t, time series similarity index structure I

Output: Resultset of time series data R
nodeStack = Stack();1

while i ≤ |B| & runtime < t do2

nodeStack.push(B(i));3

while ¬nodeStack.empty() & runtime < t do4

N = I.get(nodeStack.pop());5

if N.isleaf then6

dists = D(Q,N.data) ;7

R.concat(N.data[dists ≤ γ]);8

else9

d = Mean(LB(Q,N.children(1)));10

if d ≤ γ then nodeStack.push(N.children(1));11

d = Mean(LB(Q,N.children(2)));12

if d ≤ γ then nodeStack.push(N.children(2));13

end14

end15

i = i+ 1;16

end17

Algorithm 2 iterates over base node keys until completion or allotted runtime is

expended (line 2; timekeeping details hidden for brevity). The current node key is

pushed onto the stack (line 2). While the stack is not empty and runtime not exhausted

(line 4), the method pops a key from the stack and retrieves the node from the index
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(line 5). If the node is a leaf, the method computes the distance and includes the

satisfying results (lines 6-8), otherwise it computes the lower bounded distance between

the query and the encoding associated with the node’s children keys, pushing these keys

onto the stack if they are not above the desired threshold γ (lines 10-13). Note that the

base node keys have an implicit ordering; this allow for varying search strategies using

different orderings so that the method makes best use of its allotted time. One practical

strategy we implement is to order the nodes in decreasing size (as shown in Figure 3.3).

This strategy aims to maximize search coverage by pruning the largest base nodes first.

The above method is an exact range query because Min(|Bu(wi)−T i|, |Bl(wi)−T i|)
monotonically increases as the cardinality of any wi increases. This can be thought

of as the minimal bound ‘moving away’ from the observation T i as wi is bisected.

So, if LB(T,w) > γ, then after any promotion sequence producing w∗, LB(T,w∗) ≥
LB(T,w) > γ. Therefore, with a sufficient runtime limit t, the method will compute

the distance against all time series objects which can possibly be at a distance of γ.

The number of distance computations required is not straightforward, and depends on

the prevalence of the query time series, and the quality of the leaf node groupings.

Due to these characteristics, we hypothesize that in contrast to the approximate

range query presented in Chapters 2 and 3, the anytime query has preference to novel

time series sequences at lesser depth in the tree. Allotted a fixed time, the search method

prunes much of the tree at the base level for novel query sequences, and finds matches

at very shallow depth. In contrast, common query sequences spend time traversing

deep into the tree, maintaining the stack, and searching numerous candidate nodes. We

evaluate this hypothesis below.



Chapter 5

Anytime Framework:

Performance and Evaluation

5.1 Evaluation Setup

An anytime query will generally converge to the exact query solution after some runtime,

and this runtime may be very large. We observe that due to the necessary implemen-

tation details of tree traversals in our chosen development environment (MATLAB), an

anytime query can execute for very long indeed (> 200 seconds), relative to an optimized

single-pass exhaustive search (≈ 18 seconds) on 28.8M subsequences. Even the latter

runtime limits the scope of quantitative evaluation of index performance. Running the

anytime query to completion and reporting the final runtime is nearly intractable for

querysets large enough to give characteristic insights about the search index and data

scene.

We therefore choose to ‘interrupt’ the anytime query after some runtime of execution.

Since the index should compete against the best our platform can provide (otherwise,

we can opt for the optimized linear scan), we limit the allotted runtime under t = 18

seconds, even though this is a very aggressive constraint for our implementation. We

report performance at t = 5 and t = 10 seconds by taking the first 500 queries of each

of the rare subsequence querysets formed by the change algorithm, and random 20K

querysets, both presented in Chapter 3. For simplicity, we refer to these subsets by the

same identifiers, (e.g: C2, CV ). Because few queries complete in this allotted time,

29
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these are approximate queries as described in Chapter 2. Below, we propose measuring

performance using three evaluations: (1) coverage, (2) minimum (nearest-neighbor) and

median distances comparison of R with R∗, and (3) rank depth test.

5.2 Results

5.2.1 Coverage

We are interested in measuring the ‘coverage’ of a query. For a given query, coverage

measures the proportion of the dataset which the query is able to ‘see’ over the allotted

runtime, either by pruning the segments in the sub-tree associated with a node (see:

Algorithm 2, lines 10-13), or by comparing against the data in the node (lines 7-8).

Figure 5.1 (Left) demonstrates that for a randomly selected queryset, little of the dataset

is examined after t = 10 seconds of execution, while Figure 5.1 (Right) shows that rare

query segments see around 50% of the data in the same time. Due to the ordering of

nodes by decreasing size, common queries tend to traverse deep into a large (‘early’)

node in this list, while rare query segments avoid traversing into these nodes by pruning

operations, and thus accumulate a relatively large ‘coverage’ measure. Figure 3.3 (Right)

shows that for the California scene, 50% of the data is contained within the top 900

nodes. This means that on average, the query scans 900 base nodes by the end of

execution (or < 0.1% of all nodes). Table 5.1 shows that the CV queryset has much

greater coverage than C2, and summarizes most results in this chapter.
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Figure 5.1: Distribution of coverage percentage for (Left) C2, and (Right) CV.
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We also consider the number of distance calculations against node sequences to

evaluate the performance of the index. This value is related to the density of the dataset,

and the quality of the groupings formed in the index building phase. If a subsequence is

very common, or the similarity threshold γ is high, few nodes can be pruned. When the

distance calculation is performed on these numerous nodes, the bounding may be poor,

causing many ‘false positive’ distance calculations where d(Q,N.data) > γ. Table 5.1

shows that for Brazil and California, the random querysets have less comparisons than

the rare queryset at the same runtime allowance. Looking at the timing profile closer,

we see that since the random querysets tend to traverse into deeper subtrees, the query

spends more time maintaining the stack. Therefore, fewer computations are performed

even though many nodes may be similar within these large subtrees.

Figure 5.2 (Left) shows the number of hits, |R| on CV . Figure 5.2 (Right) reports

the hits on the exhaustive linear scan. The threshold, γ = 0.25, provides a challenge

because the exact resultset size is still small, with a mean resultset size of 6778 and 314

for C2 and CV , respectively. On this scene, there are no empty exhaustive resultsets

R∗ at γ = 0.25, however nearly half the resultsets on CV are empty in the allotted time

t = 10, and on C2, only 7% are non-empty on the same allotment. This demonstrates

the difficulty of overcoming the internal matrixwise-scan optimizations available in the

development environment. Recall that a naive approach for exhaustive scan, which is

necessarily more similar in implementation to the anytime query method above, returns

results in approximately 925 seconds per query.

5.2.2 Nearest-neighbor and median distance comparison

Figure 5.3 (Left) shows the distribution of minimum distance per search resultset, com-

paring each exhaustive resultset R∗ (blue) with the queried resultset R (red). Specif-

ically, we show Min(d(Qi, Ri)) for resultsets i = 1...500. The blue distribution corre-

sponds to the distance to the actual 1-NN for each query. Similarly, Figure 5.3 (Right)

reports the median distance-to-query for each resultset. We summarize these distri-

butions by comparing the distance between their medians. Table 5.1 reports this as

the ‘∆Distances’, which shows that queries across all scenes are able to better retrieve

results at the median of the exhaustive distribution than the actual 1-NN.

This result agrees with the intuition of a low-recall scenario where the query is more
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Figure 5.2: Distribution of size of CV resultsets (Left) vs. exhaustive resultsets R∗

(Right).

likely to retrieve results near the center of the distribution. Also, the ordering of nodes

by decreasing size suggests that results are unordered relative to distance-to-query. So

in contrast to the approximate search evaluation in Chapter 3, we expect no strong skew

to the quality of results as runtime increases. Different base-ordering heuristics such as

in increasing distance-to-encoding, or combining the single approximate traversal with

the anytime framework may introduce a stronger skew to the anytime framework. This

could yield a setting of diminishing returns, meaning that result quality would improve

to lesser degrees for further expended runtime, which would yield a practical stopping

condition where marginal improvement falls below a given threshold.

5.2.3 Rank depth

Figure 5.4 shows the median rank depth on the BV queryset. As in Chapter 3, for each

resultset R, a point in this distribution corresponds to the median rank depth across all

results in R, where |R| ≥ 25. The ‘hits’ reports this number of resultsets of sufficient

size. In Table 5.1, we clearly see that for rows with suitably large rank depth test hits,

the rank depth is near 0.5, suggesting a random selection amongst the rank ordering of

the exhaustive resultset.



33

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

90

100

Distance

C
ou

nt
s

Exact 1−NN vs Query 1−NN, CV, 10 seconds

 

 

Query Nearest−neighbor

Nearest−neighbor

0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

Distance

C
ou

nt
s

Exact vs. Query median d(Q, R), CV, 10 seconds

 

 

Exact median

Query median

Figure 5.3: Comparison between exhaustive (Blue) and query (Red) for minimum (Left)
and median (Right) distance responses d(Q,R) under range γ = 0.25. Each count
corresponds a resultset.
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Figure 5.4: Median rank depth per resultset on BV .

5.2.4 Analysis of scenes

The Brazil scene is characterized by a large number of smaller nodes, where many similar

encodings can occur due to noise shows very unintuitive performance in Table 5.1. Row

2 shows that B2 has even larger coverage than BV . Coverage of 0.20 corresponds to

approximately 1000 nodes processed (by Figure 3.3), meaning that each queryset on

the Brazil scene likely stays very shallow in the traversal. Row 8 demonstrates that the

random queryset on the California scene traverses deep into large, ‘early’ nodes. Rows

5 and 6 show that in Brazil, the BP queryset perform best in all measures. Examining
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closer we see this is not due to outliers in the results. Our evaluation strategy effectively

penalizes for failed queries. Excluding 372 empty resultsets on Row 6, the median hits

and recall is 26 and 0.2835, respectively.
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Figure 5.5: Coverage distribution for queryset CP . Each count corresponds to a query.

The California scene has been studied in previous work with respect to land cover

change related to fire events, due to access of high-quality validation data generated

and made available by the state of California. The coverage results for this scene are

predictable: Row 8 shows recall is generally small, meaning that traversal enters large,

‘early’ nodes and returns relatively few results (0.00 mean recall, with only 17 non-empty

resultsets within 10 seconds). In contrast, Row 10 shows CV queries scan much further

into the ordered node-list, and return relatively more results. These queries also best

approximate the ∆Distances minimum. This is likely because a sequence exhibiting

an abrupt decrease has a distinct coding even at the base cardinality such that few

dissimilar segments are mapped within these nodes. Furthermore, temporal events such

as fire occuring in different time steps yield different encodings, meaning that only fire

events within approximately the same date are generally grouped. Therefore, if any

results are returned, they are generally of high similarity.

Figure 5.5 shows the coverage results for CP . We observe that there is some bi-modal

behavior where many queries cover approximately 0.05 of the dataset, or 0.23. Observing

query traversals we informally find that for ‘expected’ gradually decreasing segments as

shown in Figure 3.9 (Left) traverse into some large nodes, but more shallowly than the

C2 queryset. In contrast, on the CV queryset, these traversals tend to be pruned at
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the base.

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

E
V

I V
al

ue

Example frequency change event in Zimbabwe

Figure 5.6: (Left) Example land cover and land cover changes prevalent in Zimbabwe
scene. (Right) Time series at blue point exhibiting a change after 2006.

The Zimbabwe scene was chosen for study because it has informally been observed to

contain few land cover types, and due to political circumstances in the state of Zimbabwe

we observe many land cover changes relating to agricultural deintensification which may

on suitable scale for indexing. Figure 5.6 (Left) shows an example of the land cover

in Zimbabwe, where approximately 90% of data is within the largest 1000 base nodes.

Furthermore, on investigation many of these largest nodes contain similar base repre-

sentations. Rows 13 and 14 show that the mean size of exhaustive resultsets is 82,842,

and a maximum exhaustive resultset size of 1.34M . We see that Zimbabwe uniformly

has poor search coverage. This is expected. Even though agricultural deintensification

subsequences are represented in the ZP queryset, the nature of change (double-to-single

annual peaks, as shown in Figure 5.6 (Right)), means pruning is not achieved as easily

as on CV . On inspection, the ZV queryset does not exhibit clear abrupt changes as

shown in Figure 3.9 (Right), so the characterization of patterns within this queryset is

not simple. However, Row 16 shows that the mean size of exhaustive resultsets is very

small relative to Z2, so the sampling is not simply random.
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Table 5.1: Summary of evaluations across different scenes. The suffixes ‘V’, ‘P’ refer to
querysets assembled from change detection algorithms in [9, 30]. All ‘coverage’ results
aggregated by mean; ∆Distances and rank depth aggregated by median.

Descriptor Coverage (All reported in mean) ∆Distances Rank depth
Row Data Time % Coverage Total Hits Hits Compared Recall Min Median Hits Median

1 B2 5 0.20 533 1.19 11364 0.00 0.20 0.00 8 0.50
2 B2 10 0.24 533 3.58 22474 0.00 0.20 0.00 13 0.51
3 BV 5 0.18 31 0.16 8855 0.00 0.22 0.01 1 0.60
4 BV 10 0.19 31 0.45 18057 0.01 0.19 0.01 5 0.67
5 BP 5 0.28 81 14.31 6482 0.05 0.19 0.00 41 0.55
6 BP 10 0.28 81 26.37 12979 0.09 0.18 0.00 66 0.54
7 C2 5 0.05 6778 4.59 6612 0.00 0.21 0.01 4 0.46
8 C2 10 0.05 6778 8.35 13980 0.00 0.23 0.01 5 0.46
9 CV 5 0.52 314 7.48 8040 0.04 0.16 0.02 63 0.57
10 CV 10 0.56 314 14.74 17425 0.08 0.16 0.02 116 0.58
11 CP 5 0.16 1980 0.08 7510 0.00 0.22 0.08 0 -
12 CP 10 0.20 1980 0.38 16210 0.00 0.23 0.07 2 0.68
13 Z2 5 0.05 82842 46.35 7985 0.00 0.20 0.00 89 0.54
14 Z2 10 0.05 82842 100.34 15313 0.00 0.20 0.00 118 0.56
15 ZV 5 0.05 219 0.00 6124 0.00 0.24 0.01 0 -
16 ZV 10 0.05 219 0.00 11917 0.00 0.24 0.01 0 -
17 ZP 5 0.05 386 0.28 6908 0.00 0.21 0.03 0 -
18 ZP 10 0.05 386 0.48 13649 0.01 0.21 0.04 3 0.61



Chapter 6

Conclusion and Future Work

In this work, we have shown an effective extension to previous work on time series

indexing for similarity search. Using this extension, we can reduce sensitivity to the

splitting parameter α at a greater storage and computational cost (according to the

resources of the user). Using strategies of bounding on the intra-node pairwise distance,

we proposed an approximate range query method which had the flexibility of fast queries

that can be easily refined or loosened based on a stopping condition γ.

This work provides an exploratory analysis formulating several future directions

specifically addressing the challenges found in earth science datasets, shared in het-

erogenous spatiotemporal datasets more broadly. EVI and other earth science datasets

are characterized by a variety of largely stable or gradually changing, periodic tempo-

ral patterns and a minority class of abrupt change-event sequences. We have deeply

explored these challenges in an effort to quickly retrieve ‘interesting’ subsequences, and

shown the contrasting performance of these querysets under the approximate search.

6.1 Data Sparsity

Because exact matching of SAX encodings is leveraged in the data structure, data

sparsity limits the index performance, especially in grouping sufficiently many similar,

rare subsequences. Figure 3.3 (Left) illustrates that a large fraction of data resides

in small nodes (e.g. |N | ≤ 10) at a base encoding. Incorporating domain knowledge

to reduce dimensionality (like our simple adaptation of PAA for periodic time series)
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and choosing promotion time steps in a more informed way might practically stretch

performance in this instance. More generally, aggregation and smoothing techniques

are not well understood given the objective of preserving time series characteristics of

interest such as sudden change events [12]. Future work would develop and evaluate

specialized aggregation techniques for the preservation of these characteristics.

We attempted to index a new scene in Wyoming as a target to study widespread

forest degradation from pine beetle infestation, consisting of 1.44M time series objects

and 11.52M 3-year subsequences (note we previously evaluated on 2-year subsequences).

Figure 6.1 shows the distribution of cumulative top-k node sizes as a fraction of all

subsequences (as in Figure 3.3) between Wyoming and Brazil. Wyoming is plotted

using 2, 3, and 4-year subsequences. For 2-year subsequences, we see it has a higher

fraction of large nodes than Brazil. Wyoming contains less than half the subsequences

of Brazil, but indexing 3-year subsequences, Wyoming has more nodes, meaning that

on average, a larger proportion of time series segments are contained in smaller nodes.

Indexing 4-year segments, the curve flattens even more, approaching the plot of all

singleton nodes (in green). We intended to use this grouping to build a null model for

the purpose of other land-cover change detection techniques, which look for stability

(tightly grouped, ‘unchanged’ subsequences) three years prior to the scoring time step,

but the data sparsity of three-year segments (46 compared to 69 time steps) means that

few reliable groupings are returned either under the approximate or anytime framework.
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Figure 6.1: The cumulative fraction of data in top-k ranked nodes comparing Brazil
and Wyoming.

The authors, Shieh and Keogh [37] likely did not experience these limitations of spar-

sity because they evaluate on relatively simple random-walk data which does not exhibit
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heterogeneity from numerous underlying models, or temporal events such as land-cover

change. For exact search, the authors’ nearest-neighbor query is an intrinsically easier

query to compute. Using a best-so-far, the 1-NN query on the data structure pro-

gressively constrains the threshold γ through the traversal, meaning that the runtime

of the method is affected by how soon in execution a fairly good best-so-far match is

found. This means the pruning rate accelerates as γ is reduced to tighter best-so-far.

In contrast, the range query visits many ‘similar’ nodes without progressively tighter

constraints. Therefore a scene yielding more, shallower nodes slows the anytime range

query greater than the 1-NN query.

6.2 Search Index Structures

Time series exhibiting a change in temporal dynamics (as shown in Figure 1.1) are

rarely grouped with suitable granularity. In the EVI dataset, vegetation dynamics tend

to be stable in absence of relatively rare natural events such as fires and floods, or hu-

man interventions such as conversion to cropland, while the indexing method implicitly

assumes all classes of interest will be of sufficient frequency. The size of data required

to sufficiently index rare classes becomes intractable. Future work would combine the

symbolization indexing strategy with grouping criteria that have some flexibility to mis-

matches and warping. Future work will also further develop evaluation methodologies

for low-recall problem settings, on heterogeneous datasets with potentially many query

classes.

There is great scope for future work in fast, approximate query methods. Though

exact nearest neighbor search, even under DTW, has been shown to scale to previously

unachievable trillions of data points [34], non-indexed query methods have the strict

requirement of accessing each time series object at least once, even to apply a fast

pruning operation (such as O(1)) and are more applicable to more constrained k-NN

queries, while approximate, indexed query methods have the advantage of accessing the

structured auxiliary data generated over the dataset, then accessing only a small portion

of the time series objects in the data space. This advantage is further highlighted in

a database environment where large, sequential reads are not preferred. Future work

should focus on scaling-up fast approximate search even further.
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