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Abstract

In this thesis, a new stochastic extension of Godunov scheme based traffic flow dynamics

is developed using a queuing theoretic approach. In contrast to the common approach of

adding noise to deterministic models of traffic flow, the present approach considers prob-

abilistic vehicle inter-crossing times (time headways) at various positions along the road

as the source of randomness. Subsequently, time headways are used to describe stochas-

tic vehicle counting processes. These counting processes represent the boundary flows in

stochastic conservation equations of traffic flow. The advantage of this approach is that

(i) non-negativity of time varying traffic variables (namely, traffic densities) is implicitly

ensured, and (ii) the mean dynamic of the stochastic model is the Godunov scheme itself.

Neither issue has been addressed in previous stochastic modeling approaches which extend

the Godunov scheme and its special case, the cell transmission model. A Gaussian approx-

imation of the queueing model is also proposed for purposes of model tractability. The

Gaussian approximation is characterized by deterministic mean and covariance dynamics;

the mean dynamics are those of the Godunov scheme. By deriving the Gaussian model,

as opposed to assuming Gaussian noise arbitrarily, covariance matrices of traffic variables

follow from the physics of traffic flow and can be computed using only few parameters,

regardless of system size or how finely the system is discretized. Stationary behavior of the

covariance function is analyzed and it is shown that the covariance matrices are bounded.

Consequently, estimated covariance matrices are also bounded. As a result, Kalman filters

that use the proposed model are stochastically observable, which is a critical issue in real

time estimation of traffic dynamics. Model validation was carried out in a real-world signal-

ized arterial setting, where cycle-by-cycle maximum queue sizes were estimated using the

Gaussian model as a description of state dynamics in a Kalman filter. The estimated queue

sizes were compared to observed maximum queue sizes and the results indicate very good

agreement between estimated and observed queue sizes.
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Notation

The notation is organized below into two lists. The first lists the notation used to denote

mathematical operations, such as distance, equivalence, inversion, and transposition, in

addition to general notation used to denote spaces of variables. The second lists the variables

used in this thesis along with their physical meaning; this list is meant to serve as a thorogh

glossary of all variables used in this thesis. The items in the first list are organized in

alphabetical order according to their meaning (since some of the symbols do not belong to

a particular alphabet), while the second list is organized alphabetically according to the

symbol, with Latin characters appearing first followed by the Greek characters.

General Notation

| · | the absolute value

≈ approximately equal to
D≈ approximately equal to in distribution

|C| the cardinality of C; used here to denote the index of the last cell

−→ converges to

D−→ converges to in distribution

diag(a1, ..., am) a diagonal matrix with diagonal elements {a1, ..., am}
∇zg the directional derivative of the function g along the vector z

D
= equal to in distribution

≡ is equivalent to (by definition), or is defined as

Eξ expectation of the random variable ξ

buc the largest integer less than or equal to u

xi



∇g the gradient of the function g

I the identity matrix

⇐⇒ if and only if

1{·} the indicator function, 1{A} = 1 if the condition A is true and

1{A} = 0, otherwise

A−1 matrix inversion

d a metric (e.g., d(g1(·), g2(·)) ≡ ||g1(·)− g2(·)||U )

Θ a metric space

N the natural numbers

P(A) probability of event A

R the real line

R+ the non-negative real numbers

|| · ||U the uniform norm

|| · ||p the Lp norm

F a sigma-field

ε, δ tolerance parameters

AT vector or matrix transposition

g(·) an entire trajectory of the function g

g(u) the value assumed by function g (a point) at the point u

x− the point immediately preceding x; if g(·) is continuous at x, then

g(x−) = g(x)

x+ the point immediately succeeding x; if g(·) is continuous at x,

then g(x+) = g(x)

0 the zero matrix (a matrix will all of its elements equal to zero)

Variables Used and Their Physical Meaning

aj(t) the acceleration/deceleration of vehicle j at time t

B routing matrix

xii



C a set of cell indices, C ⊂ N

c̄ coefficient of variation

D(t) a matrix which captures the dependence of traffic densities be-

tween cells

D̂(t) a matrix which captures the dependence of cumulative flows be-

tween cells

Gh(·|y) the conditional distribution function of time headways

Gt(·) the distribution function of tracking headways

H measurement matrix

hj(x) the time headway between vehicles j − 1 and j measured at po-

sition x

hfj (x) the free component of time headway j at position x

htj(x) the tracking component of time headway j at position x

K(ti) filtering (Kalman) gain matrix

lx length of cell x

lmin the minimum cell length

m(ti) measurement residual at time ti

N
(
[x1, x2], [t1, t2]

)
the number of vehicles in road section [x1, x2] during [t1, t2]

N
(
[x1, x2], t

)
the number of vehicles in road section [x1, x2] at time instance t

N (t) a unit rate homogeneous Poisson process

N̂ (t) a counting process with generally distributed i.i.d. time headways

with mean 1

n a scaling parameter

Ō
(obs)
i the ith observed average occupancy (% of time a detector is oc-

cupied)

O
(obs)
j the occupancy time of the jth vehicle in seconds

on(x, t) the deviation (or refinement) process for cumulative flows

xiii



õ(x, t) the approximated (Gaussian) refinement process for cumulative

flows

p
(
η(t), t

∣∣ Z(t)
)

the conditional probability density function of the traffic state

vector at time t given the measurement sequence

px(k, t) the probability that the traffic density in cell x at time t is equal

to k; i.e., px(k, t) = P (ρ(x, t) = k)

Q̃(t) vector of approximated cumulative cell boundary flows

Q(x, t) the cumulative number of vehicles that have crossed the down-

stream boundary of cell x by time t

Qe
(
ρ̄(x, t)

)
a fundamental flow-density relation (the subscript “e” means em-

pirical or equilibrium)

qmax the maximum rate of flow

q(x, t) the rate of flow at x at time t

q̄(x, t) the mean rate of flow at x at time t

Re
(
ρ̄(x, t)

)
a receiving function

r̃(t) vector refinement process

rn(x, t) the deviation (or refinement) process for traffic densities

r̃(x, t) the approximated (Gaussian) refinement process for traffic den-

sities

Se
(
ρ̄(x, t)

)
a sending function

sj(t) the spacing between vehicles j − 1 and j at time t

t a time instance, t ∈ R+

T
(obs)
i observation time used to calculate the ith observed flow rate

tj(x) the time at which vehicle j crosses position x

t̃ scaled time

U a finite horizon time

Ve
(
ρ̄(x, t)

)
a fundamental speed-density relation (the subscript “e” means

empirical or equilibrium)

xiv



vf the free-flow speed

vj(t) the speed of vehicle j at time t

vs the speed of a shockwave

v̄(x, t) the mean speed of vehicles at x at time t

w the backward wave speed

Wx(t) standard Brownian motion associated with outflows from cell x

W(t) vector standard Brownian motion

x position along the road; either x ∈ R or x ∈ C
x̂(t) the position of a discontinuity at time t

xj(t) the position of vehicle j at time t

y(x, t) the vector of relevant traffic conditions at the downstream bound-

ary of cell x; y(x, t) = [ρ(x, t), ρ(x+ 1, t)]T

ȳ(x, t) the vector of relevant mean traffic conditions at the downstream

boundary of cell x; ȳ(x, t) = [ρ̄(x, t), ρ̄(x+ 1, t)]T

Z(t) a sequence of traffic measurements available at time t

z(tj) traffic flow measurements at time tj

αn(x, t) the vector [rn(x, t), rn(x+ 1, t)]T

α̃(x, t) the limit of αn(x, t)

β, βj arbitrary parameters of a statistical model

Γ(t) a diagonal matrix containing the standard deviations of cell

boundary flows (the Itô integrands)

γ a constant of integration

∆t discrete time interval length

∆x discrete space interval length

{ζ(ti)} measurement noise sequence

η(t) the state-space vector of the system at time t

Eη(ti
∣∣ti) estimated (updated) mean state vector

Eη(ti
∣∣ti−1) predicted mean state vector

xv



Θ(t) covariance of traffic densities and cumulative flows at time t

θ proportion of vehicles, which are tracking

λf rate of free-flowing time headways

λ
(
ρk(x−∆x), ρk(x)

)
the numerical flux at position x− ∆t

2

λ
(
ȳ(x, t)

)
the flux at the downstream boundary of cell x

λ̄(x, t) deterministic time-varying flow rates

λ(t) vector of mean fluxes at the cell boundary

λ
(obs)
i the ith observed flow rate

{Ξ(ti)} measurement noise covariance sequence

ξ1, ξ2, ... a sequence of random variables

Π(ti) residual covariance matrix at time ti

ρ(x, t) the traffic density at position x at time t; when x ∈ C, ρ(x, t) is

the traffic density in cell x

ρ(t) vector of traffic densities

ρ̃(x, t) the approximated Gaussian traffic density

ρ̃(t) approximated (Gaussian) vector of traffic densities

ρ̄k(x) the traffic density in
[
x− ∆x

2 , x+ ∆x
2

]
at time k∆t

ρ̄k,∗(x) an intermediate traffic density at position x during the time in-

terval [k∆t, (k + 1)∆t]

ρ̄(x, t) the mean traffic density (or traffic concentration) at position x

at time t; when x ∈ C, ρ̄(x, t) is the mean traffic density in cell x

ρ̄(t) mean vector of traffic densities

ρ0(x) the prescribed initial traffic densities: ρ0(x) = ρ(x, 0)

ρδ0(x) a continuous function that approximates ρ0(x)

ρ̄0(x) a step function which represents approximated initial data

ρn(x, t) traffic density associated with scaled counting processes

ρcrit the critical traffic density, below which traffic is free and above

which traffic is congested

xvi



ρjam the maximum (or jam) density

ρl the traffic density to the left of a discontinuity in ρ0(x)

ρr the traffic density to the right of a discontinuity in ρ0(x)

Σ(t) covariance matrix of state-space vector

τj the traversal time of vehicle j through an arbitrary road section

Σ(ti
∣∣ti−1) estimated (updated) state covariance matrix

Σ(ti
∣∣ti−1) predicted state covariance matrix

Ψ(t) covariance matrix of traffic densities at time t

Ψ̂(t) covariance matrix of cumulative flows at time t
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Chapter 1

Introduction

1.1 Background and Problem Statement

A variety of traffic management applications require probabilistic models of traffic flow.

These include traffic simulation, real-time estimation of traffic conditions along freeways

and signalized arterials, and applications that involve short-term traffic prediction such

as adaptive traffic signal control. One of the main challenges pertaining to the use and

analysis of probabilistic models of traffic flow is tractability. In a deterministic context, it

is well known that prominent models, namely the model of Lighthill and Whitham [63] and

Richards [95] (LWR) and its higher order extensions are ill-posed; adding randomness only

exacerbates analytical complications.

The most widely used deterministic models of traffic flow are those that constitute

discrete time and discrete space numerical solution schemes for the LWR model, such as

Godunov scheme based traffic flow models [39, 58], the cell transmission model (CTM)

[22, 23], and its finite difference generalization [24]; both the CTM and its fintite difference

generalization are special cases of the Godunov scheme. These numerical methods are

forward in time recursive schemes. For this reason, they now constitute traffic flow models

in their own right. Their appeal stems from their simplicity and their ability to capture

queue build-up and dissipation dynamics in both space and time.

1
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In developing stochastic models of traffic flow, the most common approach is to add

Gaussian noise to discrete deterministic models of traffic flow, such as the CTM. Examples

include [10, 19, 36, 37, 45, 73, 75, 102–104, 106, 107], most of which are quite recent and

were all developed for purposes of estimation and prediction of traffic flow conditions along

freeways. This new interest in the subject emerged from the more widespread availability of

real-time traffic sensor data. The rationale behind the use of Gaussian noise is that Gaussian

models are characterized by their first two moments alone (the mean and the variance), a

desirable feature from a tractability point of view. However, the arbitrary addition of noise

could lead to two problems: (i) the possibility of producing negative sample paths (i.e., pre-

dicting negative traffic states) and (ii) mean dynamics that do not coincide with the original

deterministic dynamics to which noise was added, due to the nonlinearity of the dynamic

equations. In fact, non-linear functions of Gaussian random variables are generally non-

Gaussian. These issues were also overlooked in recent theoretical developments in this area,

such as in [54] and have yet to be addressed in the theory of stochastic conservation laws

(see, for example, [46] for a brief discussion and numerical illustration). Other approaches

to stochastic modeling of traffic flow in the literature include Botlzmann-like models of traf-

fic flow (e.g., [86, 90]), Markovian/queueing network approaches (e.g., [29, 31, 49, 53, 85]),

and cellular automata (e.g. [40, 74, 98, 99]). In general, these approaches do not suffer

the two problems cited above (in some cases minor modification may be needed), but are

generally intractable. Specific to problems of real-time traffic state estimation, successive

Monte-Carlo or particle filter based methods are required for most of these models, which

could be computationally prohibitive. On the other hand, extended Kalman filters, which

are fast by comparison to particle filters, rely on first-order Taylor series approximations

of the nonlinear dynamics. This limits the applicability of extended Kalman filtering to

differentiable dynamics (such as those proposed in [29, 31, 53]) and precludes some of the

most prominent traffic flow dynamics, such as the Godunov scheme and the CTM due to

disjunctive flux functions (i.e., flux functions that involve extrema of traffic variables or

conditional statements).

Another problem that arises in this context is related to computing covariance matrices
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of traffic state variables, a crucial component of Kalman filters. To accurately capture queue

build-up and dissipation dynamics, finer discretization of space and time are required. This

results in large numbers of traffic flow variables and, consequently, large system covariance

matrices. Furthermore, since flows across boundaries of cells (discrete space intervals)

depend on traffic states on either side of the boundaries, dependencies between traffic state

variables arise and assumptions of diagonal covariance matrices (typically made in the

traffic state estimation literature) are not valid. Estimation of such large time varying

covariance matrices may be prohibitive. More generally, for traffic estimation problems,

finer discretization results in larger numbers of variables and increases the sparsity of the

available measurements. This could lead to an observability issue; that is, introducing

more variables, we have fewer observations. This type of observability pertains to the mean

dynamics of the system. A critical issue related to the stochastic features of the system,

from an estimation point of view, is stochastic observability. Stochastic observability is

related to the behavior of the estimated covariance matrices of the system, which provide

“a statistical description of the errors associated with the estimated state mean vector”

[5]. Since the objective of any filter is to compute a minimum variance estimate, estimated

covariance matrices must be bounded. This boundedness property is what defines stochastic

observability.

1.2 Research Scope and Contributions

This research develops a stochastic extension of Godunov scheme based traffic flow dynam-

ics as a stochastic queueing model of traffic flow. The source of randomness in the model

is the randomness in vehicle time headways, which are used to develop stochastic counting

processes that describe cumulative numbers of vehicles crossing cell boundaries over time.

The counting processes are then used to develop (stochastic) conservation equations of traf-

fic flow. The main advantage of using queueing models, in contrast to existing methods

that extend Godunov scheme dynamics, is twofold: (i) non-negativity of traffic variables is
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implicitly ensured and (ii) it is shown, via application of functional strong laws of large num-

bers (FSLLN), that the Godunov scheme dynamics arise as mean dynamics of the queueing

model. That is, the qualitative behavior of the proposed queueing model is consistent with

well-established principles of traffic flow theory. Furthermore, by application of a functional

central limit theorem (FCLT), a tractable Gaussian model of traffic flow is obtained. By

deriving a Gaussian model, rather than assuming Gaussian noise arbitrarily, the covariance

matrices of the system can be computed from only few parameters.

The derived covariance matrices of the Gaussian model vary depending on traffic state

and are shown to be bounded. The dependence on traffic state can be illustrated as follows:

under free-flow traffic conditions, there is little variability in the model; in the extreme

case of zero traffic density in a section of road, the variance in flows out of the section is

also zero, which means, in this extreme case, that the model predicts zero outflow with

certainty. Likewise, in the extreme case of jam traffic density, the model predicts zero

inflows with certainty. The variance is largest around capacity traffic flow conditions, which

may be interpreted as being less certain about traffic flow conditions when large numbers of

vehicles that interact frequently are present on the road. It is notable that such dependence

on traffic state has been overlooked in all but few research efforts on Gaussian macroscopic

traffic flow models.

The derived mean and covariance dynamics of the Gaussian model are first-order deter-

ministic differential equations that depend on the expected values of traffic flow variables,

not the traffic flow variables themselves. This allows for implementation of a standard

Kalman filter for purposes of traffic state estimation and prediction, which results in com-

putational tractability and permits real-time implementation of the proposed model. The

continuous time setting in which the model is derived offers the flexibility of using different

computational time scales for the state and the measurement equations of the Kalman filter.

That is, the availability of measurements at regular time intervals is not required to run the

filter. In general, due to the sparsity of measurements, observability is difficult to establish.

However, under certain traffic flow conditions, such as free-flow conditions, the presence of

traffic sensors on either end of a road section will allow for reconstruction of initial mean
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traffic densities within the road section. To overcome observability issues, this study uses

a warm-up period where the initial conditions are observable free-flow traffic conditions.

Furthermore, the number of cells used has no impact on whether mean traffic conditions

are observable or not. In terms of stochastic observability, a crucial contribution of this

research is that the covariance matrices of the Gaussian model are bounded. Thus, Kalman

filters built using the proposed model are stochastically observable.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 motivates the methods applied in this thesis

and highlights the difficulties that would arise in applying “classical” Markovian techniques.

The chapter also demonstrates application of the FSLLN and the FCLT to a simple queue-

ing model of traffic flow so as to develop the intuition behind the detailed treatment in

subsequent chapters.

Chapter 3 provides a self contained introduction to deterministic macroscopic models

of traffic flow, in which traffic flow variables are defined and detailed derivations of the

conservation laws of traffic flow are given. A discussion of constitutive relations of traffic

flow (namely, the fundamental diagram) is given along with illustrations of how some of the

more popular relations are derived from microscopic traffic flow considerations. The chapter

culminates in a derivation of the Godunov scheme for concave fundamental relations and

presents a particular manifestation of the scheme, the CTM.

Chapter 4 develops the stochastic queueing model proposed in this thesis and discusses,

in detail, the properties of the model which allow the development of fluid and Gaussian

approximations. A more detailed derivation of the fluid limit of the simplified system

presented above is given so as to motivate some of the technical details needed to derive the

fluid limit in the general case when flow rates depend on the stochastic traffic densities. The

generalization utilizes the continuous mapping approach presented in [112]. It is shown that

the fluid limit of the general process is a continuous time version of the Godunov scheme

and a numerical example is given to illustrate the convergence.
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Chapter 5 develops the Gaussian approximation of the stochastic process starting from

a simplified setting and continuing on to the general setting capitalizing again on the con-

tinuous mapping approach. It is found that the approximation converges to the solution

of a stochastic differential equation (SDE) which is linear in the narrow sense. Thus, an

explicit solution of the SDE is established. The solution is shown to be a Gaussian process

with mean dynamics equivalent to the Godunov scheme and covariance function which is

easy to solve numerically. This chapter also discusses the stationarity and boundedness

properties of the covariance matrices of the Gaussian approximation, which are a crucial

ingredient in establishing that the proposed model is stochastically observable. Numerical

examples are given to illustrate the stationary behavior of the covariance function.

Chapter 6 discusses use of the Gaussian model in traffic state estimation with fixed

traffic sensor data (inductance loop detectors). The state-space and measurement models

are given and the discrete-continuous Kalman filtering algorithm is presented. The chapter

also discusses observability issues and impact of dividing the road section into a large number

of cells. Finally, a real-world estimation example is presented as a validation test of the

proposed model. The findings indicate a good match between observed traffic conditions

and estimated traffic conditions. Chapter 7 concludes the thesis.



Chapter 2

Motivation and Illustration

2.1 Introduction

Derivation of the fluid and Gaussian approximations of a queueing model constitute a

major portion of this research. The purpose of this chapter is to motivate the use of these

approximations as opposed to the queueing model itself. An illustration is then given using

the simplified setting of processes with deterministic time-varying rates. The intuition

developed here carries over to the more sophisticated (state-dependent) setting, which is

the main interest in this thesis. Detailed treatments of both the simplified setting and the

state dependent setting are presented in subsequent chapters.

2.2 Motivation

Consider a homogeneous roadway without sources or sinks, which is divided into cells. Let

Q(x, t) denote a stochastic counting process describing the cumulative number of vehicles

that have crossed the downstream boundary of cell x ∈ C at time t, where C is a set of cell

indices. The conservation of traffic density in cell x is written as:

ρ(x, t) = ρ(x, 0) +
1

lx

(
Q(x− 1, t)−Q(x, t)

)
, (2.1)

7
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where ρ(x, t) is the (random) traffic density in cell x at time t and lx is the length (or

size) of cell x. We wish to characterize ρ(x, t) probabilistically. For the sake of illustration,

let’s assume that ρ(x, 0) = 0 almost surely for all x and that the cell lengths are equal

and normalized to 1; that is lx = 1. Then the traffic density in x is characterized by the

two counting processes Q(x − 1, t) and Q(x, t). Again, for the sake of illustration, let’s

assume that {Q(x, t)}x∈C may be represented by independent (non-homogeneous) Poisson

processes with time-varying deterministic rates {λ̄(x, t)}x∈C ; that is, we assume here that

the instantaneous flow rates are given time varying constants. We then obtain a non-

homogeneous birth and death process for each of the cells, or an Mt/Mt/1 queueing system

for each cell. Then the Markovian approach to characterizing the probabilistic nature of

{ρ(x, t)}x∈C consists of solving the following system of (birth and death) equations for each

x:

∂

∂t
px(k, t) = λ̄(x−1, t)px(k−1, t) + λ̄(x, t)px(k+ 1, t)−

(
λ̄(x−1, t) + λ̄(x, t)

)
px(k, t), (2.2)

for k = 1, 2, ... and

∂

∂t
px(0, t) = λ̄(x, t)px(1, t)− λ̄(x− 1, t)px(0, t), (2.3)

for k = 0, where px(k, t) ≡ P
(
ρ(x, t) = k

)
.

The Markovian approach, which considers non-stationary dynamics (i.e., solving (2.2)

and (2.3)), can be rather difficult, and a closed form solution is rarely available explicitly

[66]. In fact, even when closed form expressions are available, their complexity could render

their use and analysis preventative. As an example, when the rates λ̄(x, t) do not vary with

time, the solution involves modified Bessel functions [69]. For this reason, one resorts to

asymptotic analysis of the probabilities; that is, the probabilities which arise when t→∞.

In this case, the left-hand sides of (2.2) and (2.3) are zero (i.e., ∂
∂tpx(k, t) = 0) and the

differential equations become difference equations, which are easier to solve and typically

deliver simpler solutions.

However, while it may not be difficult to obtain/analyze the stationary probabilities

corresponding to the long-run probabilistic behavior of the system, this is of little use to a
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traffic engineer concerned with the transient features of traffic flow (e.g., changes in traffic

characteristics from one traffic light cycle to the next). To quote Mandlebaum and Massey

[66]: “approximating the behavior of the system in the here and now by its behavior at time

infinity is typically futile”. Then, instead of attempting to explicitly solve equations (2.2)

and (2.3), an alternative approach is to approximate (2.1) by a more tractable stochastic

model. Specifically, if one could approximate (2.1) by a Gaussian process for which the mean

(deterministic) behavior of the system and the time-varying covariance are easy to compute,

then the problem becomes much simpler. Indeed, this approach first appeared in [79, 80]

for the Mt/M/1 queue and made rigorous in [69, 70] for the Mt/Mt/1 queue; in particular,

the latter introduced the idea of “uniform acceleration” as an approximation method that

preserves the transient features of the queueing process. Using “uniform acceleration”, [66]

extended the work of [70] to the asymptotic analysis of the sample paths of the Mt/Mt/1

queue. This is the approach taken in this thesis, which is illustrated next for the simple

Mt/Mt/1 queue given above. It is crucial to note here that the difficulties are substantially

exacerbated when the flow rates λ̄(x, t) depend on the (random) traffic densities, which is

the case for macroscopic traffic flow.

2.3 Fluid Limits and Gaussian Approximation: An Illustra-

tion

The main idea behind uniform acceleration of queueing processes is to consider, instead of

the original process, a sequence of processes where all of the rates are multiplied by the

scaling factor n; i.e., processes which, on average, count n times as many vehicles per unit

time. The counting processes are then divided by n. Then letting n → ∞, we obtain a

fluid process. This is analogous to counting fractions of size n of vehicles rather than whole

vehicles and letting the fractions get smaller and smaller while counting larger and larger

numbers of fractions.

The scaled process is denoted by 1
nQ(x, nt). When Q(x, t) is a non-homogeneous Poisson
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process the FSLLN says that:

1

n
Q(x, n·) −→

n→∞

∫ •
0
λ̄(x, u)du almost surely (a.s.), (2.4)

where the notation “·” is used to indicate that we are talking about the convergence of a

process (i.e., a function of time) to another process, and the notation “•” is used when this

appears as the upper limit of integration (for typographic purposes). It is to be understood,

in the sequel, unless otherwise stated, that by Q(x, nt) is meant Q(x, n·).
The fluid limit in (2.4) (in conjunction with the continuous mapping theorem [112] – see

Appendix A.3 Theorem A.3.7) can the be used to determine the fluid limit of the simple

traffic density process ρ(x, t) = Q(x− 1, t)−Q(x, t), which is a deterministic process; that

is, as n→∞:

ρn(x, t) −→ ρ̄(x, t) =

∫ t

0
λ̄(x− 1, u)du−

∫ t

0
λ̄(x, u)du almost surely (a.s.), (2.5)

where ρn(x, t) is the traffic density associated with the scaled counting processes 1
nQ(x −

1, nt) and 1
nQ(x, nt), and ρ̄(x, t) is the deterministic traffic density process.

The fluid limit, in essence, captures the mean (qualitative) behavior of the process.

The Gaussian approximation refines1 the fluid limit by adding a stochastic refinement

process. The refinement process can simply be thought of as a measure of the deviation of

the stochastic model from its fluid limit. The refinement process is:

rn(x, t) =
√
n

(
1

n
Q(x, nt)−

∫ t

0
λ̄(x, u)du

)
, (2.6)

where the re-scaling factor
√
n in essence amplifies the deviation between the two processes,

which would otherwise converge to zero in accordance with the fluid limit.

Letting n→∞ in (2.6), we have, by the FCLT, that the refinement process converges,

in distribution, to a Gaussian process. In particular, we have that

rn(x, ·) D−→
∫ •

0

√
λ̄(x, u) dWx(u), (2.7)

1 For a clarification of the nomenclature, see for example [17].
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where
D−→ means “converges in distribution to”, Wx(·) is standard Brownian motion, and∫ •

0

√
λ̄(x, u) dWx(u) is an Itô integral with deterministic integrand, which may be under-

stood for, for some fixed t to be a Gaussian random variable with mean zero and variance∫ t
0 λ̄(x, u)du.

Returning to the traffic density process, we see that ρ(x, t), with Q(x− 1, t) and Q(x, t)

represented by independent non-homogeneous Poisson processes, may be approximated by:

ρ̃(x, t) =

∫ t

0
λ̄(x−1, u)du−

∫ t

0
λ̄(x, u)du+

∫ t

0

√
λ̄(x− 1, u)dWx−1(u)−

∫ t

0

√
λ̄(x, u)dWx(u),

(2.8)

where ρ̃(x, t) denotes approximated traffic density. This process has mean

Eρ̃(x, t) =

∫ t

0

(
λ̄(x− 1, u)− λ̄(x, u)

)
du, (2.9)

which coincides with the fluid limit of the process. The process variance is:

E
(
ρ̃(x, t)− Eρ̃(x, t)

)2
=

∫ t

0

(√
λ̄(x− 1, u) +

√
λ̄(x, u)

)
du (2.10)

The variance given by (2.10) grows without bound so as long as vehicles continue to

flow through the cells. This is an undesirable feature from both physical and application

standpoints. That the variance grows without bound means that the probability of neg-

ative traffic states and traffic densities that exceed jam density increase with time, even

under free-flow traffic conditions. Moreover, from the perspective of traffic state estimation

applications, the unboundedness of the covariance matrices could easily lead to stochastic

unobservability, particularly in cases where road sections are divided into many cells. The

Gaussian approximations associated with the state-dependent counting processes studied

in this thesis do not suffer this limitation as will be discussed in subsequent chapters.



Chapter 3

Background: Deterministic

Macroscopic Traffic Flow Modeling

3.1 Introduction

The purpose of this chapter is to provide a self-contained background on first-order macro-

scopic modeling of traffic flow. Specifically, this chapter provides complete derivations of

conservation laws in various integral forms and the more popular differential form, which

was first studied by Lighthill and Whitham [63] and independently by Richards [95]; the

theory is commonly referred to as LWR theory, due to the three authors. The different

forms of the conservation law serve different purposes; the physical meaning behind them

is most easily seen in the integral forms, while the differential form is used to derive meth-

ods to solve the conservation equation. This chapter culminates in a presentation of the

Godunov scheme [39, 58], a forward in time numerical method for solving the LWR model,

and a special kind of Godunov scheme that is popular in the traffic flow literature: the cell

transmission model [22, 23]. The stochastic model proposed in this thesis is a probabilistic

extension to Godunov scheme based dynamics.

12
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3.2 Macroscopic Variables of Traffic Flow

Macroscopic traffic flow modeling looks at the interplay between the following three dynamic

variables of traffic flow (or any subset of two thereof): mean traffic density, mean flow rate,

and mean speed, denoted respectively by ρ̄(x, t), q̄(x, t), and v̄(x, t), where x ∈ R is a

position along the road and t ∈ R+ is a time instance. The macroscopic traffic variables are

defined broadly as the average number of vehicles per unit length of the road at position x

at time t, the average number of vehicles to cross position x per unit time at time t, and

the mean speed of vehicles at position x at time t, respectively. How they arise as averages,

and in what sense, may differ based on how the variables are defined.

The classical definitions of the three variables is due to Wardrop [108] and Lighthill

and Whitham [63], and constitute the most widely used definitions of the three variables in

traffic engineering since they are based on how one would measure the variables in practice.

From the broad definitions above, we have the following basic relation:

q̄(x, t) = ρ̄(x, t)v̄(x, t), (3.1)

which restricts us to a particular definition of mean speed, namely, the “space mean speed”

[108]. To see this, proceed as follows: fix a section of the road of length ∆x, centered at

position x, and a time interval of length ∆t, centered at time instance t. Then record the

traversal times of N vehicles through the road section during the specified time interval.

Denote these traversal times by τ1, τ2, ..., τj , ..., τN . The space mean speed is defined as

the ratio of the length of the road segment (∆x) to the average traversal time:

v̄(x, t) ≡ ∆x
1

N(x,t)

∑N(x,t)
j=1 τj

, (3.2)

where N ≡ N(x, t), short for N ≡ N
([
x− ∆x

2 , x+ ∆x
2

]
, t
)
, is used to remind us that N

varies with x and t. Define the mean rate of flow through our road segment over the time

interval of interest as:

q̄(x, t) ≡ N(x, t)

∆t
(3.3)

Since some of the vehicles may have left the section during the interval [t− ∆t
2 , t+ ∆t

2 ],

N(x,t)
∆x is not the correct expression for the traffic density. Instead, Lighthill and Whitham
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[63] suggest using the average number of vehicles divided by the section length:

ρ̄(x, t) ≡
1

∆t

∑N(x,t)
j=1 τj

∆x
(3.4)

Then, from equations (3.2) - (3.4), it can be seen that the interpretation of v̄(x, t) as

the space mean speed delivers the basic relation (3.1).

Alternatively, one could define traffic density and flow rate as the reciprocals of micro-

scopic variables of traffic flow. Denote by tj(x) the time vehicle j crosses position x and

let hj(x) denote the jth inter-arrival (or inter-departure) time at position x, which shall be

referred to hereafter as the jth time headway. Consequently, hj(x) = tj(x)− tj−1(x). Also,

let xj(t) denote the position of vehicle j at time t and sj(t) the spacing between vehicles

j − 1 and j; that is sj(t) = xj−1(t)− xj(t). These variables are illustrated in Figure 3.1.

1( )jh x2x

2( )jh x x

( )

x

( )jx t

1( )jx t

1x

1( )js t

( )jx t

1( )jx t
2( )js t

j
t

1t 2t
t

(a) (b)

Figure 3.1: Trajectories of two successive vehicles; (a) vehicle time headways; (b) vehicle

spacings

From the microscopic variables of traffic flow, traffic density, flow rate, and speed can

be defined as follows:

ρ(x, t) =
1

sj(t)
, for x ∈ [xj(t), xj−1(t)) (3.5)

q(x, t) =
1

hj(x)
, for t ∈ (tj−1(x), tj(x)] (3.6)

v(x, t) =
q(x, t)

ρ(x, t)
=

sj(t)

hj(x)
, for x ∈ [xj(t), xj−1(t)), t ∈ (tj−1(x), tj(x)] (3.7)
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Note that the overhead bars (e.g., ρ̄) have been omitted in equations (3.5) - (3.7), since

the quantities in these equations are no longer mean quantities. For instance, for a fixed

position x, q(x, t) varies for every pair of vehicles that cross over time and likewise, for

a fixed time instance t, ρ(x, t) varies with x depending on the spacing between pairs of

consecutive vehicles.

3.3 Derivation of Conservation Laws

This section provides full derivations of integral and differential conservation laws of traf-

fic flow. They are derived here as relations amongst the three mean variables of traffic

flow (ρ̄(x, t), q̄(x, t), and v̄(x, t)) although the derivations and the laws still hold for the

macroscopic variables defined in equations (3.5) - (3.7). The derivations given here are

universal, just as conservation laws are universal and apply in a variety of disciplines in-

cluding fluid dynamics, geophysics, and biomechanics. Further information can be found in

[59, 60, 62, 110].

Let [x1, x2] denote an arbitrary road segment with instantaneous rates of flow through

the boundaries q̄(x1, t) and q̄(x2, t). See Figure 3.2.

direction of travel

2( , )q x t 1( , )q x t

2x 1x

Figure 3.2: Arbitrary road segment

At any time instance t, the number of vehicles present in the road segment is:

N
(
[x1, x2], t

)
=

∫ x2

x1

ρ̄(x, t)dx (3.8)

The rate at which N
(
[x1, x2], t

)
changes with time is written as:

d

dt

∫ x2

x1

ρ̄(x, t)dx = q̄(x1, t)− q̄(x2, t)

= v̄(x1, t)ρ̄(x1, t)− v̄(x2, t)ρ̄(x2, t) (3.9)
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Equation (3.9) will be referred to as the first integral form of the conservation law, which

will be used in deriving shockwave speeds in the sequel. Suppose now we are interested in

change in the number of vehicles in our road segment over a time interval [t1, t2]. To write

this, one simply integrates both sides of equation (3.9) over [t1, t2]:∫ t2

t1

(
d

dt

∫ x2

x1

ρ̄(x, t)dx

)
dt =

∫ t2

t1

(
v̄(x1, t)ρ̄(x1, t)− v̄(x2, t)ρ̄(x2, t)

)
dt (3.10)

By applying (a corollary to) the fundamental theorem of calculus, (see Appendix A.2,

Corollary A.2.1), to the left-hand side (LHS) of (3.10), we get:∫ t2

t1

(
d

dt

∫ x2

x1

ρ̄(x, t)dx

)
dt =

∫ x2

x1

ρ̄(x, t2)dx−
∫ x2

x1

ρ̄(x, t1)dx, (3.11)

and separating the right-hand side (RHS) of (3.10) into two integrals, we get the second

integral form of the conservation law :∫ x2

x1

ρ̄(x, t2)dx−
∫ x2

x1

ρ̄(x, t1)dx =

∫ t2

t1

v̄(x1, t)ρ̄(x1, t)dt−
∫ t2

t1

v̄(x2, t)ρ̄(x2, t)dt

=

∫ t2

t1

q̄(x1, t)dt−
∫ t2

t1

q̄(x2, t)dt (3.12)

The second integral form of the conservation law has the following interpretation: the

first integral on the LHS represents the number of vehicles present in the road section at

(future) time t2, while the second integral on the LHS represents the number of vehicles

present in the road segment at (earlier) time t1. The first integral on the RHS represents

the total number of vehicles that have entered the road segment (through x1) over the time

interval [t1, t2], while the second integral on the RHS represents the number of vehicles that

have left the road segment (through x2) over the time interval [t1, t2]. That is, equation

(3.12) says that number of vehicles in the road segment at any future time, t2, is equivalent

to the number of vehicles that were present at an earlier time, t1, plus the total inflow during

the time interval [t1, t2], less the total outflow during the time interval [t1, t2]. Note: for

conservation of vehicles to be honored, (3.12) must hold for all quadruples {x1, x2, t1, t2},
which is difficult to check both in practice and in theory, particularly, since these appear as

limits in the integrals. However, the second integral form of the conservation law is useful
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for designing numerical solution schemes, where space and intervals are fixed a priori; this

will be revisited later in this chapter.

To derive the (classical) differential form of the conservation law (i.e., the LWR equa-

tion), one needs to make the following critical assumption:

Assumption. The quantities ρ̄(x, t), q̄(x, t), and v̄(x, t) are continuous and possess con-

tinuous partial derivatives on R× R+.

The importance of this assumption lies in the fact that –as we shall see later– it does not

hold in general, which renders the LWR partial differential equation (PDE) ill-posed and

further analysis is required to characterize a physically acceptable solution. Nonetheless,

the differential form remains useful for purposes of solving conservation laws. Note: this

assumption was not made in our derivation of the integral forms (3.9) and (3.12), which

consequently do not suffer these limitations of the LWR PDE.

Let us now return to the derivation of the differential form. Start with equation (3.10):

the assumption above allows us to interchange the order of differentiation and integration

on the LHS (see Appendix A.2, Theorem A.2.2). That is,∫ t2

t1

(
d

dt

∫ x2

x1

ρ̄(x, t)dx

)
dt =

∫ t2

t1

∫ x2

x1

∂

∂t
ρ̄(x, t)dxdt, (3.13)

and from (a corollary to) the fundamental theorem of calculus (Appendix A.2, Corollary

A.2.1), the RHS of (3.10) may be written as:∫ t2

t1

(
v̄(x1, t)ρ̄(x1, t)− v̄(x2, t)ρ̄(x2, t)

)
dt =

∫ t2

t1

∫ x1

x2

∂

∂x

(
v̄(x, t)ρ̄(x, t)

)
dxdt

= −
∫ t2

t1

∫ x2

x1

∂

∂x

(
v̄(x, t)ρ̄(x, t)

)
dxdt

(3.14)

Assembling (3.13) and (3.14), we get:∫ t2

t1

∫ x2

x1

(
∂

∂t
ρ̄(x, t) +

∂

∂x

(
v̄(x, t)ρ̄(x, t)

))
dxdt = 0 (3.15)

which implies the differential form of the conservation law:

∂

∂t
ρ̄(x, t) +

∂

∂x

(
v̄(x, t)ρ̄(x, t)

)
= 0, (3.16)
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or, equivalently,
∂

∂t
ρ̄(x, t) +

∂

∂x
q̄(x, t) = 0 (3.17)

Despite its limitations, the differential form of the conservation law has the advantage

of giving insight into the solution of the conservation equation. Techniques for establishing

good solution properties (e.g., existence and uniqueness) are more widely available for PDEs

than integral equations, the latter possessing multiple solutions in the case of conservation

laws; heuristically speaking, it can be easily seen, for example, in (3.9) or (3.12) that

one could propose various paths ρ̄(·, t) over [x1, x2] that can be integrated to produce the

same value. For this reason, one prescribes additional (“entropy”) conditions to pick out

physically relevant solutions.

3.4 Constitutive Relations: The Fundamental Diagram

While conservation laws are universal, constitutive relations are problem-specific and cap-

ture the idiosyncrasies of the system at hand. Here, a constitutive relation shall also close

the conservation law: that is, one needs an additional relation in order to solve for the

two unknowns that appear in the conservation equation (regardless of form); this addi-

tional relation is what is commonly referred to as the constitutive relation. In the context

of macroscopic traffic flow modeling, there exist two classes of constitutive relations: the

first are stationary relations between any two macroscopic variables of traffic flow, referred

to as “fundamental relations” of traffic flow, due to Haight [43], who first introduced the

terminology. The second class describe speed evolution as solutions to partial differential

equations and are intended to capture both stationary and non-stationary traffic conditions;

classical versions can be found in [87, 110] and more contemporary versions can be found in

[4, 115]. The first class combined with the conservation equation constitute what is referred

to as first-order macroscopic models of traffic flow, while the conservation equation com-

bined with the second class of constitutive relations are referred to as second-order models.

This thesis shall focus on first-order models, and no further discussion of the second class

of constitutive relations will be given.
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Fundamental relations of traffic flow come in two flavors: speed-density relations and

flow-density relations, which express the mean speed and the mean flow rate as functions

of traffic density, respectively. These relations, in essence, say the following: (i) the mean

speed along the road decreases from a maximum value (the free-flow speed) as the mean

traffic density on the road increases and until a maximum density is reached (the jam

density) where vehicles can no longer move and the speed is zero; (ii) the mean rate of flow

increases as traffic density increases (free-flow conditions) and then reaches a maximum

value (congestion sets in) beyond which the flow decreases as the density increases and

reaches zero when at jam density. The common notation for these relations is, respectively,

Ve
(
ρ̄(x, t)

)
and Qe

(
ρ̄(x, t)

)
; the subscript “e” stands for empirical or equilibrium, as the

relation has been commonly established by means of statistical fitting or derived from

microscopic traffic flow considerations under stationarity (or equilibrium) assumptions.

Some of the more prominent fundamental relations established empirically are presented

below; this is followed by a brief discussion of derivations of fundamental relations from

car-following considerations. It is notable that, in recent years, researchers have proposed

several new fundamental relations so as to encompass observed phenomena such as capacity

drops and traffic hysteresis phenomena in addition to extensions to multi-lane traffic. The

reader is referred to [25, 55, 56, 116] (and references therein) for further information on

these recent extensions. It is notable that, to date, there exists no consensus as to what

the “correct” shape of the fundamental relation should be. In this review, only “classical”

fundamental relations shall be presented and no further discussion of recent extensions will

be given.

3.4.1 Empirical Fundamental Relations

The first fundamental relation of traffic flow was fitted by Greenshields [42] as a linear

relationship between mean speed and traffic density, which from (3.1) yields a quadratic

relation between flow and density. These relations are expressed as follows: let vf denote

the free-flow speed of vehicles (the largest mean speed), qmax the maximum rate of flow,

ρcrit the critical density (below which we have free-flow conditions and beyond which we
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have congested traffic conditions), and ρjam the jam density (the maximum traffic density).

The relations are given by:

Ve
(
ρ̄(x, t)

)
= vf

(
1− ρ̄(x, t)

ρjam

)
(3.18)

and

Qe
(
ρ̄(x, t)

)
= vf ρ̄(x, t)

(
1− ρ̄(x, t)

ρjam

)
(3.19)

Greenshields’ fundamental relations are illustrated in Figure 3.3 for the case where

vf = 60 mi/hr (96.56 km/hr) and ρjam = 180 veh/mi (111.85 veh/km).
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Figure 3.3: Greenshields’ fundamental relations; (a) speed-density; (b) flow-density

Greenshields’ fundamental relations were developed using limited data (seven data

points) and further empirical investigation was carried out in the late 1950’s and early

1960’s; Greenberg [41] proposed non-linear speed-density and flow-density models based on

the fluid-like behavior assumptions of traffic flow, which he then fitted using the Lincoln

Tunnel data. His proposed relations are given by:

Ve
(
ρ̄(x, t)

)
= β log

(
ρjam
ρ̄(x, t)

)
(3.20)

and

Qe
(
ρ̄(x, t)

)
= βρ̄(x, t) log

(
ρjam
ρ̄(x, t)

)
, (3.21)
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where β is a parameter of the model, which determines the maximum flow rate, qmax.

When log denotes the natural logarithm (as in Greenberg’s original work), β =
qmax
ρcrit

and

ρcrit =
ρjam
e . Greenberg’s fundamental relations are illustrated in Figure 3.4 for the case

where β = 30 mi/hr (48.28 km/hr) and ρjam = 180 veh/mi (111.85 veh/km).
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Figure 3.4: Greenberg’s fundamental relations; (a) speed-density; (b) flow-density

Noticing the unreasonable behavior in Greenberg’s speed-density model at low densities

(the presence of an asymptote), Underwood [105] proposed the following relations:1

Ve
(
ρ̄(x, t)

)
= β1 exp

(−ρ̄(x, t)

ρcrit

)
− β2 (3.22)

and

Qe
(
ρ̄(x, t)

)
= β1ρ̄(x, t) exp

(−ρ̄(x, t)

ρcrit

)
− β2ρ̄(x, t), (3.23)

where β1 and β2 are fitting parameters that are related to traffic flow parameters as follows:

β2 = β1 − vf and β1 =
vf

1− exp(−ρjam/ρcrit)
.

Underwood’s fundamental relations are illustrated in Figure 3.5 for the case where vf =

60 mi/hr (96.56 km/hr), ρcrit = 30 veh/mi (55.92 veh/km), and ρjam = 180 veh/mi (111.85

veh/km).

More recently, Del Castillo and Benitez [30] proposed a family of fundamental relations

based on a set of constraints that ensure: (i) free-flow speed at zero density, (ii) zero speed

1 In fact, this is the modified version of Underwood’s model [105, pg. 149]; the modification ensures that
Ve(ρjam) = 0 and Qe(ρjam) = 0, where an asymptote appears in the unmodified version.
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Figure 3.5: Underwood’s fundamental relations; (a) speed-density; (b) flow-density

at jam density, (iii) a decreasing speed-density relation except near zero and jam densities,

and (iv) a concave flow-density relation. (It is notable that the strict concavity assumption

can be relaxed; allowing for non-concave flow-density relations, such as Underwood’s, have

been studied in [61] and their numerical solutions in [84].) As a special case, which was of

particular interest to the authors, their relations include the relations previously proposed

independently by Newell [76] and Franklin [35]. Hereafter, these relation shall be referred

to as the Newell-Franklin relations, written as:

Ve
(
ρ̄(x, t)

)
= vf

(
1− exp

[ |w|
vf

(
1− ρjam

ρ̄(x, t)

)])
(3.24)

and

Qe
(
ρ̄(x, t)

)
= vf ρ̄(x, t)

(
1− exp

[ |w|
vf

(
1− ρjam

ρ̄(x, t)

)])
, (3.25)

where w is wave speed at jam density; that is w =
dQe(ρjam)

dρ̄(x, t)
.

The Newell-Franklin relations are depicted in Figure 3.6 for the case where vf = 60

mi/hr (96.56 km/hr), ρjam = 180 veh/mi (111.85 veh/km), and w = −15 mi/hr (-24.14

km/hr).
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Figure 3.6: Newell-Franklin fundamental relations; (a) speed-density; (b) flow-density

3.4.2 Fundamental Relations Derived from Car-Following

Early derivations of the fundamental diagram from car-following dynamics were carried out

in order to investigate the aggregate-level behavior of proposed car-following rules and for

purposes of validation against real world data [32, 38, 76, 88]. It wasn’t long, however,

before the fundamental diagram induced by car-following theory itself became an object

of interest, and researchers proposed car-following models that reproduce known empirical

relations. Pipes [89] proposed the general car-following equation:

aj(t) = β1
vj−1(t)− vj(t)(
xj−1(t)− xj(t)

)β2
, (3.26)

where j − 1 and j are the indices of a leading vehicle and a following vehicle, respectively;

(see Figure 3.1). β1 and β2 are model parameters, aj(t) is the acceleration/deceleration of

the follower vehicle, j, at time t, and vj−1(t) and vj(t) are the speeds of the leader and the

follower at time t. Roughly, the model says that the followers acceleration/deceleration is

directly proportional to the speed difference between the two vehicles and inversely propor-

tional to the spacing between them with β2 representing the follower’s sensitivity to spacing.

Different choices for β2 lead to different fundamental relations. For example, suppose we
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choose β2 = 2, then2

dvj(t)

dt
= β1

vj−1(t)− vj(t)(
xj−1(t)− xj(t)

)2
= β1

(
xj−1(t)− xj(t)

)−2 d

dt

(
xj−1(t)− xj(t)

)
= β1

(
sj(t)

)−2dsj(t)

dt
(3.27)

Multiplying both sides by dt and integrating:∫
dvj(t) = β1

∫
dsj(t)(
sj(t)

)2 , (3.28)

we get the following relation:

vj(t) = β1

( −1

sj(t)
+ γ

)
, (3.29)

where γ is a constant of integration. Assuming vj(t) depends neither on j nor on t, but

on ρ̄(x, t) =
(
sj(t)

)−1
and model parameters, (3.29) may be interpreted as the stationary

speed-density relation:

Ve
(
ρ̄(x, t)

)
= β1 (−ρ̄(x, t) + γ) (3.30)

Using the boundary conditions: Ve
(
0
)

= vf and Ve
(
ρjam

)
= 0, β1 and γ are such that

we get the following relation:

Ve
(
ρ̄(x, t)

)
= vf

(
1− ρ̄(x, t)

ρjam

)
, (3.31)

which is Greenshields’ speed-density relation.

Likewise, setting β2 = 1, we get the following:

dvj(t)

dt
= β1

vj−1(t)− vj(t)
xj−1(t)− xj(t)

= β1

(
sj(t)

)−1dsj(t)

dt
, (3.32)

and upon multiplying by dt, integrating, and assuming stationary conditions, we get:

Ve
(
ρ̄(x, t)

)
= β1 log

(
1

ρ̄(x, t)

)
+ γ, (3.33)

2 Recall that aj(t) =
dvj(t)

dt
, vj(t) =

dsj(t)

dt
, and sj(t) = xj−1(t)− xj(t).
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which with the boundary condition Ve
(
ρjam

)
= 0 yields Greenberg’s speed-density relation.

A recent, more widely used, fundamental relation is based on the simplified car-following

model of Newell [82], which hypothesizes a linear relationship between speed and spacing,

written as:

sj(t) = βj,2 + βj,1vj(t) 0 ≤ vj(t) < vf , (3.34)

The linear relation is illustrated in Figure 3.7a.
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Figure 3.7: Newell’s simplified car-following model [82] (reproduced); (a) the linear speed-

spacing relation for a single vehicle, (b) linear trajectories

In Newell’s simplified model, βj,1 can be loosely interpreted as a minimum time headway

between the follower j and their leader, j−1, while βj,2 may be interpreted as the minimum

spacing between vehicles j and j − 1 when the vehicles are not moving. The parameters

would vary from one driver to the other. Furthermore, the theory only applies when the

speeds are less than the free-flow speed, since otherwise vehicles move unrestricted by their

leaders. The linear relationship also implies piecewise linear trajectories of vehicles, where

the follower’s trajectory is simply a translation of the leader’s trajectory an amount βj,1 in

time and βj,2 in space. It is notable that the simplified model was empirically validated in

[2], while the resulting piecewise linear flow-density relation was empirically verified in [20].

To derive a fundamental relation from the simplified car-following model, one assumes

stationary conditions (i.e., independence of j and t), so that β2,j ≡ β2 and β1,j ≡ β1 (for
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all j). Then, from (3.34):

Ve
(
ρ̄(x, t)

)
=

1

β1

(
1

ρ̄(x, t)
− β2

)
ρcrit ≤ ρ̄(x, t) ≤ ρjam, (3.35)

where the critical density is ρcrit =
qmax
vf

. Furthermore, β2 =
1

ρjam
since Ve(ρjam) = 0 and

1

β1
=

(
qmax

ρjam − ρcrit

)
ρjam ≡ |w|ρjam, (3.36)

since Qe(ρcrit) = qmax. Here, as in the Newell-Franklin model, w is interpreted as a constant

backward wave speed.

For sub-critical traffic densities (i.e., free-flow conditions), we have that Ve
(
ρ̄(x, t)

)
= vf

and, consequently, Qe
(
ρ̄(x, t)

)
= vf ρ̄(x, t). Finally, we have the following fundamental

relations due to Newell:

Ve
(
ρ̄(x, t)

)
=


vf if 0 ≤ ρ̄(x, t) < ρcrit

|w|
(
ρjam
ρ̄(x, t)

− 1

)
if ρcrit ≤ ρ̄(x, t) ≤ ρjam

, (3.37)

and

Qe
(
ρ̄(x, t)

)
=

 vf ρ̄(x, t) if 0 ≤ ρ̄(x, t) < ρcrit

|w|
(
ρjam − ρ̄(x, t)

)
if ρcrit ≤ ρ̄(x, t) ≤ ρjam

(3.38)

Newell’s simplified relations are depicted in Figure 3.8 with parameters vf = 60 mi/hr

(96.56 km/hr), ρcrit = 30 veh/mi (18.64 veh/km), ρjam = 180 veh/mi (111.85 veh/km),

and w = −12 mi/hr (-19.31 km/hr).

Newell’s simplified flow-density relation has also been extended to a trapezoidal shape

to accommodate discharge capacities which are associated with a range of traffic densi-

ties. Such discharge capacities typically arise along urban arterials, where queued vehicles,

regardless of queue size, tend to discharge at saturation flow rates. The trapezoidal flow-

density relation is depicted in Figure 3.9 with parameters vf = 60 mi/hr (96.56 km/hr),

ρjam = 180 veh/mi (111.85 veh/km), w = −12 mi/hr (-19.31 km/hr), and qmax = 1400

veh/hr.



27

60

70

50

60

h
/

h
r)

40
e 

(v
eh

20

30

w
 R

at
e

10

20

F
lo

w

0
0 50 100 150 2000 50 100 150 200

Traffic Density (veh/mi)

1800
2000

1400
1600
1800

h
/

h
r)

1000
1200
1400

e 
(v

eh

600
800
1000

w
 R

at
e

200
400
600

F
lo

w

0
200

0 50 100 150 2000 50 100 150 200
Traffic Density (veh/mi)

(a) (b)

Figure 3.8: Newell’s simplified fundamental relations; (a) speed-density; (b) flow-density
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Figure 3.9: Trapezoidal flow-density relation; (a) speed-density; (b) flow-density

3.5 Shockwaves, Rarefaction, and the Riemann Problem

A solution to the LWR model can, in essence, be thought of as a formula ρ̄(x, t) where one

plugs in x and t and the formula gives the value of the mean traffic density at position x

and time t. As the LWR model is ill-posed, such a formula cannot be obtained in general,

but may be obtained by piecing together solutions to simpler problems. The nature of the

solution depends on two things: the fundamental relation and the traffic densities at an

initial time, hereafter referred to as the initial data. The latter is a prescribed relation,

written as: ρ̄(x, 0) ≡ ρ0(x), where ρ0(x) is a given function of x. To illustrate, suppose
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ρ0(x) is some continuous function of x and assume that the flow-density relation is given by

Qe
(
ρ̄(x, t)

)
= v̄ρ̄(x, t), where v̄ > 0 is a constant. Such a scenario would describe free-flow

traffic. The conservation equation (3.16) is then written as:

∂

∂t
ρ̄(x, t) + v̄

∂

∂x
ρ̄(x, t) = 0, (3.39)

This version of the problem, known as the linear advection equation, is well-posed and

has the following solution:

ρ̄(x, t) = ρ0(x− v̄t) (3.40)

That is, the initial traffic densities remain unchanged, but shift in space at a speed of v̄

over time. Derivation of this solution is given in Appendix B, Section B.1. To illustrate

the properties of the solution, suppose the initial traffic densities are given by Figure 3.10a,

then the traffic density profile at some time t1 > 0 in the future is illustrated in Figure

3.10b.
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Figure 3.10: Example linear advection problem solution; (a) initial traffic density profile

ρ0(x); (b) traffic density profile at time t1 > 0

An alternative way of visualizing the solution is by looking at the characteristic lines of

the problem. In the context of conservation of traffic flow, characteristic lines are lines in the

time-space diagram along which traffic densities are constant. Figure 3.11 illustrates how

one would obtain the traffic density at position x1 at time t1 by following the characteristic

line -on which the point (x1, t1) lies- to the origin, where the traffic density is known (i.e.,

determine the corresponding x0 = x1− v̄t1). The slopes of the characteristic lines in Figure

3.11 are 1/v̄ rather than v̄ due to the orientation of the axes.
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Figure 3.11: Characteristic lines for the linear advection equation

In general the constant slopes of the characteristic lines throughout the time-space

diagram in Figure 3.11 indicate that traffic densities shift at a constant speed over time,

preserving their initial shape. When instead of a constant speed we have speeds that depend

on traffic density, the slopes of the characteristic lines are no longer equal. For any flow-

density relation, Qe
(
ρ̄(x, t)

)
, the conservation equation to be solved is:

∂

∂t
ρ̄(x, t) +Q′e

(
ρ̄(x, t)

) ∂
∂x
ρ̄(x, t) = 0, (3.41)

where Q′e = dQe

dρ̄ , the slope of the flow-density relation, is referred to as the characteristic

speed. The slopes of the characteristic lines are 1/Q′e
(
ρ̄(x, t)

)
and now depend on the traffic

density. Note that the characteristic speeds, while they may coincide with the speed of

traffic, depending on traffic density and the shape of the flow-density relation, generally

differ from the speed of traffic. This is illustrated in Figure 3.12.

Q()Q()

Q' < 0

V=Q/ > 0


Figure 3.12: The characteristic speed (Q′) vs. traffic speed (V ) for the same traffic density

For this non-linear case, proceed in the same way as in the linear case. Take, for



30

instance, the initial data shown in Figure 3.10a and assume that the traffic densities climb

to a value that exceeds the critical density, ρcrit, and then descends as shown in Figure

3.14a. As the traffic density increases, the characteristic speed decreases, the slope of

the corresponding characteristic line increases, and vice versa. What we then have is the

intersecting characteristic lines depicted in Figure 3.13.
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Figure 3.13: Intersecting characteristic lines
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Figure 3.14: Traffic densities when characteristics intersect; (a) t = 0: initial data; (b)

t = t1: before the characteristics intersect; (c) t = t2: time of intersection; (d) t = t3: after

intersection of characteristic lines
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The traffic density profile implied by the characteristic lines in Figure 3.13 at times t = 0,

t1, t2, and t3 are shown in Figure 3.14. Figure 3.14b illustrates the traffic density profile at

time t1, before the characteristic lines intersect. In this figure, we see that increasing traffic

densities tend to “compress” with time, while decreasing traffic densities tend to “rarefy”

(or spread). That is, on the compression side, the traffic densities increase faster in space as

faster vehicles in the upstream will have joined the slower vehicles in the downstream. On

the other hand, on the rarefaction side at time t1, slower vehicles accelerate to the speeds

of the faster vehicles further downstream. At time t2, the time at which the characteristic

lines intersect, Figure 3.14c illustrates how traffic densities will have compressed to a point

where we see an instantaneous jump in the traffic density, followed by a wider rarefaction.

Beyond time t2, we see the deficiency of the theory. When characteristic lines intersect,

we obtain multi-valued traffic densities at position x̄ as illustrated in Figure 3.14d for time

t3. From a physical standpoint, one would never observe different traffic densities at the

same position in space. From a theoretical standpoint, this implies that the derivatives of

traffic density with respect to time do not exist when we have multi-valued traffic densities

in space, which violates the assumption that was made in deriving the differential form of

the conservation law, equations (3.16) and (3.17). However, the integral forms, (3.9) and

(3.12) remain valid.

It is notable that the approach used to solve the linear advection equation, when applied

to the non-linear problem (3.41), delivers a reasonable solution up to time t2, the time at

which we have a jump (a discontinuity) in the density profile. At time t2, to the left and

right of the discontinuity, the solution is also reasonable. After time t2, the solution given

by the method of characteristics is no longer useful. The question, then, is: what happens

at the discontinuity at time t2? To answer this question, we need to use an integral form of

the conservation equation. Let x̂(t) denote the position of a discontinuity at time t. Using

the first integral form of the conservation law, for any (short) section of road [x1, x2] which

contains x̂(t), the conservation equation may be written as:

d

dt

∫ x̂(t)−

x1

ρ̄(x, t)dx+
d

dt

∫ x2

x̂(t)+
ρ̄(x, t)dx = Qe

(
ρ̄(x1, t)

)
−Qe

(
ρ̄(x2, t)

)
(3.42)
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Applying the Leibniz rule (see Appendix A, Theorem A.2.3) to the LHS of (3.42), we

get:

ρ̄(x̂(t)−, t)dx̂(t)

dt
+

∫ x̂(t)−

x1

∂

∂t
ρ̄(x, t)dx− ρ̄(x̂(t)+, t)

dx̂(t)

dt
+

∫ x2

x̂(t)+

∂

∂t
ρ̄(x, t)dx (3.43)

Now, to investigate what happens at the discontinuity, simply let the points x1 and

x2 approach x̂(t) from below and from above, respectively. Since ρ̄(x, t) is differentiable

away from the discontinuity, as x1 ↗ x̂(t)− and x2 ↘ x̂(t)+, the integrals in (3.43) go

to zero. Combining this with (3.42), we get the following equation for the behavior of the

discontinuity:

ρ̄(x̂(t)−, t)dx̂(t)

dt
− ρ̄(x̂(t)+, t)

dx̂(t)

dt
= Qe

(
ρ̄(x̂(t)−, t)

)
−Qe

(
ρ̄(x̂(t)+, t)

)
, (3.44)

and, consequently,
dx̂(t)

dt
=
Qe
(
ρ̄(x̂(t)−, t)

)
−Qe

(
ρ̄(x̂(t)+, t)

)
ρ̄(x̂(t)−, t)− ρ̄(x̂(t)+, t)

, (3.45)

so that as long as one can track the location of the discontinuity, the solution to the left

and to the right of it are known. The moving discontinuity is referred to as a shockwave.

The speed of the shockwave at time t is given by dx̂(t)
dt . Physically speaking, a shockwave

represents the build-up of a queue of vehicles.

Since any scenario that involves compression of traffic densities will eventually develop

such a discontinuity, it is informative to consider problems where the initial data includes

a discontinuity. The position of a discontinuity in traffic flow represents the position of

the end of a queue along the road. Such initial data are depicted in Figure 3.15, where ρl

denotes the traffic density to the left of the discontinuity and ρr denotes the traffic density

to the right of the discontinuity. Note that we have the two separate cases: (i) ρl < ρr and

(ii) ρl > ρr.

Despite the simplicity of such a problem, solutions of more sophisticated problems can

be obtained by analyzing this case. A nonlinear conservation equation, such as (3.41),

combined with either of the two initial density profiles shown in Figure 3.15 is referred to as

the Riemann problem. In the case of a strictly concave flow-density relation, discontinuities

that compress always occur when ρl < ρr, while rarefaction always occurs when ρl > ρr.
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Figure 3.15: Discontinuous initial data; (a) ρl < ρr; (b) ρl > ρr

Nonetheless, the theory derived for the case of a concave flow-density relation is only slightly

modified (by only changing the cases) in the more general setting. We shall, therefore, focus

on the case of strictly concave flow-density relations in what follows.

For the initial data depicted in Figure 3.15a, since the traffic densities are constant on

either side of the discontinuity, the slopes of the characteristic lines on either side of the

discontinuity are constant and the shockwave speed is also constant and calculated, using

(3.46), as:
dx̂(t)

dt
=
Qe(ρl)−Qe(ρr)

ρl − ρr
≡ vs (3.46)

This formula for the speed of a shockwave is known as the Rankine-Hugoniot jump

condition (R-H), which is a well-known formula in the traffic flow literature. It is notable,

however, that the R-H formula was not originally developed for traffic flow applications.

Now, note that the RHS, vs, is constant; integrating both sides of (3.46), one obtains the

position of the shockwave at any time t > 0 via:

x̂(t) = vst (3.47)

The solution is, thus, obtained by observing that at any time t, for any position x that

lies to the left of x̂(t) (upstream of the shock front), the traffic density is ρ̄(x, t) = ρl.

Likewise, for any position x that lies to the right of x̂(t) (downstream of the shock front),

the traffic density is ρ̄(x, t) = ρr. We have, thus, obtained the following formula for the
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solution of the Riemann problem with initial data, ρl < ρr, shown in Figure 3.15a:

ρ̄(x, t) =

 ρl if x < vst

ρr if x ≥ vst
(3.48)

For any concave flow-density relation, the solution (3.48) involves a shockwave, which

can be thought of as a disturbance that propagates through traffic at a speed (possibly

negative) that depends on the values of ρl and ρr. Figure 3.16 illustrates the characteristic

lines for the four cases: (a) ρl < ρr < ρcrit, (b) ρl < ρcrit < ρr and Qe(ρl) < Qe(ρr), (c)

ρl < ρcrit < ρr and Qe(ρl) ≥ Qe(ρr), and (d) ρcrit < ρl < ρr. Included in the figure are

the shockwave speeds and the characteristic slopes obtained from the fundamental diagram.

These shockwave solutions of the Riemann problem, in essence, say that the shape of the

initial traffic density profile is preserved over time (as in the linear advection equation case)

with the discontinuity traveling at the speed vs.
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Figure 3.16: Riemann problem shockwave solutions; (a) ρl < ρr < ρcrit; (b) ρl < ρcrit < ρr

and Qe(ρl) < Qe(ρr); (c) ρl < ρcrit < ρr and Qe(ρl) ≥ Qe(ρr); (d) ρcrit < ρl < ρr

For the initial data ρl > ρr depicted in Figure 3.15b, the solution is obtained by perturb-

ing the shape of the initial profile a negligible amount and then investigating the behavior

of the problem with the perturbed initial data. The perturbation is, in essence, an approx-

imation of the discontinuous initial data by a continuous function, ρδ0(x) as depicted, for

instance, in Figure 3.17.

An example form for the function ρδ0(x), which would approximated ρ0(x) well is:

ρδ0(x) = (ρl − ρr)
e−δx

1 + e−δx
+ ρr (3.49)

As the parameter δ in (3.49) is increased, ρδ0(x) begins to look more and more like a

step function. In fact, it can be easily shown that for any tolerance ε > 0, one can find a

value for the parameter δ in (3.49) so that the distance between the two functions ρ0(x)
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Figure 3.17: Approximation of discontinuous initial data

and ρδ0(x) is less than ε (see Appendix B, Section B.2). With the perturbed initial data, the

solution is simply given by the rarefying traffic densities presented above, which is written

as

ρ̄(x, t) =


ρl if x

t < Q′e(ρl)

ρint if Q′e(ρl) ≤ x
t ≤ Q′e(ρr)

ρr if x
t > Q′e(ρr)

, (3.50)

where ρint is an intermediate traffic density obtained by solving the equation:

Q′e(ρint) =
x

t
(3.51)

It is notable that perturbing the initial data for the shockwave case, ρl < ρr, the problem

will quickly develop a discontinuity as was shown in Figure 3.14. Therefore, an analysis

based on approximating the initial data is not appropriate in this case.

Examples.

(i) If Qe(ρ̄) is Greenshields’ fundamental relationship, we have that

ρint =
ρjam
2vf

(
vf −

x

t

)
(ii) If Qe(ρ̄) is Greenberg’s fundamental relationship, we have that

ρint = ρjam exp

(−ρcrit
qmax

x

t
− 1

)
Figure 3.18 depicts the characteristic lines for the three cases: (a) ρr < ρl < ρcrit, (b)

ρr < ρcrit < ρl, and (c) ρcrit < ρr < ρl. These solutions are referred to as rarefaction fans

due to their shapes.
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Figure 3.18: Riemann problem rarefaction fan solutions; (a) ρr < ρl < ρcrit; (b) ρr < ρcrit <

ρl; (c) ρcrit < ρr < ρl

3.6 Numerical Solutions: Discrete Dynamics

In the previous section, we obtained formulas for solving the Riemann problem. While

limited to initial traffic densities that are far from being general enough to apply to real-

world traffic flow problems, the Riemann problem can be effectively used to design numerical
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schemes that apply in general settings. The method described in this section is referred to

as the Godunov scheme due to Sergei Godunov, [39]. It’s applications in traffic flow were

investigated in [58]. The method solves the conservation equation over discrete space and

time intervals of length ∆x and ∆t, respectively, by computing averages of traffic densities

in the discrete space intervals in discrete time steps. One begins by approximating the

initial data, ρ0(x), over the discrete space intervals by a step function, ρ̄0(x), as illustrated

in Figure 3.19.

x

0 ( )x

x

0 ( )x

(a) (b)

Figure 3.19: Approximating the initial data; (a) ρ0(x); (b) ρ̄0(x)

Let ρ̄k(x) denote the mean traffic density in cell
[
x− ∆x

2 , x+ ∆x
2

]
at time instance k∆t;

that is:

ρ̄k(x) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

ρ̄(u, k∆t)du (3.52)

For each discrete space-time interval of size ∆x×∆t, we have the following conservation

equation (second integral form):∫ x+ ∆x
2

x−∆x
2

ρ̄
(
u, (k + 1)∆t

)
du =

∫ x+ ∆x
2

x−∆x
2

ρ̄(u, k∆t)du+

∫ (k+1)∆t

k∆t
Qe

(
ρ̄

(
x− ∆x

2
, u

))
du

−
∫ (k+1)∆t

k∆t
Qe

(
ρ̄

(
x+

∆x

2
, u

))
du (3.53)

Dividing both sides of (3.53) by ∆x, the LHS becomes ρ̄k+1(x) and the first term on the

RHS is ρ̄k(x). It remains to obtain a formula for the second and third integrals on the RHS.

If ∆t is chosen carefully (sufficiently small), so that shockwaves and rarefaction fans that

are initiated at a cell boundary x− ∆x
2 at time k∆t do not reach the following cell boundary

x+ ∆x
2 (or the preceding cell boundary x−∆t) before time (k+ 1)∆t, then the second and
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third integrals on the RHS of (3.53) are easy to calculate. The reason for this is as follows:

take the second integral on the RHS; since neither a shockwave nor a rarefaction fan from

the upstream (or the downstream) will cross the cell boundary at position x− ∆x
2 during the

time interval [k∆t, (k+ 1)∆t], the traffic density at this position remains constant over the

time interval. Call this constant traffic density ρ̄k,∗
(
x− ∆x

2

)
. We have, since ρ̄k,∗

(
x− ∆x

2

)
is constant, that∫ (k+1)∆t

k∆t
Qe

(
ρ̄

(
x− ∆x

2
, u

))
du = Qe

(
ρ̄k,∗

(
x− ∆x

2

))
∆t, (3.54)

and all that remains is to determine ρ̄k,∗
(
x− ∆x

2

)
. A rule that is typically used to determine

an appropriate ∆t is the Courant, Friedrichs, and Lewy (CFL) condition [59]:

∆t

∆x
max

0≤ρ̄≤ρjam

∣∣Q′e(ρ̄)
∣∣ ≤ 1 (3.55)

Since this ensures that shockwaves and rarefaction fans do not cross cell boundaries

during discrete time intervals, we actually have Riemann problems with their (potential)

discontinuities at each of the cell boundaries, which do not interfere with one another; that

is, they may be solved independently at each time step with each solution serving as the

initial data for the next time step. Take an arbitrary cell centered at x and let’s take the

upstream cell boundary located at position x − ∆x
2 ; if ρk(x − ∆x) < ρk(x), a shockwave

would be initiated at the boundary and we would have one of the four cases depicted in

Figure 3.17:

(a) ρk(x−∆x) < ρk(x) < ρcrit : ρ̄k,∗
(
x− ∆x

2

)
= ρk(x−∆x)

(b) ρk(x − ∆x) < ρcrit < ρk(x) and Qe
(
ρk(x − ∆x)

)
< Qe

(
ρk(x)

)
: ρ̄k,∗

(
x− ∆x

2

)
=

ρk(x−∆x)

(c) ρk(x−∆x) < ρcrit < ρk(x) and Qe
(
ρk(x−∆x)

)
≥ Qe

(
ρk(x)

)
: ρ̄k,∗

(
x− ∆x

2

)
= ρk(x)

(d) ρcrit < ρk(x−∆x) < ρk(x) : ρ̄k,∗
(
x− ∆x

2

)
= ρk(x)

Likewise, if ρk(x −∆x) > ρk(x), a rarefaction fan would be initiated at the boundary

and we would have one of the three cases depicted in Figure 3.18:
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(a) ρk(x) < ρk(x−∆x) < ρcrit : ρ̄k,∗
(
x− ∆x

2

)
= ρk(x−∆x)

(b) ρk(x) < ρcrit < ρk(x−∆x) : ρ̄k,∗
(
x− ∆x

2

)
= ρcrit

(c) ρcrit < ρk(x) < ρk(x−∆x) : ρ̄k,∗
(
x− ∆x

2

)
= ρk(x)

We have just determined ρ̄k,∗
(
x− ∆x

2

)
from the values of ρk(x − ∆x) and ρk(x). To

emphasize this, we write:

Qe

(
ρ̄k,∗

(
x− ∆x

2

))
≡ λ

(
ρk(x−∆x), ρk(x)

)
, (3.56)

where λ
(
ρk(x−∆x), ρk(x)

)
is referred to as the numerical flux function and can be calculated

from Table 3.1, which summarizes the cases listed above.

Table 3.1: Numerical flux

λ
(
ρk(x−∆x), ρk(x)

)
ρk(x) ≤ ρcrit ρk(x) > ρcrit

ρk(x−∆x) ≤ ρcrit Qe
(
ρk(x−∆x)

)
min

{
Qe
(
ρk(x−∆x)

)
, Qe

(
ρk(x)

)}
ρk(x−∆x) > ρcrit qmax Qe

(
ρk(x)

)
Now, the conservation equation, (3.53), may simply be written (after dividing by ∆x)

as:

ρ̄k+1(x) = ρ̄k(x) +
∆t

∆x

(
λ
(
ρk(x−∆x), ρk(x)

)
− λ
(
ρk(x), ρk(x+ ∆x)

))
, (3.57)

and starting from ρ̄0(x), using (3.57) along with Table 3.1, traffic densities are computed

recursively, moving forward in time.

Alternative choices for the numerical flux function equivalent to the one shown in Table

3.1 exist [16, 58–60, 84]. The most general numerical flux function, which applies to concave

and non-concave flow-density relations alike was proposed by Osher [84]

λ
(
ρk(x−∆x), ρk(x)

)
=


min

ρk(x−∆x)≤ρ≤ρk(x)
Qe(ρ) if ρk(x−∆x) ≤ ρk(x)

max
ρk(x−∆x)≥ρ≥ρk(x)

Qe(ρ) if ρk(x−∆x) ≥ ρk(x)
(3.58)

The most commonly used flux function in the traffic flow literature was proposed by

Daganzo [24] and will, throughout this thesis be referred to as Daganzo’s flux. Daganzo’s
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flux function was developed for piecewise linear flow-density relations, which are not strictly

concave. This means that Daganzo’s flux is more general than the flux function given in

Table 3.1. It is obtained by splitting the fundamental diagram into a sending function and

a receiving function denoted respectively by Se(ρ̄) and Re(ρ̄), depicted in Figure 3.20.
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Figure 3.20: Daganzo’s sending and receiving functions; (a) the sending function; (b) the

receiving function

Daganzo’s flux function is given by:

λ
(
ρk(x−∆x), ρk(x)

)
= min

{
Se
(
ρk(x−∆x)

)
, Re

(
ρk(x)

)}
, (3.59)

It can be easily checked that Daganzo’s flux coincides with Osher’s numerical flux func-

tion, (3.58). One of the most popular numerical methods, which is a special case of the

Godunov scheme using Dganzo’s flux is the cell transmission model (CTM) [22, 23]. The

CTM is obtained by using Newell’s simplified flow-density relation and choosing ∆t and ∆x

so that ∆x
∆t = vf , which constitutes the upper bound of the CFL condition.

It is notable that, due to their forward in time nature, Godunov scheme based numerical

methods, and particularly the CTM, have come to constitute models of traffic flow rather

than just computational schemes. This is also adopted in this thesis, where the mean behav-

ior of the stochastic models proposed are compared to Godunov scheme based dynamical

equations.



Chapter 4

A Stochastic Model of Traffic Flow

and its Fluid Limit

4.1 Introduction

The terminology fluid approximation1 was first introduced by Gordon Newell in [77],

in which a deterministic approximation was proposed for purposes of analyzing delays at

signalized intersections. It is interesting to note that, while the first application of this idea

(fluid approximation) appeared in the traffic flow literature, its most recent developments

and applications appear in other areas of operations research2 . In essence, a fluid limit

of a (stochastic) queueing model is a deterministic approximation of the queueing model,

which describes the long-run (qualitative) behavior of the stochastic model. The term fluid

comes from the continuous nature of the fluid model used to approximate a discrete valued

dynamic.

Most applications of fluid limits start with a stochastic queueing model and then proceed

to derive and analyze its fluid limit. In this thesis, the question of interest is: what type of a

queueing model delivers, as its fluid limit, the first-order macroscopic traffic flow dynamics

1 Here, fluid approximation and fluid limit are used interchangeably.
2 In [81], a 2002 article on the history of traffic flow research, Newell gives an account of the dwindling

activity in traffic flow research as of the early 1970s.

42
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presented in Chapter 3? That is, the problem is worked out in the reverse direction: a

desired deterministic dynamic is known and the stochastic model is derived as an extension

to the fluid model.

That the first order macroscopic dynamics described in Chapter 3 arise as long-run

mean dynamics is not a new notion. As was presented in Chapter 3, the LWR model

was developed by its authors as a relationship between averaged quantities. Furthermore,

when deriving the fundamental diagram, assumptions of stationarity were made, which is

a property that arises in the long-run. As another example, in the kinetic models of traffic

flow, the LWR model arises as a long-run stationary dynamic or as a first-order (mean)

approximation (see, for instance [90, Section 3.4] and [44]).

This chapter develops a stochastic queueing model of traffic flow, for which the fluid

limit is the Godunov scheme based dynamic presented in Chapter 3. The mathematical

properties of the numerical flux functions, which are needed in order to derive the fluid

limit, are discussed. In particular, Lipschitz continuity is shown and how to calculate their

derivatives (needed in the following Chapter) are presented. It is also shown that the

proposed stochastic model implicitly produces traffic densities that are non-negative and

do not exceed the jam density. Numerical examples are given throughout the chapter to

illustrate the stochastic model and its fluid limit.

4.2 Preliminaries: properties of the fluid model

The fluid model used in this thesis is based on the Godunov scheme. The physical properties

of this dynamic and its connection to the LWR model were presented in Chapter 3. In this

section, the objects of interest are the mathematical properties needed in order to establish

the asymptotic limits derived in the sequel. Specifically, the setting is one where the road

is divided into cells; let C ⊂ N denote the set of cell indices with |C| representing the index

of the last cell. To simplify notation, let ȳ(x, t) = [ρ̄(x, t), ρ̄(x + 1, t)]T denote the (mean)

vector of relevant traffic conditions at the downstream boundary of cell x, which consists

of the mean traffic densities in the two cells adjacent to the subject boundary. Here, with
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a slight abuse of notation, ρ̄(x, t) is used to denote the mean traffic density in cell x at

time t. Also, variable cell lengths (sizes) shall be allowed, where lx denotes the length of

cell x. The flux across the boundary, using this new notation, is written as: λ
(
ȳ(x, t)

)
. To

establish the Godunov scheme as a deterministic queueing (network) model, it is written in

terms of cumulative flows and in continuous time. This is carried out as follows: with the

new notation convention, (3.57) may be written as:

ρ̄
(
x, (k + 1)∆t

)
= ρ̄(x, k∆t) +

∆t

lx

(
λ
(
ȳ(x− 1, k∆t)

)
− λ

(
ȳ(x, k∆t)

))
(4.1)

Starting from time zero, (4.1) is given by:

ρ̄
(
x, (k + 1)∆t

)
= ρ̄(x, 0) +

∆t

lx

 k∑
j=0

λ
(
ȳ(x− 1, j∆t)

)
−

k∑
j=0

λ
(
ȳ(x, j∆t)

) (4.2)

Upon letting ∆t→ 0, we have the continuous time version of the Godunov scheme:

ρ̄(x, t) = ρ̄(x, 0) +
1

lx

(∫ t

0
λ
(
ȳ(x− 1, u)

)
du−

∫ t

0
λ
(
ȳ(x, u)

)
du

)
(4.3)

Note that the CFL condition is still honored in this continuous time version of the

Godunov scheme since ∆t only gets smaller. Since variable cell lengths are allowed, for the

sake of accuracy, the CFL condition should be re-written as:

∆t

lmin
max

0≤ρ̄≤ρjam

∣∣Q′e(ρ̄)
∣∣ ≤ 1, (4.4)

where lmin ≡ min
x∈C

lx is the minimum cell length.

The mathematical properties of the conservation equation (4.3) are determined from the

properties of the flux function λ
(
ȳ(x, t)

)
. Of particular interest to the developments in the

sequel are: (i) boundedness, (ii) Lipschitz continuity (see Appendix A, Definition A.2.1),

and (iii) differentiability. Formally, we have the following requirements:

(i) For all ȳ(x, t) ∈ [0, ρjam]× [0, ρjam], the flux functions are bounded and non-negative.

(ii) For all ȳ(x, t) ∈ [0, ρjam]× [0, ρjam], the flux functions are Lipschitz continuous.

(iii) The flux functions are differentiable in both elements of ȳ(x, t).
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That requirement (i) is honored is obvious from the definition of a fundamental diagram,

regardless of shape (see Section 3.4), where the upper bound is qmax and the lower bound

is zero; the corresponding sending and receiving functions inherit these properties and so

does their minimum. Properties (ii) and (iii) on the other hand are not obvious. In fact,

neither property holds in general, property (ii) holds for Daganzo’s flux (but this is subtle)

but not the general numerical flux given in Table 3.1, while property (iii) does not hold

(everywhere) in the classical sense, which was also noted in [9, 113]. These two issues are

addressed in Section 4.6.

4.3 The Stochastic Model

let Q(x, t) denote a stochastic counting process describing the cumulative number of vehicles

that have crossed the downstream boundary of cell x ∈ C at time t ∈ [0, U ], where U <∞
is a horizon time. The conservation of traffic density in x is written as:

ρ(x, t) = ρ(x, 0) +
1

lx

(
Q(x− 1, t)−Q(x, t)

)
, (4.5)

where ρ(x, t) is the random traffic density in cell x at time t.

As in Chapter 3, hi(x) denotes the (random) time headway of the ith vehicle departing

cell x; then the crossing time of vehicle k at the downstream boundary of cell x is:

tk(x) =
k∑
i=1

hi(x), (4.6)

where t0(x) ≡ 0. Consequently, the cumulative flow is defined as

Q(x, t) ≡ max{k : tk(x) ≤ t}, (4.7)

or, alternatively, the counting process may be characterized by the events:

{Q(x, t) = k} ⇐⇒ {tk(x) ≤ t ∩ tk+1(x) > t}, (4.8)

where ⇐⇒ means “if and only if”. Both cases, (4.7) and (4.8), are interpreted as: “Q(x, t)

is the index of the most recent departure from cell x at time t”.
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It can, thus, be seen that the probabilistic properties of Q(x, t), which characterize our

stochastic conservation equation, (4.5), are closely related to the properties of the random

time headways at the downstream boundary of x. Properties of time headways are discussed

next.

4.4 Time Headways

Time headways measured at location x depend on traffic conditions in the immediate up-

stream and immediate downstream of x; that is, they depend on the vector y(x, t). More

precisely, the ith time headway shall be taken to depend on traffic conditions at the time of

the most recent departure: y
(
x, ti−1(x)

)
, i.e., past traffic densities; then consecutive time

headways are conditionally independent. The mean time headway (time per vehicle) is the

reciprocal of the mean rate of flow (vehicles per unit time). Then, dependence of time head-

ways on traffic densities is obtained via the dependence of flows on traffic densities. In this

thesis, microscopic assumptions that lead to a particular relationship between headways and

traffic densities shall not be made. However, in allowing for any of the fundamental relations

presented in Section 3.4, any of the (classical) microscopic assumptions that appear in the

literature can be accommodated. Let Gh(·|y) denote the conditional distribution function

of the time headways and E
(
hi(x)

∣∣y(x, ti−1(x)
))
≡ h̄

(
y
(
x, ti−1(x)

))
= 1/λ

(
y
(
x, ti−1(x)

))
the conditional expectation of time headway i. The conditional variance of time headway i is

given by c̄2h̄2
(
y
(
x, ti−1(x)

))
, where c̄ is the coefficient of variation of time headways, taken

here to be independent of traffic state. Next, two examples of headway distributions that

appear in the traffic flow literature are given, followed by an example of a state-dependent

headway.

4.4.1 Example: Exponential Time Headways

Let Gh(·|y) ≡ Gh(·) be independent of traffic state (or simply take the same form for all

possible values of y) and define the mean headway as: h̄(y) ≡ 1/λ, where λ > 0 is a known
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scalar. Then, writing the distribution function as:

Gh(a) = 1− e−λa, a ≥ 0, (4.9)

one obtains a model with independent and identically distributed (i.i.d.) exponential head-

ways with c̄ = 1, which is appropriate for modeling free-flow traffic conditions (see for

example [12, 15, 43, 78, 92, 97, 109]). In this case Q(x, t) is a homogeneous Poisson process

with rate λ.

4.4.2 Example: Mixed Time Headways

A common generalization of exponentially distributed time headways to situations where

vehicles are not traveling freely is to consider the time headways as consisting of two inde-

pendent components: a “free” component and a “tracking” component, denoted hfi and hti,

respectively [11, 21, 43, 47]. Let θ ∈ [0, 1] be a given probability that the vehicle is tracking

and (1− θ) the probability that the vehicle is moving freely. Then the time headway may

be written as hi(x) = hfi (x) + hti(x), where hfi (x), the free headway, is zero with proba-

bility θ and exponentially distributed with parameter λf with probability (1 − θ); hti(x),

the tracking component, is a non-negative random variable with distribution function Gt(·).
Then,

Gh(a) = θGt(a) + (1− θ)
∫ a

0
Gt(a− u)λfe

−λfudu, a ≥ 0 (4.10)

with expectation

Ehi(x) = h̄ = Ehti(x) +
1− θ
λf

(4.11)

and variance

Var
(
hi(x)

)
= E

(
hi(x)− Ehi(x)

)2
= Var

(
hti(x)

)
+

(1− θ)(1 + 3θ)

(λf )2
(4.12)

In this case Q(x, t) is a renewal process with time headway distributions given by (4.10).

4.4.3 Example: State Dependent Time Headways

In this example, we examine the impact of state dependence on the probability distribution

of time headways. The setting is a cell boundary with varying traffic densities on either
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side. Suppose we have the triangular flow density relation (Newell’s simplified relation),

Qe(ρ), shown in Figure 4.1.
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Figure 4.1: Example fundamental relation

The sending and receiving functions are written as Se(ρ) = min{vfρ, qmax} and Re(ρ) =

min{qmax, |w|(ρjam − ρ)}, respectively. Then, Daganzo’s flux function is written as:

λ(y) = min{Se(y1), Re(y2)} (4.13)

Here the relevant traffic conditions are y = [y1, y2]T, where y1 represents the traffic

density upstream the cell boundary (i.e., pertaining to the subject cell) and y2 is the traffic

density downstream the cell boundary (i.e., that of the following cell). We now have that

h̄(y) =
1

λ(y)
(4.14)

where, as shown in Figure 4.1, vf = 45 mi/hr (72.42 km/hr), qmax = 1800 veh/hr, |w| =

15 mi/hr (24.14 km/hr), ρjam = 160 veh/mi (99.42 veh/km), and, consequently, λ(y) =

min{45y1, 1800, 15(160− y2)} veh/hr (for y1 and y2 in veh/mi).

For Gh(·|y), suppose the time headways are gamma distributed with shape parameter 2

and mean h̄(y) (i.e., c̄ =
√

1
2). Then, we have the following conditional probability density

function:

fh(a|y) =
dGh(a|y)

da
= aλ2(y)e−aλ(y), a ≥ 0 (4.15)
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To illustrate the impact of state dependence, Figure 4.2 is a plot of the probability

density functions of the time headways, fh(·|y), for three cases: (i) y = [10, 10]T veh/mi

([6.21, 6.21]T veh/km) representing free-flow conditions in both upstream and downstream

cells, (ii) y = [100, 10]T veh/mi ([62.1, 6.21]T veh/km) representing queue discharge con-

ditions, and (iii) y = [100, 100]T veh/mi ([62.1, 62.1]T veh/km) representing congested

conditions in both upstream and downstream cells.
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Figure 4.2: Example probability density plots for state dependent headways

We see in Figure 4.2 that under free-flow conditions (y = [10, 10]T veh/mi), larger

headways are “more likely” to arise with smaller headways occurring less frequently. This

is in contrast to a queue discharge situation (y = [100, 10]T veh/mi), where small headways

tend to occur with high frequency and larger headways are “less likely” to occur. Under

congested conditions (y = [100, 100]T veh/mi), we see something that falls in between the

first two cases; one can think of this as a dispersed version of case (ii) as vehicles tend to

encounter slower moving traffic in the downstream.

4.5 The Fluid Limit: A Simplified Setting

The following notation will be used in the sequel: N (t) is a unit rate Poisson process (i.e.,

averaging one event per unit time); see Appendix A, Definition A.3.2 for a definition of the
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Poisson process. For example, when Q(x, t) is a homogeneous Poisson process with constant

rate λ, this shall be indicated by writing:

Q(x, t) = Nx(λt), (4.16)

where the subscript x is a reminder that this Poisson process represents vehicles departing

cell x. The rate, λ, shall be thought of as a re-scaling of the time axis. In other words, a

homogeneous Poisson process with rate λ counts (on average) λ vehicles per unit time. This

is equivalent to a process that counts one vehicle λ times per unit time and can be interpreted

as stretching (or contracting) the time axis a constant rate of λ and counting (on average)

one vehicle per unit “scaled” time. With time-varying rates (e.g., a non-homogeneous

Poisson process), the “stretching/contracting” of the time axis is not constant.

More generally, a counting process with generally distributed i.i.d. time headways with

mean 1 shall be denoted by N̂ (t). (The Poisson process is the special case when the

time headways are exponentially distributed.) If the mean time headways are h̄ ≡ 1
λ , the

corresponding counting process can also be thought of as the time-changed counting process

N̂ (λt). To see this, define h̃i(x) ≡ hi(x)

h̄
and note that Eh̃i(x) = 1, then, following (4.8), the

counting process can be written as:

max

{
k :

k∑
i=1

hi(x) ≤ t
}

= max

{
k :

k∑
i=1

h̃i(x) ≤ t

h̄

}
= N̂

(
t

h̄

)
= N̂ (λt) (4.17)

4.5.1 Scaling and the Strong Law of Large Numbers

In order to perform an asymptotic analysis of Q(x, t), i.e., determine the stationary flow

rate: Q(x,t)
t as t→∞, one counts a large number of time headways. As letting k in (4.17)

go to infinity provides the future behavior of the process, this is of little use as discussed in

Section 2.2. Instead, we may count fractions of time headways and as we let the fraction

size get smaller we obtain a larger number of fractions to which we may apply asymptotic

analysis without loosing the transient information in the process. This is illustrated as

follows: suppose we wish to count k whole vehicles by looking at the “index of the most

recent fractional arrival”. That is, suppose we divide the headways uniformly into n ∈ N
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fractions, then the crossing time of the kth whole vehicle is the crossing time of the (nk)th

fraction:
nk∑
i=1

hi(x)

n
=

1

n
tnk(x), (4.18)

where the right-hand side follows from (4.6). Suppose this occurs by some time t, but the

crossing time of the next fraction occurs after time t; that is, the following event takes place:{
1

n
tnk(x) ≤ t ∩ 1

n
tnk+1(x) > t

}
= {tnk(x) ≤ nt ∩ tnk+1(x) > nt} (4.19)

From (4.8), this implies the following event:

{Q(x, nt) = nk} =

{
1

n
Q(x, nt) = k

}
(4.20)

As n→∞, we count a larger and larger number of smaller and smaller jumps across x,

which in the limit resemble a fluid process. Q(x, nt) may then be interpreted as the process

Q(x, t) with its flow rates accelerated uniformly by a factor of n (n times as many vehicles

per unit time). Dividing Q(x, nt) by n serves as a reminder that we are counting fractions

(of size 1
n) of vehicles.

For the simple cases where Q(x, t) is either N (t) or N̂ (t), uniformly accelerating Q(x, t)

a rate n and “aggregating”, we write (for the latter):

1

n
Q(x, nt) =

1

n
N̂x(nt) (4.21)

The asymptotic behavior of this process is obtained as an application of the strong law

of large numbers (SLLN) [18, 93]; see Appendix A, Theorem A.3.1 for statement of the

classical SLLN. First note that N̂x(nt) → ∞ as n → ∞ and that 1
n tn(x) → Eh1(x) as

n→∞ by the SLLN. Then, from the RHS of (4.19), we have that:

tN̂x(nt)
(x) ≤ nt < tN̂x(nt)+1

(x) (4.22)

Taking the reciprocal and multiplying by N̂x(nt):

N̂x(nt)

tN̂x(nt)
(x)
≥ N̂x(nt)

nt
>
N̂x(nt) + 1

tN̂x(nt)+1
(x)

N̂x(nt)

N̂x(nt) + 1
(4.23)
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In the limit, it follows immediately that:

1

n
N̂x (nt) −→

n→∞
t almost surely (a.s.) (4.24)

In fact, this holds for any t. For example, let t̃ ≡ λt; then 1
nN̂x(nλt) = 1

nN̂x(nt̃)

converges to t̃ = λt. As another example, take the non-homogeneous Poisson process with

the time varying deterministic rates λ(x, t). Define t̃ ≡
∫ t

0 λ(x, u)du, we have, from (4.24),

that:
1

n
Nx
(
n

∫ t

0
λ(x, u)du

)
−→
n→∞

∫ t

0
λ(x, u)du a.s. (4.25)

This latter example shows, by applying uniform acceleration, how the transient infor-

mation in the process is preserved in the mean process.

4.5.2 Example: scaling

Let {hi} be i.i.d. gamma distributed time headways, with shape parameter 2, mean headway

h̄ = 10 sec/veh, and Q(t) is the associated counting process. Figure 4.3 below plots a single

sample path of the counting process for the first 10 arrivals.
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Figure 4.3: Example sample path for counting process (n = 1)

The scaled version of the process, 1
nQ(nt), in essence, involves a larger number of smaller

jumps. To see this, Figure 4.4 plots a sample path of the scaled counting process for n = 3.
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Figure 4.4: Example sample path for scaled counting process with n = 3

As n gets larger, the variance of the process shrinks, and in the limit the process degen-

erates to a deterministic process. To illustrate this, the following figures compare plots of

the jump points of 500 sample paths of Q(t) (i.e., n = 1) with 500 sample paths of 1
nQ(nt)

for n = 10, n = 100, and n = 1000, in Figures 4.5, 4.6, and 4.7, respectively, for a time

horizon U = 400 seconds. In these figures, the more thinly dispersed points belong the

sample paths of Q(t), while the darker more densely dispersed points are the sample paths

of the scaled processes, 1
nQ(nt).
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Figure 4.5: Example sample path comparisons; thin: n = 1, dense: n = 10
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Figure 4.6: Example sample path comparisons; thin: n = 1, dense: n = 100
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Figure 4.7: Example sample path comparisons; thin: n = 1, dense: n = 1000

Clearly, as n gets larger, process variation gets smaller. In Figure 4.7, it is difficult to

distinguish between the scaled process and the (continuous) deterministic process Q̄(t) =

λt = 0.1t. This is the fluid limit of Q(t).

4.6 Fluid Limits for State-Dependent Processes

In this section, the general case where instantaneous flow rates depend on traffic state, via

appropriate flux functions, is considered. The same intuition behind scaling applies here as
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well; however, due to state dependence, the flow rates are random. Thus, the time change is

also random. Specifically, for each x ∈ C, Q(x, t) is a point process with rates defined by the

flux function λ
(
y(x, t)

)
. In the language of probability theory, we say that the point process

Q(x, t) is measurable with respect to the sigma-field Ft while its intensity,
∫ t

0 λ
(
y(x, u)

)
du,

is measurable with respect to Ft−, where Ft− ⊆ Ft. The sigma field is, in essence, an

event space for a random variable and when considering a stochastic process, a sequence

of sigma-fields (a filtration) represents the history of the process and therefore grows with

time. This technical detail, referred to as predictability in the stochastic calculus literature,

is needed to ensure that the stochastic integrals we construct in the sequel possess the

desired mathematical properties (namely, that they are well defined).

The best way to illustrate this predictability condition in our traffic flow model is to

consider how one would simulate the process: suppose one devises a discrete time approxi-

mation of our processes and computes traffic variables over small discrete time intervals of

length ∆t, which for the sake of illustration may be assumed fixed. One begins with initial

traffic densities, {ρ(x, 0)}, which are possibly random. These traffic densities are used to

compute/simulate cumulative flows over the time interval [0,∆t). These in turn are used

to compute the traffic densities at time ∆t, {ρ(x,∆t)}. The procedure is then repeated for

the interval [∆t, 2∆t), and so on. We note that this is precisely a stochastic version of how

both the Godunov scheme (and the CTM) operates; that is flows are computed using the

most recent past values of traffic density and the new traffic densities are computed using

these flows.

These conditions allows us to represent Q(x, t) as a unit rate Poisson process with the

stochastic time change
∫ t

0 λ
(
y(x, u)

)
du; that is,

Q(x, t) = Nx
(∫ t

0
λ
(
y(x, u)

)
du

)
(4.26)

That any point process can be transformed via a time change to a Poisson process is

an important result in point processes theory; a detailed exposition of the result can be

found in [13, 26, 27] and a simpler exposition is given in [14]. The Poisson process with the

random time change is a doubly stochastic Poisson process and can be interpreted in the
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same manner as the time-changed non-homogeneous Poisson process, except that the time

axis is stretched/contracted in accordance with the crossing times {ti(x)}i≥0. We may now

write the scaled conservation equation as:

ρn(x, t) = ρn(x, 0) +
1

lx

(
1

n
Q(x− 1, nt)− 1

n
Q(x, nt)

)
(4.27)

The scaled counting processes are written as:

1

n
Q(x, nt) =

1

n
Nx
(
n

∫ t

0
λ
(
yn(x, u)

)
du

)
(4.28)

Note that flow rates are functions of the scaled traffic densities, yn(x, t) = [ρn(x, t) ρn(x+

1, t)]T. The interpretation of the scaled traffic density, ρn(x, t), is: the traffic density in cell

x which corresponds to scaled counting processes at the cell boundaries. That is, the traffic

density itself is not scaled, but constructed from scaled processes.

The initial traffic density ρ(x, 0) is assumed here to be a random variable, independent

of the future of the process (but not vice versa) and independent in x. This preserves

causality in the model. Denote the mean and variance of ρ(x, 0) by ρ̄(x, 0) and σ2(x, 0),

respectively. The scaled initial traffic densities shall be assumed to converge to their mean

values as n → ∞. Since we are only interested in the limiting behavior, this can be easily

accomplished by construction. For example, let ρ1(x), ρ2(x), ..., ρn(x) be a sequence of i.i.d.

random variables, identically distributed as ρ(x, 0), then

ρn(x, 0) ≡ 1

n

n∑
j=1

ρj(x) (4.29)

achieves the desired limit, as n→∞ by the classical SLLN. Furthermore, under re-scaling

and centering, we have that ρn(x, 0) converges in distribution to a Normal random variable

with mean ρ̄(x, 0) and variance σ2(x, 0) by the classical central limit theorem (CLT); see

Appendix A, Theorem A.3.2 for statement of the classical CLT.

Before discussing the limiting behavior of the scaled traffic density process, (4.27), Lip-

schitz continuity and differentiability of the flux function (mentioned in Section 4.2) must

be addressed. This is done next.
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4.6.1 Lipschitz Continuity of Flux Functions

The Godunov scheme flux function in Table 3.1 may be written as:

λ
(
ȳ(x, t)

)
= Qe

(
ρ̄(x, t)

)
1{ρ̄(x,t)≤ρcrit ∩ ρ̄(x+1,t)≤ρcrit}

+qmax1{ρ̄(x+1,t)≤ρcrit≤ρ̄(x,t)}

+Qe
(
ρ̄(x+ 1, t)

)
1{ρ̄(x,t)≥ρcrit ∩ ρ̄(x+1,t)≥ρcrit}

+ min{Qe
(
ρ̄(x, t)

)
, Qe

(
ρ̄(x+ 1, t)

)
}1{ρ̄(x,t)≤ρcrit≤ρ̄(x+1,t)} (4.30)

where 1{·} is the indicator function: 1{A} = 1 if the condition A is true and 1{A} = 0,

otherwise. The indicator function is discontinuous and hence does not possess the Lipschitz

property. However, it may be closely approximated by a logistic function (see, for example,

Appendix B, Section B.2), which does possess the Lipschitz property. While this takes care

of the first three components on the RHS of (4.30), it is not clear whether the fourth com-

ponent is Lipschitz, due to the minimum function. Then Lipschitz continuity is established

(after approximating the indicator functions), if it can be shown that the minimum function

in (4.30) is Lipschitz continuous. Alternatively, this can be established for Daganzo’s flux

function:

λ
(
ȳ(x, t)

)
= min

{
Se
(
ρ̄(x, t)

)
, Re

(
ρ̄(x+ 1, t)

}
, (4.31)

where both the sending and the receiving function are Lipschitz continuous. Note that

the Lipschitz property holds for any sending and receiving function obtained from any

of the fundamental relations presented in Section 3.4. To proceed, note that (4.31) can

alternatively be written as:

min{Se(a), Re(b)} =
1

2

(
Se(a) +Re(b)−

∣∣Se(a)−Re(b)
∣∣), (4.32)

for any pair of traffic densities (a, b) ∈ [0, ρjam]× [0, ρjam].

Now, to see that (4.31) is Lipschitz, first note that λ : Θ1 → Θ2 is a map between

two metric spaces (Θ1, d1) and (Θ2, d2) where Θ1 ⊂ R2
+ and Θ2 ⊂ R+, both bounded,

and the metrics can be taken as d1([a1 a2]T, [b1 b2]T) = max{|a1 − b1|, |a2 − b2|}, and

d2(λ1, λ2) = |λ1−λ2|. Then, for λ to be Lipschitz continuous, a constant 0 ≤ K <∞ must
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exist such that the following holds:

d2

(
λ([a1 a2]T), λ([b1 b2]T)

)
≤ Kd1([a1 a2]T, [b1 b2]T) (4.33)

for all [a1 a2]T, [b1 b2]T ∈ Θ1. We proceed as follows:

d2

(
λ([a1 a2]T), λ([b1 b2]T) =

∣∣∣min{Se(a1), Re(a2)} −min{Se(b1), Re(b2)}
∣∣∣

=
1

2

∣∣∣(Se(a1) +Re(a2)
)
−
∣∣Se(a1)−Re(a2)

∣∣− (Se(b1) +Re(b2)
)

+
∣∣Se(b1)−Re(b2)

∣∣∣∣∣
≤ 1

2

∣∣∣Se(a1)− Se(b1)
∣∣∣+

1

2

∣∣∣Re(a2)−Re(b2)
∣∣∣+

1

2

∣∣∣∣∣Se(b1)−Re(b2)
∣∣− ∣∣Se(a1)−Re(a2)

∣∣∣∣∣
≤ 1

2

∣∣∣Se(a1)− Se(b1)
∣∣∣+

1

2

∣∣∣Re(a2)−Re(b2)
∣∣∣+

1

2

∣∣∣Se(b1)−Re(b2)− Se(a1) +Re(a2)
∣∣∣

≤ 1

2

∣∣∣Se(a1)− Se(b1)
∣∣∣+

1

2

∣∣∣Re(a2)−Re(b2)
∣∣∣+

1

2

∣∣∣Se(b1)− Se(a1)
∣∣∣+

1

2

∣∣∣Re(a2)−Re(b2)
∣∣∣

=
∣∣∣Se(a1)− Se(b1)

∣∣∣+
∣∣∣Re(a2)−Re(b2)

∣∣∣ (4.34a)

where the second line in (4.34a) relies on (4.32) and all bounds in (4.34a) follow from the

triangle inequality (see Appendix A, Definition A.2.2 for definition).

Now, from Lipschitz continuity of the sending and receiving functions, we have that∣∣∣Se(a1)− Se(b1)
∣∣∣ +

∣∣∣Re(a2)−Re(b2)
∣∣∣

≤ KS

∣∣a1 − b1
∣∣+KR

∣∣a2 − b2
∣∣

≤ 2 max{KS ,KR}max {|a1 − b1|, |a2 − b2|} , (4.35)

where KS and KR denote the Lipschitz constants of the sending function and the receiving

function, respectively. This proves the Lipschitz continuity of the flux function given in

(4.31), where the constant K may be taken as 2 max{KS ,KR}. Note that no assumptions

of concavity were made, only that the sending and receiving functions are Lipschitz contin-

uous. This means that a wide range of fundamental relations can be accommodated in the

proposed theory.

4.6.2 Derivatives of Flux Functions

The flux function (4.31) is non-differentiable in the classical sense. To demonstrate this,

let a and b denote arbitrary traffic densities in two adjacent cells. We see from (4.32), and
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using |Se(a)−Re(b)| =
√(

Se(a)−Re(b)
)2

, that the partial derivatives may be written as:

∂λ

∂a
=
dSe(a)

da

(
1

2
− Se(a)−Re(b)

2
∣∣Se(a)−Re(b)

∣∣
)

∂λ

∂b
=
dRe(b)

db

(
1

2
+

Se(a)−Re(b)
2
∣∣Se(a)−Re(b)

∣∣
)

(4.36)

Now, note that when Se(a) = Re(b), the partial derivatives in (4.36) do not exist. The

set of points where this occurs is non-negligible: for any a ∈ [0, ρjam] it is easy to see that

there exists a point b ∈ [0, ρjam] such that Se(a) = Re(b) and vice versa. Furthermore, the

derivatives are generally not equal for these cases.

To overcome this problem, we apply the following intuition: when Se(a) = Re(b) we

have that |Se(a) − Re(b)| = 0 and the formula for the minimum in (4.32), for such points

of discontinuity, reduces to:

min{Se(a), Re(b)} =
1

2

(
Se(a) +Re(b)

)
, (4.37)

and the derivatives, when Se(a) = Re(b), are then computed as:

∂λ

∂a
=

1

2

dSe(a)

da
∂λ

∂b
=

1

2

dRe(b)

db
(4.38)

The derivatives above are in fact weak derivatives (see for example [48] for definition

and further discussion). It is well known that the absolute value function |z| possesses the

following weak derivative3 :

d|z|
dz

=


1 if z > 0

0 if z = 0

−1 if z < 0

(4.39)

3 An alternative intuition is: the absolute value function has a V shape. To approximate the derivative
at z = 0, one may approximate |z| by a V with a very small parabola (of negligible size) at z = 0; the
derivative at z = 0 is then 0.
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We, hence, see that the weak derivatives of λ in (4.32) can be written as:

∂λ

∂a
=


0 if Se(a) > Re(b)

1

2

dSe(a)

da
if Se(a) = Re(b)

dSe(a)

da
if Se(a) < Re(b)

(4.40)

and

∂λ

∂b
=


dRe(b)

db
if Se(a) > Re(b)

1

2

dRe(b)

db
if Se(a) = Re(b)

0 if Se(a) < Re(b)

(4.41)

which is consistent with (4.36) when Se(a) 6= Re(b) and (4.38) when Se(a) = Re(b).

4.6.3 Boundedness of Traffic Densities

Another crucial property of the stochastic model is that traffic densities are implicitly non-

negative and do not exceed the jam density ρjam.

Negative traffic densities arise when more vehicles artificially depart a cell than available

in the cell, while traffic densities that exceed jam density arise when vehicles are allowed to

artificially enter a cell for which the traffic density is at jam density.

To investigate the former case, suppose that at some time t the traffic density in cell x is

zero. A negative traffic density arises if an instantaneous change in the number of vehicles

by an amount less than zero is allowed. We are thus interested in the following probability:

P
(
Nx−1

(∫ t+dt

t
λ
(
y(x− 1, u)

)
du

)
−Nx

(∫ t+dt

t
λ
(
y(x, u)

)
du

)
< 0

∣∣∣∣ ρ(x, t) = 0

)
,

(4.42)

where dt is sufficiently small to ensure that at most one jump can occur at either cell

boundary. Then, this probability is bounded from above by:

P
(
Nx
(∫ t+dt

t
λ
(
y(x, u)

)
du

)
= 1

∣∣∣∣ ρ(x, t) = 0

)
, (4.43)

which is equal to λ
(
y(x, t)

)
dt (see, for example [57, Section 9.4, pg. 256]). But since

ρ(x, t) = 0, we have that λ
(
y(x, t)

)
= Se

(
ρ(x, t)

)
= 0. This means that a negative traffic

density occurs with probability zero.
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Likewise, suppose at time t the traffic density in cell x is the jam density. A traffic

density that exceeds the jam density occurs if an instantaneous change in the number of

vehicles by an amount greater than zero is allowed. In this case, we are interested in the

following probability:

P
(
Nx−1

(∫ t+dt

t
λ
(
y(x− 1, u)

)
du

)
−Nx

(∫ t+dt

t
λ
(
y(x, u)

)
du

)
> 0

∣∣∣∣ ρ(x, t) = ρjam

)
,

(4.44)

which is bounded from above by

P
(
Nx−1

(∫ t+dt

t
λ
(
y(x− 1, u)

)
du

)
= 1

∣∣∣∣ ρ(x, t) = ρjam

)
(4.45)

This probability is equal to λ
(
y(x− 1, t)

)
dt. Since ρ(x, t) = ρjam, we have that λ

(
y(x−

1, t)
)

= Re
(
ρ(x, t)

)
= 0. Consequently, the probability that the traffic density will exceed

the jam density is zero.

4.6.4 Derivation of the Fluid Limit

Before deriving the limit, we will need an appropriate way to measure distance between

processes. Since the limiting processes throughout this thesis are continuous, it shall suffice

to consider the uniform norm [18, 67]. For more general metrics and their applications, see

[112]. The uniform norm, for the vector valued process g(t) ∈ Rm, is written as:

∣∣∣∣g(·)
∣∣∣∣
U

= sup
0≤t≤U

max
1≤j≤m

{∣∣gj(t)∣∣}, (4.46)

where gj(t) is the jth element of the vector g(t). When g(·) is a scalar process, the uniform

norm is simply written as: ∣∣∣∣g(·)
∣∣∣∣
U

= sup
0≤t≤U

{∣∣g(t)
∣∣} (4.47)

Since the SLLN for the Poisson process, (4.24), holds for any t ∈ [0, U ]4 , we have that∣∣∣∣∣∣∣∣ 1nNx (nt)− t
∣∣∣∣∣∣∣∣
U

−→
n→∞

0 a.s. (4.48)

4 In fact, the more general counting process also.
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This is known as the functional strong law of large numbers (FSLLN) for the unit rate

Poisson process. Now consider∣∣∣∣∣∣∣∣ 1nNx
(
n

∫ t

0
λ
(
yn(x, u)

)
du

)
−
∫ t

0
λ
(
yn(x, u)

)
du

∣∣∣∣∣∣∣∣
U

(4.49)

In order to obtain the limiting behavior of (4.49), we will need the following random

time change theorem [18, Theorem 5.3], which is proved in [8, Section 14].

Theorem 4.6.1 (random time change theorem). Let Xn(·) and Yn(·) be two sequences

of stochastic processes which possess right-continuous sample paths with left-hand limits

(RCLL). Suppose that Yn(·) is non-decreasing with Yn(0) = 0 and that as n → ∞, Xn(·)
and Yn(·) converge uniformly on compact sets to processes X (·) and Y(·) which possess

continuous sample paths. Then, the time-changed process Xn(Yn) converges uniformly on

compact sets to X (Y).

Explanation: RCLL processes generalize continuous processes5 to processes with

sample paths which may contain jumps, such as the point processes N (·) and N̂ (·) (see

Figures 4.3 and 4.4 for example). The theorem, in essence, says that if two such processes

which take values in [0, U ] (a compact set) and converge to the processes X (·) and Y(·)
almost surely (i.e., “converge uniformly on compact sets”) and Y(·) is a continuous non-

decreasing process with Y(0) = 0, then Xn(Yn) converges to X (Y). That is, knowing

how the two processes converge individually, we can characterize the convergence of their

composition, provided the conditions of the theorem hold.

For (4.49), the Lipschitz continuity and boundedness of the flux functions, λ(·), the con-

tinuity of integration, and that λ(·) in (4.49) does not depend on n (except in its argument)

ensures that
∫ •

0 λ
(
yn(x, u)

)
du converges to a continuous process. Furthermore, it is easy

to see that Yn(t) ≡
∫ t

0 λ
(
yn(x, u)

)
du is non-decreasing in t, since λ(·) is non-negative, and

that Yn(0) = 0. Consequently, by the FSLLN for a unit rate Poisson process, we have that∣∣∣∣∣∣∣∣ 1nNx
(
n

∫ t

0
λ
(
yn(x, u)

)
du

)
−
∫ t

0
λ
(
yn(x, u)

)
du

∣∣∣∣∣∣∣∣
U

−→
n→∞

0 a.s. (4.50)

5 More accurately, processes with continuous sample paths.
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In fact, from (4.24), and by the same arguments above, this can also be established for

the more general point processes, N̂x(·); that is,∣∣∣∣∣∣∣∣ 1nN̂x
(
n

∫ t

0
λ
(
yn(x, u)

)
du

)
−
∫ t

0
λ
(
yn(x, u)

)
du

∣∣∣∣∣∣∣∣
U

−→
n→∞

0 a.s. (4.51)

Now, let’s return to the scaled conservation equation:

ρn(x, t) = ρn(x, 0) +
1

lx

(
1

n
Nx−1

(
n
∫ t

0 λ
(
yn(x− 1, u)

)
du
)

− 1

n
Nx
(
n
∫ t

0 λ
(
yn(x, u)

)
du
))

(4.52)

It will be shown that this process converges almost surely (or uniformly on compact sets)

to the deterministic process ρ̄(x, ·) given by (4.3); that is, the fluid limit of this stochastic

process is a Godunov scheme based dynamic. That is, it will be shown that the following

holds: ∣∣∣∣∣∣ρn(x, ·)− ρ̄(x, ·)
∣∣∣∣∣∣
t
−→
n→∞

0 a.s (4.53)

This is shown as follows: for any t ∈ [0, U ],∣∣∣∣∣∣ρn(x, ·)− ρ̄(x, ·)
∣∣∣∣∣∣
t
≤

∣∣∣∣∣∣ρn(x, 0)− ρ̄(x, 0)
∣∣∣∣∣∣
t

+
1

lx

∣∣∣∣∣∣∣∣ 1nNx−1

(
n

∫ •
0
λ
(
yn(x− 1, u)

)
du

)
−
∫ •

0
λ
(
yn(x− 1, u)

)
du

∣∣∣∣∣∣∣∣
t

+
1

lx

∣∣∣∣∣∣∣∣∫ •
0
λ
(
yn(x− 1, u)

)
du−

∫ •
0
λ
(
ȳ(x− 1, u)

)
du

∣∣∣∣∣∣∣∣
t

+
1

lx

∣∣∣∣∣∣∣∣ 1nNx
(
n

∫ •
0
λ
(
yn(x, u)

)
du

)
−
∫ •

0
λ
(
yn(x, u)

)
du

∣∣∣∣∣∣∣∣
t

+
1

lx

∣∣∣∣∣∣∣∣∫ •
0
λ
(
yn(x, u)

)
du−

∫ •
0
λ
(
ȳ(x, u)

)
du

∣∣∣∣∣∣∣∣
t

, (4.54)

where
∫ t

0 λ
(
yn(x − 1, u)

)
du and

∫ t
0 λ
(
yn(x, u)

)
du have been added to and subtracted from

the equations and the inequality follows from the triangle inequality.

As n→∞, by the classical law of large numbers, the first element on the RHS converges

to zero almost surely. In accordance with (4.50), both the second and the fourth elements

converge to zero, a.s., as well. Now, by Lipschitz continuity of the flux functions combined
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with the triangle inequality, we have that

1

lx

∣∣∣∣∣∣∣∣∫ •
0
λ
(
yn(x− 1, u)

)
du−

∫ •
0
λ
(
ȳ(x− 1, u)

)
du

∣∣∣∣∣∣∣∣
t

≤ Kx

∫ t

0

∣∣∣∣∣∣yn(x− 1, ·)− ȳ(x− 1, ·)
∣∣∣∣∣∣
u
du

(4.55)

and likewise

1

lx

∣∣∣∣∣∣∣∣∫ •
0
λ
(
yn(x, u)

)
du−

∫ •
0
λ
(
ȳ(x, u)

)
du

∣∣∣∣∣∣∣∣
t

≤ Kx

∫ t

0

∣∣∣∣∣∣yn(x, ·)− ȳ(x, ·)
∣∣∣∣∣∣
u
du, (4.56)

where Kx ≡ 1
lx
K and K is the Lipschitz constant.

Since the traffic densities are bounded, we have that∣∣∣∣∣∣yn(x− 1, ·)− ȳ(x− 1, ·)
∣∣∣∣∣∣
t
≤ H

∣∣∣∣∣∣ρn(x, ·)− ρ̄(x, ·)
∣∣∣∣∣∣
t
, (4.57)

and ∣∣∣∣∣∣yn(x, ·)− ȳ(x, ·)
∣∣∣∣∣∣
t
≤ H

∣∣∣∣∣∣ρn(x, ·)− ρ̄(x, ·)
∣∣∣∣∣∣
t
, (4.58)

where 1 ≤ H <∞ is a constant. Note that such a constant does not exist when
∣∣∣∣ρn(x, ·)−

ρ̄(x, ·)
∣∣∣∣
t

= 0 while
∣∣∣∣ρn(x+ 1, ·)− ρ̄(x+ 1, ·)

∣∣∣∣
t
> 0 and

∣∣∣∣ρn(x− 1, ·)− ρ̄(x− 1, ·)
∣∣∣∣
t
> 0, but

this is the trivial case which delivers our desired result immediately.

We now have the following upper bound for the sum of the LHSs of (4.55) and (4.56):

2HKx

∫ t

0

∣∣∣∣∣∣ρn(x, ·)− ρ̄(x, ·)
∣∣∣∣∣∣
u
du (4.59)

Denote by κn the sum of the first, second, and fourth elements on the RHS of (4.54),

we then have: ∣∣∣∣∣∣ρn(x, ·)− ρ̄(x, ·)
∣∣∣∣∣∣
t
≤ κn + 2HKx

∫ t

0

∣∣∣∣∣∣ρn(x, ·)− ρ̄(x, ·)
∣∣∣∣∣∣
u
du (4.60)

By the Bellman-Gronwall inequality (see Appendix A, Theorem A.3.4), this implies that∣∣∣∣∣∣ρn(x, ·)− ρ̄(x, ·)
∣∣∣∣∣∣
t
≤ κne2HKxt (4.61)

Since κn −→
n→∞

0 almost surely, we have the desired result. That is, the scaled stochastic

process converges almost surely to the Godunov scheme based dynamic. In is notable that

this strengthens the result derived in [49], in which weak convergence to the fluid limit was

established.
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4.7 Numerical Example

The purpose of this example is to illustrate the convergence of the scaled stochastic model

to the fluid limit. Consider a simple two cell setting, where both cells are of length 264 ft

(80.47 m). Assume a triangular fundamental relationship (i.e., a CTM fluid model) with the

following parameters: free-flow speed vf = 60 mi/hr (96.56 km/hr), capacity qmax = 1800

veh/hr, backward wave propagation speed w = 12 mi/hr (19.31 km/hr), a jam density of

ρjam = 180 veh/mi (111.85 veh/km), and coefficient of variation of time headways of c̄ = 1;

that is, it is assumed that the headways are conditionally exponentially distributed. The

simulation time horizon is U = 200 seconds. The boundary flow rates (in veh/hr)) are in

accordance with the following:

λ
(
y(0, t)

)
= min{1800, 12

(
180− ρ(1, t)

)
} (4.62a)

λ
(
y(1, t)

)
= min{60ρ(1, t), 1800, 12

(
180− ρ(2, t)

)
} (4.62b)

λ
(
y(2, t)

)
= min{60ρ(2, t), 1800g(t)}, (4.62c)

where ρ(1, t) and ρ(1, t) are in units of veh/mi. The function g(t) captures downstream

capacity restrictions due to the traffic light, which turns red during the time interval [50,70)

and green during the remainder of the 200 second time period. Thus, g(t) = 0 if t ∈ [50, 70)

and g(t) = 1, otherwise. A sample path of the scaled process is simulated using Algorithm

3.1 below.

Algorithm 3.1: Example scaled model simulation

1 Initialization:

2 ρn(x, 0) := ρ0(x), for all x ∈ C
3 Iteration:

4 while t < U do

5 for x = 0→ |C| do

6 λx := λ
(
yn(x, t)

)
/3600 (flow in vehicles per second)

7 if λx == 0 then

8 tx :=∞
9 else
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10 vx := uniform(0, 1) (uniform pseudo-random number in [0, 1])

11 tx := − log(1− vx)/λx (exponential pseudo-random number)

12 tx := tx/n (scaled time headways)

13 end if

14 end for

15 i := y : ty == min
x∈C

(tx) (i := index of the smallest headway)

16 t := t+ ti (update system clock)

17 Compute (scaled) numbers of vehicles leaving cells:

18 for x = 0→ |C| do

19 if x == i then

20 qnx := 1/n

21 else

22 qnx := 0

23 end if

24 end for

25 Compute cell densities:

26 for x = 1→ |C| do

27 ρn(x, t) = ρn(x, t− ti) + (1/lx)(qnx−1 − qnx )

28 end for

29 end while

In essence, the algorithm proceeds as follows: (i) compute the fluxes at the cell bound-

aries, (ii) use the fluxes to generate |C| exponential pseudo-random numbers (headways),

(iii) find the minimum headway and scale it, tx, (iv) set the flow across the cell boundary

with the smallest headway to 1/n and all other boundary flows to 0, (v) compute the new

densities, and (vi) repeat the process until t == U . Figures 4.8 and 4.9 show sample paths

of traffic densities for n = 1, n = 10, n = 100, and n = 1000, for cell 1 and cell 2, respec-

tively. The figures also show the (mean) time varying traffic densities using the CTM, for

comparison.
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Figure 4.8: Cell 1 traffic densities; (a) n = 1; (b) n = 10; (c) n = 100; (d) n = 1000
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Figure 4.9: Cell 2 traffic densities; (a) n = 1; (b) n = 10; (c) n = 100; (d) n = 1000

The sample paths in the two figures illustrate that, as n gets larger and larger, the

sample paths get closer and closer to that of the CTM, where the variability in the sample

paths decrease with increasing n, just as in Figures 4.5, 4.6, and 4.7. The figures also

illustrate how uniform acceleration scaling preserves the transient features of the traffic

flow dynamics.



Chapter 5

Gaussian Approximation of the

Stochastic Traffic Flow Model

5.1 Introduction

The Gaussian approximation is a second order (stochastic) refinement of the fluid process.

The refinement component captures the deviation of the stochastic model from its fluid

limit. Then, considering both the mean behavior and the probabilistic deviation from the

mean, we obtain a second order (stochastic) approximation of the process. Consider the

scaled unit rate Poisson process, 1
nNx(nt): when n is large, the random variable Nx(nt)

is approximately equal to the sum of bntc independent and identically distributed (i.i.d.)

Poisson random variables with mean 1, where bntc is the largest integer less than or equal

to nt; that is, let {ξj}nj=1 ∼ i.i.d. Poisson(1). Then,

Nx(nt) ≈
bntc∑
j=1

ξj (5.1)

Consider the re-scaled centered process (centered at its fluid limit):

√
n

(
1

n
Nx(nt)− t

)
(5.2)

69
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Using (5.1), this is approximated by

1√
n

bntc∑
j=1

(ξj − 1) (5.3)

By Donsker’s theorem (see Appendix A, Theorem A.3.3), (5.3) converges in distribution

to standard Brownian motion, denoted by Wx(t), for vehicles leaving cell x (see Appendix

A, Definition A.3.3). That is:

√
n

(
1

n
Nx(nt)− t

)
D≈ Wx(t), (5.4)

where
D≈ means “approximately equal, in distribution, to”. Defining the scaled time t̃ ≡ nt

and multiplying both sides of (5.4) by
√
n, we get:

Nx(t̃)− t̃ D≈ √nWx

(
t̃

n

)
D
= Wx(t̃), (5.5)

where equivalence in distribution (
D
=) follows from the scale invariance property1 of Brow-

nian motion.

This may also be extended, via random time change (see Chapter 4, Theorem 4.6.1), to

the more general counting process N̂x(t) (see [18, Theorem 5.11] or [112, Corollary 7.3.1]).

That is, let ζ1, ζ2, ... be sequence of i.i.d. inter-arrival times with mean Eζj = 1 and variance

Var(ζj) = σ2 for all j and denote by c̄ =

√
Var(ζj)
Eζj the coefficient of variation. Then,

N̂x(t)− t D≈ c̄Wx(t) (5.6)

We have thus obtained that the deviation of the scaled Poisson process from its mean,

Nx(t) − t, behaves, in terms of distribution, like standard Brownian motion, Wx(t). Since

this holds for any time t, this result may immediately be extended, via time scaling, to a

non-homogeneous Poisson process with deterministic time varying rates:

Nx
(∫ t

0
λ̄(x, u)du

)
−
∫ t

0
λ̄(x, u)du

D≈ Wx

(∫ t

0
λ̄(x, u)du

)
, (5.7)

1 It is this property which motivates the choice of
√
n as a re-scaling factor. In essence, multiplying the

difference in (5.2) by this re-scaling factor plays the role of an amplification of the deviation, which otherwise
converges to zero.
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where λ̄(x, t) are the deterministic time varying rates.

The time changed Brownian motion on the right-hand side of (5.7) can be understood,

for a fixed time t, as a normal random variable with mean zero and variance
∫ t

0 λ̄(x, u)du.

For varying t, Wx

(∫ t
0 λ̄(x, u)du

)
may also be written as an Itô integral with deterministic

integrand (i.e., a Gaussian process):∫ t

0

√
λ̄(x, u) dWx(u) (5.8)

Notice that the variance of (5.8) grows without bound as time progresses. Despite the

fact that the derivation of this Gaussian approximation was relatively painless, the approx-

imation has this undesirable feature and cannot be trusted in applications that involve, for

instance, traffic prediction as one cannot preclude negative traffic densities and traffic den-

sities which may exceed the jam density. However, as will be shown in the next section, this

is not the case when instantaneous flow rates depend on traffic density. The subject of this

chapter is the derivation of the Gaussian approximation for the case where instantaneous

flow rates depend on traffic density. This derivation is carried out in Section 5.2, while

stationary properties of the covariance function are discussed in Section 5.3.

5.2 Derivation of the Gaussian Approximation for the Gen-

eral Case

In this section, the Gaussian approximation of the stochastic model is derived for the general

case where the instantaneous flow rates depend on traffic density. The derivation capitalizes

on the results given in the previous section for the simple unit rate counting processes. The

line of attack here is to consider the general case as a random time change applied to

the simple case. Then, the continuous mapping approach given in [112] (see Appendix A,

Theorem A.3.7) is used to obtain new convergence results from old.
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5.2.1 State Dependent Flow Rates

We first recall the state-dependent conservation equation:

ρn(x, t) = ρn(x, 0) +
1

lx

(
1

n
Nx−1

(
n
∫ t

0 λ
(
yn(x− 1, u)

)
du
)

− 1

n
Nx
(
n
∫ t

0 λ
(
yn(x, u)

)
du
))

, (5.9)

and its fluid limit

ρ̄(x, t) = ρ̄(x, 0) +
1

lx

(∫ t

0
λ
(
ȳ(x− 1, u)

)
du−

∫ t

0
λ
(
ȳ(x, u)

)
du

)
(5.10)

We are interested in the limiting behavior of the re-scaled process:

rn(x, t) ≡ √n
(
ρn(x, t)− ρ̄(x, t)

)
(5.11)

Expanding (5.11), we have:

rn(x, t) =
√
n
(
ρn(x, 0)− ρ̄(x, 0)

)
(5.12a)

+

√
n

lx

(
1

n
Nx−1

(
n

∫ t

0
λ
(
yn(x− 1, u)

)
du

)
−
∫ t

0
λ
(
ȳ(x− 1, u)

)
du

)
(5.12b)

−
√
n

lx

(
1

n
Nx
(
n

∫ t

0
λ
(
yn(x, u)

)
du

)
−
∫ t

0
λ
(
ȳ(x, u)

)
du

)
(5.12c)

As discussed in Chapter 4, the first difference in (5.12a) converges in distribution to a

zero mean Normal random variable with variance σ2(x, 0). Since (5.12b) and (5.12c) are

similar, their limiting behavior can be obtained in the same manner. Take the following

process:
√
n

(
1

n
Nx
(
n

∫ t

0
λ
(
yn(x, u)

)
du

)
−
∫ t

0
λ
(
ȳ(x, u)

)
du

)
(5.13)

Adding and subtracting
∫ t

0 λ
(
yn(x, u)

)
du, (5.13) can be expressed as the sum of the two

differences:
√
n

(
1

n
Nx
(
n

∫ t

0
λ
(
yn(x, u)

)
du

)
−
∫ t

0
λ
(
yn(x, u)

)
du

)
(5.14)

and
√
n

(∫ t

0
λ
(
yn(x, u)

)
du−

∫ t

0
λ
(
ȳ(x, u)

)
du

)
(5.15)
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For (5.14), since the flux functions λ(·) are Lipshitz continuous, we immediately obtain

the following convergence from the fluid limit:∫ t

0
λ
(
yn(x, u)

)
du −→

n→∞

∫ t

0
λ
(
ȳ(x, u)

)
du a.s. (5.16)

by the continuous mapping theorem (see Appendix A, Theorem A.3.7).

Then, again by the continuous mapping theorem, combined with Donsker’s theorem (see

Appendix A, Theorem A.3.3) and the Skorohod representation theorem (see Appendix A,

Theorem A.3.6), we obtain the following for (5.14):

√
n

(
1

n
Nx
(
n

∫ t

0
λ
(
yn(x, u)

)
du

)
−
∫ t

0
λ
(
yn(x, u)

)
du

)
D−→

n→∞
Wx

(∫ t

0
λ
(
ȳ(x, u)

)
du

)
,

(5.17)

where the Brownian processes Wx(·) are independent in x. This is precisely the limit ob-

tained for the non-homogeneous Poisson process presented in Section 5.1. The dependence

on traffic states between cells is captured by the limit of (5.15), which is derived next.

Let αn(x, t) ≡ [rn(x, t), rn(x+1, t)]T; then yn(x, t) = ȳ(x, t)+ 1√
n
αn(x, t), in accordance

with (5.11). Now, (5.15) can be written as:∫ t

0

λ
(
ȳ(x, u) + 1√

n
αn(x, u)

)
− λ

(
ȳ(x, u)

)
1√
n

 du (5.18)

and upon multiplying and dividing by ||αn(x, t)||, we get∫ t

0
||αn(x, u)||

λ
(
ȳ(x, u) + 1√

n
αn(x, u)

)
− λ

(
ȳ(x, u)

)
1√
n
||αn(x, u)||

 du (5.19)

Here, ||αn(x, t)|| is the “length” of the vector αn(x, t). The term inside the brackets in

(5.19) converges to the directional derivative of λ
(
ȳ(x, t)

)
along α̃(x, t), which is the (weak)

limit of αn(x, t). Consequently, (5.19) converges to:2∫ t

0

(
α̃(x, u)T · ∇λ

(
ȳ(x, u)

))
du (5.20)

2 Here, the relationship between the directional derivative and the gradient is used: for two vectors u
and z, and the function g(u), this relationship is:

∇zg(u) =
zT

||z||∇g(u)
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That the product of random variables converges to the product of their limits is estab-

lished by appeal to Cramér’s theorem (see Appendix A, Theorem A.3.5), which is allowed

since ∇λ
(
ȳ(x, u)

)
is deterministic. Convergence under the integral sign is allowed by the

continuous mapping theorem.

Now, expanding the dot product in (5.20), we get:∫ t

0

(
∂λ
(
ȳ(x, u)

)
∂ρ̄(x, u)

r̃(x, u) +
∂λ
(
ȳ(x, u)

)
∂ρ̄(x+ 1, u)

r̃(x+ 1, u)

)
du, (5.21)

where r̃(x, t) and r̃(x+ 1, t) are the (weak) limits of rn(x, t) and rn(x+ 1, t), respectively.

We have, thus, found that the deviation of the stochastic traffic flow model from its fluid

limit, for cell x, is obtained as the solution of the following stochastic differential equation

(written in integral form):

r̃(x, t) = r̃(x, 0) +
1

lx

∫ t

0

(
∂λ
(
ȳ(x− 1, u)

)
∂ρ̄(x− 1, u)

r̃(x− 1, u) +
∂λ
(
ȳ(x− 1, u)

)
∂ρ̄(x, u)

r̃(x, u)

)
du

− 1

lx

∫ t

0

(
∂λ
(
ȳ(x, u)

)
∂ρ̄(x, u)

r̃(x, u) +
∂λ
(
ȳ(x, u)

)
∂ρ̄(x+ 1, u)

r̃(x+ 1, u)

)
du

+
1

lx

∫ t

0

√
λ
(
ȳ(x− 1, u)

)
dWx−1(u)− 1

lx

∫ t

0

√
λ
(
ȳ(x, u)

)
dWx(u)

(5.22)

The only random terms in this equation are the r̃(·, ·)’s and the standard Brownian

motions Wx−1(·) and Wx(·). Since the stochastic differential equation (SDE) (5.22) involves

terms that appear in SDEs for cells x−1 and x+1, we have a system of SDEs, which should

be solved simultaneously. In the next section, the SDE is written in vector form and the

solution is derived.

5.2.2 Solution of the SDE

The system of equations (5.22) may be written compactly as:

r̃(t) = r̃(0) +

∫ t

0
D(u)r̃(u)du+

∫ t

0
BΓ(u)dW(u), (5.23)

where r̃(t) and W(t) are, respectively, the |C| and |C|+1 dimensional vector valued processes[
r̃(1, t) · · · r̃(|C|, t)

]T
and

[
W0(t) · · · W|C|(t)

]T
; here, W0(t) represents flows into the first
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cell. |C| denotes the number of cells and is also used here to denote the index of the last

cell.

The |C| × |C| matrix D(t) captures the dependence between cells (the second and third

components on the right-hand side of (5.22)). For arbitrary cell x, the corresponding row

in D(t) is:

1

lx

[
· · · 0

∂λ
(
ȳ(x− 1, t)

)
∂ρ̄(x− 1, t)

(
∂λ
(
ȳ(x− 1, t)

)
∂ρ̄(x, t)

− ∂λ
(
ȳ(x, t)

)
∂ρ̄(x, t)

)
− ∂λ

(
ȳ(x, t)

)
∂ρ̄(x+ 1, t)

0 · · ·
]
,

(5.24)

where the middle element lies in the xth column of the row. The constant |C|×(|C| + 1)

matrix B may be interpreted as a normalized routing matrix, since each row contains two

non-zero elements which are equal in value but opposite in sign. B is given by:

B ≡



1/l1 −1/l1 0 0 · · · 0 0

0 1/l2 −1/l2 0 · · · 0 0

0 0 1/l3 −1/l3 · · · 0 0

. . .

0 0 0 0 · · · 1/l|C| −1/l|C|


(5.25)

Γ(t) is the (|C|+ 1)× (|C|+ 1) matrix of Itô integrands

Γ(t) ≡


√
λ
(
ȳ(0, t)

)
0 · · · 0 0

. . .

0 0 · · · 0
√
λ
(
ȳ(|C|, t)

)
 (5.26)

where ȳ(0, t) can be taken to be equal to ρ̄(1, t). Note that in this vector notation dependence

on ȳ(·, ·) has been omitted. This is both to simplify notation and to emphasize that these

are deterministic (albeit time-varying) quantities.

The vector stochastic integral equation (5.23) can also be written (symbolically) in

differential form as:

dr̃(t) = D(t)r̃(t)dt+ BΓ(t)dW(t) (5.27)

with the initial condition r̃(0) (a zero mean Gaussian random vector); this is a narrow sense

linear SDE, since all coefficient matrices are (time varying) constant matrices that do not
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depend on r̃(t) (see Appendix A, Definition A.3.4). The solution is written as:

r̃(t) = Φ(t)

(
r̃(0) +

∫ t

0
Φ−1(u)BΓ(u)dW(u)

)
, (5.28)

where Φ(·) is a |C| × |C| fundamental matrix. That is, Φ(·) solves the matrix differential

equation:
dΦ(t)

dt
= D(t)Φ(t), Φ(0) = I (5.29)

where I is a |C| × |C| identity matrix. Note that the fundamental matrix Φ(t), except in

specific situations, is not easy to obtain explicitly. However, as will be shown shortly, this

is not an obstacle.

The solution (5.28) is an Itô integral with deterministic integrand; thus, r̃(t) is a Gaus-

sian process.

Let ρ(t) denote the |C|-dimensional vector of traffic densities, ρ̄(t), ρ̃(t) its second-

order approximation, and λ(t) ≡
[
λ
(
ȳ(0, t)

)
· · · λ

(
ȳ(|C|, t)

)]T
. From (5.28), we have the

approximated traffic density process

ρ̃(t) = ρ̃(0) +

∫ t

0
Bλ(u)du+ Φ(t)

(
r̃(0) +

∫ t

0
Φ−1(u)BΓ(u)dW(u)

)
(5.30)

Since r̃(t) is Gaussian, then so is ρ̃(t), which is characterized by it’s first two moments.

The mean dynamic is

Eρ̃(t) = ρ̄(t) = ρ̄(0) +

∫ t

0
Bλ(u)du, (5.31)

where ρ̄(0) is the mean traffic density at time t = 0. Equation (5.31) is simply the fluid

limit written in vector form (the Godunov scheme)

The covariance matrix, denoted by Ψ(t), is

Ψ(t) = E
((

ρ̃(t)− Eρ̃(t)
)(
ρ̃(t)− Eρ̃(t)

)T)
= E

(
r̃(t)r̃(t)T

)
= Φ(t)

(
Ψ(0) +

∫ t

0
Φ−1(u)BΓ(u)Γ(u)TBTΦ−1(u)Tdu

)
Φ(t)T (5.32)

Taking the first order derivative of Ψ(t) with respect to time and using (5.29), we see

that Ψ(t) is obtained by solving the linear matrix differential equation

dΨ(t)

dt
= D(t)Ψ(t) + Ψ(t)D(t)T + BΓ(t)Γ(t)TBT (5.33)
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with initial covariance matrix Ψ(0) given by the variances of the initial cell traffic densities.

Note that the fundamental matrix Φ(t) does not appear in (5.33); more importantly, its

inverse does not appear in (5.33) either. This simplifies computation of the covariance

matrix, which is discussed in Section 5.3 below.

We have thus obtained two deterministic equations, which can be solved to give the mean

and covariance of the approximated process. Since the approximated process is Gaussian,

it is fully characterized by these two equations. The dependence of traffic densities in cell

x on traffic densities in adjacent cells x − 1 and x + 1 is preserved in the Gaussian model

(in both the mean and the covariance matrix). Furthermore, the only parameters needed

to compute both the mean and the covariance matrix (given initial conditions) are those

pertaining to the fundamental diagram.

5.2.3 Generalized Counting Processes

The weak convergence of the doubly stochastic Poisson process was established by applying

the continuous mapping theorem to the sequence of scaled homogeneous Poisson processes.

That is, the FCLT for the simple case was used to establish the FCLT for the general

case. Since we have a FCLT for the simple counting process N̂ (t) (5.6), the same approach

presented above can be applied to generalized counting processes constructed by applying a

random time change. That is, we may consider cell boundary cumulative flows of the form:

Q(x, t) ≡ N̂x
(∫ t

0
λ
(
y(x, u)

)
du

)
(5.34)

The only difference between this case and the doubly stochastic Poisson is inclusion of

the coefficient of variation, c̄, to the matrix Γ(t)3 , which is now given by:

Γ(t) ≡


c̄
√
λ
(
ȳ(0, t)

)
0 · · · 0 0

. . .

0 0 · · · 0 c̄
√
λ
(
ȳ(|C|, t)

)
 (5.35)

The solution of the SDE remains the same Gaussian process. That is, with Γ(t) given

by (5.35), the time varying means and covariances are obtained from (5.31) and (5.33).

3 For the case of the doubly stochastic Poisson process c̄ = 1.
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5.3 Stationary Behavior of the Covariance Function

The stationary behavior of the covariance matrix gives an indication of what the covariance

matrix tends to with time. This sheds light on whether or not the covariance grows without

bound or is bounded. When the covariance matrix is bounded, the stationary behavior aids

in designing numerical schemes for computing the covariance matrix; that is, it helps with

choosing appropriate ∆t.

As discussed in Section 5.1, for the simple non-stationary Poisson model, variances grow

without bound. This is not the case for the approximated state-dependent process. To see

this, we first point out that, for stationary mean traffic conditions, we have that the matrices

D(t) = D and Γ(t) = Γ do not vary with time. Consequently, the fundamental matrix,

Φ(t) can be written explicitly as Φ(t) = eDt (see for example [1]) and the solution of the

stochastic differential equation for the deviation becomes4 :

r̃(t) = eDtr̃(0) +

∫ t

0
e(t−u)DBΓdW(u), (5.36)

for which the covariance matrix is:

Ψ(t) = eDtΨ(0)eD
Tt +

∫ t

0
e(t−u)DBΓΓTBTe(t−u)DT

du (5.37)

The behavior of the covariance matrix depends on the traffic conditions. Next, the

following three cases are investigated: (i) free-flow traffic conditions (sub-critical mean

traffic densities), (ii) capacity conditions (critical mean densities), and (iii) congested traffic

conditions (super-critical mean traffic densities).

4 The matrix exponential is defined by:

eA =

∞∑
k=0

1

k!
Ak

When A is diagonal of size j, we have that

A =

 a1 · · · 0

. . .

0 · · · aj

 =⇒ eA =

 ea1 · · · 0

. . .

0 · · · eaj


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5.3.1 Free-flow (Sub-Critical) Mean Traffic Conditions

Under free-flow traffic conditions, we have, for each cell boundary, that Se
(
ρ̄(x, t)

)
<

Re
(
ρ̄(x+ 1, t)

)
, where ρ̄ is the (sub-critical) mean traffic density in the cells. Consequently,

∂λ
(
ȳ(x, t)

)
∂ρ̄(x, t)

=
dSe
(
ρ̄(x, t)

)
dρ̄(x, t)

(5.38)

and
∂λ
(
ȳ(x, t)

)
∂ρ̄(x+ 1, t)

= 0 (5.39)

See Chapter 4.1, Section 4.6.2 for formulas of these derivatives. Let

ωx ≡
1

lx

dSe
(
ρ̄(x, t)

)
dρ̄(x, t)

We then see that D has the following structure:

D =



−ω1 0 0 0 · · · 0 0

ω2 −ω2 0 0 · · · 0 0

0 ω3 −ω3 0 · · · 0 0

. . .

0 0 0 0 · · · ω|C| −ω|C|


(5.40)

This can be written as the sum of two matrices D = D1 + D2, where D1 is a diagonal

matrix and D2 is a nilpotent matrix (see Appendix A, Definition A.1.1). Assuming cell

lengths are all equal5 , we see that D1D2 = D2D1 and, thus, e(D1+D2)t =
(
eD1eD2

)t
. Since

D2 is nilpotent, eD2 is a lower triangular matrix with 1s along the diagonal, while eD1 is a

diagonal matrix with diagonal elements e−ωx . Consequently,
(
eD1eD2

)
has spectral radius

strictly less than 1 (see Appendix A, Definition A.1.2). Then as t → ∞,
(
eD1eD2

)t → 0

(see Appendix A, Theorem A.1.1). Furthermore, for any u < t, e(t−u)D → 0, and when

u = t, e(t−u)D = I. We have just established that:

Ψ(t) −→
t→∞

BΓΓTBTdt, (5.41)

which is bounded since B and Γ are bounded.
5 This is easily generalized by considering upper and lower bounds established by substituting all cell

lengths with the minimum and maximum cell lengths and seeing that both bounds converges to the same
limit.
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5.3.2 Capacity (Critical) Mean Traffic Condition

When mean traffic conditions are critical, we have that Se
(
ρ̄(x, t)

)
= Re

(
ρ̄(x+ 1, t)

)
. Con-

sequently,
∂λ
(
ȳ(x, t)

)
∂ρ̄(x, t)

=
1

2

dSe
(
ρ̄(x, t)

)
dρ̄(x, t)

(5.42)

and
∂λ
(
ȳ(x, t)

)
∂ρ̄(x+ 1, t)

=
1

2

dRe
(
ρ̄(x+ 1, t)

)
dρ̄(x+ 1, t)

(5.43)

Assuming again equal cell lengths, let

ωl ≡
1

2lx

dSe
(
ρ̄(x− 1, t)

)
dρ̄(x− 1, t)

,

ωm ≡
1

2lx

(
dSe
(
ρ̄(x, t)

)
dρ̄(x, t)

− dRe
(
ρ̄(x, t)

)
dρ̄(x, t)

)
,

and

ωr ≡
1

2lx

dRe
(
ρ̄(x+ 1, t)

)
dρ̄(x+ 1, t)

Then, D has the following structure:

D =



−ωm ωr 0 0 · · · 0 0

ωl −ωm ωr 0 · · · 0 0

0 ωl −ωm ωr · · · 0 0

. . .

0 0 0 0 · · · ωl −ωm


(5.44)

The matrix D in (5.44) is said to be of Toeplitz type, which is any tridiagonal matrix

with equal elements along its diagonals. Let P be a matrix with its columns consisting of

eigenvectors of the matrix D. It can be shown that (i) D has distinct eigenvalues, denoted

{a1, ..., a|C|}; (ii) P diagonalizes D, i.e., D = Pdiag(a1, ..., a|C|)P
−1; and (iii) the eigenvalues

are calculated as aj = −ωm + 2ωr
√

ωl
ωr

cos
(

jπ
|C|+1

)
(see, for instance, [71, Example 7.2.5,

page 514] for detailed derivation). Consequently,

eD = Pdiag (ea1 , ..., ea|C|) P−1 (5.45)
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and

eDt = Pdiag
(
ea1t, ..., ea|C|t

)
P−1 (5.46)

From the definition of sending and receiving functions, we have that −ωm < 0, ωr < 0,

and cos
(

jπ
|C|+1

)
∈ (0, 1) for all j ∈ {1, ..., |C|}. Hence, diag

(
ea1t, ..., ea|C|t

)
→ 0, as t → ∞,

then from (5.46), we have that eDt → 0 as t → ∞. Likewise, for u < t, we have that, as

t→∞, e(t−u)D → 0 and when t = u, e(t−u)D → PIP−1 = I.

We have just established that the covariance matrix converges to the same limit as the

free-flow case, (5.41), for the case of critical mean traffic densities.

5.3.3 Congested (Super-Critical) Mean Traffic Conditions

When mean traffic conditions are super-critical, we have that Se
(
ρ̄(x, t)

)
> Re

(
ρ̄(x+ 1, t)

)
and, consequently,

∂λ
(
ȳ(x, t)

)
∂ρ̄(x, t)

= 0 (5.47)

and
∂λ
(
ȳ(x, t)

)
∂ρ̄(x+ 1, t)

=
dRe

(
ρ̄(x+ 1, t)

)
dρ̄(x+ 1, t)

(5.48)

Now, let

α ≡ 1

lx

dRe
dρ̄

,

then D has the following structure:

D =



α −α 0 0 · · · 0 0

0 α −α 0 · · · 0 0

0 0 α −α · · · 0 0

. . .

0 0 0 0 · · · 0 α


(5.49)

Since ρ̄ is super-critical, dRe/dρ̄ < 0, which implies that α < 0. Consequently, the

limiting behavior of Ψ(t) is also given by (5.41), by the same argument given for the free-

flow case.
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5.4 Numerical Examples

Consider a simple two cell setting, where both cells are of length 264 ft (80.47 m). Assume a

triangular fundamental relationship (i.e., a CTM fluid model) with the following parameters:

free-flow speed vf = 60 mi/hr, capacity qmax = 1800 veh/hr, backward wave propagation

speed w = −12 mi/hr (-19.31 km/hr), a jam density of ρjam = 180 veh/mi (111.85 veh/km),

and coefficient of variation of time headways of c̄ = 1. The simulation time horizon is

U = 200 seconds. The boundary flow rates (in veh/hr) are in accordance with the following:

λ
(
y(0, t)

)
= min{λ0, 12

(
180− ρ(1, t)

)
} (5.50a)

λ
(
y(1, t)

)
= min{60ρ(1, t), 1800, 12

(
180− ρ(2, t)

)
} (5.50b)

λ
(
y(2, t)

)
= min{60ρ(2, t), 1800g(t)}, (5.50c)

where ρ(1, t) and ρ(2, t) are in units of veh/mi. λ0 is a constant mean inflow rate into cell

1 and g(t) captures downstream capacity restrictions (e.g., a traffic signal).

The mean traffic density is computed using the CTM and the variance is computed

using

Ψ(t+ ∆t) = Ψ(t) + D(t)Ψ(t)∆t+ Ψ(t)D(t)T∆t+ BΓ(t)Γ(t)TBT∆t (5.51)

with ∆t = 0.2 seconds (for both the mean and the covariance). The matrices B, Γ(t), and

D(t) are computed according to (5.25), (5.26), and (5.24):

B =

 20 −20 0

0 20 −20

 , (5.52)

Γ(t) =


√
λ
(
ȳ(0, t)

)
0 0

0
√
λ
(
ȳ(1, t)

)
0

0 0
√
λ
(
ȳ(2, t)

)
 , (5.53)
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and

D(t) =


10

(
∂λ
(
ȳ(0, t)

)
∂ρ̄(1, t)

− ∂λ
(
ȳ(1, t)

)
∂ρ̄(1, t)

)
−10

(
∂λ
(
ȳ(1, t)

)
∂ρ̄(2, t)

)

10

(
∂λ
(
ȳ(1, t)

)
∂ρ̄(1, t)

)
10

(
∂λ
(
ȳ(1, t)

)
∂ρ̄(2, t)

− ∂λ
(
ȳ(2, t)

)
∂ρ̄(2, t)

)
 , (5.54)

where all derivatives in (5.54) are to be interpreted in the weak sense given in Chapter 4,

Section 4.6.2. This is illustrated for the derivative in the first row, in the second column.

We may re-write (5.50b) as:

λ
(
ȳ(1, t)

)
= min{Se

(
ρ̄(1, t)

)
, Re

(
ρ̄(2, t)

)
}, (5.55)

where

Se
(
ρ̄(1, t)

)
= min{60ρ̄(1, t), 1800} (5.56a)

Re
(
ρ̄(2, t)

)
= min{1800, 20

(
180− ρ̄(2, t)

)
} (5.56b)

This gives

dRe
(
ρ̄(2, t)

)
dρ̄(2, t)

=


−12 if 1800 > 12

(
180− ρ̄(2, t)

)
−6 if 1800 = 12

(
180− ρ̄(2, t)

)
0 if 1800 < 12

(
180− ρ̄(2, t)

) , (5.57)

and, consequently,

∂λ
(
ȳ(1, t), β

)
∂ρ̄(2, t)

=



dRe
(
ρ̄(2, t)

)
dρ̄(2, t)

if Se
(
ρ̄(1, t)

)
> Re

(
ρ̄(2, t)

)
1

2

dRe
(
ρ̄(2, t)

)
dρ̄(2, t)

if Se
(
ρ̄(1, t)

)
= Re

(
ρ̄(2, t)

)
0 if Se

(
ρ̄(1, t)

)
< Re

(
ρ̄(2, t)

) (5.58)

To illustrate the behavior of the covariance in the model, we look at five scenarios, in

which the mean traffic densities converge to different stationary traffic densities:

1. Convergence to free-flow traffic conditions: λ0 = 900 veh/hr, g(t) = 1 for all t ∈
[0, 200], and zero initial traffic densities and variances.
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2. Convergence to critical traffic conditions: λ0 = 1800 veh/hr, g(t) = 1 for all t ∈
[0, 200], and zero initial traffic densities and variances.

3. Convergence to congested traffic conditions: λ0 = 1800 veh/hr, g(t) = 0.5 for all

t ∈ [0, 200], and zero initial traffic densities and variances.

4. Convergence to zero traffic densities: λ0 = 0 veh/hr, g(t) = 1 for all t ∈ [0, 200], and

mean initial traffic densities of 105 veh/mi with standard deviations of 50 veh/mi.

5. Convergence to jam traffic densities: λ0 = 1800 veh/hr, g(t) = 0 for all t ∈ [0, 200],

and zero initial traffic densities and variances.
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Figure 5.1: Stationary traffic densities in cell 1 with 95% confidence intervals; (a) free-flow;

(b) capacity flow; (c) congested; (d) zero traffic density; (e) jam traffic density

The traffic densities for the five scenarios along with 95% confidence intervals are shown

in Figures 5.1a - 5.1e, for cell 1; confidence intervals of traffic densities in cell 2 behaves

in a similar fashion. The figures illustrate both the stationary behavior of the variance of

the traffic densities and the speed with which it adapts to changing mean densities. Notice

that the variance converges to zero in Figures 5.1d and 5.1e, corresponding to zero mean

traffic density and mean jam density. This is interpreted as certainty of zero flows, which

indicates that the model will not predict negative traffic densities or traffic densities greater

than jam density. In both these cases, the process degenerates and the dynamics become

deterministic. It is also notable that carrying out the same calculations using the stationary

covariance function given by

Ψ(t+ ∆t) = BΓ(t)ΓT(t)BT∆t (5.59)

yields variances that cannot be distinguished from those shown in Figure 5.1 for all five

scenarios. The reason for this is that the rate of convergence of (5.51) to (5.59) is propor-

tional to the spectral radius of the matrix D(t) during each time step (as was discussed in

Sections 5.3.1 - 5.3.3), which is much faster than the rate of change in traffic densities.

As an illustration of the transient behavior of the Gaussian model, consider another

scenario where a traffic light is introduced at the downstream boundary of cell 2. As in
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the numerical example in Section 4.7, suppose the signal turns red during the time interval

[50,70) and green during the remainder of the 200 second time period. Thus, g(t) = 0 if

t ∈ [50, 70) and g(t) = 1, otherwise. The behavior of the traffic densities are shown in

Figure 5.2 for both cells 1 and 2, along with 95% confidence intervals. Here, again, we shall

assume capacity inflows: λ0 = 1800 veh/hr in order to create traffic congestion.
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Figure 5.2: Traffic densities with 95% confidence intervals; (a) cell 1, (b) cell 2.

It is also easy to simulate sample paths of the Gaussian process, which is done by

simulating normal random variables for each of the time intervals using the computed

means and variances. Two such sample paths are illustrated in Figure 5.3.
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Figure 5.3: Simulated traffic densities with 95% confidence intervals; (a) cell 1, (b) cell 2.
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As expected, we see in Figure 5.3 that the two sample paths fall mostly within the

computed 95% confidence intervals. A larger confidence interval (e.g., 99%) would entirely

encapsulate the sample paths. The variances in these figures are smaller than those for the

unscaled queueing process simulated in Section 4.7. The reason for this is the discrete time

nature of the simulated process presented here. An alternative method of simulating the

queueing process of Section 4.7 would be to simulate a sequence of Poisson random variables

over intervals of length ∆t = 0.2 sec. In this case, it would be difficult to distinguish between

the sample paths of the Gaussian process and the unscaled queueing process, and the latter

would fall mostly within the confidence interval computed using the Gaussian model.



Chapter 6

Traffic State Estimation and Model

Validation

6.1 Introduction

The purpose of this chapter is to present the use of the Gaussian model developed in

Chapter 5 as a state-space model in a Kalman filter. The estimation problem along with the

state-space model and the Kalman filtering algorithm are first presented. As the proposed

model requires a large number of cells to give an accurate representation of traffic flow

dynamics, observability issues arise, which are also discussed. In general, when the system

is observable, further space discretization has no impact on observability. The final section

of this chapter presents a real-world estimation example, in which queue sizes are estimated

on a cycle by cycle basis along a signalized arterial. Here, a queue size is defined as the

number of consecutive vehicles queued behind the stop-line of the intersection which are

moving at a speed less than 5 mi/hr (8.05 km/hr). Thus, while other vehicles may be

present in the road section, they may not be part of the queue.

88
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6.2 The Estimation Problem

Consider a countable sequence of noisy measurements of traffic flows (and/or traffic den-

sities) at discrete time instants t1, t2, ..., tu ∈ [0, U ]. Without loss of generality, it will be

assumed that only traffic count information is available. Let z(tj) be a vector of such

measurements made at time tj taken at point sensor locations (e.g., loop detectors) that

constitute a subset of cell boundaries; that is, for each tj , z(tj) is a vector of dimension

|M| ≤ |C|. Let η(t) denote an augmented state vector at time t ∈ [0, U ] of dimension

2|C| + 1 with the first |C| elements consisting of the traffic densities in the cells and the

remaining elements consisting of the cell boundary traffic flows.

The stochastic filtering problem is one that seeks to determine a best estimate of the

state vector η(t) given the measurement sequence Z(t) = {z(tj), ...z(tj)}, where tj =

max
1≤k≤u

{tk : tk ≤ t}. It is well known that the optimal estimate (in the minimal mean

squares sense) of the state vector given the measurement sequence is the conditional expec-

tation E
(
η(t)

∣∣Z(t)
)
. The problem is then one of determining the (time-varying) conditional

probability density function p
(
η(t), t

∣∣ Z(t)
)

[6, 50, 114]. The Kalman filter [51, 52] is an

efficient recursive algorithm for computing the first two moments of E
(
η(t)

∣∣ Z(t)
)

when

p
(
η(t), t

∣∣ Z(t)
)

is a Gaussian probability density. In general, the Kalman filter consists of

iteratively carrying out the following steps:

1. Prediction of the mean state vector at time tk+1 from the most recent estimate cal-

culated at time tk.

2. Prediction of the covariance matrix of the state vector at time tk+1 from the most

recent estimate calculated at time tk.

3. Calculation of the filter gain matrix.

4. Calculation of the mean state estimate at time tk+1.

5. Calculation of the estimated covariance matrix of the state vector at time tk+1.
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The first two steps are carried out using the Gaussian model derived in Chapter 5.

The third step uses the measurements available at time tk+1 to compute optimal weighting

factors (filter gain) that combine the measurements and the predictions. Then, using the

filter gain, the optimal estimates of the mean and the covariance matrix at time tk+1 are

calculated and the procedure is repeated for the next time step. Next, the components of

the filter (namely, the state vector equations and the measurement equations) are specified.

6.3 Model Specification and Filtering Algorithm

Let Q̃(t) denote a vector of approximated cumulative cell boundary flows, then the state-

space vector is η(t) = [ρ̃(t) Q̃(t)]T. Let Ψ̂(t) denote the covariance matrix of Q̃(t), which

is derived in a similar way to Ψ(t). That is, for cell x, start with the centered difference

on(x, t) =
√
n

(
1

n
N̂x
(
n

∫ t

0
λ
(
yn(x, u)

)
du

)
−
∫ t

0
λ
(
ȳ(x, u)

)
du

)
(6.1)

Then, as was shown in Section 5.2.1 that this converges to the solution of the following

SDE:

õ(x, t) =

∫ t

0

(
∂λ
(
ȳ(x, u)

)
∂ρ̄(x, u)

õ(x, u) +
∂λ
(
ȳ(x, u)

)
∂ρ̄(x+ 1, u)

õ(x+ 1, u)

)
du+

∫ t

0
c̄
√
λ
(
ȳ(x, u)

)
dWx(u),

(6.2)

where õ(x, t) is the weak limit of on(x, t). The system of equations is written (symbolically)

in vector form as:

dõ(t) = D̂(t)õ(t)dt+ Γ(t)dW(t), (6.3)

where õ(t) is a vector of dimension |C| + 1, Γ(t) and W(t) retain their meaning given in

Section 5.2.2. D̂(t) is the following (|C|+ 1)× (|C|+ 1) matrix:

D̂(t) ≡



0
∂λ
(
ȳ(0, t)

)
∂ρ̄(1, t)

0 · · · 0 0

0
∂λ
(
ȳ(1, t)

)
∂ρ̄(1, t)

∂λ
(
ȳ(1, t)

)
∂ρ̄(2, t)

· · · 0 0

. . .

0 0 0 · · · 0
∂λ
(
ȳ(|C|, t)

)
∂ρ̄(|C|, t)


(6.4)
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Following the same steps in Section 5.2.2, we have that

EQ̃(t) =

∫ t

0
λ(u)du, (6.5)

and the covariance matrix is obtained by solving:

dΨ̂(t)

dt
= D̂(t)Ψ̂(t) + Ψ̂(t)D̂(t)T + Γ(t)Γ(t)T (6.6)

Let Θ(t) = E
((

ρ̃(t)−Eρ̃(t)
)(

Q̃(t)−EQ̃(t)
)T)

denote the covariance of ρ̃(t) and Q̃(t).

Following the same steps, we find that Θ(t) is obtained by solving:

dΘ(t)

dt
= D(t)Θ(t) + Θ(t)D̂(t)T + BΓ(t)Γ(t)T (6.7)

Then, the state vector, a Gaussian vector, is characterized as follows:

η(t) =

 ρ̃(t)

Q̃(t)

 , Eη(t) =

 ρ̄(0) +
∫ t

0 Bλ(u)du∫ t
0 λ(u)du

 , Σ(t) =

 Ψ(t) Θ(t)

Θ(t)T Ψ̂(t)

 (6.8)

To characterize the measurement sequence {z(ti)}, let H be an |M|×(2|C|+1) incidence

matrix with a 1 in row i column j if the ith element in the measurement vector represents

a measurement of the jth state variable, and a 0 in row i column j otherwise. Here, it

will be assumed that measurement error can be represented by Gaussian |M|-dimensional

noise vectors {ζ(ti)} with zero mean and covariance matrices {Ξ(ti)}. The true nature of

measurement errors vary by sensor type, time of day, weather conditions, and controller

sensitivity settings. A thorough investigation of measurement error, while enlightening, is

beyond the scope of this thesis and the assumption of Gaussian noise is in accord with the

convention in the literature on traffic state estimation [31, 36, 37, 53, 73, 75, 103, 104, 106,

107]. Thus, the measurement equation is given by:

z(ti) = Hη(ti) + ζ(ti), i ∈ {1, 2, ..., u} (6.9)

The state equations (6.8) are continuous time equations, while the measurement equa-

tions (6.9) are discrete. Then, traffic state estimation is carried out using a discrete-

continuous Kalman filter [50]. With the discrete-continuous Kalman filter, the state equa-

tion is solved over intervals defined by the measurement sequence; i.e., the prediction in-

tervals are defined by the measurement times. At the measurement times, the estimates
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are updated in the same way this is done with a discrete Kalman filter. The algorithm is

included below.

Algorithm 5.1: Discrete-continuous Kalman filter

1: Initialization:

2: Eη(0) =

 Eρ̃(0)

EQ̃(0)

 =

 ρ̄(0)

0


3: Σ(0) =

 Ψ(0) Θ(0)

Θ(0)T Ψ̂(0)


4: Iteration:

5: for i = 1→ u do

6: Predict:

7: Predict mean Eη(ti
∣∣ti−1) :=

 ρ̄(ti−1) +
∫ ti
ti−1

Bλ(u)du∫ ti
ti−1

λ(u)du


8: Predict covariance Σ(ti

∣∣ti−1) :=

 Ψ(ti
∣∣ti−1) Θ(ti

∣∣ti−1)

Θ(ti
∣∣ti−1)T Ψ̂(ti

∣∣ti−1)


9: Update:

10: Measurement residual m(ti) := z(ti)−H · Eη(ti
∣∣ti−1)

11: Residual covariance Π(ti) := HΣ(ti
∣∣ti−1)HT + Ξ(ti)

12: Kalman gain K(ti) := Σ(ti
∣∣ti−1)HTΠ(ti)

−1

13: Updated (posterior) mean Eη(ti
∣∣ti) := Eη(ti

∣∣ti−1) + K(ti)p(ti)

14: Updated (posterior) covariance Σ(ti
∣∣ti) :=

(
I−K(ti)H

)
Σ(ti

∣∣ti−1)

15: end for

The ability to use a classical (as opposed to an extended) Kalman filter stems from

the linearity of the stochastic traffic flow model. This is due to dependence of the mean

and the covariance on mean traffic variables rather than the stochastic traffic variables.

The continuous time setting in which the models were derived offer the flexibility of using

different computational time scales for the state equation and the measurement equation.

That is, the availability of measurements at regular time intervals is not required in order to

run the filter. An important contribution of the model to the filtering problem is the ability
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to compute state covariance matrices using few parameters (parameters of the fundamental

diagram and coefficients of variation) and the ability to capture correlations between traffic

variables in different cells.

6.4 Observability

A system is said to be observable if the available measurement sequence, Z(t), is adequate

to construct the initial conditions of the (mean) state vector, Eη(0) [50, 101]. Since the

proposed research involves dividing a roadway into (potentially many) cells, observability

becomes an important question, as this discretization results in larger numbers of state

variables and increases the sparsity of the measurements.

Consider the scenario where a road section is instrumented at either end, so that traffic

densities at the upstream and downstream ends of the section and flow rates into the

section and out of the section are observed. In the literature, several articles have noted

that scenarios where, at time t = 0, the traffic density at the upstream end of the road

section is sub-critical, while the traffic density at the downstream end is super-critical,

result in unobservable traffic densities within the road section [72, 73, 100, 103]. These

unobservable scenarios occur, for instance, when a rarefaction fan meets a shockwave within

the road section, creating a wave front with varying slope. Such scenarios occur frequently

along congested signalized arterials, where queues can start to build-up in the downstream

(creating a shockwave that propagates upstream) before a queue in the upstream from a

previous cycle has fully dissipated. This is illustrated in Figure 6.1.

While in both Figures 6.1a and 6.1b traffic conditions throughout the road section at

time tv are the same and despite seeing the same traffic conditions at positions xl and xr,

the initial traffic conditions (at time t0) are different. In Figure 6.1a, the shockwave meets

the rarefaction fan farther upstream at time t = 0 than in Figure 6.1b. The position x̂(0)

represents the back of a queue, which cannot be observed using sensors at positions xl and

xr.

In general, the ability to observe traffic conditions within the road section using only
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Figure 6.1: Example unobservable scenario; (a) larger queue; (b) smaller queue

observations at its ends is only possible when there is a single wavefront/rarefaction fan

within the road section at time t = 0. As an example, suppose, the observed traffic densities
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at the upstream and downstream positions, denoted, respectively, by ρl and ρr, are such

that ρl < ρr < ρcrit. Then there is a shockwave that was initiated at a position x̂(0) at

time t = 0 and has a speed of vs = ρl−ρr
Qe(ρl)−Qe(ρr) . If the system is observable then at some

time tv, the shockwave will be detected in the downstream (position xr). In essence, this is

the time that the traffic density at xr changes from ρr to ρl. With tv and vs known, x̂(0)

can be calculated. This is illustrated in Figure 6.2a.
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Figure 6.2: Example shockwave observability; (a) ρl < ρr < ρcrit; (b) ρcrit < ρl < ρr

The arrows in Figures 6.2a and 6.2b indicate how the position of the shockwave at time

0, x̂(0), indicated by the solid dots in the figure, are determined from the position of the

shockwave at a later time. The directions of the arrows are not to be interpreted as the
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direction of the shockwave.

In both scenarios, the initial traffic densities throughout the road section are those

observed at the ends; then, estimating the initial traffic densities is a question of determining

how far downstream of the entrance of the road section are the traffic densities equal to

those at the entrance. The same is true for the case where ρcrit < ρl < ρr, except now

the wave is detected at the upstream end of the road section (i.e., position xr), which is

depicted in Figure 6.2b. In both situations, using a larger number of cells results in a more

accurate estimate of the position x̂(0) and, hence, more accurate initial traffic densities.

To overcome observability issues in this research, the start time of the estimation pe-

riod is chosen such that free-flow traffic conditions prevail. Then, at some finite time in

the future, traffic conditions observed at the upstream end of the road section will have

propagated through the road section, while vehicles that were present within the section at

time t = 0 will have left. In essence, this constitutes a warm-up period for the estimation

process. If estimation of peak period is desired, the start time of the warm-up period should

be chosen well before the onset of traffic congestion.

Observability, thus far, has been discussed in terms of the mean dynamics. This is

the classical way defining of observability. For stochastic systems, a more relevant issue is

stochastic observability, which is defined in terms of the behavior of the covariance matrix.

A system is said to be stochastically observable if there exists a time, to < ∞ such that

the largest element of the estimated covariance matrix Σ(ti
∣∣ti) is bounded for all ti ≥ t0

(see [5] and references therein). The boundedness of Ψ(·) was established in Section 5.3;

following the same steps, it can be shown that Ψ̂(·) and Θ(·) are also bounded, since these

two matrices are very similar in structure to Ψ(·). Since the residual covariance matrix,

Π(ti), and the Kalman gain matrix, K(ti), are both calculated directly from the predicted

covariance matrix, Σ(ti
∣∣ti−1), which is bounded, the estimated covariance matrix, Σ(ti

∣∣ti),
is also bounded (see step 14 of Algorithm 5.1). This establishes stochastic observability of

the system.
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6.5 Model Testing and Validation

In this section, validation of the proposed model is carried out using real-world traffic data.

In this test, maximum queue sizes are estimated along the westbound direction of Trunk

Highway 55, a high-speed signalized arterial in Minnesota. The maximum queues sizes were

estimated on a cycle by cycle basis for the (actuated) signalized intersection of Rhode Island

Avenue (the west-most intersection in Figure 6.3) and during the morning peak period of

7:00AM - 9:00AM on December 10th, 2008. Inductance loop detector data and signal timing

information were obtained using the SMART-Signal system described in [64]. A 30 minute

warm-up period starting at 6:30AM was used, where initial traffic densities were assumed

to be zero throughout the study road section.
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Figure 6.3: Data collection site and detector locations

Data that was used for estimation consists primarily of source and sink counts and

advanced loop detector counts. Queues typically build up beyond the locations of the

advanced detector and thus cannot be observed using the loop detector counts. For this

reason, a manual queue size data collection effort was carried out by a Minneapolis-based

transportation consulting firm, Alliant Engineering Inc., during the morning peak period on

December 10th, 2008 [65]. This data set was used for comparison with the model estimates.
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6.5.1 Model Parameters

Model parameters were fitted prior to estimation. The model parameters include funda-

mental diagram parameters and the coefficient of variation of time headways. For the

fundamental diagram, a triangular mean relationship was assumed. The parameters are

the free-flow speed vf , the capacity qmax, and the jam density ρjam. These parameters were

fitted using a minimum least squares estimate. The results are illustrated in Figure 6.4,

and summarized in Table 6.1.
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Figure 6.4: Fitted flow-density relationship

Table 6.1: Fitted flow-density relation parameters

vf qmax ρjam

40 mi/hr (64.37 km/hr) 1800 veh/hr/ln 174 veh/mi (108.12 veh/km)

The dataset used to fit the fundamental diagram parameters consists of individual ve-

hicle arrival times to the detector station and detector occupation times. Flow rates and

occupancies in the scatter-plot in Figure 6.4 were averaged over 10-vehicle batches as follows:

λ
(obs)
i =

10

T
(obs)
i

, (6.10)
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where λ
(obs)
i is the observed flow rate for the ith 10-vehicle batch and T

(obs)
i is the difference

between the departure time of the first vehicle in the batch and the last vehicle in the batch.

Observed occupancies were computed as:

Ō
(obs)
i =

1

T
(obs)
i

10∑
j=1

O
(obs)
j , (6.11)

where O
(obs)
j is the occupancy time of the jth vehicle in the batch and Ō

(obs)
i is the average

occupancy for the ith 10-vehicle batch (i.e., the percentage of time the detector is occupied).

The reason for aggregating was to average out the effect of unreasonable time headways

that are due to measurement error (e.g., over-counting or under-counting when vehicles

change lanes at the detector locations). The choice of ten as the batch size was arbitrary.

TH-55 is high-speed arterial with a speed limit of 50 mph; the small fitted value of 40 mi/hr

is a result of lower speeds due to snow accumulation on the road on the day the data was

collected.

Note that the heavy scatter seen in Figure 6.4 is characteristic of traffic flow data that

is averaged over short time intervals. Consequently, choosing a different shape can only

provide slight improvements to the overall fit and only negligible improvements to the

queue size estimates.

To fit the coefficient of variation parameter, c̄, sets of consecutive vehicle time headways

were collected and binned according to their associated vehicle occupancy times (to check

dependency of time headways on traffic density). Probability plots were developed using the

statistical software package Minitab in order to determine the appropriate time headway

distributions. Figure 6.5 is a probability plot for time headways associated with small

occupancies (free-flow traffic conditions) fitted to a 3-parameter log-normal distribution

with c̄ = 0.593. The fitted distribution parameters are given in Table 6.2 along with the

Anderson-Darling goodness of fit statistic.1 Figure 6.6 is a probability plot for time

headways associated with large occupancies (congested traffic conditions) also fitted to a

3-parameter log-normal with c̄ = 0.544 and Table 6.3 summarizes the fitted parameters. In

1 The Anderson-Darling statistic provides a measure of the difference between the hypothesized distri-
bution and the empirical distribution of the data while assigning relatively higher weights to the tails.
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general, the 3-parameter log-normal distribution was found to give good fits for a variety

of time headway datasets; the data points mostly fall within the 95% confidence region as

illustrated in the probability plots. The Anderson-Darling statistics in both cases indicate

a good fit as well.2 Despite requiring different distribution parameters, a coefficient of

variation of 0.5 - 0.6 seemed reasonable for a variety of traffic conditions.
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Figure 6.5: Probability plot of free-flow time headways with 95% confidence intervals

Table 6.2: Fitted free-flow headway parameters

Fitted parameters Goodness of fit

Location Scale Shift Anderson-Darling

0.8971 0.9069 4.001 0.626

2 That is, we cannot reject the hypotheses that the data points are distributed according to 3-parameter
log-normals.
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Figure 6.6: Probability plot of congested time headways with 95% confidence intervals

Table 6.3: Fitted congested headway parameters

Fitted parameters Goodness of fit

Location Scale Shift Anderson-Darling

0.4772 0.5624 0.9723 0.348

6.5.2 Estimated Cycle-by-Cycle Maximum Queue Sizes

With the parameters of the fundamental diagram and the coefficient of variation estimated,

the traffic state dynamics (6.8) are fully characterized. For the measurement equation, it

was assumed that measurement errors are uncorrelated and assumed a standard deviation

of 5% of the measured value to describe the measurement covariance. This value is based

on studies carried out in Minnesota and other parts of the U.S., which indicate that loop

detectors, when operational, provide accurate counts and speeds (ranging 1 - 9% depending

on facility type) [68]. The two links were divided into 90 cells of length 50 ft (15.24 m), except

boundary cells to ensure a correct total length. The Kalman filtering algorithm presented
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in Section 6.3 was then used to estimate cell densities and state covariance matrices.
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Figure 6.7: Comparison between estimated and measured queue sizes; (a) with 5 mi/hr

criterion (b) with 5 ±2 mi/hr (8.05 ±3.22 km/hr) criterion

Queue sizes are not state parameters, so the estimated queues were computed from

estimated cell densities. Cells with average speeds less than or equal to 5 mi/hr (8.05

km/hr) were considered to be part of the queue and the estimated queue size was simply

treated as the average density in consecutive cells that meet the criterion multiplied by

the total length of the cells. This is, hence, an average over random variables with known
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means and covariance matrix, so that a corresponding mean queue size and variance can

be readily calculated. A comparison between the estimated queue sizes along with a 95%

confidence interval and the measured queue sizes is shown in Figure 6.7a.

6.5.3 Discussion

The results shown in Figure 6.7a reveal a very good match between estimated and observed

queue sizes. All but two observed queue sizes fall within the confidence region. For the

queue in cycle no. 10, the model seems to have trapped vehicles in the upstream intersection,

which is revealed by the larger estimated queue size in cycle no. 11. The discrepancy in cycle

no. 17 however cannot be explained in the same way; here, observed measurement error is

a plausible cause. Observers were instructed to follow the 5 mi/hr (8.05 km/hr) criterion,

but did not possess an accurate speed measurement apparatus. If the criterion is changed

slightly, by ±2 mi/hr (±3.22 km/hr), in the estimated queue calculation, the discrepancy

disappears as shown in Figure 6.7b. Allowing for possibly larger error (e.g. ±3 mi/hr)

could also take care of the discrepancy in cycle no. 10 in the sense that the observations

would fall within the confidence interval, but the qualitative difference between estimated

and observed maximum queue sizes in cycles 10 and 11 (in terms of mean) would remain.

An interesting exercise is estimation of both traffic states and parameters simultaneously

via an adaptive filtering algorithm. This would shed light on whether the proposed esti-

mation framework would be capable of detecting the drop in estimated free-flow speed due

to snowy conditions. Since the purpose of this validation exercise was to test the Gaussian

model, not the filtering algorithm, this was not carried out as part of the present research,

but should be considered in any future research concerned with the estimation problem

itself.



Chapter 7

Conclusion and Future Research

7.1 Research Summary

Godunov scheme based dynamic equations of traffic flow and, particularly, the cell trans-

mission model (CTM) have gained a great deal of attention since the late 1990s amongst

traffic flow researchers and modelers. This is due to their simplicity and ability to cap-

ture queue build-up dynamics, queue dissipation dynamics, and spill-over dynamics, both

spatially and temporally. As real-time traffic flow data is becoming more widely available,

the real-time estimation and short-term prediction of traffic conditions along roads has also

gained recent attention. Consequently, many of the new stochastic models of traffic flow,

developed for purposes of real-time estimation and short-term prediction, are stochastic

extensions of the CTM. Most of these models are developed by adding noise to the CTM,

which results in potentially large covariance matrices which need to be estimated. In this

thesis, a new stochastic extension of Godunov scheme based dynamics is developed using

a queuing theoretic approach. The advantage of this approach is that (i) non-negativity of

the sample paths of the stochastic model is implicitly ensured and (ii) the mean dynam-

ics (fluid limit) of the stochastic model is the Godunov scheme itself. Neither issue has

been addressed in previous research. A Gaussian approximation of the queueing model is

also proposed for purposes of model tractability. The Gaussian approximation proposed is

104
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characterized by its mean and covariance dynamics; the mean dynamics are those of the

Godunov scheme, while the covariance matrices can be computed using few parameters.

The covariance function is derived from the queueing model as opposed to being estimated

from data. Stationary behavior of the covariance function is analyzed and it is shown that

the covariance matrices are bounded. Consequently, estimated covariance matrices are also

bounded. As a result, Kalman filters that use the proposed model are stochastically observ-

able, which is a critical issue in real time estimation of traffic dynamics. Model validation

was carried out in a real-world signalized arterial setting where cycle-by-cycle maximum

queue sizes were estimated using the Gaussian model as a state-space model in a Kalman

filter and the estimated queue sizes were compared to observed maximum queue sizes. The

results indicated good agreement between estimated and observed queue sizes.

Before discussing future research potential, it is important to note some of the limita-

tions of the present research. First, while introducing randomness yields oscillatory traffic

behavior, it is not clear whether this is consistent with observed stop-and-go traffic behav-

ior in the real world. Nonetheless, as driver choice is the primary player in all traffic flow

dynamics, probabilistic approaches to modeling such phenomena are the most well suited

for in-depth analysis. Another limitation lies in the classical way in which the fundamental

diagram was introduced into the stochastic model. As described in Section 3.4.2, funda-

mental relations can be reconciled with car-following behavior. This is leaves out a crucial

component of traffic flow: lane-changing behavior, which could have serious implications

on how macroscopic variables are related to one-another. This is a major limitation of

the classical macroscopic modeling approaches presented in Chapter 3 and inherited by the

proposed stochastic modeling framework.

7.2 Future Research

Future research could be carried out in various directions. From an application standpoint,

the proposed model could be used in a variety of traffic control contexts, including ramp

metering, adaptive signal control, and real-time traveler information systems. The proposed
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model can, in effect, be used in any application that uses the CTM. The probabilistic nature

of the model lends itself to a variety of extensions that incorporate measures of uncertainty,

reliability, and robustness, all measures that are usually established on probabilistic grounds.

Another direction for future research is the investigation of stochastic models of traffic flow

in general network settings. As in deterministic models, this would be accomplished by

first investigating merge and diverge dynamics. Applications of the latter include real-time

estimation of turning counts at network junctions. A stochastic model which includes merge

and diverge dynamics could also be used to develop stochastic dynamic traffic assignment

models, which allows for incorporating both the detailed dynamics and travel time reliability

measures in the investigation of route choice dynamics at the network level.

As another example of future research, a more thorough investigation into observability

could shed light on questions related to sensor placement along road networks and how

mobile sensors could be used to overcome observability issues. As a parallel line of research,

issues related to controllability and stochastic controllability using the proposed model, in

a variety of traffic management applications can be pursued; these include ramp metering

and adaptive signal timing.

From a theoretical standpoint, stochastic conservation laws of traffic flow could be devel-

oped as continuous time and continuous space models (stochastic partial differential equa-

tions) to investigate wave propagation dynamics in a probabilistic context. Such models

could have the potential to unify the various macroscopic traffic flow phenomena currently

modeled using disparate deterministic theories, such as stop-and-go waves and traffic hys-

teresis. These different phenomena would arise as sample paths of the unifying stochastic

framework and may be studied probabilistically.
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Appendix A

Mathematical Background

A.1 Linear Algebra Background

Definition A.1.1 (nilpotent matrix). A square matrix A is said to be nilpotent if there

exists a finite number k ∈ N such that Ak = 0, where 0 is the zero matrix. Any triangular

matrix with zeros along the diagonal is nilpotent.

Definition A.1.2 (spectral radius). Let A ∈ Rm×m be a square matrix and let a1, ..., am

be its eigenvalues. The spectral radius of A, denoted by R(A), is defined as:

R(A) = max
j=1,...,m

|aj | (A.1)

Theorem A.1.1 (matrix convergence). Let A ∈ Rm×m be a square matrix, then

Ak −→
k→∞

0 ⇐⇒ R(A) < 1 (A.2)

Proof. See for example [71, Theorem 7.10.5, page 617].

A.2 Calculus Background

Definition A.2.1 (Lipschitz continuity). A real-valued function f : Θ1 → Θ2 is said to be

Lipschitz continuous if there exists a constant K ∈ R such that for any pair a, b ∈ Θ1, we
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have that:

|f(a)− f(b)| ≤ K|a− b| (A.3)

Definition A.2.2 (triangle inequality). For any metric d : Θ → R+ on the metric space Θ

and any points a, b, c ∈ Θ the triangle inequality says that the following hold:

• d(a, b) ≤ d(a, c) + d(c, b)

• |d(a, c) + d(c, b)| ≤ d(a, b)

In particular, in a normed vector space, we have, from the latter, that
∣∣∣||a||−||b||∣∣∣ ≤ ||a−b||.

Theorem A.2.1 (the fundamental theorem of calculus). Let f be a continuous real-valued

function on the interval [a, b] and let the function F be defined by:

F (u) =

∫ u

a
f(z)dz, for all u ∈ [a, b] (A.4)

Then, F is differentiable and
dF (u)

du
= f(u) (A.5)

Proof. This is a classical result, the proof of which can be found in a variety of texts. See

for example [96, page 127] or [91, page 171].

Corollary A.2.1 (corollary to the fundamental theorem of calculus). Let f be a continuous

function on the interval [a, b] and suppose there exists a function F such that f is the anti-

derivative of F . That is,
dF (u)

du
= f(u) (A.6)

Then, ∫ b

a
f(u)du = F (b)− F (a) (A.7)

Proof. See for example [96, Corollary 2, page 127].

Theorem A.2.2 (differentiation under the integral sign). Let f : [a, b] × [c, d] → R be a

real-valued function that is continuous for all pairs (u, z) ∈ [a, b] × [c, d]. Further suppose

that ∂f(u, z)/∂u exists and is also continuous for all pairs (u, z) ∈ [a, b]× [c, d]. Then,

d

du

∫ d

c
f(u, z)dz =

∫ d

c

∂f(u, z)

∂u
dz (A.8)
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Proof. See for example [96, page 159].

Theorem A.2.3 (the Leibniz integration rule). Define the function F by

F (u) =

∫ g2(u)

g1(u)
f(u, z)dz, (A.9)

where g1(u) and g2(u) are continuously differentiable on [a, b] and both f(u, z) and its partial

derivative ∂f(u, z)/∂u are continuous for all pairs (u, z) ∈ [a, b]× [g1(u), g2(u)]. Then, for

u ∈ [a, b],

dF (u)

du
= f(g2(u), u)

dg2(u)

du
− f(g1(u), u)

dg1(u)

du
+

∫ g2(u)

g1(u)

∂f(u, z)

∂u
dz (A.10)

Proof. See for example [34].

A.3 Probability Background

Definition A.3.1 (counting process). A process N (·) is said to be a counting process, if

(i) N (t) ∈ Z+ for all t.

(ii) N (·) has non-decreasing sample paths.

(iii) For t1 < t2, N (t2)−N (t1) is the number of events that occur in the interval (t1, t2].

Definition A.3.2 (the homogeneous Poisson process). The counting process N (·) is said

to be a homogeneous Poisson process with rate λ > 0, if

(i) N (0) = 0 with probability one.

(ii) N (·) has stationary independent increments.

(iii) The number of events in any interval of length ∆t is a Poisson distributed random

variable with mean λ∆t.

Definition A.3.3 (standard Brownian motion). The stochastic process W (·) is said to be

a standard Brownian motion (or a Wiener process), if
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(i) W (0) = 0 with probability one.

(ii) W (·) has stationary independent increments, which are normally distributed with mean

0 and variance ∆t, the increment length.

(iii) W (·) has continuous sample paths.

Definition A.3.4 (narrow-sense linear stochastic differential equation). Let a(t) be a de-

terministic time varying vector, and let A1(t) and A2(t) be time varying deterministic

matrices. Then, the SDE

dX(t) = a(t)dt+ A1(t)X(t)dt+ A2(t)dW(t) (A.11)

is called a narrow-sense linear SDE, for which the solution may be written explicitly as [3]:

X(t) = Φ(t)

(
X(0) +

∫ t

0
Φ(u)−1

(
a(u)du+ A2(u)dW(u)

))
, (A.12)

where Φ(·) is a fundamental matrix.

Theorem A.3.1 (the strong law of large numbers (SLLN)). Let ξ1, ξ2, ... be a sequence of

i.i.d. random variables with finite mean µ and finite variance σ2. Then

1

n

n∑
i=1

ξi −→
n→∞

µ a.s. (A.13)

Proof. The proof can be found in most probability theory texts. See, for example, [94,

Chapter 7].

Theorem A.3.2 (the central limit theorem (CLT)). Let ξ1, ξ2, ... be a sequence of i.i.d.

random variables with finite mean µ and finite variance σ2 and let Z denote a standard

normal random variable. Then

1√
nσ

(
n∑
i=1

(ξi − µ)

)
D−→

n→∞
Z, (A.14)

where
D→ means “converges in distribution to”.

Proof. See, for example, [94, Chapter 9].
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Theorem A.3.3 (Donsker’s theorem). Let ξ1, ξ2, ... be a sequence of i.i.d. random variables

with finite mean µ and finite variance σ2 and let W (·) be standard Brownian motion. Then,

1√
nσ

bn·c∑
i=1

(ξi − µ)

 D−→
n→∞

W (·), (A.15)

where buc is the largest integer less than or equal to u.

Proof. See [8, Theorem 14.1]

Theorem A.3.4 (Bellman-Gronwall inequality). Let g(t) be a non-negative function, such

that, for t ∈ [0, U ],

g(t) ≤ κ+K

∫ t

0
g(u)du (A.16)

for some constants κ and K. Then, for t ∈ [0, U ],

g(t) ≤ κeKt (A.17)

Proof. See, for example, [7] and [83, Exercise 5.17].

Theorem A.3.5 (Cramér’s theorem). Let ξ1, ξ2, ... and ζ1, ζ2, ... be two sequence of random

variables and ξ be another random variable such that as n→∞, ξn
D−→ ξ and P(|ζn − a| >

ε) −→ 0 for some constant a and any ε > 0. Then,

(i) (ξn + ζn)
D−→ (ξ + a),

(ii) ξnζn
D−→ aξ, and

(iii) ξn
ζn

D−→ ξ
a , when a 6= 0.

Proof. See [28, Theorem 22.14].

Theorem A.3.6 (Skorohod representation theorem). Let ξ1(·), ξ2(·), ... be a sequence of

RCLL stochastic processes and let ξ(·) be another RCLL stochastic process such that ξn(·) D−→
ξ(·) as n→∞. Then there exist a RCLL sequence ξ̃1(·), ξ̃2(·), ... and a RCLL random process

ξ̃(·), all defined on a common probability space, such that ξj(·) D= ξ̃j(·) for all j, ξ(·) D= ξ̃(·),
and where ξ̃n(·) −→ ξ̃(·) almost surely as n→∞.
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Proof. See [111, Section 1.5].

Theorem A.3.7 (continuous mapping theorem). Let ξ1(·), ξ2(·), ... be a sequence of stochas-

tic processes and let ξ(·) be another stochastic process such that ξn(·) D−→ ξ(·) as n → ∞.

Then, the following hold.

(i) For any continuous function g(·), we have that g
(
ξn(·)

) D−→ g
(
ξ(·)
)

as n→∞.

(ii) Let gn(·) be a sequence of functions and let A be a set of points such that gn(u)→ g(u)

as n → ∞ for all points u ∈ A. If P
(
ξ(·) ∈ A

)
= 1, then gn

(
ξn(·)

) D−→ g
(
ξ(·)
)

as

n→∞.

Proof. See [111, Section 1.3].



Appendix B

Traffic Flow Theory Background

B.1 Linear Advection Equation

The linear advection problem is written as:

∂ρ̄

∂t
+ v̄

∂ρ̄

∂x
= 0

ρ̄(x, 0) = ρ0(x), (B.1)

where ρ0(x) is a prescribed initial traffic density profile (the initial data). To solve the

problem, first write the total derivative of ρ(x, t) with respect to time:

dρ̄

dt
=
∂ρ̄

∂t
+
dx(t)

dt

∂ρ̄

∂x
, (B.2)

which includes the effect of changing x on the derivative with respect to time. Now noticing

the similarity between (B.1) and (B.2), we get that:

dx(t)

dt
= v̄ (B.3)

and
dρ̄

dt
= 0, (B.4)

which is interpreted as: traffic densities do not change along lines of slope v̄. These lines

are referred to as characteristic lines and equations (B.3) and (B.4) are sometimes referred
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to as characteristic equations. Solving (B.3), we get the formula:

x(t) = v̄t+ x(0) (B.5)

Then, the formula for the solution of (B.1) is obtained by answering the following

question: for any position x and time t, what is the corresponding position at time t = 0,

which has the same traffic density? The answer is obtained from (B.5) as: x0 = x− v̄t and

the solution is given simply by the formula:

ρ̄(x, t) = ρ0(x− v̄t) (B.6)

B.2 Approximation of Discontinuous Initial Data

It will be shown here that the step function

ρ0(x) =

 ρl if x < 0

ρr if x ≥ 0
(B.7)

is “well” approximated by the continuous function

ρδ0(x) = (ρl − ρr)
e−δx

1 + e−δx
+ ρr (B.8)

Without loss of generality, ρl and ρr will be taken to be equal to 1 and 0, respectively.

(This can be achieved with a simple change of units.) Now, (B.7) and (B.8) simplify,

respectively, to

ρ0(x) =

 1 if x < 0

0 if x ≥ 0
(B.9)

and

ρδ0(x) =
e−δx

1 + e−δx
(B.10)

It can be shown that for any ε > 0, there exists a δ > 0, such that
∣∣∣∣ρ0(·)− ρδ0(·)

∣∣∣∣
1
< ε,

where || · ||1 is the L1 distance between the two functions. That is,

∣∣∣∣ρ0(·)− ρδ0(·)
∣∣∣∣

1
=

∫ ∞
−∞

∣∣ρ0(x)− ρδ0(x)
∣∣dx
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=

∫ 0

−∞

dx

1 + e−δx
+

∫ ∞
0

e−δx

1 + e−δx
dx

=
2

δ
loge(2) (B.11)

Consequently, any δ > 2
ε loge(2) delivers the desired approximation.



Appendix C

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but this

cannot always be achieved. This appendix defines jargon terms in a glossary, and contains

a table of acronyms and their meaning.

C.1 Glossary

• Characteristic lines – In the context of conservation of traffic flow, characteristic

lines are lines in the time-space diagram along which traffic densities are constant.

• Characteristic speed – The reciprocal of the slope of the characteristic line. The

reciprocal is used since the orientation of time-space diagrams in this thesis place time

on the y-axis and position on the x-axis.

• Courant, Friedrichs, and Lewy condition – A condition that related discrete

space and time interval lengths, ∆x and ∆t, to the maximum wave speed implied by

a flow-density relation, which is used to choose ∆x and ∆t so that shockwaves and

rarefaction fans do not cross downstream or upstream cell boundaries.

• Daganzo’s flux – A numerical flux function computed by constructing taking the

minimum of a sending function constructed from the first half of the fundamental
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diagram (flow-density) and a receiving function constructed from the secod half of

the fundamental diagram.

• Doubly stochastic Poisson process – A Poisson process with random rates.

• First-order traffc flow model – A non-linear conservation law combined with a

fundamental relation of traffic flow.

• Fundamental relation of traffic flow – A stationary relation between any two of

the three macroscopic variables of traffic flow. Most common relations are flow-density

relations and speed density relations.

• Ill-posed problem – A PDE problem that is not well-posed (see definition of well-

posed problems)

• Initial data – In the context of conservation laws, this refers to the traffic densities

along the road at some initial time t, which is usually taken to be time zero (t = 0),

and is denoted by the prescribed relation ρ0(x).

• Linear advection equation – A PDE of the form ut + aux = 0, where a is a

given constant. For continuous initial data, u(x, 0) ≡ u0(x), the solution is given by

u(x, t) = u0(x− at).

• Numerical flux function – A simplified way of calculating the total number of

vehicles that cross a cell boundary over a small discrete time interval.

• Observability – The ability to reconstruct the initial conditions of the system state

from the available measurements.

• Rankine-Hugoniot jump condition – A formula for calculating the speed of a

shockwave.

• Rarefaction fan – A gradual reduction of traffic densities in the time-space diagram.

• Receiving function – See Daganzo’s flux.
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• Riemann problem – A non-linear conservation equation combined with initial data

in the form of a step function.

• Sending function – See Daganzo’s flux.

• Sigma-field – An event space representing the domain of a random variable.

• Shock front – See shockwave.

• Shockwave – A traveling discontinuity in a characteristic plot. The position of a

shock front represents the position of the back of a queue in traffic.

• Spectral radius – The maximum absolute value of the eigenvalues of a matrix.

• Stationary – Does not change with time. A stationary variable does not depend

on time, a stationary relation is one that does not change with time, although its

argument might.

• Stochastic observability – A boundedness condition on estimated system covari-

ance matrices.

• Toeplitz matrix – a tridiagonal matrix with equal elements along its diagonals.

• Well-posed problem [33] – A PDE is said to be well-posed if: (i) a solution to the

problem exists, (ii) the solution is unique, and (iii) the solution depends continuously

on the data given in the problem (e.g., initial and boundary conditions).

C.2 Acronyms

Table C.1: Acronyms

Acronym Meaning

a.s. almost surely

Continued on next page
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Table C.1 – continued from previous page

Acronym Meaning

CFL Courant, Friedrichs, and Lewy

CLT central limit theorem

CTM cell transmission model

FCLT functional central limit theorem

FSLLN functional strong law of large numbers

i.i.d. independent and identically distributed

LHS left-hand side (of an equation or inequality)

LWR Lighthill, Whitham, and Richards

PDE partial differential equation

RCLL right-continuous with left hand limits

R-H the Rankine-Hugoniot jump condition

RHS right-hand side (of an equation or inequality)

SDE stochastic differential equation

SLLN strong law of large numbers
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