The Nucleon Electron Dipole Moment in Light-Front QCD

Susan Gardner

Department of Physics and Astronomy
University of Kentucky
Lexington, KY 40506

gardner@pa.uky.edu

Relating the electric dipole moments of leptons and baryons to fundamental CP-violating parameters is crucial to determining the nature of CP violation.

Estimates of hadronic electric dipole moments depend on the hadron’s non-perturbative structure.

For example, in the SM (CKM mechanism of CP violation), long-distance effects (π-loop) give for the neutron

$$d_{n}^{KM} \approx 10^{-32} \text{e-cm}$$

[Gavela et al., PLB 1982; Khriplovich & Zhitnitsky, PLB 1982]

whereas a LL computation in three-loops yields

$$d_{d}^{KM} \approx 10^{-34} \text{e-cm}.$$

[Czarnecki & Krause, PRL 1997]

Here we analyze the nucleon electric dipole moment in the light-front formalism of QCD.

Evaluating d_{n} and d_{p} is also important to interpreting the ^{2}H EDM.

[Lebedev et al., PRD 2004]
We consider the electric dipole form factor $F_3(q^2)$ in the light-front formalism of QCD, to complement earlier studies of the Dirac and Pauli form factors. [Drell, Yan, PRL 1970; West, PRL 1970; Brodsky, Drell, PRD 1980]

Recall

$$\langle P', S'_z | J^\mu(0) | P, S_z \rangle =$$

$$\bar{U}(P', \lambda') \left[F_1(q^2) \gamma^\mu + F_2(q^2) \frac{i}{2M} \sigma^{\mu\alpha} q_\alpha + F_3(q^2) \frac{-1}{2M} \sigma^{\mu\alpha} q_5 q_\alpha \right] U(P, \lambda)$$

We ignore the anapole form factor and define

$$\kappa = \frac{e}{2M} [F_2(0)] , \quad d = \frac{e}{M} [F_3(0)]$$

We will find a close connection between κ and d, as long recognized. [Bigi, Uralstev, NPB 1991]
We work in the Drell \((q^+ = 0)\) frame:

\[
q = (q^+, q^-, q_\perp) = (0, -q^2 / P^+, q_\perp)
\]

\[
P = (P^+, P^-, P_\perp) = (P^+, M^2 / P^+, 0_\perp)
\]

\[
F_1(q^2) = \left\langle P + q, \uparrow \left| \frac{J^+(0)}{2P^+} \right\rangle P, \uparrow \right\rangle = \left\langle P + q, \downarrow \left| \frac{J^+(0)}{2P^+} \right\rangle P, \downarrow \right\rangle
\]

\[
\frac{F_2(q^2)}{2M} = \frac{1}{2} \left[-\frac{1}{q^L} \left\langle P + q, \uparrow \left| \frac{J^+(0)}{2P^+} \right\rangle P, \downarrow \right\rangle + \frac{1}{q^R} \left\langle P + q, \downarrow \left| \frac{J^+(0)}{2P^+} \right\rangle P, \uparrow \right\rangle \right]
\]

\[
\frac{F_3(q^2)}{2M} = \frac{i}{2} \left[-\frac{1}{q^L} \left\langle P + q, \uparrow \left| \frac{J^+(0)}{2P^+} \right\rangle P, \downarrow \right\rangle - \frac{1}{q^R} \left\langle P + q, \downarrow \left| \frac{J^+(0)}{2P^+} \right\rangle P, \uparrow \right\rangle \right]
\]

\(q^{R/L} \equiv q^1 \pm iq^2\).

Both \(F_2(q^2)\) and \(F_3(q^2)\) are helicity-flip form factors.
Electromagnetic Form Factors on the Light Front

Interaction picture for $J^+(0)$ and assumed simple vacuum imply:

$$
\frac{F_2(q^2)}{2M} = \sum_a \int [dx][d^2k_\perp] \sum_j e_j \frac{1}{2} \times \left[-\frac{1}{q^L} \psi_{a}^{\dagger}\star(x_i, k_{\perp i}, \lambda_i) \psi_a(x_i, k_{\perp i}, \lambda_i) + \frac{1}{q^R} \psi_{a}^{\dagger}\star(x_i, k'_{\perp i}, \lambda_i) \psi_a(x_i, k_{\perp i}, \lambda_i) \right],
$$

$$
\frac{F_3(q^2)}{2M} = \sum_a \int [dx][d^2k_\perp] \sum_j e_j \frac{i}{2} \times \left[-\frac{1}{q^L} \psi_{a}^{\dagger}\star(x_i, k_{\perp i}, \lambda_i) \psi_a(x_i, k_{\perp i}, \lambda_i) - \frac{1}{q^R} \psi_{a}^{\dagger}\star(x_i, k'_{\perp i}, \lambda_i) \psi_a(x_i, k_{\perp i}, \lambda_i) \right],
$$

$k'_{\perp j} = k_{\perp j} + (1 - x_j)q_\perp$

for the struck constituent j and

$k'_{\perp i} = k_{\perp i} - x_iq_\perp$

for each spectator ($i \neq j$). $q^+ = 0 \implies$ only $n' = n$.
Particles remain on their energy shell in analogy to the on-mass-shell condition of the equal-time formalism. Consider transformations on k_\perp; thus $|k_\perp|^2$, k^+, k^- are unchanged.

Parity P_\perp:

A vector d^μ transforms as $d^R \rightarrow -d^L$, $d^L \rightarrow -d^R$, $d^\pm \rightarrow d^\pm$.

$$
P_\perp a^\lambda_{p^L,p^R} P_\perp^\dagger = \eta_a a^{-\lambda}_{-p^R,-p^L},
$$

$$
P_\perp b^\lambda_{p^L,p^R} P_\perp^\dagger = \eta_b b^{-\lambda}_{-p^R,-p^L},
$$

$$
-\frac{1}{q^L} \langle P + q, \uparrow | J^+(0) | P, \downarrow \rangle \xrightleftharpoons[\mathcal{P}]{\mathcal{P}} \frac{1}{q^R} \langle P + q, \downarrow | J^+(0) | P, \uparrow \rangle
$$

$$
\psi^\uparrow_a(k_\perp i, x_i, \lambda_i) \xrightleftharpoons[\mathcal{P}]{\mathcal{P}} \psi^\downarrow_a(k'_\perp i, x_i, -\lambda_i) \quad \text{with} \quad k'_\perp i = (-k^1_i, k^2_i)
$$

$F_2(q^2)$ is even and $F_3(q^2)$ is odd under P_\perp.
Discrete Symmetries on the Light Front

Time Reversal T_\perp:

Momentum q^μ transforms as $q^R \rightarrow -q^L$, $q^L \rightarrow -q^R$, $q^\pm \rightarrow q^\pm$.
Thus $x^\mu = (x^+, x^-, x^L, x^R) \rightarrow (-x^+, -x^-, x^R, -x^L)$.

T_\perp is antiunitarity but

$$T_\perp a_{\rho L, \rho R}^\lambda T_\perp^\dagger = \tilde{\eta}_a a_{\rho R, -\rho L}^\lambda ,$$
$$T_\perp b_{\rho L, \rho R}^\lambda T_\perp^\dagger = \tilde{\eta}_b b_{\rho R, -\rho L}^\lambda ,$$

$$\langle P + q, \uparrow | J^+(0) | P, \downarrow \rangle \xrightarrow{T_\perp} (\langle P + \tilde{q}, \uparrow | J^+(0) | P, \downarrow \rangle)^*$$
$$= -\langle P + q, \uparrow | J^+(0) | P, \downarrow \rangle ,$$
$$\langle P + q, \downarrow | J^+(0) | P, \uparrow \rangle \xrightarrow{T_\perp} (\langle P + \tilde{q}, \downarrow | J^+(0) | P, \uparrow \rangle)^*$$
$$= -\langle P + q, \downarrow | J^+(0) | P, \uparrow \rangle ,$$

with $\tilde{q} = (q^+, q^-, \tilde{q}_\perp)$ and $\tilde{q}_\perp = (-q^1, q^2)$.
Re(F_2) and Im(F_3) are even and Re(F_3) and Im(F_2) are odd under T_\perp.

S. Gardner (Univ. of Kentucky) EDMs in Light-Front QCD Cont. Adv. in QCD, May, 2006
\(\beta_a \) violates \(\mathcal{P}_\perp \) and \(\mathcal{T}_\perp \).

\[
\psi_a^{\uparrow}(x_i, k_{\perp i}, \lambda_i) = \phi_a^{\uparrow}(x_i, k_{\perp i}, \lambda_i)e^{i\beta_a/2}, \quad \psi_a^{\downarrow}(x_i, k_{\perp i}, \lambda_i) = \phi_a^{\downarrow}(x_i, k_{\perp i}, \lambda_i)e^{-i\beta_a/2}
\]

\[
\frac{F_2(q^2)}{2M} = \sum_a \cos(\beta_a)\Xi_a
\]

\[
\frac{F_3(q^2)}{2M} = \sum_a \sin(\beta_a)\Xi_a,
\]

\[
\Xi_a = \int \frac{d^2k_{\perp}d x}{16\pi^3} \sum_j \frac{1}{-q^1 + iq^2} \left[\phi_a^{\ast}(x_i, k_{\perp j}, \lambda_i) \phi_a^{\downarrow}(x_i, k_{\perp j}, \lambda_i) \right].
\]

For Fock component \(a \):

\[
[F_3(q^2)]_a = (\tan \beta_a)[F_2(q^2)]_a
\]

\[
d_a = (\tan \beta_a)2\kappa_a \quad \text{or} \quad d_a = 2\kappa_a\beta_a \quad \text{as} \quad q^2 \to 0
\]
Implications for Models of CP Violation

CP violation via a QCD θ-term.
In a $q(qq)_0$ model of the nucleon

$$d^n \approx e^{\beta_n} \kappa^n (2 \cdot 10^{-14} \text{ cm}), \quad d^p \approx e^{\beta_p} \kappa^p (2 \cdot 10^{-14} \text{ cm}),$$

Since δL_{CP} is isoscalar, $\beta^n = \beta^p$ and

$$(d^n + d^p)/(d^p - d^n) = (\kappa^n + \kappa^p)/(\kappa^p - \kappa^n) \approx -0.12/3.70 \approx -0.03.$$
Smaller than leading-order QCD sum rule estimate. \cite{Pospelov and Ritz, PRL 1999}

In a chiral Lagrangian framework \cite{Baluni, PRD 1979; Crewther et al., PLB 1979; Pich & de Rafael, NPB 1991}

\begin{align*}
\text{(a)} & \quad \pi^- \quad n \quad p \quad n \\
\text{(b)} & \quad \pi^- \quad n \quad p \quad n
\end{align*}

d^n (and d^p) determined from b) as π-loop is logarithmically enhanced. Here $d^n = -d^p$; no isoscalar component.
Can we estimate d^n?

Assume Fock state sum saturated by $uudd\bar{u}$ Fock component:

$$|\beta_a| \approx 2 \left| \frac{\bar{g}_{\pi NN}}{g_{\pi NN}} \right| \log \left(\frac{M_N}{M_\pi} \right) \approx 4 \left(\frac{0.027}{13.4} \right) |\bar{\theta}|$$

$ar{g}_{\pi NN}$ is the CP-violating $g_{\pi NN}$ coupling constant

$$d^n \sim \bar{\theta} e(3 \cdot 10^{-16}\text{cm})$$

Comparable to existing estimates.
It has long been recognized that the hadronic matrix elements in the anomalous magnetic and electric dipole moments must be related, up to CP-violating effects. [Bigi, Uralstev, 1991]

Here, however, using the light-front formalism we find a general equality, based on first principles.

- Relation holds for spin-1/2 systems, in general, not only neutron and is independent of the mechanism of CP violation.

- Both the EDM and anomalous magnetic moment should be calculated in a given model, to test for consistency.

- We argue that d^n and d^p (in the SM) should echo the isospin structure of the anomalous magnetic moments.
It has long been recognized that the hadronic matrix elements in the anomalous magnetic and electric dipole moments must be related, up to CP-violating effects. [Bigi, Uralstev, 1991]

Here, however, using the light-front formalism we find a general equality, based on first principles.

- Relation holds for spin-1/2 systems, in general, not only neutron and is independent of the mechanism of CP violation.

- Both the EDM and anomalous magnetic moment should be calculated in a given model, to test for consistency.

- We argue that d^n and d^p (in the SM) should echo the isospin structure of the anomalous magnetic moments.
Summary and Outlook

It has long been recognized that the hadronic matrix elements in the anomalous magnetic and electric dipole moments must be related, up to CP-violating effects. [Bigi, Uralstev, 1991]

Here, however, using the light-front formalism we find a general equality, based on first principles.

- Relation holds for spin-1/2 systems, in general, not only neutron and is independent of the mechanism of CP violation.

- Both the EDM and anomalous magnetic moment should be calculated in a given model, to test for consistency.

- We argue that d^n and d^p (in the SM) should echo the isospin structure of the anomalous magnetic moments.