Cosmology with pseudo Nambu-Goldstone Boson quintessence

Lorenzo Sorbo

The Dark Side of the Universe Minneapolis - 06/07/2007

Several candidates for the current phase of acceleration...

Prime candidate: a COSMOLOGICAL CONSTANT A

many virtues:

- it is the energy of the vacuum
- it has no dynamics
- it predicts w=-I
- in excellent agreement with data

Several candidates for the current phase of acceleration...

First candidate: a COSMOLOGICAL CONSTANT A

a couple of vices:

- observationally boring
- 60-120 orders of magnitude smaller than expected

Let us see if there is another possibility...

- some unknown mechanism fixes the vacuum energy to zero
- the Universe accelerates because of some fluid that has not relaxed to its vacuum yet

QUINTESSENCE

Typically modeled as a scalar field ϕ with potential $V(\phi)$

$$ρ = \dot{φ}^2/2 + V(φ)$$
 $p = \dot{φ}^2/2 - V(φ)$

acceleration if $V(\phi)$ is sufficiently flat

Pro

- Answers the question "why the Universe is accelerating even if the cosmological constant vanishes?"
- Observationally more exciting: $w \ne -1$ is a prediction that differentiates it from a cosmological constant
- Huge impact for Physics: a new form of matter!

Contra

The quintessence field is slowly evolving

Its potential must be extremely flat

Same problem as for the cosmological constant, just much worse:

- for the c.c., need to justify one small number why quantum effects do not
- for quintessence, an infinite number of parameters must be small

(e.g.: the coefficients in Taylor expansion of the potential)

Contra

quintessence is slowly evolving and does not cluster

$$\left(\begin{array}{c} \text{typically} \\ \text{m}\sim\text{H}_0\sim10^{-33}\text{eV!} \right)$$

effectively behaves as a massless particle

can mediate long range forces!

unless its coupling to matter is ~1000 times weaker than gravity

Contra

an infinity of potentials

impossible to analyze all of them

A "good" model of quintessence

Quantum corrections are the enemy:

To protect ourselves against them, we invoke symmetries

A field φ has a shift symmetry if the theory that describes it is invariant under the transformation

$$\phi \rightarrow \phi + c$$

If this symmetry is exact, the only possible potential for ϕ is $V(\phi)$ =constant

(i.e. a cosmological constant...)

now let us break the shift symmetry a little bit... the potential for ϕ changes to

$$V(\phi) = \mu^4 [\cos(\phi/f) + 1]$$

Frieman et al 1995 (<1998!)

f measures the breaking of the shift symmetry

in the limit $f \rightarrow \infty$ the symmetry is restored

The cosine potential: where does it come from?

Theory with a spontaneously broken global U(I)

$$\mathcal{L} = \partial_{\mu} H^* \, \partial^{\mu} H - \lambda \, \left(|H|^2 - v^2 \right)^2$$

- Decompose $H=(v+\delta H)~e^{i\phi/v}$ where δH is massive and φ is a massless Goldstone boson (pseudoscalar)
- The global U(I) is broken e.g. by gravitational instantons

$$\delta \mathcal{L} = e^{-S} M_P^3 (H + H^*) + \dots$$

 $v \cos(\phi/v)$

A potential is generated:

$$\delta V \sim e^{-S} M_P^3 v \cos(\phi/v)$$

Because of its radiative stability,

A pNGB is an extremely well motivated (the best?) model of quintessence from the point of view of particle physics

What about long range forces?

Usually dangerous operators of the form

$$\delta \mathcal{L} \sim eta' \, rac{\partial_{\mu} \phi}{M_P} \, ar{\psi} \gamma^{\mu} \, \gamma^5 \psi$$

With no serious constraints (because of γ^5) on β '

...but parity is broken by the vev of φ ... and shift symmetry is broken by the potential of φ !

Possible new operators of the form

$$\delta \mathcal{L} \sim e^{-S'} \frac{H + H^*}{M_P} \bar{\psi} \langle h \rangle \psi$$

can be dangerous unless S' is large enough.

...but, since S has to be very large, we DO expect also S' to be large enough!

(more about this later...)

How many parameters do we need to describe pNGB quintessence?

In principle three parameters: μ , f and φ_{θ} (initial value of φ)

Only two independent parameters left when we require that today the energy of the pNGB is ~70% of the total (as required by observations)

Requirements from strings

String Theory appears to require

Banks, Dine, Fox and Gorbatov 2003

Factors of 2, π etc not considered. They typically go in the direction of making the bound more stringent

since also

the parameter space of the model is compact:

We can hope to exclude the whole model!

...so let us see how close it is to getting excluded!

Analysis of the parameter space of the model

(K. Dutta, LS 2007)

Previous literature: Frieman and Waga (2000)

Ng and Wiltshire (2000)

Analysis using type la SNe and gravitationally lensed quasary

Both impose the constraint φ_0 =1.06 M_P

pNGB
"climbing
the hill"

More previous literature: Kawasaki, Moroi, Takahashi (2001):

Constraints from CMB only (pre-WMAP data):

(cont'd)

Parameter space allowed for $f=M_P$, constraints from SNe

One more variable (Ω_{ϕ})

(cont'd)

variable (Ω_{ϕ})

Parameter space allowed for f=M_P, adding CMB (shift parameter)

Bond, Efstathiou Tegmark 97

Wang Mukherjee 06

(cont'd)

Without assumption Ω_{ϕ} =0.7

One more

variable (Ω_{ϕ})

Parameter space in plane (Ω_{ϕ}, w_0)

Constant wo

Let us go back to the (f, μ) plane

For f≤M_P/2, the parameter space is very narrow

If we want to believe in String Theory (that requires f<M_P) the model is under some pressure by data

Future measurements will constrain even more strongly this parameter space.

HOW MUCH?

The allowed parameter space:

What if observations push f to be unnaturally close to M_P ?

Kim, Nilles and Peloso 2004

Use two pNGBs!

$$V = \Lambda_1^4 \left[1 - \cos \left(\frac{\theta}{f_1} + \frac{\rho}{g_1} \right) \right] + \Lambda_2^4 \left[1 - \cos \left(\frac{\theta}{f_2} + \frac{\rho}{g_2} \right) \right]$$

What if observations push f to be unnaturally close to M_P ?

Kaloper and LS 2005

We consider many pNGBs: quiNtessence

Start from N pNGBs:

$$\mathcal{L} = -\sqrt{-g} \sum_{i=1}^{N} \left\{ rac{1}{2} \left(\partial \phi_i
ight)^2 + \Lambda_i^4 \left[1 + \cos(\phi_i/f_i)
ight]
ight\}$$

Assume that all the φ_i , all the f_i and all the Λ_i are equal:

$$\mathcal{L} = -\sqrt{-g} \left\{ \frac{N}{2} \left(\partial \phi \right)^2 + N \Lambda^4 \left[1 + \cos(\phi/f) \right] \right\}$$

Canonically normalized field $\Phi = \sqrt{N} \varphi$

$$\mathcal{L} = -\sqrt{-g} \left\{ \frac{1}{2} \left(\partial \Phi \right)^2 + N\Lambda^4 \left[1 + \cos \left(\frac{\Phi}{\sqrt{N}f} \right) \right] \right\}$$

Can be >M_P even if f<M_P!

...so possible to get quintessence in String Theory without the fine-tuning f≅M_P

Conclusions

- Some models of quintessence more motivated than others
- The pNGB quintessence parameter space has shrunk in the last 6 years
- pNGB quintessence still a (the?) viable model of quintessence in String Theory
- A challenge to theorists...

theory:

$$V \sim e^{-S} M_P^3 v \cos(\phi/v)$$

observations:

$$v \gtrsim M_P/3$$
, $S \simeq 280$

this can be difficult

this can be very difficult

already a problem for QCD axion, where S>200 required

...still some work needed to find a good model of Quintessence in String Theory!