Optimization of Non-Gaussian Background Rejection in XENON10
1. Brief overview of XENON10 installation/detector
2. Trigger Threshold / Analysis Threshold
3. Discrimination of ER v NR: Gaussian & non-Gaussian populations
4. Optimization of discrimination
 Gaussian: corrections for detector non-uniformity (optimize sigma)
 Non-Gaussian: identification of anomalous pathologies
5. Discussion of candidate events in XENON10 58.6 Live-Day Result
XENON10 Installation at LNGS

3100 m.w.e. / 20 cm HDPE / 20 cm Pb
XENON10 Detector

15 cm drift (z) defined by SS mesh grids
20 cm Ø defined by Teflon Can
(max 13.5 kg LXe)

89 Hamamatsu R8520-AL PMTs (1” square)
 48 Top Array
 41 Bottom Array

Liquid Xe maintained at
T=180 K and p=2.2 atm.

12 kV cathode
$E_d = 0.73$ kV/cm (drift)
$E_{gas} = \sim 9$ kV/cm (S2)
Direct Detection Event Rate

$\text{m}_{\text{WIMP}} = 100 \text{ GeV}, \sigma_{W-N} = 2.0 \times 10^{-43} \text{ cm}^2$

Integrated Rates Above Threshold

(dash) Rate $\geq E_r$, (line) dN/dE_r [keVr/kg/day]

Recoil Energy, E_r [keVr]

- Green: Xe $A=131$
- Red: Ge $A=73$
- Blue: Ar $A=40$

Differential Rates
Typical Background Event at 4.5 keVee *

S1: primary scintillation

S2: ionization drifted, extracted, amplified in gas region (secondary scintillation)

Background Discrimination:

\[(S2/S1)_{ER} > (S2/S1)_{NR}\]

x,y coords.: from S2 Hit-Pattern

z coord.: from drift time \(\Delta t\) between S2 and S1

(scaled using 3.0 phe/keVee from 122 keV gamma cal.)
Trigger Schemes

S1 Trigger:
1. (1) n-fold coincidence in 80ns window
 (2) 80% single photo-electron acceptance
 (3) 80% light on bottom (trigger) PMTs

S2 Trigger:
2. (1) Σ(34 top-center PMTs)
 (2) integrate with $\tau = 1 \mu s$
 (3) threshold discriminator

(Final Trigger Solution)

2.3 keVee Background Event

5 phe (!)

3150 phe

Typical PMT spectrum in single p.e. condition:
Gain: 2.20×10^6
Sigma: 1.13×10^6

A. Manzur (Yale)

noise peak

single p.e. response
S2 Trigger Threshold: single electron (!)

2.5 Live-Days Background Data (Sept 2006)

- Non-primary / non-Trigger S2
 - $\mu=28$ phe, $\sigma=7.2$
 - S2 which caused a Trigger

Typical S2 at threshold:

- ER (2 keVee):
 - 2800 phe (~100 e-)
- NR (4.5 keVr):
 - 1100 phe (~40 e-)

Smallest NR S2 at 4.5 keVr threshold:

- 300 phe (~12 e-)

Non-primary S2 => found in event waveform, not necessarily correlated with event energy deposition

Rate ~ 0.17 Hz
S1-lookback efficiency \((n \geq 2)\) from MC:

\(~ 99\% \text{ at } 4.5 \text{ keVr}~

Effective S2 analysis threshold \(~300\) phe (12 e-) set by S1 coincidence req. \((n \geq 2)\) and NR \(-3\sigma\) contour

Analysis Threshold >> Trigger Threshold

Monte Carlo Simulation

AmBe Calibration Data
Calibration Data Band Centroid / -3σ
because ionization yield rises at lower energy

Make a simple coordinate transform (based on μ_{ER}) to remove energy-dependence

DM-Search acceptance box in discrete bins
Discrimination Parameter appears Gaussian

13-17 keVr

NR v ER Band Separation
Improves at low E...

but still need to minimize sigma
to maximize discrimination

50% acceptance for Nuclear Recoils
99.9% discrimination
> 99.5% discrimination

(discrimination calculated from Gaussian fit params.)
Corrections to data improve sigma

±20% variation in S2 across x-y
(±25% in Full Volume)

±10-15% variation in S1 across z
(±28% in Full Volume)

S2 Variation: 40 keV line

Top PMT Array Relative Sensitivity

< 2% variation in S2 with z (electron lifetime > 2ms)

Fiducial Volume

R.S. map obtained by comparing S1 signal in each nearest-neighbor pair, then diagonalizing the matrix
Before Fiducial Volume Cuts

WS 58.6 Live-Day

5649 evts 2–12 keVee
R<9.5cm, 2<z<14 cm
μNR (50% Acc.)

Most (spurious) events in box are removed by Fiducial Volume Cuts

DRU = 1 cts/keVee/kg/day

Electric Field Simulation

Mass of fiducial volume: [kg]
2.3, 3.6, 6.4, 7.5, 10.2, 13.5

Event Rate (DRU)

R. Gomez (Rice)
L. deViveiros (Brown)
After Fiducial Volume Cuts

still have 23 events (a significant fraction appear non-Gaussian).

13 events (+) removed by (primary analysis) cut targeted at anomalous S1 hit-pattern

origin of non-Gaussian tails in ER distribution:
Gamma X events
Gamma X: what is it?

Example:
if the 2nd scatter happened below the cathode grid, its S2 would be absent.

Result:
S2/S1 decreases, which can make an electron recoil look like a nuclear recoil.
How to spot a Gamma X Event: S1 Hit-Pattern

Scatter in center of FV

Scatter close to bottom of FV

Gamma X scatter

Events in Fiducial Volume => diffuse Hit Pattern

Events near bottom => more localized Hit Pattern

Events below cathode => highly localized Hit in ~ 1,2 PMTs

Primary Analysis Gamma X cut:

\[S1_{RMS} = \sqrt{\frac{1}{n} \sum (S1_i - \bar{S1})^2} \]
Events remaining in box are NOT dark matter... they are **Gamma X** events

XENON10 58.6 Live-Day Result

10 Events in box (Yellin Maximal Gap, no BG subtraction, 50% NR acceptance, 86% cut acceptance)

SI Cross-Section Exclusion Limit
136 kg-days
A More Sophisticated Gamma X Cut

phe/PMT

5

2

1

0.5

0

$S_{1_{\text{max bottom}}} / \sum S_{1_{\text{bottom}}} \times \sqrt{S_{1}}$

S_{1} Hit Pattern

$S_{1} = 18 phe$

also for 2, 3, 4 PMT (w localization req.)

Monte Carlo Simulation

Cuts developed as part of an independent (secondary) blind analysis

Peter Sorensen

DSU 2007

p 19
Identifying Anomalous Topologies

Subset of Gamma X events with signal concentrated in 2 PMTs: Resistor-Chain Events

Rare Effect: ~ 10 events in combined WS background data + Cs calibration data (175 Live-Days Equivalent)

Resistor-Chain (for drift E-Field) Pocket is filled with LXe

Peter Sorensen
DSU 2007
Edge Gamma X Events

Subset of Gamma X events with signal concentrated in **Edge** PMTs

\[\frac{\Sigma S_{\text{edge}}}{\Sigma S_{\text{all}}} \]

could indicate a 2nd scatter near edge of the detector, where there are regions of reduced/zero drift field

Monte Carlo Simulation

- 96.7%
- 96.5%
- 97.7%
- 97.9%
- 96.7%
- 98.9%

\[1^{37}\text{Ca Cal. Data} \]
\[\text{Cut Band} \]
\[y < \text{ER 99.9\%} \]
Gamma-X Monte Carlo

- We have simulated the expected Gamma-X background due to gammas generated in the detector (i.e. PMT radioactivity).

- We have found the rate for Reverse Field Region Gamma-X events to be subdominant for our ER vs NR discrimination – their rate at low energies (<25keV) is 1mdru or less.

- Comparing the spatial distribution of events
 - 10^{-3} DRU x 10keVee x 5.3kg x 59livedays = ~3 events
Cut Efficiencies for AmBe NR Calibration Data

Efficiency shown for secondary analysis (primary analysis is within 1%)
10 Events in box:
5 are consistent w Gaussian ER background
5 are NOT.

Events 1, 6, 8, 10 removed by Secondary (blind) Cuts:
- #6: Gamma X (Resistor-Chain Hit-Pattern)
- #8: Gamma X (Resistor-Chain Hit-Pattern)
- #10: Gamma X (Anomalous Edge Hit-Pattern)
- #1: Coincidence n=1 (Requirement: n=2)

Event 2 almost removed by Secondary (blind) Cuts:
Gamma X (signal concentrated in 3 PMTs)
a posteriori 1% decrease in acceptance => would have been cut

Discrimination challenges we can certainly overcome:
Maximize discrimination against Gaussian leakage by correcting for instrumental (detector) variation (x,y,z position / PMT)
Non-Gaussian Pathologies seem to arise predominantly from “dead” regions of LXe

Summary
XENON10 Collaboration

Brown University Richard Gaitskell, Simon Fiorucci, Peter Sorensen and Luiz DeViveiros
Case Western Reserve University Tom Shutt, Paul Brusov, Eric Dahl, John Kwong and Alexander Bolozydnya
Coimbra University Jose Matias Lopes, Luis Coelho, Luis Fernandes and Joaquin Santos
Columbia University Elena Aprile, Karl-Ludwig Giboni, Maria Elena Monzani, Guillaume Plante, Roberto Santorelli and Masaki Yamashita
Lawrence Livermore National Laboratory Adam Bernstein, Chris Hagmann, Norm Madden and Celeste Winant
LNGS Francesco Arneodo and Alfredo Ferella
Rice University Uwe Oberlack, Roman Gomez, Christopher Olsen and Peter Shagin
RWTH Aachen University Laura Baudis, Jesse Angle, Joerg Orboeck, Aaron Manalaysay and Stephan Schulte
Yale University Daniel McKinsey, Louis Kastens, Angel Manzur and Kaixuan Ni