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Abstract

The composition and structure of articular cartilage (AC) are inhomogeneous within

the tissue and vary throughout its depth. Its extracellular matrix can be considered

as a fiber-reinforced composite solid consisting of a dense stable network of colla-

gen fibers embedded in a proteoglycan (PG) gel. Several studies have shown that

this specialized structure plays a vital role in the mechanical function of AC. In

pathological conditions, such as osteoarthritis (OA), degeneration of cartilage due

to changes in mechanical properties is observed. Osteoarthritis is the most common

cause of disability in the elderly and affects more than 20 million people in the USA

alone. The focus of this work is to understand the mechanical response of AC using

finite element models using ABAQUS, a commercial FEA package that is widely

used in the field of cartilage mechanics. This is done at two different scales - the

macroscale and the mesoscale.

At the macroscale, AC is considered as a homogeneous isotropic poroviscoelastic

(PVE) material saturated by the interstitial fluid (water). Indentation tests are

performed on cartilage from the mouse tibia plateau using two different sized flat-

ended conical indenters with flat-end diameters of 15 µm and 170 µm. A finite

element (FE) model of the test is developed and the PVE parameters identified by

using inverse methods to minimize the errors between FE simulated and test data.

Data from the smaller indenter is first used to fit the viscoelastic (VE) parameters,

on the basis that for this tip size the gel diffusion time (approximate time constant

of the poroelastic (PE) response) is of the order of 0.1 s, so that the PE response is

negligible. These parameters are then used to fit the data from the larger indenter

for the PE parameters, using the VE parameters extracted from the data from the

smaller indenter.
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Abstract v

At the mesoscale the inhomogeneities of AC need to be addressed to understand

the microstructural behavior of AC. The problem of interest in this part of the

work is to understand the mechanical role of interfibrillar cross-links (IFLs), if they

exist, suspected in AC and most collagenous tissues. A 3D FE model of AC meso-

structure motivated by the parallel fibril geometry of the mid and deep zones of

the patella is developed consisting of a PE matrix, unidirectional, bilinear fibrils

(different stiffness in tension and compression), and the IFLs. Parametric studies

are then performed for the model in simulated compression tests along the fibril

direction and the effect of the IFLs and matrix are predicted and compared. Results

suggest presence of IFLs would increase the effective modulus in compression. This

is due to maintaining organization of the fibrils into a network due to IFLs imparting

stability to the network by preventing early bending of fibrils and effectively reducing

the Poisson effect. Finally, with a set of literature based parameters, compression

tests for AC using the mesomodel show that removing the cross-links results in a

significant (43%) drop in the effective compressive modulus, suggesting resolution

necessary to experimentally detect the IFLs. At the mesoscale, the IFLs would play

the mechanical role of stabilizing the fibril network and enhancing its stiffness.
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Chapter 1

Overview

1.1 Motivation

Cartilage is a soft, dense connective tissue commonly found at the ends of long bones

in humans and other animals. Cartilage is composed of specialized cells called chon-

drocytes that are trapped in an extracellular matrix composed mainly of collagen

fibers and a ground substance rich in proteoglycan. Cartilage covering the ends of

articulating bones in diarthrodial joints, e.g., knee joint, is called articular cartilage

(AC), and it is the focus of this thesis. Articular cartilage has a unique structure

and composition [by wet weight: 60−80% water, 10−20% collagen (type II), 4−7%

aggrecan, less than 5% other macromolecules] [1] that provide the tissue with re-

markable mechanical properties that enable it to perform important biomechanical

functions such as mechanical shock absorption, minimizing the mechanical stresses

in bone during joint loading and reducing friction between the contacting joint sur-

faces via a lubrication mechanism [2] under a wide range of loading conditions [1].

1



1.2. Common Methods for characterizing AC 2

In its healthy state, AC is able to withstand large loads, especially in freely mov-

able joints [3–5], throughout normal human lifetime [1]. However, during patholog-

ical conditions, such as osteoarthritis (OA), cartilage degeneration and disruption

coupled with the changes in the properties of the subchondral bone leads to im-

paired joint motion and pain [6], often requiring joint replacement. Osteoarthritis,

a degenerative joint disease, is the most common form of arthritis that afflicts about

12% of the USA. A study of the mechanical properties of articular cartilage and their

variation due to tissue degeneration can provide vital insights in the development

of OA. This is the major motivation for studying AC and as a result, mechanical

properties of AC have been measured frequently to document OA progression in

animal models [7].

1.2 Common Methods for characterizing AC

Various techniques are used to measure and predict the mechanical behavior of AC.

The mechanical properties have been measured by mechanical tests such as confined

compression, e.g., [8–10], unconfined compression, e.g., [11–13], tension, e.g., [14–16],

indentation, e.g., [17–19], etc. that are commonly used for material characterization.

Indentation has been a preferred test method for measurement of in situ biomechani-

cal properties [19–23], primarily because it is non-destructive, offers high sensitivity

and spatial resolution. The small tissue volume needed for indentation makes it

advantageous over other methods in in situ and in vivo measurements.

Many studies have also proposed analytical solutions for stresses and strains in

AC and for the contact mechanics in joints to predict its behavior under applied

load. Many of these solutions are based on the biphasic theory for AC developed

by Mow et al. [24]. Chapter 3 is a review of this theory and other biphasic models

of AC based on it.



1.3. Present work and organization 3

Finite element (FE) models are commonly used for stress analysis of AC and

to aid in inferring mechanical properties from experimental testing, e.g., [25–33]

among many others. Finite element models are continuum based models, usually

based on the biphasic theory (as reviewed in Chapter 3). Finite element models

can be developed and analyzed in house or by using commercial packages. Several

commercial FE codes are available, but the use of ABAQUS (Dassault Systèmes,

Providence, RI, USA) is widespread in FE studies of AC. Wu et al. [34] first evaluated

the commercial FE software ABAQUS for analyzing biphasic soft tissues. They

compared solutions obtained using ABAQUS with those obtained using other finite

element models and analytical solutions for three numerical tests: an unconfined

indentation test, a test with the contact of a spherical cartilage surface with a rigid

plate, and an axi-symmetric joint contact test. They concluded that the biphasic

cartilage model can be implemented into ABAQUS to analyze practical joint contact

problems with biphasic articular cartilage layers. Consequently, ABAQUS is widely

used in FE-based studies of AC, and is the FE code of choice for the work presented

in this thesis.

1.3 Present work and organization

The objective of this thesis is to understand the mechanical response of AC using FE

modeling in ABAQUS at two different scales - the macroscale and the mesoscale.

The material is organized into three parts. In Part I, we take a closer look at

the unique structure and composition of AC and its observed mechanical behavior

in common test geometries. This is done with an aim of understanding cartilage

mechanics which can enable selection of appropriate models for FEA.

Part II deals with the macroscopic study of AC. At the macroscale, AC can

be treated as a biphasic material saturated with interstitial fluid (water). We first
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review commonly used theoretical models used for continuum modeling of AC. Next,

a poroviscoelastic continuum FE model is developed using ABAQUS and used in an

inverse FE method coupled with data from nanoindentation testing of mouse AC to

extract important mechanical properties of AC. This work presents a novel method

to separate the fluid flow-independent and flow-dependent processes in AC in the

mouse in indentation testing and to extract the poroviscoelastic parameters in this

setting.

In Part III, the mesoscale of AC is studied where the inhomogeneities of AC need

to be addressed and modeling of micro-constituents becomes important. The inter-

est in this part of the work is to understand the potential mechanical role of the

interfibrillar cross-links thought to be in AC and most collagenous tissues. At this

scale, AC can be thought of as a composite material consisting of collagen fibrils free

to move about in a thick, viscous, gel-like matrix with the addition of specific inter-

fibrillar cross-links. A 3D mesoscale FE model is developed and studied. Two types

of fibril interactions are of interest – those due to the extrafibrillar matrix and those

due to specific interfibrillar cross-links. The region of interest is an approximate

cube with sides 1 µm. The meso-structure model consists of a poroelastic matrix,

unidirectional fibrils and the interfibrillar cross-links. Chapters 6 and 7 discuss the

mesomodel in detail.

The material is organized as follows.

• Part I - Introduction to Articular Cartilage

– Chapter 2: In this chapter, the structure and composition of AC and its

mechanical behavior is described in brief.

• Part II - Macroscopic Modeling
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– Chapter 3: Chapter 3 and 4 pertain to the macroscopic scale. Chapter 3

is a review of some of the theoretical models developed for the mechanical

response of AC at the continuum level.

– Chapter 4: In this chapter, the FE model developed for the macroscopic

scale using ABAQUS is described. The indentation experiments carried

out on mouse cartilage and the numerical implementation of inverse FE

is also discussed.

• Part III - Mesoscale Modeling

– Chapter 5: Chapter 5, 6 and 7 denote the part of this work that per-

tains to mesoscale AC mechanics. Chapter 5 is a review of some of the

important fibril reinforced FE models of AC in literature.

– Chapter 6: In this chapter, the development of the fibril reinforced

mesoscale FE model with interfibrillar cross-links is discussed in detail.

– Chapter 7: This chapter is an extensive parametric study of the meso-

model. Several important parameters in the model are studied and the

mechanical effect of the interfibrillar cross-links is discussed.

• Part IV: This part is a brief summary of the primary contributions and con-

cludes the thesis.



Part I

Introduction to Articular

Cartilage

6



Chapter 2

Articular Cartilage - Structure,

Function and Composition

This chapter provides a brief introduction to the structure and composition of artic-

ular cartilage (AC). We shall also discuss some of the observed mechanical behavior

of AC under common loading conditions.

Cartilage is a soft, dense connective tissue. Like most connective tissue, carti-

lage is composed of cells and an extracellular matrix composed mainly of fibers and

extrafibrillar matrix. The cells that form cartilage are specialized cells called chon-

drocytes. The fibers are mostly collagen and are embedded throughout the tissue.

The ‘solid’ phase of cartilage, including fibers, is typically called the extracellular

matrix (ECM). The fibers of cartilage form an extensive network within the tissue.

Often, the fibrillar network is treated separately and the remaining matrix referred

to as the extrafibrillar matrix (EFM). There are no nerves or blood vessels in car-

tilage, thus when damaged, it does not heal readily. Nutrients are diffused through

the ECM.

7
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There are three major types of cartilage found in the body: hyaline cartilage,

elastic cartilage and fibrocartilage. These different types of cartilages are distin-

guished by their structure, elasticity and strength. The biochemical composition

and molecular structure of the ECM imparts distinct biomechanical properties to

these different types of cartilage depending upon their location in the body and

properties required for their function. Hyaline cartilage is smooth, semi-transparent

and appears bluish-white in color. It consists of chondrocytes situated far apart in

fluid-filled spaces called lacunae and there is an extensive amount of ECM between

the cells with a number of collagenous fibers. The most common type of hyaline

cartilage is articular cartilage which covers the articulating joint surfaces of long

bones and sesamoid bones within synovial joints. Hyaline cartilage is also found in

the nasal septum, the sternal end of the rib, and the trachea. Elastic cartilage is

similar to hyaline cartilage, but in addition to the collagenous fibers, the ECM is

distinguished by the presence of branched elastic fibers, which make this cartilage

more flexible than hyaline cartilage. Elastic cartilage is seen in the external ear, in

parts of the larynx and the epiglottis. Fibrocartilage has a rough and fibrous ap-

pearance owing to thick layers of larger collagen fibers in the ECM. Fibrocartilage

is commonly seen between the inter-vertebral discs and the meniscus of the knee.

2.1 Articular Cartilage (AC)

AC is a resilient, load-bearing tissue that forms the articulating surfaces of diarthro-

dial joints, such as the knee joint and the hip joint. It is the most common form of

hyaline cartilage. It is vital for maintaining a normal joint motion due to its remark-

able mechanical properties. It provides the articulating surfaces with low friction

and wear characteristics required for repetitive gliding motion. AC in freely movable

joints can withstand very large loads [3–5]. It also absorbs mechanical shocks to the
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joint and helps spread the applied load evenly onto the subchondral bone.

In young individuals, AC in its healthy state appears smooth, glossy and intact.

In older individuals and in cases where there is tissue damage due to trauma or

pre-clinical diseases states, AC loses this look and appears dull and fibrillated. The

major motivation for studying AC and measuring its mechanical properties is injury

and disease, particularly the degenerative joint disease osteoarthritis (OA). OA is

the most common form of arthritis and the most common cause of disability in the

elderly. An estimated 12.1 % of the U.S. population (about 21 million) is affected

by OA; 85% of all people will have some degree of OA in one or more joints by the

age of 55–65. It is characterized by pain and disability and severe OA often leads to

replacement of the joint. In OA, a progressive degeneration of AC is observed along

with other indications such as lacerations, fibrillation, formation of deep fissures

etc. In advanced OA, AC is often entirely lost at the weight bearing joints [35–37].

Studies of mechanical properties of AC and its variations can provide vital insights

and aid in understanding of the development of OA. In the following sections, the

microstructure of AC along with its biochemical composition is described, and these

aspects of the tissue are related to its mechanical properties.

2.2 AC Structure and Composition

AC can be considered as a multiphasic material with two major phases: a solid phase

saturated with a fluid phase. The solid phase consists of chondrocytes, different

types of collagen molecules, the negatively charged proteoglycans (PGs) and other

proteins in smaller quantities, such as hyaluronan, link protein, biglycan, decorin,

fibromodulin, perlican, fibronectin, etc., these components form the ECM [2]. The

fluid phase is composed of water and electrolytes. A schematic showing several

different components and their hypothesized interactions in AC is shown in Fig. 2.1.
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Composition of AC is primarily determined by the ECM because the chondrocytes

occupy only a small proportion of the total volume of the tissue. The material

properties of AC are dependent on the properties of the ECM. Table 2.1 [2] lists

the currently understood components of AC. Although many molecules are not

major components in terms of absolute mass of the ECM, they may be present in

similar molar amounts as collagen and aggrecan and may serve important biological

regulating and/or structural functions.

Figure 2.1: A schematic showing several components in articular cartilage from
Dudhia (2005) [38] (with permission).
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Table 2.1: A Summary of the Components of Articular Cartilage

Component Wet Weight

Quantitatively Major Components
Water 60–85%
Collagen type II 15–22%
Aggrecan 4–7%

Quantitatively Minor Components (less than 5% )
Link protein
Hyaluronan
Collagen type I
Collagen type V
Collagen type VI
Collagen type IX
Collagen type XI
Decorin
Biglycan
Fibromodulin
Perlican
Thrombospondin
COMP/TSPS
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2.2.1 Zonal variations in AC

The cell shape and volume, collagen fibril diameter and orientation, PG concentra-

tion, and water content of articular cartilage vary throughout its depth, from the

articular surface to the subchondral bone. AC can be divided into the following four

different layers or zones (as shown in Fig. 2.2):

Figure 2.2: Schematic structure of articular cartilage showing zonal variations along
the depth, from the articular surface to the subchondral bone (from Basic Orthopedic
Biomechanics [2]).

Superficial zone

This is the uppermost and the thinnest (≈ 10− 20% ) zone which forms the gliding

surface of the joint [35]. In this zone collagen and water content are highest [39].

PG content is at its lowest level [35] and PGs and collagen appear to be strongly

interconnected in this zone, which may assist in resisting shear stresses produced

by gliding motion [6]. The collagen fibers are thin and densely packed with the

long axis parallel to the articular surface. The chondrocytes appear flattened and

are relatively inactive [40]. The aggrecan content is lower in the superficial zone

compared to the deeper zones with smaller cell volume and higher cell density [40].



2.2. AC Structure and Composition 13

Transitional zone

The transitional zone is about 40–60% of the total AC volume. The chondrocytes

have a more rounded appearance and are larger and more active than in the su-

perficial zone [35]. The collagen fibres are larger in diameter and frequently have

a more random orientation, although this varies with specific joint. The aggrecan

aggregates and PG content are higher in this zone than the superficial zone.

Deep zone

The deep zone has collagen fibres with largest diameters that are organized perpen-

dicular to the joint surface. The chondrocytes are spherical and often arranged in a

columnar fashion [35] and their synthetic activity is highest [40, 41]. This zone has

the highest concentration of PGs and lowest water content.

Zone of calcified cartilage

This zone separates the cartilage from the subchondral bone and acts as a transition

layer between bone and cartilage. Histological staining with hematoxylin and eosin

shows a wavy bluish line, called the tide mark, which separates the deep zone from

the calcified zone. It is characterized by small cells distributed in a cartilagenous

matrix encrusted with crystals of calcium salts and has a low PG content. The

collagen fibers from the deep zone, oriented perpendicular to the subchondral bone,

cross the tide mark and insert into the calcified zone. This provides a strong an-

choring system for the tissue on the subchondral bone [42,43]. Although this zone is

calcified to the same extent as the bone, it is less stiff than bone, but, about 10–100

times stiffer than cartilage in compression [44]. Both the tide mark and the junction

between the calcified cartilage and subchondral bone are wavy and provide great

resistance to shear stresses.
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2.2.2 Chondrocytes

Chondrocytes are metabolically active cells responsible for the synthesis and main-

tenance of articular cartilage. These cells increase the volume of the ECM during

skeletal growth and in the mature tissue they are responsible for the maintenance

of the ECM [35]. They receive nutrition from the synovial fluid by diffusion and/or

convection through the matrix [45, 46]. Chondrocytes respond to a number of en-

vironmental stimuli which can influence their synthetic response. These stimuli

include physical factors such as stresses, strains, hydrostatic pressure changes, elec-

tric current and potentials, etc., and chemical factors such as growth factors, soluble

mediators, interleukins, matrix molecules etc. [35].

2.2.3 Water

Water is the most abundant component of normal articular cartilage, making up

from 60–85% of the wet weight of the tissue. A small percentage of this water is

contained in the intracellular space, about 30% resides within the intrafibrillar space

of collagen, and the remainder is contained in the molecular pore space of the ECM.

For normal cartilage, it is believed that the proportion of water in the intrafibrillar

space appears not to vary with age [47]. Inorganic salts, such as sodium, calcium,

chloride and potassium are dissolved in the tissue water. Water content varies

throughout cartilage. The amount of water present depends upon several factors [2]:

(a) the concentration of the PGs, i.e., fixed charge density (FCD) and the resultant

swelling pressure exerted by the negative charge groups on the PGs and the ions

dissolved in the interstitial fluid - the Donnan osmotic pressure; (b) the organization

of the collagen network; and (c) the strength and stiffness of this network, which

surrounds the PG molecules and resists the swelling pressures. During early OA,

water content increases significantly which greatly affects the mechanical properties

of the tissue.
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Most of the water can be extruded from the tissue by applying a pressure gra-

dient across the tissue, or by compressing the solid matrix. There is a very high

frictional resistance against this flow through the molecular size pores of the ECM,

and thus the permeability of the tissue is low [24]. This frictional resistance and

the pressurization of the water within the ECM are the basic mechanisms by which

AC derives its ability to support very high joint loads. The frictional drag force is

also an important component of the viscoelastic behaviour of AC during mechanical

loading.

2.2.4 PGs

PGs are large, complex biomolecules each composed of a central core protein and one

or more negatively charged glycosaminoglycan (GAG) chains covalently attached

[39]. PGs form about 30–35% of the dry weight of the tissue [35]. PGs are a

very diverse class of molecules. In the case of cartilage, a major component of the

ECM is the large aggregating PG, aggrecan, which imparts mechanical properties to

cartilage to withstand compressive stresses due to joint loading. Loss of aggrecan,

or its degradation, results in a loss of compressive stiffness of cartilage.

There are many different types of GAGs as well, however, three major types have

been found in cartilage PGs: (1) chondroitin 4/6 sulfate; (2) keratan sulfate; and

(3) dermatan sulfate. The chondroitin sulfates are the most prevalent GAGs in AC,

accounting for 55% –90% of the total population, depending upon age or presence

of OA [35]. All the GAG chains found in AC have repeating carboxyl (COOH)

and/or sulfate (SO4) groups that ionize in solution (COO− and SO3
−)and require

positive counterions such as Ca2+ and Na+ to maintain overall electronuetrality.

Because the PGs are closely packed together in the tissue, this gives rise to a high

negative charge density, quantified as the FCD [39]. Due to the FCD, the cation
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concentration inside the tissue is higher than in the surrounding synovial fluid, which

causes a pressure differential that results in swelling of the tissue.

2.2.5 Collagens

Collagens are a family of the most abundant proteins in humans and are the ma-

jor structural molecules of the ECM. They play a critical role in maintaining the

structural integrity of various tissues. There are at least 20 different collagen types

identified to date with at least 38 genetically different polypeptide chains [2]. In

AC, collagens form more than 50% of the dry weight of the tissue [6, 35]. Type

II collagen, which represents 90–95% of the total, is the major AC collagen with

smaller amounts of types V, VI, IX, X, and XI collagens [48,49]. Collagen molecules

are rod-shaped with a high degree of structural organization. Some types of colla-

gen (e.g., type I, II) assemble to form small fibrils and larger fibers with dimensions

that vary through the depth of the cartilage layer [50]. The exquisite architectural

arrangement of the collagen structure appears to have been specifically designed

to resist tension, but does not offer significant resistance to pressures [2, 51], thus,

providing resistance against swelling and tensile strains.

Molecular Cross-Links

There are a large number of minor molecules in the ECM that comprise less than

5% of the dry weight. These include decorin, cartilage-olegometric-matrix-protein

(COMP), fibromodulin, biglycan, matrilins 1 and 3, and others (Table 2.1). Some

of these are known to be regulatory molecules, but all have been shown to bind

to collagen or other matrix molecules non-covalently. For all of them, it has been

speculated that they form cross-links between collagen fibrils and effectively reinforce

the collagen network. However, this speculation has not been verified and remains

one of the major unknowns in cartilage science. It has been hypothesized that
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such cross-links or ‘glue’ molecules exist and that damage to this ‘glue’ is one of the

mechanisms in the OA disease process. Several studies have proposed such molecules

and indentified specific binding mechanisms, e.g., type IX collagen by Eyre et al.

[52, 53], matrilin-3 by Budde et al. [54], etc. Eyre [55] suggested from biochemical

evidence that type IX collagen may form a covalent bridge between fibrils, increasing

network mechanical integrity and providing a restraint for entrapped PG osmotic

swelling pressure. Recently, Parsons et al. [56] were able to confirm an interaction

between type IX collagen and fibronectin that formed an important molecular bridge

in AC that could contribute to the matrix integrity of the tissue.

2.3 Mechanical Behavior

The structure and composition of AC varies through the depth of the tissue. As a

result, the mechanical properties of AC are anisotropic and non-homogeneous. The

collagen network plays a vital role in the mechanical inhomogeneity and anisotropy

of AC. The fibrils resist load only in tension and their orientation changes over

the height of the tissue. In the superficial zone, they are arranged parallel to the

articular surface, giving this layer a high tensile stiffness in the direction parallel to

the surface and very low stiffness perpendicular to the surface. The surface fibrils,

therefore contribute to the mechanical resistance against surface shear forces. In

contrast, the fibrils in the deep zone are oriented perpendicular to the articular

surface, thus, providing great resistance against swelling.

From a material point of view, the ECM of cartilage can be seen as a fiber-

reinforced composite solid consisting of a dense, stable network of collagen fibres

embedded in a viscoelastic gel composed of PG and the minor molecules. Thus,

from a mechanical point of view, the most relevant components of AC are the highly

organized network of collagen fibers with the intrafibrillar matrix. In this section,
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the relation between the composition, structure and the mechanical properties of

the tissue are discussed.

2.3.1 Tensile behavior

When cartilage is tested in tension, the collagen fibres and the linked PG molecules

get aligned and stretched along the axis of loading. Therefore, the tensile modulus

of AC depends on the collagen fibril density, orientation and the amount of cross-

linking between the molecules [57]. A non-linear toe region is seen in the stress-strain

curve for small deformations, when the tensile stress in the specimen is relatively

small, as the collagen fibrils realign rather than stretch. For larger deformations,

when the realignment is mostly complete and collagen fibrils are stretched, a larger

tensile force is generated due to the increased stiffness contributed by the collagen

fibrils. Thus, the tensile stiffness of AC is highly strain-dependent. The PGs also

affect the tensile stiffness of AC by generating swelling pressures and prestressing

AC.

2.3.2 Compression behavior

When AC is loaded in compression, there is fluid movement within the tissue which

results in volumetric changes. Because of these volumetric changes, the FCD in the

tissue increases which in turn increases the osmotic pressure. Hence, as the volume

of the tissue decreases in compression, the effective stiffness increases. The PGs are

mainly responsible for the mechanical behavior shown by AC in compression [58].

The collagen fibril network also contributes to the compressive stiffness of AC by

keeping the swelling pressures high in the tissue by preventing swelling.
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2.3.3 Time dependent behavior

AC shows highly time dependent behavior. Two distinct mechanisms are respon-

sible for this behavior: (1) the flow-dependent mechanism (poroelasticity), i.e., the

frictional drag force as the interstitial fluid flows through the porous solid matrix;

and (2) the flow-independent mechanism (viscoelasticity), i.e., the intrinsic time-

dependent deformability of the solid matrix. Studies show that both the collagen

fibers as well as the PG gel in which they are embedded have flow-independent

viscoelasticity [58–60].

Under load, fluid is exuded from the tissue and the volume of the tissue decreases.

The movement of the interstitial fluid is governed by the hydraulic permeability of

the solid matrix. It is very difficult for the interstitial fluid to escape from the tissue

due to the relatively low permeability of the solid matrix [2]. As the fluid flow slows

down and eventually stops, i.e., at equilibrium, the entire load is increasingly carried

by the solid matrix and the internal swelling pressures generated by the FCD of the

PGs. As the load is removed, AC recovers to its initial configuration, due to the

elasticity of the solid matrix and also due to the increased osmotic pressure within

the tissue due to the removal of the load.

2.3.4 Shear behavior

Under pure shear, and for small strains, the tissue samples do not undergo any

volumetric changes (ideally). As a result, no significant pressure gradient or fluid

flow should occur through the matrix [58,61,62]. The collagen fibrils mainly account

for the shear stiffness shown by the ECM [58]. Through the swelling mechanism,

the PGs indirectly contribute to the overall stiffness of the ECM in shear.
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It is evident that AC has a complex structure with several components that makes

it inhomogeneous and induces depth-dependent and strain-dependent mechanical

properties within the tissue [9, 15, 31, 63, 64]. Many of these mechanical properties

change markedly at the onset of OA due to disruption of the collagen network,

depletion of PGs and increased water content. These changes in structure and

composition lead to softening and progressive loss of AC.

The traditional method for identifying which molecules in the matrix determine

the cartilage mechanical properties, the structural molecules, has been to test the

tissue mechanical property, digest the tissue with an enzyme specific to the molecule

in question, and then retest the tissue. A change in properties would indicate

that the molecule in question is a structural molecule. Thus, use of collagenases

has demonstrated the structural role of collagen. However, there are few enzymes

specific to the matrix molecules of interest. Thus, the mechanical role of the minor

molecules is unknown.
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Macroscale Modeling of AC
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Chapter 3

Theoretical Models for

Articular Cartilage behavior

In order to extract mechanical properties of articular cartilage (AC) from experi-

mental indentation data, one needs to adopt a material model and test geometry

for AC. There is a long history of cartilage testing and development of consistent

continuum models for data reduction. The biphasic models of Mow and coworkers

have long been prominent in the field, e.g., [8, 20, 24, 65, 66] . Various other re-

searchers have built upon these models and have been successful in fitting cartilage

experimental data [11, 30, 32, 67–74]. This chapter provides a brief overview of the

linear biphasic model for (AC) behavior and extensions of this model which include

other important features observed in cartilage structure and behavior. A review of

computational models for AC by Wilson et al. [32] was used as a guidance for the

material presented here.
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3.1 The Biphasic Model

The biphasic theory for AC, also referred to as the KLM theory, was first proposed

by Kuei, Lai, Mow and Armstrong [24]. This theory assumes the tissue to be a

homogeneous binary mixture of an incompressible, isotropic, linearly elastic solid

and an incompressible, inviscid fluid. These two phases are non-dissipative and

the only dissipation comes from the frictional drag of relative motion between the

phases. The total stress in the tissue is given by the sum of the solid and fluid

stress [8],

σt = σs + σf (3.1)

where σs and σf are the stress in the solid matrix and the interstitial fluid stress

respectively. In most biphasic models, the solid matrix is assumed to be linear

elastic and isotropic. For linear isotropic elasticity, the stress-strain relation for the

solid matrix is

σs = −αpI + λseI + 2µsε (3.2)

where α is the ratio of the solid volume to the fluid volume in the matrix, λs and

µs are the Lamé constants of the elastic solid matrix, e and ε are the dilatation and

the strain tensor of the solid matrix, respectively, and I is the identity tensor. The

interstitial fluid stress is

σf = −pI (3.3)

Note that if the pressure in the interstitial fluid is zero, for example at equilibrium,

then only the linear elastic behavior of the solid matrix is observed.

From the assumption of incompressibility for both the solid phase and the fluid

phase, it follows that the solid matrix can only be squeezed into a given spatial con-

trol volume if an equal and opposite amount of fluid is squeezed out. This constraint

leads to a continuum mixture continuity equation for homogeneous materials given
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by

∇ · ~vf + α∇ · ~vs = 0 (3.4)

where ~vs and ~vf are the solid and fluid velocities, respectively, and ∇· is the diver-

gence operator. According to Darcy’s law the fluid flux is related to the hydrostatic

fluid pressure, as

1

α
(~vs − ~vf ) = −k∇p (3.5)

The left hand side term represents the fluid flow through the surface of the mixture,

k is the hydraulic permeability and ∇ is the gradient operator. Thus, the continuity

equation becomes

∇ · ~vs +∇ · (k∇p) = 0 (3.6)

This isotropic biphasic model has been used in various studies to analyze confined

compression [11, 12, 66], unconfined compression [8, 11, 12], indentation [20, 65], etc.

for normal as well as OA cartilage. The material properties of AC are depth-

dependent. This depth dependency is included in several biphasic models by using

a depth-dependent aggregate modulus or permeability.

The linear biphasic model does include the flow-dependent viscoelasticity of

AC (permeability), however important features like strain-dependent permeability,

anisotropy due to the collagen network, viscoelasticity of the solid matrix (flow-

independent viscoelasticity) and swelling behavior are not included. In the following

sections extensions of the linear biphasic model that include one or more of these

mechanisms are discussed.

3.2 Strain-dependent permeability

The permeability of AC is dependent on the FCD of the PGs and the pore sizes in

the extracellular matrix. When the tissue is deformed, both the FCD and the pore
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sizes change, making the permeability of AC strain-dependent. Lai et al. [63] have

shown that the strain-dependent permeability can be described by the relation

k = k0exp(Mes) (3.7)

where k0 and M are material constants and es is the dilatation of the solid matrix.

This can be written in terms of the current void ratio, e (the ratio of the fluid and

solid fractions), as

k = k0

(
1 + e

1 + e0

)M
(3.8)

where e0 is the initial void ratio.

3.3 Swelling

Swelling of cartilage is caused due to two different mechanisms: (1) osmotic swelling,

which is due to an excess in ion particles inside the tissue, and (2) chemical expan-

sion, due to repulsion of the closely spaced negatively charged groups of the pro-

teoglycans. A brief description of how these mechanisms are included in different

numerical models follows next.

3.3.1 Osmotic swelling

Mechano-electrochemical model

Several mechano-electrochemical models have been developed which include the in-

fluence of ion concentration and ion fluxes, and enable a representation of articular

cartilage swelling behavior. The triphasic model by Lai et al. [75] and quadriphasic

model by Huyghe and Janssen [76] included a third monovalent ionic phase for small

deformations and generalized for finite deformations, respectively. The total stress

is the same as for the biphasic model, but in this case the hydrostatic pressure is
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given by

p = µf + ∆π (3.9)

where µf is the electrochemical potential and ∆π the osmotic pressure gradient

using the concentrations of mobile ions.

Biphasic swelling model

Wilson et al. [77] developed a biphasic swelling model which is a simplification of

the full mechano-electrochemical model [75,76] assuming that the ion concentration

is always in equilibrium. Only the ion concentrations at equilibrium need to be

determined as the osmotic components are assumed to equilibrate instantaneously

with the external bath. The fixed charge density (FCD) is expressed as a function

of the tissue deformation, the initial FCD and the initial fluid fraction.

3.3.2 Chemical expansion

The additional stress due chemical expansion, Tc, has been proposed of different

forms [75,78] by different groups. The simplest form, as proposed by Eisenberg and

Grodzinsky [78] is given by

Tc = β0exp

(
c

cβ

)
(3.10)

where β0 and cβ are material constants, and c is the effective NaCl concentration.

3.4 Anisotropy

AC has a complex collagen network and several other components, making it highly

anisotropic. It also has different properties in tension and compression. Several

models that include the anisotropy of AC in different ways can be seen in the

literature. In this section, the important and widely used anisotropic models of AC
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are reviewed.

3.4.1 Models with Transverse Isotropy

A transversely isotropic biphasic model (TIBPE) for AC assumes that all fibrils

run in the same direction. Hence, AC can be seen as an orthotropic material with

one plane of isotropy. The directions in the plane of the fibrils are the longitudinal

direction, parallel to the fibrils, and the transverse direction, perpendicular to the

fibrils. The stresses in the solid are given by [32]:
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where EL and ET are the longitudinal and the transverse Young’s moduli respec-

tively, GL is the longitudinal shear modulus, and νLT , νTT and νTL are the Poisson’s

ratios that give the strain in either the longitudinal or the transverse directions for

a stretch in the other direction. The transverse shear modulus GT is given by

GT =
ET

2(1 + νTT )
(3.12)

Due to the symmetry, note that

νLT
EL

=
νTL
ET

(3.13)
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Thus, there are five independent material parameters, viz., EL, ET , νLT , νTT and

GL, in addition to the permeability, k.

Such transversely isotropic models were used in various studies. Cohen et al. [68]

advanced the biphasic model for soft tissues by using a linear transversely isotropic

solid phase to explain observed stress relaxation in unconfined compression. Bursać

et al. [11] investigated the ability of the transversely isotropic model to describe

confined and unconfined (compression) stress relaxation behavior of calf cartilage.

3.4.2 Conewise linear elasticity model

Material properties of AC measured from various joints of different species have

indicated that the stiffness of cartilage in compression may be one to two orders of

magnitude smaller than in tension. This is referred to as the “tension-compression

nonlinearity” in cartilage literature. Soltz et al. [72] have proposed a biphasic model

employing the continuum-based Conewise Linear Elasticity (CLE) model of Curnier

et al. [79] with cubic symmetry to describe the solid phase of the biphasic mixture

that can account for this observed tension-compression nonlinearity, while still being

linear. In this model, the elastic stress of the biphasic mixture reduces to

σe(ε) = λaa[Aa : ε]tr(Aaε)Aa + λabtr(Aaε)Ab + µa(Aaε+ εAa) (3.14)

with summations implicit over a and b (a,b = 1,3; b 6= a), and λab = λba with no sum

on λaa. ε is the infinitesimal strain tensor and Aa is a texture tensor corresponding

to each of the three preferred material directions defined by the unit vector aa

(aa ·aa = 1, no sum), with Aa = aa⊗aa (⊗ denoting the dyadic or outer product of

vectors that results in a tensor of order two and rank one). For orthotropic material

symmetry, aa · ab = 0 when b 6= a, and the three planes of material symmetry

are defined by their unit normal vectors aa. The tension-compression nonlinearity
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occurs when the Lamé constant λaa (no sum) is dependent on the component of

normal strain, Aa : ε, along the preferred direction aa:

λaa[Aa : ε] =

 λ−aa, Aa : ε < 0

λ+aa, Aa : ε > 0
(no sum) (3.15)

There are eight material properties for this model: λ−aa, λ+aa and µa (a, b = 1, 3;

b 6= a, no sum). Experimental validation of this model would require testing of

cartilage samples in tension, compression, and shear with respect to all three planes

of symmetry; however due to size limitations on the specimen it is challenging to test

articular cartilage in tension along the direction perpendicular to the surface (a3),

in compression parallel and perpendicular to the split lines (a1,a2), or in torsional

shear about a1 and a2. Therefore, a cubic symmetry is assumed for this model

which reduces the number of elastic material constants to four.

In summary, the CLE model has five material parameters: the aggregate modu-

lus in compression and tension, H−A = λ−1 + 2µ and H+A = λ+1 + 2µ respectively,

“off-diagonal” modulus, λ2, determined from confined compression as a ratio of ra-

dial stress to axial strain at equilibrium, shear moduli µ and permeability k. This

model was used to analyze both confined and unconfined compression, torsional

shear tests and tensile tests for articular cartilage [72,73].

3.4.3 Fibril-reinforced models

The tension-compression nonlinearity of the solid matrix can also be included by

using a fibril-reinforced model. In such models, in addition to the isotropic matrix,

the collagen fibril network contributes to the stiffness of the material. So, the solid

stress of a fibril-reinforced model is given by the sum of the EFM and the fibril

stresses. Chapter 5 gives a review of some of the prevalent fibril-reinforced models

used for AC.
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There are two types of fibril-reinforced models seen in the literature, spring

models and continuum models. In the spring models, springs are placed between

the nodes of the elements to represent the fibrils. This means that fibrils can be

represented only in the direction of the elements. The solid stress of the fibril-

reinforced material is given by the sum of the matrix and fibril stresses [80], as

σE = σm + σf (3.16)

where σm and σf are the stresses in the nonfibrillar matrix and the collagen fibrils,

respectively. Li et al. [81–83] further developed the model by Soulhat et al. to

include nonlinear features.

In the continuum fibril reinforced models, the fibril orientation is independent of

the finite element mesh. This enables a representation of a geometrically realistic

network as fibrils can run in any direction. Several continuum models exist [84–89]

which relate the macroscopic properties to the tissue microstructure. These models

differ in theoretical formulation, homogenization procedure, constitutive laws, etc.

The micro-structural model by Schwartz et al. [86] is not based on the bipha-

sic theory. Instead the an idealized model of AC is treated as a fiber-reinforced

composite. In the models of Wilson et al. [87, 90, 91] the collagen fibril orientation

was independent of the mesh, enabling representation of a geometrically realistic

collagen network.

σE = σm +

tot f∑
i=1

σf,i~vnew,i ⊗ ~vnew,i (3.17)

where σf,i are fibril stresses in the ith fibril and ~vnew,i the current fibril direction of

the ith fibril, and the sum is σf .
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Federico et al. [88] used a homogenization procedure for transversely isotropic

composites with inclusions [92], and derived a transversely isotropic transversely

homogeneous (TITH) model in which every possible fiber direction was taken into

account, and that incorporated the continuous variation of the elastic modulus of

cartilage as a function of depth.

Garcia et al. [89] proposed a biphasic viscohyperelastic fiber-reinforced model for

articular cartilage. Articular cartilage was considered as a biphasic material with its

solid component formed of two phases. Both solid phases were represented by the

viscohyperelastic law described by Garcia and Cortés (2006) [74], but they differed

in the hyperelastic function used. The fibers were assumed to resist only in tension.

In the spring-based fibril-reinforced models, the fibrils resist only in tension. The

transversely isotropic biphasic model (discussed in 3.4.1) has the same stiffness in

compression and tension. Thus, a more accurate representation of the fibril behavior

can be used in fibril-reinforced models. Also, introduction of fibers allows inclusion

of nonlinear properties of fibers as well as more realistic orientations of fibers. The

spring-based models have been used to characterize the role of the collagen network

in cartilage time-dependent response. The continuum fibril-reinforced models have

been successfully used to describe cartilage response in confined and unconfined

compression and indentation.

3.5 Poroviscoelastic models (non-fibril-reinforced)

As discussed before, the transient behavior of articular cartilage is caused by both

fluid-flow-dependent and flow-independent viscoelasticity. A biphasic poroviscoelas-

tic model (BPVE), first proposed by Mak et al. (1986) [93], accounts for both mech-

anisms. BPVE models for articular cartilage found in literature consider the solid
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matrix to be either viscoelastic in shear [29] or in both shear and bulk deforma-

tion [26]. In these models, the solid stress is given by

σE = λeI + 2µ

∫ t

0
G(t− τ)

∂e

∂τ
dτ (3.18)

σE = λ

∫ t

0
G(t− τ)

∂eI

∂τ
dτ + 2µ

∫ t

0
G(t− τ)

∂e

∂τ
dτ (3.19)

respectively, where τ is a relaxation time constant, e the deviatoric component of

the elastic strain tensor and G(t) is the relaxation function. It is common to express

G(t) as a series of discrete relaxation functions [29] described as

G(t) = 1 + Ḡ

n∑
i=1

e
− t
τi (3.20)

In the BPVE models of Suh et al. [26] and DiSilvestro et al. [27–29], a three term

expansion is assumed for defining G(t). Thus, in addition to the biphasic material

parameters in the isotropic case (E, ν and k), which describe the elastic response

and the hydraulic permeability of the tissue, the BPVE model adds three more

parameters, which are the discrete spectrum magnitude Ḡ, a short term relaxation

time constant τS = τ1 and a long-term relaxation time constant τL = τ3 (τ2 =

τ2(τ1, τ3)).

The BPVE model has been applied for characterization of the time-dependent

response of normal [27–29,67,94] and degenerated [67,94] cartilage in confined and

unconfined compression, and indentation.

3.6 Discussion

The complex mechanical behavior of articular cartilage has been primarily modeled

using a basic linear biphasic poroelastic model (BPE) of articular cartilage devel-

oped by Mow et al. [24]. In this model the apparent viscoelasticity of the tissue
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is assumed to be solely due to the fluid-flow dependent frictional drag interactions

due to interstitial fluid flow through a porous solid matrix. The linear BPE model

is able to explain the creep as well as stress relaxation long-term response dur-

ing confined compression though significant deviation has been observed from the

short-term response of the tissue during the early time period (<100 s) after ap-

plication of load [20]. Furthermore, the utility of this model diminishes when the

tissue is subjected to unconfined compression [8,71] indicating that frictional inter-

actions between the two assumed phases of articular cartilage may be insufficient to

completely account for apparent viscoelasticity under loading conditions other than

confined compression. Another likely reason for this is that the anisotropy of the

tissue, which plays an important role during this test, is not included in this model.

DiSilvestro et al. [27] compared the response of the linear BPE model [24], the

TIBPE model [68] and the BPVE model [26,93] in their simultaneous prediction of

the reaction force and lateral displacement during unconfined compression. They

showed that the TIBPE model was able to account for either the measured lateral

displacement or the measured reaction force very well, but could not account for

both variables simultaneously. Also, the isotropic CLE model cannot account for

lateral displacements and reaction forces simultaneously. Although the CLE and

TIBPE models address the tension-compression nonlinearity of the tissue, the likely

reason for this was the absence of flow-independent viscoelasticity, which results in

the lateral stiffness remaining too high. This was confirmed by the fact that the

BPVE model succeeded in simultaneously accounting for both the reaction force as

well as the lateral displacement in unconfined compression. Moreover, the BPVE

model is able to simultaneously account for experimental data measured from un-

confined compression and either indentation or confined compression [29]. Another
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study reported that the BPVE model can accurately simulate unconfined compres-

sion at varying strain rates [28]. However, not all these tests can be reproduced

simultaneously by the BPVE model, probably due to the lack of anisotropy and

tension-compression nonlinearity of the tissue.

A combination of the CLE and BPVE models used by Huang et al. [73], which

included both flow-independent viscoelasticity and tension-compression nonlinear-

ity of the solid matrix, could simultaneously account for the response of articular

cartilage during unconfined compression at varying strain rates and its response to

dynamic loading. This model produced better predictions of the dynamic modulus

of cartilage in unconfined dynamic compression than the CLE and BPVE models,

thus emphasizing the role of the intrinsic viscoelasticity and tension-compression

nonlinearity of articular cartilage in its load-support mechanism. Fibril-reinforced

poroviscoelastic models by Li et al. [83] and Wilson et al. [32, 87, 91] that include

these two features have the advantage of a relating the tissue response to its mi-

crostructure.

Kääb et al. experimentally studied the deformation of the collagen network during

loading using scanning electron microscopy and showed that the characteristics of

the deformations differ between superficial fibrils and those at the cartilage-bone

interface [95, 96]. Using the BPE model Wilson et al. [30] found that superficial

damage could only be explained from stress analyses when assuming the cartilage

to be anisotropic, but that damage of fibrils at the cartilage-bone interface can only

be predicted in an isotropic model. Using a fibril-reinforced poroviscoelastic model,

they concluded that the local stresses and strains in articular cartilage are highly

influenced by the local morphology of the collagen-fibril network [87]. Hence, it

is important to describe the collagen network as realistically as possible. This is

better done by the continuum based models of Wilson et al. [32, 87, 91], in which
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collagen fibrils can have different orientations, than the spring based models of Li

et al. [81–83]. Garcia and Cortés [89] showed that inclusion of viscous effects in the

matrix is consistent with experimental tensile tests, suggesting that intrinsic viscous

effects in the matrix of articular cartilage plays an important role in the mechanical

response of the tissue.

The swelling behavior of articular cartilage can also be included by combining

models with the full mechano-electrochemical model, e.g. [75, 76], or the biphasic

swelling model, e.g. [77]. The biphasic swelling model is computationally less ex-

pensive and applicable for large deformations.

As more and more features of AC structure and composition are included in the

model, the number of unknown parameters to be determined increases, which likely

increases the number of mechanical tests to extract the parameters. This puts

an emphasis on using the simplest model that is sufficient to obtain the necessary

information to answer the question posed. In the next chapter, we look at the

development of a continuum model for the indentation of AC and the use of inverse

finite element methods to extract model parameters from indentation tests on mouse

cartilage.



Chapter 4

Poroviscoelastic properties of

mouse cartilage by Inverse

Finite Elements and Indentation

4.1 Overview

The content of this chapter is from the following published article [97]:

S. Chiravarambath, N.K. Simha, R. Namani and J.L. Lewis, Poroviscoelastic

cartilage properties in the mouse from indentation. J Biomech Eng, 131 (2009), p.

011004 (9 pages).

A method for fitting parameters in a poroviscoelastic (PVE) model of articular

cartilage in the mouse is presented. Indentation is performed using two different

sized indenters and then these data are fitted using a PVE finite element program

and parameter extraction algorithm. Data from a smaller indenter, a 15 µm diameter

flat-ended 60◦ cone, is first used to fit the viscoelastic (VE) parameters, on the

36
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basis that for this tip size the gel diffusion time (approximate time constant of

the poroelastic (PE) response) is of the order of 0.1 s, so that the PE response

is negligible. These parameters are then used to fit the data from a second 170

µm diameter flat-ended 60◦ cone for the PE parameters, using the VE parameters

extracted from the data from the 15 µm tip. Data from tests on five different mouse

tibial plateaus are presented and fitted. Parameter variation studies for the larger

indenter show that for this case the VE and PE time responses overlap in time,

necessitating the use of both models.

4.2 Background

Mouse models are useful for understanding disease processes in articular carti-

lage, particularly osteoarthritis, and many mutant and transgenic mouse models

are available. As part of this development, there is recent interest in linking the

mechanical properties of cartilage in the mouse to basic tissue constituents (e.g.,

Refs. [33, 98–100]). This presents the challenge of measuring mechanical properties

of small volumes of cartilage. Indentation appears to have the potential for providing

these properties and Cao et al. [33] recently reported a micro-indentation test in the

mouse and a biphasic finite element fitting procedure. This was the first reported

combination of experimental method and consistent continuum model for indenta-

tion of mouse cartilage and represented a considerable advancement over previous

methods. However, there is a question if the biphasic model alone is appropriate for

this test condition.

There is a long history of cartilage testing and development of continuum models

for data reduction. The biphasic model of Mow et al. [24] has long been promi-

nent in the field. It was realized that this model could not fit both the short and
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long time responses of cartilage loading, leading to the introduction of PVE mod-

els [26,27,93], which included both biphasic or PE flow-dependent time dependency

and VE flow-independent time dependency. These models agreed much better with

the experimental data, but there were too many parameters to fit, resulting in ques-

tion of uniqueness of the fit parameters. This condition was made more challenging

by the fact that the time ranges for the PE and VE processes overlapped in most

of the experimental test conditions. Huang et al. [73] proposed a method to sepa-

rate viscous and PE relaxation responses based on the known tension-compression

nonlinearity in cartilage, which results in a negligible flow-dependent response for a

tensile test of a thin strip of the tissue. Therefore, this test could be used to deduce

only the VE parameters, requiring fit of fewer parameters. These could then be used

in a PVE model of a different test configuration, with the VE parameters known, to

identify the PE parameters from a compression test, in which both flow-dependent

and flow-independent responses occur. Unfortunately, this method cannot be used

for mouse cartilage, because a tensile test cannot be performed because of the small

size of the mouse joint.

In the theoretical analysis of indentation of a biphasic layer by Mak et al. [65], it

is shown that the stress relaxation for a ramp and hold indentation displacement is

controlled by a rate of compression parameter, R0 = κHA/V0h, where κ is perme-

ability, HA the aggregate modulus, h the layer thickness, and V0 is the indentation

rate. They show that for R0 � 1 there is negligible resistance to fluid flow and

influence of fluid flow on response. For creep indentation, they show that the time

response scales with the factor Tg = a2/HAκ where a is the radius of the flat in-

denter, and that this becomes the approximate time constant of the resistance to

fluid flow. The factor Tg is referred to as the characteristic gel diffusion time in all

subsequent studies. We propose to use flat-ended conical indenters with flat end
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diameters of 15 and 170 µm. For a flat-ended cylinder with an end diameter of 15

µm, and for typical values of HA, κ, and h, of 3.5 MPa, 0.23 × 10−15m4/N-s, and

60 µm, respectively, the time scale factor is approximately 0.07 s. Also for our test

conditions of a ramp displacement of 4 µm in 4 s, R0 is approximately 106. Both

of these imply that there is negligible fluid flow effect for our indentation tests of

mouse cartilage with a 15 µm tip. Therefore, any time dependency of the response

must be due to viscoelasticity and this test can be used to fit the VE parameters.

For a 170 µm diameter tip, Tg is approximately 8.7 s, which, although still small, is

large enough to stimulate a fluid flow effect in the tests. Data from the 170 µm test

can be used in a PVE theory to identify the PE parameters, with the VE parameters

known from the first fit. Application of this method to cartilage on the mouse tibia

is presented in the following sections.

4.3 Methods

Indentation tests were performed on cartilage on the mouse tibia plateau using flat-

ended conical tips with flat-end diameters of 15 and 170 µm. A finite element (FE)

model of the test was developed and the PVE parameters were identified by using

inverse methods to minimize the error between FE simulated and test data. Inverse

FE fit for the 15 µm data was used to extract VE parameters and that for the 170

µm data to extract PE parameters. In order to demonstrate the consequences of

ignoring the flow-independent viscoelasticity, a simulation was also run for both tips

to identify PE parameters using a purely PE model. To verify that the PE response

was negligible for the 15 µm tip, simulations were run and the permeability varied.
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4.3.1 Experimental Methods

Specimen Preparation

Mouse knee joints from six week old CD-1 female mice were used for testing. These

animals had been used in other experiments that did not involve cartilage and any

mechanical testing and their knee joints had been removed and frozen at −20 ◦C

prior to testing. The joint was thawed and dissected under a microscope to isolate

and expose the cartilage surface around the femur and tibia. The tibial plateau was

then separated with approximately 1 mm of bone under the cartilage. The bottom

of the bone was mounted onto a holder using cyanoacrylate cement. The holder

could be rotated so that a relatively flat region on the cartilage specimen could

be oriented perpendicular to the indenter. The holder was then installed in the

test machine specimen tray for indentation. A droplet of phosphate buffered saline

(PBS) was maintained on the specimen surface at all times. Tests were performed

on five different tibial specimens.

Nano-indentation Tests

A Nanoindenter XP (MTS Inc., Eden Prairie, MN) was used to perform indentation

tests. This instrument can measure load and displacement with resolutions of ∼ 0.02

mN and∼ 30 nm, respectively. The indenters used for testing were flat-ended conical

indenters (cone angle of 60◦) with flat-end diameters of 15 µm and 170 µm. The 15

µm tip was diamond, adhered to stainless steel, while the 170 µm tip was stainless

steel. The stress relaxation tests were performed on the tibial plateau of mouse at

roughly the same locations with both indenters. The test protocol was a preload

(indent depth ∼ 2 µm) applied and held for ∼ 300 s to ensure contact, followed by

a ramp load at 1 µm/s to 4 µm and held for ∼ 300 s.

After testing with both tips, the tip was changed to a sharp (end radius < 1 µm)
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tip and the cartilage thickness measured by penetration tests at approximately the

same locations as the indentation tests. The cartilage was indented until the tip hit

the underlying bone. The linear region of bone indentation was extrapolated to zero

force level and the thickness was set to the corresponding displacement obtained at

zero force. In separate tests (not reported here), the thickness measured by this

procedure agreed well with thickness measured by histology. The average thickness

over all specimens was determined to be ∼ 60 µm.

Cartilage Model for Data Reduction

Articular cartilage was modeled as homogeneous isotropic PVE or VE layer. The

initial void ratio for the layer was set to 4 based on literature [24, 34] and the

permeability was set to be isotropic. Following Suh et al. [71], the viscoelastic

properties for the solid matrix were assumed isotropic and defined by the relaxation

functions for the shear and bulk moduli as

K(τ) =
3E∞

1 + ν∞
(4.1)

G(τ) =
E∞

2(1 + ν∞)(1−
∑n

1 gi)

[
1−

n∑
1

gi

(
1− e−

τ
τi

)]
(4.2)

where K and G are the bulk and shear moduli, E∞ is equilibrium Young’s modulus,

ν∞ is equilibrium Poisson’s ratio, and gi and τi are the viscous relaxations constants

and τ denotes the time. The indentation stress relaxation of articular cartilage has

a rapid short term response and a slower long term response, which implies that

a minimum of two different time constants should define the relaxation. Suh et

al. [71] observed that n = 3 and a uniform decadic (10-base logarithmic) interval of

τi was efficient and comparable to a continuous spectrum model. In the relaxation

response of our mouse cartilage specimens, an initial sharp fall in the force was

seen. To account for this, we let g1 be different from g2 = g3. Also, the intermediate
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relaxation rate, τ2 was defined as

logτ2 =
(logτ1 + logτ3)

2
(4.3)

resulting in four independent VE parameters, g1, τ1, g3 and τ3. In addition to the

four VE parameters, there were three PE parameters: permeability, κ, ν∞ and E∞,

for a total of seven material parameters for the FE model.

Thus, in this formulation, a PVE model has seven parameters as mentioned

above (g1, τ1, g3, τ3, κ, ν∞ and E∞), a VE model has six parameters (g1, τ1, g3,

τ3, ν∞ and E∞), and a linear elastic (LE) model has only two parameters (ν∞ and

E∞).

4.3.2 Numerical Methods

Finite Element Model

Indentation of a PVE material with a rigid flat-ended 60◦ conical indenter was mod-

eled using the commercial FEA software ABAQUS/Standard v6.5 (Hibbit, Karlsson

& Sorensen, Inc., Providence, RI). Articular cartilage was modeled as a layer bonded

to a rigid and impermeable substrate being indented by a rigid and impermeable

indenter as shown in Fig. 4.1. Due to the symmetry of the problem, an axisymmet-

ric analysis was performed. The radial dimension of the cartilage layer was set to

two times the thickness for the 15 µm indenter based on preliminary simulations.

This was scaled to ∼ 0.8d for the 170 µm indenter, where d is the diameter of the

indenter tip. The model was changed to the measured thickness for each specimen.

Meshes with 1600 bilinear elements of type CAX4R (non-porous elements for VE

only model) and CAX4RP (porous elements for PVE model) were used. A higher

node density was used in regions of high stress (near the indenter tip edge). The

contact between the indenter and cartilage was defined as a finite sliding contact
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with no friction. The boundary conditions were specified by constraining the r and

z displacement of the substrate (rigid) and the r displacement along the axis of

symmetry. The lateral side of the cartilage layer was unconstrained and the surface

traction (pore pressure of fluid and contact pressure on solid) along the sides and

the top surfaces was made zero except below the indenter. As a result of these

boundary conditions, fluid was free to flow from the sides and the top. The analysis

was run as a geometrically nonlinear analysis that allowed for large deformations.

The displacement input in the simulations exactly matched the displacement versus

the time profile used for the experiments. The resulting force data from FE was

fitted to measurements to extract parameters.

Parameter extraction using an Inverse algorithm

An inverse algorithm program was used along with the FE model to extract the PVE

parameters. The inverse FE method described here follows the work of Namani [101].

Briefly, the FE indentation model simulates the forward problem and the parameters

are extracted by using the SIMPLEX algorithm [102] to maximize the coefficient

of determination, R2, between the experimental and FE predicted data.

As with all multidimensional optimization algorithms, the SIMPLEX algorithm

requires starting points, and was given m+1 initial starting points or vectors, where

m is the number of parameters to be extracted. The initial points were chosen

covering a wide range in the parameter space based on estimates of PVE parameters

from indentation experiments of DiSilvestro and Suh [27]. The algorithm compared

the output from the FE model for each of these starting points to the experimental

data and converged to the maximum of the objective function (Eq. (4.4)) with

the prescribed convergence criteria, where Pi denotes the experimental indentation

force measured at time ti, while P̄i is obtained from the FE model at trial parameter
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Figure 4.1: FE model for nano-indentation of mouse cartilage using flat-ended con-
ical indenter. The z axis is the axis of symmetry. The top and right surfaces are
permeable p = 0 and traction free. The displaced of the bottom is fixed. The
indenter is impervious. Mesh is denser under the indenter and near the indenter
edge.
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values:

R2 = 1−
∑p

1(Pi − P̄i)2∑p
1(Pi)2 − 1

p (
∑p

1 Pi)
2 (4.4)

Convergence was said to be reached when a curve-fit of R2 ≥ 0.9 was obtained at

all m+ 1 points. The program stopped when the number of iterations reached 100

or when corresponding parameters being extracted at the vertices of the polygon

were within 1% of their respective means. For one of the tests, the parameters were

extracted with three different sets of starting points for both indenters to assess the

influence of the choice of the starting points.

Fitting procedure

Step 1 The experimental force-time data from the 15 µm indentation was curve

fitted with a purely VE model. Of the six parameters, the value of ν∞ was fixed to

0.25 and the theoretical equilibrium modulus E∞th was evaluated using the expression

from the theory of Hayes [103] extended to flat-ended cones by Simha et al. [19] given

by

E∞th =
P∞

[
1− (ν∞)2

]
2aδ∞κfec

(4.5)

where P∞ is the force at equilibrium, δ∞ is the displacement at equilibrium, a is the

radius of the indenter flat-end κfec is the correction factor for flat-ended cones. It

was assumed that equilibrium was reached at the end of the hold period and using

the data point at the end of relaxation (P∞exp), the theoretical equilibrium modulus

was calculated from Eq. (4.5). This value of E∞th was used in the FE model to predict

equilibrium force (P∞FE). It was observed that the equilibrium force measured at the

end of the hold, i.e., P∞FE > P∞exp. We believe this was due to lack of true equilibrium

at the end of the hold period and a radius at the edge of the indenter. Therefore,

in the FE model, E∞ was set to E∞ = αE∞th , where α = P∞exp/P
∞
FE. α was chosen

as 0.9 as a consequence of the results from the sensitivity study (explained below).
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Step 2 The experimental force-time data from the 170 µm indentation was then

curve fitted with a biphasic PVE model. Of the seven parameters, the values of the

four VE parameters were fixed to those extracted from Step 1 and the remaining

three parameters, κ, ν∞ and E∞ were extracted.

To understand the contribution of different physical processes, purely LE, purely

PE, purely VE and PVE curves were generated from the final fit parameters and

compared with the experimental force versus time data for the 170 µm tip.

Sensitivity Study

α = 0.9 was chosen based on a study of the sensitivity of fitted VE parameters for

various values of α, as follows. The experimental data from the 15 µm indenter

was fitted with values of α ranging from 0.85 − 1.0. For a range of α, g1, and τ1

were the same, so these were kept constant and a second step fit of g3, τ3, and E∞

was performed. This was assumed to give an optimal E∞. For the same set of

experimental data, the standard procedure was employed with α = 0.9 to show that

the same results were obtained as with this procedure, which was assumed to be

more accurate.

PE Fits

Other studies [33] have used a PE model for mouse cartilage. For comparison, the

experimental force-time data from both indenters was also curve fitted with a purely

PE model. In this case, the three PE parameters (κ, ν∞ and E∞) were extracted

using our inverse FE algorithm.
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Parametric study of permeability

Simulations for a PE model were run for a variation of four orders of magnitude in

permeability, ranging from 10−17 − 10−14 m4/N-s for both, the 15 µm and 170 µm

indenters. The force versus time was predicted using the experimental displacement

versus time as input. The intention here was to determine the sensitivity of the force

response to variation in permeability. If the force was insensitive to permeability,

this would imply that there was no flow-dependent time response, supporting the

assumption of VE only.

Computational Resources

All FE simulations were run on Linux workstations at the Minnesota Supercomput-

ing Institute (MSI). These workstations had a variety of processors ranging from

3.4 GHz Intel Xeon to quad core AMD 2.4 GHz and each had a memory of at least

4 Gbytes (maximum of 16 Gbytes).

4.4 Results

4.4.1 Experiments

The mouse cartilage showed a typical stress relaxation response from the indentation

experiments (Figs. 4.2 and 4.3). The force steadily increased during the ramp loading

and showed a characteristic relaxation during the hold period when the displacement

was held approximately constant. The force relaxes during the hold period, although

the nanoindenter displacement drifts due to the inability of the test machine to

maintain a constant displacement for a load change.
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(a) Normal scale (b) Logarithmic time scale

Figure 4.2: Experimental force and displacement curves for the 15 µm indenter in
(a) normal and (b) logarithmic time scales.

(a) Normal scale (b) Logarithmic time scale

Figure 4.3: Experimental force and displacement curves for the 170 µm indenter in
(a) normal and (b) logarithmic time scales.
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Table 4.1: Model parameters extracted for mouse cartilage by inverse FE fits to
indentation data for the 15 µm and the 170 µm indenters. Values reported are
average (s.d.) of all points of the extraction procedure.

(a) VE parameters from 15 µm data: ν∞ = 0.25, E∞ = 0.9E∞
th

Spec. g1 g2 = g3 τ1 τ3 R2 E∞

No. (s) (s) (MPa)

1 0.47 (0.001) 0.08 (0.001) 1.17 (0.002) 150 (01) 0.93 5.45
2 0.59 (0.050) 0.06 (0.007) 1.09 (0.210) 170 (19) 0.94 4.78
3 0.59 (0.002) 0.09 (0.001) 1.49 (0.010) 140 (01) 0.91 2.35
4 0.49 (0.002) 0.09 (0.001) 1.23 (0.010) 140 (01) 0.92 3.83
5 0.38 (0.003) 0.11 (0.001) 0.95 (0.010) 170 (01) 0.92 4.73

Mean 0.53 (0.085) 0.08 (0.017) 1.20 (0.210) 160 (17) 0.93 4.20
(0.01) (1.2)

(b) PE parameters from 170 µm data and VE parameters from the 15 µm data

Spec. κ× 10−15 ν∞ E∞ E∞th R2

No. (m4/N-s) (MPa) (MPa)

1 1.90 (0.01) 0.17 (0.001) 0.93 (0.001) 0.99 (0.001) 0.89 (0.001)
2 1.10 (0.04) 0.20 (0.010) 0.83 (0.010) 0.89 (0.010) 0.91 (0.004)
3 6.70 (0.05) 0.20 (0.001) 0.54 (0.000) 0.57 (0.001) 0.91 (0.000)
4 2.10 (0.02) 0.20 (0.002) 1.10 (0.002) 1.10 (0.002) 0.96 (0.000)
5 0.71 (0.01) 0.23 (0.001) 0.41 (0.000) 0.44 (0.000) 0.90 (0.000)

Mean 2.10 (1.90) 0.20 (0.020) 0.77 (0.210) 0.82 (0.220) 0.92 (0.020)

4.4.2 Numerical Results

Parameter Extraction

Table 4.1 gives a summary of all the parameters extracted for all specimens.

Step 1 The mean (s. d. ) values for the VE parameters were as follows: g1 = 0.53

(0.085), τ1 = 1.2 (0.21) s, g2 = g3 = 0.08 (0.017) and τ3 = 160 (17) s (Table 4.1a).

The curve fit had an average R2 value of 0.93 (0.01). The force response for the

15 µm indenter with fit parameters for one of the specimens is shown in Fig. 4.4.
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(a) Normal scale (b) Logarithmic scale

Figure 4.4: Experimental and curve fit (VE and PE) force versus time curves for
indentation with the 15 µm tip. VE fit is better than a PE fit.

The VE fit to the small indenter data is able to capture the peak force as well as

the stress relaxation to the end of the hold period. Also, the VE fit matches the

experimental data at short and long time regions.

Step 2 With the VE parameters fixed at the extracted values, a PVE fit to the 170

µm data extracted the following values for the PE parameters: κ = 2.1 (1.9)×10−15

m4/N-s, ν∞ = 0.20 (0.02), and E∞ = 0.77 (0.21) MPa (Table 4.1b). The curve

fit had an average R2 value of 0.92 (0.01). For comparison, the indentation E∞th

is included in Table 4.1b. The force response for the 170 µm indenter with fit

parameters for one of the specimens is shown in Fig. 4.5. As with the VE fit for the

15 µm indenter, the PVE fit for the 170 µm indenter data matches both the short

time and long time regimes of the experimental data.

For one of the specimens, parameters were extracted with three different sets of

starting points for both indenters (Table 4.2). Of the VE parameters extracted, g1

was in the range 0.53 − 0.69, g3 was in the range 0.048 − 0.072, τ1 in the range

0.70 − 1.35 s, and τ3 in the range 140 − 190 s. The R2 of the fit varied from 0.94

to 0.96. Of the PVE parameters extracted, κ was in the range 1.03− 1.14× 10−15
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(a) Normal scale (b) Logarithmic scale

Figure 4.5: Experimental and curve fit (PVE and PE) force versus time curves for
indentation with the 170 µm tip. PVE fit is better than a PE fit.

m4/N-s, ν∞ in the range 0.19 − 0.22, and E∞ in the range 0.82 − 0.84 MPa. The

R2 of the fit varied from 0.89 to 0.92. For comparison, the value of E∞th for each

specimen is also included in Table 4.1b. Note that E∞ 6= αE∞th with α = 0.9,

because conditions are different from the 15 µm tip.

The choice of α = 0.9, E∞ = αE∞th , used for extracting the VE parameters,

was examined. When α was varied from 0.85 to 1.0 (data from one specimen), it

was seen that the coefficient of determination, R2, was 0.90 or higher only when

α ≤ P∞exp/P
∞
FE ≈ 0.9 − 0.85 (Table 4.3a, Fig. 4.6). In addition, similar values for

g1 and τ1 were obtained for α ≈ 0.9 − 0.85. Therefore, the parameters g1 and τ1

were fixed to values g1 = 0.478 and τ1 = 1.20 s (averaged for the curve fits with

R2 > 0.90) and used to extract g3, τ3, and E∞. The average values of the extracted

parameters were g2 = g3 = 0.076 (0.001), τ3 = 125 (0.39) s, and E∞ = 5.52 (0.002)

MPa. The data used for the fits in Table 4.3 was for specimen 1. Comparing the

mean data from Table 4.3b with the fit data for specimen 1 in Table 4.1a, in which

the normal procedure with α = 0.9 was used, shows that the two agree closely. For

this specimen, E∞th = 6.05 MPa, which gave α = 0.9. This value of α was used in

all subsequent fits of the 15 µm data for the VE parameters.
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Table 4.2: Parameters extracted with different initial points.

(a) VE parameters from 15 µm indentation data

Starting points for inverse FE Extracted parameters
Set No. g1 g2 = g3 τ1 (s) τ3 (s) g1 g2 = g3 τ1 (s) τ3 (s) R2

1 0.80 0.05 2.0 50 0.53 0.072 1.3 160 0.94
0.60 0.07 1.5 70 0.53 0.071 1.3 160 0.94
0.44 0.09 1.1 90 0.54 0.070 1.3 160 0.94
0.36 0.11 0.9 110 0.53 0.071 1.3 160 0.94
0.16 0.20 0.4 150 0.54 0.071 1.4 160 0.94

2 0.40 0.08 1.2 75 0.60 0.060 1.1 190 0.94
0.50 0.10 0.8 110 0.59 0.061 1.1 190 0.94
0.30 0.06 1.4 100 0.60 0.061 1.1 190 0.94
0.60 0.12 1.0 130 0.59 0.061 1.1 190 0.94
0.65 0.07 1.5 85 0.59 0.061 1.1 190 0.94

3 0.40 0.05 0.7 120 0.60 0.064 0.9 140 0.95
0.70 0.10 1.2 85 0.64 0.056 0.9 150 0.95
0.55 0.09 1.6 100 0.66 0.056 0.8 150 0.96
0.60 0.065 0.95 140 0.60 0.065 1.0 140 0.95
0.30 0.14 1.0 70 0.69 0.048 0.7 150 0.96

(b) PE parameters from 170 µm indentation data

Starting points for inverse FE Extracted parameters
Set κ× 10−15 ν∞ E∞ κ× 10−15 ν∞ E∞ R2

No. (m4/N-s) (MPa) (m4/N-s) (MPa)

1 0.02 0.16 1.00 1.0 0.22 0.82 0.89
0.20 0.30 9.50 1.0 0.22 0.82 0.89
2.0 0.12 1.10 1.0 0.22 0.82 0.89

0.002 0.20 0.80 1.0 0.22 0.82 0.89

2 2.8 0.13 0.74 1.1 0.21 0.83 0.91
1.4 0.19 0.84 1.1 0.21 0.82 0.91

0.008 0.35 0.94 1.1 0.21 0.82 0.92
0.028 0.21 0.56 1.1 0.21 0.82 0.91

3 0.010 0.10 0.94 1.1 0.19 0.84 0.91
2.4 0.22 1.08 1.1 0.19 0.84 0.91

0.080 0.15 1.00 1.1 0.19 0.84 0.91
1.0 0.19 0.84 1.1 0.19 0.84 0.91
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Table 4.3: Sensitivity study of E∞ on the VE parameters extracted from the 15
µm indentation data. For this specimen, E∞calc = 6.051 MPa for ν∞ = 0.25. Values
reported are average (s.d.) for all points.

(a) Extracted g3, τ3 and E∞ parameters for various α

α g1 g2 = g3 τ1 (s) τ3 (s) R2

1.0 0.45 (0.001) 0.063 (0) 1.1 (0.001) 19 (0.084) < 0.1
0.95 0.51 (0.002) 0.054 (0.001) 1.3 (0.001) 77 (0.31) 0.71
0.90 0.48 (0.002) 0.079 (0.001) 1.2 (0.004) 160 (0.64) 0.93
0.88 0.48 (0.002) 0.083 (0.001) 1.2 (0.005) 210 (0.86) 0.93
0.85 0.48 (0.002) 0.091 (0.001) 1.2 (0.004) 320 (1.6) 0.93

(b) Extracted VE parameters g3, τ3 and E∞ with g1 = 0.478 and τ1 = 1.196
s from (a)

g2 = g3 τ3 (s) E∞ (MPa) R2

1 0.076 120 5.5 0.92
2 0.076 120 5.5 0.92
3 0.076 120 5.5 0.92
4 0.075 120 5.5 0.92

Mean 0.076 (0.001) 120 (0.39) 5.5 (0.002) 0.92 (0.002)
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Figure 4.6: Sensitivity study for E∞ from the 15 µm indenter.
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PE Fits

For the purely PE model, the average values of the extracted parameters were

κ = 0.96 (0.02) ×10−15 m4/N-s, ν∞ = 0.193 (0.002) and E∞ = 5.3 (0.01) MPa

for the 15 µm indenter and κ = 0.39 (0.003) ×10−15 m4/N-s, ν∞ = 0.23 (0.001)

and E∞ = 0.85 (0.001) MPa, respectively, for the 170 µm indenter. However, these

curve-fits were not good with average R2 < 0.3 (Figs. 4.4 and 4.5).

Parametric Study of Permeability

A variation of four orders of magnitude in permeability had no effect on the stress

response predicted by the FE model for the 15 µm indenter (Fig. 4.7a). In contrast,

there was a distinct change in the stress relaxation predicted by the FE model for

the 170 µm indenter (Fig. 4.7b). As the permeability decreased, it took longer for

the stress to reach equilibrium.

Figure 4.8 shows the curves simulated for purely LE, purely PE, purely VE, and

PVE models using the final extracted parameters for one of the specimens for the 170

µm tip. The LE model was, as expected, able to match neither the short term nor the

long term response of the experimental data. This matched the displacement input.

With the PE model, there was a significant increase in the short term response

relative to the elastic model; however, it was still much below the experimental

curve. The response of the PE model beyond ∼ 11 s exactly matched that of the

LE model, implying that there was no flow-dependent effect after that point. With

the VE model, there was a slight increase in the force over the LE solution in the

loading period; however, the model could account for the entire response beyond

∼ 12 s, implying that the long term time dependency was due to the VE effect, not

the PE effect. When the PVE model was used, the peak force increased significantly

and the model could account for the short term and the long term response of the
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(a) 15 µm tip

(b) 70 µm tip

Figure 4.7: Effect of varying permeability in the range 10−17−10−14 m4/N-s for the
PE model of indentation of mouse cartilage by the 15 µm and 170 µm tips.
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Figure 4.8: Role of various physical processes. Curves are generated using the fit
parameters from Table 4.1.

cartilage specimen.

Computation Time

The computation time for the fitting procedure (for both tips) varied from 2.5 h to

5 h depending on the workstation used. The average computation time was ∼ 4 h.

Code was not parallelized so these times are for single processors.

4.5 Discussion

This study demonstrates a method to separate fluid flow-independent and flow-

dependent processes of articular cartilage in indentation testing in the mouse and to

extract the PVE parameters of articular cartilage in this setting. Nanoindentation
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testing of mouse cartilage was accomplished using two different sized indenters: flat-

ended conical indenters with flat-end diameters of 15 µm and 170 µm. The rationale

for using two different sized indenters was that for the 15 µm tip the characteristic gel

diffusion time, Tg ≈ 0.1 s, is negligibly small, and hence indentation with this small

tip would not probe flow dependent processes for the loading protocol used. This was

confirmed by a PE FE model of indentation, which showed that the stress relaxation

response was insensitive to permeability changes from 10−17 − 10−14 m4/N-s when

indented with the 15 µm indenter (Fig. 4.7a). This allowed neglecting permeability

for this indenter, and indentation data was fit to a VE model with fixed values of

the equilibrium elastic parameters, ν∞ and E∞.

The 170 µm indenter has a significant Tg ≈ 10 s and is large enough to probe

flow-dependent processes with our test conditions. This was confirmed by the PE

model of indentation which showed clearly that the stress relaxation response was

sensitive to permeability changes from 10−17− 10−14 m4/N-s when indented with a

170 µm indenter. The data from the 170 µm indentation were fitted to a PVE model

(flow-dependent parameters) using the values of the flow-independent parameters

from Step 1. The fit was good (R2 = 0.92, Fig. 4.5) and the average values of the

extracted parameters with the 170 µm tip (E∞ = 0.77 MPa, κ = 2.1× 10−15m4/N-

s and ν∞ = 0.2) were slightly different but in the same range as found by Cao

et al. [33] for mouse cartilage (2 MPa, 1.1 × 10−16m4/N-s, 0.20 with a 110 µm

indenter and using a PE model). The mean value of E∞ was ∼ 6% less than the

theoretical value calculated using the extended theory of Hayes et al. [103] (Eq.

(4.5)) (mean: 0.82 (0.22) MPa). We believe that this difference reflects both the

fact that equilibrium was not reached in our experiments and the effect of a radius

at the edge of the flat surface of the indenter, which causes a smaller contact area in

the model compared to the modified theory of Hayes et al. [103]. These data support
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that there is negligible fluid flow effect for the 15 µm tip and small effect for the 170

µm tip. The main cause of time dependency in the indentation with the 15 µm tip

in this mouse cartilage is flow-independent viscoelasticity. Both processes are active

in the indentation with the 170 µm tip, but the flow-independent viscoelasticity is

the dominant process at longer times. Significant force increase due to the fluid flow

is gone after approximately 11 s (Fig. 4.8).

The FE model predicted a slightly higher force (P∞FE) than the experimental force

at equilibrium (P∞exp) at the end of the hold period with the equilibrium modulus,

as given by Eq. (4.5) (E∞th ). This meant that for the experiments, true equilibrium

would be reached for a value of equilibrium modulus slightly less than E∞th . To

determine the sensitivity of the VE parameters to the E∞ used in the FE model,

the experimental data from the 15 µm indenter were fitted with values of E∞ fixed

to 85 − 100% of E∞th , i.e., for values of α between 0.85 and 1.0. The results (Table

4.3) showed that the curve fits had an R2 > 0.9 only for values of α for which

α ≤ P∞exp/P
∞
FE and for these curves, there was only a very slight variation in the

parameters g1 and τ1. Therefore, the parameters g1 and τ1 were fixed at average

values for the curve fits with R2 > 0.9, and the parameters g3, τ3, and E∞ were

extracted. The extracted E∞ = 0.9E∞th , justifying the use of α = 0.9 in Step 1.

As with any model used to fit experimental data in order to identify model param-

eter values, there is the concern with uniqueness of fit, and the larger the number of

fitting parameters, the greater the concern. In the present case, the primary concern

is with the four VE parameters. Note that there are two distinct response regions

in the experimental data, a very rapid response with a time constant in seconds

and a much longer response with a time constant nearer 100 s. Accordingly, this is

reflected in the insensitivity of g1 and τ1 to starting point in the fitting routine and

to the equilibrium load values. The longer time constant is accordingly insensitive
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to the shorter time data but sensitive to the long time data and the equilibrium

load values. Thus, although four parameters are fitted from one data set, the re-

gion fitted by each of the two time constants is relatively unique, so the question of

uniqueness is not so much a concern. However, the use of three different starting

points showed that there is still some uncertainty in the fit parameters. A rigorous

sensitivity analysis for a particular experiment and fitting process should be done

in order to estimate error bounds on predicted parameters.

The values we predicted for our PE parameters in our PVE model were in the

range of those reported by Cao et al. [33] for indentation of mouse cartilage with

a 110 µm flat-ended cylindrical indenter. There were differences, but whether this

was due to the assumed model or true material properties of the differing mice

is unknown. Our mice were young, one month old; their mice were six months

old. However, there are likely significant differences in predicted properties. When

we assumed a PE model, the predicted permeability using our data was smaller

(0.39 × 10−15 m4/N-s for PE versus 2.11 × 10−15 m4/N-s for PVE) and Poissons

ratio was slightly larger (0.23 for PE versus 0.20 for PVE) for the PE model. E∞

was approximately the same. This agrees with the intuition that decreasing κ should

increase fluid flow effect and increasing ν should decrease fluid flow effect. There

should be less fluid flow effect in the PVE model, since the viscoelasticity would

account for part of the time dependency. Based on our results, it would be expected

that the tests of Cao et al. [33] would stimulate the VE effect. There would also

be a PE response, but be relatively short lived, of the order of 10 s (Fig. 4.7). The

longer creep and relaxation would be due to the VE response.

The relative importance of PE and VE effects is a fundamental issue in carti-

lage testing. As shown from the present work and Huang et al. [73], this relative
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importance depends on test configuration and loading rates. In conventional mil-

limeter sized test specimens, the PE effect is the longer response, with the VE effect

mainly affecting the short term response [27]. For the smaller specimens and tip

geometries, however, at our loading rates the PE effect is minimal and the VE effect

dominates. It would seem that this relative effect and the necessity of including

both effects in a model of cartilage should be checked to justify a particular model,

particularly if loading time includes the functional range of the order of 1 s. One of

the main uses of fit model parameters is to aid in understanding the microstructural

basis of macroscopic mechanical response. It is desired to identify the mechanical

function of microscopic processes and molecules. Assuming a PVE model implies

that both flow-dependent and flow-independent processes occur in the experimental

tissue. The ability to separate these two processes, both experimentally and the-

oretically, makes the two indenter approach much more useful. The limitation of

assuming a solely PE model is that all time dependent processes are assumed to be

flow dependent. If this is wrong, as would be the case with our 15 µm indenter,

then interpretation of results with respect to microscopic processes would be wrong.

The model assumption subsumes an assumption of the underlying physics of the

problem.

For extracting the VE parameters from Step 1, we assumed ν∞ = 0.25, whereas

the extracted value from Step 2 was ν∞ = 0.20. We examined the effect of this

difference on the effect of the VE fit and found that g1, g3, and τ1 did not change; τ3

changed by a factor of 25%, within the range of changing the starting point (Table

4.2).

We noted in exploring the effect of α and ν∞ that as long as P∞FE = P∞exp, the

viscoelastic parameters were not sensitive to either ν∞ or E∞. However, this meant

that in order to satisfy this condition, if we changed E∞ we would have to change
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ν∞ to achieve this.

The equilibrium elastic modulus measured by the 15 µm indenter (4.2 MPa) was

higher than that measured by the 170 µm indenter (0.77 MPa). This was the case

for both the FE model and by the modified analysis of Hayes et al. [103] using the

experimental data. We have documented this phenomenon in bovine cartilage [19]

but do not know the source of the size effect. We speculate that it may be due to

the inhomogeneity near the surface and the different volumes probed by different

sized tips at fixed indentation depths. In our prior work with bovine cartilage, 5 µm

and 90 µm tips did not show a relative size effect, but 5 µm and 190 µm tips did.

Thus the observed effect here for mouse cartilage for the 15 µm and 170 µm tips

is consistent with the bovine experiments. As with the bovine tests, we speculate

that the size effect in the mouse is due to the inhomogeneity near the surface and

the different depths probed by the different tips. The different layer thicknesses

and dimensions of inhomogeneity between the mouse and the bovine cartilage may

account for the effect of the differences in absolute tip size between the mouse and

the bovine cartilage. Another possible cause of the difference in equilibrium modulus

between the tips is that the 170 µm tip may not have been in complete contact due

to the curvature of the surface. From prior work, we have profiles of mouse tibia.

We compared these with the 170 µm length and concluded that if the tip were away

from the region of smallest radius of curvature, which we tried to achieve, there

should be no problem. However, if the tip were at the site of largest curvature,

there could be a problem of incomplete contact, which would show up as apparent

lower modulus. We went back and examined our data where multiple indents and

various locations along the profile were performed and saw no consistent pattern,

i.e., no single high modulus at the center and lower modulus away from the center.

Also, we used the first step as a preload and the second for fitting the parameters,
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so misfit would be minimized. As far as we can tell, we are getting complete contact

with the 170 µm tip. Another possible cause is that the second step of the load

protocol was used, assuming the starting point of that step as the unloaded state.

For the 170 µm tip, this should not be a problem because it behaves as a flat-ended

cylinder for approximately 80 µm displacement. For the 15 µm tip, however, the

start of the second step could be into the conical contact region, resulting in higher

loads and consequent higher apparent elastic modulus. We examined the data used

for this effect and the results are inconclusive. This issue should be considered and

care taken into account for when using our method with conical tips.

An assumption in our method is that the VE response and associated parameters

are the same for the 15 µm indenter as for the 170 µm indenter. This is similar to

the assumption of Huang et al. [73] who assumed that the VE response of the thin

strip in tension and a larger specimen in compression are the same. As with the

equilibrium modulus, it is conceivable that the VE response is also different between

the two indenters. This will have to be assessed with further studies, but assuming

a single VE model for both indenter tips appears a reasonable first step consistent

with current knowledge.
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Mesoscale Modeling of AC
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Chapter 5

Fibril-reinforced models for

articular cartilage

5.1 Overview

In Chapter 2 we briefly discussed the structure and composition of AC and some

of its important mechanical properties. Some of the prevalent continuum based

models to predict AC mechanical behavior were discussed in Chapter 3. However,

AC has a complex structure and is highly anisotropic. It also has different properties

in tension and compression. A common method to address this observed tension-

compression nonlinearity of AC is by using fibril-reinforced models. This has been

introduced earlier in Sec. 3.4.3. In this chapter this discussion is continued and some

of the important fibril-reinforced models are reviewed.

5.2 Spring fibril-reinforced models

As discussed in Chapter 3 there are two types of fibril-reinforced models seen in the

literature: spring models and continuum models. In the spring models, springs are
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placed between the nodes of the elements to represent the fibrils. This means that

fibrils can be represented only in the direction of the elements. One of the first spring

fibril-reinforced model was by Soulhat et al. [80] which formally presents an elastic

collagen fibrillar network which resists tension only, reinforcing an isotropic biphasic

component representing PGs and water. A linear formulation was proposed and the

corresponding analytical solution was found for uniaxial unconfined compression.

The solid stress of the fibril-reinforced material is given by the sum of the matrix

and fibril stresses [80], as

σE = σm + σf (5.1)

where σm and σf are the stresses in the non-fibrillar matrix and the collagen fibrils,

respectively. This model is described by two drained matrix elastic coefficients (Em

and νm), an equivalent Young’s modulus Ef of the fibril network, and hydraulic

permeability, k.

Li et al. [81–83] further developed the model by Soulhat et al. to include nonlinear

features. In their earlier models [81, 82] the stiffness of the collagen fibrils was

represented by a linear spring with stiffness E0, parallel to a nonlinear spring with

stiffness E1 = Eεεf as shown in Fig. 5.1a, where εf is the strain in the fibril direction.

For these models, the fibril stress was thus given by

σf =

 (E0 + Eεεf ) εf for εf ≥ 0,

0 for εf < 0.
(5.2)

In later models [83] the fibrils were assumed to be viscoelastic which changed

the fibril stresses to

σf = σ0(0) +

∫ t

0
G(t− τ)Ef (εf )ε̇f dτ, (5.3)
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(a) Elastic fibrils (b) Viscoelastic fibrils

Figure 5.1: Schematics for elastic and viscoelastic collagen fibril are shown.

where G(t) is the relaxation function represented by a discrete spectrum approxi-

mation as

G(t) = 1 +
∑
M

gm exp(− t

τm
), (5.4)

where τm are the characteristic times for viscoelastic dissipation.

5.3 Continuum fibril-reinforced models

In the continuum fibril reinforced models, the fibril orientation is independent of

the finite element mesh. This enables a representation of a geometrically realistic

network as fibrils can run in any direction. Several continuum models exist, e.g., [86–

89], which include some kind of homogenization technique to evaluate the structural

properties of articular cartilage from the microstructure. These models differ in

the computation of the stress matrix depending on the assumptions and model

formulation.

The micro-structural model by Schwartz et al. [86] is based on methods that have

been developed for fiber-reinforced composites. In this model, articular cartilage is

modeled as a spatial distribution of two components, fibers and matrix. The fibers
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simulate the collagen fibril network, the matrix simulates the PG-water gel. The

fibers are represented by a bilinear isotropic elastic material which is taken to be

stiff in tension and very weak in compression, thus capturing the slender, flexible,

cable-like nature of collagen fibers. The stress-strain response of the collagenous

component of the microstructure can be characterized by a taut and a slack Young’s

modulus (E+
f and E−f respectively) and a constant Poisson’s ratio (νf ) as

σf =
Efνf

(1 + νf )(1− 2νf )
tr(ε)I +

Ef
(1 + νf )

ε, (5.5)

where

Ef =

 E+
f (tension)

E−f (compression)
,

and E+
f � E−f . The matrix is modeled as a linear elastic isotropic material, where

σm = (Km −
2

3
µm)tr(ε)I + 2µmε. (5.6)

The values for the material constants are chosen in accordance with available ex-

perimental data from literature. Next, a basic structural unit (BSU) of the tissue’s

microstructure is defined. The BSU is a cylinder of collagen (a fiber) surrounded

by an annulus of matrix material as shown in Fig. 5.2. The relative radii of these

components are dictated by the collagen fiber diameter and the appropriate volu-

metric ratio of fiber to matrix (volume fraction). The BSU is assumed to be the

basic elastic energy storage unit in the microstructure. The tissue is idealized to be

a spatial distribution of such composite cylinders. Due to obvious symmetry along

the axis of the fiber, the elastic response of the BSU is transversely isotropic, and so

may be characterized by five independent elastic constants: E11, the stiffness of the

BSU in uniaxial extension, ν12 the lateral contraction (Poisson’s) ratio in uniaxial

extension, K23 the bulk modulus in transverse plain strain, µ12 the shear modulus
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Figure 5.2: The basic structural unit (BSU) of the Schwartz et al. model [86].
The inner cylinder represents a type II collagen fiber, the outer annulus represents
the hydrated PG aggregate. The two phases are connected by an elastic interface
sensitive to shear deformations.
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in the longitudinal plane and µ23 the shear modulus in the transverse plane. A pos-

sibility of an imperfect bond at the boundary of the two phases is also included by

imposing that the jump in tangential displacement across the fiber-matrix interface

is proportional to the tangential traction on this surface,

utan
m − utan

f = Rttan, (5.7)

where the variable R is the interface compliance, utan is the tangential component

of displacement and ttan is the shearing component of the traction vector. In the

calculation of E11, ν12 and K23, the interface condition, Eq. (5.7), does not come into

play due to the radial symmetry of the BSU. As a result, the commonly accepted

expressions for these constants may be used (Christensen, 1979) [104].

The analysis of the transverse and longitudinal shear moduli is performed explic-

itly because of the existence of tangential displacements at the fiber-matrix interface.

This is done by employing the concept of equivalent homogeneity to get the effective

modulus [104]. This assumes that there is a solid cylinder of radius rm, composed of

an ‘effective homogeneous’ material, which is equivalent to the heterogeneous com-

posite, and is subjected to the same boundary conditions as the composite cylinder

(BSU). To solve for the effective shear modulus, µ12, of the BSU, the energy stored

in the two cylinders is equated. This takes the general form

∫
Cylrm

CBSU
ijkl εklεij dv +

∮
rf

ttan(utan
m − utan

f ) ds =

∫
Cylrm

Ceff
ijklεklεij dv, (5.8)

where Ceff is the effective stiffness tensor, Cylrm denotes a cylinder of radius rm and

CBSU =

 Cfiber (0 < r < rf ),

Cmatrix (0 < r < rf )
(5.9)
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To address the distributed nature of the fibrous microstructure of the tissue, and

the ability of these fibers to reorganize under deformation, an orientation averaging

procedure which relates the properties of the homogenized BSU to the macroscopic

constitutive equation at a point is used. Only planar fiber distributions in the global

x− y plane are considered. The fiber distribution function f(ψ) is defined to be the

density of fibers which are oriented in the êψ direction, where

êψ = cosψî + sinψĵ

Because the fibers are assumed to be straight, f(ψ) = f(π+ψ). f(ψ) is normalized

by setting ∮
C1

f(ψ) dS =

∫ 2π

0
f(ψ) dψ = 1.0 (5.10)

where C1 is taken to be the unit circle.

The five effective material constants calculated earlier define the stiffness tensor

for a given BSU. Using the fiber density function to account for the distribution of

such elements, an effective stiffness for the composite at a point can be calculated

by orientation averaging [105]. The effective composite stiffness, Ceff
comp, is defined

as the spatial average of directional properties, weighted by the fiber distribution

function

Ceff
comp =

∫ 2π

0
f(ψ)(QψriQ

ψ
sjC

ψloc
rstuQ

ψ
tkQ

ψ
ul) dψ, (5.11)

where Qψ is the matrix of direction cosines, and Ceff
comp is the effective composite

stiffness tensor in the global coordinate system. A material point subjected to a

prescribed deformation, χ, will result in redistribution of fibers such that the image

of the distribution function f(ψ) under the deformation is

g(φ) = f(ψ)
dS

ds
[ψ = ψ(χ, φ)]. (5.12)
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The swelling effect of articular cartilage is included in the model in the form of a

initial fiber pre-strain which can be thought of simply as a pre-existing deformation

of the fiber, before any external loads or deformations are specified. This pre-

stretched equilibrium state is taken to be the reference configuration for subsequent

deformation.

This model is able to offer mechanistic explanations for the tensile nonlinearity

of AC and the reduction in stiffness due to matrix degradation. It also explains the

effect of this degradation on the swelling properties of the tissue. This is one of the

few models that addresses the fiber-matrix interaction and suggests its mechanical

role to be important in the shear properties of the tissue.

In the models of Wilson et al. [87,90,91] the collagen fibril network is modeled as

a combination of large primary and smaller secondary collagen fibrils. Bundles of

primary fibrils extend perpendicular from the subchondral bone and split up close

to the articular surface, in four different fibril directions, into fibrils which curve to a

horizontal course, flush with the articular surface. The collagen fibrils are assumed

to be viscoelastic and are represented by a linear spring with stiffness E0, parallel

to a nonlinear spring with stiffness E1 in series with a linear dashpot with damping

constant η as shown in Fig. 5.1b. The fibrils are assumed to resist only in tension

and the stresses in the viscoelastic fibrils are given by

σf = − η

2
√

(σf−E0εf )Eε
σ̇f + E0εf +

(
η + ηE0

2
√

(σf−E0εf )Eε

)
ε̇f for εf > 0

σf = 0 for εf ≤ 0

(5.13)

The non-fibrillar part of the solid matrix is assumed to be linear elastic, with a

Young’s modulus Em and Poisson’s ratio νm. The permeability, k is assumed to be
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strain dependent and given by Eq. (3.8). The solid stress in this model is given by

σE = σm +

tot f∑
i=1

σf,i~vnew,i ⊗ ~vnew,i, (5.14)

where σf,i are fibril stresses in the ith fibril and ~vnew,i the current fibril direction

of the ith fibril, and the sum is σf . The unknown material properties are deter-

mined by fitting them to unconfined compression and indentation measurements

of DiSilvestro and Suh (2001) [27] simultaneously. Wilson et al. later extended

their fibril-reinforced poroviscoelastic finite element model [87] with their bipha-

sic swelling model [77] to include the swelling properties due to the FCDs of the

PGs [90].

Federico et al. [88] used a homogenization procedure for transversely isotropic

composites with spheroidal inclusions [92]. They derive a transversely isotropic

transversely homogeneous (TITH) model in which every possible fiber direction is

taken into account. The model also incorporated the continuous variation of the

elastic modulus of cartilage as a function of depth. The solid phase of articular

cartilage is seen as a composite material made by three phases: a PG matrix and

two inclusion phases represented by the chondrocytes and the collagen fibers. A

global reference frame is defined to represent the properties of transverse isotropy

and transverse homogeneity and a class of local reference frames is used to represent

every single fiber in the fiber phase. In the global reference frame, the volumetric

concentration and the arrangement of the inclusion phases (collagen fiber phase and

chondrocyte phase) are assumed to vary continuously along the depth direction and

remain constant in the transverse plane, parallel to the articular surface and the tide

mark. The global elastic tensor of a (N + 1)-phasic composite, with an isotropic

matrix (index 0), N − 1 spheroidal inclusion phases aligned with the e1 direction,
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Figure 5.3: Micrograph of chondrocytes in articular cartilage, symmetry axis and
transverse plane for the TI model of Federico et al. [88] (a), the non-dimensional
cartilage depth, ξ (b), and the local reference frame for collagen fibers (c). (figure
from [88] based on photomicrograph from Clark et al. 2003 [106]).

which is the global symmetry axis (Fig. 5.3), and one inclusion phase (N) with

statistical orientation, is given by the following fourth order tensor expression:

L =

[
N−1∑
r=0

crZr +

∫
S2+

φcNZN da

]
·

[
N−1∑
r=0

crAr +

∫
S2+

φcNAN da

]−1

(5.15)

For each phase r, cr is the volumetric fraction, Zr = LrAr, where Lr is the elasticity

tensor and Ar the strain concentration tensor which depends on the aspect ratio of

the inclusion:

αr = ar/br (5.16)

Here ar and br are the longitudinal and transverse semi-axes, respectively. By

adjusting ar and br, different inclusions shapes can be used to represent chondro-

cytes and fibers. A chondrocyte inclusion is represented as an ellipsoidal inclusion,

whereas a rectilinear fiber inclusion is represented as an inclusion for which the as-

pect ratio, αr, tends to infinity. The two integrals in Eq. 5.15 are the directional

averages of tensors ZN and AN over all directions in space (represented by the

northern unit hemisphere S2+). Function φ is a normalized probability distribution
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density function of fiber distribution. Federico et al. [107] prove that Eq. (5.15) can

be written as:

L =

[
N−1∑
r=0

crZr + cN Z̄
α
NHα

]
·

[
N−1∑
r=0

crAr + cN Ā
α
NHα

]−1

(5.17)

where Z̄αN and ĀαN are Walpole’s components [108] of tensors ZN and AN , with

respect to the transversely isotropic tensor basis B = {Bα}6α=1, and tensors Hα are

the directional averages of the basis tensors B:

Hα =

∫
S2+

φBα da. (5.18)

The fluid phase is included with the help of depth-dependent permeability, and is

assumed to obey Darcy’s law.

Garcia et al. (2007) [89] proposed a biphasic viscohyperelastic fiber-reinforced

model for AC. AC is considered as a biphasic material with its solid component

formed of two phases. Both solid phases are represented by the viscohyperelastic

law described by Garcia and Cortés (2006) [74], but differ in the hyperelastic function

used. The fibers are assumed to resist only in tension. Briefly, the differential form

of the viscohyperelastic law [74] is described as:

S + t1Ṡ = C(SE) : E + t1(1 + β)C(SE) : Ė, (5.19)

where S is the second Piola stress tensor, E the Lagrange strain tensor, CSE the

second elasticity tensor [109] and t1 and β1 are the model parameters which describe

the viscous properties of each solid phase. To describe the deformation at equilib-

rium, when pore pressure is zero and the viscous effects of the solid phase have

disappeared, the following hyperelastic function by Holmes and Mow (1990) [110] is
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considered

ϕ = α0
exp[α1(I1 − 3) + α2(I2 − 3)

In3
− α0, (5.20)

where I1, I2 and I − 3 are the invariants of the right Green deformation tensor B,

and α0, α1, α2 and n are elastic coefficients. For the fibrils the following hyperelastic

function proposed by Limbert and Middleton (2004) [111] is considered:

ϕf =
Ef0

8γ
[exp(γ((λ2 − 1)

2
)− 1] (5.21)

where Ef0 is the Young’s modulus at zero deformation, γ can be used to adjust

the form of the stress-strain curve under tension and λ is the stretch ratio. The

equilibrium Cauchy stress in the fibers is calculated as

σα =
Ef0

2
λ2(λ2 − 1)exp(γ(λ2 − 1)

2
) (5.22)

For the fibrils, Eq. 5.19 takes the form

σα + t1σ̇α = f(λ) + t1(1 + β)ḟ(λ) (5.23)

where σ̇α is the material derivative of the Cauchy stress in the fibers, f(λ) is a

function of the stretch ratio λ, equal to the right term of Eq. 5.22.

This model was fit to experimental finite-deformation equilibrium curves re-

ported by Huang et al. (2005) [10] in human humeral cartilage under unconfined

tension and confined compression in directions parallel and perpendicular to the

surface, respectively. It was also used to fit reaction force and lateral displacement

curves reported by DiSilvestro and Suh (2001) [27] for bovine patella in unconfined

tests.
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5.4 Discussion

The ECM of AC can be considered as a fiber-reinforced composite solid consisting

of a dense stable network of collagen fibers embedded in a nonfibrillar matrix. AC

is inhomogeneous and anisotropic: its structure and composition vary throughout

its depth. The use of fibril-reinforced models for predicting AC mechanical behav-

ior provides various advantages over non-fibril-reinforced models. Including fibrils

addresses the anisotropy of the solid matrix (ECM). Also, in the fibril-reinforced

models, the fibrils resist only in tension. This provides a more accurate representa-

tion of the fibril behavior in the tissue. Wilson et al. [30] have concluded that the

local stresses and strains in AC are highly influenced by the local morphology of

the collagen fibril network and that to predict cartilage damage and adaptation the

specialized collagen fibril network morphology must be considered. Inroduction of

fibrils also allows inclusion of nonlinear properties of fibrils as well as more realis-

tic orientations of fibrils. It also helps relate observed mechanical behavior to the

microstructure establishing structure-function relationships.

The models reviewed here, and other similar models all aim to relate AC micro-

structure to its mechanical behavior. The spring-based fibril-reinforced models of

AC developed by Soulhat et al. and Li et al. (e.g., [80–83]) have aided in understand-

ing the role of the collagen network in time-dependent response of AC. Korhonen et

al. [112] have studied the influence of depleting PGs and degenerating collagen on

AC behavior using spring-based fibril-reinforced models. The microstructural model

of Schwartz et al. [86] offers mechanistic explanations for the tensile nonlinearity of

AC and stiffness reduction and its effect on tissue swelling due to matrix degra-

dation. Fibril-reinforced models of Wilson et al. [87, 90, 91, 113] have been useful

in understanding the depth-dependent compressive equilibrium properties of AC,

stresses in the local collagen network and compositional changes during cartilage



5.4. Discussion 78

damage and adaptation. The TITH fibril-reinforced model developed by Federico et

al. [88, 92] has been used by Han et al. [114] to predict the mechanical behavior of

chondrocytes in indentation and unconfined compression. The hyperelastic models

of Garcia et al. [74, 89] have incorporated nonlinear constitutive behaviors for indi-

vidual AC components to produce a more realistic simulation and prediction of AC

mechanical response.

All of the mathematical models of AC have been designed to deduce macroscopic

constitutive relations, with varying degrees of incorporating some details of the

microstructure. Consequently, the assumptions of details of the microstructure have

been highly idealized. It would not be possible, for example, to include the details of

the hypothesized microstructural composition and organization of Fig. 2.1. As such,

the microstructure cannot be related to the macroscopic response with any degree

of confidence. A goal of this part of the thesis is to evaluate the effects of specific

crosslinks between collagen fibrils, as shown schematically in Fig. 2.1. In order to

do this, a more realistic simulation of cartilage microstructure is needed. The idea

is to develop a mesostructural model of AC matrix that includes IFLs modeled as

simple linear springs. In the following chapters, the development and parametric

study of such a mesomodel is discussed in detail.



Chapter 6

Mesoscale Model Development

In this chapter, the development of the finite element mesoscale model that includes

major AC micro-constituents - collagen fibrils, extrafibrillar proteoglycan matrix

and interfibrillar cross-links - is discussed. A modeling strategy is developed that

captures the desired mechanical behavior of each model component as well as the

overall model in the simplest constitutive model. The modeling details of each

individual component are described. This is followed by a procedure to determine

the smallest size of the finite element model that gives the same average mechanical

properties for a given simulated mechanical test as any larger model. Choice of

appropriate boundary conditions will depend on the intended use of the model – as

a representative volume element (RVE), or as a specimen in a simulated test.

79
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6.1 Model Components

In this section, the desired mechanical properties of each major component of the

model – collagen fibrils, the extrafibrillar matrix (EFM) (mainly PGs) and the in-

terfibrillar cross-links (IFLs) – are discussed. The fibrils are modeled using 3D

line elements that share nodes with the EFM elements. This eliminates the need to

separately account for fibril-EFM interactions. This is followed by a detailed discus-

sion of how the components are modeled in the commercial FEA software package

ABAQUS. All development and analysis of the mesoscale model was carried out

using ABAQUS version 6.9-1. Recall from Chapter 1 that ABAQUS is widely used

in the field of cartilage research to understand cartilage mechanics and in estab-

lishing structure-function relations in cartilage growth, damage and degeneration,

especially in the context of osteoarthritis. Also, ABAQUS has an extensive library

of structural line elements such as truss, beams and frames that can be used for a

range of structural problems.

6.1.1 Collagen Fibrils

The collagen fibrils of soft tissues show a characteristic rope-like structure [115] and

behavior, resisting in axial tension while slacking or offering low contribution in

axial compression. Along the axial direction, the elastic modulus measured from

experiments has been reported in a wide range (∼ 100 MPa - > 1 GPa) depending

upon whether the measurement was under in-air or in vitro tensile testing [116–118].

The fibrils are slender and buckle easily when compressed [119]. It is the specialized

structure of the collagen fibril network - from the level of the tropocollagen molecule

to the organization of these molecules into the macroscopic fibrils, fibers and fascicles

- that is believed to impart the tissue its mechanical properties. Thus, the desired

fibril mechanical properties in the model are: high elastic modulus in the axial
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direction and easy bending under axial compression.

The diameter of the collagen fibrils not only varies from tissue to tissue, but also

within a tissue. For cartilage, tendon, skin, cornea, etc., the fibril diameter has been

reported to be in a wide range of 2− 1400 nm [120–126]. Compared to the typical

dimension along the axis, i.e., the length of the fibril, which is of the order of several

µm, the cross-section dimensions are small and thus slenderness assumptions hold

for the fibrils. This suggests using 3-D line elements in ABAQUS, such as beam

elements which are based on beam theory – a one-dimensional approximation of a

three-dimensional continuum.

There is also the challenge of modeling the bilinear rope-like behavior of the fib-

rils as correctly as possible. Bozec et al. [115] have suggested that modeling collagen

fibrils as ropes will provide a more accurate representation of fibril forming collage-

nous tissues. In this study we have assumed a homogenous rod-shaped structure for

the collagen fibrils, and we attempted to capture the rope-like behaviour by using a

combination of truss and beam elements with different elastic moduli for modeling

the collagen fibrils in ABAQUS.

Each fibril in the model geometry (Sec. 6.3) is modeled using 3D truss ele-

ments (T3D2). In ABAQUS, it is possible to set certain elements as non-tensile

or non-compressive, so that they do not carry any load in tension or compression

respectively. This property was utilized in the current model. The fibril truss el-

ements were set to be non-compressive with their elastic modulus set to the high

tensile modulus E+
f reported for collagen fibrils from literature. The truss elements,

thus, account for almost the entire tensile behavior of the collagen fibrils.

In order to model the very low resistance and easy buckling offered in axial com-

pression, pseudo-fibrils were introduced. Each truss fibril element was accompanied

by a beam pseudo-fibril element that occupied the same nodes as the truss fibril
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element and were modeled as beam elements. This imparted bending ability to the

fibrils along with an additional low axial stiffness in tension and compression. The

stiffness of these fibril beam elements is set to the low compressive stiffness E−f

(E+
f � E−f ) as used by Schwartz et al. [86]. This has the added advantage that

the low stiffness translates into low section modulus and consequently low bending

stiffness of the fibrils as desired. Linear two node beam elements (B31) in 3D are

used for the pseudo-fibrils.

6.1.2 Extrafibrillar Matrix

The EFM is regarded as a highly viscous gel composed mostly of PGs. The PGs

(mainly aggrecan) are responsible for the osmotic swelling and the elastic proper-

ties of the tissue. The EFM plays a very important mechanical role when cartilage

is loaded in compression during which fluid exudation from the tissue and fluid

redistribution within the tissue result in time-dependent viscoelastic behaviors ac-

companied by volumetric changes [24, 127, 128]. These processes contribute greatly

to the load distribution in the tissue [24] and recovery of the tissue after removal

of load [24,128,129]. During interstitial fluid flow high fluid pressures are produced

due to the low hydraulic permeability of the matrix. The stresses and strains on

the solid matrix phase (including the collagen fibrils) during normal joint loading

are reduced as a result of the interstitial fluid flow and the resulting fluid pres-

surization and energy dissipation. Thus, the low permeability of the tissue is a

very important mechanical property. The hydraulic permeability is related to the

pore structure in the solid phase, saturation of these pores by water and the PG

concentration [24,39,123,127,130–132].

Different FE models have used different types of elastic constitutive behavior

for the EFM. These include different symmetries (isotropy, orthotropy, transverse

isotropy, etc.), linear or non-linear or conewise-linear, etc. These have been reviewed
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in detail in Chapters 3 and 5. The elastic modulus of the EFM, Em, is very low

compared to the tensile modulus of the collagen fibrils. In this study, a linear elastic

constitutive behavior is assumed for an isotropic EFM for simplicity.

In our mesomodel, the intrinsic viscoelasticity of the solid phase of the tissue is

neglected. It is assumed that the time-dependent behavior is completely explained

by the fluid flow-dependent properties. In ABAQUS, the EFM is modeled as a

poroelastic material with 3D continuum coupled pore-pressure and stress elements

(C3D8RP). For simplicity, the porous skeleton of the matrix material is assumed to

be linear elastic and incompressible. It is assumed that the fluid flow through the

matrix is fully saturated – the interstitial water completely fills up the pores of the

matrix. ABAQUS adopts an effective stress principle to describe the constitutive

behavior of the porous medium. For a fully saturated flow, the effective stress

principle is written as

σE = σporous + pI (6.1)

where σporous is the stress in the porous material. The porosity of the medium, ń

is the ratio of the volume of voids to the total volume:

ń =
dVv
dV

(6.2)

The void ratio e, i.e. ratio of fluid to solid can be expressed in terms of the porosity

(ń) as

e =
ń

1− ń
(6.3)

In ABAQUS, the constitutive behavior for pore fluid flow is governed either by

Darcy’s law or by Forchheimer’s law. Darcy’s law is generally applicable to low

fluid flow velocities, as is the case in soft tissue models, whereas Forchheimer’s law

is commonly used for higher flow velocities.
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6.1.3 Interfibrillar Cross-links

The exact mechanical nature of the interfibrillar cross-links is unknown. It has been

hypothesized that such cross-links exist and it is assumed that these types of cross-

links are purely molecular in nature. Several studies have proposed such molecules

and specific binding mechanisms have been identified, e.g., type IX collagen by Eyre

et al. [52,53], matrilin-3 by Budde et al. [54], etc. Recently, Parsons et al. [56] were

able to confirm an interaction between type IX collagen and fibronectin, a molecule

that is one of the many molecules forming the EFM. Another such molecule via

which IFLs could be formed is decorin. Liu et al. [133] have measured the force

required to pull apart a single pair of decorin interactions to be 0.033 N/m. This

study is one of the few studies that aids in estimating the stiffness that is associated

with cross-links of these types.

In an effort to make this mesomodel as simple as possible, cross-links were modeled

as simple linear springs in 3D in ABAQUS. The spring element (SPRINGA) acts

between two nodes, with its line of action being the line joining the two nodes.

This line of action can rotate in large-displacement analysis. The spring stiffness

was estimated from the force-displacement data of the decorin molecules pulling

experiment from Liu et al. Thus, a simple spring equation as Eq. (6.4) illustrates

the simple mechanical behavior of the IFLs considered in this mesomodel:

F = −kx (6.4)

6.1.4 Pre-stress due to Swelling

Swelling of cartilage arises from two different mechanisms: (1) osmotic swelling,

which is due to an excess in ion particles inside the tissue, and (2) chemical expan-

sion, due to repulsion of the closely spaced negatively charged groups of the PGs.
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These mechanisms have been discussed in some detail in Sec. 3.3. The swelling pres-

sure as a result of these mechanisms is high enough to keep cartilage “inflated” [134]

in initial unloaded equilibrium. Ogston originally proposed the idea that in connec-

tive tissues the collagen network resists the osmotic swelling pressure exerted by the

PGs [134]. This idea has since been verified by different studies. As a result of the

swelling of cartilage, the collagen network is “prestressed” with tensile stresses and

compressive stresses in the EFM. Basser et al. used an osmotic stress technique to

measure the cartilage swelling pressure as a function of the hydration of the tis-

sue [135]. These measurements are used as initial pore pressure in the mesomodel

to obtain initial unloaded equilibrium as described below.

Normal cartilage is in equilibrium in vivo whereas the FEA always starts with-

out swelling. Hence, the model has to equilibrate to the equilibrium pore pres-

sure prior to any simulated mechanical test. This was done by using a Geostatic

Stress Field procedure available in ABAQUS as the first step of FEA. In this step,

Abaqus/Standard checks for equilibrium and iterates, if needed, to obtain a stress

state that equilibrates the prescribed boundary conditions and loads (ABAQUS

Analysis Manual). This stress state, which is a modification of the stress field de-

fined by the initial conditions, is then used as the initial stress field in a subsequent

simulated mechanical test.

6.2 Model Parameters

In summary, the matrix is modeled as a porous material that allows the flow of

interstitial fluid (water) into and out of the tissue and within the tissue. In the

context of the biphasic model, the collagen fibrils, the EFM and the IFL form

the solid phase, whereas the poroelasticity of the EFM accounts for the water in

the tissue. For the purpose of this mesomodel, viscoelasticity of the solid phase is
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Table 6.1: List of parameters in the mesomodel

Em Elastic Modulus of the extra-fibrillar matrix
E+

f Elastic Modulus of the fibrils in tension
E−f Elastic Modulus of the fibrils in compression
νm Poisson’s ratio of the extra-fibrillar matrix
νf Poisson’s ratio of the fibrils
κ Permeability of the extra-fibrillar matrix
p Initial pore pressure in the EFM
D Fibril Diameter
kxz Stiffness of in-plane, non-diagonal inter-fibrillar cross-link (XZ plane)
kdxz Stiffness of in-plane, diagonal inter-fibrillar cross-link (XZ plane)
kdxy Stiffness of out-of-plane, diagonal inter-fibrillar cross-link (XY plane)
kdyz Stiffness of out-of-plane, diagonal inter-fibrillar cross-link (YZ plane)

(Refer to Fig. (6.3) showing different cross-link orientations)
vf Fibril volume fraction
d In-plane inter-fibrillar distance (XZ plane)
dv Inter-fibrillar distance in the Y direction

neglected. Thus, it is assumed that the time-dependent behavior of the tissue is

entirely driven by the permeability of the EFM. A list of the parameters involved in

the mesomodel is presented in Table 6.1. In the course of parametric studies only a

limited number of important parameters are varied while others are left unchanged.

Chapter 7 discusses this in detail.

The dimensions of the cross-link stiffness and the elastic moduli of the extra-

fibrillar matrix and fibrils are different and, therefore, cannot be compared directly.

Straightforward dimensional considerations allow us to define the equivalent stiffness

for the extra-fibrillar matrix and the fibrils to aid in direct comparison to the stiffness

of the cross-links. For this purpose simple stiffness relations are used as described

below.

The equivalent stiffness km of the extra-fibrillar matrix along the Y direction is
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obtained by the relation

km =
AmEm

h
(6.5)

where Am is the area of the extra-fibrillar matrix element and h the height of the

typical model element. A typical model element is described in the model geometry

(Sec. 6.3).

Similarly, the equivalent stiffness k+
f and k−f of the fibrils in tension and com-

pression respectively are calculated by using

kf =
AfEf

h
(6.6)

by substituting the corresponding kf and Ef in tension and compression, respectively.

6.3 Model Geometry

The initial geometry selected for the model was a cube of side 1 µm. The length of

the side of the cube was changed later in order to determine the optimum size of

the model for conducting parametric studies. The initial geometry consisted of an

assembly of all the components of the model. It is a network of cross-linked collagen

fibrils embedded in an EFM composed of mainly PGs. The center of the cube is

located at the origin, so that the cube vertices go from −a to a along X, Y and Z

directions (a = 0.5).

The collagen fibril network considered in this model is structured. Each fibril

is almost vertical (angle made with the Y axis < 0.1o) based on observed fibril

orientation in the bovine patella. The entire cube can be thought of as an assembly

of rectangular columns as shown in Fig. 6.1. Each column is composed of 4 fibrils

that form its vertical edges, each fibril shared with the neighboring columns. The

space between the fibrils is filled up completely by the EFM. Each column was
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X

Y

Z

dv

Figure 6.1: A schematic representation of the initial model geometry is shown. The
model assembly is an approximate cube of side 1 µm. Crosslinks are not shown.
Each edge of the column is a whole-length fibril.
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discretized into smaller cubes each of which formed the typical unit cell of the entire

assembly. The typical 8-noded cell is a superposition of the fibril and cross-link

elements over the extrafibrillar matrix element. Each matrix element shares its

nodes with 4 fibril elements that form its Y edges. At each edge, the fibril elements

are shared with the neighboring cells. This eliminates the need to model interactions

between the fibrils and the EFM. A typical unit cell of the model assembly is shown

in Fig. 6.2.

The IFL configuration is also well defined. Each node pair that did not form a

fibril element was a candidate for an IFL. For example, in Fig. 6.2, node 2 can have

a cross-link with all other nodes except node 1. However, for simplicity, the number

of cross-links is kept to a minimum while retaining the stability of the structure.

In 2D, the simplest determinate truss configuration which is stable is a triangle.

Similarly, in 3D, the simplest determinate truss configuration that is stable is a

tetrahedron. The smallest number of tetrahedrons that can triangulate a cube is

5. This is obtained by using the cross-links shown in Fig. 6.2. The cross-links can

be divided into three types with reference to the XZ plane (plane perpendicular to

the fibril direction): (a) In-plane, non-diagonal cross-links (Fig. 6.3a), (b) In-plane,

diagonal cross-links (Fig. 6.3b), (c) Out-of-plane, diagonal cross-links (Fig. 6.3c and

d).

The cross-link orientations are identified in Fig. 6.3. During generation of this

cross-link configuration, care was taken that neighboring assembly elements did not

have a repetition of the same cross-link. Also, all adjacent assembly elements to a

particular assembly element had the opposite configuration of diagonal cross-links.

The original and opposite cross-link configurations are shown in Fig. 6.4.

The interfibrillar distance, d, is related to the fibril volume fraction, vf , and the

fibril diameter, D. This can be understood from looking at the top view of the

model assembly as shown in Fig. 6.5. The model assembly is made up of typical
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Figure 6.2: A typical unit cell of the mesomodel assembly is a superposition of the
collagen fibril and IFL elements over the EFM element. All these elements share
the 8 nodes. Node numbering scheme is consistent with ABAQUS. Fibrils at the
edges are shared with the neighboring cells.
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(a) (b)

(c) (d)

Y

XZ

Figure 6.3: Different orientations of the IFLs in a typical assembly element with
reference to the plane perpendicular to the fibril direction (XZ). (a) In-plane, non-
diagonal (XZ). (b) In-plane, diagonal (DXZ). (c) (DXY) and (d)(DYZ) show the
out-of-plane diagonal cross-links.
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Figure 6.4: Opposite cross-link configurations of adjacent cells. If a typical assembly
cell was of the configuration as shown in (a), all the assembly cells adjacent to it
had the configuration shown in (b).
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d

Included �brils
X

Z

Figure 6.5: A schematic showing the top view of the initial model assembly. Con-
sidering only the included area, each typical assembly cell includes 1 fibril element.
The interfibrillar distance, d, is thus related to the volume fraction of fibrils, vf , and
the fibril diameter, D.

elements which are the same size and dimensions. The total volume of the model is

therefore easily calculated to be

V = vnel (6.7)

The number of typical cells, nel, is always a known quantity. The volume of a typical

cell, v is calculated from its dimensions as

v = ach (6.8)

where ac is the area of cross-section and h is the height of the typical cell. It is

easily observed that no matter what the height of the typical cell, the cell volume

is partitioned according to the areas between the fibrils and the matrix. If only the
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internal included area is considered (which is normally the case for a unit cell), it is

further observed that every typical cell includes exactly one fibril element volume.

Or in other words, there is exactly one fibril per column of the model. Also, because

all the typical cells are approximately the same size and dimensions, the fibril volume

fraction in the model is approximately equal to the fibril volume fraction in a single

typical cell. Thus, the fibril volume fraction is calculated as

vf =
af
ac

=
πD2

4d2
(6.9)

The interfibrillar distance is equal in the X and Z directions and is initially set

equal to the fibril element length. Each fibril element is discretized along its length

so that the distance between two successive nodes along a fibril, dv, is approximately

67 nm, the typical D-period observed in collagen.

6.3.1 Geometry generation

The model geometry is generated using a program written in the commercial soft-

ware MATLAB. The terminology used is discussed briefly here. The fibril volume

fraction, vf , and the fibril diameter, D, are set constant and the inter-fibrillar dis-

tance, d, is calculated using Eq. (6.9). A term ‘order of the model’, n, is introduced

which sets the number of fibrils in the model. For a model of order n, the number

of columns is n2 and the number of fibrils is (n+ 1)2. This is illustrated in Figs. 6.5

and 6.6. For the purpose of determining the base model, the height of the model is

maintained at 1 µm. Once a suitable minimum number of fibrils needed is deter-

mined, the height of the model is adjusted so as to obtain a cube model geometry.

The base model and the procedure used to determine it is described in Sec. 6.5.
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n = 1
# of cols. = 12 =1
# of �brils = (1+1)2 = 4

n = 2
# of cols. = 22 =4
# of �brils = (2+1)2 = 9

n = 3
# of cols. = 32 =9
# of �brils = (3+1)2 = 16

Figure 6.6: Generated model geometry for n = (1, 2, 3). As n increases, the aspect
ratio of the assembly changes and starts approaching 1.
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6.4 Calculation of Effective Properties

The average stress theorem and the average strain theorem are used to calculate the

average stresses and average strains in the model. The effective material properties

are then calculated based on the corresponding average stress and average strain.

6.4.1 Average Stress Theorem

The volume-average theory or the average stress theorem [136] is used to determine

the average stress on the RVE. This theorem states that in case of absence of body

forces, for a given uniform external load on an RVE the volume average of the forces

within the RVE is identical to the given force on the boundary. ABAQUS reports

the Cauchy stress tensor Sij at all the integration points in the model. Thus, the

averaged stress is given by

〈σij〉 ≡
1

V

∫
V
SijdV (6.10)

where V is the volume of the RVE. The gradient of the directional vector x can be

written as

(∇x) = xi,j = δij (6.11)

where δij is the Kronecker delta. The stress tensor is thus given by

Sij = Skjδik = Skjxi,k (6.12)

At equilibrium, i.e., Skj,k = 0, the divergence theorem gives

〈σij〉 =
1

V

∫
V
Skjxi,kdV =

1

V

∫
V

(Skjxi),kdV −
1

V

∫
V
Skj,kxidV (6.13)

〈σij〉 =
1

V

∫
∂V
nkSkjxidS (6.14)
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where nkSkj is the traction, tj , exerted on the boundaries of the RVE. Therefore,

〈σij〉 =
1

V

∫
∂V
xitjdS (6.15)

Eq. (6.15) is given in discrete form by [137]

〈σij〉 =
1

V

∑
boundarynodes

xiFj∆S (6.16)

where xi is the i-component of the position of the boundary node and Fj is the force

developed on the boundary node in the j-direction.

6.4.2 Average Strain Theorem

The average strain theorem states that for an exterior homogeneous displacement

given on the entire boundary of the RVE, the volume average of the strain is the

constant strain applied at the surface as given by Eq. (6.17). The reader is referred

to Loehnert [136] for details.

〈εij〉 = ε0
ij (6.17)

where ε0
ij is the constant strain applied at the surface.

6.4.3 Effective Material Property

The effective material property is calculated only in the main direction of stresses

relative to the displacement used on the model. A specific displacement is applied

to the model to calculate a specific material property. For example, when applying

a compressive displacement in the Y-direction, i.e., along the fibril axial direction,

then then effective compressive modulus is calculated from the volume average stress
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and strain tensors in the direction of the perturbation,

Eeff
yy =

〈σyy〉
〈εyy〉

(6.18)

The other components of the stress tensor are neglected in this case. This procedure

is valid only if a uniaxial stress state is achieved from the perturbation on the

model. The choice of boundary conditions is, thus, important. The 3D homogeneous

boundary conditions and 3D periodic boundary conditions retain such a uniaxial

stress state in the model.

6.5 Base Model

In order to conduct the parametric studies on the mesomodel, some preliminar-

ies need to be considered. These include determining the optimum size (number

of fibrils) of the model, discussing which boundary conditions are appropriate for

parametric studies and finalizing the simulated mechanical tests for the parametric

studies. This section discusses these baseline choices.

6.5.1 Optimum size

To reduce the computation time, it is desirable to have the smallest size of the model

that can give consistent results. As a result of the method of model generation, the

size of the typical element is constant for a given combination of vf and D. Thus,

the size of the model is governed by the number of fibrils desired. The optimum

size of the model is determined using the procedure described below. Simulations of

unconfined compression along the Y direction for the mesomodel were carried out

for various values of cross-link stiffness k. All the cross-links, i.e., in-plane as well as

out-of-plane, were active and had the same stiffness, k. The pore pressure was set

to zero during this entire procedure. Table 6.2 lists values used for the parameters
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Table 6.2: Values of model parameters used for obtaining base model

Em 30 Pa (km ∼ 10−8mN/µm)
E+

f 150 MPa
E−f 0.1 MPa (k−f ∼ 10−3mN/µm)
νm 0.5
νf 0.5
κ 2× 10−15 m4/N-s
D 50 nm
kxz = kdxz = kdxy = kdyz k
vf 0.4
d = dv ∼ 67 nm

during this procedure.

Figure 6.7 shows a schematic representation of the unconfined compression sim-

ulation setup. These simulations were carried out for n = 13 or 196 fibrils. This

value of n generates a model that has an aspect ratio of 0.98 for the geometry pa-

rameter values as in Table 6.2, closest to the desired value 1 of the cube. For these

simulations, all the nodes on the top surface were prescribed a 5% displacement in

the negative Y direction and the Y displacement of all the nodes on the bottom face

was fixed to zero such that free Poisson effect could be obtained along the X and Z

directions.

During preliminary studies for small number of fibrils (4, 9, 16, i.e., for small

n), it was observed that for small values of k (k/km < 10−4), there was an excessive

‘hour-glass’ distortion of the matrix elements caused by random bending of the

fibrils. This effect gradually disappeared and the fibrils deformed together more

and more as a unit with increasing k. Thus, the lowest value of k for which there

was a reasonable deformation of matrix elements (no hour-glass effect) was obtained

and fixed for the next step. This value was found to be of the same order of k−f , i.e.,

k/k−f ≈ 1 ≈ km × 105. The stiffness k was held constant at this value and the order
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Figure 6.7: A schematic showing the setup of the unconfined compression simula-
tions on the initial model assembly geometry.

of the model was increased from 1 to 13 and simulated unconfined compression tests

were carried out. Note that for each different value of n, the aspect ratio (ratio of

assembly width to assembly height) of the model assembly was different because

the height remained constant while the width increased with n (refer to Fig. 6.6)).

Thus, the aspect ratio of the assembly increased with increasing n and approached

1 as the assembly approached the shape of a cube. For each n, the effective modulus

in compression was calculated as explained in Sec. 6.4 and compared. The goal was

to determine the smallest number of fibrils that gives the same effective modulus

with addition of more fibrils.

Figure 6.8 summarizes the results of these simulations. For small values of n the

effective modulus in compression, Eeff
yy , decreases steeply with increasing number of

fibrils. But, as more and more fibrils are added, the reduction in Eeff
yy decreases and

starts to plateau. It is clearly seen that after 100 fibrils (n = 9), Eeff
yy hardly shows

any variation. To err on the side of caution, the optimum size of the model is chosen

as n = 10 or 121 fibrils. This choice of n results in a model with unequal width and
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Figure 6.8: Plot showing sensitivity of Eeff
yy calculated for unconfined compression to

the number of fibrils used in the mesomodel. For less than 50 fibrils, Eeff
yy decreases

rapidly with increasing number of fibrils. However, for more than 50 fibrils, the
decrease in Eeff

yy starts to plateau as number of fibrils increase.
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Figure 6.9: Plot showing sensitivity of Eeff
yy calculated for unconfined compression

to the number of fibrils used in the mesomodel with a cube geometry. The variation
in Eeff

yy has a similar trend as Fig. (6.8)

height. To maintain the aspect ratio close to 1, the height of the fibrils is reduced

to the width of the model with 121 fibrils.

To check if the variation of Eeff
yy observed above was not due to the changing

aspect ratios, another set of simulations of unconfined compression along the Y

direction were carried out for the same fixed value of k and for n ranging from 1 to

13. However, this time, the model aspect ratio was maintained for each n to 1, i.e.,

the model assembly was maintained as a cube. Thus, the mesomodel was simply

an assembly of n3 typical elements. In this study, as n changed, the aspect ratio

remained constant, but the height of the fibrils increased with increasing n. Fig.

6.9 shows the results of the simulations for these set of simulations with constant

aspect ratio of the model assembly. A similar variation of Eeff
yy with number of fibrils

is seen. This plot confirms our choice of 100 fibrils or more. Thus, the choice of a
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cube model with 121 fibrils is selected as the optimum size for the model.

6.5.2 Boundary Conditions

Generally numerical simulations are conducted owing to complexity of analytical

models. However, it is often unnecessary and inefficient to simulate an entire system.

Therefore, a region of interest is chosen for numerical simulation and the physical

processes outside the region are included by the choice of appropriate boundary

conditions. With different boundary conditions one may obtain totally different

results from numerical simulations. Also, improper boundary conditions may reflect

or introduce non-physical phenomena on the region of interest.

When dealing with numerical simulations of a microstructure the boundary con-

ditions reflect the role played by the microstructure in the macroscopic behavior.

Two types of boundary conditions are usually considered: periodic boundary con-

ditions and homogenous boundary conditions.

Periodic Boundary Conditions

The microstructure of interest is often a RVE of the macrostructure, i.e., the macrostruc-

ture can be thought of as an assembly of periodically-repeated cells that the mi-

crostructure represents, thus homogenizing the heterogenous material. In such cases,

periodic boundary conditions are appropriate. As the periodic array of the repeated

RVEs forms a continuous physical body, it follows that the following conditions be

satisfied at the boundaries of neighboring cells: the displacements need to be con-

tinuous, i.e., adjacent cells cannot penetrate or separate after deformation, and the

distributions of traction need to be the same on opposite boundaries.

Figure 6.10 adapted from van der Sluis et al. [138] shows a periodically deformed

unit cell under uniaxial tensile conditions in 2D. The periodic boundary conditions

for this case are:
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Figure 6.10: Periodically deformed unit cell with boundaries ΓIJ and vertices vi.

u12 − uv4 = u11 − uv1

u22 − uv1 = u21 − uv2

uv3 − uv2 = uv4 − uv1

The implementation of 3D periodic boundary conditions is quite complex. Also,

in the context of soft tissues, the mesostructure that the mesomodel represents

cannot be considered as an RVE due to the spatial and structural variation in the

composition of soft tissues. Thus, periodic boundary conditions are not appropriate

for this study. Homogeneous boundary conditions are used instead.

Homogenous Boundary Conditions

The choice of homogeneous boundary conditions implies that the RVE with its

micro-constituent can be considered as a material specimen. That is we are simu-

lating a very small specimen from some part of the macrostructure which is closely

approximated by the RVE. Not only is the use of homogeneous boundary conditions
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Figure 6.11: A schematic showing the setup for the simulated uniaxial perturbation
tests for the mesomodel. Displacement δ is positive for tension and negative for
compression.

appropriate, but, also they are much easier to implement, are less time consuming

and require less computational effort than the periodic boundary conditions.

The homogeneous boundary conditions are obtained from Aboudi [139]. Three

adjacent faces (X-, Y- and Z-) are chosen as the planes of symmetry. Certain degrees

of freedom on the these symmetry faces are restrained. The other three faces are

set free of constraints and the desired displacement applied depending upon the

simulated test (uniaxial compression along the fibril direction Y+).

The displacements chosen represent the main mode of loading in different tissues.

Uniaxial compression is used to study articular cartilage, as that is the prevalent

loading mode in articular cartilage. Similarly uniaxial tension is used to study

tendons.

Figure 6.11 shows this procedure for simulated uniaxial tests. The symmetry

faces were constrained such that no displacements occurred normal to the faces. Any
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points on these faces are free to slide along the planes in which they lie. All other

(non-symmetrical) faces are free of any displacement constraints and are traction

free. The uniaxial tests of compression (for articular cartilage) and tension (for

tendon) along the fibril direction (Y) were then carried out. Compression tests were

conducted at a strain rate of 0.2%/sec while tension tests were performed at 1%/sec.



Chapter 7

Parametric Study

This chapter details the parametric study undertaken to assess the sensitivity of the

mesomodel to various parameters involved. Unless otherwise stated, the parametric

variations were carried out for simulated uniaxial compression tests along the fibril

direction. This was done as compression tests are most relevant to articular cartilage.

We first consider variations of cross-link stiffness and geometry. We then consider

variations of different material parameters. For the latter variations, all simulations

were performed for two different configurations of interfibrillar cross-links (IFLs).

The results show how the presence of cross-links affects the effective modulus in

compression.

106
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Table 7.1: Parameter base values used for parametric study.

Em 0.5 MPa
E+

f 150 MPa
E−f 2 MPa
νm 0.5
κ 2.1× 10−15 m4/N-s
p 0.0395 MPa
D 40 nm
k 0.0033 N/m
vf 0.256
d 70 nm
dv 70 nm

7.1 Base values for parameters

The base values of the model parameters for the parametric study are listed in

Table 7.1. Unless otherwise stated, the model parameters were set to these values.

The choices for these base values are based on literature values and discussed in

Chapter 6. Typical deformed and undeformed configurations of the mesomodel and

the undeformed fibril orientations in simulated compression tests are shown in Fig.

7.1.

7.2 Effect of Cross-link stiffness, k

The focus of the mesomodel is to assess the mechanical effect of the IFLs and their

contribution to the overall stiffness of the tissue. As discussed earlier, the exact

mechanical nature of these cross-links is not known. However, some information

on their potential stiffness is available. Following Liu et al. [133] and using Eq.

(6.4), the cross-link stiffness, k, is calculated to be 0.033 N/m. Redaelli et al.

[140], through a molecular mechanics approach, obtained stiffness values of 2.7 ×

10−8 N/m at low strains and 3.1 × 10−2 N/m at high strains for tension in the
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Figure 7.1: Typical configurations of the mesomodel in a simulated compression test.
Left : Deformed configuration (grey) at 5% strain superimposed over the undeformed
(white) configuration. Right : Undeformed fibril orientations are shown.

glycosaminoglycans (chondroitin-6-sulphate) bound to decorin in tendon. Using

these values as a reference, k was varied over several orders of magnitude. For

each cross-link configuration studied, all active links were assumed to have the same

cross-link stiffness, k. Different cross-link orientations are shown in Fig. 6.3. In

simulations assessing the effect of cross-link stiffness k, all cross-links were active.

In preliminary simulations, it was observed that simulation runtimes with k of the

order of 10−2 (Liu et al. and Redaelli et al. for large strains) were of long duration

(∼ 24 hrs for 3% strain). In the interest of faster simulations, the values of k used

were: no cross-links (or k = 0), 3.5 × [10−6, 10−5, 10−4, 10−3] N/m. Although, the

stiffness values reported in the literature (order of 10−2) have not been used, we

believe that this range of k is sufficient to study the qualitative effect of the IFLs

on the model. All other parameters had the same values as in the base model (Sec.

7.1), except the value of κ used was 2× 10−16 m4/N-s.

In order to understand the interactions between the three components of the
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mesomodel and to assess their relative contributions to Eeff
yy , the following three

model compositions were studied:

• With all components included: fibrils, EFM and IFLs

• With the EFM removed, i.e., with fibrils and IFLs

• With the fibrils removed, i.e., with EFM and IFLs
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Figure 7.2: Effect of cross-link stiffness, k on Eeff
yy . All cross-links were active and

had the same stiffness, k. Mesomodel with all components (–), EFM removed (- -),
fibrils removed (. . . ).

Recall from Sec. 6.2, km is the equivalent matrix stiffness with the same dimensions

as k. The value km = 3.5×10−3 N/m for Em = 0.5 MPa was used in the base model

in the parametric study.

Figure 7.2 (solid line) shows effect of varying the cross-link stiffness for the me-

somodel which included all components. The effective modulus in compression,
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Eeff
yy , increases with increasing cross-link stiffness. The value of Eeff

yy reported for

k/km = 10−4 corresponds to the value obtained when cross-links were removed

(k = 0). The value of Eeff
yy obtained for k = km was ∼ 32% higher than that

obtained with all cross-links removed.

Figure 7.2 (dashed line) shows the effect of varying cross-link stiffness on the

effective modulus, Eeff
yy , with the EFM elements removed. When both the cross-

links and the EFM elements were removed (only fibrils in the mesomodel), the

effective modulus Eeff
yy = 0.01 MPa, is negligible when compared to Eeff

yy = 1.32 MPa

calculated for k = km with all components included. When only the EFM elements

were removed, Eeff
yy = 0.63 MPa was 47% of the value calculated for the mesomodel

with all components.

Figure 7.2 (dotted line) shows the effect of varying the cross-link stiffness on Eeff
yy

with the fibrils removed from the mesomodel. Without cross-links and fibrils (only

EFM in the mesomodel) the effective modulus Eeff
yy = 0.56 MPa, was ∼ 43% of

Eeff
yy = 1.32 MPa calculated for k = km with all components included. When only

the fibrils were removed, Eeff
yy = 0.64 MPa was ∼ 49% the value calculated for the

mesomodel with all components.

For the configuration with all model components included, the strain at which

the first instance of bending of fibrils seen, εbend
yy , is reported in Table 7.2 and shown

in Fig. 7.3. This observation was carried out manually, by looking at the deformed

fibril configuration every 0.2% strain. It was observed that as k was increased, the

first bending consistently occurred at higher strains and with k = km no bending of

fibrils was seen at 5% strain.
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Table 7.2: Effect of varying cross-link stiffness on the effective modulus with all
components included is shown.

k/km Eeff
yy (MPa) εbend

yy (%)

0 1.017 1.2
10−3 1.102 2.0
10−2 1.185 2.6
10−1 1.247 4.4
10−0 1.317 > 5
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Figure 7.3: Effect of cross-link stiffness, k on εbend
yy when all components were in-

cluded in the mesomodel. All cross-links were active and had stiffness k.
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Fig. (7.4) shows the effects of removing the EFM on the fibril configuration in the

mesomodel at 3% strain with different values of k. When the cross-links were absent

(top left) each fibril deformed individually, independent of the neighboring fibrils, re-

sulting in markedly different fibril orientations. Bending of fibrils was also observed.

Introduction of cross-links produced a more coordinated overall fibril orientation

and deformation. For k/km = 0.01 (top right), the fibrils showed co-ordinated de-

formation accompanied with bending, i.e., all fibrils were deforming similarly. For

k/km = 1 (bottom left), this effect was enhanced with reduced bending, while for

k/km = 10 (bottom right), no bending was observed.

Figure 7.4: Effect of removing the EFM elements on the fibril configuration at 3%
strain. All cross-links were active when cross-links included in the mesomodel. Top
left : cross-links removed (only fibrils in the mesomodel), top right : k/km = 0.01,
bottom left : k/km = 1, and bottom right : k/km = 10.
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Presence of IFLs increases the effective modulus in compression

These results clearly demonstrate that the inclusion of interfibrillar cross-links in the

mesomodel increases the effective modulus in compression along the fibril direction.

The percentage increase in the effective modulus due to presence of cross-links is

directly related to the value of k used in the model.

Comparing the effective modulus for the different compositions with and without

cross-links included is quite informative. Here we look at the different compositions

for k = km and for k = 0 (i.e., with cross-links removed). With all components

included in the model, the effective modulus of the mesomodel was 32% higher when

cross-links are present. When the fibrils were removed from the model, presence

of cross-links resulted in Eeff
yy to be only ∼ 14% higher than with the cross-links

removed. When the EFM is removed, this difference is dramatically increased.

The fibrils by themselves provided neglible resistance to compression. But, in the

presence of cross-links there was a ∼ 60 fold increase in the effective compressive

stiffness of the mesomodel. This suggests that the presence of cross-links has a

greater influence on the fibrils than on the EFM, likely due to increased stability of

fibrils in the presence of cross-links.

IFLs organize and stabilize the fibrillar network

When the matrix was removed, and the cross-link stiffness varied, the deformation

of the fibril network at the same strain level (3%) was markedly different as seen

in Fig. 7.4. When all the IFLs were removed, each fibril deformed independent of

the neighboring fibrils. With introduction of IFLs, for lower values of k/km, a more

co-ordinated deformation accompanied by bending of fibrils was seen. Groups of

fibrils deformed together, although there were differences in the fibril configurations

among different groups. The cross-links connect individual fibrils with their neigh-

boring fibrils, thus forming a fibrillar network that deforms in unison. At k = km,
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the deformed configuration of the fibril network was much more organized with

almost all fibrils deforming together with reduced bending. At k = 10km (same

order as reported by Liu et al. al [133]), no bending was observed with all fibrils in

the mesomodel deforming together. This suggests that the IFLs may perform the

important function of organizing the fibrillar network and imparting some stability

to the network. In the presence of the IFLs, the fibrils can support compressive

loads for larger strains before bending. Thus, the presence of cross-links contributes

greatly to the ability of the fibrillar network to withstand compression.

The cross-links are not the only component that can organize and stabilize the

fibrillar network. The EFM also seems to play a part in performing these functions.

This is inferred by comparing the fibril configurations for two results at k = km:

first with only the EFM removed, and the second with all components included. In

the absence of the EFM, the deformed fibril configuration showed bending in fibrils

at 3% strain (refer to Fig. 7.4 bottom left). However, when the EFM was present,

there was no bending seen in any fibrils in the model with strain at 5%. When

the cross-links were removed from the model, in the absence of EFM, the fibrils

deform independently, bending individually right from the beginning of application

of compressive strain. When the EFM was present, the first bending in the fibrils

determined visually was not before the strain reached ∼ 1.2%. From this we can

conclude that the EFM assists the IFLs in organizing and providing stability to the

fibrils.

Relative contributions of model components to Eeff
yy

Fig. 7.5 shows comparison of the effective modulus, Eeff
yy , for various compositions

of the mesomodel. Results are shown for cross-link stiffness k = km for all cross-

links, when cross-links were included. With all components, the effective modulus

was 1.32 MPa. With cross-links and the EFM elements removed, Eeff
yy = 0.01 MPa.



7.2. Effect of Cross-link stiffness, k 115

Only
Fibrils

Only
EFM

No
EFM

No
Fibrils

No
IFLs

All
Present

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
ef

f
y
y

, 
M

P
a

Figure 7.5: Comparison of Eeff
yy for different mesomodel compositions at ε = 5%.

With addition of cross-links, Eeff
yy increased 60 times to 0.62 MPa. Thus, along with

the IFLs, the fibrillar network contributed almost 47% of the effective modulus with

all components. Addition of the EFM to the cross-linked fibril network, more than

doubled Eeff
yy to 1.32 MPa. Thus, the total stiffness seems to be due to the combined

fibril/cross-link network and the EFM. With the IFLs removed, the fibrils and the

EFM together resulted in Eeff
yy = 1.01 MPa which is a 100 fold increase compared

to the model with only fibrils. This demonstrates that the EFM is responsible for

supporting the bulk of the compressive loads in the model. However, it must also be

noted that the increased load carrying capacity is also partly due to the stabilization

of the fibrils by the EFM and the fibrils carrying load without bending. The fibril

elements, by themselves, carry negligible compressive load, but together with the

EFM, the stiffness of the model increases immensely. The presence of cross-links

enables organization of the fibrils into a network and, with assistance from the
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EFM, stabilizing and resisting bending of the fibrils, thus, further increasing the

load carrying capacity.

7.3 Effect of cross-link geometry

There are a number of different ways to assign the extent of interfibrillar cross-linking

in this mesomodel. We have chosen the simplest configuration of cross-links that

divides each typical element in 5 tetrahedra. However, to assess the role played by

different types of cross-links (as described in Chapter 6 Sec. 6.3), Eeff
yy was calculated

for the different cross-link geometries as shown in Table 7.3. For this study, κ was

set to 2× 10−15 m4/N-s and k was set to 5× 10−3 N/m. All other parameters had

the same values as the base model described in Sec. 7.1.

Table 7.3: Different cross-link geometries studied. Refer to Sec. 6.3 for model ge-
ometry and Fig. 6.3 for different cross-link orientations.

Geometry Active Cross-links kxz kdxz kdxy kdyz

1 None 0 0 0 0
2 All k k k k
3 Non-diagonal XZ k 0 0 0
4 All diagonal 0 k k k
5 Diagonal XZ 0 k 0 0
6 Diagonal YZ 0 0 0 k
7 Horizontal (all XZ) k k 0 0

Fig. 7.6 shows effect of varying the cross-link geometry on Eeff
yy . These results are

summarized in Table 7.4. The extreme values of the effective modulus were found

for cross-links geometries in which no cross-links (smallest value) or all cross-links

(largest value) were active. With all cross-links active, Eeff
yy was 40% higher than that

calculated for no cross-links. Including any one of the different cross-link geometries

increased the effective modulus by at least 8%. For geometry 3, in which only the
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Figure 7.6: Effect of cross-link geometry on Eeff
yy . Labels indicate cross-links that

were active in a simulation. All other cross-links were set to k ∼ 0.

Table 7.4: Effect of cross-link geometry on the effective modulus in compression

Geometry Active Cross-links Eeff
yy , MPa

1 None 1.003
2 All 1.408
3 Non-diagonal XZ 1.262
4 All diagonal 1.259
5 Diagonal XZ 1.183
6 Diagonal YZ 1.085
7 Horizontal (all XZ) 1.387
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in-plane non-diagonal cross-links were active (k = kxz), the effective modulus was

26% higher than that without any cross-links. For geometry 4, in which only the

diagonal cross-links were active (k = kdxz), E
eff
yy was also 26% higher. For geometry

5, in which only the diagonal XZ cross-links were active, Eeff
yy was 18% higher. The

vertical diagonal cross-links (XY and YZ) resulted in Eeff
yy that was only 8% higher.

When only the horizontal cross-links (cross-links in the XZ plane) were active, Eeff
yy

was calculated to be very close to that calculated when all the cross-links were active

(within 2%).

Cross-link geometry influences the effective modulus

From Sec. 7.2 we have seen that the presence of IFLs has a reinforcing effect on the

effective modulus, Eeff
yy . The results from this study reaffirm that result and more

importantly demonstrate the geometry of the cross-links used in the mesomodel also

influences Eeff
yy .

The simulated test being performed in this study is compression along the fibril

direction (Y). It is expected that the types of cross-links that have a vertical compo-

nent (DXY, DYZ) will be better able to support the compressive loads by providing

stability to the fibrils. The expectation is, therefore, that Eeff
yy for configurations

that include these types of cross-links should be higher than when they are inactive.

The result for cross-links of type DXY is not reported as it is expected to be same

as that for DYZ due to symmetry. Contrary to our expectation, including cross-

links type DYZ resulted in the smallest increase in Eeff
yy of all the different cross-link

geometries. A geometry with only the non-diagonal XZ cross-links resulted in a

26% higher value of Eeff
yy , while a geometry with all the ‘in-plane’ cross-links (la-

beled Horizontal in Fig. 7.6) resulted in a value of Eeff
yy that was within 2% of that

reported for a geometry with all cross-links active.

In order to explain the higher values of Eeff
yy for geometries with any or all of the
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in-plane cross-links vs. those with the ‘vertical’ cross-links, the fibril configuration

at various states of strains was visually inspected for all geometry simulations. The

strain at which first fibril bending occurred, εbend
yy , was ∼ 1.8% for cross-link geom-

etry DYZ, while there was no bending of fibrils observed at all for the geometry

with in-plane cross-links. This suggests that the geometry of in-plane cross-links is

able to provide better support to resist bending, needed for the fibrillar network to

carry compressive load. At the same time, it should also be noted that as the EFM

deforms in compression, it undergoes the Poisson effect. The geometry of in-plane

cross-links, when all active, tends to most resist this lateral expansion of the EFM

compared to other geometries, thus, contributing to a higher effective stiffness of

the mesomodel.

7.4 Material Parameters

Clearly, the geometry of cross-links used influences the effective modulus in com-

pression. Recognizing this, all studies that followed were performed for two different

configurations of the mesomodel. The first configuration had all cross-links active

and set to the same value k, while in the second configuration cross-links were

removed. This was done in order to assess the effect of presence or absence of

cross-links with a given parametric variation.

7.4.1 Effect of Fibril Compressive stiffness, E−f

The mesomodel had collagen fibrils that have different moduli in tension and com-

pression. In compression along the fibril direction, the fibril compressive modulus

plays the dominant role and the value of E−f used in the mesomodel will likely play

a role in the calculated value of the effective modulus. To assess the effect of E−f

on the mesomodel, its value was varied in a range found in the literature and used
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by other investigators in their FE models of cartilage. The values used varied from

0.2− 10 MPa.
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Figure 7.7: Effect of E−f on Eeff
yy in compression at 5% strain. —: With all cross-links

active and set to k = km. - - -: With no cross-links.

Figure 7.7 shows effect of varying the fibril compressive modulus E−f on Eeff
yy for

the two configurations–with and without cross-links as described previously. For

both configurations, Eeff
yy increased with increasing E−f , however, the difference in

the values of Eeff
yy between the two configurations was much larger at higher values

of E−f than at lower values. At E−f = 0.2 MPa, Eeff
yy calculated for configuration 1

was 9.8% higher than that for configuration 2, while at E−f = 10 MPa, it was higher

by 137.5%.
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IFLs enhance the fibril compressive stiffness

From these results it can be seen that the value of calculated Eeff
yy is sensitive to

the fibril compressive modulus, E−f , used in the model. Increase in E−f results in

an increase in Eeff
yy . This is not only true with the cross-links present, but also

when they are removed from the model. The presence of cross-links results in a

linear relationship between E−f and Eeff
yy . The result is also consistent with the

role of cross-links discussed earlier. The non-linear relationship when cross-links

are removed could be explained by bending of fibrils in the absence of cross-links.

Also, without cross-links, the rise in Eeff
yy is considerably less as E−f is increased.

This suggests that the presence of cross-links results in an amplifying effect on the

compressive modulus of the fibrillar network and the extent of amplification depends

on the value of E−f used.

7.4.2 Effect of EFM modulus, Em

The EFM plays a vital role in supporting the tissue mainly in compression and

shear. The value of the EFM modulus selected in the mesomodel will therefore

influence the calculated effective modulus. To assess this influence, the value of Em

was varied in a range of 0.05−0.8 MPa. These values were based on values reported

in literature in experiments as well as those used in similar FE models of soft tissue.

Fig. 7.8 shows effect of varying the EFM modulus Em on Eeff
yy with all cross-

links active and set to the same value k = 1× 10−3 N/m. For the four values of Em

studied–0.05, 0.1, 0.5 and 0.8 MPa – the corresponding values of km were 0.02, 0.01,

2× 10−3 and 1.25× 10−3 N/m. The effective modulus followed the EFM modulus,

i.e., Eeff
yy increased with increasing Em.
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Figure 7.8: Effect of Em on Eeff
yy in compression at 5% strain. —: With all cross-links

active and set to k = 1× 10−3 N/m. - - -: With no cross-links.

The effect of varying the EFM modulus was as expected. By increasing Em,

Eeff
yy increased. The non-linearity of the curves is quite bewildering, but, could be

attributed to bending of fibrils at different strains for different values of Em. A

visual inspection of the deformed fibril configuration for simulations for this study

showed that the strain at which the first bending of fibrils occurred, εbend
yy , gradually

increased as Em increased. This was true for simulations with or without cross-links.

Post bending the load support mechanism could be quite complex and likely non-

linear. Thus, although all components in the mesomodel are linear elastic, fibrils in

the fibrillar network bending at different strains corresponding to different values of

Em could be the source of non-linearity.
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7.4.3 Effect of EFM Poisson’s ratio, νm

The Poisson’s ratio is another mechanical property of the EFM that is likely to

directly affect the overall modulus. It will also likely play an important role in

the poroelastic response of the tissue. The Poisson’s ratio was varied in the range

0.2− 0.5. The mesomodel showed excessive distortion in the EFM elements as the

EFM was made more compressible (decreasing νm). This effect was not observed

when the initial pore pressure was removed. Thus, for the purpose of this study, the

initial pore pressure, p, was set to zero.
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Figure 7.9: Effect of νm on Eeff
yy in compression at 5% strain and initial value of

p = 0. —: With all cross-links active and set to k = 1 × 10−3. - - -: With no
cross-links.

Fig. 7.9 shows effect of varying the EFM Poisson’s ratio, νm, on Eeff
yy for the two

configurations of cross-link geometry. Increasing νm resulted in a decrease in Eeff
yy .

The value Eeff
yy = 1.38 at νm = 0.2 was ∼ 10% higher than Eeff

yy = 1.25 at νm = 0.5
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for the model with cross-links included. When cross-links were removed, Eeff
yy = 1.13

at νm = 0.2 was also ∼ 10% higher than Eeff
yy = 1.03 at νm = 0.5.

7.4.4 Initial Pore Pressure, p

The initial pore pressure sets up the initial stresses in various components of the

tissue mesomodel – tension in the fibrils and compression in the EFM. Its role on

the effective modulus was assessed by varying p in the range 0.04− 4 MPa based on

values reported by Basser et al. [135] and Chahine et al. [15] for articular cartilage.
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Figure 7.10: Effect of initial p on Eeff
yy in compression at 5% strain. —: With all

cross-links active and set to k = 1× 10−3 N/m. - - -: With no cross-links.

Figure 7.10 shows effect of varying the initial pore pressure, p, on Eeff
yy for the

two configurations. Change in p had a negligible change (< 1%) in the calculated

effective modulus with or without cross-links.
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The initial pore pressure did not have any effect on the effective modulus in

compression likely due to the incompressibility of the matrix. When the EFM was

made more compressible by decreasing νm, it resulted in excessive deformation in

the EFM in our simulations. Therefore the variation of the initial pore pressure at

values of νm other than 0.5 could not be tested.

For all studies in which initial pore pressure was applied and the model allowed to

equilibrate the fibrillar network was in tension while there were compressive stresses

in the EFM. However, the stresses in the fibrils were very low (∼ 10 − 50 Pa)

compared to the elastic moduli of the components which were of the order of MPa.

As a consequence of the large tensile modulus of the fibrils, E+
f , the tensile strain

produced in the fibrils was negligibly small (∼ 10−8). These values are low enough

to be in the error tolerance region of ABAQUS. To verify that these values were

realistic, E+
f was reduced to be equal to Em (∼ 1000 times less). For this low

value of E+
f , the tensile strains in the fibrils were three orders larger (∼ 10−5) but

still very small. Also, once the initial pore pressure had been applied, there was

negligible (< 1%) increase in the pore pressure in the mesomodel with the applied

strain (5%). Parametric study of initial pore pressure indicates that it does not have

any significant effect on the effective modulus in compression of this mesomodel. A

closer look at the mechanism of pore pressure and the pre-stress it produces in the

model components is required. This is discussed in the following section.

7.4.5 Mechanism of Pre-stress due to initial pore pressure

As discussed in the previous section, the goal for this study is to understand the

effect pre-stress in the mesomodel–induced due to the initial pore pressure–has on

the model response in compression. Understanding the mechanism by which the

pre-stress is overcome will aid in determining the role of the initial pore pressure in
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this model in carrying compressive load.

In the previous section, we discussed the very low tensile strains produced in the

fibrils post application of the initial pre-stress due to their high tensile modulus. To

facilitate larger strains, the fibril tensile modulus, E+
f , was reduced by 10 times to

15 MPa for this study. Study of previous simulations revealed that the pre-stress

had been completely overcome within the first 0.1% of applied strain. Therefore, a

compressive strain of 0.1% was applied at the same rate (0.2%/s) post equilibrium

after application of p.
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Figure 7.11: Fibril Stress vs. Axial Strain (%) in the pre-stress zone in compression.
The pre-stress is overcome at a negligibly small compressive strain.

Figure 7.11 shows the variation of the fibril stress with the average axial strain

for this study. In this plot, stresses and strains shown are positive. Recall that

each fibril assembly is a combination of a truss element and a beam element. The
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fibril stress shown is the total net fibril stress, which equals the stress in the fibril

truss element plus the stress in the fibril beam element, summed over all fibril

assemblies. Equilibrium at the initial pore pressure resulted in an average tensile

strain of ∼ 0.003% and an average tensile pre-stress of ∼ 50 Pa in the fibrils. As

compression was applied, the pre-stress linearly reduced until it was overcome. The

strain in the fibrils at this point was ∼ 0.0004%. Beyond this point, compressive

stresses increased linearly with strain as expected, but, the slope of the curve reduced

by almost 90%.

The axial tensile stress and strain in the fibril elements, as a result of equilibration

with the initial pore pressure, depend on the fibril tensile modulus, E+
f , used in the

simulation. Reducing E+
f by 90% of that used in the base model produced tensile

stresses of the order of Pa and strains of the order of 10−5%, which are negligibly

small compared to the order of stresses and strains that occur in most tissues. If a

realistic fibril tensile modulus were used these values will be even lower.

As compression proceeded post initial equilibrium, the tensile pre-stress in the

fibrils decreased linearly and eventually reached zero. The strain at which the pre-

stress was overcome was not zero. The initial pore pressure, through the pre-stress

mechanism, enabled the fibrillar network to withstand a small compressive strain.

It resulted in a shift of the stress-strain curve to the left, albeit by a very small

amount.

Beyond the pre-stress the stress-strain curve is linear, but, with a much smaller

slope as compared to the part of the curve where pre-stress prevailed. This can be

explained as follows. In the pre-stress zone where the fibril stress is tensile, much

of the load is carried by the fibrils on account of their very high tensile modulus,

E+
f = 15 MPa in this simulation. Consequently, the slope of the curve is larger in
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this region of the plot. As the pre-stress is overcome, and compressive stresses set

in, much of the load is now supported by the EFM. From Sec. 7.2 we have seen

that the fibrils by themselves carry negligible compressive loads. Due to its very low

elastic modulus, Em = 0.5 MPa in this simulation, the EFM offers far less resistance

in compression than that of the fibrillar network in tension. Once the pre-stress is

overcome in the fibrils, the overall stiffness reduces dramatically, and therefore a

flatter response is seen in the plot for this zone.

The results from the parametric study of initial pore pressure showed that it did

not influence the effective modulus in compression. The results from this study

show that the initial pore pressure resulted in a negligibly small tensile stress in

the fibrillar network that was overcome instantaneously in compression. Until a

pressure equal to the prestress is applied, fibrils create pseudo-pressure. During this

pressure range, the stiffness of the body is dictated by the fibril stiffness. Hence,

prestress causes high stiffness for small stiffness. One can expect that removing

the initial pore pressure from this mesomodel (p = 0) will not change, for practical

purposes, the results from these parametric studies or the conclusions drawn from

those results.

7.4.6 Effect of EFM Permeability, κ

The permeability of the EFM, κ, is one of the poroelastic parameters that may

influence the effective elastic modulus. The effect of κ on Eeff
yy was studied by

varying κ over a range of two orders of magnitude. The values chosen were: 2 ×

[10−14, 10−15, 10−16] m4/N-s, based on the commonly reported range of 10−14–10−16

m4/N-s by various investigators. Recall that the loading is carried out at a rate of

0.2% strain/sec.
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Figure 7.12: Effect of κ on Eeff
yy in compression at 5% strain at the rate of 0.2%

strain/sec. Variation at different p holding νm = 0.5. Circle: p = 0.4, cross: p = 0.
—: With all cross-links active and set to k = 3.5× 10−3. - - -: With no cross-links.
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From Secs. 7.4.4 and 7.4.5, we have seen that the initial pore pressure does not

affect Eeff
yy and will likely not affect the influence of other model parameters on Eeff

yy .

The parametric study on κ was, therefore, carried out in two parts. In the first part

of the study (Fig. 7.12), νm was held constant at 0.5 and κ was varied for p = 0.4

MPa (circles) and p = 0 MPa (crosses).

The permeability of the EFM had no effect on the effective modulus at these

values of νm and p. When cross-links were included (solid lines), the two curves for

different values of p overlap exactly. When cross-links were removed (dashed lines),

Eeff
yy was slightly higher (∼ 1.5%) at p = 0.4 MPa than at p = 0.

The variation in permeability of the EFM can influence the effective modulus in

two ways: (1) affecting the pore fluid flow, and (2) affecting the deformation of the

solid material that forms the skeleton of the EFM. In this study, however, with νm =

0.5, the material is incompressible. In all our simulations, there was negligible change

in the pore pressure at 5% compression from the initial pore pressure. This indicates

that the fluid exudation during compression was not enough to cause any significant

change in the pore pressure. Also, for this model, the characteristic gel diffusion

time in confined compression can be used and is calculated to be Tg =∼ 10−3, which

implies that the flow effect is over in a very short time. These observations lead us

to believe that lowering νm may result in some effect on the effective modulus by

varying κ.

In the second part of the study (Fig. 7.13), the initial pore pressure was held

constant at p = 0 and κ was varied for the same values as above for νm = 0.5

(crosses) and νm = 0.2 (squares).

When cross-links were included, κ had no effect on Eeff
yy . In the absence of cross-

links, κ had no effect on Eeff
yy at νm = 0.5 (crosses). However, at νm = 0.2, increasing

κ by two orders of magnitude resulted in a ∼ 4% increase in the corresponding value



7.4. Material Parameters 131

10-15 10-14

, m4 /N-s

1.0

1.1

1.2

1.3

1.4

1.5

E
ef

f
y
y

, 
M

P
a

Figure 7.13: Effect of κ on Eeff
yy in compression at 5% strain at 0.2% strain/sec.

Variation at different νm holding p = 0. Cross: νm = 0.5, square: νm = 0.2. —:
With all cross-links active and set to k = 3.5× 10−3. - - -: With no cross-links.
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of Eeff
yy .

These results are quite confounding and indicate that κ had an effect on Eeff
yy only

when there were no cross-links, the EFM was compressible and initial pore pressure

was zero. In this case Eeff
yy increased with increase in κ. With a higher κ, the fluid

inside the model can flow out readily and result in higher Eeff
yy as a consequence of

solid-solid interaction of the EFM skeleton material. Even at this configuration, the

increase in Eeff
yy due to increase in κ was only about 4% and may not be significant.

Results from Sec. 7.2 show that with addition of cross-links, no matter what the

geometry, for sufficiently high k (compared to km), Eeff
yy increased at least by 8%.

In those simulations, however, the initial pore pressure was non-zero and νm was

0.5. Intuitively, it is expected that addition of cross-links to the configuration under

consideration (νm = 0.2, p = 0, no cross-links) should produce a similar trend as

without cross-links. However, the results show adding cross-links did not affect Eeff
yy

with increasing κ. The matrix, which is compressible in this study, along with the

cross-links is likely affecting the model in some unexpected way, so that the end

result is no change in Eeff
yy . A closer look at the permeability of the matrix is needed

to understand such mechanisms.

7.4.7 Fibril volume fraction, vf

The fibril volume fraction, vf , is related to the fibril diameter, D, and the interfib-

rillar distance, d, through Eq. (6.9). Thus, the effect of vf on the effective modulus

was assessed by performing two studies in which either of D or d was held constant

while the other was varied so that the vf was equal to 0.1, 0.256 and 0.4. The

fibril volume fraction varies from the surface zone to the deep zone and is generally

reported in this range.
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Fibril diameter, D

In the first study, vf was varied by varying the fibril diameter while holding the

interfibrillar distance constant. The constant value of d = 70 nm was used and

values of D corresponding to the above mentioned values of vf were 25, 40 and 50

nm.
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Figure 7.14: Effect of varying vf on Eeff
yy in compression at 5% strain by varying the

fibril diameter D and holding the interfibrillar distance d. —: With all cross-links
active and set to k = 1× 10−3. - - -: With no cross-links.

Fig. 7.14 shows effect of varying the fibril volume fraction, vf , on Eeff
yy for the

two configurations achieved by varying the fibril diameter, D, while maintaining the

interfibrillar distance, d, constant. The effective modulus followed the fibril diam-

eter, i.e., Eeff
yy increased with increase in D and decreased when D was decreased.

A 37.5% reduction in D (D = 25 nm, vf = 0.1) from the base value (D = 40 nm,

vf = 0.256) resulted in a 30% decrease in Eeff
yy whereas a 20% increase in D (D = 50
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nm, vf = 0.4) resulted in a 29% increase in Eeff
yy .

In this mesomodel, as vf is directly proportional to D, increasing D increased vf

thereby increasing Eeff
yy , and decreasing D decreased vf consequently reducing Eeff

yy .

This trend should not, and does not, depend upon inclusion or exclusion of cross-

links. These results are in agreement with the general composites theory that the

effective modulus of an unidirectional fiber-reinforced composite material along the

fibril direction increases by increasing the volume fraction of the fibers.

Interfibrillar distance, d

In the second part of the study, the fibril diameter was held constant and vf was

varied by changing the interfibrillar distance. D = 40 was held constant while values

of d used were 56, 70 and 112 nm corresponding to the vf values stated above.
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Figure 7.15: Effect of varying vf on Eeff
yy in compression at 5% strain by varying the

interfibrillar distance d and holding the fibril diameter D. —: With all cross-links
active and set to k = 1× 10−3. - - -: With no cross-links.



7.5. Application to Articular Cartilage 135

Fig. 7.15 shows effect of varying the fibril volume fraction, vf , on Eeff
yy for the two

configurations achieved by varying the interfibrillar distance, d, while maintaining

the fibril diameter, D, constant. The effective modulus was inversely related to the

interfibrillar distance, i.e., Eeff
yy increased with decrease in d and decreased when d

was increased. A 20% reduction in d (d = 0.056, vf = 0.4) from the base value

(0.07 nm, vf = 0.256) resulted in a 29% increase in Eeff
yy whereas a 60% increase in

d resulted in a 27% increase in Eeff
yy .

These results are quite as expected, since vf is inversely proportional to d. Thus,

increasing d moves the fibrils further apart consequently reducing vf , while decreas-

ing d implies fibrils are closer together, thereby increasing vf . The effects of changing

d on Eeff
yy are also in agreement with the general composites theory.

7.5 Application to Articular Cartilage

In this section, application of the mesomodel to articular cartilage is discussed.

The goal of this study was to assess the effect of removing the cross-links on the

effective modulus, Eeff
yy , assuming reasonable values for AC for model parameters for

the simulated compression test. Most of the values used in the parametric study

above were already in their respective ranges reported in literature, except for the

cross-link stiffness, k and the Poisson’s ratio of the EFM, νm. For this ‘best-guess’

parameter simulation, k = 0.033 N/m (obtained from Liu et al. [133]) and νm = 0.2

(obtained from Chapter 4) were used. The cross-link geometry used consisted of all

cross-links with the same stiffness, k. Also, from Secs. 7.4.4 and 7.4.5, we have seen

that the initial pore pressure, p, does not affect in any way to the value of Eeff
yy . The

initial pore pressure was, therefore, set to p = 0 for this study. Table 7.5 lists the

values of the parameters used in this ‘best-guess’ study.
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Table 7.5: Values used for mesomodel parameters for simulating compression test
along Y direction of articular cartilage.

Em 0.5 MPa
E+

f 150 MPa
E−f 2 MPa
νm 0.2
κ 2.1× 10−15 m4/N-s
D 40 nm
k 0.033 N/m
vf 0.256
d 70 nm
dv 70 nm

At 5% strain, with all cross-links included, the effective modulus for the model

was Eeff
yy = 2 MPa. When the cross-links were removed, Eeff

yy reduced to 1.13 MPa.

Thus, with reasonable values for parameter models, removing the cross-links reduced

the effective modulus by 43%.

It is important to note that these results are for simulations at the mesoscale.

A multi-scale model is needed to relate these results from the mesoscale to the

macroscopic scale, the scale at which general tissue biomechanical experiments are

designed. If this is achieved, studies can be designed to utilize a combination

of biomechanical testing and biochemistry experiments that alter the interfibrillar

cross-linking in articular cartilage. Mechanical properties, similar to the effective

modulus in this study, can be tested before and after the biochemistry is altered and

such studies can then use results from the current study as benchmark to assess if

there are any effects on the interfibrillar cross-links within the tissue.
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7.6 Summary and Conclusions

• IFLs in articular cartilage have an important role in its mechanical response.

Presence of IFLs increases the effective modulus in compression at the mesoscale

(Fig. 7.2). The higher the value of the cross-link stiffness the later is the first

occurrence of bending in fibrils (Fig. 7.3). This suggests that IFLs help in-

crease the effective modulus by preventing bending of the fibrils and thereby

increasing their load carrying capacity.

• From Figs. 7.2 and 7.5 the following observations were made. The fibrils carry

negligible compressive loads by themselves due to bending. But in the presence

of IFLs, the fibrils were able to carry 60 times more. The EFM on the other

hand, carried approximately 43% of the load carried when all components

were present. In presence of cross-links the effective modulus increased by

only 14%. This suggests that presence of IFLs affects both the EFM as well as

the fibrils, however, their effect is much larger on the fibrils compared to the

EFM.

• Inspection of deformed fibril configuration at the same strain level for different

values of cross-link stiffness revealed that as the cross-link stiffness increased

from zero to the stiffness value reported in the literature, the deformed fibril

configuration changed from a haphazard, uncoordinated deformation accom-

panied with fibril bending to a coherent, organized deformation without fibril

bending (Fig. 7.4). This demonstrates that the presence of IFLs helps or-

ganize the fibrils into a network and imparts some stability to the network by

preventing fibril bending. With all components included in the mesomodel, first

occurrence of fibril bending was observed at higher strains when the EFM was

included. The same effect was observed when the cross-links were removed.
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This suggests that the EFM also contributes to fibril organization and stabil-

ity. Presence of IFLs results in a larger difference in fibril organization and

stability than the presence of the EFM suggesting that the IFLs are more

responsible in performing these functions than the EFM.

• The effective modulus in compression is sensitive to the cross-link geometry

used in the mesomodel (Fig. 7.6). A manual inspection of the deformed fib-

ril configuration for various cross-link geometries revealed that the effective

modulus was higher for those geometries in which organized fibril bending

was observed at higher strains. The cross-link geometry with all cross-links

in a plane perpendicular to the fibril direction came very close to producing

the same effective modulus as a geometry with all cross-links. It should also

be noted that this ‘in-plane’ geometry most resists the EFM Poisson effect.

From this we can conclude that the geometry which most prevents fibril bend-

ing and resisting the matrix Poisson effect will likely result in a higher effective

modulus.

• The effective modulus in compression is also sensitive to the fibril compressive

stiffness (Fig. 7.7). An increase in the fibril compressive modulus resulted

in an increase in effective modulus. The effect was more pronounced when

cross-links were included in the model at larger values of the fibril compressive

modulus. This leads to the conclusion that the value of the fibril compressive

modulus used in the mesomodel is critical as the presence of IFLs enhances the

compressive modulus of the fibrillar network and this enhancement is highly

sensitive to the value of the fibril compressive modulus.

• The effective modulus in compression is also sensitive to the EFM modulus

used (Fig. 7.8). As expected, effective modulus increases with increasing EFM



7.6. Summary and Conclusions 139

modulus. At lower values of the EFM modulus, first occurrence of fibril bend-

ing was observed at lower strains. Post-bending the load support mechanism

is quite complex and likely non-linear. This is likely the source of non-linearity

observed in the relationship between the effective modulus and the EFM mod-

ulus.

• The initial pore pressure did not have any effect on the effective modulus

(Fig. 7.10). Using values from literature for the initial pore pressure produced

the desired effect of tension in the fibrillar network and compression in the

EFM at initial equilibrium. However, the stresses and strains produced were

several orders of magnitude smaller than the corresponding elastic moduli of

the components and the typical dimensions of the mesomodel. This was a

consequence of the very large tensile modulus of the fibrils. Reducing the

fibril tensile modulus produced larger stresses and strains, albeit still orders

of magnitude lower than the stiffness of the model components.

• The fibril volume fraction directly affects the effective modulus and is in agree-

ment with the general composites theory. Changes in the fibril diameter are

mirrored in the effective modulus – increasing/decreasing the fibril diame-

ter results in a corresponding higher/lower effective modulus. Changing the

interfibrillar distance produces an opposite effect on the effective modulus,

i.e., increasing/decreasing the interfibrillar distance results in a corresponding

lower/higher effective modulus.

Application of the mesomodel to articular cartilage by choosing reasonable values

for model parameters obtained from literature showed that removing the cross-links

resulted in a 43% drop in the effective modulus. Thus, at the mesoscale, the cross-

links seem to play a mechanical role in supporting the compressive loads in the

articular cartilage.
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Summary and Outlook

In this thesis, the primary objective is to understand the mechanical response of

AC using FE modeling in ABAQUS. This is done at two different scales. For the

small strain AC response studied the FE models are simple (linear elastic compo-

nents), yet include important features such as flow-dependent and flow-independent

processes (poroelasticity, viscoelasticity) at the macroscale and time-dependent be-

havior (poroelasticity of the EFM) and bilinear fibrils at the mesoscale.

FE Continuum Modeling of AC

At the macroscopic scale, the contact problem of indentation of AC is studied us-

ing a continuum model combined with nanoindentation experiments. There are

major challenges to overcome in order to use PVE models that include both PE

flow-dependent time dependency and VE flow-independent time dependency. For

instance, there are too many parameters to fit, resulting in questions of uniqueness

of the fit parameters. Additionaly, the time ranges of the PE and VE processes

overlap in most experimental test conditions. The method to separate the PE and

VE processes for better fit and uniqueness of parameters proposed by Huang et

al. [73] involves tensile test of a thin strip of the tissue. This cannot be done for

small tissue volumes such as mouse cartilage. These obstacles are overcome by using

141
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two indenters - one small enough so that the characteristic gel diffusion time is neg-

ligibly small and the other sufficiently large to probe flow-dependent processes with

the test conditions being used. A summary that includes the principal contributions

of this part of the thesis is as follows:

• Indentation tests are performed on AC obtained from mouse knee joints with

two different sized flat-ended conical indenters with flat-end tip diameters

15µm and 170µm. Stress relaxation tests are performed to study the time-

dependent response.

• A FE model of the indentation of a PVE material with a rigid flat-ended

conical indenter is developed. AC is modeled as a homogeneous isotropic

PVE/VE layer bonded to a rigid and impermeable substrate (underlying bone)

being indented by a rigid and impermeable indenter.

• A parametric study of permeability is performed for indentation with the two

indenters using the FE model for a PE material. Results show that perme-

ability does not affect the stress response predicted for the 15µm indenter. In

contrast, there is a distinct change in the stress relaxation predicted for the

170µm indenter.

• An inverse algorithm program is implemented along with the FE model to ex-

tract the model parameters from the indentation experiments. The FE inden-

tation model simulates the forward problem and the parameters are extracted

using the SIMPLEX algorithm to maximize the coefficient of determination

between the experimental and FE predicted data.

• A method for fitting parameters in a PVE model of AC in the mouse is pre-

sented. Indentation data from the smaller indenter is first used to fit the

viscoelastic parameters, on the basis that for this tip size the PE response
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is negligible. These parameters are then used to fit the data from a second

indenter of much larger diameter for the PE parameters, using the viscoelastic

parameters extracted from the data from the smaller indenter. The ability

to separate the flow-independent and flow-dependent processes both exper-

imentally and theoretically for small tissue volumes make the two indenter

approach very useful.

Mesoscale Modeling of AC

At the mesoscale, the inhomogeneity of AC structure and composition cannot be

neglected. For this purpose, a continuum model faces limitations and modeling

of the micro-constituents becomes important. Most of the fibril-reinforced models

for AC behavior in literature use some homogenization procedure and are therefore

continuum models, except for the spring-based models in which fibrils are modeled as

springs. The microstructural model of AC by Schwartz et al. [86] includes the fiber-

matrix bonding. However, none of the fibril-reinforced models reviewed account for

the IFLs. The IFLs in AC are not well characterized and are hypothesized to be the

“glue” between the collagen fibrils. It is also thought that these IFLs get damaged

at the onset of OA. It is difficult to evaluate IFLs experimentally, so theoretical

models are a useful way to do this. In the final part of the thesis, the focus is to

understand the role of IFLs seen in most collagenous tissues. A 3D model of AC

meso-structure based on the major micro-constituents of AC at this scale – collagen

fibrils, EFM and IFLs – is developed and studied. A summary that includes the

principal contributions of this work is as follows:

• The collagen fibrils are unidirectional and exhibit characteristic bilinear rope-

like behavior. This is achieved by modeling collagen fibrils as a superposition

of two types of elements - a tension only truss element with a modulus equal to
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the high tensile modulus (E+
f ) reported for collagen fibrils, and a beam element

with a very low modulus (E−f ) resulting in a very low bending modulus. The

EFM is modeled as a linear elastic incompressible porous material saturated

with the interstitial water. The intrinsic viscoelasticity of the EFM is neglected

for simplicity.

• The IFLs are modeled as simple springs. The crosslink stiffness is obtained

from molecular studies on decorin, a molecule that is believed to form crosslinks

in AC via other PG molecules. For simplicity, the number of crosslinks in a

typical element is kept to a minimum while retaining the stability of the struc-

ture. As far as we know, the mesomodel developed in this work is the first

fibril-reinforced mesomodel of AC that includes IFLs.

• The prestress in the fibril network and the EFM due to swelling is included by

allowing the model to equilibrate to the initial equilibrium pore pressure re-

ported for osmotic swelling studies on human cartilage. This results in tension

in the fibril network and compression in the EFM at equilibrium.

• Homogeneous boundary conditions are most appropriate for the study of AC

mesomodel due to the inhomogeneity of the tissue. Simulated compression

tests along the fibril direction are conducted for a parametric study of the

model parameters as compression is most relevant to AC mechanics.

• Results show that the effective compressive modulus of the mesomodel is sig-

nificantly higher in the presence of IFLs. This is due to prevention of early

bending of fibrils due to the IFLs, thereby increasing their load carrying ca-

pacity. The presence of IFLs helps organize the fibrils into a network and

imparts some stability to the network by preventing early fibril bending.

• The effective modulus in compression is sensitive to the crosslink geometry
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used in the mesomodel. The in-plane crosslinks contribute the most to sta-

bilizing the fibril network as they provide the most resistance to the EFM

Poisson effect and preventing early bending in fibrils, resulting in a higher

effective compressive modulus.

• The effective compressive modulus is sensitive to other model parameters and

its variation with them is as intuitively expected. The presence of IFLs en-

hances the compressive modulus of the fibril network (E+
f ), consistent with

earlier observations. A similar sensitivity to the EFM modulus and the fibril

volume fraction is seen.

• The initial pore pressure and the permeability of the EFM do not have signif-

icant effect on the effective compressive modulus. Thus, one can expect that

removing the initial pore pressure from the mesomodel will not produce any

significant changes in the results of the parametric study.

Future Work and Outlook

The mesomodel of AC shows that with a best guess set of values chosen for the

model parameters for AC shows that removing the crosslinks results in a 43% drop

in the effective compressive modulus. Thus, at the mesoscale, the crosslinks seem to

play a mechanical role of providing stability to the fibril network thereby increasing

its load carrying capacity. How this translates over to the macroscopic tissue level

remains to be answered.

Mesoscale models are developed with a long term goal of parsing information

at the smaller scale to the macroscopic properties at the larger scale in order to

relate observed macro behavior to the micro-constituents of the mesomodel. The

mesomodel cannot be used as an RVE with periodic boundary conditions due to the

inhomogeneity of AC. Even by increasing its size to include more spatial varitions,



146

the mesomodel still cannot be treated as an RVE. However, the mesomodel devel-

oped here can be used in conjunction with a macroscopic model, such as the PVE

model of AC discussed in this thesis, in a multi-scale simulation (e.g., [141]) that

can relate the mesoscale effective properties to the macroscopic mechanical response

of the tissue. For this purpose, however, one needs to examine the model in not just

compression, but also in other test geometries beyond compression.

The inhomogeneity of AC and the variation in its structure and composition at

various depths needs to be represented as accurately as possible while simultane-

ously keeping computation costs at a minimum. In the context of this model, the

fibril orientation and volume fraction are important variations along AC depth as

discussed in Chapter 2. In this thesis, we have only looked at unidirectional fibrils

that are vertical to the plane of loading. This is an appropriate model of the meso-

structure observed in the deep zone of AC. With random orientation in the middle

zone and fibrils parallel to the loading plane at the surface, the behavior is likely

to be different in those zones. Such variations can be studied by parametric studies

similar to what has been done here for compression in the Y direction. Identifying

crosslink sites on the randomly oriented fibrils and determining which fibrils interact

can be accomplished computationally. With unidirectional fibrils the FEA mesh is

accomplished by having the fibrils share nodes with the EFM. This cannot be done

easily with random fibril orientation and meshing of the FE model will be a major

challenge. Using simultaneous Eulerian and Lagrangian descriptions, i.e., modeling

the EFM as a fluid and the fibrils as solids, although not trivial, may help address

this issue. However, the appropriateness of this approach needs to be examined

carefully.
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The constitutive behavior of the micro-constituents of the mesomodel can be

changed to ‘upgrade’ the model to the non-linear regimes. This includes hyperelas-

tic formulations for the fibril and EFM behavior. Also, time-dependent behavior in

AC has been well characterized as being flow-dependent as well as flow-independent.

In this study, we have neglected the flow-independent time dependency. We also see

from the parametric study that both flow-dependent properties - initial pore pres-

sure and permeability - did not have a significant effect on the effective modulus.

However, at the macroscopic level, our PVE model of indentation, clearly shows that

flow-dependent processes are significant, especially with the larger 170 µm inden-

ter. This suggests that the flow-dependent processes in AC may be a macroscopic

phenomenon. Or, it may be that our mesomodel is smaller than the scale at which

flow-dependent processes influence the mechanical response. Thus, in a multi-scale

simulation, flow-independent processes can be restricted to the microstructure while

flow-dependent processes assigned to the macrostructure. However, a closer look at

the effect of viscoelasticity at the mesoscale is needed before proceeding toward

multi-scale mechanics.

Finally, the IFLs used in this model are linear springs. Non-linear springs or

other methods to simulate molecular interactions in a mechanical way seem to be

the next logical ‘upgrade’ to the crosslinks. Another way would be to introduce one

more hierarchical level of molecular dynamics simulation for the crosslink mechanical

behavior which can pass on information to the mesoscale and so on. However, this

will come with sufficient computation expense and one needs to evaluate the cost-

benefit in using such a model.
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