Structure Determination of Zeolite Nanosheets
Xueyi Zhang and Michael Tsapatsis

Department of Chemical Engineering and Materials Science, University of Minnesota

Zeolites:
- ordered micropores of molecular size
- Gas separation using zeolite membranes: an approach that can significantly save energy in chemical production.

The importance of zeolite nanosheets

Smaller seeds: thinner membranes, less defects, and higher flux.

Dispersible zeolite nanosheets:
- The smallest building unit (unit-cell-thick) for zeolite membranes.

Car-Parrinello Molecular Dynamics
- QuantumESPRESSO
- Covalent system
- Ground-state electronic properties
- Parallel computing is needed because of the large size of zeolite unit cells.
- Example: MFI - 1.5 unit cells

Transmission Electron Microscopy
- MFI (b-axis)
- MWW (c-axis)

Powder X-Ray Diffraction
- 1.5 unit cell MFI
- 1 unit cell MWW

Spectroscopy
- The fraction of surface Si atoms of the 1.5 unit cell model agrees with solid-state NMR experiment.

Structure Determination Strategy
- Structure determination was performed using AFM (atomic force microscopy), XRD (X-ray diffraction), TEM (transmission electron microscopy), and solid-state NMR, by comparing experiments results with simulations from the proposed models.
- Obtaining a realistic and relaxed surface structure is the first step for the simulations.

Proposed Structural Models
- MFI - 1 unit cell thick (1.99 nm)
- MFI - 1.5 unit cells thick (3.21 nm)
- MWW - 1 unit cell thick (2.49 nm)

Acknowledgements: U.S. Department of Energy, ADMIRE (Abu Dhabi-Minnesota Institute for Research Excellence), National Science Foundation (NSF-NIRT CMMI 0707619), University of Minnesota Institute of Technology Characterization Facility (receives partial support from the NSF through the NNIN program), Minnesota Supercomputing Institute