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ABSTRACT

Even with recent advances in computing power the development of smaller Unmanned

Aerial Vehicles (UAVs) and sophisticated sensor payloads with high data rates can still

challenge on-board computer resources. In response to this challenge, gain schedul-

ing is investigated as a means to reduce the computational burden associated with

a nonlinear attitude estimator. The attitude/heading filter used to validate the gain

scheduling approach is based on an Euler angle parameterization. Its process dynam-

ics and measurement updates are provided by nonlinear rate kinematic equations and

absolute attitude measurement updates, respectively. The gain scheduling approach

is intended to be instrumentation independent for the attitude parameterization used.

Validation of the gain scheduling attitude/heading estimation filter utilized process dy-

namics driven by a low-cost Micro-Electromechanical System (MEMS) based Inertial

Measurement Unit (IMU). Measurement updates are provided by an external machine-

vision infrared tracking system. The gain scheduling approach should be applicable to

other sensor types such as GPS, magnetometers, and other aides. Gain scheduling filter

development has been tested using simulated trajectories and real data collected from

a remote control helicopter flown indoors and processed off-line.
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Chapter 1

Introduction

Attitude/heading estimation systems, sometimes known as Attitude/Heading Reference

Systems (AHRS), are multi-sensor systems that are used to calculate the orientation of a

vehicle or other physical system with respect to space. Multi-sensor systems are favored

over single sensor systems as they tend to be cheaper, lighter-weight, and more robust.

These multi-sensor systems are typically built around two or more types of sensors.

Past multi-sensor attitude/heading estimation systems have been demonstrated with

combinations of rate gyros, multi-antenna GPS, magnetometers, and accelerometers

[1].

The output of each individual sensor in a generic attitude/heading estimation system

is combined in an estimation algorithm, typically an Extended Kalman Filter (EKF),

and the output of the algorithm is a description of the orientation of the vehicle. The

attitude/heading estimation algorithms play an important role in the overall system.

Their careful implementation can allow the system designer more freedom in sensor

selection, meaning improvements in cost, weight, and robustness for the end user. How-

ever, if the algorithm is complicated it may require computational resources that are

not available on the embedded system used to implement the filter.

The exponential growth in computing power is often seen as the solution for problems

encountered when implementing relatively complex engineering algorithms in real-time.

If the embedded computing hardware does not presently offer enough performance to do

a successful implementation, then it seems the solution is to wait for the next generation

of hardware. Gain scheduling is another means in which the computational burden of

1
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an EKF can be dealt with.

A more challenging problem with complicated algorithms (which cannot always be

solved by powerful computers) is verification and validation of the algorithms. That

is, will complicated algorithms always perform as intended. Can one certify that the

output errors are always going to be less than some threshold? In attitude determination

algorithms which are based on an EKF, one of the sources of complexity is the Kalman

gain calculation. Some of complexity can be removed if these gains are computed ahead

of time and saved in a look up table or defined by the output of a simple function.

This is, in a loose sense, gain scheduling. This thesis examines gain scheduling of an

attitude/heading estimating EKF which uses a multi-sensor system built around rate

gyro and optical measurements.

A new potential application area for these gain schedule filters is in the navigation

and control of small, unmanned vehicles [2], such as what the Defense Advanced Re-

search Projects Agency (DARPA) is calling Nano Air Vehicle (NAV) and Micro Air

Vehicle (MAV) range of aircraft [3]. With these applications in mind, a gain sched-

uled attitude/heading estimating EKF was developed and tested using both simulated

attitude/heading time history trajectories and real measurements recorded from the

flight of a remote control helicopter. Helicopter flight data recordings used to test the

algorithms included both angular body rate measurements from a Microelectromechan-

ical System (MEMS) Inertial Measurement Unit (IMU) and absolute attitude/heading

measurements using an infrared machine vision tracking system. The approach taken

in validating the gain scheduled EKF could be applied to other instrumentation config-

urations and other EKF problems.

1.1 Thesis Problem Statement

This thesis examines one method of gain scheduling an attitude/heading-estimating Ex-

tended Kalman Filter (EKF). This type of filter is an efficient estimator that is derived

for use with nonlinear systems and historically have found a great deal of application in

attitude/heading estimating systems. Gain scheduling simplifies the attitude/heading

estimating algorithm in order to allow its use on-board a small, remote control heli-

copter.
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Briefly, gain scheduling goes beyond the concept of a conventional, suboptimal EKF.

The conventional EKF is commonly thought of as a suboptimal filter, because the

filter uses a linearization of the system’s true nonlinear dynamic process model. The

linearized dynamic equations are then used to calculate a suboptimal EKF gain sequence

in the conventional implementation. The gains are then used to sub-optimally weigh a

combination of process model predictions and measurements to come up with the best

suboptimal estimate of the system’s state variables. Additional theory and definitions

of terminology are presented later.

Gain scheduling eliminates the step of calculating the gain sequence in real-time

and instead through off-line analysis and simulation reduces their real-time calculation

to look-up tables, constants, or simple functions where the independent variable(s) is

often a state variable and the dependent variable a Kalman gain value. Gain scheduling,

therefore, reduces the computational burden and complexity, at the cost of greater state

variable estimate uncertainty.

Suboptimal filtering should not be burdened with a negative connotation as all

real and implemented EKFs contain certain model simplifications. It is just that gain

scheduling goes further and simplifies the calculation of the gains. For some applications,

the trade-off between cost and performance is likely worth it.

1.2 Literature Review on Gain Scheduling Kalman Filters

A literature survey was conducted of past work in the field of gain scheduling both linear

and extended (nonlinear) Kalman Filters. In the late 1960’s, the early days of Kalman

filtering and digital computers, most works emphasized optimizing a fixed number of

gains and their value and/or schedule. The finer the gain schedule approximation, the

better the results in approximating the Kalman gain that would normally be calculated

on-line in the conventional algorithm. That is assuming the scheduling variable is an

appropriate match to the system.

One of the earliest and most practical examples of gain scheduling a 15-state linear

Kalman Filter comes from work done at the Sperry Corporation in the late 1960’s

and published in the Sperry Engineering Review [4]. The article is based on work the

company did for creating a hybrid LORAN/Inertial Navigation System or what the
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authors called a LINS system. LORAN was an early, ground-based position fixing radio

navigation system similar in nature to modern GPS. The system has recently been

decommissioned.

The article also has interesting commentary on the benefits of integrating radio

navigation position fixing systems with inertial navigation systems. These are very

familiar to many modern developers of hybrid GPS/INS systems. For example, the

authors discuss how inertial aiding in the system can be used to tighten LORAN tracking

loops to improve jamming performance and noise rejection. At a system level the

accuracy of the navigation system is dominated by the accuracy of LORAN and that,

consequently, less expensive and lower performing inertial sensors can be used and still

achieve similar navigation performance relative to a much more expensive stand alone

INS.

Kleinman et al. [5, 6] addressed the mathematical concept of how to schedule gains,

but in this case for the linear regulator problem rather than a state estimation problem.

This more theoretical study looked at gain scheduling by representing the gains as piece-

wise constant gains in time. The number, magnitude, and duration of the constant gain

levels were determined by minimizing a quadratic cost function which represented a

trade-off between mathematical optimality and engineering usefulness. The authors

were able to demonstrate that under suitable assumptions the optimal control gains

could be approximated by the suboptimal control arbitrarily closely.

Crotteau [7] upon observing that the Kalman gain histories generally followed an

exponential time history demonstrated a different approach, arriving at a closed form

expression for gain scheduling. The exponential response of the Kalman gain was lin-

earized then fit with a line using the method of least squares. The fitted function was

then used to allocate gains versus time. An error covariance update equation intended

for use with suboptimal filters was presented. Another work used a similar equation

when presenting a brief overview of the implications of assuming constant gains in a

Kalman Filter [8].

More recently, gain scheduled EKFs have found use in predicting in-flight perfor-

mance parameters of jet aircraft engines [9] as well as estimating the air consumption

of turbocharged spark ignition engines in real-time [10]. Modern literature has referred

to these filters as Constant Gain Extended Kalman Filters (CGEKF). The gains used
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in these EKF’s are not constant over all operating conditions, but are only constant

over small intervals. For example, in the case of the engine the constant gain values

would populate a matrix or look-up table. The look-up table may be indexed by engine

throttle position and RPM and different gains are assigned depending on where the

engine is operating in the table.

In the area of attitude and heading estimation Yoo et al. [11] developed a gain

scheduled complementary filter for use in vehicles. The AHRS system was MEMS based

and utilized accelerometers, gyros, and magnetometers as sensors. The complementary

filter sensor fusion algorithm uses frequency domain filtering techniques to blend the

various sensor outputs in a way that can minimize the errors specific to individual types

of sensors. The gains of the complementary filter were switched based on measurements

made by the accelerometers. This approach gave improved performance over the fixed

gain complementary filter without much additional complexity.

1.2.1 Past Work on Comparing Performance of Gain Scheduled Filters

Methods for comparing performance differences between optimal and suboptimal filters

are important when assessing the performance of gain scheduled filters. One method

given in [12] defines the performance index, µ, by evaluating the trace of the error

covariances at time, t, of the optimal filter, Pt, and suboptimal filter, Ps
t , where s,

denotes suboptimal. The performance index, µ, is defined in Equation 1.1.

Jt = Trace[Pt]

Jst = Trace[Ps
t ]

µ =
Jst − Jt
Jt

(1.1)

When µ is equal to zero the suboptimal filter is actually optimal. And values greater

than zero indicate to what degree the filter is suboptimal. Another approach is to simply

take the square root of diagonal elements, on a per element basis, of the error covari-

ance matrix to determine the root-mean-square value of the uncertainty of estimation

error associated with individual elements and compared their magnitudes between filter

designs [13].

The performance index of Equation 1.1 is utilized in this thesis to judge performance

differences between gain scheduled and non-gain scheduled EKF implementations. It
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was felt that this was an efficient solution to the problem of judging filter performance.

Both approaches provide a means to estimate filter performance without requiring access

to an absolute truth reference.

1.3 Thesis Outline

Accordingly, the remainder of this thesis is organized as follows:

• Chapter 2 provides an overview of the generic continuous-time EKF. This chapter

also provides background details on gain scheduling the EKF.

• Chapter 3 introduces the simplest discrete-time implementation of the attitude/heading

estimating EKF with gyro bias error states. This is the filter evaluated in this

work.

• Chapter 4 presents results of using the attitude/heading estimating EKF with

and without gain scheduling on simulated trajectories and experimental data. The

experimental results are from data collected with an instrumented Remote Control

(RC) helicopter flown inside the Interactive Guidance and Control Lab (IGCL).

From these results it became clear that incorporating additional EKF error states

would likely improve the estimated attitude/heading solution. Thus a way to

incorporate additional error states to improve the attitude/heading estimation

accuracy of the EKF when processing real data is also presented.

• Chapter 5 presents concluding remarks of the work presented in the thesis.

In addition, the appendices provide supplementary material. Appendix A provides

a glossary of terms. Appendix B provides the MATLAB code of the EKF used in this

study. Appendix C lists the Kalman gain schedules for the various trajectories analyzed

as part of this work.



Chapter 2

Extended Kalman Filtering and

Gain Scheduling

The purpose of this chapter is to present the theory for a generic continuous EKF and

background on how the EKF can be gain scheduled. Some details on gain scheduling

the EKF specific to the problem of attitude and heading determination is also presented

in order to illustrate the motivation for using gain scheduling given its computational

advantages. The following chapter presents the attitude/heading estimator formulated

as a discrete EKF. The basics of Kalman Filtering can be found in [14], [15], [16], [17],

and [18]. Some basic terms and acronyms are introduced in Appendix A.

The basic Kalman Filter is a minimum variance, unbiased estimator for linear sys-

tems. The EKF is a technique that uses the basic Kalman filter on nonlinear systems

with either nonlinear process dynamics or nonlinear measurements. This is accomplished

by using the latest state estimate as the operating point for linearizing the nonlinear

equations A generic continuous-time nonlinear system or dynamic model is defined by

Equation 2.1. The formulation of the EKF presented in this thesis does not include

deterministic control inputs.

ẋ(t) = f(x(t), (t)) + W(t)

W(t) ∼ N (0,Q(t)) (2.1)

The true state variables are represented by x(t) and the variables are corrupted by

a Gaussian white noise process given by W(t). The expression N (0,Q(t)) refers to the

7
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Gaussian random variate, N , with a zero-mean value and a covariance defined by Q(t).

Similarly, a nonlinear measurement model can be defined as shown in Equation 2.2.

z(t) = h(x(t), (t)) + V(t)

V(t) ∼ N (0,R(t)) (2.2)

The measurement variables are represented by x(t) and the variables are corrupted

by a Gaussian white noise process given by V(t). R(t) is the measurement noise covari-

ance which is modeled as a stochastic process.

Next, the EKF algorithm linearizes the nonlinear dynamic and measurement models,

defined by F(t) and H(t) respectively, by calculating their Jacobian’s at their present

respective operating condition, or in other words their present state estimate, x̂(t), and

thereby calculating a linear approximate of the nonlinear functions as illustrated in

Equation 2.3.

F(t) ≈ ∂f(x, t)

∂x

∣∣∣∣∣
x=x̂(t)

H(t) ≈ ∂h(x, t)

∂x

∣∣∣∣∣
x=x̂(t)

(2.3)

Next, the Kalman gain, L(t), is calculated as shown in Equation 2.4. The Kalman

gain represents the weight placed on the measurement relative to the process dynamics

prediction in the state estimate update stage. Accurate, low-noise measurements result

in a greater weighting of the measurement when updating the filter state estimates.

Noisy measurements result in more weight being placed on the dynamic model prediction

of the future state estimates.

L(t) = P(t)HT (t)R−1(t) (2.4)

Now, the state estimation error covariance matrix update, P(t), can occur as shown

in Equation 2.5.

Ṗ(t) = F(t)P(t) + P(t)FT (t) + G(t)Q(t)GT (t)− L(t)R(t)LT (t) (2.5)
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Finally, the state estimate update can be defined as shown in Equation 2.6.

ˆ̇x(t) = f(x̂(t), (t)) + L(t)[z(t)− ẑ(t)] (2.6)

Where ẑ(t) is defined as the predicted noisy measurement as given in Equation 2.7.

ẑ(t) = h(x̂(t), (t)) (2.7)

2.1 Gain Scheduling as Applied to the EKF

The motivation for gain scheduling the EKF is to reduce the computational burden

associated with calculating the Kalman gain on every iteration. Gain scheduling replaces

Equation 2.4, the conventional Kalman gain, with simpler forms. The form could be a

constant value, a look-up table indexed by an auxiliary variable, or an evaluation of a

simple function relating the auxiliary variable to the filter gain. Some researchers call

the auxiliary variable the scheduling variable as the scheduling of gains are dependent

on this variable.

2.1.1 Gain Scheduling Approaches

This work evaluates three gain scheduling approaches:

1. The first approach is a constant gain computed from the time-series average gain

as predicted by the filter equations for the calculation of optimal gains. After

disregarding an initial gain transient on start-up. Here, a scheduling variable is

not used.

2. The second approach is a gain function based on a multi-nonlinear regression of

the Kalman gain versus Euler angles. Each Kalman gain parameter is fitted with

the same gain function. The regression is performed on specific optimal Kalman

gain trajectories. In this approach the scheduling variables are individual Euler

angles. Once again the initial gain transient is disregarded.

3. The third approach is a tailored gain function for each Kalman gain parame-

ter based on a multi-nonlinear regression of the Kalman gain versus Euler angle
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for a series of trajectories. The series of trajectories are characterized by ±45◦

magnitude sinusoidal oscillations 90◦ out of phase in pitch and yaw and constant

magnitude roll angle for each trajectory. The magnitude of the roll angles tested

are from -45◦ to 45◦. The gain functions have anywhere from 2 to 6 terms in

their regression equation. Again, in this approach the scheduling variables are

individual Euler angles. Once again the initial gain transient is disregarded.

Computing Equation 2.4 on a digital computer requires mathematical operations of

multiplication and addition. Using notations introduced in the Nomenclature section,

the number of multiplication operations are n2r+ 2nr2 + r3 and the number of addition

operations are n2r+2nr2−2nr+r3. These computational requirements were calculated

by Mendel [19]. Gain scheduling can reduce the computational burden of the operations

associated with Equation 2.4.

If steady-state filter values were used for the Kalman gains, the gains would be

equivalent to the discrete time Wiener filter which is suboptimal until the filter achieves

steady-state operation. But, in this application the gains did not appear to reach

steady-state. This is believed to be due to the optimal gains being dependent on the

attitude/heading of the helicopter and the nonlinear nature of the system dynamics.

The distinction between optimal and suboptimal filtering ties into gain scheduling

in the following way. When Equation 2.4 is used to solve for the Kalman gains in

the EKF, this is considered the optimal filter implementation. The implementation

is only optimal for propagation of second order statistics associated with the system.

The conventional EKF is suboptimal in the propagation of system statistics greater

then second order. The EKF represents an algorithm to bridge the gap between the

linear model assumptions behind the basic linear optimal Kalman Filter equations and

the suboptimal linearization of the nonlinear model equations of the EKF. In other

words, at its best, even without gain scheduling, the EKF is a suboptimal algorithm

because of the higher order non-linearities it operates on in practice. It is perhaps

better to state that the EKF is locally optimal given that the EKF linearization of

the nonlinear equations is accurate. The simple linear Kalman filter is the only strict

optimal estimator.

In this thesis the gain scheduled filter is suboptimal, it does not mean outside this

thesis that the converse is true: that all suboptimal filters are gain scheduled filters. In
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actuality, there are many different flavors of suboptimal filters. Sometimes a filter is

suboptimal due to the use of intentional, reduced order models, unknown bias errors in

the process or measurement dynamics, or other implementation short-cuts or errors.



Chapter 3

A Multi-sensor For

Attitude/Heading Estimation

Using the generic continuous EKF theory presented previously, a specific discrete filter

was developed for the application of providing attitude/heading estimates for small, un-

manned vehicles and that would also serve the purpose of validating the gain scheduling

approach. The basic filter implemented for this research into gain scheduling is based

on prior work [20, 21, 22].

One point of terminology here that can lead to confusion when discussing this specific

implementation of an EKF is the difference between a system dynamics model and a

measurement model. In a loose sense, both the IMU and the Vicon vision tracking

system are making measurements that are used by the filter. In the specific terminology

of Kalman filtering in this instance, the IMU is driving the process model and the

VICON system is the measurement model or, perhaps in a less confusing approach,

what some would call the observation model for the EKF. The gain scheduling approach

taken in this thesis is not tied to the instrumentation selected to validate the algorithms.

Other configurations are possible.

The instrumentation required for the EKF implementation presented could be done

with generic, angular rate sensors and a generic, absolute attitude/heading sensors. But

to tie in with the empirical testing performed in this thesis, it is suggested that the filter

only utilizes an IMU and Vicon vision tracking system. Test cases utilizing simulated

12



13

data are with generic sensors.

A high-level overview of the system used to validate the gain scheduled EKF is

shown in Figure 3.1. More details on each component of the system is presented in

the following chapter. This section provides more details on the filter implemented in

MATLAB.

Figure 3.1: Block Diagram of Test Setup Used to Validate Specific EKF Implementation

The filter utilizes the Euler angle kinematic rate equations as the basis for its non-

linear dynamics model as shown in Equation 3.1. The equation is driven by the IMU

measurements. 
Ψ̇

Θ̇

Φ̇

 =


0 sin Φ

cos Θ
cos Φ
cos Θ

0 cos Φ − sin Φ

1 sin Φ sin Θ
cos Θ

cos Φ sin Θ
cos Θ



p

q

r

 (3.1)

The parameterization of vehicle attitude/heading in terms of Euler angles typically
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presents a problem with the known mathematical singularity that occurs when the

attitude of the vehicle reaches a pitch angle of Θ = 90◦. This issue was neglected

in favor of the simplicity of using Euler angles over quaternions or Direction Cosine

Matrices (DCM), and because the vehicular application envisioned for this filter would

not typically see pitch maneuvers this large.

The p, q, r terms in the equation covered in Equation 3.1 represent the vehicle body

axis angular rates as measured by the gyros within the IMU, and these drive the process

model for the EKF. In the application of the filter, they are the raw gyro angular rate

measurements. The parameters Ψ, Θ, Φ are the Euler angles, sometimes referred to as

the Tait-Bryan angles, of absolute attitude/heading in the standard 3-2-1 sequence. As

rotations are non-commutative, the sequence of rotation matters. The parameters Ψ,

Θ, Φ, can be thought of as the yaw, pitch, and roll of the vehicle, respectively.

For the purposes of the filter, the process update can be thought of as a vector

containing the IMU gyro measurements. The update has the following process error

model:

ΩIMU = Ωtrue + b+ η

ḃ = − 1

τIMU
b+ ν (3.2)

The variables in Equation 3.2 represent the following terms: ΩIMU is the vector

of the imperfect measurements of body angular rates, otherwise known as p, q, r. In

this application these are the measurements provided by the MEMS IMU. The IMU

contains three independent, orthogonal gyro sensors, this is a three element vector.

Ωtrue is the uncorrupted or perfect measurement of body angular rates. b is the vector

representing the gyro sensor bias errors, sometimes this type of error is called the gyro’s

null-shift error, in other words, the deterministic rate indicated by the gyro when it

is not rotating. η and ν are vectors of independent zero-mean Gaussian white-noise

processes. The second equality in Equation 3.2 represents a model of the gyro bias as

a first order Gauss-Markov process, where τIMU is the correlation time constant of the

model.

Next, in developing the process model for the nonlinear dynamics, processed by the

EKF, it is necessary to linearize about the state vector estimate, x̂. In this case this is

the filter estimated attitude/heading of the helicopter. The result is a linear differential
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state equation in Equation 3.3:

ẋ(t) = F(t)x̂(t) + G(t)β(t) (3.3)

The vector x̂ is the state vector containing the following variables in Equation 3.4.

The b̂ terms are the respective gyro bias estimate terms.

x̂ =
[

Ψ̂ Θ̂ Φ̂ b̂x b̂y b̂z

]T
(3.4)

The matrix F represents the dynamic coefficient matrix, also known as the continu-

ous state transition matrix of the helicopter and contains the following variables given

in Equation 3.5:

F =



0 F(1, 2) q cos(Φ)−r sin(Φ)
cos(Θ) 0 sin(Φ)

cos(Θ)
cos(Φ)
cos(Θ)

0 0 −q cos (Φ) + r sin (Φ) 0 cos(Φ) − sin(Φ)

0 q cos(Φ)−r sin(Φ)
cos2(Θ)

F(3, 3) 1 sin(Φ) sin(Θ)
cos(Θ)

cos(Φ) sin(Θ)
cos(Θ)

0 0 0 −1
τ 0 0

0 0 0 0 −1
τ 0

0 0 0 0 0 −1
τ


(3.5)

Where F(1,2) is defined by Equation 3.6:

F(1, 2) = −q sin(Φ)
sin(Θ)

cos2(Θ)
− r cos(Φ)

sin(Θ)

cos2(Θ)
(3.6)

And F(3,3) is defined by Equation 3.7:

F(3, 3) = q cos(Φ)
sin(Θ)

cos(Θ)
− r sin(Φ)

sin(Θ)

cos(Θ)
(3.7)

Matrix entries F(1:3,1:3) represent the calculation of the linearization of the right

side of Equation 3.1. This is found by calculating the Jacobian of that matrix. The

Jacobian is defined in Equation 3.8. This linearization represents the incremental change

in the Euler angles from one iteration of the filter to the next.

J =


∂Ψ̇
∂Ψ

∂Ψ̇
∂Θ

∂Ψ̇
∂Φ

∂Θ̇
∂Ψ

∂Θ̇
∂Θ

∂Θ̇
∂Φ

∂Φ̇
∂Ψ

∂Φ̇
∂Θ

∂Φ̇
∂Φ

 (3.8)
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Matrix entries F(1:3,4:6) represents the transformation matrix in Equation 3.1. The

entries F(4:6,4:6) only model the incremental change in the gyro bias due to the Gauss-

Markov model which is assumed to represent the gyro bias instability/in-run gyro bias.

The matrix G represents the continuous coupling matrix between random noise and

the attitude/heading of the helicopter state estimate and contains the following variables

in Equation 3.9.

G =



0 sin(Φ)
cos(Θ)

cos(Φ)
cos(Θ) 0 0 0

0 cos(Φ) − sin(Φ) 0 0 0

1 sin(Φ) sin(Θ)
cos(Θ)

cos(Φ) sin(Θ)
cos(Θ) 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.9)

The matrix entries G(1:3,1:3) are the transformation matrix of Equation 3.1. The

entries G(4:6,4:6) models the Gaussian white noise process associated with the output

of the IMU gyros.

The continuous matrices F and G are the Jacobians of the nonlinear dynamic model

evaluated at the present state estimates. For a solution on digital computers these

matrices must be discretized. And given that the discrete sampling time is small,

the higher order terms of the Jacobians are neglected such that this is a first order

approximation.

The vector β represents the characteristics and magnitude of the process noise from

the IMU measurements corrupting the attitude/heading state estimates and is defined

in Equation 3.10.

β =
[
ηz ηy ηx νx νy νz

]T
(3.10)

Next, the time update to the discrete state estimation error covariance matrix, P,

is determined in Equation 3.11.

P−
k+1 = ΦkP

+
k ΦT

k + GkQkG
T
k (3.11)

The initial setting of the discrete state estimation error covariance matrix, P, is that

of a 6-by-6 diagonal matrix. The first three diagonal elements are set to the variance of
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the attitude/heading measurement noise, and the last three diagonal elements are set

to the variance of the gyro IMU signal noise. The remainder of the elements are set to

zero.

The symbol Φ in this context represents the discrete state transition matrix rather

than one of the Euler angles. The discrete state transition matrix is a discrete approx-

imation of the continuous state transition matrix, F, using Van Loan’s method [23].

Note too low of a sampling rate can adversely impact the quality of the state transition

matrix approximation and the stability of the filter.

The matrix Q is process noise covariance matrix that is related to the column vector

β by Q = E[ββT ] where E is the expectation operator. The superscripts − and + refer

to variables that have different values before and after a measurement update to the

filter occurs. In other words, once the filter processes a measurement these variables

have to be updated before the next iteration of the filter.

Next, the measurement update of the EKF is performed. The true, discrete mea-

surement vector z is defined in Equation 3.12.

z =
[

Ψ Θ Φ
]T

(3.12)

The actual measurements themselves are made by the Vicon MX optical motion

capture system. The actual discrete measurement vector, ẑ, is assumed to be corrupted

versions of the true measurement vector, z by a linear relationship defined in Equation

3.13.

ẑk = Hzk + R (3.13)

With the measurements corrupted by a zero-mean white Gaussian noise defined by

measurement noise covariance R, where R is defined in Equation 3.14, the noise is

defined by the variance σ2 and is assumed constant and equal for each measured Euler

angle.

R =


σ2 0 0

0 σ2 0

0 0 σ2

 (3.14)
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The measurement sensitivity matrix H is defined in Equation 3.15.

H =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (3.15)

Finally, the discrete Kalman Filter gain, Lk, defined in Equation 3.16 is calculated

using a priori information. Once a measurement/observation update is available to the

filter, the discrete state estimation error covariance matrix, P+
k , defined in Equation

3.17, and the discrete state estimate, x̂+, defined in Equation 3.18 are updated and the

whole process is repeated.

In the case of gain scheduling the EKF the calculation of the Kalman Gain in

Equation 3.16 is greatly simplified. Gain scheduling reduces this equation to just a

simple constant, look-up table, or a basic function for Lk. In the present research,

the case of a constant gain based on the average gain and gains calculated as a multi-

nonlinear regression functions dependent on helicopter attitude/heading are explored.

In both cases the scheduled gains are derived from post-processing gains predicted by

the optimal EKF case. More sophisticated ways of allocating optimal gain schedules

were considered but not implemented [5, 6, 7].

Lk = P−
k HT (HP−

k HT + R)−1 (3.16)

For the discrete estimation error covariance matrix update, it is necessary to use a

more general form of the update equation that can be utilized when solving suboptimal

filter equations [8]. This is by no means the only alternative form for solving the

suboptimal filter equations [17]. This change in the update equation is due to the filter

no longer being a minimum variance, unbiased estimator as in the optimal case. This

general form can also used in the solution of the optimal equations. Below it is written

as shown in the optimal case with time dependent gains.

P+
k = [I− LkH]ΦkP

−
k ΦT

k [I− LkH]T + [I− LkH]Qk[I− LkH]T + LkRLTk (3.17)

Where I is a 6-by-6 identity matrix.

x̂+
k = x̂− + Lk[zk − ẑk] (3.18)
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In the simplest approach that of constant value gain scheduling the terms Qk and

Lk become time-invariant.

A MATLAB implementation of the above digital algorithm used in this thesis can

be seen in Appendix B.



Chapter 4

Results of Filter Performance

Studies

4.1 Simulations Studies

A previously developed MATLAB script was used to generate simulated trajectories

for testing the EKF algorithms developed in thesis. Although, the script can generate

position, velocity, and magnetic field time histories anywhere on earth as long as the

trajectories can be defined by continuous sine functions, the only motions of concern in

this thesis are attitude/heading trajectories. The angular rate channels include earth

rate components however the earth rate signal becomes undetectable when the generated

signal is corrupted with noise.

As the script only generates perfect trajectories it is necessary to pass them through a

second script that generates corresponding corrupted IMU measurements. The absolute

attitude/heading measurements are for a generic sensor and not the VICON system used

in empirical testing.

The second script allows for incorporating a range of IMU errors such as constant

sensor bias, white noise, correlated noise, and scale factor errors. These error sources

were set to values comparable to the class of IMU used in physical testing as shown in

Table 4.1. A range of attitude/heading time histories were generated in order to serve as

test cases for different methods of gain scheduling the EKF. An example of uncorrupted

and corrupted simulated gyro data can be seen in Figure 4.1.

20
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Gyro Sensor Error Terms Error Term Value Units

Bias/Offset 0.5 [deg/s]
White Noise 0.05 [deg/s] 1σ
Gauss Markov Bias 180 [deg/s]
Gauss Markov Time Constant 300 [s]

Table 4.1: Error Terms Applied to All Gyro Axes in All Simulated Test Cases

The following trajectory figures are plotted in unwrapped angles for clarity and are

also unwrapped prior to use in the EKF to avoid introducing sudden jumps into the

Euler angle parameters as some angles pass through 360 degrees. One characteristic

observed in the simulated trajectories is apparent modulation of the IMU body rates

in one channel due to attitude/heading changes in the other channels. This is due

to inherent cross-coupling in the kinematic rate equation introduced in Equation 3.1.

Thus several different trajectories are presented and tested to determine the effects

these different errors have on the gain scheduled EKF. All trajectories have a duration

of 1200 seconds. This duration was chosen arbitrarily. In some cases, the magnitude of

integrated angular IMU drift is greater than the magnitude of the true oscillation, thus

giving the oscillations the appearance of a straight line.
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Figure 4.1: Comparison of Uncorrupted and Corrupted Simulated Gyro Measurements

4.1.1 Trajectory of Benign Pitch and Roll Dynamics

The benign pitch and roll trajectory is described by a pitch sinusoid with an amplitude

of ±8◦ and a roll sinusoid with an amplitude of ±12◦. Both sinusoids are in-phase

with each other and have an oscillation frequency of 0.005 Hz. Yaw is a constant value

of 0 and remains unchanged throughout the trajectory. The trajectory generated is

illustrated in Figure 4.2.

4.1.2 Trajectory of Aggressive Pitch Dynamics

The aggressive pitch trajectory is described by a pitch sinusoid with amplitude of ±45◦

and an oscillation frequency of 0.005 Hz. Roll and yaw both have a constant value
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Figure 4.2: Simulated Trajectory of Benign Pitch and Roll Dynamics
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of 0 and remain unchanged throughout the trajectory. The trajectory generated is

illustrated in Figure 4.3.

Figure 4.3: Simulated Trajectory of Aggressive Pitch Dynamics

4.1.3 Trajectory of Aggressive Out-of-Phase Pitch and Roll Dynamics

The aggressive pitch and roll trajectory is described by a pitch and roll sinusoid with

an amplitude of ±45◦. The pitch and roll sinusoids are 90◦ out of phase with each other

and both have an oscillation frequency of 0.005 Hz. Yaw is a constant value of 0 and

remains unchanged throughout the trajectory. The trajectory generated is illustrated

in Figure 4.4.
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Figure 4.4: Simulated Trajectory of Aggressive Out of Phase Pitch and Roll Dynamics
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4.1.4 Trajectory of Aggressive In-Phase Pitch, Roll, and Yaw

Dynamics

The aggressive pitch, roll, and yaw trajectory is described by sinusoids with an amplitude

of ±45◦. All three sinusoids are in phase and all three sinusoids have an oscillation

frequency of 0.005 Hz. The trajectory generated is illustrated in Figure 4.5.

Figure 4.5: Simulated Trajectory of Aggressive In-Phase Pitch, Roll, and Yaw Dynamics

4.1.5 Trajectory of Aggressive Out-of-Phase Pitch, Roll, and Yaw

Dynamics

The aggressive pitch, roll, and yaw trajectory is described by sinusoids with an amplitude

of ±45◦. The pitch and roll sinusoids are 90◦ out of phase with each other and pitch
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and yaw are 180◦ out of phase; and all three sinusoids have an oscillation frequency of

0.005 Hz. The trajectory generated is illustrated in Figure 4.6.

Figure 4.6: Simulated Trajectory of Aggressive Out-of-Phase Pitch, Roll, and Yaw
Dynamics

4.1.6 Trajectory of Aggressive Out-of-Phase Pitch and Yaw Dynamics

With Constant Roll Angle

The aggressive pitch and yaw trajectories are described by two sinusoids with an am-

plitude of ±45◦. The pitch and yaw sinusoids are 90◦ out of phase with each other

and both sinusoids have an oscillation frequency of 0.005 Hz. The roll angle for a given

trajectory is held constant. Each trajectory has the roll angle set to a different constant.

The roll angles tested were ±45◦, ±35◦, ±25◦, ±15◦, ±10◦, ±5◦, and 0◦. An example
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of one of the trajectories generated is illustrated in Figure 4.7, the trajectory is of the

constant -15◦ roll angle instance.

Figure 4.7: Example of Simulated Trajectory of Aggressive Out-of-Phase Pitch and Yaw
Dynamics with Constant Roll Angle
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4.2 Simulated Extended Kalman Filter Comparing

Optimal to Gain Scheduling Results

The trajectories described in 4.1 were used to test out the different gain scheduling

approaches to determine which approach would be suitable for future development. The

following sections describe the results of testing the different simulated trajectories.

4.2.1 Description of Gain Scheduling Approaches

As previously noted section 2.1.1, three approaches were taken in gain scheduling the

EKF:

1. Constant gains

2. Gains calculated from a multi-nonlinear regression of the optimal gains versus the

attitude/heading state estimates

3. Gains calculated from tailored multi-nonlinear regression of the optimal gains form

a series of trajectories versus the attitude/heading state estimates.

Simulation determined that specific gain elements in the Kalman gain matrix were

significant; the remaining elements were not significant and consequently were set to

zero. The significant elements for all three approaches for gain scheduling are L(1, 1),

L(2, 2), L(3, 3), L(4, 3), L(5, 2), and L(6, 1).

The constant gain schedule is determined by taking the data set and arbitrarily

discarding the first 20% of the data set in order to remove the effects of Kalman gain

transients on startup of the EKF. The remaining Kalman gain time history is then

averaged for the significant gain elements. The average values are then used as constant

gains.

The second scheduling approach used a non-tailored multi-nonlinear regression of the

optimal gain histories. Once again the first 20% of the data set was disgarded. Then a

regression was performed on each significant gain element versus attitude/heading state

estimates and included attitude/heading interaction terms. The gain elements were the

response variables and the Euler angles were the scheduling variables. The form of the

regression is seen in Equation 4.1 where an, with n = 1, 2, 3, ..., 7, are the coefficients
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used to fit the data. The form of the regression equation used in this case was not

tailored to the optimal gain curves recorded.

L(row, column) = a1 + a2Ψ + a3Θ + a4Φ + a5ΨΘ + a6ΨΦ + a7ΘΦ (4.1)

If all the terms associated with the scheduling variables are set to zero except, a1,

then the regression equation reduces to finding the average constant value gain. Thus

a1 by itself is also used to signify the constant value gain.

The third scheduling approach took the optimal gains from a series of similar trajec-

tories and found regression equations tailored to fit the curves of optimal gain associated

with each specific and significant Kalman gain element. This was done to test the per-

formance of a gain schedule that utilized a best sub-set style of regression approach and

to see its performance on trajectories not used to generate the original gain schedule. As

shown later, the performance of this approach on trajectories different then the family

used to generate the gain schedule was poor.

The tailored gain scheduling approach utilized the regression equations seen in Equa-

tion 4.2 to 4.7.

L(1, 1) = a1Ψ2 + a2Θ2 (4.2)

L(2, 2) = a1Ψ + a2Ψ2 + a3Θ + a4Θ2 + a5Φ + a6Φ2 (4.3)

L(3, 3) = a1Ψ2 + a2Θ2 (4.4)

L(4, 3) = a1Ψ2 + a2Θ2 (4.5)

L(5, 2) = a1 + a2Φ + a3Φ2 (4.6)

L(6, 1) = a1Ψ + a2Ψ2 + a3Θ + a4Θ2 + a5Φ + a6Φ2 (4.7)

A summary listing of the coefficients for all of the gain schedules developed using both

simulated and real trajectory data is available in Appendix C.

4.2.2 Performance Index and Results of EKF Gain Scheduling

The results of gain scheduling the EKF exhibited a performance penalty over the optimal

non-gain scheduled approach. Generally, the gain schedule approach based on the non-

tailored multi-nonlinear regression of the optimal attitude/heading state estimates gave

superior results over the constant gain case, although this is somewhat expected as the
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trajectories tested are the same ones used to generate the regression. The tailored multi-

nonlinear regression only gave superior results when the trajectory tested was from the

same family of trajectories in which it was designed from. When tailored regression

is applied to trajectories outside the ones used to generate the regression the results

are significantly poorer. Summary performance index results can be seen in Table 4.2.

Trajectory Reference Constant Gain Nonlinear
Function Gain

Tailored Nonlinear
Function Gain

Figure 4.2 7.9058e-5 8.7770e-5 349.689
Figure 4.3 0.0051 0.0046 24.612
Figure 4.4 0.0283 0.0277 343.257
Figure 4.5 0.0076 0.0017 17.835
Figure 4.6 0.0694 0.0628 0.0989
Figure 4.7 0.0841 0.0824 0.0683

Table 4.2: Suboptimal EKF Performance Index (µ) Results for Simulated Trajectory
Test Cases

4.2.3 Effects of the Frequency of Measurement Update On Suboptimal

EKF Performance

The EKF filter implementation allows measurement updates to occur at a lower rate

than the process dynamics, which is often the case in real systems. For example, Kalman

Filtered INS/GPS systems typically operate at different rates. The GPS measurement

update may only occur at 1 Hz, but INS updates can occur at several hundred Hz. The

EKF can seamlessly blend these two different signal rates into optimal state estimates.

The presented results in this thesis are based on the measurement update occurring

for every sample. For example, the simulated trajectory data is sampled at 100 Hz so

that the measurement update occurs also at 100 Hz. Likewise, the experimental data

is sampled at 50 Hz so in this case the measurement update also occurs at 50 Hz.

The EKF algorithm was modified to test the effect that decreased measurement

update rate has on estimator performance. The simulated trajectory of benign pitch

and roll dynamics was used in this test. As expected, the decreased measurement
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update rates resulted in poorer filter estimation performance as shown in Table 4.3. The

multi-nonlinear regression results are not reported because the reduced measurement

frequency resulted in the Φ matrix becoming singular.

The singular matrix leads to numerical problems that appear to be the result of

erroneous attitude/heading state estimates creating a positive feedback loop with the

multi-nonlinear regression equation whereby unreasonable gains are used in the state

update equations which drives the attitude/heading estimates further off. Prior to

MATLAB aborting the test case, the attitude/heading estimates are wildly off by many

orders of magnitude. The initial trigger for this numerical problem was not determined.

The constant gain implementation avoids this issue as the gain is fixed, unlike the

regressions which become meaningless when evaluated beyond its fitted initial dataset.

These differences also suggest several possible fixes to the problem.

A means of implementing the multi-nonlinear function gain, and still maintaining

stability, may be to exercise the fitted equation with attitude/heading measurements.

These measurements should be bounded and decoupled from effects of positive feedback

rather than the use of attitude/heading state estimates. Another option is to effectively

have the gain saturate at a maximum or minimum value instead of evaluating the

regression equation beyond its original dataset.

Measurement Update Frequency Constant Gain Performance Index

1:10 8.4262
1:9 6.8096
1:8 5.5267
1:7 4.1785
1:6 3.2213
1:5 2.2826
1:4 1.4799
1:3 0.8101
1:2 0.2829
1:1 7.9058e-5 (Baseline)

Table 4.3: Impact EKF Measurement Update Frequency on Performance Index



33

4.3 Experimental Setup

In order to test the EKF algorithm outside the simulation domain, data was collected

from a Remote Control (RC) helicopter. The helicopter was equipped with an IMU to

provide the measurements for the process model and a vision based motion capture sys-

tem in the Interactive Guidance and Control Lab was used to provide attitude/heading

measurement updates to the filter.

4.3.1 RC Helicopter Test Vehicle

A RC helicopter was used to gather real flight data. The helicopter used is a Blade

CX-2 purchased from E-Flite [24]. Figure 4.8 shows an example Blade CX-2. Figure

4.9 shows the modified Blade CX-2 used throughout testing, note the black cube to the

right of the helicopter’s main mast/shaft is the IMU. It was chosen because it is small

enough to fly indoors, but large enough to carry a reasonable sized payload of elec-

tronics and a complete MEMS IMU. The helicopter features tandem counter-rotating

coaxial main rotors and the upper rotor incorporates a free-floating Bell style stabilizer

bar. Additionally, helicopter control is implemented through a conventional swash-plate

mechanism acting on the lower rotor to generate cyclic blade pitch variations. Other

details on the Blade CX-2 are summarized below in Table 4.4

Figure 4.8: Example of the E-Flite Blade CX-2 Remote Control Helicopter
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Figure 4.9: Modified E-Flite Blade CX-2 Test Helicopter - With IMU Installed

Specifications Quantity Units

Main Rotor Span 0.345 m
Mass Empty 200 g
Payload 50 g
Length 0.300 m
Height 0.175 m
Propulsion Electric N/A

Table 4.4: Blade CX2 Helicopter Specifications
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4.3.2 Inertial Measurement Unit

The helicopter is equipped with a MEMS based digital IMU produced by Analog Devices

[25]. The IMU contains three accelerometers, and three gyroscopes and an embedded

controller for filtering and compensating the raw sensor signals. The Analog Devices

part number for the IMU is ADIS16350. The output signals are time stamped and

recorded at 50 Hz by the Vicon data collection system. IMU tri-axis accelerometer data

was recorded during experimentation, but the information was not incorporated in the

EKF. Additional IMU performance parameters evaluated at 25 ◦C are summarized in

Table 4.5

Gyro Performance Specifications Nominal Value Units

Dynamic Range ±75 ◦/s
Initial Sensitivity Error (1σ) ±10,000 ppm
Sensitivity Error Due to Temperature 600 ppm/◦C
Axis Nonorthogonality Error ±0.05 ◦

Axis Misalignment Error ±0.5 ◦

Sensitivity Nonlinearity (Best Fit Line) 0.1 % of Full Scale
In-Run Bias Stability 0.15 ◦/s
Output Noise (±75◦/s, 32-tap FIR Filter) 0.17 ◦/s rms

Angular Random Walk 4.2 ◦/
√
hr

Rate Noise Density (f=25Hz, ±300◦/s, no filter) 0.05 ◦/s/
√
Hz rms

Bias Linear g-Sensitivity (1σ) 0.1 ◦/s/g
Bias Voltage Sensitivity (Vcc=4.75-5.25V) 0.25 ◦/s/V
IMU Dimensions 23x23x23 mm

Table 4.5: Analog Devices ADIS16350 MEMS IMU

The IMU is attached to the helicopter with improvised rubber isolators and is located

directly ahead of the electric motors that drive the tandem coaxial main rotors. The

effects of unintended IMU lever arms about the helicopter center of gravity and non-

rigid helicopter body modes were ignored in both the mounting of the IMU and in data

processing and in the EKF.
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4.3.3 Infrared Motion Tracking Camera System

The laboratory (Interactive Guidance and Control Lab) where the helicopter testing was

conducted is equipped with a Vicon MX optical motion capture system. The system is

composed of 6 MX40 cameras located around the perimeter. Each camera has a built in

infrared emitter. The camera is designed to detect the emitted infrared light reflected

off special spherical targets attached to the helicopter structure.

The images collected by these cameras are streamed to a stand alone computer where

proprietary Vicon software calculates in real-time the attitude/heading and body rates,

expressed in Euler angles, and also calculates the helicopter’s position and velocities

This data is time-stamped and recorded at a 50 Hz rate in the same file as the IMU

data. Previous work has identified that the attitude/heading estimated by the system

is accurate to 0.06◦ 1σ [21].

4.4 Experimental RC Helicopter Test Trajectories

Data from two separate tests, using real measurements and hardware, demonstrated

the ability to estimate attitude/heading using a gain scheduled EKF. The two test

trajectories have been named the following way:

1. Unpowered Constrained Pendulum Trajectory Test

2. Powered Free Flight Trajectory Test

4.4.1 Unpowered Constrained Pendulum Trajectory Test

This data set from prior research was used because of its advantageous characteristics.

Another research project[20] utilized an identical test setup, but instead hung the he-

licopter vertically from the ceiling to create a pendulum with the combined helicopter,

IMU, and Vicon reflectors acting as the pendulum mass. The researcher then perturbed

the setup in order to start oscillating the system back and forth.

This setup had several advantages over a pure free flight condition. The helicopter

was non-operating during the test so concerns about operational vibrations or electro-

magnetic interference impacting the quality of the IMU measurements were eliminated.
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Another advantage of this setup is the pendulum trajectory itself is also generally con-

strained to a pitching motion and the equations of motion are known analytically if the

helicopter is assumed to be a point mass. The actual data contained more roll motion

than expected. Future pendulum tests should improve the test setup to reduce this.

The author feels that a ceiling mounted hinge or bearing attached to a long slender rod

which itself is rigidly connected to the frame of the helicopter would be a better setup.

Experiments should also be done with the pendulum rod connected directly to the IMU

without the helicopter involved in order to attempt to gather cleaner data.

The resulting Euler angle time-series of the pendulum test are shown in Figure 4.10.

The Euler angles plotted are generated from the measurements collected from the IMU

and from the Vicon system. The IMU measurements are integrated forward in time

using a simple cumulative sum. The drift of the integrated IMU measurements is due

to latent gyro bias and is visible in Figure 4.10.
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Figure 4.10: Unfiltered Pendulum Time-Series Test Data: Integrated IMU Vs. Vicon
Measurements

Figure 4.11 illustrates the state estimates and Vicon measurements. The left-side se-

ries compare attitude/heading estimates against Vicon attitude/heading measurements.

The right-side series illustrates the filter’s estimate of the IMU gyro biases. In real test

cases there is no independent measurement of gyro bias, consequently, there is no knowl-

edge of the actual true gyro bias. An interesting observation here is that the gyro bias

estimates change quite rapidly over the course of the data collected. It is known that

in practice the gyro bias cannot change that quickly for this particular type of IMU.

These plots are based on the optimal, non-gain scheduled EKF.
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Figure 4.11: Optimal EKF Processed Pendulum Data: Filter State Estimates (Green)
Vs. Vicon Measurements (Red) (Note oscillations of gyro bias estimates)

Figure 4.12 illustrates the same trajectory as Figure 4.11, but instead is based on the

constant gain EKF. Note the differences between the two in terms of yaw bias estimates,

δr, and what may indicate an initial convergence problem.
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Constant Gain Nonlinear Function Gain Tailored Nonlinear Function Gain

0.0243 0.0271 NaN

Table 4.6: Suboptimal EKF Performance Index (µ) Results for Pendulum Test Data

The performance index for the three cases of the suboptimal EKF implementations

are shown in Table 4.6.

In the case where the gains are scheduled as a multi-nonlinear function of the state

estimates of the Euler angles the results appear similar to that seen in Figure 4.12.

Figure 4.12: Constant Gain EKF Processed Pendulum: Suboptimal Filter State Esti-
mates (Green) Vs. Vicon Measurements (Red)
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4.4.2 Powered Free Flight Trajectory Test

In addition to the pendulum-like test data, additional data was also collected in free-

flight. The helicopter was flown by a student pilot through a series of pitching and

rolling motions

The resulting Euler angle time-series of the free-flight test is shown in Figure 4.13.

As before, the Euler angles plotted are generated from the measurements collected.

Figure 4.13: Unfiltered Helicopter Free Flight Time-Series Test Data: Integrated IMU
Vs. Vicon Measurements

The optimal EKF state estimates is shown for comparison purposes in Figure 4.14.
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Figure 4.14: Optimal EKF Processed Helicopter Free Flight Data: Filter State Esti-
mates (Green) Vs. Vicon Measurements (Red)

The results of the free flight test data is similar to the pendulum data collected.

Table 4.7 shows the performance of the three suboptimal filter implementations.
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Constant Gain Nonlinear Function Gain Tailored Nonlinear Function Gain

0.0061 0.0057 0.4464

Table 4.7: Suboptimal EKF Performance Index (µ) Results for Helicopter Free Flight
Test Data

4.5 Experimental Results

The real gyro bias estimates from testing exhibit a higher variability than expected

from simulation, as seen in Figure 4.11. Investigations into this observation led to the

realization that the simulated trajectories and corresponding corrupted IMU signals

did not include gyro sensitivity, gyro misalignments, and or other gyro error sources

in the calculations used to corrupt the generated IMU signals. The original simulated

trajectories only assumes gyro errors of noise and bias. The addition of these other

gyro errors to the simulation introduced higher variability in the bias estimate, and is

consistent with that seen when using the EKF on the real data which naturally contains

a range of both deterministic and random error sources. This bias variability is due to

differences or mismatches between the system dynamics modeled in the EKF and the

dynamics of the actual experimental data. The modeled gyro error system dynamics in

the EKF is a major simplification of the actual gyro error dynamics.

Another observation is that, on occasion, the measurement update provided by

the Vicon was aphysical and there were measurement outages. These outages were

corrected in post-processing, otherwise the EKF algorithm implemented would have

swallowed these errors with likely adverse consequences for the filter. Online algorithms

in practice would have to be setup to detect and reject wildly inaccurate measurements,

and the system would then rely on dynamic model projections to coast through the

outage.
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4.5.1 Confirmation of Experimental Observations Through Simulation

Two attempts were made to replicate the bias estimate behavior seen in the flight

data. In one case, misalignments were intentionally introduced in the simulated benign

trajectory data. The magnitude of the misalignments was arbitrarily selected. In the

other case, gyro sensitivity errors were introduced. Both resulted in unsteady gyro bias

estimates being predicted by the EKF, although with slight differences between the two

error sources.

Figure 4.15 shows the EKF predicted performance for the baseline benign pitch and

roll trajectory introduced in section 4.1.1. This trajectory only contains gyro bias errors.

Figure 4.15: Optimal EKF Processing of the Benign Pitch and Roll Simulated Data
- With Gyro Bias Errors and Without Misalignment or Gyro Sensitivity Errors (Red
VICON measurements)
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For comparison purposes, Figure 4.16 illustrates the case of introducing large gyro

sensor axes misalignment errors into the simulated trajectory dynamics used in an opti-

mal EKF that only expects gyro bias dynamics. Consequently, spurious gyro bias state

estimate oscillations are observed. The misalignments applied are defined in Table

Figure 4.16: Optimal EKF Processing with Intentional Gyro Sense Axes Misalignment
Error Introduced to the Benign Pitch and Roll Simulated Data (Red VICON measure-
ments)

4.8 and expressed in the Direction Cosine Matrix (DCM) that is defined in Equation

4.8.

MisalignmentDCM =


0.9540 0.2556 −0.1564

−0.2753 0.9538 −0.1204

0.1184 0.1579 0.9803

 (4.8)
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Yaw Error Pitch Error Roll Error

15◦ 9◦ -7◦

Table 4.8: Applied IMU Misalignments to Generate Gyro Bias State Estimate Oscilla-
tions

Additionally, Figure 4.17 illustrates the case of introducing large gyro sensitivity

errors into the simulated trajectory dynamics and again processing the corrupted tra-

jectory with an optimal EKF that only expects gyro bias dynamics. Similar gyro bias

state estimate oscillations occur. The arbitrary gyro sensitivity errors applied are de-

fined in Table 4.9.

Although, in theory it is possible to design an EKF to differentiate between misalign-

ments and gyro sensitivity errors, in practice the quality of the measurements utilized

and the maneuvers made by the vehicle can make it difficult to observe the differences

between these two errors.

An EKF was designed with gyro sensitivity error states in order to attempt to

illustrate how the oscillations in the gyro bias estimate could be reduced in certain

conditions. By giving the filter additional error states the filter is able to capture the

unmodeled process dynamics and prevent the gyro bias estimates from being impacted.

Yaw Gyro Pitch Gyro Roll Gyro
Sensitivity Error Sensitivity Error Sensitivity Error

1.10 1.30 1.29

Table 4.9: Applied Gyro Sensitivity Errors Used to Generate Gyro Bias State Estimate
Oscillations
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Figure 4.17: Optimal EKF Processing with Intentional Gyro Sensitivity Error Intro-
duced to the Benign Pitch and Roll Simulated Data (Red VICON measurements)

4.6 Improving Filter Performance

As discussed in section 4.5.1 the use of real flight data highlighted a limitation of the

simulation in that gyro sensitivity, misalignment, and nonorthogonality errors were not

modeled in process dynamics of the filter and this resulted in oscillations in the estimate

of the gyro biases due to the simplified process dynamics modeled.

In practice, this limits the usefulness of the basic EKF presented to situations in

which measurement updates are always available. The situation where there is a loss of

measurement updates, whether they be Vicon based or GPS based or some other form

of aiding, would result in accelerated degradation of the IMU only navigation solution
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as the gyro bias estimates are less accurate due to the oscillations they exhibit.

The present filter implementation is essentially using the measurement update to

calibrate the IMU on the fly. With the filter assigning unmodeled dynamics to gyro

bias error states the IMU calibration is degraded, the bias oscillations are spurious

errors added incorrectly to the state estimates. With more accurate bias estimates the

attitude/heading drift under circumstances of lost aiding is diminished.

Several ways exist for eliminating these bias errors oscillation. A less then elegant

option would be to increase the process noise or measurement noise modeled in the filter.

This solution has the disadvantage of degrading the accuracy of the overall system.

Another option would be to improve the quality of the gyros in the case of gyro

sensitivity errors or installation in the helicopter in the case of misalignment and non-

orthogonality errors or both. The MEMS gyros used in the IMU are mid-range in terms

of price and quality available on the commercial market. Better IMUs are available with

improved gyro sensitivity error performance, but at a much greater price and often times

in a larger form factor which makes mounting of the IMU on the helicopter difficult.

The misalignment and non-orthogonality errors inherent in the improvised mounting of

the IMU to the helicopter could certainly be improved with better mechanical design

at a reasonable price.

The third option would be to incorporate additional error states in the EKF to deal

with the unmodeled dynamics. It was discussed earlier that, in theory, an EKF could be

set up to account for each specific error state, but in the case of the experimental setup

utilized it would seem unlikely to have sufficient observability to accurately account for

each error state. Another consequence of adding many additional error states would be

the increased computational cost of such a filter, which is not in keeping with the spirit

of the research.

Therefore, an EKF was created that only added gyro sensitivity error states to

demonstrate where improvements could be made in the design of the basic filter used in

this research. This was found to reduce the oscillations in the gyro bias estimates. This

filter implementation also effectively rolled some of the misalignment and nonorthogo-

nality errors into the gyro sensitivity states, as the distinction between these errors in

terms of process dynamics is very subtle.
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4.6.1 Addition of Gyro Sensitivity Error States

In order to add additional error states to the EKF the following equations had to be

modified.

The process model presented in Equation 3.2 now includes gyro sensitivity error

terms as seen in Equation 4.9.

ΩIMU = (1 + SensitivityError)Ωtrue + b+ η

ḃ = − 1

τIMU
b+ ν (4.9)

The dynamic coefficient matrix of Equation 3.5 now becomes a 9-by-9 matrix with

the elements defined in F(1 : 3, 7 : 9) equivalent to the evaluation of the right side of

Equation 3.1. All other new elements in F are set to zero.

The coupling matrix shown in Equation 3.9 now takes on the form seen in Equation

4.10.

G =



0 sin(Φ)
cos(Θ)

cos(Φ)
cos(Θ) 0 0 0 0 0 0

0 cos(Φ) − sin(Φ) 0 0 0 0 0 0

1 sin(Φ) sin(Θ)
cos(Θ)

cos(Φ) sin(Θ)
cos(Θ) 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



(4.10)

The process noise vector shown in Equation 3.10 now takes on the form seen in

Equation 4.11.

β =
[
ηz ηy ηx νx νy νz ηSFx ηSFy ηSFz

]T
(4.11)

The initial setting of the discrete state estimation error covariance matrix, P, is now

a 9-by-9 diagonal matrix. The first three diagonal elements are set to the variance of

the attitude/heading measurement noise. The next three diagonal elements are set to

the variance of the gyro IMU signal noise and the last three diagonal elements are set
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to 10 times the variance of the gyro IMU signal noise. All off-diagonal elements are set

to zero.

The greater initial uncertainty placed on the state estimation error associated with

the gyro sensitivity states was found to speed up convergence of the filter in identifying

the predicted gyro sensitivity errors.

The state vector shown in Equation 3.4 now takes on the form seen in Equation

4.12, where the ŜF terms are gyro sensitivity error terms.

x̂ =
[

Ψ̂ Θ̂ Φ̂ b̂x b̂y b̂z ŜF x ŜF y ŜF z

]T
(4.12)

The measurement sensitivity matrix shown in Equation 3.15 now takes on the form

seen in Equation 4.13.

H =


1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 (4.13)

4.6.2 Experimental Results of Using Gyro Sensitivity Error States in

the Base EKF Model Without Gain Scheduling

Using the free-flight helicopter data again for comparison purposes, the addition of gyro

error sensitivity states is shown to only slightly improve the behavior of the gyro bias

estimates. The estimated gyro sensitivity errors are also larger than expected for the

IMU used in the testing. It is likely that misalignment errors rather than gyro sensitivity

errors are the source of the bias oscillations.

More work needs to be done in determining the appropriate error model to use for in-

flight calibration of the dominant IMU errors. The right mix of error process dynamics

should improve system performance in the absence of the measurement update.

Additional work would need to be done to determine gain schedules for this more so-

phisticated filter implementation. Figure 4.18 illustrates the results of using the optimal

EKF formulation with additional states for gyro sensitivity.

Figure 4.19 illustrates the estimated gyro sensitivity error states as a function of

time.



51

Figure 4.18: Optimal EKF Processed Helicopter Free Flight Data With Gyro Sensitivity
Filter States
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Figure 4.19: Optimal EKF Processed Helicopter Free Flight Gyro Sensitivity Error
Estimates (Red VICON measurements)



Chapter 5

Conclusions

The concept of gain scheduling gains for an Extended Kalman Filter was explored. The

motivation for this was to develop an attitude/heading estimation system for use in ap-

plications with limited computational resources. An attitude/heading estimation system

utilizing a gain scheduled EKF was successfully demonstrated using both simulated and

experimental test data.

Initially, the conventional EKF approach and implementation was presented. Next,

the idea of gain scheduling was presented along with a review of historical work in

the area. Three gain scheduling approaches of the attitude/heading estimating filter

were developed. The first method was based on using the average optimal gain as a

constant gain schedule value. The second method was a gain schedule based on fitting

the same regression equation to each Kalman gain element in the matrix and using

specific attitude/heading time histories to determine the coefficients of the regression.

The third method was to tailor the regression equation for each specific Kalman gain

element in the matrix and then fit the individual regressions to a family of similar

attitude/heading time histories. In addition, a performance index was used to judge

relative performance between the optimal and suboptimal filter implementations.

A series of simulated trajectories were generated to exercise the different filter ap-

proaches. The trajectories covered a range of vehicle dynamics and the simulated sensor

measurements corresponding to the trajectories were corrupted by noise and gyro bias

errors. The constant gain schedule approach generally gave poorer filter performance

in all cases than either the non-tailored or the tailored multi-nonlinear regressions. The

53
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non-tailored regression generally gave better results than the tailored regression. Both

multi-nonlinear regression approaches appeared to have numerical stability limitations.

The effect of the filter’s measurement update frequency on the performance index was

determined in the case of the constant gain schedule approach. Less frequent measure-

ment updates degraded the performance of the filter.

Utilizing data collected from indoor testing of a RC helicopter equipped with a

MEMS IMU, and tracked by an infrared machine vision system, allowed the testing

of different filter approaches using real data. Real data contained a range of MEMS

gyro errors that were originally modeled in the corrupted simulated trajectories. The

unmodeled errors resulted in unexpected oscillations in the gyro bias error state esti-

mates. This connection between unmodeled gyro error dynamics and gyro bias error

state estimates was confirmed through simulation. Additional simulations were con-

ducted with intentional gyro misalignment and gyro sensitivity errors introduced into

the trajectory data. These tests confirmed the source of gyro bias oscillations as likely

to be caused by unmodeled process dynamics in the filter.

In an attempt to address these gyro bias oscillations, a filter was developed that

included a model for gyro sensitivity error states and dynamics. This filter was able

to pull out the gyro bias oscillation caused by the gyro sensitivity error dynamics in

the simulated trajectories, but when used on the helicopter data it only had a minor

impact. This suggests more work needs to be done in reducing these error terms in the

IMU and improving IMU installation or in developing filters with alternative gyro error

process dynamics.

To this end, the following areas of research are recommended:

• Develop and test alternative gyro error process models. Create a process model

that allows for the identification of both gyro bias and gyro misalignment errors.

Also investigate a process model the includes gyro bias, sensitivity error, and

misalginment states in one model.

• Develop more sophisticated gain scheduling approaches and develop approaches

to allow the filter to reject unreliable measurements. Gain scheduling approach

should incorporate bounds on the computed gain used in the filter. The tailored

multi-nonlinear regression’s poorer performance showed the need to derive the
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gain schedule from a diverse range of trajectories.

• Implement a gain scheduled filter algorithm in a real-time embedded system for

use in vehicles. Implementation will likely require the filter be implemented in

fixed-point math to allow the algorithm to be supported on low cost, low power

microcontrollers that do not include a floating-point capability.
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Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of subject matter specific ter-

minology and acronyms, but this cannot always be achieved. This appendix defines

the specific terminology used in a glossary and contains a table of acronyms and their

meaning.

A.1 Glossary

• Auxiliary Variable: The variable that controls the scheduling of the Kalman filter

gain. Kalman gains used by the filter change when this variable changes.

• Bias: A constant, deterministic, erroneous offset in the output of a sensor relative

to its true error-free value.

• Covariance Matrix: The covariance matrix is a linear measure of how two or

more random variables vary about their respective means and how they depend

on each other. The diagonal elements of the matrix describe the variation of one

random variable about itself. The off-diagonal elements of the matrix describe the

variation between pairs of random variables.

• Estimation: Estimation attempts to determine the value of a parameter or state

from measurements corrupted with noise.
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• Euler angle: Euler angles are the parameters that describe the specific orienta-

tion of a rigid body through a composite sequence of rotations defined in a fixed

reference frame or a frame co-moving with the rotating body.

• Extended Kalman Filter: The Extended Kalman Filter (EKF) is a modified ver-

sion of the simple Kalman filter. The EKF capable of dealing with nonlinear

systems and nonlinear measurements.

• Filtering: A filter is a mathematical means to reject noise from a corrupted signal

containing information of interest.

• Kalman Filtering: Kalman filtering is a time domain, recursive filter that utilizes

a linear measurement model and a linear dynamic mathematical model of the

system being filtered to calculate an optimal estimate of the state of the system

being filtered. The system and measurement are corrupted by Gaussian white

noise. This is sometimes referred to as a simple Kalman Filter.

• Kalman Gain: Kalman Gain weights the difference between the current measure-

ment of the state of the system and the current prediction of the state of the system

such that in the case of an optimal estimator results in an optimal estimate of the

state of the system in the future.

• Gauss-Markov noise: Gauss-Markov noise is a random signal where the value of

the signal in a given instance is correlated in a finite amount time with another

instance of the signal.

• Measurement: A measurement is a physical detection of a state variable of a

system that is corrupted by noise. This is also referred to as an observation.

• Optimal: Optimal refers to an unbiased and minimum variance or minimum un-

certainty estimate.

• Process: Process is synonymous with the equations/model that describes the dy-

namics of a system. An example of process is a random process which is discrete

sequence of values generated from sampling a random variate.
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• Recursive: A method of defining an equation such that the equation can be solved

an unlimited number of times to arrive at the latest instance of the solution. For

example, in business a running total plus the value of the latest transaction re-

sults in the calculation of the new total. This is the opposite of repeating all the

arithmetic for every transaction that previously occurred every time a new trans-

action occurs. This allows the Kalman Filter to operate with a minimal amount of

memory as system history does not need to be recorded, rather the current state

estimate contains all the past information of the system. See Recursive.

• State variable: A state variable is mathematical parameter of a system that de-

scribes the system’s dynamics in time. Knowing the state variables typically allows

one to predict the future state or behavior of the system.

• System: A system is an object that can be described by a series of mathematical

equations or functions. The system has the property that it is dynamic in that its

state variables can be defined by mathematical equations that are time-dependent.

• White noise: A random signal where the value of the signal in a given instance is

uncorrelated in time with any other instance of the signal.
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A.2 Acronyms

Table A.1: Acronyms

Acronym Meaning

AHRS Attitude/Heading Reference System

CGEKF Constant Gain Extended Kalman Filter

DARPA Defense Advanced Research Projects Agency

DCM Direction Cosine Matrix

EKF Extended Kalman Filter

FIR Finite Impulse Response

GPS Global Positioning System

IGCL Interactive Guidance and Control Lab

IMU Inertial Measurement Unit

INS Inertial Navigation System

LINS LORAN Inertial Navigation System

LORAN LOng RAnge Navigation

MAV Micro Air Vehicle

MEMS Micro-Electromechanical System

NAV Nano Air Vehicle

RC Remote Control

RMS Root-Mean-Square

UAV Unmanned Aerial Vehicles



Appendix B

Example Extended Kalman Filter

MATLAB Code Used in Analysis

(Excluding plotting functions)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Extend Kalman Filter Analysis Code Used In Thesis

%Code first calculate EKF with "optimal" varying Kalman Gains.

%Next, the Kalman gains are reduced to a constant schedule and the EKF run

%again.

%Finally, the Kalman gains are applied as a simple linear function schedule

%and the EKF run again. A performance index is calculated

%for each suboptimal gain schedule.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

clc;

close all;

%Define some constants

d2r = pi/180; %Degress to radians conversion
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r2d = 1/d2r; %Radians to degrees conversion

transientpercent=0.2;%percent of file to ignore due to transient gains

%% -----1.0 Load the Processed Data, Determine Processing -------%

load uav_imu_data.mat;

[p n e] = fileparts(’uav_imu_data.mat’);

%% ------2.0 Define and Initialize Variables -------------------%

imu = imu_corrupt; %Assign corrupted or real measurements to imu variable

imuerrors = 0; %Switch if IMU errors are known (1 = on, 0 = off)

t = imu(:,1); %Extract time sequence from IMU variable

drl = length(t); %Identify the overall time duration of test data

drls = round(drl*transientpercent); %start of steady state

%Initialize characteristics that define inertial

%quality using external function.

insQual = ’CON’; %Set IMU quality flag to Consumer grade

[gyro,accel] = getinsmodel(insQual); %Get inertial sensor error model

tau_w = gyro(1); %Markov Time Constant

sigma_wc = gyro(2); %Markov Bias

sigma_wn = gyro(3); %Wide Band White Noise

sigma_ns = gyro(4); %Gyro bias/offset

L = zeros(6,3); % Initialize Kalman Gain matrix

I = eye(6); % Setup a 6 by 6 identify matrix

%Pre-allocate arrays for storing gain data over time (Row, Column)

L11 = zeros(drl, 1);

L12 = zeros(drl, 1);

L13 = zeros(drl, 1);

L21 = zeros(drl, 1);

L22 = zeros(drl, 1);

L23 = zeros(drl, 1);

L31 = zeros(drl, 1);

L32 = zeros(drl, 1);
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L33 = zeros(drl, 1);

L41 = zeros(drl, 1);

L42 = zeros(drl, 1);

L43 = zeros(drl, 1);

L51 = zeros(drl, 1);

L52 = zeros(drl, 1);

L53 = zeros(drl, 1);

L61 = zeros(drl, 1);

L62 = zeros(drl, 1);

L63 = zeros(drl, 1);

P44 = zeros(drl,3);

P55 = zeros(drl,3);

P66 = zeros(drl,3);

%% -------3.0 Establish the EKF State Variable Initial Conditions --%

for j = 1:4

%Initialize state variables

eul = zeros(drl,3); %Pre-allocate the Euler angle state variables

p_bias = zeros(drl,1); %Pre-allocate the roll gyro bias rate array

q_bias = zeros(drl,1); %Pre-allocate the pitch gyro bias rate array

r_bias = zeros(drl,1); %Pre-allocate the yaw gyro bias rate array

%Initialize Euler state variable using first attitude truth

%data-point

eul(1,:) = [psi(1) the(1) phi(1)]*d2r; %[yaw pitch roll]

%% -------3.1 Define EKF Filter Variables/Structure ---------------%

loop_count = 0;

FILTER = ’ON’;

update_limit = 0; %round(1/dt);

P = diag([0.06*d2r*ones(1,3) sigma_wc*ones(1,3)].^2);%eye(6);

H = [eye(3) zeros(3,3)]; %Define measurement matrix

F = zeros(6,6); %Initialize state transition matrix
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Rwpsd = eye(6); %Initialize process noise/spectral density matrix

Rwpsd(1,1) = 1*sigma_wn^2; %Assign White Noise value

Rwpsd(2,2) = 1*sigma_wn^2; %Assign White Noise value

Rwpsd(3,3) = 1*sigma_wn^2; %Assign White Noise value

Rwpsd(4,4) = 1*sigma_wc^2/tau_w; %Assign Gyro Makrov Bias

Rwpsd(5,5) = 1*sigma_wc^2/tau_w; %Assign Gyro Makrov Bias

Rwpsd(6,6) = 1*sigma_wc^2/tau_w; %Assign Gyro Makrov Bias

Rv = eye(3)*(0.06*d2r)^2; %Initialize Measurement Noise Matrix

Fe2e = zeros(3,3); %Initialize a portion of the state transition matrix

Fw2e = zeros(3,3); %Initialize a portion of the state transition matrix

Fe2w = zeros(3,3); %Initialize a portion of the state transition matrix

Fw2w = -eye(3)/tau_w; %Initialize a portion of the state transition matrix

Gn2e = zeros(3,3); % "n" = wide band noise; "c" = colored noise.

Gc2e=zeros(3,3);%Initialize a part of the process noise sensitivity matrix

Gn2w=zeros(3,3);%Initialize a part of the process noise sensitivity matrix

Gc2w = eye(3); %Initialize a part of the process noise sensitivity matrix

%% -------4.0 Begin the "Online" Attitude EKF Estimation Solution ----%

%Start of actual EKF

wB = waitbar(0,’Propagating Attitude Solution and Covariance ...’);

for k = 2:drl

waitbar(k/drl,wB);

loop_count = loop_count + 1;

p = imu(k-1,2); %roll_dot

q = imu(k-1,3); %pitch_dot

r = imu(k-1,4); %yaw_dot

st = sin(eul(k-1,2));

ct = cos(eul(k-1,2));

sp = sin(eul(k-1,3));
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cp = cos(eul(k-1,3));

% ===== Fe2e: Euler Angle Error to Euler Angle Error Block ==== %

%sin(theta)/cos(theta)^2)*(pitch_dot*sin(phi)+yaw_dot*cos(phi))

Fe2e(1,2) = -(st/ct^2)*(q*sp + r*cp);

%(pitch_dot*cos(phi)-yaw_dot*cos(phi))/cos(theta)

Fe2e(1,3) = (q*cp - r*sp)/ct;

%-(pitch_dot*sin(phi)+yaw_dot*cos(phi))

Fe2e(2,3) = -(q*sp + r*cp);

%(pitch_dot*sin(phi)+yaw_dot*cos(phi))/(cos(theta)^2)

Fe2e(3,2) = (q*sp + r*cp)/ct^2;

%(sin(theta)/cos(theta))*(pitch_dot*cos(phi)-yaw_dot*sin(phi))

Fe2e(3,3) = (st/ct)*(q*cp - r*sp);

% ===== Fw2e: Gryo Bias to Euler Angle Error Block ==== %

Fw2e(1,2) = sp/ct; %sin(phi)/cos(theta)

Fw2e(1,3) = cp/ct; %cos(phi)/cos(theta)

Fw2e(2,2) = cp; %cos(phi)

Fw2e(2,3) = -sp; %-sin(phi)

Fw2e(3,1) = 1;

Fw2e(3,2) = sp*st/ct; %sin(phi)*sin(theta)/cos(theta)

Fw2e(3,3) = cp*st/ct; %cos(phi)*sin(theta)/cos(theta)

% ===== Gn2e: Gryo wide band noise to Euler Angle Error Block ==== %

Gn2e = Fw2e;

% ===== Fw2e: Assemble Dynamics Matrix ==== %

F = [Fe2e Fw2e;...

Fe2w Fw2w ]; %Dynamic Matirx at t = k

G = [ Gn2e Gc2e;... %Process noise sensitivity matrix

Gn2w Gc2w];

PHI = expm(dt*F); %Discrete Equivalent of F, State Transition matrix

GQG = disrw(F,G,dt,Rwpsd); %Discrete Equivalent of G*Q*G’, using

%Van Loan algorithm for computing integral of a matrix exponential.
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%GQG is equivalent to discrete Q(k).

P44(k,j)= sqrt(P(4,4));

P55(k,j)= sqrt(P(5,5));

P66(k,j)= sqrt(P(6,6));

P = PHI*P*PHI’ + GQG; %State estimation error covariance

% ===== Propagare the actual Euler Angles ==== %

p_bias(k,1) = p_bias(k-1,1);

q_bias(k,1) = q_bias(k-1,1);

r_bias(k,1) = r_bias(k-1,1);

p_use = imu_corrupt(k-1,2) + p_bias(k,1);

q_use = imu_corrupt(k-1,3) + q_bias(k,1);

r_use = imu_corrupt(k-1,4) + r_bias(k,1);

sp_use = sin(eul(k-1,3));

cp_use = cos(eul(k-1,3));

st_use = sin(eul(k-1,2));

ct_use = cos(eul(k-1,2));

yaw_dot = (sp_use/ct_use)*q_use + (cp_use/ct_use)*r_use;

pitch_dot = cp*q_use - sp_use*r_use;

roll_dot=p_use+(sp_use*st_use/ct_use)*q_use+(cp_use*st_use/ct_use)*r_use;

eul(k,:) = eul(k-1,:) + dt*[yaw_dot pitch_dot roll_dot];

if (loop_count > update_limit & strcmp(FILTER,’ON’))

loop_count = 0;

%% ----------4.1 "Online" Gain Calculations Inside Filter -----------%

if j == 1

L = P*H’*inv(H*P*H’ + Rv); %Calculate Kalman Gain Matrix

%%%Storing the Kalman Gain History

L11(k) = L(1,1);

L12(k) = L(1,2);

L13(k) = L(1,3);
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L21(k) = L(2,1);

L22(k) = L(2,2);

L23(k) = L(2,3);

L31(k) = L(3,1);

L32(k) = L(3,2);

L33(k) = L(3,3);

L41(k) = L(4,1);

L42(k) = L(4,2);

L43(k) = L(4,3);

L51(k) = L(5,1);

L52(k) = L(5,2);

L53(k) = L(5,3);

L61(k) = L(6,1);

L62(k) = L(6,2);

L63(k) = L(6,3);

%else: No action or Kalman gain computation occurs

%for constant gain case.

%Constant gain is calculated in 5.1 outside the loop.

elseif j == 3

%Skip storing gains and instead solve for gains based on linear fits

L(1,1) = L1f(1)+L1f(2)*eul(k,1)+L1f(3)*eul(k,2)+L1f(4)*eul(k,3)+...

L1f(5)*eul(k,1)*eul(k,2)+L1f(6)*eul(k,2)*eul(k,3)+L1f(7)*eul(k,1)*eul(k,3);

L(2,2) = L2f(1)+L2f(2)*eul(k,1)+L2f(3)*eul(k,2)+L2f(4)*eul(k,3)+...

L2f(5)*eul(k,1)*eul(k,2)+L2f(6)*eul(k,2)*eul(k,3)+L2f(7)*eul(k,1)*eul(k,3);

L(3,3) = L3f(1)+L3f(2)*eul(k,1)+L3f(3)*eul(k,2)+L3f(4)*eul(k,3)+...

L3f(5)*eul(k,1)*eul(k,2)+L3f(6)*eul(k,2)*eul(k,3)+L3f(7)*eul(k,1)*eul(k,3);

L(4,3) = L4f(1)+L4f(2)*eul(k,1)+L4f(3)*eul(k,2)+L4f(4)*eul(k,3)+...

L4f(5)*eul(k,1)*eul(k,2)+L4f(6)*eul(k,2)*eul(k,3)+L4f(7)*eul(k,1)*eul(k,3);
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L(5,2) = L5f(1)+L5f(2)*eul(k,1)+L5f(3)*eul(k,2)+L5f(4)*eul(k,3)+...

L5f(5)*eul(k,1)*eul(k,2)+L5f(6)*eul(k,2)*eul(k,3)+L5f(7)*eul(k,1)*eul(k,3);

L(6,1) = L6f(1)+L6f(2)*eul(k,1)+L6f(3)*eul(k,2)+L6f(4)*eul(k,3)+...

L6f(5)*eul(k,1)*eul(k,2)+L6f(6)*eul(k,2)*eul(k,3)+L6f(7)*eul(k,1)*eul(k,3);

elseif j == 4

L(1,1) = (1.01954760994007e-05*(r2d*eul(k,1))^2)+...

(1.30447333578395e-05*(r2d*eul(k,2))^2);

L(2,2) = ((-2.41420842380300e-09*(r2d*eul(k,1)))+...

(1.02826109779989e-05*(r2d*eul(k,1))^2)+...

(-9.58281344616228e-08*(r2d*eul(k,2)))+...

(1.02785172978461e-05*(r2d*eul(k,2))^2)+...

(-1.56699421187240e-08*(r2d*eul(k,3)))+...

(-4.15974637516097e-11*(r2d*eul(k,3))^2));

L(3,3) = (1.01933460519859e-05*(r2d*eul(k,1))^2)+...

(1.30447689322578e-05*(r2d*eul(k,2))^2);

L(4,3) = (5.30659348469686e-07*(r2d*eul(k,1))^2)+...

(4.89126466558287e-07*(r2d*eul(k,2))^2);

L(5,2) = (0.00107311676374309+(4.16898163844490e-08*(r2d*eul(k,3)))+...

(-1.55713050059031e-07*(r2d*eul(k,3))^2));

L(6,1) = ((7.80777838018693e-09*(r2d*eul(k,1)))+...

(5.28011975305490e-07*(r2d*eul(k,1))^2)+...

(6.41090951091655e-08*(r2d*eul(k,2)))+...

(4.87522834123705e-07*(r2d*eul(k,2))^2)+...

(1.26635097985323e-07*(r2d*eul(k,3)))+...

(-1.49281589143412e-07*(r2d*eul(k,3))^2));
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end

%% ---------4.2 Filter Update and "Online" Gain Usage -----------------%

%State estimation error covariance update

P=(I-L*H)*PHI*P*PHI’*(I-L*H)’+(I-L*H)*GQG*(I-L*H)’+(L*Rv*L’);

%P = (I - L*H)*P; %State estimation error covariance update

state_update = L*(att(k,:) - eul(k,:))’; %Kalman filter

eul(k,:)=eul(k,:)+state_update(1:3,:)’;%update state estimate

p_bias(k,:)=p_bias(k,:)+state_update(4,:); %roll rate bias

q_bias(k,:)=q_bias(k,:)+state_update(5,:); %pitch rate bias

r_bias(k,:)=r_bias(k,:)+state_update(6,:); %yaw rate bias

end

%End of actual EKF

%% ---------5.0 "Offline" Postprocessing of Filter Results ------------%

%Find the trace of the final state estimation error covariance matrix

%Used to calculate the performance index, mu, for rating sub-optimal

%filters

Pf(j).final = P; %Save the final value of P to a structure for later use

Jt(j) = trace(P); %assign scalar result to an array

% ===== Save the filter state estimate history for later use ===== %

eulhist(j).hist = eul;

end

% ===== Create the Kalman Gain schedule used in Step 5.1 ==== %

%This schedule provides variables for the above section

if j == 1 %Constant Kalman Gain case

L = zeros(6,3); % Overwrite Kalman Gain matrix and reset to zero

X = ones(size(eul(drls:end,1))); %Setup up the predictor matrix

%to determine the fit corresponding to the average value.
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%Calculate the mean gains. Store coefficient, 95% conf.

%interval for mean, store fit residuals, store 95% conf. interval

%for residuals, and store fit statistics like R^2 value.

[L1fc,bint11c,r11c,rint11c,stats11c] = regress(L11(drls:end),X);

[L2fc,bint22c,r22c,rint22c,stats22c] = regress(L22(drls:end),X);

[L3fc,bint33c,r33c,rint33c,stats33c] = regress(L33(drls:end),X);

[L4fc,bint43c,r43c,rint43c,stats43c] = regress(L43(drls:end),X);

[L5fc,bint52c,r52c,rint52c,stats52c] = regress(L52(drls:end),X);

[L6fc,bint61c,r61c,rint61c,stats61c] = regress(L61(drls:end),X);

L(1,1) = L1fc; %Populate Gain matrix with constant gains

L(2,2) = L2fc;

L(3,3) = L3fc;

L(4,3) = L4fc;

L(5,2) = L5fc;

L(6,1) = L6fc;

end

if j == 2 %Kalman Gain linear function of attitude case

L = zeros(6,3); % Overwrite Kalman Gain matrix and reset to zero

%Restore the state vector history from the optimal run

eulOG = eulhist(1).hist; %Write structure values to the variable

%Calculate multi-nonlinear regression fits for gains based on attitude

%state estimates. Regression includes interaction terms between

%attitudes.

%Setup predictor matrix

X = [ones(size(eulOG(drls:end,1))) eulOG(drls:end,1)...

eulOG(drls:end,2)...

eulOG((drls:end),3) eulOG(drls:end,1).*eulOG(drls:end,2)...

eulOG(drls:end,2).*eulOG(drls:end,3)...

eulOG(drls:end,1).*eulOG(drls:end,3)];

%Perform regression. Store coefficients, 95% conf. interval for

%coefficients, store fit residuals, store 95% conf. interval

%for residuals, and store fit statistics like R^2 value.
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%stats = [R^2, F statistic, p-value, and error variance]

[L1f,bint11,r11,rint11,stats11] = regress(L11(drls:end),X);

[L2f,bint22,r22,rint22,stats22] = regress(L22(drls:end),X);

[L3f,bint33,r33,rint33,stats33] = regress(L33(drls:end),X);

[L4f,bint43,r43,rint43,stats43] = regress(L43(drls:end),X);

[L5f,bint52,r52,rint52,stats52] = regress(L52(drls:end),X);

[L6f,bint61,r61,rint61,stats61] = regress(L61(drls:end),X);

end

end

%% Calculate EKF Performance Index

% Index of performance for constant gain

mu2 = (Jt(2)-Jt(1))/Jt(1);

% Index of performance for linear function gain

mu3 = (Jt(3)-Jt(1))/Jt(1);

% Index of performance for

mu4 = (Jt(4)-Jt(1))/Jt(1);

save



Appendix C

Summary Gain Schedules

Generated From Test Trajectories

Three gain schedules were analyzed in this thesis:

1. A constant gain, a1, computed from the time-series average gain as predicted by

the optimal filter equations. These gains are donated by subscript 1 in the table.

L(row, column)1 = a1 (C.1)

2. A gain function based on a multi-nonlinear regression of the optimal Kalman gain

versus Euler angles, computed using the following Equation C.2. These gains are

donated by subscript 2 in the table.

L(row, column)2 = a1 + a2Ψ + a3Θ + a4Φ + a5ΨΘ + a6ΨΦ + a7ΘΦ (C.2)

3. A series of gain functions based on a multi-nonlinear regression of the optimal

Kalman gain versus Euler angle. The regression function for each Kalman gain

term is tailored to fit the shape of a collection optimal Kalman gain time histories

produced by a family of similar trajectories. Equations C.3 to C.8 give the specific

equation fitted for each particular Kalman gain. These gains are donated by

subscript 3 in the table.

L(1, 1)3 = a1Ψ2 + a2Θ2 (C.3)

74



75

L(2, 2)3 = a1Ψ + a2Ψ2 + a3Θ + a4Θ2 + a5Φ + a6Φ2 (C.4)

L(3, 3)3 = a1Ψ2 + a2Θ2 (C.5)

L(4, 3)3 = a1Ψ2 + a2Θ2 (C.6)

L(5, 2)3 = a1 + a2Φ + a3Φ2 (C.7)

L(6, 1)3 = a1Ψ + a2Ψ2 + a3Θ + a4Θ2 + a5Φ + a6Φ2 (C.8)

What follows is a table containing the calculated gains for each trajectory simulated

in this thesis as well as the goodness of fit measure R2. This goodness of fit indicates

how well the fitted equation explains the variation seen in the data. R2 can take on

a value from 0 to 1, with values close to 1 indicating a good match between the fitted

regression equation and the data analyzed.
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Gain a1 a2 a3 a4 a5 a6 a7 R2

L(1, 1)1 0.021 - - - - - - ≈ 0
L(1, 1)2 0.021 -1.786e-4 0.002 -0.001 -7.510 0.005 5.006 0.99
L(2, 2)1 0.021 - - - - - - ≈ 0
L(2, 2)2 0.021 -1.795e-4 2.36e-6 1.68e-6 0.0692 -4.905e-7 -0.046 0.80
L(3, 3)1 0.021 - - - - - - ≈ 0
L(3, 3)2 0.021 -4.425e-4 0.002 -0.002 -19.216 0.005 12.816 0.99
L(4, 3)1 0.001 - - - - - - ≈ 0
L(4, 3)2 0.001 -2.65e-5 2.44e-5 -1.48e-5 -0.276 -9.323e-5 0.185 0.99
L(5, 2)1 0.001 - - - - - - ≈ 0
L(5, 2)2 0.001 1.25e-4 2.57e-4 -1.71e-4 -1.712 -7.99e-4 1.145 0.99
L(6, 1)1 0.001 - - - - - - ≈ 0
L(6, 1)2 0.001 1.87e-4 3.43e-4 -2.27e-4 -2.6141 -8.93e-4 1.742 0.99

Table C.1: Gain Schedule For Simulated Trajectory of Benign Pitch and Roll Dynamics

Gain a1 a2 a3 a4 a5 a6 a7 R2

L(1, 1)1 0.023 - - - - - - ≈ 0
L(1, 1)2 0.023 -2.39 1.576e-4 -1.291 8.444 6.68 1.0e4 0.11
L(2, 2)1 0.021 - - - - - - ≈ 0
L(2, 2)2 0.021 3.99e-4 -5.31e-8 5.02e-4 -0.003 -0.002 -5.4 0.12
L(3, 3)1 0.023 - - - - - - ≈ 0
L(3, 3)2 0.023 -2.51 2.34e-4 -1.23 8.55 6.69 11 0.12
L(4, 3)1 0.001 - - - - - - ≈ 0
L(4, 3)2 0.001 0.03 3.83e-7 0.021 -0.118 -0.092 -135 0.10
L(5, 2)1 0.001 - - - - - - ≈ 0
L(5, 2)2 0.001 -4.87e-6 -2.316e-9 2.33e-5 -1.31e-4 -1.19e-4 -0.29 0.13
L(6, 1)1 0.001 - - - - - - ≈ 0
L(6, 1)2 0.001 0.03 2.78e-7 0.025 -0.125 -0.100 -155 0.10

Table C.2: Gain Schedule For Simulated Trajectory of Aggressive Pitch Dynamics
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Gain a1 a2 a3 a4 a5 a6 a7 R2

L(1, 1)1 0.023 - - - - - - ≈ 0
L(1, 1)2 0.023 1.23 -2.06e-5 5.76e-5 2.33 -0.004 0.37 0.20
L(2, 2)1 0.021 - - - - - - ≈ 0
L(2, 2)2 0.021 -3.7e-4 6.22e-7 -4.24e-7 5.33e-4 1.26e-6 -3.14e-4 0.45
L(3, 3)1 0.024 - - - - - - ≈ 0
L(3, 3)2 0.023 1.25 5.40e-5 6.05e-5 2.38 -0.004 0.38 0.18
L(4, 3)1 0.001 - - - - - - ≈ 0
L(4, 3)2 0.001 -0.02 2.99e-6 -6.83e-7 -0.03 6.37e-5 -0.006 0.24
L(5, 2)1 9.12e-4 - - - - - - ≈ 0
L(5, 2)2 9.44e-4 0.06 -3.69e-6 2.44e-6 0.14 2.27e-4 0.028 0.18
L(6, 1)1 8.71e-4 - - - - - - ≈ 0
L(6, 1)2 9.12e-4 0.05 -1.43e-7 1.14-6 0.10 2.88e-4 0.017 0.41

Table C.3: Gain Schedule For Simulated Trajectory of Aggressive Out of Phase Pitch
and Roll Dynamics

Gain a1 a2 a3 a4 a5 a6 a7 R2

L(1, 1)1 0.024 - - - - - - ≈ 0
L(1, 1)2 0.021 0.058 0.05 -0.108 -0.139 0.064 0.084 0.99
L(2, 2)1 0.021 - - - - - - ≈ 0
L(2, 2)2 0.021 1.40e-4 1.15e-4 -2.57e-4 -0.003 4.37e-4 0.002 0.30
L(3, 3)1 0.024 - - - - - - ≈ 0
L(3, 3)2 0.021 0.021 0.167 -0.187 -0.201 0.025 0.185 0.99
L(4, 3)1 0.001 - - - - - - ≈ 0
L(4, 3)2 0.001 -9.36e-4 0.0031 -0.002 -0.002 -0.001 0.003 0.99
L(5, 2)1 8.932e-4 - - - - - - ≈ 0
L(5, 2)2 0.001 -5.76e-4 0.005 -0.004 -0.0015 -0.002 0.003 0.99
L(6, 1)1 8.961e-4 - - - - - - ≈ 0
L(6, 1)2 0.001 -1.64e-4 0.009 -0.009 -0.002 -0.002 0.003 0.99

Table C.4: Gain Schedule For Simulated Trajectory of Aggressive In-Phase Pitch, Roll,
and Yaw Dynamics
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Gain a1 a2 a3 a4 a5 a6 a7 R2

L(1, 1)1 0.024 - - - - - - ≈ 0
L(1, 1)2 -0.062 0.055 0.049 0.055 -0.199 -0.199 -0.169 0.99
L(2, 2)1 0.021 - - - - - - ≈ 0
L(2, 2)2 0.021 -3.68e-4 -3.33e-4 -3.67e-4 -2.0e-4 -2.0-4 -1.8e-4 0.88
L(3, 3)1 0.024 - - - - - - ≈ 0
L(3, 3)2 -0.067 0.055 0.049 0.055 -0.208 -0.208 -0.177 0.99
L(4, 3)1 0.001 - - - - - - ≈ 0
L(4, 3)2 8.34e-4 3.53e-5 3.33e-5 3.53e-5 -4.0e-4 -3.9e-4 -4.9e-4 0.99
L(5, 2)1 9.05e-4 - - - - - - ≈ 0
L(5, 2)2 0.002 -9.55e-4 -8.57e-4 -9.54e-4 0.002 0.003 0.003 0.99
L(6, 1)1 8.96e-4 - - - - - - ≈ 0
L(6, 1)2 0.003 -0.001 -0.001 -0.001 0.004 0.005 0.004 0.99

Table C.5: Gain Schedule For Simulated Trajectory of Aggressive Out of Phase Pitch,
Roll, and Yaw Dynamics

Gain a1 a2 a3 a4 a5 a6 a7 R2

L(1, 1)1 0.03 - - - - - - ≈ 0
L(1, 1)2 0.03 1.59e-4 0.017 0.001 -0.007 -0.033 5.29e-4 0.58
L(2, 2)1 0.03 - - - - - - ≈ 0
L(2, 2)2 0.03 3.67e-5 -0.002 1.37e-4 7.0e-4 0.007 -1.76e-4 0.41
L(3, 3)1 0.03 - - - - - - ≈ 0
L(3, 3)2 0.028 9.91e-4 0.016 0.011 -0.007 -0.028 -0.006 0.43
L(4, 3)1 0.001 - - - - - - ≈ 0
L(4, 3)2 0.001 4.48e-6 -0.002 -3.84e-4 5.28e-4 0.004 1.38e-4 0.31
L(5, 2)1 0.001 - - - - - - ≈ 0
L(5, 2)2 0.001 -1.64e-5 -0.001 -6.88-4 5.19e-4 0.003 2.89e-4 0.28
L(6, 1)1 0.002 - - - - - - ≈ 0
L(6, 1)2 0.002 1.27e-5 -3.93e-5 -6.85e-5 2.05e-5 7.51e-4 -2.09e-5 0.24

Table C.6: Gain Schedule For Recorded Pendulum Helicopter Trajectories
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Gain a1 a2 a3 a4 a5 a6 a7 R2

L(1, 1)1 0.031 - - - - - - ≈ 0
L(1, 1)2 0.029 -4.95e-5 -0.001 8.65e-4 8.88e-6 -0.015 2.19e-5 0.21
L(2, 2)1 0.029 - - - - - - ≈ 0
L(2, 2)2 0.029 -2.34e-5 -5.29-e5 1.0e-4 2.185e-5 -0.002 -1.62e-5 0.52
L(3, 3)1 0.030 - - - - - - ≈ 0
L(3, 3)2 0.031 -4.41e-5 -7.0e-4 9.99e-4 -2.74e-5 -0.025 -1.72e-5 0.47
L(4, 3)1 0.002 - - - - - - ≈ 0
L(4, 3)2 0.002 -1.76e-5 -4.59e-5 -5.87e-4 1.48e-5 -0.001 -3.73e-6 0.68
L(5, 2)1 0.002 - - - - - - ≈ 0
L(5, 2)2 0.002 -1.76e-5 -2.68e-5 6.34e-5 1.23e-5 -7.56e-4 -5.58e-6 0.72
L(6, 1)1 0.002 - - - - - - ≈ 0
L(6, 1)2 0.002 -4.09e-7 4.92e-5 -8.87e-6 -3.66e-6 -5.47e-4 1.64e-6 0.13

Table C.7: Gain Schedule For Recorded Free-Flight Helicopter Trajectories

Gain a1 a2 a3 a4 a5 a6 R2

L(1, 1)3 1.019e-5 1.304-5 - - - - 99.51
L(2, 2)3 -2.414e-9 1.028e-5 -9.583-e8 1.028e-5 -1.567e-8 -0.002 79.78
L(3, 3)3 1.0193e-5 1.304e-5 - - - - 99.23
L(4, 3)3 5.307e-7 4.891e-7 - - - - 99.59
L(5, 2)3 1.073e-3 4.169e-8 -1.557e-7 - - - 99.98
L(6, 1)3 7.808e-9 5.280e-7 6.411e-8 4.875e-7 1.266e-7 1.493e-7 99.71

Table C.8: Tailored Gain Schedule Based Off Family Of Trajectories
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